WO2018159714A1 - Sugar and/or lipid metabolism-improving agent - Google Patents

Sugar and/or lipid metabolism-improving agent Download PDF

Info

Publication number
WO2018159714A1
WO2018159714A1 PCT/JP2018/007625 JP2018007625W WO2018159714A1 WO 2018159714 A1 WO2018159714 A1 WO 2018159714A1 JP 2018007625 W JP2018007625 W JP 2018007625W WO 2018159714 A1 WO2018159714 A1 WO 2018159714A1
Authority
WO
WIPO (PCT)
Prior art keywords
paramylon
group
fiberized
sugar
test
Prior art date
Application number
PCT/JP2018/007625
Other languages
French (fr)
Japanese (ja)
Inventor
昭 赤司
潤 竹▲崎▼
圭 寺澤
亨祐 大木
信輝 大中
誠一郎 青江
Original Assignee
株式会社神鋼環境ソリューション
学校法人 大妻学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神鋼環境ソリューション, 学校法人 大妻学院 filed Critical 株式会社神鋼環境ソリューション
Priority to JP2018515680A priority Critical patent/JP7024975B2/en
Publication of WO2018159714A1 publication Critical patent/WO2018159714A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • A61K31/716Glucans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/20Reducing nutritive value; Dietetic products with reduced nutritive value
    • A23L33/21Addition of substantially indigestible substances, e.g. dietary fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof

Definitions

  • the present invention relates to a sugar and / or lipid metabolism-improving agent.
  • lifestyle-related diseases have increased. This is thought to be due to changes in eating habits and lack of exercise. Lifestyle-related diseases are known to be associated with, for example, abnormal lipid metabolism and abnormal sugar metabolism. For this reason, lifestyle-related diseases can lead to various diseases such as arteriosclerosis and hypertension. Therefore, effective means for improving lipid metabolism and sugar metabolism are required to prevent such lifestyle-related diseases.
  • lipid metabolism and sugar metabolism are currently known as antidiabetic drugs and obesity-improving drugs.
  • many of these are synthetic low-molecular compounds, and natural components are desirable from the viewpoint that they can be ingested constantly. Further, from the viewpoint of more effectively preventing lifestyle-related diseases, it is desirable that both lipid metabolism and sugar metabolism can be improved.
  • Paramylon is a kind of ⁇ -1,3-glucan contained in Euglena. In recent years, it has been reported that paramylon is useful for wound treatment and allergy suppression (Patent Documents 1 and 2).
  • An object of the present invention is to provide a sugar and / or lipid metabolism-improving agent.
  • an object of the present invention is to provide a sugar and / or lipid metabolism improving agent containing a natural ingredient as an active ingredient.
  • the present inventor has found that the action of improving the metabolism of sugar and / or lipid is remarkably enhanced by fiberizing the natural ingredient paramylon. As a result of further research based on this knowledge, the present inventor completed the present invention.
  • the present invention includes the following embodiments: Item 1. A sugar and / or lipid metabolism-improving agent comprising fibrotic paramylon.
  • Item 2 The metabolism improving agent according to Item 1, which is in a dry form.
  • Item 3 The metabolism improving agent according to Item 1 or 2, wherein the fiberized paramylon is a defibrated material of paramylon particles.
  • Item 4. The metabolism improving agent according to any one of Items 1 to 3, wherein the fiberized paramylon is a network structure in which fibers are entangled.
  • Item 5 The metabolism improving agent according to any one of Items 1 to 4, which is a food additive.
  • Item 6. The metabolism improving agent according to any one of Items 1 to 4, which is a food composition.
  • Item 7. The metabolism improving agent according to any one of Items 1 to 4, which is a pharmaceutical agent.
  • Item 8 The metabolism according to any one of Items 1 to 7, which is used for prevention or amelioration of at least one selected from the group consisting of (1) metabolic syndrome, or (2) obesity, diabetes, dyslipidemia, and fatty liver. Improver.
  • Item 9 A method for producing a sugar and / or lipid metabolism-improving agent, comprising blending fiberized paramylon.
  • Item 10 The method according to Item 9, wherein the fiberized paramylon is in a dry form.
  • Item 11 The method according to Item 9 or 10, further comprising blending water.
  • Fibrotic paramylon for use as a sugar and / or lipid metabolism-improving agent.
  • Item 13 A method for improving sugar and / or lipid metabolism, including applying fibrotic paramylon to a subject.
  • Item 14 Use of fiberized paramylon to produce sugar and / or lipid metabolism improvers.
  • a sugar and / or lipid metabolism improving agent containing a natural component as an active ingredient can be provided.
  • the sugar and / or lipid metabolism improving agent of the present invention at least selected from the group consisting of metabolic syndrome, dyslipidemia such as hypercholesterolemia and hyperlipidemia, fatty liver, diabetes and obesity It is possible to prevent or ameliorate one kind of disease or condition.
  • the sugar and / or lipid metabolism-improving agent of the present invention contains a naturally-occurring polysaccharide as an active ingredient, it is considered that the risk of side effects is low. For this reason, it is suitable for long-term intake.
  • the microphotograph (upper stage) and vial appearance photograph (lower stage) of a paramylon particle suspension (PM granule) and a fiberized paramylon liquid (fiberized PM) are shown.
  • An electron micrograph of fiberized paramylon (Production Example 1) is shown.
  • the length of one scale on the lower right scale in the figure is 1 ⁇ m.
  • the enlarged view in the square frame of the photograph of FIG. 2 is shown.
  • the length of one graduation shown in the lower right of the figure is 100 nm.
  • the horizontal axis indicates the number of days elapsed from the start of the test, and the vertical axis indicates the average value of body weight. It is a graph which shows the weight gain in a test.
  • the horizontal axis shows the elapsed time from administration of the glucose solution, and the vertical axis shows the blood glucose level. * Indicates that there is a significant difference compared to the control group (p ⁇ 0.05).
  • p is 0.058. It is a graph which shows the measurement result of the retroabdominal wall fat tissue weight after a test. It is a graph which shows the measurement result of the testicular periphery fat tissue weight after a test.
  • NEFA serum free fatty acid
  • the sugar and / or lipid metabolism-improving agent containing fibrotic paramylon (herein referred to as “the metabolism-improving agent of the present invention” or “the agent of the present invention”). Yes.) This will be described below.
  • amorphous paramylon obtained by chemical treatment (alkali treatment, etc.) of paramylon particles has been reported, but this is not recognized as fiberized when observed with an electron microscope, and has a shape and size. Since it is an irregular mass, it is not included in the fiberized paramylon.
  • Euglena the fiberizing paramylon is derived is not particularly limited, for example, Euglena gracilis (Euglena gracilis), Euglena longa, Euglena caudata, Euglena oxyuris, Euglena tripteris, Euglena proxima, Euglena viridis, Euglena sociabilis, Euglena ehrenbergii, Euglena deses Euglena pisciformis , Euglena spirogyra , Euglena acus , Euglena geniculata , Euglena intermedia , Euglena mutabilis , Euglena sanguinea , Euglena stellata , Euglena terricola , Euglena klebsi , Euglena cyclopica , Euglena rubra ola, etc.
  • Euglena gracilis Eugle
  • Euglena Gracilis is preferably mentioned from the viewpoint that the effects of the present invention can be more reliably exhibited, more preferably Euglena Gracilis EOD-1 strain [product evaluation as of June 28, 2013 As the accession number FERM BP-11530 under the provisions of the Budapest Treaty at the National Institute for Biotechnology Patent Biology Center ⁇ NITE-IPOD (zip code 292-0818, room 2-5-8 Kazusa-Kamashita, Kisarazu, Chiba, Japan) ⁇ International deposits].
  • the weight average molecular weight of the fiberized paramylon is not particularly limited, but is, for example, 1 ⁇ 10 4 to 2 ⁇ 10 7 , preferably 1 ⁇ 10 5 to 5 ⁇ 10 5 .
  • the weight average molecular weight can be measured by SEC-MALS analysis by the following method: SEC apparatus: LC-10ADvp system (Shimadzu Co., Japan), column used: KD-806M (shodex., Japan) , MALS detector: DAWN HELEOSII (wyatt Technologies., USA), eluent: 1% LiCl / DMI, Flow rate: 0.5 mL / min.
  • the diameter of the fiber of the fiberized paramylon is not particularly limited, but is, for example, 10 to 500 nm, preferably 20 to 300 nm, and more preferably 50 to 200 nm.
  • the fiber diameter of the fiberized paramylon can be usually measured based on an electron microscopic image of the fiberized paramylon.
  • the subsidence volume of fiberized paramylon in water is not particularly limited, but is, for example, 30 to 300 ⁇ mL / g, preferably 50 to 250 ⁇ mL / g, more preferably 70 to 200 ⁇ mL / g.
  • the subsidence volume in water can be measured in accordance with or according to Test Example 2.
  • Fibrous paramylon has a relatively high resistance to enzymatic degradation.
  • the amount of monomer (glucose) produced by the degradation of ⁇ -glucanase is, for example, 0.1 to 50 mg, preferably 1 to 10 mg per 1 g of fiberized paramylon. This amount can be measured according to or according to Test Example 5.
  • Fibrous paramylon has relatively low solubility in alkaline solutions.
  • fiberized paramylon does not dissolve in 0.1-0.3M aqueous sodium hydroxide solution.
  • “does not dissolve” means, for example, the absorbance (660 nm) of the solution after suspending fibrotic paramylon in the aqueous solution (for example, immediately after 1 hour), for example, 0.1 or more, preferably 1.0 That means that. Solubility can be measured in accordance with or according to Test Example 6.
  • the relative value of the crystallinity of the fiberized paramylon relative to the granular paramylon is, for example, 0.60 to 0.90, preferably 0.65 to 0.80.
  • the degree of crystallinity can be measured according to Test Example 7 or according thereto.
  • the fiberized paramylon may be in a form dispersed in a solvent such as water, or in a dry form. Fibrotic paramylon can be redispersed in water even in dry form.
  • dry form indicates that the water content is 15% by mass or less, preferably 10% by mass or less, more preferably 5% by mass or less.
  • the shape of the paramylon particles is not particularly limited, but is usually a flat spheroid.
  • the particle size distribution of the paramylon particles is not particularly limited, but is, for example, 0.5 to 15 ⁇ m, preferably 1 to 6 ⁇ m.
  • the average particle size of the paramylon particles is not particularly limited, but is, for example, 1 to 10, preferably 2 to 4 ⁇ m.
  • Paramylon particles can be produced by separating, isolating, or purifying from Euglena according to or according to a known method (for example, the method described in Japanese Patent No. 5858832). Paramylon particles can be easily obtained, for example, by collecting cell content components obtained by destroying the cell membrane of Euglena. Moreover, you may refine
  • Defibration treatment does not substantially break the hydrogen bond of ⁇ -1,3 glucan present in paramylon particles (for example, 10% or less, 5% or less, 2% or less of ⁇ -1,3 glucan hydrogen bond)
  • Treatment that can be defibrated (with only 1% or less being cut), or part or all of the ⁇ -1,3-glucan chain present in the paramylon particles or the triple helical structure formed by this
  • a known treatment that can grind (shear) or grind (preferably grind (shear)) fine particles such as paramylon particles can be employed as the defibrating treatment.
  • the defibrating treatment can be performed wet or dry. It is preferable to perform the defibrating treatment in a wet manner because the fiberized paramylon can be more efficiently dispersed in the solution.
  • the solvent used in the wet process is not particularly limited as long as it is a solvent capable of dispersing fiberized paramylon, and water can be preferably used.
  • the defibrating treatment may be one type alone or a combination of two or more types. Further, it may be a partially defibrated paramylon, and is intended by the present invention as long as it includes a defibrated paramylon.
  • each condition (defibration treatment target liquid, clearance, grinding wheel rotation speed, number of times of defibrating treatment) when performing wet defibrating using a mortar mill (supermass colloider) manufactured by Masuyuki Sangyo is as follows: It is as follows.
  • Defibration target liquid A water suspension of paramylon particles.
  • concentration of the paramylon particles is not particularly limited, but is, for example, 0.1 to 40% by mass, preferably 0.5 to 30% by mass, more preferably 1 to 20% by mass, and further preferably 2 to 15% by mass.
  • Grinding wheel rotation speed is, for example, 500 to 3000 rpm, preferably 700 to 2000 rpm, more preferably 800 to 1600 rpm.
  • the fiberized paramylon may be used alone or in combination of two or more.
  • Fibrous paramylon has an effect of improving sugar and / or lipid metabolism, and can therefore be used as an active ingredient of a sugar and / or lipid metabolism improving agent.
  • sugar metabolism includes each of a series of phenomena from ingestion to excretion of sugar.
  • lipid metabolism includes each of a series of phenomena from intake of lipid or a substance that can be converted into lipid to elimination of lipid or a substance converted from lipid.
  • metabolic syndrome is one of three: (1) high blood pressure, (2) high blood glucose level, (3) low HDL cholesterol or high neutral fat It is said that more than one applies.
  • the agent of the present invention can be used in various fields, for example, as a food additive, a food composition (including health promoting agents, nutritional supplements (such as supplements)), and pharmaceuticals.
  • the form of the agent of the present invention is not particularly limited, and can take a form usually used in each application depending on the application.
  • the application is food additives, medicines, health enhancers, nutritional supplements (such as supplements), etc., for example, tablets (orally disintegrating tablets, chewable tablets, effervescent tablets, lozenges, jelly-like drops) Pills, granules, fine granules, powders, hard capsules, soft capsules, dry syrups, liquids (including drinks, suspensions, syrups), jelly, etc. .
  • tablets orally disintegrating tablets, chewable tablets, effervescent tablets, lozenges, jelly-like drops
  • Pills granules, fine granules, powders, hard capsules, soft capsules, dry syrups, liquids (including drinks, suspensions, syrups), jelly, etc.
  • liquid, gel or solid food for example, beverages such as juice, soft drink, tea, soup, soy milk, salad oil, dressing, yogurt, jelly, pudding, sprinkle, Examples include infant formula, cake mix, powdered or liquid dairy products, bread and cookies.
  • the agent of the present invention may further contain other components as necessary.
  • the other components are not particularly limited as long as they are components that can be blended in food additives, food compositions, pharmaceuticals, health enhancers, nutritional supplements (such as supplements), etc. , Solvents, dispersants, emulsifiers, buffers, stabilizers, excipients, binders, disintegrants, lubricants, thickeners, colorants, fragrances, chelating agents and the like.
  • the agent of the present invention may be in a form in which fiberized paramylon is dispersed in a solvent such as water, or in a dry form. Fibrous paramylon can be more easily dispersed in water, even in dry form.
  • the agent of the present invention can be produced by a method including a step of blending fiberized paramylon.
  • the agent of this invention is a drink, for example, the process of mix
  • blending water is further included.
  • fiberized paramylon may be blended with an object that already contains water, or water may be blended after blending fiberized paramylon. When blended, the fiberized paramylon can be dispersed in water even in a dry state.
  • the amount of application (for example, administration, ingestion, inoculation, etc.) of the agent of the present invention to the target organism is not particularly limited as long as it is an effective amount that exhibits a medicinal effect, and is usually the dry weight of fibrinated paramylon that is an active ingredient. In general, it is 0.1 to 10000 mg / kg body weight per day.
  • the above-mentioned application amount is preferably applied at least once a day (for example, 1 to 3 times), and can be appropriately increased or decreased depending on age, disease state, and symptoms.
  • the liquid for 5 flasks was collected, and the collected liquid was centrifuged in a centrifuge tube (500 ⁇ g, 4 minutes, room temperature). The supernatant in the centrifuge tube was once removed and collected. The collected supernatant was put into a centrifuge tube to disperse the precipitate in the centrifuge tube and transferred to a 100 mL graduated cylinder. Further, the collected supernatant was added to a measuring cylinder to make up to 90 mL.
  • Production Example 1 Production of fiberized paramylon 1 Paramylon particles produced by repeating Reference Production Example 1 were mixed with purified water to prepare a paramylon particle suspension. The concentration of paramylon particles in the paramylon particle suspension was 5% by mass. The paramylon particle suspension was wet defibrated under the conditions shown in Table 2 below using a stone mill grinder (Supermass colloider, manufactured by Masuko Sangyo Co., Ltd.) to obtain slurry discharged from the grinder. This wet defibrating treatment was repeated 20 times in total. The finally obtained slurry was used as a fiberized paramylon solution in the test. FIG. 1 shows a microphotograph of the paramylon particle suspension, a fiberized paramylon solution, and an appearance photograph of a vial containing these solutions. In the following charts, fiberized paramylon is sometimes referred to as fibrous paramylon.
  • the paramylon particles were unwound and formed into fibers by wet defibrating treatment. Further, it was confirmed that the fiberized paramylon had a branched structure (branched structure) and a network structure. In addition, as shown in the outer appearance photograph of FIG. 1, in the fiberized paramylon liquid, it was shown that the fiberized paramylon was uniformly dispersed in the liquid.
  • Comparative Production Example 1 Production of Chemically Treated Paramylon
  • the paramylon particles of Reference Production Example 1 were chemically treated using the method described in Japanese Patent Application Laid-Open No. 2011-184592. Specifically, the neutralization treatment was performed by dissolving paramylon particles in 1M NaOH aqueous solution and adding hydrochloric acid aqueous solution after dissolution. A gel-like material was generated by the neutralization treatment. The supernatant obtained by the separation process by centrifugation was removed to obtain a solid content. Since the solid content contains salt (NaCl) from the neutralization treatment, a large amount of water is added to the obtained solid content to disperse the solid content, resulting in a gel-like material, and similarly centrifuged.
  • salt NaCl
  • the salt contained in the gel-like material was removed.
  • the salt removal treatment was repeated until the dry mass of NaCl contained in the gel-like material became 0.1 mass% or less per dry weight of the paramylon particles dissolved in the 1M NaOH aqueous solution, to obtain chemically treated paramylon.
  • the dry weight of NaCl contained in the gel-like material was determined by calculating the NaCl concentration of the supernatant after centrifugation from the electrical conductivity of the supernatant.
  • Test Example 1 Analysis of the structure of fiberized paramylon The structure of the fiberized paramylon of Production Example 1 was observed with an electron microscope. Specifically, it was performed as follows. First, 1.5 times the volume of t-butanol was added to the mixture of fiberized paramylon and water, and the fiberized paramylon was dispersed by a vortex mixer. A part of the obtained dispersion was dropped on a flat plate, and the dropped test liquid was frozen. The frozen product was treated under reduced pressure to evaporate the solvent. The obtained sample was subjected to osmium plasma ion coating (thickness 20 nm) and observed with a scanning electron microscope. Observation images are shown in FIGS.
  • the fiberized paramylon observed in this test had a network structure in which the fibers were intertwined with each other.
  • Test example 2 Measurement of settling volume in water “Supervised by the Japan Dietary Fiber Society, edited by the Japanese Dietary Fiber Society Editorial Board (2008) Dietary fiber-Basics and applications-3rd edition, p. 111, Daiichi Shuppan, Tokyo”
  • the measurement was performed according to the method. Specifically, it was performed as follows. Each sample test sample (paramylon particles (reference production example 1), fiberized paramylon (production example 1), or chemically treated paramylon (comparative production example 1)) is placed in a 25 mL plastic tube with a dry mass. In conversion, 250 mg (fiberized paramylon only, 125 mg) was weighed, and the contents were stirred by shaking the plastic tube vigorously by hand.
  • Experimental animals and rearing conditions> This experiment was conducted with the approval of the Ethics Review Committee in accordance with the “Rules Establishing Methods and Maintenance of Animal Experiment Facilities and Specific Experiment Methods” established by the Animal Experiment Committee of the Faculty of Home Economics, Otsuma Women's University. It was.
  • mice 5-week-old male C57BL / 6J mice (Nippon Charles River) were used. After preliminary breeding for 1 week with solid feed (NMF, manufactured by Oriental Yeast Co., Ltd.), groups were divided into 10 groups per group so that the body weight was uniform (however, the standard feed breeding group was 5 animals).
  • NMF solid feed
  • the feed used for the test is as follows. 20% lard was added to the feed of the control group and the test group so that the fat energy ratio was 50%. To the feed of the control group, 5% cellulose was added as dietary fiber.
  • 5% cellulose was added as dietary fiber.
  • For the feed of the test group Euglena gracilis EOD-1 strain dry powder (hereinafter referred to as biomass group), paramylon particles (reference production example 1) (hereinafter referred to as paramylon group), or fiberized paramylon (production example 1) is doubled.
  • the dried fiberized paramylon obtained by mixing with dextrin and freeze-dried hereinafter referred to as fiberized paramylon group was added. Each feed was added in consideration of the water content so that the dry weight would be 5%.
  • a group for ingesting a standard feed to which lard or the like was not added was also prepared.
  • Glucose tolerance measurement> After the fasting from 8 o'clock in the morning for 8 hours in the last week of breeding, a 20% glucose solution was administered into the stomach of the mouse using a gastric sonde so that the body weight was 1 g / kg body weight. Blood was collected from the tail before administration (0 minutes), and blood was similarly collected 15 minutes, 30 minutes, 60 minutes, and 120 minutes after administration. For quantification of the blood glucose level, “Small blood glucose meter Glutest Ace R” (manufactured by Sanwa Scientific Research Institute) was used.
  • the biomass group and the paramylon group showed a slight suppression tendency compared to the control group, whereas the fibrotic paramylon group showed markedly suppressed weight gain compared to the control group. It was.
  • the fibrotic paramylon group has the same level of weight gain as the group fed the standard feed without lard (standard group), despite continuing to eat the lard-added feed. Met.
  • the biomass group and the paramylon group had a lower blood glucose level after glucose administration than the control group, but a significant difference was observed 120 minutes after administration.
  • the fibrotic paramylon group has a lower blood glucose level after glucose administration than the biomass group and the paramylon group, and it can be seen that the increase in blood glucose level is significantly suppressed compared to the control group.
  • a significant difference from the control group was observed at an earlier stage (15 minutes after administration), and it was confirmed that the blood glucose level was significantly lower after 60 minutes after administration.
  • the fiberized paramylon group continues to ingest the feed to which lard was added, the glucose tolerance (blood glucose level after administration of glucose) was the group ingested the standard feed to which lard was not added It was the same level as (standard group).
  • the biomass group and the paramylon group had the same amount of visceral fat as the control group, whereas the fibrotic paramylon group had significantly less visceral fat than the control group. .
  • the visceral fat amount of the fiberized paramylon group tended to be significantly less or less than the biomass group and the control group.
  • the paramylon group tended to be less than the control group, and the fibrotic paramylon group was significantly less than the control group.
  • the fiberized paramylon was significantly less than the control group, biomass group, and paramylon group for the retroabdominal wall fat and the fat around the testicles.
  • the liver weight of the fibrotic paramylon group was significantly smaller than that of the control group. This is presumed to be due to a small amount of fat accumulated in the liver.
  • the cecal weight of the fibrotic paramylon group was significantly higher than that of the control group, and the biomass group and paramylon group also showed a tendency to be higher than that of the control group.
  • the increase in cecal weight suggests that fibrotic paramylon is broken down in the intestinal bacteria of the large intestine to produce short chain fatty acids.
  • This short-chain fatty acid is known to have an anti-obesity action and the like (for example, Japanese Patent Application Laid-Open No. 06-256402).
  • the total cholesterol is significantly less fibrotic paramylon compared to the control group, the biomass group, and the paramylon group, the paramylon group is significantly smaller than the control group, and the biomass group is smaller than the control group.
  • the trend was low.
  • LDL cholesterol was also significantly less in the fibrotic paramylon group than in the control group.
  • the NEFA value of the fibrotic paramylon group was significantly reduced as compared with the control group (high fat diet group).
  • NEFA value is an abbreviation of Non-esterified fatty acid, and is a non-ester type fatty acid released into the blood when neutral fat of adipose tissue is degraded by hormone-sensitive lipase. Insulin is known as one of the inhibitors of the action of hormone-sensitive lipase. When a glucose metabolism disorder such as a decrease in insulin secretion or insulin action occurs, adipose tissue degradation by hormone-sensitive lipase increases and NEFA increases. It is considered. In addition, NEFA has a surface-active effect, and when the blood concentration is high, it dissolves the cell membrane and destroys the cells, which is considered to be one of the causes of organ dysfunction.
  • NEFA in the fibrotic paramylon group was significantly lower than that in the control group (high-fat diet group), suggesting the possibility of inhibiting glucose metabolism disorder. Moreover, it was suggested that the risk of developing organ dysfunction may be reduced by suppressing the increase in NEFA.
  • the serum ALT concentration in the fibrotic paramylon group was significantly lower than that in the control group.
  • the serum ALT concentration in the fibrotic paramylon group tended to be lower than that in the biomass group and the control group.
  • ALT is considered to be a component that is released into the blood when liver cells break down, and it is thought that when fat accumulates in the liver, liver cells break down and ALT is released. It was suggested that damage can be suppressed.
  • the CRP value of the fiberized paramylon group was significantly less than that of the control group, and showed a tendency to be lower than that of the biomass group and paramylon group.
  • CRP is an abbreviation for C-reactive protein. It is a protein that increases in serum when inflammation or tissue cell destruction occurs, and serves as an index of inflammation. It is known that when chronic inflammation occurs and the value of CRP increases, insulin resistance deteriorates and blood glucose level rises. In addition, it is said that CRP shows a mild high level in diabetes, obesity, hyperlipidemia etc. which are considered as atherosclerotic disease and its risk state, and when metabolic syndrome and hypercholesterolemia overlap in people with high CRP, It has been shown that it is prone to heart disease and stroke. As shown in FIG. 17, in the group in which fibrotic paramylon was administered to a high-fat diet, the CRP concentration was significantly lower than that in the control group (high-fat diet group), and insulin resistance, increased blood glucose level, etc. This suggests the possibility of reducing the risk.
  • the leptin value was significantly less in the fibrotic paramylon group than in others.
  • Leptin is an adipocytokine (a physiologically active substance) secreted from white adipocytes, which transmits a powerful satiety signal, resulting in increased energy consumption due to increased sympathetic nerve activity, controlling obesity and controlling weight gain. Play a role.
  • leptin production increases as the adipose tissue increases, so the blood leptin level is rather high. Accordingly, obese people become so-called “leptin-resistant” states in which eating disorders are not observed regardless of high leptin levels, and obesity is increasingly promoted. It is also considered that this leptin resistance may trigger insulin resistance.
  • blood leptin levels are higher in hypertensive diseases than in normal individuals, and it has been reported that blood leptin levels correlate with blood pressure.
  • the insulin concentration was significantly lower in the fibrotic paramylon group than in the control group, although the blood glucose concentration was not so different between the groups. This suggests that the sensitivity to insulin is increased in the fiberized paramylon intake group, in other words, insulin resistance is improved.
  • the biomass group and the paramylon group also show a tendency that the insulin concentration is lower than that of the control group, and the insulin resistance tends to be improved in the same manner.
  • fibrotic paramylon group may be used as a diabetes preventive or therapeutic agent because it improves insulin resistance and suppresses an increase in blood glucose level.
  • Test Example 4 Sugar diffusion inhibition test 1 The amount of sugar in the solution that diffuses and permeates the semipermeable membrane was compared with and without fibrotic paramylon. This test was conducted with reference to a previously published document (J. Agric. Food Chem. 2001, 49, 1026-1029). Specifically, it was performed as follows.
  • Test Example 5 Evaluation Test for Degradation Resistance by Enzyme Degradation resistance by ⁇ -glucanase was evaluated by measuring the amount of monomer produced. Specifically, it was performed as follows.
  • Test Example 6 Evaluation of solubility in alkaline solution The solubility in alkaline solution was evaluated. Specifically, it was performed as follows.
  • Test method Substance to be tested (paramylon particles (reference production example 1) pulverized into powder, fiberized paramylon (production example 1), chemically treated paramylon (comparative production example: dissolved in 1.0M NaOH aqueous solution)) 250 mg ( (Dry weight) was suspended in 10 mL of a test solution (pure water, 0.1 M NaOH aqueous solution, 0.3 M NaOH aqueous solution, 1 M NaOH aqueous solution) in a vial. After the vial was shaken vigorously by hand for 20 seconds and after shaking for 1 hour at 80 rpm on a shaker, the absorbance at 660 nm of the liquid in the vial was measured. The absorbance was measured using a spectrophotometer V-730 manufactured by JASCO Corporation.
  • Production Example 2 Production of fiberized paramylon 2 Using a bead mill, a shear force was applied to the paramylon particles (Reference Production Example 1) to fiberize the paramylon particles to produce a liquid additive (dispersion) containing fiberized paramylon.
  • the defibrating treatment with a bead mill was performed under the general operating conditions used for submicron grinding.
  • the raw material solution containing 10% by mass of paramylon particles was defibrated by a bead mill.
  • the obtained fiberized paramylon was observed with an electron microscope. An observation image is shown in FIG.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Diabetes (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Emergency Medicine (AREA)
  • Endocrinology (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Child & Adolescent Psychology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Saccharide Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

