WO2018161387A1 - 用于三维成像的多镜头合成转接件组件及相机 - Google Patents

用于三维成像的多镜头合成转接件组件及相机 Download PDF

Info

Publication number
WO2018161387A1
WO2018161387A1 PCT/CN2017/078597 CN2017078597W WO2018161387A1 WO 2018161387 A1 WO2018161387 A1 WO 2018161387A1 CN 2017078597 W CN2017078597 W CN 2017078597W WO 2018161387 A1 WO2018161387 A1 WO 2018161387A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
camera
assembly
mirror assembly
mirror
Prior art date
Application number
PCT/CN2017/078597
Other languages
English (en)
French (fr)
Inventor
周之琪
刘忠辉
曹亮
Original Assignee
北京清影机器视觉技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京清影机器视觉技术有限公司 filed Critical 北京清影机器视觉技术有限公司
Publication of WO2018161387A1 publication Critical patent/WO2018161387A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/56Accessories
    • G03B17/565Optical accessories, e.g. converters for close-up photography, tele-convertors, wide-angle convertors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/17Bodies with reflectors arranged in beam forming the photographic image, e.g. for reducing dimensions of camera
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography

Definitions

  • the present invention relates to the technical field of three-dimensional imaging cameras, and more particularly to a multi-lens composite adapter assembly and camera for three-dimensional imaging.
  • the method for obtaining a captured image by a matrix camera can adopt a method of fabricating a photosensitive element of a matrix structure on one board, a method of mounting a lens of a matrix structure on a one-time fixed fixing plate, and narrowing between adjacent lenses.
  • the distance is to ensure the geometric accuracy of the mutual position of the photosensitive elements, the geometric accuracy of the parallel of the optical axis of the lens, and the geometrical accuracy of the matrix structure.
  • the processing technology and processing process of the fixed board are required to be high, and thus the cost is high;
  • optical axis spacing of the camera photosensitive element and the lens is integrally formed. Different optical axis spacings require additional processing of the photosensitive element circuit board and the lens fixing plate, which increases the cost and duration;
  • the matrix camera Since the matrix camera has a plurality of lenses and requires a plurality of photosensitive elements, the cost is high.
  • the rotary member assembly provided by the present invention is not used, and the single camera needs to be changed into a four-camera or multiple cameras, and the conversion cost of the overall system is very high. high.
  • the problem of the prior art is that the cost of the existing matrix camera is high, and there is no better solution so far.
  • the invention provides an adapter assembly for multi-lens synthesis, which is used for a camera.
  • One end of the adapter assembly is provided with a first interface connected to each lens of the camera, and the other end is provided with a second interface connected to the camera;
  • the adapter assembly further includes a multi-lens light concentrating device for diverting light incident from the first interface of each lens of the camera to a photosensitive element of the camera through the second interface, wherein the photosensitive element The number is less than the number of shots.
  • the multi-lens light concentrating device comprises a camera mirror assembly and a plurality of lens mirror assemblies disposed in one-to-one correspondence with the lens;
  • the camera mirror assembly has a plurality of reflecting planes and the light reflected by the plurality of reflecting planes is emitted in parallel;
  • Each of the lens mirror assemblies has a reflection plane and the reflection plane of the lens mirror assembly is arranged in parallel with the reflection plane of the camera mirror assembly;
  • the lens mirror assembly is capable of reflecting light entering from the lens to the camera mirror assembly;
  • the camera The mirror assembly is capable of reflecting the light reflected by each lens mirror assembly to the same photosensitive element.
  • the camera mirror assembly includes a polygon mirror, and each of the reflection planes of the polygon mirror is parallel to a reflection plane of the corresponding lens mirror assembly.
  • the camera mirror assembly includes a plurality of plane mirrors, and a reflection plane of each plane mirror is parallel to a reflection plane of the corresponding lens mirror assembly;
  • the lens mirror assembly includes a lens plane mirror, and the reflection plane of the lens plane mirror is parallel to the reflection plane of the corresponding camera mirror.
  • the effective reflection area of the reflection plane of each lens mirror assembly and the effective reflection area of each reflection plane of the camera mirror assembly are larger than the area of the photosensitive element.
  • the adapter further includes a housing, the first end of the housing has a first interface, and the first interface has a plurality of sub-interfaces respectively connected to the lens, and each of the sub-interfaces is provided with a lens mirror assembly for Reflecting light from the object to the camera mirror assembly; the other end of the housing has a second interface coupled to the camera; the camera mirror assembly is disposed at the second interface.
  • the circumscribed circle of the connection pattern of the plurality of lens centers is concentric with the second interface; or, the center axes of the plurality of lenses are symmetrically distributed or symmetrically distributed at the center.
  • the light entrance is four and the angle between the reflection plane of each lens mirror assembly and the optical axis is 45 degrees.
  • the polygon mirror is a positive quadrilateral prism; or the camera reflection group mirror member further includes a polygon mirror base, and the polygon mirror is connected to the inner wall of the casing through the polygon mirror base.
  • the present invention also provides a camera comprising a multi-lens composite adapter assembly for three-dimensional imaging, the multi-lens composite adapter assembly being located in front of the camera photosensitive element and for concentrating light entering the plurality of lenses into the camera On the photosensitive element.
  • the present invention provides a multi-lens composite adapter assembly for three-dimensional imaging, comprising a multi-lens light concentrating device capable of concentrating light projected from a plurality of lenses into a designated photosensitive element, due to light steering convergence of at least two lenses To a photosensitive element, the number of photosensitive elements is reduced, and the cost is saved.
  • the rotary member assembly provided by the present invention can be used, and only the lens is added without changing the previous single camera camera system.
  • the existing system is transformed into a three-dimensional system, and the conversion cost of the overall system is greatly reduced.
  • FIG. 1 is a schematic perspective structural view of an adapter assembly for a multi-lens synthesis connected to a lens and a camera according to an embodiment of the present invention
  • FIG. 2 is a right cross-sectional view of the adapter assembly for multi-lens synthesis provided in the embodiment of FIG. 1 connected to the lens and the camera along a central cross-section;
  • FIG. 3 is a position distribution diagram of four lenses and a second interface in an adapter assembly for multi-lens synthesis according to an embodiment of the present invention
