WO2018159639A1 - 複素環化合物の製造方法 - Google Patents

複素環化合物の製造方法 Download PDF

Info

Publication number
WO2018159639A1
WO2018159639A1 PCT/JP2018/007349 JP2018007349W WO2018159639A1 WO 2018159639 A1 WO2018159639 A1 WO 2018159639A1 JP 2018007349 W JP2018007349 W JP 2018007349W WO 2018159639 A1 WO2018159639 A1 WO 2018159639A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
salt
reaction
methyl
pyrazol
Prior art date
Application number
PCT/JP2018/007349
Other languages
English (en)
French (fr)
Inventor
誠 兼松
和久 石本
友祥 加▲藤▼
Original Assignee
武田薬品工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武田薬品工業株式会社 filed Critical 武田薬品工業株式会社
Priority to CA3054773A priority Critical patent/CA3054773A1/en
Priority to JP2019503035A priority patent/JP7069109B2/ja
Priority to US16/488,770 priority patent/US10710989B2/en
Priority to CN202410006479.3A priority patent/CN118005619A/zh
Priority to CN201880014672.4A priority patent/CN110753689B/zh
Priority to EP18761137.1A priority patent/EP3590936B1/en
Publication of WO2018159639A1 publication Critical patent/WO2018159639A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/02Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
    • C07D231/10Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D231/12Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/10Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/4151,2-Diazoles
    • A61K31/41551,2-Diazoles non condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia

Definitions

  • the present invention relates to a method for producing a heterocyclic compound useful for the prevention and / or treatment of Alzheimer's disease and the like.
  • the object of the present invention is to use 1,5-anhydro-2,4-dideoxy-2- (4-fluoro-5-methyl-1-oxo-6- (4- (1H -Pyrazol-1-yl) benzyl) -1,3-dihydro-2H-isoindol-2-yl) -L-threo-pentitol efficiently (eg, short process, high yield, highly selective) It is to provide a method of manufacturing.
  • the present invention is as follows.
  • R 1 and R 2 each independently represent a hydrogen atom or an optionally substituted hydrocarbon group, or R 1 and R 2 together with the adjacent nitrogen atom form a 3- to 8-membered monocyclic nitrogen-containing non-aromatic heterocyclic ring.
  • a salt thereof in this specification, sometimes abbreviated as “compound (I)”
  • PHBO manufacturing method [3] Formula (II)
  • R 1 and R 2 each independently represent a hydrogen atom or an optionally substituted hydrocarbon group, or R 1 and R 2 together with the adjacent nitrogen atom form a 3- to 8-membered monocyclic nitrogen-containing non-aromatic heterocyclic ring.
  • a salt thereof in the present specification, sometimes abbreviated as “compound (II)” is subjected to a formylation reaction. Production method of compound (I).
  • R 6 represents a hydrogen atom or an optionally substituted C 1-6 alkyl group.
  • a salt thereof (which may be abbreviated as “compound (VIII)” in the present specification) is subjected to a formylation reaction and then, optionally, a hydrolysis reaction. PHBO manufacturing method.
  • 1,5-anhydro-2,4-dideoxy-2- (4-fluoro-5-) useful as a preventive and / or therapeutic agent for Alzheimer's disease and the like without using a highly toxic reagent.
  • Efficient methyl-1-oxo-6- (4- (1H-pyrazol-1-yl) benzyl) -1,3-dihydro-2H-isoindol-2-yl) -L-threo-pentitol (example , Short process, high yield, high selectivity).
  • the toxic reagent include tin and osmium.
  • 10 is a schematic view showing a reaction apparatus (flow reactor) used in Example 8.
  • Me represents a methyl group
  • i-Pr represents an isopropyl group
  • 10 is a schematic view showing a reaction apparatus (flow reactor) used in Example 9.
  • Me represents a methyl group
  • i-Pr represents an isopropyl group.
  • each substituent has the following definition.
  • examples of the “halogen atom” include fluorine, chlorine, bromine and iodine.
  • examples of the “C 1-6 alkyl group” include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, neopentyl, 1-ethylpropyl, hexyl.
  • Specific examples include methyl, chloromethyl, difluoromethyl, trichloromethyl, trifluoromethyl, ethyl, 2-bromoethyl, 2,2,2-trifluoroethyl, tetrafluoroethyl, pentafluoroethyl, propyl, 2,2- Difluoropropyl, 3,3,3-trifluoropropyl, isopropyl, butyl, 4,4,4-trifluorobutyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, neopentyl, 5,5,5-tri Examples include fluoropentyl, hexyl, and 6,6,6-trifluorohexyl.
  • examples of the “C 2-6 alkenyl group” include ethenyl, 1-propenyl, 2-propenyl, 2-methyl-1-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 3- Examples include methyl-2-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 4-methyl-3-pentenyl, 1-hexenyl, 3-hexenyl and 5-hexenyl.
  • examples of the “C 2-6 alkynyl group” include ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, 1-pentynyl, 2-pentynyl, 3- Examples include pentynyl, 4-pentynyl, 1-hexynyl, 2-hexynyl, 3-hexynyl, 4-hexynyl, 5-hexynyl, 4-methyl-2-pentynyl.
  • examples of the “C 3-10 cycloalkyl group” include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, bicyclo [2.2.1] heptyl, and bicyclo [2.2. 2] Octyl, bicyclo [3.2.1] octyl, and adamantyl.
  • the "optionally halogenated C 3-10 also be cycloalkyl group", for example, 1 to 7, preferably which may have 1 to 5 halogen atoms C 3- A 10 cycloalkyl group.
  • examples include cyclopropyl, 2,2-difluorocyclopropyl, 2,3-difluorocyclopropyl, cyclobutyl, difluorocyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl.
  • examples of the “C 3-10 cycloalkenyl group” include cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclohexenyl, cycloheptenyl, and cyclooctenyl.
  • examples of the “C 6-14 aryl group” include phenyl, 1-naphthyl, 2-naphthyl, 1-anthryl, 2-anthryl, and 9-anthryl.
  • examples of the “C 7-16 aralkyl group” include benzyl, phenethyl, naphthylmethyl, and phenylpropyl.
  • examples of the “C 1-6 alkoxy group” include methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, sec-butoxy, tert-butoxy, pentyloxy and hexyloxy.