The present invention addresses the problem of providing a sugar and/or lipid metabolism-improving agent. The problem is solved by a sugar and/or lipid metabolism-improving agent that contains fibrous paramylon.

Description

糖及び/又は脂質の代謝改善剤Sugar and / or lipid metabolism improver
 本発明は、糖及び/又は脂質の代謝改善剤に関する。 The present invention relates to a sugar and / or lipid metabolism-improving agent.
 近年、生活習慣病が増加している。これは、食習慣の変化や運動不足によるものであると考えられている。生活習慣病は、例えば脂質代謝異常、糖代謝異常と関連していることが知られている。このため、生活習慣病によって、動脈硬化、高血圧等の各種疾患に至る可能性がある。そこで、このような生活習慣病を予防すべく脂質代謝や糖代謝を改善するための有効な手段が求められている。 In recent years, lifestyle-related diseases have increased. This is thought to be due to changes in eating habits and lack of exercise. Lifestyle-related diseases are known to be associated with, for example, abnormal lipid metabolism and abnormal sugar metabolism. For this reason, lifestyle-related diseases can lead to various diseases such as arteriosclerosis and hypertension. Therefore, effective means for improving lipid metabolism and sugar metabolism are required to prevent such lifestyle-related diseases.
 一方、現在、糖尿病治療薬や肥満改善薬等として、脂質代謝や糖代謝を改善する医薬が知られている。しかし、これらの多くは合成低分子化合物であるところ、恒常的に摂取可能であるという観点からは、天然成分が望ましい。また、生活習慣病をより効果的に予防できるという観点からは、脂質代謝と糖代謝を両方とも改善できることが望ましい。 On the other hand, pharmaceuticals that improve lipid metabolism and sugar metabolism are currently known as antidiabetic drugs and obesity-improving drugs. However, many of these are synthetic low-molecular compounds, and natural components are desirable from the viewpoint that they can be ingested constantly. Further, from the viewpoint of more effectively preventing lifestyle-related diseases, it is desirable that both lipid metabolism and sugar metabolism can be improved.
 パラミロンは、ミドリムシに含まれるβ-1,3-グルカンの1種である。近年、パラミロンが、創傷治療やアレルギー抑制などに有用であることが報告されている(特許文献1~2)。 Paramylon is a kind of β-1,3-glucan contained in Euglena. In recent years, it has been reported that paramylon is useful for wound treatment and allergy suppression (Patent Documents 1 and 2).
日本国特開2011-184371号公報Japanese Unexamined Patent Publication No. 2011-184371 日本国特開2014-231479号公報Japanese Unexamined Patent Publication No. 2014-231479
 本発明は、糖及び/又は脂質の代謝改善剤を提供することを課題とする。好ましくは、本発明は、天然成分を有効成分とする糖及び/又は脂質の代謝改善剤を提供することを課題とする。 An object of the present invention is to provide a sugar and / or lipid metabolism-improving agent. Preferably, an object of the present invention is to provide a sugar and / or lipid metabolism improving agent containing a natural ingredient as an active ingredient.
 本発明者は、上記課題に鑑みて鋭意研究した結果、天然成分であるパラミロンを繊維化することで糖及び/又は脂質の代謝改善作用を著しく増強することを見出した。本発明者は、この知見に基づいてさらに研究を進めた結果、本発明を完成させた。 As a result of intensive studies in view of the above problems, the present inventor has found that the action of improving the metabolism of sugar and / or lipid is remarkably enhanced by fiberizing the natural ingredient paramylon. As a result of further research based on this knowledge, the present inventor completed the present invention.
 即ち、本発明は、下記の態様を包含する:
 項1. 繊維化パラミロンを含有する、糖及び/又は脂質の代謝改善剤。
That is, the present invention includes the following embodiments:
Item 1. A sugar and / or lipid metabolism-improving agent comprising fibrotic paramylon.
 項2. 乾燥形態である、項1に記載の代謝改善剤。 Item 2. Item 1. The metabolism improving agent according to Item 1, which is in a dry form.
 項3. 前記繊維化パラミロンがパラミロン粒子の解繊物である、項1又は2に記載の代謝改善剤。 Item 3. Item 3. The metabolism improving agent according to Item 1 or 2, wherein the fiberized paramylon is a defibrated material of paramylon particles.
 項4. 前記繊維化パラミロンが、繊維が絡まり合った網目状構造体である、項1~3のいずれかに記載の代謝改善剤。 Item 4. Item 4. The metabolism improving agent according to any one of Items 1 to 3, wherein the fiberized paramylon is a network structure in which fibers are entangled.
 項5. 食品添加剤である、項1~4のいずれかに記載の代謝改善剤。 Item 5. Item 5. The metabolism improving agent according to any one of Items 1 to 4, which is a food additive.
 項6. 食品組成物である、項1~4のいずれかに記載の代謝改善剤。 Item 6. Item 5. The metabolism improving agent according to any one of Items 1 to 4, which is a food composition.
 項7. 医薬である、項1~4のいずれかに記載の代謝改善剤。 Item 7. Item 5. The metabolism improving agent according to any one of Items 1 to 4, which is a pharmaceutical agent.
 項8. (1)メタボリックシンドローム、又は
(2)肥満、糖尿病、脂質異常症、及び脂肪肝からなる群より選択される少なくとも1種の予防又は改善に用いられる、項1~7のいずれかに記載の代謝改善剤。
Item 8. Item 8. The metabolism according to any one of Items 1 to 7, which is used for prevention or amelioration of at least one selected from the group consisting of (1) metabolic syndrome, or (2) obesity, diabetes, dyslipidemia, and fatty liver. Improver.
 項9. 繊維化パラミロンを配合することを含む、糖及び/又は脂質の代謝改善剤の製造方法。 Item 9. A method for producing a sugar and / or lipid metabolism-improving agent, comprising blending fiberized paramylon.
 項10. 前記繊維化パラミロンが乾燥形態である、項9に記載の製造方法。 Item 10. Item 10. The method according to Item 9, wherein the fiberized paramylon is in a dry form.
 項11. さらに水を配合することを含む、項9又は10に記載の製造方法。 Item 11. Item 11. The method according to Item 9 or 10, further comprising blending water.
 項12. 糖及び/又は脂質の代謝改善剤として使用するための、繊維化パラミロン。 Item 12. Fibrotic paramylon for use as a sugar and / or lipid metabolism-improving agent.
 項13. 繊維化パラミロンを対象に適用することを含む、糖及び/又は脂質の代謝改善方法。 Item 13. A method for improving sugar and / or lipid metabolism, including applying fibrotic paramylon to a subject.
 項14. 糖及び/又は脂質の代謝改善剤を製造するための、繊維化パラミロンの使用。 Item 14. Use of fiberized paramylon to produce sugar and / or lipid metabolism improvers.
 本発明によれば、天然成分を有効成分として含有する糖及び/又は脂質の代謝改善剤を提供することができる。本発明の糖及び/又は脂質の代謝改善剤によれば、メタボリックシンドロームや、高コレステロール血症、高脂血症などの脂質異常症、脂肪肝、糖尿病、及び肥満からなる群より選択される少なくとも1種の疾患又は状態などの予防又は改善を図ることが可能である。また、本発明の糖及び/又は脂質の代謝改善剤は、天然由来の多糖類を有効成分としているので、副作用のリスクが低いと考えられる。このため、長期摂取に適している。 According to the present invention, a sugar and / or lipid metabolism improving agent containing a natural component as an active ingredient can be provided. According to the sugar and / or lipid metabolism improving agent of the present invention, at least selected from the group consisting of metabolic syndrome, dyslipidemia such as hypercholesterolemia and hyperlipidemia, fatty liver, diabetes and obesity It is possible to prevent or ameliorate one kind of disease or condition. In addition, since the sugar and / or lipid metabolism-improving agent of the present invention contains a naturally-occurring polysaccharide as an active ingredient, it is considered that the risk of side effects is low. For this reason, it is suitable for long-term intake.
パラミロン粒子懸濁液(PM顆粒)と繊維化パラミロン液(繊維化PM)との、顕微鏡写真(上段)及びバイアル外観写真(下段)を示す。The microphotograph (upper stage) and vial appearance photograph (lower stage) of a paramylon particle suspension (PM granule) and a fiberized paramylon liquid (fiberized PM) are shown. 繊維化パラミロン(製造例1)の電子顕微鏡写真を示す。図の右下のスケールの1目盛の長さは1μmを示す。An electron micrograph of fiberized paramylon (Production Example 1) is shown. The length of one scale on the lower right scale in the figure is 1 μm. 図2の写真の四角枠内の拡大図を示す。図の右下に示される目盛の1目盛の長さが100 nmを示す。The enlarged view in the square frame of the photograph of FIG. 2 is shown. The length of one graduation shown in the lower right of the figure is 100 nm. 試験中の体重変化を示すグラフである。横軸は試験開始からの経過日数を示し、縦軸は体重の平均値を示す。It is a graph which shows the weight change during a test. The horizontal axis indicates the number of days elapsed from the start of the test, and the vertical axis indicates the average value of body weight. 試験における体重増加量を示すグラフである。コントロール群、バイオマス群、パラミロン群、繊維化パラミロン群において異なるアルファベットの付く群間で有意差がある(p<0.05)。グラフにおける異なるアルファベットによる有意差の表示については、図7~19においても同様である。It is a graph which shows the weight gain in a test. There is a significant difference between groups with different alphabets in the control group, biomass group, paramylon group, and fibrotic paramylon group (p <0.05). The display of significant differences by different alphabets in the graph is the same as in FIGS. 耐糖能測定結果を示すグラフである。横軸は、グルコース溶液の投与からの経過時間を示し、縦軸は血糖値を示す。*はコントロール群と比べて有意差がある(p<0.05)ことを示す。(*)はpが0.058である。It is a graph which shows a glucose tolerance measurement result. The horizontal axis shows the elapsed time from administration of the glucose solution, and the vertical axis shows the blood glucose level. * Indicates that there is a significant difference compared to the control group (p <0.05). In (*), p is 0.058. 試験後の後腹壁脂肪組織重量の測定結果を示すグラフである。It is a graph which shows the measurement result of the retroabdominal wall fat tissue weight after a test. 試験後の副睾丸周辺脂肪組織重量の測定結果を示すグラフである。It is a graph which shows the measurement result of the testicular periphery fat tissue weight after a test. 試験後の腸間膜脂肪組織重量の測定結果を示すグラフである。It is a graph which shows the measurement result of the mesenteric adipose tissue weight after a test. 試験後の肝臓重量の測定結果を示すグラフである。It is a graph which shows the measurement result of the liver weight after a test. 試験後の盲腸重量の測定結果を示すグラフである。It is a graph which shows the measurement result of the cecal weight after a test. 試験後の血清総コレステロール濃度の測定結果を示すグラフである。It is a graph which shows the measurement result of the serum total cholesterol density | concentration after a test. 試験後の血清LDLコレステロール濃度の測定結果を示すグラフである。It is a graph which shows the measurement result of the serum LDL cholesterol concentration after a test. 試験後の血清LDLコレステロール/HDLコレステロール比を示すグラフである。It is a graph which shows the serum LDL cholesterol / HDL cholesterol ratio after a test. 試験後の血清遊離脂肪酸(NEFA)濃度の測定結果を示すグラフである。It is a graph which shows the measurement result of the serum free fatty acid (NEFA) density | concentration after a test. 試験後の血清ALT(GPT)濃度の測定結果を示すグラフである。It is a graph which shows the measurement result of the serum ALT (GPT) density | concentration after a test. 試験後の血清CRP濃度の測定結果を示すグラフである。It is a graph which shows the measurement result of the serum CRP density | concentration after a test. 試験後の血清レプチン濃度の測定結果を示すグラフである。It is a graph which shows the measurement result of the serum leptin density | concentration after a test. 試験後の血清インスリン濃度の測定結果を示すグラフである。It is a graph which shows the measurement result of the serum insulin density | concentration after a test. 試験後の血中グルコース濃度の測定結果を示すグラフである。It is a graph which shows the measurement result of the blood glucose level after a test. グルコースの拡散率の測定結果を示すグラフである。グラフ中に示す各項目は、試験溶液中の被検物質の有無及びその種類を示す。It is a graph which shows the measurement result of the diffusion rate of glucose. Each item shown in the graph indicates the presence or absence and the type of the test substance in the test solution. βグルカナーゼによる分解性の評価結果を示すグラフである。横軸は、試験溶液中の被検物質の種類を示す。It is a graph which shows the evaluation result of the degradability by (beta) glucanase. The horizontal axis indicates the type of test substance in the test solution. アルカリ溶液への溶解性の評価結果を示すグラフである。0Hは振盪直後に測定した結果を示し、1Hは振盪から1時間静置後に測定した結果を示す。It is a graph which shows the evaluation result of the solubility to an alkaline solution. 0H shows the result measured immediately after shaking, and 1H shows the result measured after standing for 1 hour after shaking. X線回折(XRD)分析により得られたXRDチャートを示す。The XRD chart obtained by X-ray diffraction (XRD) analysis is shown. 繊維化パラミロン(製造例2)の電子顕微鏡写真を示す。図の右下のスケールの1目盛の長さは1μmを示す。An electron micrograph of fiberized paramylon (Production Example 2) is shown. The length of one scale on the lower right scale in the figure is 1 μm.
 本明細書中において、「含有」及び「含む」なる表現については、「含有」、「含む」、「実質的にからなる」及び「のみからなる」という概念を含む。 In this specification, the expressions “containing” and “including” include the concepts of “containing”, “including”, “consisting essentially of”, and “consisting only of”.
 本発明は、その一態様において、繊維化パラミロンを含有する、糖及び/又は脂質の代謝改善剤(本明細書において、「本発明の代謝改善剤」又は「本発明の剤」と示すこともある。)に関する。以下に、これについて説明する。 In one aspect of the present invention, the sugar and / or lipid metabolism-improving agent containing fibrotic paramylon (herein referred to as “the metabolism-improving agent of the present invention” or “the agent of the present invention”). Yes.) This will be described below.
 1.繊維化パラミロン
 繊維化パラミロンは、ミドリムシ属(=ユーグレナ属)に属する微細藻類(本明細書において、「ユーグレナ」と示すこともある。)由来のβ-1,3-グルカンであり、繊維状の形態のものである限りにおいて特に制限されず、繊維状の形態のパラミロンを本願において繊維化パラミロンともいう。これまで、パラミロン粒子を化学処理(アルカリ処理等)して得られたアモルファスパラミロンが報告されているが、これは、電子顕微鏡で観察すると繊維化であるとは認められず、形や大きさが不定形の塊であるため、繊維化パラミロンには包含されない。
1. Fibrous paramylon Fibrous paramylon is a β-1,3-glucan derived from a microalga belonging to the genus Euglena (= genus Euglena) (also referred to as “euglena” in the present specification), and is fibrous. It is not particularly limited as long as it is in the form, and the fibrous form of paramylon is also referred to as fiberized paramylon in the present application. Until now, amorphous paramylon obtained by chemical treatment (alkali treatment, etc.) of paramylon particles has been reported, but this is not recognized as fiberized when observed with an electron microscope, and has a shape and size. Since it is an irregular mass, it is not included in the fiberized paramylon.
 繊維化パラミロンが由来するユーグレナは、特に制限されないが、例えば、Euglena gracilis(ユーグレナ・グラシリス)、Euglena longaEuglena caudataEuglena oxyurisEuglena tripterisEuglena proximaEuglena viridisEuglena sociabilisEuglena ehrenbergiiEuglena desesEuglena pisciformisEuglena spirogyraEuglena acusEuglena geniculataEuglena intermediaEuglena mutabilisEuglena sanguineaEuglena stellataEuglena terricolaEuglena klebsiEuglena rubraEuglena cyclopicolaなどが挙げられる。これらの中でも、本発明の効果をより確実に発揮できるという観点から、好ましくはユーグレナ・グラシリスが挙げられ、より好ましくはユーグレナ・グラシリスEOD-1株[2013年6月28日付で独立行政法人製品評価技術基盤機構  特許生物寄託センター{NITE-IPOD(郵便番号292-0818  日本国千葉県木更津市かずさ鎌足2-5-8  120号室)}にブダペスト条約の規定下で、受託番号FERM BP-11530として国際寄託済み]が挙げられる。 Euglena the fiberizing paramylon is derived is not particularly limited, for example, Euglena gracilis (Euglena gracilis), Euglena longa, Euglena caudata, Euglena oxyuris, Euglena tripteris, Euglena proxima, Euglena viridis, Euglena sociabilis, Euglena ehrenbergii, Euglena deses Euglena pisciformis , Euglena spirogyra , Euglena acus , Euglena geniculata , Euglena intermedia , Euglena mutabilis , Euglena sanguinea , Euglena stellata , Euglena terricola , Euglena klebsi , Euglena cyclopica , Euglena rubra ola, etc. Among these, Euglena Gracilis is preferably mentioned from the viewpoint that the effects of the present invention can be more reliably exhibited, more preferably Euglena Gracilis EOD-1 strain [product evaluation as of June 28, 2013 As the accession number FERM BP-11530 under the provisions of the Budapest Treaty at the National Institute for Biotechnology Patent Biology Center {NITE-IPOD (zip code 292-0818, room 2-5-8 Kazusa-Kamashita, Kisarazu, Chiba, Japan)} International deposits].
 繊維化パラミロンの重量平均分子量は、特に限定されないが、例えば1×104~2×107、好ましくは1×105~5×105である。 The weight average molecular weight of the fiberized paramylon is not particularly limited, but is, for example, 1 × 10 4 to 2 × 10 7 , preferably 1 × 10 5 to 5 × 10 5 .
 なお、重量平均分子量は、SEC-MALS分析により、以下の方法で測定することができる:SEC装置:LC-10ADvp system(Shimadzu Co.、日本)、使用カラム:KD-806M(shodex.、日本)、
MALS検出器:DAWN HELEOSII(wyatt Technologies.、U.S.A.)、溶離液:1%LiCl/DMI、
流速:0.5 mL/分。
The weight average molecular weight can be measured by SEC-MALS analysis by the following method: SEC apparatus: LC-10ADvp system (Shimadzu Co., Japan), column used: KD-806M (shodex., Japan) ,
MALS detector: DAWN HELEOSII (wyatt Technologies., USA), eluent: 1% LiCl / DMI,
Flow rate: 0.5 mL / min.
 繊維化パラミロンの繊維の直径は、特に制限されないが、例えば10~500 nm、好ましくは20~300 nm、より好ましくは50~200 nmである。繊維化パラミロンの繊維の直径は、通常、繊維化パラミロンの電子顕微鏡像に基づいて測定することができる。 The diameter of the fiber of the fiberized paramylon is not particularly limited, but is, for example, 10 to 500 nm, preferably 20 to 300 nm, and more preferably 50 to 200 nm. The fiber diameter of the fiberized paramylon can be usually measured based on an electron microscopic image of the fiberized paramylon.