  • Figure 4 is a cross-sectional view taken along line A-A of Figure 3;
  • FIG. 5 is a schematic perspective structural view of an adapter assembly for multi-lens synthesis according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a polygon mirror of an adapter assembly for multi-lens synthesis according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of beam reflection of an adapter assembly for multi-lens synthesis according to an embodiment of the present invention.
  • FIG. 8 is a positional view of planes of respective mirrors of an adapter assembly for multi-lens synthesis according to an embodiment of the present invention
  • FIG. 9 is a schematic plan view of an imaging camera imaging of an adapter assembly for three-dimensional imaging.
  • Icons 100-first interface; 110-sub-interface; 200-second interface; 300-multi-lens light concentrating device; 310-camera mirror assembly; 311-polyprism; 312-plane mirror; 313-polygon base; - lens mirror assembly; 321 - lens plane mirror; 400-lens; 410-lens lens set; 500-shell; 600-ray; 610-optical axis; 700-camera; 800-photosensitive element.
  • connection In the description of the present invention, it should be noted that the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be fixed or detachable, for example, unless otherwise explicitly defined and defined. Connected, or integrally connected; can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
  • Connected, or integrally connected can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
  • the specific meaning of the above terms in the present invention can be understood in a specific case by those skilled in the art.
  • the central idea of the present invention is to provide an adapter assembly for multi-lens synthesis and a camera for three-dimensional imaging.
  • the multi-lens light concentrating device turns the light entering the lens into a specified photosensitive element, and the photosensitive element The number is less than the number of shots. Since the photosensitive member is saved, the manufacturing cost is saved.
  • the embodiment provides a multi-lens composite adapter assembly for three-dimensional imaging. As shown in FIGS. 1, 4 and 5, one end of the adapter assembly is provided with a first interface 100 connected to each lens 400 of the camera 700. The other end is provided with a second interface 200 connected to the camera 700; the adapter assembly further includes a multi-lens light concentrating device 300 for projecting the first interface 100 from each lens 400 of the camera 700. The light is diverted through the second interface 200 to the photosensitive elements of the camera, wherein the number of photosensitive elements 800 is less than the number of lenses 400.
  • Embodiments of the present invention provide a multi-lens synthesis adapter assembly for three-dimensional imaging, including a multi-lens light concentrating device 300, which can converge light rays projected into a plurality of lenses 400 to a specified photosensitive element 800 by optical principle, The light of at least two lenses 400 is concentrated to one photosensitive element 800, which reduces the number of photosensitive elements 800 and saves cost.
  • the optical principle described above may be the refraction of light or the reflection of light.
  • the reflection of light is employed.
  • the multi-lens light concentrating device 300 includes a camera mirror assembly 310 and a plurality of lens mirror assemblies 320 disposed one-to-one corresponding to the lens 400. ;
  • the camera mirror assembly 310 has a plurality of reflecting planes and the light reflected by the plurality of reflecting planes is emitted in parallel;
  • Each lens mirror assembly 320 has a reflective plane and the reflective plane of the lens mirror assembly 320 is disposed in parallel with the reflective plane of the camera mirror assembly 310; the lens mirror assembly 320 is capable of reflecting light entering from the lens 400 to Camera mirror assembly 310; camera mirror assembly 310 is capable of reflecting light reflected by each lens mirror assembly 320 to the same photosensitive element 800. Since the light of the plurality of lenses 400 is projected on the same photosensitive member 800, the production cost is greatly saved.
  • the camera mirror assembly 310 has a plurality of reflecting planes. Since it is finally necessary to reflect the light to the same photosensitive element 800, the plurality of reflecting planes need to be connected to one apex to each other, and the direction of the apex points to the photosensitive element 800.
  • the camera mirror assembly 310 functions to concentrate multiple directions of light into one direction and then reflect it out to the photosensitive element 800.
  • each camera mirror assembly 310 has a lens mirror assembly 320 corresponding thereto.
  • the adapter assembly for multi-lens synthesis needs to be protected during use to ensure that light propagates in the multi-lens light concentrating device 300 to accurately project to the photosensitive member 800, and therefore, the adapter assembly further includes a case.
  • the body 500 has a first interface 100 at one end thereof, the first interface 100 has a plurality of sub-interfaces 110 connected to the lens 400 in one-to-one correspondence, and the other end of the housing 500 has a second interface 200 connected to the camera 700;
  • Each of the sub-interfaces 110 is provided with a lens mirror assembly 320 for reflecting the light of the object to the camera mirror assembly 310; the camera mirror assembly 310 is disposed at the second interface 200.
  • the plurality of sub-interfaces 110 are disposed in the same plane.
  • the lens 400 of the camera 700 described above may be connected to the first interface 100 in a screw connection or a snap connection.
  • the photosensitive element 800 is located within the camera 700, and the connection of the second interface 200 to the photosensitive element 800 in the camera 700 is indirectly connected, that is, the second interface 200 is coupled to the housing 500 of the camera 700.
  • the second interface 200 is connected to the housing 500 in a threaded manner.
  • the phase forming process is: the light of the object enters the plurality of sub-interfaces 110 of the first interface 100 through the lens 400, and is respectively projected to the reflection plane of the lens mirror assembly 320.
  • the steering shot occurs due to the reflection of the light.
  • the reflective plane of the camera mirror assembly 310 is reflected, directed toward the second interface 200, into the camera 700 and projected onto the photosensitive element 800.
  • all the sub-interfaces 110 are located on one side of the housing 500, and the lens mirror assembly 320 may be disposed on the inner wall of the other side of the housing directly opposite the sub-interface 110. It may also be fixed between the inner wall of the sub-interface 110 and the inner wall of the housing 500 facing the sub-interface 110 as long as there is sufficient distance between the sub-interface 110 and the lens mirror assembly 320 to achieve reflection of light.
  • the lens mirror assembly 320 can be connected to the housing in a hanging manner.
  • the lens mirror assembly 320 needs to have a certain angle, and therefore, a certain support is required.
  • the lens mirror assembly 320 includes the lens plane mirror 321 and the bracket, and the reflection plane and phase of the lens plane mirror 321