  • the "optionally halogenated C 1-6 alkoxy group” for example, 1 to 7, preferably which may have 1 to 5 halogen atoms C 1-6 An alkoxy group is mentioned.
  • Examples include methoxy, difluoromethoxy, trifluoromethoxy, ethoxy, 2,2,2-trifluoroethoxy, propoxy, isopropoxy, butoxy, 4,4,4-trifluorobutoxy, isobutoxy, sec-butoxy, pentyl.
  • Examples include oxy and hexyloxy.
  • examples of the “C 3-10 cycloalkyloxy group” include cyclopropyloxy, cyclobutyloxy, cyclopentyloxy, cyclohexyloxy, cycloheptyloxy, and cyclooctyloxy.
  • examples of the “C 1-6 alkylthio group” include methylthio, ethylthio, propylthio, isopropylthio, butylthio, sec-butylthio, tert-butylthio, pentylthio and hexylthio.
  • the "optionally halogenated C 1-6 alkylthio group optionally" for example, 1 to 7, preferably which may have 1 to 5 halogen atoms C 1-6 An alkylthio group is mentioned.
  • examples include methylthio, difluoromethylthio, trifluoromethylthio, ethylthio, propylthio, isopropylthio, butylthio, 4,4,4-trifluorobutylthio, pentylthio, hexylthio.
  • examples of the “C 1-6 alkyl-carbonyl group” include acetyl, propanoyl, butanoyl, 2-methylpropanoyl, pentanoyl, 3-methylbutanoyl, 2-methylbutanoyl, 2,2- Examples include dimethylpropanoyl, hexanoyl, and heptanoyl.
  • examples of the “ optionally halogenated C 1-6 alkyl-carbonyl group” include C 1 optionally having 1 to 7, preferably 1 to 5 halogen atoms.
  • a -6 alkyl-carbonyl group is mentioned. Specific examples include acetyl, chloroacetyl, trifluoroacetyl, trichloroacetyl, propanoyl, butanoyl, pentanoyl and hexanoyl.
  • examples of the “C 1-6 alkoxy-carbonyl group” include methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, butoxycarbonyl, isobutoxycarbonyl, sec-butoxycarbonyl, tert-butoxycarbonyl, Examples include pentyloxycarbonyl and hexyloxycarbonyl.
  • examples of the “C 6-14 aryl-carbonyl group” include benzoyl, 1-naphthoyl and 2-naphthoyl.
  • examples of the “C 7-16 aralkyl-carbonyl group” include phenylacetyl and phenylpropionyl.
  • examples of the “5- to 14-membered aromatic heterocyclic carbonyl group” include nicotinoyl, isonicotinoyl, thenoyl and furoyl.
  • examples of the “3- to 14-membered non-aromatic heterocyclic carbonyl group” include morpholinylcarbonyl, piperidinylcarbonyl, and pyrrolidinylcarbonyl.
  • examples of the “mono- or di-C 1-6 alkyl-carbamoyl group” include methylcarbamoyl, ethylcarbamoyl, dimethylcarbamoyl, diethylcarbamoyl, N-ethyl-N-methylcarbamoyl.
  • examples of the “mono- or di-C 7-16 aralkyl-carbamoyl group” include benzylcarbamoyl and phenethylcarbamoyl.
  • examples of the “C 1-6 alkylsulfonyl group” include methylsulfonyl, ethylsulfonyl, propylsulfonyl, isopropylsulfonyl, butylsulfonyl, sec-butylsulfonyl and tert-butylsulfonyl.
  • the "optionally halogenated C 1-6 alkyl sulfonyl group” for example, 1 to 7, preferably which may have 1 to 5 halogen atoms C 1- 6 alkylsulfonyl group is mentioned.
  • examples include methylsulfonyl, difluoromethylsulfonyl, trifluoromethylsulfonyl, ethylsulfonyl, propylsulfonyl, isopropylsulfonyl, butylsulfonyl, 4,4,4-trifluorobutylsulfonyl, pentylsulfonyl, hexylsulfonyl.
  • examples of the “C 6-14 arylsulfonyl group” include phenylsulfonyl, 1-naphthylsulfonyl and 2-naphthylsulfonyl.
  • examples of the “hydrocarbon group” include, for example, a C 1-6 alkyl group, a C 2-6 alkenyl group, Examples thereof include a C 2-6 alkynyl group, a C 3-10 cycloalkyl group, a C 3-10 cycloalkenyl group, a C 6-14 aryl group, and a C 7-16 aralkyl group.
  • examples of the “optionally substituted hydrocarbon group” include a hydrocarbon group which may have a substituent selected from the following substituent group A.
  • substituent group A (1) a halogen atom, (2) Nitro group, (3) a cyano group, (4) an oxo group, (5) a hydroxy group, (6) an optionally halogenated C 1-6 alkoxy group, (7) C 6-14 aryloxy group (eg, phenoxy, naphthoxy), (8) C 7-16 aralkyloxy group (eg, benzyloxy), (9) 5- to 14-membered aromatic heterocyclic oxy group (eg, pyridyloxy), (10) 3 to 14-membered non-aromatic heterocyclic oxy group (eg, morpholinyloxy, piperidinyloxy), (11) C 1-6 alkyl-carbonyloxy group (eg, acetoxy, propanoyloxy), (12) C 6-14 aryl-carbony
  • the number of the above substituents in the “optionally substituted hydrocarbon group” is, for example, 1 to 5, preferably 1 to 3. When the number of substituents is 2 or more, each substituent may be the same or different.
  • the “aromatic heterocyclic group” (including the “5- to 14-membered aromatic heterocyclic group”) is, for example, selected from a nitrogen atom, a sulfur atom and an oxygen atom in addition to a carbon atom as a ring-constituting atom.
  • 5- to 14-membered (preferably 5- to 10-membered) aromatic heterocyclic group containing 1 to 4 heteroatoms is, for example, selected from a nitrogen atom, a sulfur atom and an oxygen atom in addition to a carbon atom as a ring-constituting atom.
  • 5- to 14-membered (preferably 5- to 10-membered) aromatic heterocyclic group containing 1 to 4 heteroatoms is, for example, selected from a nitrogen atom, a sulfur atom and an oxygen atom in addition to a carbon atom as a ring-constituting atom.