 繊維化パラミロンの水中沈定体積は、特に制限されないが、例えば30~300 mL/g、好ましくは50~250 mL/g、より好ましくは70~200 mL/gである。水中沈定体積は試験例2に従って又は準じて測定することができる。 The subsidence volume of fiberized paramylon in water is not particularly limited, but is, for example, 30 to 300 μmL / g, preferably 50 to 250 μmL / g, more preferably 70 to 200 μmL / g. The subsidence volume in water can be measured in accordance with or according to Test Example 2.
 繊維化パラミロンは、酵素による分解に対して、比較的高い耐性を有する。例えば、βグルカナーゼの分解により生成されるモノマー(グルコース)の量は、繊維化パラミロン1 g当たり、例えば0.1~50 mg、好ましくは1~10 mgである。この量は試験例5に従って又は準じて測定することができる。 Fibrous paramylon has a relatively high resistance to enzymatic degradation. For example, the amount of monomer (glucose) produced by the degradation of β-glucanase is, for example, 0.1 to 50 mg, preferably 1 to 10 mg per 1 g of fiberized paramylon. This amount can be measured according to or according to Test Example 5.
 繊維化パラミロンは、アルカリ溶液への溶解性が、比較的低い。例えば、繊維化パラミロンは、0.1~0.3Mの水酸化ナトリウム水溶液に対して溶解しない。ここで、「溶解しない」とは、例えば、当該水溶液に繊維化パラミロンを懸濁した後(例えば、直後~1時間経過後)の溶液の吸光度(660 nm)が、例えば0.1以上、好ましくは1.0以上であることを意味する。溶解性は試験例6に従って又は準じて測定することができる。 Fibrous paramylon has relatively low solubility in alkaline solutions. For example, fiberized paramylon does not dissolve in 0.1-0.3M aqueous sodium hydroxide solution. Here, “does not dissolve” means, for example, the absorbance (660 nm) of the solution after suspending fibrotic paramylon in the aqueous solution (for example, immediately after 1 hour), for example, 0.1 or more, preferably 1.0 That means that. Solubility can be measured in accordance with or according to Test Example 6.
 繊維化パラミロンの結晶化度の粒状パラミロンに対する相対値(繊維化パラミロンの結晶化度/粒状パラミロンの結晶化度)は、例えば0.60~0.90、好ましくは0.65~0.80である。結晶化度は試験例7に従って又は準じて測定することができる。 The relative value of the crystallinity of the fiberized paramylon relative to the granular paramylon (the crystallinity of the fiberized paramylon / the crystallinity of the granular paramylon) is, for example, 0.60 to 0.90, preferably 0.65 to 0.80. The degree of crystallinity can be measured according to Test Example 7 or according thereto.
 繊維化パラミロンは、水などの溶媒に分散した形態であってもよいし、乾燥形態であってもよい。繊維化パラミロンは、乾燥形態であっても、水に再分散することが可能である。 The fiberized paramylon may be in a form dispersed in a solvent such as water, or in a dry form. Fibrotic paramylon can be redispersed in water even in dry form.
 なお、本明細書において、「乾燥形態」とは、水分含量が15質量%以下、好ましくは10質量%以下、より好ましくは5質量%以下であることを示す。 In the present specification, “dry form” indicates that the water content is 15% by mass or less, preferably 10% by mass or less, more preferably 5% by mass or less.
 なお、パラミロンは、ユーグレナの細胞内において、通常、β-1,3-グルカン鎖が形成する3重螺旋構造体が一定の規則性の基に高度に集積してなるパラミロン粒子として存在している。繊維化パラミロンとしては、好ましくはこのパラミロン粒子を物理的に解繊処理して得られる、パラミロン粒子の解繊物を用いることができる。また、この解繊処理をユーグレナに適用することによって得られる、ユーグレナの解繊処理物を、繊維化パラミロンとして用いることもできる。 Paramylon usually exists in Euglena cells as paramylon particles in which triple-helical structures formed by β-1,3-glucan chains are highly accumulated based on a certain regularity. . As the fiberized paramylon, a defibrated material of paramylon particles, preferably obtained by physically defibrating the paramylon particles, can be used. Further, a euglena defibrated product obtained by applying this defibrating treatment to Euglena can also be used as fiberized paramylon.
 パラミロン粒子の形状は、特に制限されないが、通常は、偏平な回転楕円体状である。 The shape of the paramylon particles is not particularly limited, but is usually a flat spheroid.
 パラミロン粒子の粒子径分布は、特に制限されないが、例えば0.5~15μm、好ましくは1~6μmである。また、パラミロン粒子の平均粒子径も特に制限されないが、例えば1~10、好ましくは2~4μmである。 The particle size distribution of the paramylon particles is not particularly limited, but is, for example, 0.5 to 15 μm, preferably 1 to 6 μm. The average particle size of the paramylon particles is not particularly limited, but is, for example, 1 to 10, preferably 2 to 4 μm.
 パラミロン粒子は、公知の方法(例えば日本国特許第5883532号公報に記載の方法)に従って又は準じて、ミドリムシから分離、単離、又は精製することによって製造することができる。パラミロン粒子は、例えばミドリムシの細胞膜を破壊することによって得られる細胞内容成分を回収することによって、容易に得ることができる。また、必要に応じて、パラミロン粒子を精製してもよい。パラミロン粒子の精製については各種知られており(例えば、日本国特許第5883532号公報)、それらの方法に従って行うことができる。精製工程としては、例えば、界面活性剤処理工程、洗浄工程などが挙げられる。 Paramylon particles can be produced by separating, isolating, or purifying from Euglena according to or according to a known method (for example, the method described in Japanese Patent No. 5858832). Paramylon particles can be easily obtained, for example, by collecting cell content components obtained by destroying the cell membrane of Euglena. Moreover, you may refine | purify a paramylon particle as needed. Various types of purification of paramylon particles are known (for example, Japanese Patent No. 5858832) and can be performed according to these methods. Examples of the purification step include a surfactant treatment step and a washing step.
 解繊処理は、パラミロン粒子中に存在するβ-1,3グルカンの水素結合をほとんど切断せずに(例えば、β-1,3グルカンの水素結合の10%以下、5%以下、2%以下、1%以下しか切断せずに)解繊することができる処理、又はパラミロン粒子中に存在するβ-1,3-グルカン鎖又はこれが形成する3重螺旋構造体の一部又は全部を解くことができる処理である限り特に制限されない。好ましくはパラミロン粒子中に存在するβ-1,3グルカンの水素結合をほとんど切断せずに解繊処理し、繊維状とすることが好ましい。パラミロン粒子の様な微粒子を摩砕(せん断)又は粉砕(好ましくは摩砕(せん断))することができる公知の処理を、解繊処理として採用することができる。 Defibration treatment does not substantially break the hydrogen bond of β-1,3 glucan present in paramylon particles (for example, 10% or less, 5% or less, 2% or less of β-1,3 glucan hydrogen bond) Treatment that can be defibrated (with only 1% or less being cut), or part or all of the β-1,3-glucan chain present in the paramylon particles or the triple helical structure formed by this There is no particular limitation as long as it can be processed. Preferably, it is preferable to form a fiber by fibrillating the β-1,3 glucan present in the paramylon particles without almost breaking the hydrogen bond. A known treatment that can grind (shear) or grind (preferably grind (shear)) fine particles such as paramylon particles can be employed as the defibrating treatment.
 解繊処理は、公知の摩砕機(せん断機)、粉砕機などの装置を用いて行うことができる。解繊処理に用いる装置としては、例えば石臼式摩砕機、ジェットミル、二軸混練機、高圧ホモジナイザー、高圧乳化機、二軸押し出し機、ビーズミルなどが挙げられる。これらの中でも、好ましくは石臼式摩砕機やビーズミルが挙げられる。 The fibrillation treatment can be performed using a known grinder (shearing machine), a crusher or the like. Examples of the apparatus used for the defibrating treatment include a stone mill, a jet mill, a twin screw kneader, a high pressure homogenizer, a high pressure emulsifier, a twin screw extruder, a bead mill, and the like. Among these, a stone mill type mill and a bead mill are preferable.
 解繊処理は、湿式で行うことも、乾式で行うこともできる。湿式で解繊処理を行う方が、繊維化パラミロンをより効率的に溶液中に分散させることが可能となり、好ましい。湿式で行う場合の溶媒としては、繊維化パラミロンを分散可能な溶媒である限り特に制限されず、水を好適に用いることができる。 The defibrating treatment can be performed wet or dry. It is preferable to perform the defibrating treatment in a wet manner because the fiberized paramylon can be more efficiently dispersed in the solution. The solvent used in the wet process is not particularly limited as long as it is a solvent capable of dispersing fiberized paramylon, and water can be preferably used.
 解繊処理は、1種単独であってもよいし、2種以上の組み合わせであってもよい。また、一部が解繊処理されたパラミロンであってもよく、解繊処理されたパラミロンを含む限り本発明の意図するものである。 The defibrating treatment may be one type alone or a combination of two or more types. Further, it may be a partially defibrated paramylon, and is intended by the present invention as long as it includes a defibrated paramylon.
 解繊処理の諸条件は、解繊原理、解繊処理に用いる装置の種類、湿式であるか乾式であるかなどに応じて適宜調整することができる。一例として、増幸産業製の石臼式摩砕機(スーパーマスコロイダー)を用いて湿式解繊処理を行う場合の各条件(解繊処理対象液、クリアランス、砥石回転数、解繊処理の回数)は以下のとおりである。 The various conditions of the defibrating treatment can be appropriately adjusted according to the defibrating principle, the type of apparatus used for the defibrating treatment, whether it is wet or dry. As an example, each condition (defibration treatment target liquid, clearance, grinding wheel rotation speed, number of times of defibrating treatment) when performing wet defibrating using a mortar mill (supermass colloider) manufactured by Masuyuki Sangyo is as follows: It is as follows.
 解繊処理対象液:パラミロン粒子の水懸濁液。パラミロン粒子の濃度は、特に制限されないが、例えば0.1~40質量%、好ましくは0.5~30質量%、より好ましくは1~20質量%、さらに好ましくは2~15質量%である。 Defibration target liquid: A water suspension of paramylon particles. The concentration of the paramylon particles is not particularly limited, but is, for example, 0.1 to 40% by mass, preferably 0.5 to 30% by mass, more preferably 1 to 20% by mass, and further preferably 2 to 15% by mass.
 クリアランス(砥石の隙間):特に制限されないが、例えば-10~-800μm、好ましくは-30~-400μm、より好ましくは-50~-300μm、さらに好ましくは-80~-150μmである。 Clearance (gap between the grinding wheels): Although not particularly limited, for example, -10 to -800 μm, preferably -30 to -400 μm, more preferably -50 to -300 μm, and further preferably -80 to -150 μm.
 砥石回転数:特に制限されないが、例えば500~3000 rpm、好ましくは700~2000 rpm、より好ましくは800~1600 rpmである。 Grinding wheel rotation speed: Although not particularly limited, it is, for example, 500 to 3000 rpm, preferably 700 to 2000 rpm, more preferably 800 to 1600 rpm.
 解繊処理の回数:特に制限されないが、例えば1~30回、好ましくは3~25回、より好ましくは5~20回程度である。 Defibration treatment frequency: Although not particularly limited, for example, it is 1 to 30 times, preferably 3 to 25 times, more preferably about 5 to 20 times.
 なお、砥石の種類やメーカーによって条件は適宜変更され、例えばグローエンジニアリングの石臼式摩砕機(グローミル)を利用する場合、クリアランスを例えば10~100μmとすることが好ましい。 The conditions are appropriately changed depending on the type and manufacturer of the grindstone. For example, when a Glow Engineering millstone grinder (glow mill) is used, the clearance is preferably 10 to 100 μm, for example.
 繊維化パラミロンは、1種単独であってもよいし、2種以上の組み合わせであってもよい。 The fiberized paramylon may be used alone or in combination of two or more.
 2.用途
 繊維化パラミロンは、糖及び/又は脂質の代謝改善作用を有することから、糖及び/又は脂質の代謝改善剤の有効成分として、利用することができる。なお、本明細書において、糖代謝とは、糖の摂取から排泄までの一連の現象のそれぞれを包含する。また、本明細書において、脂質代謝とは、脂質又は脂質へと変換可能な物質の摂取から、脂質又は脂質から変換された物質の排出までの一連の現象のそれぞれを包含する。
2. Uses Fibrous paramylon has an effect of improving sugar and / or lipid metabolism, and can therefore be used as an active ingredient of a sugar and / or lipid metabolism improving agent. In addition, in this specification, sugar metabolism includes each of a series of phenomena from ingestion to excretion of sugar. In this specification, lipid metabolism includes each of a series of phenomena from intake of lipid or a substance that can be converted into lipid to elimination of lipid or a substance converted from lipid.
 また、糖及び/又は脂質の代謝改善作用に基づく他の用途、例えば、以下に列挙する用途:
(A)メタボリックシンドローム、又は高コレステロール血症、高脂血症などの脂質異常症、糖尿病、肥満、及び脂肪肝からなる群より選択される少なくとも1種の疾患又は状態などの予防又は改善剤、
(B)体重抑制剤、
(C)体重増加の抑制剤、
(D)体脂肪及び/又は内臓脂肪抑制剤、
(E)体脂肪及び/又は内臓脂肪増加の抑制剤、
(F)糖及び/又は脂質吸収抑制剤、
(G)脂肪消費促進剤、
(H)血中脂質(例えばコレステロール、中性脂肪等)及び/又は血糖値の抑制剤、
(I)血中脂質(例えばコレステロール、中性脂肪等)及び/又は血糖値上昇の抑制剤、(J)血中LDLコレステロール抑制剤、
(K)血中LDLコレステロール上昇の抑制剤、
(L)血中LH比(LDLコレステロール/HDLコレステロール)抑制剤、
(M)血中LH比(LDLコレステロール/HDLコレステロール)上昇の抑制剤、
(N)腸内細菌叢改善剤
(O)便通改善剤
(P)肝機能改善剤
(R)動脈硬化予防剤
(S)インスリン抵抗性改善剤
(T)糖吸収遅延化剤
(U)血糖値上昇遅延化剤
等の有効成分として、利用することができる。
In addition, other uses based on the metabolism improving action of sugar and / or lipid, for example, the uses listed below:
(A) Preventive or ameliorating agent such as metabolic syndrome or at least one disease or condition selected from the group consisting of dyslipidemia such as hypercholesterolemia and hyperlipidemia, diabetes, obesity, and fatty liver,
(B) weight suppressant,
(C) an inhibitor of weight gain,
(D) body fat and / or visceral fat inhibitor,
(E) an inhibitor of increase in body fat and / or visceral fat,
(F) a sugar and / or lipid absorption inhibitor,
(G) fat consumption promoter,
(H) blood lipids (eg, cholesterol, neutral fat, etc.) and / or blood sugar level inhibitors,
(I) a blood lipid (eg, cholesterol, neutral fat, etc.) and / or an inhibitor of an increase in blood glucose level, (J) a blood LDL cholesterol inhibitor,
(K) an inhibitor of blood LDL cholesterol elevation,
(L) a blood LH ratio (LDL cholesterol / HDL cholesterol) inhibitor,
(M) an inhibitor of an increase in blood LH ratio (LDL cholesterol / HDL cholesterol),
(N) Intestinal flora improving agent (O) Fecal improvement agent (P) Liver function improving agent (R) Arteriosclerosis preventing agent (S) Insulin resistance improving agent (T) Glucose absorption delaying agent (U) Blood glucose level It can be used as an active ingredient such as a rise retarder.
 さらには、以下に列挙する用途、目的、対象:
(a) 内臓脂肪を減らす
(b) 体脂肪の増加を抑える、体脂肪を減らす、脂肪の吸収を抑える
(c) 中性脂肪を減らす
(d) エネルギーとして脂肪を消費しやすくする
(e) 血中中性脂肪や血糖値の上昇をおだやかにする
(f) 糖分の吸収を抑える、糖質の吸収を抑える
(g) 血中コレステロールを低下させる、LDLコレステロール値を下げる
(h) おなかの調子を整える、便通を改善する、腸内環境を改善する(i) 血中HDL(善玉)コレステロールを増やす
(j) 内臓脂肪が気になる方へ
(k) BMIが高めの方へ
(l) 中性脂肪が高めの方へ
(m) コレステロールが気になる方へ
(n) 食後の血糖値が高めの(気になる)方へ
(o) 肝臓の健康が気になる方へ
に利用することもできる。
In addition, the uses, purposes, and subjects listed below:
(A) Reduce visceral fat (b) Reduce body fat increase, reduce body fat, reduce fat absorption (c) Reduce neutral fat (d) Easily consume fat as energy (e) Blood Gently increase the level of triglycerides and blood sugar (f) Suppress sugar absorption, suppress carbohydrate absorption (g) Decrease blood cholesterol, lower LDL cholesterol (h) Improve, improve bowel environment, improve intestinal environment (i) increase blood HDL (good) cholesterol (j) for those who are concerned about visceral fat (k) for those with higher BMI (l) neutral For those who are high in fat (m) For those who are worried about cholesterol (n) For those who are worried about blood sugar level after meals (o) For those who are concerned about liver health it can.
 なお、メタボリックシンドロームは内臓脂肪型肥満に加えて、(1)高血圧である、(2)血糖値が高い、(3)HDLコレステロールが低いか中性脂肪が高い、の3つのうち、いずれか2つ以上あてはまる状態といわれている。 In addition to visceral fat obesity, metabolic syndrome is one of three: (1) high blood pressure, (2) high blood glucose level, (3) low HDL cholesterol or high neutral fat It is said that more than one applies.
 本発明の剤は、各種分野において、例えば食品添加剤、食品組成物(健康増進剤、栄養補助剤(サプリメントなど)を包含する)、医薬などとして用いることができる。 The agent of the present invention can be used in various fields, for example, as a food additive, a food composition (including health promoting agents, nutritional supplements (such as supplements)), and pharmaceuticals.
 本発明の剤の形態は、特に限定されず、用途に応じて、各用途において通常使用される形態をとることができる。 The form of the agent of the present invention is not particularly limited, and can take a form usually used in each application depending on the application.
 形態としては、用途が食品添加剤、医薬、健康増進剤、栄養補助剤(サプリメントなど)などである場合は、例えば錠剤(口腔内側崩壊錠、咀嚼可能錠、発泡錠、トローチ剤、ゼリー状ドロップ剤などを含む)、丸剤、顆粒剤、細粒剤、散剤、硬カプセル剤、軟カプセル剤、ドライシロップ剤、液剤(ドリンク剤、懸濁剤、シロップ剤を含む)、ゼリー剤などが挙げられる。 When the application is food additives, medicines, health enhancers, nutritional supplements (such as supplements), etc., for example, tablets (orally disintegrating tablets, chewable tablets, effervescent tablets, lozenges, jelly-like drops) Pills, granules, fine granules, powders, hard capsules, soft capsules, dry syrups, liquids (including drinks, suspensions, syrups), jelly, etc. .
 形態としては、用途が食品組成物の場合は、液状、ゲル状あるいは固形状の食品、例えばジュース、清涼飲料、茶、スープ、豆乳などの飲料、サラダ油、ドレッシング、ヨーグルト、ゼリー、プリン、ふりかけ、育児用粉乳、ケーキミックス、粉末状または液状の乳製品、パン、クッキーなどが挙げられる。 As a form, when the use is a food composition, liquid, gel or solid food, for example, beverages such as juice, soft drink, tea, soup, soy milk, salad oil, dressing, yogurt, jelly, pudding, sprinkle, Examples include infant formula, cake mix, powdered or liquid dairy products, bread and cookies.
 本発明の剤は、必要に応じてさらに他の成分を含んでいてもよい。他の成分としては、食品添加剤、食品組成物、医薬、健康増進剤、栄養補助剤(サプリメントなど)などに配合され得る成分である限り特に限定されるものではないが、例えば基剤、担体、溶剤、分散剤、乳化剤、緩衝剤、安定剤、賦形剤、結合剤、崩壊剤、滑沢剤、増粘剤、着色料、香料、キレート剤などが挙げられる。 The agent of the present invention may further contain other components as necessary. The other components are not particularly limited as long as they are components that can be blended in food additives, food compositions, pharmaceuticals, health enhancers, nutritional supplements (such as supplements), etc. , Solvents, dispersants, emulsifiers, buffers, stabilizers, excipients, binders, disintegrants, lubricants, thickeners, colorants, fragrances, chelating agents and the like.