  • the lens mirror assembly 320 is fixed to the bracket.
  • the lens plane mirror 321 is fixed to the inner side wall of the housing 500 by the bracket to realize the overall fixing of the lens mirror assembly 320.
  • the bracket On the inner side wall of the housing 500, the bracket is fixed on the inner side wall of the housing 500.
  • the bracket is divided into a support portion and an adjustment portion.
  • the support portion is connected to the inner side wall of the housing 500, and the adjustment portion is connected to the lens plane mirror 321 . It is used to adjust the angle of the lens plane mirror 321 .
  • Each camera mirror assembly 310 has a plurality of reflective planes, each of which corresponds to and is parallel to the reflective plane of one of the lens mirror assemblies 320.
  • camera mirror assembly 310 There are many types of camera mirror assembly 310. Since it is necessary to receive light from a plurality of lens mirror assemblies 320 and need to reflect light to the same photosensitive element 800, a plurality of reflective surfaces of the camera mirror assembly 310 are required. There are two ways to achieve this, as follows:
  • the camera mirror assembly 310 includes a polygon mirror 311, and each of the reflecting planes of the polygon mirror 311 is parallel to the reflecting plane of the corresponding lens mirror assembly 320.
  • the number of lenses 400 is the same as the number of reflection planes of the polygon mirror 311.
  • the top of the polygon mirror 311 is directed to the second interface 200.
  • the camera mirror assembly 310 further includes a multi-prism base 313 that is coupled to the inner wall of the housing 500 by a multi-prism base 313.
  • the camera mirror assembly 310 is located at the second interface 200 and may be disposed on an inner sidewall of the housing 400 directly opposite the second interface 200.
  • the camera mirror assembly 310 since the angle of the reflection plane of the lens mirror assembly 320 may change, considering the change in the angle of the reflection plane of one lens mirror assembly 320, it is possible to avoid a wide range as much as possible. Adjustment, only need to adjust the reflection plane of the corresponding camera mirror assembly 310, therefore, the camera mirror assembly 310 includes a plurality of plane mirrors 312, the reflection plane of each plane mirror 312 and the corresponding lens mirror The reflection plane of assembly 320 is parallel.
  • the back joints of each of the planar mirrors can be joined and fixed by bonding.
  • the effective reflection area of the reflection plane of each of the lens mirror assemblies and the effective reflection area of each of the reflection planes of the camera mirror assembly are larger than the area of the photosensitive element.
  • the obtained three-dimensional stereoscopic image has a limited imaging range, and a three-dimensional stereoscopic image of a close object cannot be obtained.
  • the mechanical mounting structure itself has errors, and at the same time, due to the inconsistency in manufacturing, there is a geometric inconsistency between the optical axis of the camera, the photosensitive surface and the outer casing, resulting in the final.
  • the photosensitive elements are not guaranteed to be on the same level, and the optical axes of the photosensitive elements are not guaranteed to be parallel to each other, and at the same time, a standard rectangular structure cannot be guaranteed.
  • the existence of the above errors greatly affects the accuracy and accuracy of the three-dimensional calculation.
  • the method for obtaining a captured image by the camera further includes obtaining a three-dimensional stereoscopic image of the subject by using a single mechanical camera or a plurality of cameras to perform shooting by dividing the different position nodes.
  • a camera that fixes a single camera on a rotating arm the camera rotates the rotating arm to make the camera shoot at four nodes that can form a rectangle, and obtain images of four objects to realize the image capturing function of the camera;
  • a camera that fixes multiple cameras on the translation stage of the translation mechanism, and two cameras fixed on the platform The camera moves two positions on the platform.
  • the two cameras respectively take two images of the subject, and obtain images of four objects to realize the image acquisition function of the four camera matrix.
  • the translation mechanism fixes the subject on the translation stage.
  • the camera is panned by the object platform, and the camera captures four nodes that can be formed into rectangles by the subject, and obtains images of four objects to realize a four-camera matrix function.
  • an error occurs in the course of motion, which affects the shooting result.
  • the embodiment of the present invention fixes the placement position of each lens 400.
  • the circumcircle of the connection pattern of the center of the lens 400 is concentric with the second interface 200.
  • the number of the lenses 400 of the above embodiment is four.
  • the center axes of the plurality of lenses 400 are symmetrically distributed.
  • the line connecting the centers of the lenses 400 is a rectangle.
  • the centers of the centers of the plurality of lenses 400 are symmetrically distributed.
  • the connecting line of the center of the lens 400 is square.
  • the light entering by the lens 400 needs to be diverted into the camera mirror assembly 310. Therefore, there is a certain relationship between the reflection plane of the lens plane mirror 321 of the lens mirror assembly 320 and the optical axis 610 of the lens 400. Angle, in order to enable simple operation, the angle of the reflection plane of each lens mirror assembly 320 to the optical axis is 45 degrees. As shown in Figure 7 and Figure 8.
  • the respective planes of the camera mirror assembly 310 are also at 45 degrees to the optical axis. Therefore, the polygon mirror is a regular quad prism.
  • the reflection plane of the mirror assembly is 45 degrees from the optical axis, the angle reflected by the beam is also 45 degrees, and the incident angle directly to the reflection surface of the camera mirror assembly is also 45 degrees, thus ensuring reflection of the camera mirror assembly.
  • the beams are emitted in parallel, ensuring uniformity of daylighting and imaging.
  • the embodiment provides a three-dimensional imaging camera based on the above embodiments, and the adapter component is disposed between the photosensitive element and the plurality of lenses for concentrating light entering the plurality of lenses to the photosensitive element.
  • FIG. 9 is a schematic plan view of a photosensitive element after mounting four rotating parts of the lens assembly.
  • the planar image according to the three-dimensional algorithm and the geometrical dimensions of the adapter, first, press an image.
  • the image is divided into four images.
  • the three-dimensional relationship of the object is deconstructed by the calculation of the pixel disparity value, and the three-dimensional image of the surface of the object is formed to form the final three-dimensional image. Achieve the purpose of three-dimensional imaging.
  • the camera Since the camera has an adapter assembly, it is possible to achieve the cost savings by concentrating light entering from multiple lenses to the same photosensitive element.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Stereoscopic And Panoramic Photography (AREA)
  • Studio Devices (AREA)