  • Suitable examples of the “aromatic heterocyclic group” include thienyl, furyl, pyrrolyl, imidazolyl, pyrazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, 1,2,4-oxadiazolyl, 1 5-, 6-membered monocyclic aromatic heterocyclic groups such as 1,3,4-oxadiazolyl, 1,2,4-thiadiazolyl, 1,3,4-thiadiazolyl, triazolyl, tetrazolyl, triazinyl; Benzothiophenyl, benzofuranyl, benzoimidazolyl, benzoxazolyl, benzisoxazolyl, benzothiazolyl, benzisothiazolyl, benzotriazolyl, imidazopyridinyl, thienopyri
  • non-aromatic heterocyclic group examples include, for example, a nitrogen atom, a sulfur atom and an oxygen atom in addition to a carbon atom as a ring constituent atom 3 to 14-membered (preferably 4 to 10-membered) non-aromatic heterocyclic group containing 1 to 4 heteroatoms selected from Suitable examples of the “non-aromatic heterocyclic group” include aziridinyl, oxiranyl, thiylyl, azetidinyl, oxetanyl, thietanyl, tetrahydrothienyl, tetrahydrofuranyl, pyrrolinyl, pyrrolidinyl, imidazolinyl, imidazolidinyl, oxazolinyl, oxazolidinyl, pyrazolidinyl, pyra
  • examples of the “optionally substituted hydroxy group” include a “C 1-6 alkyl group each optionally having 1 to 3 substituents selected from the substituent group A”.
  • Suitable examples of the optionally substituted hydroxy group include a hydroxy group, a C 1-6 alkoxy group, a C 2-6 alkenyloxy group (eg, allyloxy, 2-butenyloxy, 2-pentenyloxy, 3-hexenyloxy).
  • C 3-10 cycloalkyloxy group eg, cyclohexyloxy
  • C 6-14 aryloxy group eg, phenoxy, naphthyloxy
  • C 7-16 aralkyloxy group eg, benzyloxy, phenethyloxy
  • C 1-6 alkyl-carbonyloxy group eg, acetyloxy, propionyloxy, butyryloxy, isobutyryloxy, pivaloyloxy
  • C 6-14 aryl-carbonyloxy group eg, benzoyloxy
  • C 7-16 aralkyl- A carbonyloxy group eg benzylcarbonyloxy)
  • 5 to 14-membered aromatic heterocyclic carbonyloxy group e.g., nicotinoyl oxy
  • 3 to 14-membered non-aromatic heterocyclic carbonyloxy group e.g., piperidinylcarbonyl oxy
  • R 1 and R 2 each independently represent a hydrogen atom or an optionally substituted hydrocarbon group, or R 1 and R 2 together with the adjacent nitrogen atom represent 3 to 3 An 8-membered monocyclic nitrogen-containing non-aromatic heterocycle is formed.
  • the “optionally substituted hydrocarbon group” represented by R 1 or R 2 is preferably a C 1-6 alkyl group (eg, methyl, ethyl, isopropyl, tert-butyl), C 3-10 cycloalkyl group , A C 6-14 aryl group (eg, phenyl), a C 7-16 aralkyl group, more preferably a C 1-6 alkyl group, and particularly preferably isopropyl.
  • a C 1-6 alkyl group eg, methyl, ethyl, isopropyl, tert-butyl
  • a C 6-14 aryl group eg, phenyl
  • a C 7-16 aralkyl group more preferably a C 1-6 alkyl group, and particularly preferably isopropyl.
  • Preferred examples of the “3- to 8-membered monocyclic nitrogen-containing non-aromatic heterocyclic ring” formed by R 1 and R 2 together with the adjacent nitrogen atom include a pyrrolidine ring, piperidine ring, morpholine ring, etc. Is mentioned.
  • R 1 and R 2 are preferably each independently a hydrogen atom, a C 1-6 alkyl group (preferably methyl, ethyl, isopropyl, tert-butyl) or a C 6-14 aryl group (preferably phenyl Or R 1 and R 2 together with the adjacent nitrogen atom form a 3- to 8-membered monocyclic nitrogen-containing non-aromatic heterocycle (preferably a pyrrolidine ring).
  • R 1 and R 2 are more preferably each independently a C 1-6 alkyl group (preferably methyl, ethyl, isopropyl, tert-butyl), and more preferably both are isopropyl.
  • Compound (I) is 3-fluoro-2-formyl-4-methyl-N, N-di (propan-2-yl) -5- [4- (1H-pyrazol-1-yl) benzyl] benzamide or a compound thereof A salt, preferably 3-fluoro-2-formyl-4-methyl-N, N-di (propan-2-yl) -5- [4- (1H-pyrazol-1-yl) benzyl] benzamide , Compound (II) is 3-fluoro-4-methyl-N, N-di (propan-2-yl) -5- [4- (1H-pyrazol-1-yl) benzyl] benzamide or a salt thereof, preferably 3-Fluoro-4-methyl-N, N-di (propan-2-yl) -5- [4- (1H-pyrazol-1-yl) benzyl] benzamide.
  • R 6 represents a hydrogen atom or an optionally substituted C 1-6 alkyl group.
  • the “optionally substituted C 1-6 alkyl group” represented by R 6 is preferably a C 1-6 alkyl group (eg, ethyl, tert-butyl), more preferably tert-butyl.
  • R 7 represents a protecting group.
  • Examples of the “protecting group” represented by R 7 include groups usually used as a protecting group for a hydroxy group in the art.
  • the “protecting group” represented by R 7 is preferably a C 1-6 alkyl-carbonyl group (eg, methylcarbonyl), more preferably methylcarbonyl.
  • salts examples include metal salts, ammonium salts, salts with organic bases, and salts with inorganic acids. , Salts with organic acids, salts with basic or acidic amino acids.
  • Suitable examples of the metal salt include alkali metal salts such as sodium salt and potassium salt; alkaline earth metal salts such as calcium salt, magnesium salt and barium salt; aluminum salt and the like.
  • the salt with an organic base include trimethylamine, triethylamine, pyridine, picoline, 2,6-lutidine, ethanolamine, diethanolamine, triethanolamine, cyclohexylamine, dicyclohexylamine, N, N′-dibenzylethylenediamine and the like. And the salt.
  • salts with inorganic acids include salts with hydrofluoric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, nitric acid, sulfuric acid, sulfurous acid, phosphoric acid, phosphorous acid, carbonic acid, bicarbonate, etc. Is mentioned.