 本発明の剤は、繊維化パラミロンが水などの溶媒に分散した形態であってもよいし、乾燥形態であってもよい。繊維化パラミロンは、乾燥形態であっても、より容易に水に分散することが可能である。 The agent of the present invention may be in a form in which fiberized paramylon is dispersed in a solvent such as water, or in a dry form. Fibrous paramylon can be more easily dispersed in water, even in dry form.
 本発明の剤は、繊維化パラミロンを配合する工程を含む方法によって、製造することができる。本発明の剤が例えば飲料である場合は、さらに水を配合する工程が含まれる。なお、この場合、既に水を含む対象物に繊維化パラミロンを配合してもよいし、繊維化パラミロンを配合した後に、水を配合してもよい。配合する際、繊維化パラミロンは、乾燥状態であっても、水に分散することが可能である。 The agent of the present invention can be produced by a method including a step of blending fiberized paramylon. When the agent of this invention is a drink, for example, the process of mix | blending water is further included. In this case, fiberized paramylon may be blended with an object that already contains water, or water may be blended after blending fiberized paramylon. When blended, the fiberized paramylon can be dispersed in water even in a dry state.
 本発明の剤が繊維化パラミロン以外の成分を含む場合、有効成分の含有量は、用途、使用態様、適用対象の状態などに左右されるものであり、限定はされないが、例えば0.0001~95質量%、好ましくは0.001~50質量%とすることができる。 When the agent of the present invention contains a component other than fiberized paramylon, the content of the active ingredient depends on the application, usage mode, application target state, and the like, and is not limited. For example, 0.0001 to 95 mass %, Preferably 0.001 to 50% by mass.
 本発明の剤の対象生物に対する適用(例えば、投与、摂取、接種など)量は、薬効を発現する有効量であれば特に限定されず、通常は、有効成分である繊維化パラミロンの乾燥重量として、一般に一日あたり0.1~10000 mg/kg体重である。上記適用量は1日1回以上(例えば1~3回)に分けて適用するのが好ましく、年齢、病態、症状により適宜増減することもできる。 The amount of application (for example, administration, ingestion, inoculation, etc.) of the agent of the present invention to the target organism is not particularly limited as long as it is an effective amount that exhibits a medicinal effect, and is usually the dry weight of fibrinated paramylon that is an active ingredient. In general, it is 0.1 to 10000 mg / kg body weight per day. The above-mentioned application amount is preferably applied at least once a day (for example, 1 to 3 times), and can be appropriately increased or decreased depending on age, disease state, and symptoms.
 以下に、実施例に基づいて本発明を詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。 Hereinafter, the present invention will be described in detail based on examples, but the present invention is not limited to these examples.
 参考製造例1:パラミロン粒子の製造
 パラミロン粒子を以下のようにして精製した。
Reference Production Example 1: Production of paramylon particles Paramylon particles were purified as follows.
 [培養工程]
 ユーグレナ・グラシリスEOD-1株(独立行政法人製品評価技術基盤機構  特許生物寄託センター(NITE-IPOD)にブダペスト条約の規定下で、受託番号FERM BP-11530として国際寄託済み)を以下の条件下で培養した。
[Culture process]
Euglena Gracilis EOD-1 strain (Internationally Deposited as Accession Number FERM BP-11530 under the provisions of the Budapest Treaty under the Patent Biological Deposit Center (NITE-IPOD) of the National Institute of Technology and Evaluation) under the following conditions Cultured.
    「培養容器」:500 mL坂口フラスコ
    「振とう培養条件」:125 rpm
    「培養温度」:28℃
    「培養開始時の液体のpH」:4.7(塩酸によって調整)
    「培養のための液体量」:約200 mL/1フラスコ
    「培養のための液体の組成」:表1の通り
    「光照射条件」:24時間暗所
    「微細藻類の初期重量」:0.78 g/L(乾燥重量)
    「培養期間」:2日間
“Culture vessel”: 500 mL Sakaguchi flask “Shaking culture conditions”: 125 rpm
“Incubation temperature”: 28 ℃
“Liquid pH at the start of culture”: 4.7 (adjusted with hydrochloric acid)
“Liquid volume for culture”: about 200 mL / 1 flask “Composition of liquid for culture”: As shown in Table 1 “Light irradiation conditions”: 24 hours in the dark “Initial weight of microalgae”: 0.78 g / L (dry weight)
"Culture period": 2 days
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 培養終了後に、5フラスコ分の液体を集め、集めた液体を遠心管内で遠心分離(500×g、4分間、室温)した。遠心管内の上澄み液をいったん取り除いて回収した。回収した上澄み液を遠心管に入れて遠心管内の沈殿物を分散させ、100 mL容積のメスシリンダーに全て移した。さらに、メスシリンダーに、回収した上澄み液を加えて、90 mLにメスアップした。 After completion of the culture, the liquid for 5 flasks was collected, and the collected liquid was centrifuged in a centrifuge tube (500 × g, 4 minutes, room temperature). The supernatant in the centrifuge tube was once removed and collected. The collected supernatant was put into a centrifuge tube to disperse the precipitate in the centrifuge tube and transferred to a 100 mL graduated cylinder. Further, the collected supernatant was added to a measuring cylinder to make up to 90 mL.
 [酵素処理工程]
 90 mLにメスアップした液体を200 mLビーカーに移し、撹拌しながら塩酸水溶液を添加することによって液体のpHを3に調整した。タンパク質分解酵素(酸性プロテアーゼ  製品名「プロテアーゼYP-SS」ヤクルト薬品工業社製  至適pH2.5~3.0)を5 g/L濃度となるように液体に添加した。液体を撹拌しつつ50℃にて2時間、酵素処理を施した。
[Enzyme treatment process]
The liquid made up to 90 mL was transferred to a 200 mL beaker, and the pH of the liquid was adjusted to 3 by adding aqueous hydrochloric acid while stirring. Proteolytic enzyme (acidic protease, product name “Protease YP-SS”, Yakult Pharmaceutical Co., Ltd., optimum pH 2.5 to 3.0) was added to the liquid to a concentration of 5 g / L. While stirring the liquid, the enzyme treatment was performed at 50 ° C. for 2 hours.
 [界面活性剤処理工程]
 ドデシル硫酸ナトリウムの濃度が3.0質量/容量(w/v)%となるように、酵素処理工程を経た液体に、ドデシル硫酸ナトリウムの水溶液を加えた。ドデシル硫酸ナトリウムを含む液体を撹拌しつつ、塩酸水溶液の添加によって液体のpHを3に調整した。さらに、液体をプロペラ撹拌機(回転速度200 rpm)で60℃にて30分間撹拌した。
[Surfactant treatment process]
An aqueous solution of sodium dodecyl sulfate was added to the liquid after the enzyme treatment step so that the concentration of sodium dodecyl sulfate was 3.0 mass / volume (w / v)%. While the liquid containing sodium dodecyl sulfate was stirred, the pH of the liquid was adjusted to 3 by adding an aqueous hydrochloric acid solution. Furthermore, the liquid was stirred with a propeller stirrer (rotational speed 200 rpm) at 60 ° C. for 30 minutes.
 [分離工程]
 遠心分離(1000×g、2分間、室温)によってパラミロンを沈殿させ、界面活性剤処理工程を経た液体から、パラミロンを分離した。ドデシル硫酸ナトリウムの濃度が1.0質量/容量%となるように変更した点、pHを調整しなかった点以外は、同様にしてさらに界面活性剤処理工程を行った。その後、上記と同様にして分離工程を行った。このようにして、界面活性剤処理工程及び分離工程をそれぞれ3回ずつ行った。
[Separation process]
Paramylon was precipitated by centrifugation (1000 × g, 2 minutes, room temperature), and paramylon was separated from the liquid that had undergone the surfactant treatment step. A surfactant treatment step was further performed in the same manner except that the concentration of sodium dodecyl sulfate was changed to 1.0 mass / volume% and the pH was not adjusted. Thereafter, the separation step was performed in the same manner as described above. In this way, the surfactant treatment step and the separation step were each performed three times.
 [洗浄工程]
 分離工程において遠心分離によって沈殿したパラミロンを、純水によって懸濁させ、40℃にて10分間静置した。次に、遠心分離(1000×g、2分間、室温)によってパラミロンを沈殿させた。このような操作を合計3回行った。
[Washing process]
Paramylon precipitated by centrifugation in the separation step was suspended in pure water and allowed to stand at 40 ° C. for 10 minutes. Next, paramylon was precipitated by centrifugation (1000 × g, 2 minutes, room temperature). Such operation was performed 3 times in total.
 [乾燥工程]
 洗浄工程において遠心分離によって沈殿したパラミロンを、50℃にて乾燥させて、パラミロン粒子を得た。
[Drying process]
Paramylon precipitated by centrifugation in the washing step was dried at 50 ° C. to obtain paramylon particles.
 製造例1:繊維化パラミロンの製造1
 参考製造例1を繰り返すことで製造したパラミロン粒子を精製水と混合してパラミロン粒子懸濁液を調製した。パラミロン粒子懸濁液中のパラミロン粒子の濃度は5質量%とした。パラミロン粒子懸濁液を、石臼式磨砕機(スーパーマスコロイダー、増幸産業社製)を用いて下記表2中の条件で湿式解繊処理して、磨砕機から排出されたスラリーを得た。この湿式解繊処理を計20回繰り返した。最終的に得られたスラリーを、繊維化パラミロン液として試験に用いた。パラミロン粒子懸濁液と、繊維化パラミロン液の顕微鏡写真、及びこれらの液を含有するバイアルの外観写真を図1に示す。
なお、以降図表において繊維化パラミロンを繊維状パラミロンということもある。
Production Example 1: Production of fiberized paramylon 1
Paramylon particles produced by repeating Reference Production Example 1 were mixed with purified water to prepare a paramylon particle suspension. The concentration of paramylon particles in the paramylon particle suspension was 5% by mass. The paramylon particle suspension was wet defibrated under the conditions shown in Table 2 below using a stone mill grinder (Supermass colloider, manufactured by Masuko Sangyo Co., Ltd.) to obtain slurry discharged from the grinder. This wet defibrating treatment was repeated 20 times in total. The finally obtained slurry was used as a fiberized paramylon solution in the test. FIG. 1 shows a microphotograph of the paramylon particle suspension, a fiberized paramylon solution, and an appearance photograph of a vial containing these solutions.
In the following charts, fiberized paramylon is sometimes referred to as fibrous paramylon.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 図1の顕微鏡写真に示されるように、湿式解繊処理により、パラミロン粒子が解れ、繊維化していることが確認できた。また、繊維化パラミロンは枝分れした構造(分岐した構造)を有し網目状の構造となっていることが確認出来た。また、図1の外観写真のとおり、繊維化パラミロン液においては、繊維化パラミロンが液中に均一に分散していることが示された。 As shown in the micrograph of FIG. 1, it was confirmed that the paramylon particles were unwound and formed into fibers by wet defibrating treatment. Further, it was confirmed that the fiberized paramylon had a branched structure (branched structure) and a network structure. In addition, as shown in the outer appearance photograph of FIG. 1, in the fiberized paramylon liquid, it was shown that the fiberized paramylon was uniformly dispersed in the liquid.
 比較製造例1:化学処理パラミロンの製造
 参考製造例1のパラミロン粒子を日本国特開2011-184592号公報に記載の方法を用いて化学的に処理した。具体的には、パラミロン粒子を1M NaOH水溶液に溶解させ、溶解後に、塩酸水溶液を加えることにより、中和処理を行った。中和処理によってゲル状物が生じた。遠心分離による分離処理によって得られた上澄み液を除去し、固形分を得た。固形分は、中和処理による塩(NaCl)を含んでいるため、得られた固形分に対して、多量の水を加えて、固形分を分散させてゲル状物を生じさせ、同様に遠心分離で分離処理を行うことにより、ゲル状物に含まれる塩類の除去処理を行った。塩類の除去処理を、ゲル状物に含まれるNaCl乾燥質量が、1M NaOH水溶液に溶解させたパラミロン粒子の乾燥重量あたり0.1質量%以下となるまで繰り返し行い、化学処理パラミロンを得た。ゲル状物に含まれるNaClの乾燥重量は、遠心分離後の上澄み液のNaCl濃度を、上澄み液の電気伝導度より算出することで求めた。なお、既報の文献(平成26年度戦略的基板技術高度化支援事業 多糖類パラミロンの高度培養生産技術及び利用に関する研究開発(研究開発成果等報告書 平成27年3月))によると、この化学処理パラミロンは、電子顕微鏡によって観察した結果、繊維状ではなく、形や大きさが不定形の塊であった。
Comparative Production Example 1: Production of Chemically Treated Paramylon The paramylon particles of Reference Production Example 1 were chemically treated using the method described in Japanese Patent Application Laid-Open No. 2011-184592. Specifically, the neutralization treatment was performed by dissolving paramylon particles in 1M NaOH aqueous solution and adding hydrochloric acid aqueous solution after dissolution. A gel-like material was generated by the neutralization treatment. The supernatant obtained by the separation process by centrifugation was removed to obtain a solid content. Since the solid content contains salt (NaCl) from the neutralization treatment, a large amount of water is added to the obtained solid content to disperse the solid content, resulting in a gel-like material, and similarly centrifuged. By performing the separation process by separation, the salt contained in the gel-like material was removed. The salt removal treatment was repeated until the dry mass of NaCl contained in the gel-like material became 0.1 mass% or less per dry weight of the paramylon particles dissolved in the 1M NaOH aqueous solution, to obtain chemically treated paramylon. The dry weight of NaCl contained in the gel-like material was determined by calculating the NaCl concentration of the supernatant after centrifugation from the electrical conductivity of the supernatant. In addition, according to published literature (2014 Strategic Substrate Technology Advancement Support Project, Research and Development on Advanced Culture Production Technology and Use of Polysaccharide Paramylon (Report on Research and Development Results March 2015)), this chemical treatment As a result of observation by an electron microscope, the paramylon was not a fibrous shape but a lump having an indefinite shape or size.
 試験例1:繊維化パラミロンの構造の解析
 製造例1の繊維化パラミロンの構造を電子顕微鏡で観察した。具体的には次のようにして行った。まず、繊維化パラミロンと水との混合物に対して、該混合物の1.5倍容量のt-ブタノールを加えて、ボルテックスミキサーによって、繊維化パラミロンを分散させた。得られた分散液の一部を平板上に滴下し、滴下された試験液を凍結させた。凍結物を減圧処理して、溶媒を揮発させた。得られたサンプルに、オスミウムプラズマイオンコート(厚さ20 nm)を施し、走査型電子顕微鏡で観察した。観察像を図2及び3に示す。
Test Example 1: Analysis of the structure of fiberized paramylon The structure of the fiberized paramylon of Production Example 1 was observed with an electron microscope. Specifically, it was performed as follows. First, 1.5 times the volume of t-butanol was added to the mixture of fiberized paramylon and water, and the fiberized paramylon was dispersed by a vortex mixer. A part of the obtained dispersion was dropped on a flat plate, and the dropped test liquid was frozen. The frozen product was treated under reduced pressure to evaporate the solvent. The obtained sample was subjected to osmium plasma ion coating (thickness 20 nm) and observed with a scanning electron microscope. Observation images are shown in FIGS.
 図2及び3に示されるように、本試験により観察された繊維化パラミロンは、各繊維が互いに絡み合った網目状構造であった。 2 and 3, the fiberized paramylon observed in this test had a network structure in which the fibers were intertwined with each other.
 試験例2:水中沈定体積の測定
 「日本食物繊維学会監修、日本食物繊維学会編集委員会編(2008)食物繊維 ‐基礎と応用‐ 第3版, p.111 第一出版, 東京」に記載されている方法に準じて測定を行った。具体的には、次のようにして行った。サンプル(パラミロン粒子(参考製造例1)、繊維化パラミロン(製造例1)、又は化学処理パラミロン(比較製造例1))のスラリー状の各試験試料を、25 mL容積のプラスチックチューブに、乾燥質量換算で250 mg(繊維化パラミロンのみ、125 mg)計り取り、プラスチックチューブを手で激しく振って、内容物を撹拌した。その後、25 mL容積のメスシリンダーに内容物を移し、25 mLになるまで純水を加えた。メスシリンダー内の液体を撹拌した後、37℃で24時間静置した。これによりサンプルが沈殿し、界面を介して分けられる2つの層(沈殿したサンプルを主に含む層(下層)、及び水を主に含む層(上層))が生じた。下層の体積をメスシリンダーの目盛から求め、得られた体積をサンプル質量(乾燥質量)で除して、水中沈定体積(mL/g)を算出した。試験は3回又は4回行い、平均値及び標準偏差を算出した。結果を表3に示す。
Test example 2: Measurement of settling volume in water “Supervised by the Japan Dietary Fiber Society, edited by the Japanese Dietary Fiber Society Editorial Board (2008) Dietary fiber-Basics and applications-3rd edition, p. 111, Daiichi Shuppan, Tokyo” The measurement was performed according to the method. Specifically, it was performed as follows. Each sample test sample (paramylon particles (reference production example 1), fiberized paramylon (production example 1), or chemically treated paramylon (comparative production example 1)) is placed in a 25 mL plastic tube with a dry mass. In conversion, 250 mg (fiberized paramylon only, 125 mg) was weighed, and the contents were stirred by shaking the plastic tube vigorously by hand. Thereafter, the contents were transferred to a 25 mL graduated cylinder, and pure water was added to 25 mL. The liquid in the graduated cylinder was stirred and allowed to stand at 37 ° C. for 24 hours. This resulted in the precipitation of the sample, resulting in two layers separated through the interface (a layer mainly containing the precipitated sample (lower layer) and a layer mainly containing water (upper layer)). The volume of the lower layer was determined from the scale of the graduated cylinder, and the volume obtained was divided by the sample mass (dry mass) to calculate the settling volume in water (mL / g). The test was performed 3 or 4 times, and the average value and standard deviation were calculated. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示されるように、繊維化パラミロンの水中沈定体積は比較的高いものであった。このことから、繊維化パラミロンは水への分散性及び保水力に優れることが示唆された。 As shown in Table 3, the subsidence volume of fiberized paramylon in water was relatively high. This suggests that fiberized paramylon is excellent in water dispersibility and water retention.
 試験例3:糖及び脂質代謝への影響の解析
 マウスを、繊維化パラミロン(製造例1)を含む飼料を餌として飼育し、体重、耐糖能、内臓脂肪量、各臓器重量、血清生化学値等を測定した。具体的には以下のようにして行った。
Test Example 3: Analysis of effects on sugar and lipid metabolism Mice were raised with diet containing fibrotic paramylon (Production Example 1) as feed, body weight, glucose tolerance, visceral fat content, organ weight, serum biochemical values Etc. were measured. Specifically, it was performed as follows.
 <3-1.試験方法>
 <3-1-1.実験動物及び飼育条件>
 本実験は、大妻女子大学家政学部動物実験委員会において定められた「動物実験設備の整備および管理の方法並びに具体的な実験方法を定めた規則」に則り、倫理審査委員の承認を得て行った。
<3-1. Test method>