Abstract

一种用于三维成像的多镜头合成转接件组件,其一端设置有与相机(700)的各镜头(400)连接的第一接口(100),另一端设置有与相机(700)连接的第二接口(200)。转接件组件还包括多镜头光线汇聚装置(300)。多镜头光线汇聚装置(300)用于将第一接口(100)从相机(700)的各镜头(400)投射进入的光线转向穿过第二接口(200)汇聚于相机(700)的感光元件(800)。感光元件(800)的个数少于镜头(400)的个数。还公开了一种相机(700)。

Description

用于三维成像的多镜头合成转接件组件及相机
本申请要求于2017年03月09日提交中国专利局的申请号为CN201710139591.4、名称为“用于三维成像的多镜头合成转接件组件及相机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及三维成像相机的技术领域,尤其是涉及一种用于三维成像的多镜头合成转接件组件及相机。
背景技术
目前,矩阵相机获得拍摄图像的方法可以采用将矩阵结构的感光元件在一块板上制作的方式、将矩阵结构的镜头安装在一块一次成型的固定板上的方式、以及缩小相邻的镜头之间的距离的方式,来保证感光元件相互位置的几何精度、镜头光轴的平行的几何精度、矩阵结构的几何精度,通过以上措施,保证三维立体图像精确度和准确度使该装置成为真正意义上的集成化小型化的三维图像采集装置。采用此种方法存在的问题有:
因为矩阵相机对精度要求较高,因而对固定板的加工工艺及加工过程要求很高,因而成本昂贵;
相机感光元件和镜头的光轴间距是一体成型的,不同的光轴间距需要另加工感光元件电路板和镜头固定板,增加了成本和工期;
由于矩阵相机的镜头为多个,需要多个感光元件,因此,成本高。
同时,对于现有单台相机的平面摄像系统,如果需要改装为三维系统时,不采用本发明提供的转件件组件,需要将单相机变为四相机或多相机,整体系统的改装成本很高。
综上,现有技术的问题为现有的矩阵相机成本高的问题,至今没有较好的解决方案。
发明内容
本发明的目的在于提供一种用于三维成像的多镜头合成转接件组件及相机,用于三维成像的相机装置,通过该组件将四个相机镜头的光线汇聚在一台相机上,减少现有技术中存在的矩阵相机数量多、生产成本高的技术问题。
本发明提供一种用于多镜头合成的转接件组件,用于相机,转接件组件一端设置有与相机的各镜头连接的第一接口,另一端设置有与相机连接的第二接口;
转接件组件还包括多镜头光线汇聚装置,多镜头光线汇聚装置用于将第一接口从相机的各镜头投射进入的光线转向穿过第二接口汇聚于相机的感光元件,其中,感光元件的个数少于镜头的个数。
进一步的,多镜头光线汇聚装置包括相机反射镜组件和多个与镜头一一对应设置的镜头反射镜组件;相机反射镜组件具有多个反射平面且多个反射平面反射出的光线平行射出;每个镜头反射镜组件均具有反射平面且镜头反射镜组件的反射平面与相机反射镜组件的反射平面一一对应平行设置;镜头反射镜组件能够将从镜头进入的光线反射到相机反射镜组件;相机反射镜组件能够将各个镜头反射镜组件反射的光线反射到同一个感光元件。
进一步的,相机反射镜组件包括多棱镜,多棱镜的每个反射平面与相对应的镜头反射镜组件的反射平面平行。
进一步的,相机反射镜组件包括多个平面反射镜,每个平面反射镜的反射平面与相对应的镜头反射镜组件的反射平面平行;
或,镜头反射镜组件包括镜头平面反射镜,镜头平面反射镜的反射平面与相对应的相机反射镜的反射平面平行。
进一步的,每个镜头反射镜组件的反射平面的有效反射面积和相机反射镜组件的每个反射平面的有效反射面积均大于感光元件的面积。
进一步的,转接件还包括壳体,壳体的一端具有第一接口,第一接口具有多个与镜头一一对应连接的子接口,每个子接口处均设置有镜头反射镜组件,用于向相机反射镜组件反射物体的光线;壳体的另一端具有与相机连接的第二接口;相机反射镜组件设置于第二接口。
进一步的,多个镜头圆心的连接图形的外接圆与第二接口为同心圆;或,多个镜头的圆心轴对称分布或中心对称分布。
进一步的,光线进口为四个且每个镜头反射镜组件的反射平面与本光轴的夹角为45度。
进一步的,多棱镜为正四棱镜;或,相机反射组镜件还包括多棱镜底座,多棱镜通过多棱镜底座与壳体的内壁连接。
本发明还提供一种相机,包括用于三维成像的多镜头合成的转接件组件,多镜头合成的转接件组件位于该相机感光元件之前并用于将多个镜头进入的光线汇聚到该相机的感光元件上。
本发明提供一种用于三维成像的多镜头合成转接件组件,包括多镜头光线汇聚装置,能够将多个镜头投射进入的光线汇聚到指定的感光元件,由于至少两个镜头的光线转向汇聚到一个感光元件,减少了感光元件的数量,节省了成本。
同时,对于现有单台相机的平面摄像系统,如果需要改装为三维系统时,可采用本发明提供的转件件组件,在不改变既有单相机摄像系统的前期下,只增加镜头,就将既有系统改造为三维系统,整体系统的改装成本极大降低。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的用于多镜头合成的转接件组件与镜头、相机连接的立体结构示意图;