  • Suitable examples of salts with organic acids include carboxylic acids (ie, organic compounds having one or more carboxy groups; specific examples include formic acid, acetic acid, benzoic acid, trifluoroacetic acid, phthalic acid, fumaric acid, Oxalic acid, tartaric acid, maleic acid, citric acid, succinic acid, malic acid, etc.); sulfonic acid (that is, an organic compound having one or more sulfo groups; specific examples include methanesulfonic acid, trifluoromethanesulfonic acid, benzene) Salts with sulfonic acid, p-toluenesulfonic acid, camphorsulfonic acid, etc.).
  • carboxylic acids ie, organic compounds having one or more carboxy groups; specific examples include formic acid, acetic acid, benzoic acid, trifluoroacetic acid, phthalic acid, fumaric acid, Oxalic acid, tartaric acid, maleic acid, citric acid,
  • salts with basic amino acids include salts with arginine, lysine, ornithine, and preferable examples of salts with acidic amino acids include salts with aspartic acid, glutamic acid and the like.
  • Compound (I), compound (II) and compounds (VIII) to (XI) may have isomers such as enantiomers or diastereomers. All such isomers and mixtures thereof are encompassed in compounds (I), (II) and (VIII)-(XI). In addition, isomers due to conformation or tautomerism may be produced, and such isomers or mixtures thereof are also encompassed in compounds (I), (II) and (VIII) to (XI).
  • Compound (I), Compound (II) and Compounds (VIII) to (XI) may each be a solvate (eg, hydrate, ethanol solvate, etc.) or a non-solvate (eg, non-solvate). Hydrate etc.), all of which are included in compounds (I), (II) and (VIII) to (XI).
  • Isotope e.g., 2 H, 3 H, 11 C, 14 C, 18 F, 35 S, etc. 125 I
  • labeled compounds are also compounds (I), compound (II) and compound (VIII) ⁇ Included in (XI).
  • the present invention is a method for producing Compound A, comprising reacting PHBO with ATHP.
  • a scheme of the above reaction is shown below (hereinafter referred to as step (iii)).
  • Step (iii) corresponds to Step 06 in the manufacturing method described later.
  • PHBO includes 4-fluoro-3-hydroxy-5-methyl-6- [4- (1H-pyrazol-1-yl) benzyl] -2-benzofuran-1 (3H) -one or a salt thereof, 3-fluoro Any of -2-formyl-4-methyl-5- [4- (1H-pyrazol-1-yl) benzyl] benzoic acid or a salt thereof, and a mixture thereof in an arbitrary ratio may be used.
  • a salt what was illustrated as a salt in compound (I) or (II) is used.
  • PHBO is preferably 3-fluoro-2-formyl-4-methyl-5- [4- (1H-pyrazol-1-yl) benzyl] benzoic acid or a salt thereof, more preferably 3-fluoro-2- 1,4-diazabicyclo [2.2.2] octane salt of formyl-4-methyl-5- [4- (1H-pyrazol-1-yl) benzyl] benzoic acid.
  • the salt in Compound A among those exemplified as the salt in Compound (I) and the like, pharmacologically acceptable salts are used.
  • Compound A is preferably 1,5-anhydro-2,4-dideoxy-2- (4-fluoro-5-methyl-1-oxo-6- (4- (1H-pyrazol-1-yl) benzyl)- 1,3-dihydro-2H-isoindol-2-yl) -L-threo-pentitol.
  • the present invention also relates to a method for producing PHBO, which comprises subjecting compound (I) to a hydrolysis reaction.
  • a scheme of the above reaction is shown below (hereinafter referred to as step (ii)).
  • Step (ii) corresponds to step 05 in the manufacturing method described later.
  • the present invention also relates to a process for producing compound (I), which comprises subjecting compound (II) to a formylation reaction.
  • a scheme of the above reaction is shown below (hereinafter referred to as step (i)).
  • Step (i) corresponds to step 04 (including step 04-1) in the manufacturing method described later.
  • step (i) includes a continuous production method including subjecting compound (II) to a formylation reaction in a flow reactor.
  • the present invention also includes step (i): subjecting compound (II) to a formylation reaction to obtain compound (I), and step (ii): subjecting compound (I) to a hydrolysis reaction.
  • the present invention relates to a method for manufacturing PHBO. A scheme of the above reaction is shown below.
  • Step (i) and step (ii) correspond to steps 04 (including step 04-1) and 05 in the production method described later, respectively.
  • the present invention also provides a step (i): Compound (II) subjected to a formylation reaction to obtain Compound (I), Step (ii): Compound (I) subjected to a hydrolysis reaction, and PHBO And (iii) a process for obtaining Compound A, comprising the step of reacting PHBO with ATHP.
  • a scheme of the above reaction is shown below.
  • Step (i), step (ii) and step (iii) correspond to steps 04 (including step 04-1), 05 and 06 in the production method described below, respectively.
  • 3-fluoro-2-formyl-4-methyl-5- [4- (1H-pyrazol-1-yl) benzyl] benzoic acid or a salt thereof contained in PHBO is a novel compound.
  • Compound A can be produced by the production method shown in the following reaction formula.
  • room temperature usually indicates about 10 ° C. to about 35 ° C.
  • R 3 and R 4 each independently represents a hydrogen atom or an optionally substituted hydrocarbon group, or R 3 and R 4 together with an adjacent boron atom represent 3 to 3
  • An 8-membered monocyclic boron-containing non-aromatic heterocyclic ring or a 9-14-membered condensed bicyclic boron-containing non-aromatic heterocyclic ring is formed.
  • R 5 is 1 to 3 selected from (1) a hydrogen atom, (2) an optionally substituted C 1-6 alkoxy group, (3) (i) a C 1-6 alkyl group and (ii) a phenyl group (4) a boron atom which may be substituted with 1 to 3 substituents selected from a C 1-6 alkoxy group and a hydroxy group, or 4,4,5 , 5-tetramethyl- [1,3,2] dioxaborolan-2-yl group.
  • X represents a halogen atom or an optionally substituted hydroxy group.
  • the optionally substituted hydrocarbon group represented by R 3 and R 4 is preferably a C 1-6 alkyl group (preferably isopropyl).
  • the a C 1-6 alkoxy group optionally substituted represented by R 5, is 1 to 3 substituents substituted C 1-6 alkoxy group selected from the substituent group A Can be mentioned. Of these, a C 1-6 alkoxy group (preferably isopropoxy) is preferable.