<3-1-1. Experimental animals and rearing conditions>
This experiment was conducted with the approval of the Ethics Review Committee in accordance with the “Rules Establishing Methods and Maintenance of Animal Experiment Facilities and Specific Experiment Methods” established by the Animal Experiment Committee of the Faculty of Home Economics, Otsuma Women's University. It was.
 5週齢の雄C57BL/6Jマウス(日本チャールズ・リバー社製)を用いた。固形飼料(NMF、オリエンタル酵母工業社製)で1週間の予備飼育後、体重が均一になるように1群10匹ずつに群分けした(ただし、標準飼料飼育群は5匹)。 5-week-old male C57BL / 6J mice (Nippon Charles River) were used. After preliminary breeding for 1 week with solid feed (NMF, manufactured by Oriental Yeast Co., Ltd.), groups were divided into 10 groups per group so that the body weight was uniform (however, the standard feed breeding group was 5 animals).
 試験に用いた飼料については次のとおりである。コントロール群及び試験群の飼料には、脂肪エネルギー比が50%になるようにラードを20%添加した。コントロール群の飼料には、食物繊維として5%セルロースを添加した。試験群の飼料には、ユーグレナグラシリスEOD-1株乾燥粉末(以下、バイオマス群)、パラミロン粒子(参考製造例1)(以下、パラミロン群)、又は繊維化パラミロン(製造例1)を2倍量のデキストリンと混合して凍結乾燥して得られた繊維化パラミロン乾燥物(以下、繊維化パラミロン群)を添加した。各飼料は、乾燥重量として5%となるように含水率を考慮して添加した。また、バイオマスには80.2%のパラミロンが含まれていたので、飼料中の食物繊維量が5%になるように不足分9.9 gのセルロースで調製した。なお、パラミロン粒子と繊維化パラミロンはそれぞれ食物繊維として扱い、このためパラミロン群及び繊維化パラミロン群の飼料にはセルロースを添加しなかった。また、繊維化パラミロンにデキストリンを加えているため同量のデキストリンを各群に添加した。各群の飼料組成を表4に示す。 The feed used for the test is as follows. 20% lard was added to the feed of the control group and the test group so that the fat energy ratio was 50%. To the feed of the control group, 5% cellulose was added as dietary fiber. For the feed of the test group, Euglena gracilis EOD-1 strain dry powder (hereinafter referred to as biomass group), paramylon particles (reference production example 1) (hereinafter referred to as paramylon group), or fiberized paramylon (production example 1) is doubled. The dried fiberized paramylon obtained by mixing with dextrin and freeze-dried (hereinafter referred to as fiberized paramylon group) was added. Each feed was added in consideration of the water content so that the dry weight would be 5%. In addition, since biomass contained 80.2% paramylon, it was prepared with a shortage of 9.9 g of cellulose so that the amount of dietary fiber in the feed was 5%. Paramylon particles and fiberized paramylon were each treated as dietary fiber, and for this reason, no cellulose was added to the feed of the paramylon group and the fiberized paramylon group. Moreover, since dextrin was added to the fiberized paramylon, the same amount of dextrin was added to each group. Table 4 shows the feed composition of each group.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 また、上記したコントロール群及び試験群とは別に、ラード等を添加していない標準飼料を摂取させる群(以下、標準群)も準備した。 In addition to the control group and the test group described above, a group (hereinafter referred to as a standard group) for ingesting a standard feed to which lard or the like was not added was also prepared.
 試験において、マウスには上記飼料と水を12週間自由摂取させ、体重と飼料摂取量を2~3日おきに測定した。なお、飼育環境は、温度22±1℃、湿度50±5%、12時間の明暗サイクル(明期:8時→20時、暗期:20時→8時)とした。試験最終日に、飼料摂取量及び体重を測定後に一晩絶食させ、イソフルラン/炭酸ガスにて安楽死させ、心臓より血液を採取した。肝臓、盲腸、後腹壁脂肪、腸間膜脂肪、副睾丸周辺脂肪組織を摘出し、重量を測定した。その後、肝臓は凍結乾燥及び粉砕し、分析用の試料とした。 In the test, mice were allowed to freely consume the above feed and water for 12 weeks, and body weight and feed intake were measured every 2 to 3 days. The breeding environment was a temperature of 22 ± 1 ° C., humidity of 50 ± 5%, and a 12 hour light / dark cycle (light period: 8 o'clock → 20 o'clock, dark period: 20 o'clock → 8 o'clock). On the last day of the test, the food intake and body weight were measured and then fasted overnight, euthanized with isoflurane / carbon dioxide, and blood was collected from the heart. Liver, caecum, retroabdominal wall fat, mesenteric fat and adipose tissue around the epididymis were removed and weighed. Thereafter, the liver was freeze-dried and crushed to obtain a sample for analysis.
 <3-1-2.耐糖能測定>
 飼育最終週に朝8時より8時間の絶食後、20%グルコース溶液を1 g/kg体重となるように胃ゾンデを用いてマウスの胃内に投与した。投与前に尾部より採血し(0分)、投与後15分、30分、60分、及び120分後に同様に採血した。血糖値の定量には、「小型血糖測定器 グルテストエースR」(三和科学研究所社製)を使用した。
<3-1-2. Glucose tolerance measurement>
After the fasting from 8 o'clock in the morning for 8 hours in the last week of breeding, a 20% glucose solution was administered into the stomach of the mouse using a gastric sonde so that the body weight was 1 g / kg body weight. Blood was collected from the tail before administration (0 minutes), and blood was similarly collected 15 minutes, 30 minutes, 60 minutes, and 120 minutes after administration. For quantification of the blood glucose level, “Small blood glucose meter Glutest Ace R” (manufactured by Sanwa Scientific Research Institute) was used.
 <3-1-3.血清の生化学的検査>
 AST、ALT、ALP、総コレステロール、LDL-コレステロール、HDL-コレステロール、トリグリセリド(中性脂肪)、遊離脂肪酸(NEFA)、CRP、レプチン、インスリン、及びグルコースの血清中若しくは血中濃度を測定した。
<3-1-3. Biochemical examination of serum>
Serum or blood concentrations of AST, ALT, ALP, total cholesterol, LDL-cholesterol, HDL-cholesterol, triglyceride (neutral fat), free fatty acid (NEFA), CRP, leptin, insulin, and glucose were measured.
 <3-1-4.統計解析>
 全ての統計処理は統計ソフト(JMP Pro.12)を用いて、一元配置の分散分析を行い、平均値の差の検定はTurkey-Kramerの多重比較法を用いた。測定結果は平均値±標準偏差で示し、有意水準は5%とした。
<3-1-4. Statistical analysis>
All statistical processing was performed using statistical software (JMP Pro.12), and one-way analysis of variance was performed. The difference between the mean values was tested using the Turkey-Kramer multiple comparison method. The measurement results are shown as mean ± standard deviation, and the significance level was 5%.
 <3-2.結果>
 <3-2-1.体重>
 試験中の体重変化のグラフを図4及び5に示す。
<3-2. Result>
<3-2-1. Weight>
Graphs of body weight change during the test are shown in FIGS.
 なお、試験前の体重において各群の間で有意差はなく、また、高脂肪食を摂取させるマウスの飼料はカロリーが揃うように調整し、試験期間中の各群の摂取量に有意差が無いことを確認した。 In addition, there was no significant difference between the groups in the body weight before the test, and the diet of the mice fed with the high fat diet was adjusted so that the calories were aligned, and there was a significant difference in the intake of each group during the test period. I confirmed that there was no.
 図4及び5に示されるように、バイオマス群及びパラミロン群はコントロール群より若干の抑制傾向が見られたことに対して、繊維化パラミロン群はコントロール群に比べて顕著に体重増加が抑制されていた。繊維化パラミロン群は、ラードが添加された飼料を摂取し続けているにも関わらず、その体重増加の程度は、ラードを添加していない標準飼料を摂取させた群(標準群)と同程度であった。 As shown in FIGS. 4 and 5, the biomass group and the paramylon group showed a slight suppression tendency compared to the control group, whereas the fibrotic paramylon group showed markedly suppressed weight gain compared to the control group. It was. The fibrotic paramylon group has the same level of weight gain as the group fed the standard feed without lard (standard group), despite continuing to eat the lard-added feed. Met.
 <3-2-2.耐糖能>
 耐糖能測定結果を図6に示す。
<3-2-2. Glucose tolerance>
The glucose tolerance measurement results are shown in FIG.
 図6に示されるように、バイオマス群及びパラミロン群はグルコース投与後の血糖値がコントロール群に比べて低い傾向にあるものの、有意差が認められるのは投与後120分後であった。これに対して、繊維化パラミロン群は、グルコース投与後の血糖値がバイオマス群及びパラミロン群よりもさらに低く、コントロール群に対して血糖値の上昇を有意に抑えていることが分かる。またコントロール群に対する有意差もより早い段階(投与後15分後)で認められ、投与後60分以降も有意に血糖値が低いことが確認された。さらに、繊維化パラミロン群は、ラードが添加された飼料を摂取し続けているにも関わらず、耐糖能(グルコース投与後の血糖値)は、ラードを添加していない標準飼料を摂取させた群(標準群)と同程度であった。 As shown in FIG. 6, the biomass group and the paramylon group had a lower blood glucose level after glucose administration than the control group, but a significant difference was observed 120 minutes after administration. In contrast, the fibrotic paramylon group has a lower blood glucose level after glucose administration than the biomass group and the paramylon group, and it can be seen that the increase in blood glucose level is significantly suppressed compared to the control group. In addition, a significant difference from the control group was observed at an earlier stage (15 minutes after administration), and it was confirmed that the blood glucose level was significantly lower after 60 minutes after administration. Furthermore, although the fiberized paramylon group continues to ingest the feed to which lard was added, the glucose tolerance (blood glucose level after administration of glucose) was the group ingested the standard feed to which lard was not added It was the same level as (standard group).
 <3-2-3.内臓脂肪量>
 試験後の内臓脂肪量を測定した結果を、図7~9に示す。
<3-2-3. Visceral fat mass>
The results of measuring visceral fat after the test are shown in FIGS.
 図7~9に示されるように、バイオマス群及びパラミロン群はコントロール群と内臓脂肪量が同程度であるのに対して、繊維化パラミロン群はコントロール群に比べて顕著に内臓脂肪量が少なかった。また、繊維化パラミロン群の内臓脂肪量は、バイオマス群及びコントロール群と比べても有意に少ない、又は少ない傾向であった。 As shown in FIGS. 7 to 9, the biomass group and the paramylon group had the same amount of visceral fat as the control group, whereas the fibrotic paramylon group had significantly less visceral fat than the control group. . Moreover, the visceral fat amount of the fiberized paramylon group tended to be significantly less or less than the biomass group and the control group.
 具体的には、腸間膜脂肪についてはパラミロン群はコントロール群に比べて少ない傾向となり、繊維化パラミロン群はコントロール群に比べて有意に少なかった。 Specifically, regarding mesenteric fat, the paramylon group tended to be less than the control group, and the fibrotic paramylon group was significantly less than the control group.
 後腹壁脂肪及び副睾丸周辺脂肪については繊維化パラミロンはコントロール群、バイオマス群、パラミロン群に比べて有意に少なかった。 The fiberized paramylon was significantly less than the control group, biomass group, and paramylon group for the retroabdominal wall fat and the fat around the testicles.
 <3-2-4.肝臓への脂肪の蓄積>
 試験後の肝臓重量を測定した結果を、図10に示す。
<3-2-4. Accumulation of fat in the liver>
The result of measuring the liver weight after the test is shown in FIG.
 図10に示されるように、繊維化パラミロン群の肝臓重量はコントロール群に比べて有意に少なかった。これは、肝臓への脂肪蓄積量が少なかったことに起因すると推測される。 As shown in FIG. 10, the liver weight of the fibrotic paramylon group was significantly smaller than that of the control group. This is presumed to be due to a small amount of fat accumulated in the liver.
 <3-2-5.盲腸重量>
 試験後の盲腸重量(内容物含む)を測定した結果を、コントロール群及び試験群については図11に示す。
<3-2-5. Cecal weight>
The results of measuring the cecal weight (including contents) after the test are shown in FIG. 11 for the control group and the test group.
 図11に示されるように、繊維化パラミロン群の盲腸重量はコントロール群に比べて有意に高く、バイオマス群、パラミロン群もコントロール群に比べて高い傾向を示した。盲腸重量の増加は、繊維化パラミロンが大腸の腸内細菌で分解され短鎖脂肪酸を生成していることを示唆している。この短鎖脂肪酸は抗肥満作用等を有することが知られている(例えば、日本国特開平06-256402号公報)。 As shown in FIG. 11, the cecal weight of the fibrotic paramylon group was significantly higher than that of the control group, and the biomass group and paramylon group also showed a tendency to be higher than that of the control group. The increase in cecal weight suggests that fibrotic paramylon is broken down in the intestinal bacteria of the large intestine to produce short chain fatty acids. This short-chain fatty acid is known to have an anti-obesity action and the like (for example, Japanese Patent Application Laid-Open No. 06-256402).
 <3-2-6.血清生化学値>
 試験後の各血清生化学値を測定した結果を図12~20に示す。
<3-2-6. Serum biochemistry>
The results of measuring each serum biochemical value after the test are shown in FIGS.
 図12に示されるように、総コレステロールは繊維化パラミロンがコントロール群、バイオマス群、パラミロン群に比べて有意に少なく、パラミロン群はコントロール群に対して有意に少なく、バイオマス群はコントロール群に比べて低い傾向となった。さらに図13に示されるようにLDLコレステロールも繊維化パラミロン群ではコントロール群に比べて有意に少なかった。 As shown in FIG. 12, the total cholesterol is significantly less fibrotic paramylon compared to the control group, the biomass group, and the paramylon group, the paramylon group is significantly smaller than the control group, and the biomass group is smaller than the control group. The trend was low. Furthermore, as shown in FIG. 13, LDL cholesterol was also significantly less in the fibrotic paramylon group than in the control group.
 LDLコレステロール/HDLコレステロール比が高値のものは、低値のものより動脈硬化の危険因子が高度である可能性があることを指摘されている。
(非特許文献 人間ドック 25(1) 65-70,2010)
 図14に示すように、高脂肪食に繊維化パラミロンを投与した群では、コントロール群(高脂肪食群)に比べてLDLコレステロール/HDLコレステロール比が有意に低下しており、繊維化パラミロンが血中コレステロールのバランスを適切に調整する可能性が示唆された。また、高脂肪食にバイオマスを投与した群では有意差はないものの、高脂肪食群に比べLDLコレステロール/HDLコレステロール比が低下する傾向を示した。
It is pointed out that those with a high LDL cholesterol / HDL cholesterol ratio may have higher risk factors for arteriosclerosis than those with a low LDL cholesterol / HDL cholesterol ratio.
(Non-patent literature Ningen Dock 25 (1) 65-70,2010)
As shown in FIG. 14, the LDL cholesterol / HDL cholesterol ratio in the group in which fibrotic paramylon was administered to the high fat diet was significantly lower than that in the control group (high fat diet group). The possibility of adjusting the balance of medium cholesterol appropriately was suggested. Moreover, although there was no significant difference in the group administered biomass to the high fat diet, the LDL cholesterol / HDL cholesterol ratio tended to decrease compared to the high fat diet group.
 繊維化パラミロンは、LDLコレステロールとHDLコレステロールの比を小さくすることから血管の健康(動脈硬化防止など)に寄与することが示唆された。また、バイオマスにおいても血管の健康(動脈硬化防止など)に寄与する可能性がある。 It was suggested that fibrotic paramylon contributes to vascular health (eg, prevention of arteriosclerosis) by reducing the ratio of LDL cholesterol to HDL cholesterol. Biomass can also contribute to vascular health (eg, prevention of arteriosclerosis).
 図15に示されるように、繊維化パラミロン群のNEFA値はコントロール群(高脂肪食群)に比べて有意に低下していた。 As shown in FIG. 15, the NEFA value of the fibrotic paramylon group was significantly reduced as compared with the control group (high fat diet group).
 NEFA値はNon-esterified fatty acidの略であり、脂肪組織の中性脂肪がホルモン感受性リパーゼによって分解されると血中に放出される非エステル型脂肪酸である。ホルモン感受性リパーゼの作用の抑制因子の一つとしてインスリンが知られており、インスリン分泌量低下やインスリン作用抑制といった糖代謝障害が生じると、ホルモン感受性リパーゼによる脂肪組織分解が亢進してNEFAが上昇すると考えられている。また、NEFAは界面活性作用を持つため、血中濃度が高くなると細胞膜を溶解して細胞を破壊することから、臓器の機能不全を引き起こす要因の一つと考えられている。 NEFA value is an abbreviation of Non-esterified fatty acid, and is a non-ester type fatty acid released into the blood when neutral fat of adipose tissue is degraded by hormone-sensitive lipase. Insulin is known as one of the inhibitors of the action of hormone-sensitive lipase. When a glucose metabolism disorder such as a decrease in insulin secretion or insulin action occurs, adipose tissue degradation by hormone-sensitive lipase increases and NEFA increases. It is considered. In addition, NEFA has a surface-active effect, and when the blood concentration is high, it dissolves the cell membrane and destroys the cells, which is considered to be one of the causes of organ dysfunction.
 図15に示すように、繊維化パラミロン群のNEFAはコントロール群(高脂肪食群)に比べ有意に低下していたことから、糖代謝障害が抑制される可能性が示唆された。また、NEFA上昇を抑制することで臓器機能不全の発症リスクが低減される可能性が示唆された。 As shown in FIG. 15, NEFA in the fibrotic paramylon group was significantly lower than that in the control group (high-fat diet group), suggesting the possibility of inhibiting glucose metabolism disorder. Moreover, it was suggested that the risk of developing organ dysfunction may be reduced by suppressing the increase in NEFA.
 また、図16に示されるように、繊維化パラミロン群の血清ALT濃度はコントロール群に比べて有意に少なかった。繊維化パラミロン群の血清ALT濃度は、バイオマス群及びコントロール群と比べても少ない傾向であった。ALTは肝臓細胞が壊れる際に血中に放出される成分と考えられ、肝臓に脂肪が蓄積すると肝臓細胞が壊れALTが放出されると考えられることから、繊維化パラミロンの摂取により脂肪による肝臓のダメージを抑制できることが示唆された。 Also, as shown in FIG. 16, the serum ALT concentration in the fibrotic paramylon group was significantly lower than that in the control group. The serum ALT concentration in the fibrotic paramylon group tended to be lower than that in the biomass group and the control group. ALT is considered to be a component that is released into the blood when liver cells break down, and it is thought that when fat accumulates in the liver, liver cells break down and ALT is released. It was suggested that damage can be suppressed.
 なお、AST及びTG(トリグリセリド)については図示していないが、ASTについては標準飼料を含む全群で有意差が無く、TGについてもコントロール群に対して他の群は有意差はでなかったもののいずれも値が小さくなる傾向を示した。 Although AST and TG (triglyceride) are not shown, AST was not significantly different in all groups including standard feed, and TG was not significantly different from the control group in other groups. All showed the tendency for the value to become small.