图2为图1中实施例提供的用于多镜头合成的转接件组件沿中心剖视与镜头、相机连接的右剖视图;
图3为本发明实施例提供的用于多镜头合成的转接件组件中四个镜头和第二接口的位置分布图;
图4为图3中沿A-A方向的剖视图;
图5本发明实施例提供的用于多镜头合成的转接件组件的立体结构示意图;
图6为本发明实施例提供的用于多镜头合成的转接件组件的多棱镜的结构示意图;
图7为本发明实施例提供的用于多镜头合成的转接件组件的光束反射的原理图;
图8为本发明实施例提供的用于多镜头合成的转接件组件的各个反射镜平面的位置图;
图9为用于三维成像的转接件组件成像相机平面成像示意图。
图标:100-第一接口;110-子接口;200-第二接口;300-多镜头光线汇聚装置;310-相机反射镜组件;311-多棱镜;312-平面反射镜;313-多棱镜底座;320-镜头反射镜组件;321-镜头平面反射镜;400-镜头;410-镜头镜片组;500-壳体;600-光线;610-光轴;700-相机;800-感光元件。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
本发明的中心思想在于提供一种用于多镜头合成的转接件组件及用于三维成像的相机,通过多镜头光线汇聚装置,将镜头进入的光线转向汇聚到指定的感光元件,感光元件的个数少于镜头的个数。由于节省了感光元件,节省了制造成本。
如图1,图2,图3,图4,图5,图6,图7,图8和图9所示。
实施例一
本实施例提供一种用于三维成像的多镜头合成转接件组件,如图1、4、5所示,转接件组件一端设置有与相机700的各镜头400连接的第一接口100,另一端设置有与相机700连接的第二接口200;转接件组件还包括多镜头光线汇聚装置300,多镜头光线汇聚装置300用于将第一接口100从相机700的各镜头400投射进入的光线转向穿过第二接口200汇聚于相机的感光元件,其中,感光元件800的个数少于镜头400的个数。
本发明实施例提供一种用于三维成像的多镜头合成转接件组件,包括多镜头光线汇聚装置300,能够将多个镜头400投射进入的光线通过光学原理汇聚到指定的感光元件800,由于至少两个镜头400的光线汇聚到一个感光元件800,减少了感光元件800的数量,节省了成本。
上述的光学原理可以为光的折射作用,也可以是光的反射作用,在本实施例中,采用的是光的反射作用。
考虑到从镜头400进入第一接口100的光线通过反射最后落到感光元件800上,多镜头光线汇聚装置300包括相机反射镜组件310和多个与镜头400一一对应设置的镜头反射镜组件320;
相机反射镜组件310具有多个反射平面且多个反射平面反射出的光线平行射出;
每个镜头反射镜组件320均具有反射平面且镜头反射镜组件320的反射平面与相机反射镜组件310的反射平面一一对应平行设置;镜头反射镜组件320能够将从镜头400进入的光线反射到相机反射镜组件310;相机反射镜组件310能够将各个镜头反射镜组件320反射的光线反射到同一个感光元件800。由于多个镜头400的光线投射在同一个感光元件800上,大大的节省了生产成本。
相机反射镜组件310具有多个反射平面,由于最后需要将光反射到同一个感光元件800,因此多个反射平面需要彼此连接于一个顶点,顶点的方向指向感光元件800。
相机反射镜组件310的作用为将多方向的光汇聚到一个方向再反射出去到感光元件800。
上述的“一一对应”是指每一个相机反射镜组件310的反射平面都有一个镜头反射镜组件320对应。
考虑到用于多镜头合成的转接件组件在使用的过程中需要保护,以保证光在多镜头光线汇聚装置300中传播能够准确的投射到感光元件800,因此,转接件组件还包括壳体500,壳体500的一端具有第一接口100,第一接口100具有多个与镜头400一一对应连接的子接口110,壳体500的另一端具有与相机700连接的第二接口200;每个子接口110处均设置有镜头反射镜组件320,用于向相机反射镜组件310反射物体的光线;相机反射镜组件310设置于第二接口200。
在具体的实践中,为了实现多个镜头400能够在同一个平面,因此多个子接口110在同一个平面设置。
考虑到现实的需要,上述的相机700的镜头400与第一接口100连接的方式可以为螺纹连接,也可以是卡接。
在具体的操作中,感光元件800位于相机700内,第二接口200与相机700中的感光元件800的连接为间接连接,即第二接口200与相机700的壳体500连接。
进一步的,第二接口200与壳体500的连接方式为螺纹连接。
在上述实施例中,成相的过程为:物体的光线通过镜头400进入第一接口100的多个子接口110,分别投射到镜头反射镜组件320的反射平面,由于光的反射作用,发生转向射向相机反射镜组件310的反射平面,经过反射,射向第二接口200进入相机700投射到感光元件800上。
在具体的实践中,在壳体500上,所有的子接口110均位于壳体500的一侧面,镜头反射镜组件320可以设置于子接口110所正对的壳体另一侧的内壁上,也可以固定在子接口110内壁与子接口110正对的壳体500内壁之间,只要在子接口110和镜头反射镜组件320之间具有足够的距离实现光的反射即可。上述镜头反射镜组件320与壳体的连接方式可以为悬挂固定。