  • Examples of the 3- to 8-membered monocyclic boron-containing non-aromatic heterocycle include 3- to 8-membered monocyclic non-aromatic heterocycles containing at least one boron atom (preferably one) as a ring constituent atom. It is done.
  • the 3- to 8-membered monocyclic boron-containing non-aromatic heterocyclic ring may contain a nitrogen atom, a sulfur atom or an oxygen atom as a ring-constituting atom in addition to a boron atom, and preferably contains an oxygen atom in addition to a boron atom.
  • the 9 to 14 membered fused bicyclic boron-containing non-aromatic heterocyclic ring is a 9 to 14 membered fused bicyclic non-aromatic heterocyclic ring containing at least one boron atom (preferably one) as a ring-constituting atom. Is mentioned.
  • the 9 to 14-membered fused bicyclic boron-containing non-aromatic heterocyclic ring may contain a nitrogen atom, a sulfur atom, or an oxygen atom as a ring constituent atom in addition to a boron atom, and preferably an oxygen atom other than a boron atom.
  • X is preferably a halogen atom (preferably a chlorine atom).
  • Step 01 In this step, 3-fluoro-5-iodo-4-methylbenzoic acid or a salt thereof (in this specification, sometimes abbreviated as “FIMA”) is converted to a compound represented by the formula (V) or a salt thereof (in this specification, the compound represented by formula (III) or a salt thereof (abbreviated as “compound (III)” in this specification) by reacting with “compound (V)” in some cases.
  • Step 01 includes, for example, the following steps 01-1, 01-2, 01-3, and 01-4.
  • Step 01-1 The reaction in Step 01 can be carried out by converting FIMA into acid chloride and then reacting the resulting acid chloride with compound (V).
  • Step 01-1-1 The conversion to the acid chloride in step 01-1 is performed using a chlorinating agent. Moreover, you may perform the said reaction in presence of a catalyst depending on necessity.
  • a chlorinating agent include phosphorus oxychloride, oxalyl chloride, thionyl chloride, sulfuryl chloride, phosphorus trichloride, phosphorus pentachloride and the like.
  • the catalyst include N, N-dimethylformamide, pyridine, N, N-dimethyl-4-aminopyridine and the like.
  • the amount of the chlorinating agent varies depending on the type of solvent and other reaction conditions, but is usually 0.1 to 10 mol, preferably 1 to 5 mol, relative to 1 mol of FIMA as a substrate.
  • the chlorinating agent may be used as a solvent.
  • the amount of the catalyst used varies depending on the type of solvent and other reaction conditions, but is usually 0.001 to 1 mol, preferably 0.01 to 0.5 mol, relative to 1 mol of FIMA as a substrate.
  • the conversion to acid chloride is carried out without solvent or in the presence of a solvent inert to the reaction.
  • the solvent inert to the reaction is not particularly limited as long as the reaction proceeds.
  • Conversion to acid chloride is usually performed at -20 ° C to 150 ° C, preferably 0 ° C to 100 ° C. While the reaction time varies depending on the kind of chlorinating agent, catalyst and solvent and the reaction temperature, it is generally 1 minute to 24 hours, preferably 1 minute to 5 hours.
  • the reaction between the acid chloride and the compound (V) in Step 01-1 can be performed in the presence of a base.
  • the base include inorganic bases and organic bases.
  • the inorganic base include alkali metal hydroxides such as lithium hydroxide, potassium hydroxide, sodium hydroxide, cesium hydroxide; lithium methoxide, sodium methoxide, potassium methoxide, lithium ethoxide, sodium ethoxide, Alkali metal C 1-6 alkoxides such as potassium ethoxide, lithium propoxide, sodium propoxide, potassium propoxide, lithium isopropoxide, sodium isopropoxide, potassium isopropoxide, sodium tert-butoxide, potassium tert-butoxide; alkali metal thio C 1-6 alkoxides such as sodium thiomethoxide; sodium carbonate, potassium carbonate, carbonates such as cesium carbonate, sodium hydrogen carbonate, hydrogen carbonates such as potassium hydrogen carbonate; Sodium, a
  • organic base examples include fats such as trimethylamine, triethylamine, N-methylmorpholine, N, N-diisopropylethylamine, diethylamine, diisopropylamine, cyclohexylamine, ethylenediamine, and 1,8-diazabicyclo [5.4.0] undecene.
  • Aromatic amines such as pyridine, picoline and N, N-dimethylaniline, and basic amino acids such as arginine, lysine and ornithine.
  • a tertiary amine such as triethylamine, N-methylmorpholine, N, N-diisopropylethylamine is preferable.
  • the amount of compound (V) to be used varies depending on the type of solvent and other reaction conditions, but is usually 0.1 to 10 mol, preferably 1 to 5 mol, per 1 mol of acid chloride as a substrate.
  • the amount of the base used varies depending on the type of solvent and other reaction conditions, but is usually 0.1 to 10 mol, preferably 1 to 5 mol, per 1 mol of acid chloride as the substrate.
  • An organic base may be used as a solvent.
  • the reaction between the acid chloride and compound (V) is carried out without solvent or in the presence of a solvent inert to the reaction.
  • the solvent inert to the reaction is not particularly limited as long as the reaction proceeds.
  • the reaction between the acid chloride and compound (V) is usually performed at -20 ° C to 150 ° C, preferably 0 ° C to 100 ° C. While the reaction time varies depending on the kind of base, compound (V), solvent and reaction temperature, it is generally 1 min to 24 hr, preferably 1 min to 5 hr.
  • Step 01-2 The reaction in Step 01 can be performed by converting FIMA into an active acid anhydride and then reacting the resulting active acid anhydride with compound (V).
  • Step 01-2-1 The conversion to the active acid anhydride in Step 01-2 can also be performed using an active acid anhydride agent in the presence of a base.
  • a base those exemplified in the aforementioned step 01-1-2 can be used.
  • the active acid anhydride agent include acid chlorides such as ethyl chloroformate, isopropyl chloroformate and pivaloyl chloride; carbonyldiimidazole and the like.
  • the amount of the base used varies depending on the type of solvent and other reaction conditions, but is usually 0.1 to 10 mol, preferably 1 to 5 mol, relative to 1 mol of the substrate FIMA.
  • An organic base may be used as a solvent.