 図17に示されるように、繊維化パラミロン群のCRP値はコントロール群に比べて有意に少なく、バイオマス群、パラミロン群と比較しても低い傾向を示した。 As shown in FIG. 17, the CRP value of the fiberized paramylon group was significantly less than that of the control group, and showed a tendency to be lower than that of the biomass group and paramylon group.
 CRP値はC-reactive proteinの略であり、炎症や組織細胞の破壊が起こると血清中に増加するタンパク質であり、炎症の指標となる。慢性炎症が起こり、CRPの値が高くなると、インスリン抵抗性が悪化し、血糖値が上がってしまうことが知られている。また、動脈硬化性疾患やそのリスク状態とされる糖尿病、肥満、高脂血症などでCRPが軽度高値を示すといわれており、CRPが高い人にメタボリックシンドロームや高コレステロール血症が重なると、心臓病や脳卒中になりやすいことが明らかになっている。
図17に示されるように、高脂肪食に繊維化パラミロンを投与した群では、コントロール群(高脂肪食群)に比べてCRP濃度が有意に低下しており、インスリン抵抗性や血糖値上昇等のリスクを低減する可能性が示唆された。
CRP is an abbreviation for C-reactive protein. It is a protein that increases in serum when inflammation or tissue cell destruction occurs, and serves as an index of inflammation. It is known that when chronic inflammation occurs and the value of CRP increases, insulin resistance deteriorates and blood glucose level rises. In addition, it is said that CRP shows a mild high level in diabetes, obesity, hyperlipidemia etc. which are considered as atherosclerotic disease and its risk state, and when metabolic syndrome and hypercholesterolemia overlap in people with high CRP, It has been shown that it is prone to heart disease and stroke.
As shown in FIG. 17, in the group in which fibrotic paramylon was administered to a high-fat diet, the CRP concentration was significantly lower than that in the control group (high-fat diet group), and insulin resistance, increased blood glucose level, etc. This suggests the possibility of reducing the risk.
 また、図18に示されるように、レプチンの値は繊維化パラミロン群では他と比較して有意に少ない値となった。 Also, as shown in FIG. 18, the leptin value was significantly less in the fibrotic paramylon group than in others.
 レプチンは白色脂肪細胞から分泌されるアディポサイトカイン(生理活性物質)の一つであり、強力な飽食シグナルを伝達し、交感神経活動亢進によるエネルギー消費増大をもたらし、肥満の抑制や体重増加の制御の役割を果たす。 Leptin is an adipocytokine (a physiologically active substance) secreted from white adipocytes, which transmits a powerful satiety signal, resulting in increased energy consumption due to increased sympathetic nerve activity, controlling obesity and controlling weight gain. Play a role.
 肥満者の大半は脂肪組織の増加にともないレプチン産生が亢進するため血中レプチン値はむしろ高値を呈する。従って肥満者ではレプチン高値にかかわらず摂食障害がみられない、いわゆる“レプチン抵抗性”の状態となり、ますます肥満を促進させる。
このレプチン抵抗性がインスリン抵抗性の引き金になっている可能性も考えられている。ヒトにおいて高血圧疾患では正常者と比較して血中レプチン濃度が高く、血中レプチン濃度と血圧が相関することも報告されている。
In most obese people, leptin production increases as the adipose tissue increases, so the blood leptin level is rather high. Accordingly, obese people become so-called “leptin-resistant” states in which eating disorders are not observed regardless of high leptin levels, and obesity is increasingly promoted.
It is also considered that this leptin resistance may trigger insulin resistance. In humans, blood leptin levels are higher in hypertensive diseases than in normal individuals, and it has been reported that blood leptin levels correlate with blood pressure.
 図18に示すように高脂肪食に繊維化パラミロンを投与した群では、コントロール群(高脂肪食群)に比べてレプチン濃度が有意に低下しており、上記リスクが低減する可能性が示唆された。 As shown in FIG. 18, in the group administered fibrotic paramylon to a high-fat diet, the leptin concentration was significantly reduced compared to the control group (high-fat diet group), suggesting the possibility of reducing the risk. It was.
 図19及び図20に示されるように血中グルコース濃度は各群の間でそれほど差が無いにもかかわらず、インスリン濃度は繊維化パラミロン群はコントロール群に比べて有意に少ない値であった。これは繊維化パラミロン摂取群ではインスリンに対する感受性が高まっており、言い換えればインスリン抵抗性が改善されていることが示唆される。また、バイオマス群やパラミロン群もコントロール群と比較するとインスリン濃度が低い傾向を示しており、これらについても同様にインスリン抵抗性が改善されている傾向がある。 As shown in FIG. 19 and FIG. 20, the insulin concentration was significantly lower in the fibrotic paramylon group than in the control group, although the blood glucose concentration was not so different between the groups. This suggests that the sensitivity to insulin is increased in the fiberized paramylon intake group, in other words, insulin resistance is improved. In addition, the biomass group and the paramylon group also show a tendency that the insulin concentration is lower than that of the control group, and the insulin resistance tends to be improved in the same manner.
 図19、図20、及び図6の結果から繊維化パラミロン群にはインスリン抵抗性を改善し血糖値の上昇を抑制することから糖尿病予防又は治療剤として利用出来る可能性が示唆される。 The results of FIGS. 19, 20, and 6 suggest that the fibrotic paramylon group may be used as a diabetes preventive or therapeutic agent because it improves insulin resistance and suppresses an increase in blood glucose level.
 試験例4:糖拡散抑制試験1
 溶液中の糖が拡散して半透膜を透過する量を、繊維化パラミロンの有無で比較した。本試験は、既報の文献(J. Agric. Food Chem. 2001, 49, 1026-1029)を参考にして行った。具体的には以下のようにして行った。
Test Example 4: Sugar diffusion inhibition test 1
The amount of sugar in the solution that diffuses and permeates the semipermeable membrane was compared with and without fibrotic paramylon. This test was conducted with reference to a previously published document (J. Agric. Food Chem. 2001, 49, 1026-1029). Specifically, it was performed as follows.
 <4-1.試験方法>
 グルコース濃度が100 mMであり、且つ被検物質(繊維化パラミロン(製造例1)、ペクチン(シトラス由来ペクチン、東京化成工業社製、製品コード:P0024-25G)、レジスタントスターチ(パインスターチRT、松谷化学工業社製)、又は難消化性デキストリン(ファイバーソル2、松谷化学工業社製))の濃度が2質量%である、或いは被検物質を含まない水溶液3 mLを、試験溶液として調製した。具体的には各成分を混合後、ローテーターで37℃で30分間撹拌することにより調製した。得られた各試験溶液2.5 mLを透析チューブ(MWCO12000~14000、Thermofisher  DIALYSIS TUBING standard grade  cat# 2115215)に入れ、純水20 mLを外液として、37℃でゆっくり(55 rpm)振とうしながら透析した。透析開始から10、20、30、60、90、180、及び300分経過後に、外液の一部(100μL)をサンプル液として採取した。サンプル液中のグルコース濃度を、グルコースCII-テストワコー(Wako社製)を用いて測定した。透析が進んでグルコースが平衡状態になった場合の外液のグルコース濃度の理論値は11.1 mMである。そこで、この理論値に対するサンプル液のグルコース濃度の割合[=(サンプル液のグルコース濃度(mM)/11.1(mM))×100]を拡散率として算出した。
<4-1. Test method>
Glucose concentration is 100 mM, and test substances (fibrinated paramylon (Production Example 1), pectin (Petulin derived from citrus, manufactured by Tokyo Chemical Industry Co., Ltd., product code: P0024-25G), resistant starch (Pine Starch RT, (Matsuya Chemical Industry Co., Ltd.) or indigestible dextrin (Fibersol 2, Matsutani Chemical Industry Co., Ltd.) concentration of 2% by mass, or 3 mL of an aqueous solution containing no test substance was prepared as a test solution. . Specifically, each component was mixed and then prepared by stirring at 37 ° C. for 30 minutes with a rotator. Put 2.5 mL of each test solution into a dialysis tube (MWCO 12000-14000, Thermofisher DIALYSIS TUBING standard grade cat # 2115215), dialyzing with 20 mL of pure water as an external solution while shaking gently (55 rpm) at 37 ° C. did. After 10, 20, 30, 60, 90, 180, and 300 minutes from the start of dialysis, a part (100 μL) of the external solution was collected as a sample solution. The glucose concentration in the sample solution was measured using Glucose CII-Test Wako (manufactured by Wako). The theoretical value of the glucose concentration in the external liquid when dialysis progresses and glucose reaches an equilibrium state is 11.1 mM. Therefore, the ratio of the glucose concentration of the sample liquid to this theoretical value [= (glucose concentration of the sample liquid (mM) /11.1 (mM)) × 100] was calculated as the diffusivity.
 <4-2.結果>
 上記試験を3回繰り返し行い、3回の平均値を算出した。この結果を図21に示す。図21に示されるように、繊維化パラミロンは糖の拡散を抑制することが分かった。また、この糖拡散抑制作用は多糖類全般が有する作用では無いこと、及び繊維化パラミロンの糖拡散抑制作用はペクチンよりも高いことが分かった。
<4-2. Result>
The above test was repeated 3 times, and the average value of 3 times was calculated. The result is shown in FIG. As shown in FIG. 21, it was found that fibrotic paramylon suppresses sugar diffusion. Moreover, it was found that this sugar diffusion inhibitory action is not an action of all polysaccharides, and that the fiber diffusion inhibitory action of fibrotic paramylon is higher than that of pectin.
 試験例5:酵素による分解耐性の評価試験
 βグルカナーゼによる分解耐性を、生成されるモノマーの量を測定することにより評価した。具体的には以下の様にして行った。
Test Example 5 Evaluation Test for Degradation Resistance by Enzyme Degradation resistance by β-glucanase was evaluated by measuring the amount of monomer produced. Specifically, it was performed as follows.
 <5-1.試験方法>
 反応液[被検物質(パラミロン粒子(参考製造例1)、繊維化パラミロン(製造例1)、化学処理パラミロン(比較製造例1:1.0M NaOH水溶液に溶解))30 mg(乾燥重量)、緩衝液(東京化成工業社製 B0156、フタル酸水素カリウム-水酸化ナトリウムバッファー (pH4.0))5 mL、酵素液(日本バイオコン社製 endo-1,3-β-Glucanase (Lot 91102c) (酵素含有量:50 units/mL))0.1 mL、純水、反応液量 10 mL]を調製(n=2)し、40℃で24時間、45 rpmで水平振盪した。振盪後、直ちに凍結保存し、濃縮のために凍結乾燥した。凍結乾燥後、各試料に純水を0.5 mLずつ加え、攪拌した(20倍濃縮)。なお、被検物質として比較製造例1の化学処理パラミロンを用いた場合のみ、0.5 mLでは溶解及び懸濁が不十分であったため、純水を0.8 mL加えて、12.5倍濃縮とした。遠心分離(10000G、5分間、4℃)し、上澄を回収する作業を2回繰り返した。回収した上澄中のグルコース濃度を、測定キット(和光純薬工業社製、グルコースCII-テストワコー)を用いて測定した。測定値に基づいて、被検物質1 g当たりのグルコース生成量(mg)を算出した。
<5-1. Test method>
Reaction solution [test substance (paramylon particles (reference production example 1), fiberized paramylon (production example 1), chemically treated paramylon (comparative production example 1: dissolved in 1.0 M NaOH aqueous solution)) 30 mg (dry weight), buffer Liquid (Tokyo Chemical Industry B0156, potassium hydrogen phthalate-sodium hydroxide buffer (pH4.0)) 5 mL, enzyme solution (Japan Biocon endo-1,3-β-Glucanase (Lot 91102c) (enzyme-containing Amount: 50 units / mL)) 0.1 mL, pure water, reaction volume 10 mL] was prepared (n = 2) and shaken horizontally at 45 rpm for 24 hours at 40 ° C. Immediately after shaking, it was stored frozen and lyophilized for concentration. After freeze-drying, 0.5 mL of pure water was added to each sample and stirred (concentration 20 times). In addition, only when the chemically treated paramylon of Comparative Production Example 1 was used as a test substance, 0.5 mL was not sufficiently dissolved and suspended, so 0.8 mL of pure water was added to obtain 12.5-fold concentration. Centrifugation (10000 G, 5 minutes, 4 ° C.) and the operation of collecting the supernatant were repeated twice. The glucose concentration in the collected supernatant was measured using a measurement kit (manufactured by Wako Pure Chemical Industries, Ltd., glucose CII-Test Wako). Based on the measured value, the glucose production amount (mg) per 1 g of the test substance was calculated.
 <5-2.結果>
 結果を図22に示す。図22に示されるように、繊維化パラミロンは、化学処理パラミロンに比べて、βグルカナーゼによる分解耐性が顕著に高いことが分かった。
なお、被験物質を一度凍結乾燥させたものについて同様の試験を実施したところ、同様の結果となり、被験物質の事前乾燥の有無によって傾向が変わらないことが確認された。
<5-2. Result>
The results are shown in FIG. As shown in FIG. 22, it was found that fibrotic paramylon has significantly higher resistance to degradation by β-glucanase than chemically treated paramylon.
In addition, when the same test was implemented about what freeze-dried the test substance once, it became the same result and it was confirmed that a tendency does not change with the presence or absence of prior drying of a test substance.
 試験例6:アルカリ溶液への溶解性の評価試験
 アルカリ溶液への溶解性を評価した。具体的には以下の様にして行った。
Test Example 6: Evaluation of solubility in alkaline solution The solubility in alkaline solution was evaluated. Specifically, it was performed as follows.
 <6-1.試験方法>
 被検物質(パラミロン粒子(参考製造例1)を粉砕して粉末状としたもの、繊維化パラミロン(製造例1)、化学処理パラミロン(比較製造例:1.0M NaOH水溶液に溶解))250 mg(乾燥重量)をバイアル中の試験液(純水、0.1M NaOH水溶液、0.3M NaOH水溶液、1M NaOH水溶液)10 mLに懸濁した。バイアルを20秒間、手で激しく振った後、およびシェーカーで80 rpmで1時間振盪した後に、それぞれバイアル中の液の660 nmにおける吸光度を測定した。なお、吸光度の測定は、日本分光株式会社製分光光度計 V-730を用いて行った。
<6-1. Test method>
Substance to be tested (paramylon particles (reference production example 1) pulverized into powder, fiberized paramylon (production example 1), chemically treated paramylon (comparative production example: dissolved in 1.0M NaOH aqueous solution)) 250 mg ( (Dry weight) was suspended in 10 mL of a test solution (pure water, 0.1 M NaOH aqueous solution, 0.3 M NaOH aqueous solution, 1 M NaOH aqueous solution) in a vial. After the vial was shaken vigorously by hand for 20 seconds and after shaking for 1 hour at 80 rpm on a shaker, the absorbance at 660 nm of the liquid in the vial was measured. The absorbance was measured using a spectrophotometer V-730 manufactured by JASCO Corporation.
 <6-2.結果>
 結果を図23に示す。図23に示されるように、繊維化パラミロンは、化学処理パラミロンに比べて、アルカリ溶液への溶解性が顕著に低いことが分かった。
なお、グラフに掲載していないがパラミロン粒子、繊維化パラミロン共に0.1M NaOH水溶液には溶解せず、純水中に懸濁させた時と同様に懸濁していることが確認された。
また、0.5MのHCl水溶液に対しては何れの被験物質も溶解せず懸濁状態を維持した。
<6-2. Result>
The results are shown in FIG. As shown in FIG. 23, it was found that the fiberized paramylon had significantly lower solubility in an alkaline solution than the chemically treated paramylon.
Although not shown in the graph, it was confirmed that both the paramylon particles and the fiberized paramylon were not dissolved in the 0.1M NaOH aqueous solution but were suspended in the same manner as when suspended in pure water.
In addition, any test substance was not dissolved in the 0.5 M HCl aqueous solution, and the suspended state was maintained.
 試験例7:X線回折(XRD)分析
 被検物質(パラミロン粒子(参考製造例1)、繊維化パラミロン(製造例1)、化学処理パラミロン(比較製造例1:1.0M NaOH水溶液に溶解))それぞれについて、XRDを測定した。条件は次のとおりである。機器:PANalytical X’Pert3 Powder、管電圧:45kV、管電流:40mA、測定範囲:5.005~50.018°、測定間隔:0.013°、解析ソフト:HighScore。得られたXRDチャートを図24に示す。図24より、被検物質は、互いに結晶性に差異があることが判明した。
Test example 7: X-ray diffraction (XRD) analysis test substance (paramylon particles (reference production example 1), fiberized paramylon (production example 1), chemically treated paramylon (comparative production example 1: dissolved in 1.0M NaOH aqueous solution)) XRD was measured for each. The conditions are as follows. Equipment: PANalytical X'Pert3 Powder, tube voltage: 45kV, tube current: 40mA, measurement range: 5.005-50.018 °, measurement interval: 0.013 °, analysis software: HighScore. The obtained XRD chart is shown in FIG. FIG. 24 shows that the test substances have different crystallinity.
 結晶化度は2θ=5~80°における非晶質部の強度と結晶部の強度の比により解析した。解析は各測定テ一夕から装置によるバックグラウンドを除去(バックグラウンド設定Auto、ベンティングファクター0、粒状度100)した後に実施し、非晶質部は2θ=14、29°を通る接線で決定した。それぞれの非晶質部を決定するペンディングファクターと粒状度の条件は、パラミロン粒子は0/30とし、化学処理パラミロンは0/25とし、繊維化パラミロンは0/20とした。その結果、結晶化度は、パラミロン粒子は66.2%、化学処理パラミロンは37.6%、繊維化パラミロンは51.0%であった。 The crystallinity was analyzed by the ratio of the strength of the amorphous part to the strength of the crystal part at 2θ = 5 to 80 °. The analysis is performed after removing the background from the instrument from each measurement table (background setting Auto, venting factor 0, granularity 100), and amorphous part is determined by tangent passing through 2θ = 14, 29 ° did. The pending factor and granularity conditions for determining each amorphous part were 0/30 for paramylon particles, 0/25 for chemically treated paramylon, and 0/20 for fiberized paramylon. As a result, the crystallinity was 66.2% for paramylon particles, 37.6% for chemically treated paramylon, and 51.0% for fiberized paramylon.
 製造例2:繊維化パラミロンの製造2
 ビーズミルを用いてパラミロン粒子(参考製造例1)にせん断力を加えてパラミロン粒子を繊維化し、繊維化パラミロンを含む液状の添加剤(分散液)を製造した。ビーズミルによる解繊処理は、サブミクロン粉砕に使用される一般的な運転条件で行った。パラミロン粒子を10質量%含む原材料液に対してビーズミルによる解繊処理を行った。得られた繊維化パラミロンについて、電子顕微鏡で観察した。観察像を図25に示す。
Production Example 2: Production of fiberized paramylon 2
Using a bead mill, a shear force was applied to the paramylon particles (Reference Production Example 1) to fiberize the paramylon particles to produce a liquid additive (dispersion) containing fiberized paramylon. The defibrating treatment with a bead mill was performed under the general operating conditions used for submicron grinding. The raw material solution containing 10% by mass of paramylon particles was defibrated by a bead mill. The obtained fiberized paramylon was observed with an electron microscope. An observation image is shown in FIG.
 図25に示されるように、ビーズミルにより得られた繊維化パラミロンは、各繊維が互いに絡み合った網目状構造であった。 As shown in FIG. 25, the fiberized paramylon obtained by the bead mill had a network structure in which the fibers were intertwined with each other.