考虑到现实的悬挂过程中,镜头反射镜组件320需要具有一定的角度,因此,需要一定的支撑,镜头反射镜组件320包括镜头平面反射镜321和支架,镜头平面反射镜321的反射平面与相对应的相机反射镜组件的反射平面平行,镜头反射镜组件320固定于支架上,具体的,镜头平面反射镜321通过支架固定于壳体500的内侧壁上以实现镜头反射镜组件320的整体固定于壳体500的内侧壁上,支架固定于壳体500的内侧壁上,支架分为支撑部和调整部,支撑部与壳体500的内侧壁连接,调整部与镜头平面反射镜321连接,用于调整镜头平面反射镜321的角度。
每一个相机反射镜组件310具有多个反射平面,每个反射平面都与一个镜头反射镜组件320的反射平面相对应且平行。
相机反射镜组件310的类型有很多,由于需要从多个镜头反射镜组件320上接受光线且需要将光线反射到同一个感光元件800,因此,相机反射镜组件310的反射面需要有多个,实现方式有两种,如下:
1、考虑到在使用相机的过程中,经常需要移动相机,因此,转接件组件内的相机反射镜组件310的反射需要更加稳定,为了满足这一需求,将相机反射镜组件310的多个反射面固定在一起能够实现上述的效果,相机反射镜组件310包括多棱镜311,多棱镜311的每个反射平面与相对应的镜头反射镜组件320的反射平面平行。
镜头400的个数与多棱镜311的反射平面的个数相同。
为了能够更好的实现光线的反射如感光元件800,多棱镜311的顶部指向第二接口200。
考虑到相机反射镜组件310中的多棱镜311需要具有一定的稳定性,相机反射镜组件310还包括多棱镜底座313,多棱镜311通过多棱镜底座313与壳体500的内壁连接。
相机反射镜组件310位于第二接口200,可以设置于第二接口200所正对的壳体400的内侧壁上。
2、考虑到相机反射镜组件310在使用的过程中,由于镜头反射镜组件320的反射平面的角度可能发生变化,考虑到一个镜头反射镜组件320的反射平面角度变化,尽量的避免大范围的调整,只需要调整相对应的相机反射镜组件310的反射平面即可,因此,相机反射镜组件310包括多个平面反射镜312,每个平面反射镜312的反射平面与相对应的镜头反射镜组件320的反射平面平行。
为了实现多个平面反射镜312的组合连接需要更加的坚固,可以将每个平面反射镜的背部连接处通过粘合的方式连接固定。
每个所述镜头反射镜组件的反射平面的有效反射面积和所述相机反射镜组件的每个反射平面的有效反射面积均大于所述感光元件的面积。
目前的相机矩阵获得拍摄图像的方法包括采用多台相机安装在一套固定的机械结构上,依靠对相机的精确定位,满足对相机结构的位置精度的要求。一方面,上述相关技术中采用由四个数码相机形成的相机对被拍摄物体进行拍摄,由于数码相机本身具有外壳,四个数码相机的镜头均位于数码相机的中间位置,极限情况下,两个相邻的数码相机的镜头之间的距离最小为一个数码相机的外壳宽度,无法再进一步缩小,使得机构尺寸变大,同时相关技术中的图像拍摄方式无法拍摄得到更加近距离的图像,导致最终得到的三维立体图像拍摄范围有限,无法得到近距离物体的三维立体图像。另一方面,由于采用相机加机械安装结构的方式,机械安装结构本身存在误差,同时,由于加工制造的不一致性,相机的光轴、感光面与外壳之间存在几何尺寸的不一致性,导致最后感光元件不能保证在同一水平面上,感光元件的光轴也不能保证相互平行,同时也不能保证组成一个标准的矩形结构,以上误差的存在极大影响了三维计算的精度和准确性。
相机获得拍摄图像的方法还包括采用一些机械结构装置,使用单台相机或是多台相机进行分次不同位置节点进行拍摄的方式获得被拍摄物的三维立体图像。例如:旋转臂上固定单一相机的拍摄装置:通过旋转臂回转使得相机在四个能够组成矩形的节点对被拍摄物进行拍摄,获得四张被拍摄物的图像,实现相机的图像获取功能;平移机构平移台上固定单相机的拍摄装置:通过相机的平移,相机在四个能 够组成矩形的节点对固定的被拍摄物进行拍摄,获得四张被拍摄物的图像,实现相机的图像获取功能;平移机构平移台上固定多相机的拍摄装置,通过固定在平台上的两台相机在平台移动的两个位置,两台相机分别对被拍摄物拍摄两张图像,共获得四张被拍摄物的图像,实现四相机矩阵的图像获取功能;平移机构平移台上固定被拍摄物的拍摄装置,被拍摄物平台平移,相机在被拍摄物平移的四个能够组成矩形的节点对其进行拍摄,获得四张被拍摄物的图像,实现四相机矩阵功能。但是,由于上述的方法需要运动实现拍摄,运动的过程中会产生误差,对于拍摄结果造成影响。
上述的相机拍摄的过程中均产生误差,为了实现图像的真实性,减小在拍摄过程中产生的误差,如图3所示,本发明实施例将各个镜头400的放置位置固定,多个所述镜头400圆心的连接图形的外接圆与所述第二接口200为同心圆。
作为优选,上述实施例的镜头400的个数为四个。
更进一步的,多个镜头400的圆心轴对称分布。作为优选,当镜头400的个数为四个时,镜头400圆心的连线为矩形。
更进一步的,多个镜头400的圆心中心对称分布,当镜头为四个时,镜头400圆心的连接线为正方形。