  • the amount of the active acid anhydride agent used varies depending on the type of solvent and other reaction conditions, but is usually 0.1 to 10 mol, preferably 1 to 5 mol, relative to 1 mol of the substrate FIMA.
  • the conversion to the active acid anhydride is carried out without a solvent or in the presence of a solvent inert to the reaction.
  • a solvent inert to the reaction those exemplified in the aforementioned step 01-1-2 are used.
  • Conversion to the active acid anhydride is usually performed at -20 ° C to 150 ° C, preferably 0 ° C to 100 ° C. While the reaction time varies depending on the type of base, active acid anhydride agent, solvent and reaction temperature, it is generally 1 min to 24 hr, preferably 1 min to 5 hr.
  • Step 01-2-2 The reaction of the active acid anhydride and the compound (V) in step 01-2 can also be performed in the presence of a base.
  • a base those exemplified in the aforementioned step 01-1-2 can be used.
  • a tertiary amine such as triethylamine, N-methylmorpholine, N, N-diisopropylethylamine is preferable.
  • the amount of the base used varies depending on the type of solvent and other reaction conditions, but is usually 0.1 to 10 mol, preferably 1 to 5 mol, per 1 mol of the active acid anhydride as the substrate.
  • An organic base may be used as a solvent.
  • the amount of compound (V) to be used varies depending on the type of solvent and other reaction conditions, but is usually 0.1 to 10 mol, preferably 1 to 5 mol, per 1 mol of active acid anhydride as a substrate.
  • the reaction of the active acid anhydride and compound (V) is carried out without solvent or in the presence of a solvent inert to the reaction.
  • a solvent inert to the reaction those exemplified in the aforementioned step 01-1-2 are used.
  • the reaction between the active acid anhydride and compound (V) is usually performed at -20 ° C to 150 ° C, preferably 0 ° C to 100 ° C. While the reaction time varies depending on the kind of base, compound (V), solvent and reaction temperature, it is generally 1 min to 24 hr, preferably 1 min to 5 hr.
  • Step 01-3 The reaction in Step 01 can also be performed by reacting with Compound (V) using FIMA and a condensing agent.
  • the reaction using the condensing agent can also be performed in the presence of a base and an additive.
  • the condensing agent include 1- [3- (dimethylamino) propyl] -3-ethylcarbodiimide or its hydrochloride, N, N′-dicyclohexylcarbodiimide, N, N′-diisopropylcarbodiimide, 4- (4, 6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride n-hydrate, 1H-benzotriazol-1-yloxytris (dimethylamino) phosphonium hexafluorophosphate 1H-benzotriazol-1-yloxytripyrrolidinophosphonium hexafluorophosphate, (7-azabenzotriazol-1-yl
  • the base those exemplified in the aforementioned step 01-1-2 can be used.
  • a tertiary amine such as triethylamine, N-methylmorpholine, N, N-diisopropylethylamine is preferable.
  • the additive include 1-hydroxybenzotriazole, 1-hydroxy-7-azabenzotriazole, N-hydroxysuccinimide, N, N′-disuccinimidyl carbonate, and the like.
  • the amount of the condensing agent to be used varies depending on the type of solvent and other reaction conditions, but is usually 0.1 to 10 mol, preferably 1 to 5 mol, relative to 1 mol of FIMA as a substrate.
  • the amount of the base used varies depending on the type of solvent and other reaction conditions, but is usually 0.1 to 10 mol, preferably 1 to 5 mol, relative to 1 mol of the substrate FIMA.
  • An organic base may be used as a solvent.
  • the amount of the additive used varies depending on the type of solvent and other reaction conditions, but is usually 0.1 to 10 mol, preferably 1 to 5 mol, relative to 1 mol of the substrate FIMA.
  • the amount of compound (V) to be used varies depending on the kind of solvent and other reaction conditions, but is usually 0.1 to 10 mol, preferably 1 to 5 mol, relative to 1 mol of FIMA as a substrate.
  • the reaction with compound (V) using a condensing agent is carried out without solvent or in the presence of a solvent inert to the reaction.
  • a solvent inert to the reaction those exemplified in the aforementioned step 01-1-2 are used.
  • the reaction with the compound (V) using a condensing agent is usually performed at -20 ° C to 150 ° C, preferably 0 ° C to 100 ° C. While the reaction time varies depending on the kind of the condensing agent, base, additive, compound (V) and solvent and reaction temperature, it is generally 1 min to 24 hr, preferably 1 min to 5 hr.
  • Step 01-4 The reaction in Step 01 can also be performed by reacting with Compound (V) using FIMA and an acid.
  • the acid include borane such as catecholborane, borane-trimethylamine complex, borane-tetrahydrofuran complex, trialkyl borate such as trimethyl borate, isopropyl borate, tris (2,2,2-trifluoroethyl) borate Boron trifluoride-ethyl ether complex, 2,4,6-tris (3,4,5-trifluorophenyl) boroxine, and boric acid.
  • borane such as catecholborane, borane-trimethylamine complex, borane-tetrahydrofuran complex, trialkyl borate such as trimethyl borate, isopropyl borate, tris (2,2,2-trifluoroethyl) borate Boron trifluoride-ethyl ether complex, 2,4,6-tris (3,4,5-trifluorophenyl) borox
  • the amount of the acid used varies depending on the type of solvent and other reaction conditions, but is usually 0.1 to 10 mol, preferably 1 to 5 mol, relative to 1 mol of the substrate FIMA.
  • the acid may be used as a solvent.
  • the amount of compound (V) to be used varies depending on the kind of solvent and other reaction conditions, but is usually 0.1 to 10 mol, preferably 1 to 5 mol, relative to 1 mol of FIMA as a substrate.
  • the reaction with compound (V) using an acid is carried out without solvent or in the presence of a solvent inert to the reaction. As the solvent inert to the reaction, those exemplified in the aforementioned step 01-1-2 are used.
  • reaction of compound (V) with an acid is usually performed at -20 ° C to 150 ° C, preferably 0 ° C to 100 ° C. While the reaction time varies depending on the kind of acid, compound (V), solvent and reaction temperature, it is generally 1 min to 24 hr, preferably 1 min to 5 hr.
  • Step 02 In this step, compound (III) is reacted with boronating agent (VI) to give a compound represented by formula (IV) or a salt thereof (in this specification, it may be abbreviated as “compound (IV)”). Is).
  • Step 02 includes, for example, the following steps 02-1, 02-2, 02-3, and 02-4.