Claims (14)

  1. 繊維化パラミロンを含有する、糖及び/又は脂質の代謝改善剤。 A sugar and / or lipid metabolism-improving agent comprising fibrotic paramylon.
  2. 乾燥形態である、請求項1に記載の代謝改善剤。 The metabolism improving agent according to claim 1, which is in a dry form.
  3. 前記繊維化パラミロンがパラミロン粒子の解繊物である、請求項1又は2に記載の代謝改善剤。 The metabolism improving agent according to claim 1 or 2, wherein the fiberized paramylon is a defibrated material of paramylon particles.
  4. 前記繊維化パラミロンが、繊維が絡まり合った網目状構造体である、請求項1~3のいずれかに記載の代謝改善剤。 The metabolism improving agent according to any one of claims 1 to 3, wherein the fiberized paramylon is a network structure in which fibers are intertwined.
  5. 食品添加剤である、請求項1~4のいずれかに記載の代謝改善剤。 The metabolism improving agent according to any one of claims 1 to 4, which is a food additive.
  6. 食品組成物である、請求項1~4のいずれかに記載の代謝改善剤。 The metabolism improving agent according to any one of claims 1 to 4, which is a food composition.
  7. 医薬である、請求項1~4のいずれかに記載の代謝改善剤。 The metabolism improving agent according to any one of claims 1 to 4, which is a medicine.
  8. (1)メタボリックシンドローム、又は
    (2)肥満、糖尿病、脂質異常症及び脂肪肝からなる群より選択される少なくとも1種の予防又は改善に用いられる、請求項1~7のいずれかに記載の代謝改善剤。
    The metabolism according to any one of claims 1 to 7, which is used for prevention or amelioration of at least one selected from the group consisting of (1) metabolic syndrome, or (2) obesity, diabetes, dyslipidemia and fatty liver. Improver.
  9. 繊維化パラミロンを配合することを含む、糖及び/又は脂質の代謝改善剤の製造方法。 A method for producing a sugar and / or lipid metabolism-improving agent, comprising blending fiberized paramylon.
  10. 前記繊維化パラミロンが乾燥形態である、請求項9に記載の製造方法。 The manufacturing method of Claim 9 whose said fiberized paramylon is a dry form.
  11. さらに水を配合することを含む、請求項9又は10に記載の製造方法。 Furthermore, the manufacturing method of Claim 9 or 10 including mix | blending water.
  12. 糖及び/又は脂質の代謝改善剤として使用するための、繊維化パラミロン。 Fibrotic paramylon for use as a sugar and / or lipid metabolism improver.
  13. 繊維化パラミロンを対象に適用することを含む、糖及び/又は脂質の代謝改善方法。 A method for improving sugar and / or lipid metabolism, comprising applying fibrotic paramylon to a subject.
  14. 糖及び/又は脂質の代謝改善剤を製造するための、繊維化パラミロンの使用。 Use of fibrotic paramylon for producing a sugar and / or lipid metabolism-improving agent.
PCT/JP2018/007625 2017-03-02 2018-02-28 Sugar and/or lipid metabolism-improving agent WO2018159714A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018515680A JP7024975B2 (en) 2017-03-02 2018-02-28 Sugar and / or lipid metabolism improver