在现实的操作中,由镜头400进入的光线需要转向进入到相机反射镜组件310,因此,镜头反射镜组件320的镜头平面反射镜321的反射平面与镜头400的光轴610之间具有一定的角度,为了能够实现简单操作,每个镜头反射镜组件320的反射平面与本光轴的夹角为45度。如图7、图8所示。
当每个镜头反射镜组件320的反射平面与本光轴的夹角为45度时,相机反射镜组件310的各个平面也与光轴成45度,因此,所述多棱镜为正四棱镜。当反射镜组件的反射平面与光轴成45度,光束反射出的夹角也为45度,直接给相机反射镜组件的反射面的入射角也为45度,这样保证了相机反射镜组件反射出的光束都是平行射出,保证采光和成像的均匀度。
实施例二
本实施例在上述实施例的基础上提供一种三维成像相机,所述感光元件和所述多个镜头之间设置有上述的转接件组件,用于将多个镜头进入的光线汇聚到感光元件。
图9为感光元件在安装四个镜头均匀分布的转件件组件后的平面成像示意图,得到该平面图像后,根据三维算法,以及转接件几何尺寸,首先,将一幅图像,按 照镜头分成四幅图像,然后,根据四幅图像之间像素匹配关系,通过像素视差值的计算,实现被视物三维空间关系的解构,得到被视物体表面的三维数据形成最后的三维图像。达到三维成像的目的。
由于相机具有转接件组件,可以实现从多个镜头进入的光线汇聚到同一个感光元件,节省成本。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种用于三维成像的多镜头合成转接件组件,其特征在于,所述转接件组件一端设置有与所述相机的各镜头连接的第一接口,另一端设置有与所述相机连接的第二接口;
    所述转接件组件还包括多镜头光线汇聚装置,所述多镜头光线汇聚装置配置成将所述第一接口从所述相机的各镜头投射进入的光线转向穿过所述第二接口汇聚于所述相机的感光元件,其中,所述感光元件的个数少于所述镜头的个数。
  2. 根据权利要求1所述的用于三维成像的多镜头合成转接件组件,其特征在于,
    所述多镜头光线汇聚装置包括相机反射镜组件和多个与镜头一一对应设置的镜头反射镜组件;
    所述相机反射镜组件具有多个反射平面且多个反射平面反射出的光线平行射出;
    每个所述镜头反射镜组件均具有反射平面且所述镜头反射镜组件的反射平面与所述相机反射镜组件的反射平面一一对应平行设置;
    所述镜头反射镜组件配置成能够将从所述镜头进入的光线反射到所述相机反射镜组件;
    所述相机反射镜组件配置成能够将各个所述镜头反射镜组件反射的光线反射到同一个感光元件。
  3. 根据权利要求2所述的用于三维成像的多镜头合成转接件组件,其特征在于,所述相机反射镜组件包括多棱镜,所述多棱镜的每个反射平面与相对应的镜头反射镜组件的反射平面平行。
  4. 根据权利要求2所述的用于三维成像的多镜头合成转接件组件,其特征在于,所述相机反射镜组件包括多个平面反射镜,每个所述平面反射镜的反射平面与相对应的镜头反射镜组件的反射平面平行;
    或,所述镜头反射镜组件包括镜头平面反射镜,所述镜头平面反射镜的反射平面与相对应的相机反射镜组件的反射平面平行。
  5. 根据权利要求4所述的三维成像的多镜头合成转接件组件,其特征在于,每个所述镜头反射镜组件的反射平面的有效反射面积和所述相机反射镜组件的每个反射平面的有效反射面积均大于所述感光元件的面积。
  6. 根据权利要求1-5中任一项所述的用于三维成像的多镜头合成转接件组件,其特征在于,所述转接件组件还包括壳体,所述壳体的一端具有第一接口,所述第一接口具有多个与镜头一一对应连接的子接口,所述壳体的另一端具有与相机连接的第二接口;
    每个所述子接口处均设置有镜头反射镜组件,所述镜头反射镜组件配置成向所述相机反射镜组件反射物体的光线;
    所述相机反射镜组件设置于所述第二接口。
  7. 根据权利要求6所述的用于三维成像的多镜头合成转接件组件,其特征在于,多个所述镜头圆心的连接图形的外接圆与所述第二接口为同心圆,
    或,多个所述镜头的圆心轴对称分布或中心对称分布。
  8. 根据权利要求7所述的用于三维成像的多镜头合成转接件组件,其特征在于,所述光线进口为四个且所述每个镜头反射镜组件的反射平面与本光轴的夹角为45度。
  9. 根据权利要求8所述的用于三维成像的多镜头合成转接件组件,其特征在于,所述多棱镜为正四棱镜;
    或,所述相机反射镜组件还包括多棱镜底座,所述多棱镜通过多棱镜底座与壳体的内壁连接。
  10. 一种相机,其特征在于,包括如权利要求1-9中任一项所述的用于三维成像的多镜头合成的转接件组件,所述的用于三维成像的多镜头合成的转接件组件位于所述相机的感光元件之前并配置成将多个镜头进入的光线汇聚到所述相机的感光元件上。
PCT/CN2017/078597 2017-03-09 2017-03-29 用于三维成像的多镜头合成转接件组件及相机 WO2018161387A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710139591.4 2017-03-09
CN201710139591.4A CN107065402A (zh) 2017-03-09 2017-03-09 用于三维成像的多镜头合成转接件组件及相机