  • Step 02-1 The reaction of step 02 can be performed by reacting the compound (III) with a boronating agent (VI) after activating with a metal. Moreover, you may perform this reaction in presence of an additive depending on necessity.
  • the metal include alkali metals such as lithium, sodium, and potassium; and alkaline earth metals such as magnesium.
  • the boronating agent (VI) is preferably tri-C 1-6 alkyl borate such as trimethyl borate, triethyl borate, triisopropyl borate; pinacol isopropoxyboronate.
  • the additive examples include iodine, 1,2-dibromoethane, diisobutylaluminum hydride, sodium bis (2-methoxyethoxy) aluminum hydride, and the like.
  • the amount of the metal used varies depending on the type of solvent and other reaction conditions, but is usually 0.1 to 10 mol, preferably 1 to 5 mol, relative to 1 mol of compound (III) as a substrate.
  • the amount of the boronating agent to be used varies depending on the type of solvent and other reaction conditions, but is usually 0.1 to 10 mol, preferably 1 to 5 mol, relative to 1 mol of compound (III) as a substrate.
  • the amount of the additive to be used varies depending on the type of solvent and other reaction conditions, but is usually 0.001 to 10 mol, preferably 0.01 to 1 mol, relative to 1 mol of compound (III) as a substrate.
  • This reaction is advantageously carried out without a solvent or in the presence of a solvent inert to the reaction.
  • the solvent inert to the reaction is not particularly limited as long as the reaction proceeds.
  • the reaction is usually performed at a low temperature or a high temperature, preferably -100 ° C to 200 ° C, more preferably -80 ° C to 150 ° C. While the reaction time varies depending on the kind of compound (III), metal, boronating agent, additive and solvent and reaction temperature, it is generally 1 min to 24 hr, preferably 1 min to 5 hr.
  • Step 02-2 The reaction in step 02 can also be performed by reacting compound (III) with an organometallic reagent and then reacting with a boronating agent (VI).
  • organometallic reagent include alkyllithium such as methyllithium, n-butyllithium and cyclohexyllithium, aryllithium such as phenyllithium, lithium diisopropylamide, lithium dicyclohexylamide, lithium 2,2,6,6-tetramethyl.
  • Lithium amide such as piperidide, isopropylmagnesium chloride, isopropylmagnesium bromide, alkylmagnesium such as isopropylmagnesium chloride / lithium chloride complex, diisopropylaminomagnesium chloride, diisopropylaminomagnesium bromide, bis (isopropylamino) magnesium, 2,2,6 , 6-Tetramethylpiperidinomagnesium chloride, 2,2,6,6-tetramethylpiperidinomagnesium Bromide, 2,2,6,6-tetramethyl piperidino magnesium chloride magnesium amides such as ride-lithium chloride complex.
  • the amount of the organometallic reagent used varies depending on the type of solvent and other reaction conditions, but is usually 0.1 to 10 mol, preferably 1 to 5 mol, per 1 mol of compound (III) as the substrate.
  • the amount of the boronating agent to be used varies depending on the type of solvent and other reaction conditions, but is usually 0.1 to 10 mol, preferably 1 to 5 mol, relative to 1 mol of compound (III) as a substrate.
  • This reaction is advantageously carried out without a solvent or in the presence of a solvent inert to the reaction.
  • the solvent inert to the reaction those exemplified in the above Step 02-1 can be used.
  • the reaction is usually performed at -100 ° C to 200 ° C, preferably -80 ° C to 150 ° C. While the reaction time varies depending on the kind of compound (III), organometallic reagent, boronating agent and solvent and reaction temperature, it is generally 1 min to 24 hr, preferably 1 min to 5 hr.
  • Step 02-3 The reaction of step 02 can also be performed by reacting compound (III) with boronating agent (VI) using a metal catalyst in the presence of a base.
  • the reaction may be performed by adding an additive as desired.
  • the base those exemplified in the aforementioned step 01-1-2 can be used.
  • metal catalyst examples include palladium catalysts such as tetrakis (triphenylphosphine) palladium, [1,1′-bis (diphenylphosphino) ferrocene] palladium (II) dichloride, tris (dibenzylideneacetone) dipalladium; Nickel bromide, bis (triphenylphosphine) nickel (II) dichloride, [1,3-bis (diphenylphosphino) propane] nickel (II) dichloride, bis (1,5-cyclooctadiene) nickel (0), etc.
  • palladium catalysts such as tetrakis (triphenylphosphine) palladium, [1,1′-bis (diphenylphosphino) ferrocene] palladium (II) dichloride, tris (dibenzylideneacetone) dipalladium; Nickel bromide, bis (triphenylphosphine) nickel (II)
  • Nickel catalyst such as copper chloride, copper iodide, copper oxide, copper acetate; iron bromide, [1,2-bis (diphenylphosphino) ethane] dichloroiron (II), [1,2-bis ( And iron catalysts such as dicyclohexylphosphino) ethane] dichloroiron (II).
  • BINAP 2,2′-bis (diphenylphosphino) -1,1′-binaphthyl
  • the naphthyl ring of BINAP is partially Hydrogenated BINAP derivatives, such as 2,2′-bis (diphenylphosphino) -5,6,7,8,5 ′, 6 ′, 7 ′, 8′-octahydro-1,1′-binaphthyl (H8BINAP); a substituent such as C 1-6 alkyl group, halogen atom, mono- or di-C 1-6 alkylamino group, C 1-6 alk
  • Examples of the boronating agent (VI) include diboron such as bis (pinacolato) diboron, tetrahydroxydiboron, bis (neopentylglycolato) diboron, bis (hexyleneglycolato) diboron, bis (catecholato) diboron, boric acid Tri-C 1-6 alkyl borate such as trimethyl, triethyl borate, triisopropyl borate; silyl boron such as 2- (dimethylphenylsilyl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane A borane such as pinacol borane is preferred.
  • diboron such as bis (pinacolato) diboron, tetrahydroxydiboron, bis (neopentylglycolato) diboron, bis (hexyleneglycolato) diboron, bis (catecholato) diboron, boric acid Tri-C 1-6 alky
  • the amount of the base to be used varies depending on the type of solvent and other reaction conditions, but is usually 0.1 to 10 mol, preferably 1 to 5 mol, relative to 1 mol of compound (III) as a substrate.