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-039436 2017-03-02
JP2017039436 2017-03-02
JP2017-184512 2017-09-26
JP2017184512 2017-09-26

Publications (1)

Publication Number Publication Date
WO2018159714A1 true WO2018159714A1 (en) 2018-09-07

Family

ID=63370078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007625 WO2018159714A1 (en) 2017-03-02 2018-02-28 Sugar and/or lipid metabolism-improving agent

Country Status (3)

Country Link
JP (1) JP7024975B2 (en)
TW (1) TWI808074B (en)
WO (1) WO2018159714A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020054090A1 (en) * 2018-09-11 2020-03-19 株式会社神鋼環境ソリューション Sugar and/or lipid metabolism-improving agent
JP2020083873A (en) * 2018-11-21 2020-06-04 株式会社神鋼環境ソリューション PPARα expression level enhancer
JP2020158460A (en) * 2019-03-27 2020-10-01 株式会社神鋼環境ソリューション Macrophage activator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6431008B2 (en) 2016-07-14 2018-11-28 ファナック株式会社 Electric discharge machine and failure determination method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014118374A (en) * 2012-12-14 2014-06-30 Euglena Co Ltd Diabetes inhibitor
WO2015156339A1 (en) * 2014-04-08 2015-10-15 株式会社ユーグレナ Immune balance adjustment agent
JP2016199650A (en) * 2015-04-08 2016-12-01 株式会社ユーグレナ PROCESSED β-GLUCAN AND METHOD FOR PRODUCING THE SAME
JP2017019866A (en) * 2016-10-21 2017-01-26 株式会社ユーグレナ Food for inhibiting diabetes
JP2018035102A (en) * 2016-09-01 2018-03-08 株式会社神鋼環境ソリューション Anti-obesity agent

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014118374A (en) * 2012-12-14 2014-06-30 Euglena Co Ltd Diabetes inhibitor
WO2015156339A1 (en) * 2014-04-08 2015-10-15 株式会社ユーグレナ Immune balance adjustment agent
JP2016199650A (en) * 2015-04-08 2016-12-01 株式会社ユーグレナ PROCESSED β-GLUCAN AND METHOD FOR PRODUCING THE SAME
JP2018035102A (en) * 2016-09-01 2018-03-08 株式会社神鋼環境ソリューション Anti-obesity agent
JP2017019866A (en) * 2016-10-21 2017-01-26 株式会社ユーグレナ Food for inhibiting diabetes

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020054090A1 (en) * 2018-09-11 2020-03-19 株式会社神鋼環境ソリューション Sugar and/or lipid metabolism-improving agent
JPWO2020054090A1 (en) * 2018-09-11 2021-08-30 株式会社神鋼環境ソリューション Sugar and / or lipid metabolism improver
JP7231163B2 (en) 2018-09-11 2023-03-01 株式会社神鋼環境ソリューション sugar and/or lipid metabolism improver
JP2020083873A (en) * 2018-11-21 2020-06-04 株式会社神鋼環境ソリューション PPARα expression level enhancer
JP2020158460A (en) * 2019-03-27 2020-10-01 株式会社神鋼環境ソリューション Macrophage activator
JP7229829B2 (en) 2019-03-27 2023-02-28 株式会社神鋼環境ソリューション macrophage activator

Also Published As

Publication number Publication date
TW201834666A (en) 2018-10-01
JPWO2018159714A1 (en) 2019-12-26
JP7024975B2 (en) 2022-02-24
TWI808074B (en) 2023-07-11

Similar Documents

Publication Publication Date Title
WO2018159714A1 (en) Sugar and/or lipid metabolism-improving agent
US20240122961A1 (en) Prebiotic for treating disorders associated with disturbed composition or functionality of the intestinal microbiome
WO2006011479A1 (en) Processes for producing cellooligosaccharide
KR20160121534A (en) Composition comprising okra for use in reducing dietary fat absorption
CN113712205B (en) Oyster peptide powder composition and preparation method and application thereof
JP2018035102A (en) Anti-obesity agent
JP2005145885A (en) Immunologic mechanism activator comprising alginic acid oligomer
Geng et al. Effects of in vitro digestion and fecal fermentation on physico-chemical properties and metabolic behavior of polysaccharides from Clitocybe squamulosa
JPH0683652B2 (en) Lipid metabolism-improved product and method for producing the same
KR101811701B1 (en) A working method of bran to improve immune function
AU2008339365A1 (en) Insoluble dietary fiber-containing product derived from grain seeds
JP2021193956A (en) Acetaldehyde metabolism promoter
RU2608233C2 (en) Agent for binding fats obtained from biomass, formed during brewing
JP2777825B2 (en) Enzyme-treated cellulose and method for producing the same
JP2023143445A (en) Uric acid synthesis inhibitor
CN101402692A (en) Low-molecular weight crust polysaccharide unsaturated fatty acid salt, preparation and uses thereof
JP2022159061A (en) Chylomicron production-related gene expression regulator
RU2799081C2 (en) Prebiotic for the treatment of disorders associated with disturbed composition or functionality of the intestinal microbiome
JP2022135284A (en) Kallikrein expression level inhibitor
JP2022111533A (en) PPARγ EXPRESSION LEVEL ENHANCING AGENT
JP4222012B2 (en) Antihyperlipidemic agent
JP2023143788A (en) GABA production promoter
JP2022087401A (en) Aquaporin expression enhancer
JP2022135281A (en) Saliva secretion promoter
JP2022042716A (en) Agent for lowering extracellular moisture ratio

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018515680

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18761455

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18761455

Country of ref document: EP

Kind code of ref document: A1