Publications (1)

Publication Number Publication Date
WO2018161387A1 true WO2018161387A1 (zh) 2018-09-13

Family

ID=59622637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/078597 WO2018161387A1 (zh) 2017-03-09 2017-03-29 用于三维成像的多镜头合成转接件组件及相机

Country Status (2)

Country Link
CN (1) CN107065402A (zh)
WO (1) WO2018161387A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112639390A (zh) * 2019-11-21 2021-04-09 北京机电研究所有限公司 用于三维尺寸的动态测量装置及其测量方法
CN112859491A (zh) * 2021-01-08 2021-05-28 南昌欧菲光电技术有限公司 镜头组件、摄像头组件以及拍摄设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011257633A (ja) * 2010-06-10 2011-12-22 Buffalo Inc 光学装置
JP2013057698A (ja) * 2010-01-14 2013-03-28 Panasonic Corp 鏡筒アダプタ、レンズ鏡筒およびそれを用いた撮像装置
CN103813155A (zh) * 2012-11-15 2014-05-21 展讯通信(上海)有限公司 多视点图像获取方法、装置及三维照相机、三维摄像机
CN104823105A (zh) * 2012-07-13 2015-08-05 拉姆·斯里坎特·米雷 用于照相机的可变三维适配器组件

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013057698A (ja) * 2010-01-14 2013-03-28 Panasonic Corp 鏡筒アダプタ、レンズ鏡筒およびそれを用いた撮像装置
JP2011257633A (ja) * 2010-06-10 2011-12-22 Buffalo Inc 光学装置
CN104823105A (zh) * 2012-07-13 2015-08-05 拉姆·斯里坎特·米雷 用于照相机的可变三维适配器组件
CN103813155A (zh) * 2012-11-15 2014-05-21 展讯通信(上海)有限公司 多视点图像获取方法、装置及三维照相机、三维摄像机

Also Published As

Publication number Publication date
CN107065402A (zh) 2017-08-18

Similar Documents

Publication Publication Date Title
KR101207198B1 (ko) 기판 검사장치
KR101920586B1 (ko) 거리 측정 모듈, 3차원(3d) 스캐닝 시스템 및 거리 측정 방법
JP2017524968A5 (zh)
CN104280976A (zh) 可切换光路径的光学防震机构
WO2017174022A2 (zh) 分体式阵列摄像模组及其组装和应用方法
US20220244621A1 (en) Optical unit
CN107948470B (zh) 摄像头模块和移动设备
TW201348786A (zh) 鏡頭模組及其組裝方法
US20230333353A1 (en) Camera Module and Electronic Device
WO2018161387A1 (zh) 用于三维成像的多镜头合成转接件组件及相机
CN104864855A (zh) 一种单像机全向立体视觉传感器及其设计方法
US20110216193A1 (en) Monitoring camera
JP7124366B2 (ja) 撮像素子固定構造及び撮像装置
CN206906770U (zh) 用于三维成像的多镜头合成转接件组件及相机
WO2020134951A1 (zh) 一种多镜头摄像机的调试方法、装置及存储介质
CN205537631U (zh) 测距模组以及三维扫描系统
JP2002229138A (ja) 撮像装置
CN221177843U (zh) 一种双芯片共享单镜头摄像模组
CN205038373U (zh) 一种光学处理装置及终端
CN210351422U (zh) 一种双目网络相机全景拼接系统
CN215833703U (zh) 一种光学元件三维视觉定位装置
US11714295B2 (en) Imaging correction unit and imaging module
JP6967270B2 (ja) 計測用ターゲット装置
KR101133653B1 (ko) 기판 검사장치 및 이를 이용한 기판 검사방법
TWI531211B (zh) 立體成像裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17899449

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17899449

Country of ref document: EP

Kind code of ref document: A1