  • the amount of the metal catalyst to be used varies depending on the type of solvent and other reaction conditions, but is usually 0.0001 to 1 mol, preferably 0.01 to 0.1 mol, relative to 1 mol of compound (III) as a substrate.
  • the amount of the additive to be used varies depending on the type of solvent and other reaction conditions, but is usually 0.0001 to 1 mol, preferably 0.01 to 0.1 mol, relative to 1 mol of compound (III) as a substrate.
  • the amount of boronating agent (VI) to be used varies depending on the type of solvent and other reaction conditions, but is usually 0.1 to 10 mol, preferably 1 to 5 mol, relative to 1 mol of compound (III) as a substrate.
  • This reaction is advantageously carried out without a solvent or in the presence of a solvent inert to the reaction.
  • the solvent inert to the reaction those exemplified in the aforementioned step 01-1-2 are used.
  • the reaction is usually performed at -100 ° C to 200 ° C, preferably -80 ° C to 150 ° C. While the reaction time varies depending on the kind of compound (III), base, metal catalyst, additive, boronating agent, solvent and reaction temperature, it is generally 1 min to 24 hr, preferably 1 min to 10 hr.
  • Step 02-4 The reaction of step 02 can also be performed by reacting compound (III) with boronating agent (VI) by light irradiation.
  • the method by light irradiation can be performed by the method described in Journal of the American Chemical Society 2016, 138, 2985-2988, Organic Letters 2016, 18, 5248-5251, or a method analogous thereto.
  • Step 03 In this step, compound (IV) is reacted with a compound represented by formula (VII) or a salt thereof (in this specification, sometimes abbreviated as “compound (VII)”) to give compound (II). Manufacturing.
  • compound (IV) may be reacted with compound (VII) in the presence of a metal catalyst and a base. Further, an additive may be added to the reaction as desired.
  • a metal catalyst When a metal catalyst is not used, it can be carried out by the method described in Tetrahedron Letters 2016, 57, 4142-4144 or a method analogous thereto.
  • metal catalyst examples include palladium chloride, palladium acetate, tetrakis (triphenylphosphine) palladium, dichlorobis (triphenylphosphine) palladium, [1,1′-bis (diphenylphosphino) ferrocene] palladium (II) dichloride, Palladium catalysts such as tris (dibenzylideneacetone) dipalladium, copper catalysts such as copper chloride and copper iodide, tris (2,4-pentanedionato) iron, 1,2-phenylenebis [diphenyl] phosphine iron complex, etc. An iron catalyst etc. are mentioned.
  • the base those exemplified in the aforementioned step 01-1-2 can be used.
  • the additive those exemplified in the aforementioned step 02-3 are used.
  • the amount of the metal catalyst to be used varies depending on the type of solvent and other reaction conditions, but is usually 0.0001 to 1 mol, preferably 0.01 to 0.1 mol, relative to 1 mol of the compound (IV) as a substrate.
  • the amount of the base used varies depending on the type of solvent and other reaction conditions, but is usually 0.1 to 10 mol, preferably 1 to 5 mol, relative to 1 mol of compound (IV) as a substrate.
  • the amount of the additive used varies depending on the type of solvent and other reaction conditions, but is usually 0.0001 to 1 mol, preferably 0.01 to 0.1 mol, relative to 1 mol of the compound (IV) as the substrate.
  • the amount of compound (VII) to be used varies depending on the type of solvent and other reaction conditions, but it is generally 0.1 to 10 mol, preferably 1 to 5 mol, per 1 mol of compound (IV) as a substrate.
  • This reaction is advantageously carried out without a solvent or in the presence of a solvent inert to the reaction.
  • the solvent inert to the reaction those exemplified in the aforementioned step 01-1-2 are used.
  • the reaction is usually performed at -20 ° C to 150 ° C, preferably 0 ° C to 100 ° C. While the reaction time varies depending on the kind of compound (IV), compound (VII), metal catalyst, base, additive, solvent and reaction temperature, it is generally 1 minute to 24 hours, preferably 1 minute to 5 hours.
  • Step 04 compound (I) is produced by subjecting compound (II) to a formylation reaction.
  • the reaction is usually performed using a formylating agent.
  • the reaction is preferably performed in the presence of an organometallic reagent.
  • organometallic reagent those exemplified in the aforementioned step 02-2 are used.
  • organometallic reagent examples include n-butyllithium, lithium diisopropylamide, lithium dicyclohexylamide, lithium 2,2,6,6-tetramethylpiperidide, diisopropylaminomagnesium chloride, diisopropylaminomagnesium bromide, 2,2,6 , 6-tetramethylpiperidinomagnesium chloride, 2,2,6,6-tetramethylpiperidinomagnesium chloride / lithium chloride complex are preferred.
  • n-butyllithium, lithium diisopropylamide, 2,2,6,6-tetramethylpiperidinomagnesium chloride, and 2,2,6,6-tetramethylpiperidinomagnesium chloride / lithium chloride complex are preferable.
  • n-Butyllithium, lithium diisopropylamide, and 2,2,6,6-tetramethylpiperidinomagnesium chloride / lithium chloride complex are more preferable.
  • Examples of the formylating agent include N, N-disubstituted formylamides such as dimethylformamide, N-formylmorpholine and N-formylpiperidine; formate esters such as methyl formate and ethyl formate; methyl orthoformate and ethyl orthoformate Ortho-formic acid ester of N-ethoxymethyleneaniline and the like. Of these, dimethylformamide is preferable.
  • the amount of the organometallic reagent to be used varies depending on the type of solvent and other reaction conditions, but is usually 0.1 to 100 mol, preferably 1 to 10 mol, relative to 1 mol of compound (II) as a substrate.
  • the amount of the formylating agent to be used varies depending on the type of solvent and other reaction conditions, but is usually 0.1 to 40 mol, preferably 1 to 10 mol, relative to 1 mol of compound (II) as a substrate.
  • the organometallic reagent and the formylating agent may be added all at once or may be added in divided portions. Further, the formylating agent may be added in the presence of the organometallic reagent, or the organometallic reagent may be added in the presence of the formylating agent.
  • compound (I) can be produced in high yield and high purity by adding diisopropylamine to dimethylformamide.
  • This reaction is advantageously carried out without a solvent or in the presence of a solvent inert to the reaction.
  • the solvent inert to the reaction is not particularly limited as long as the reaction proceeds.
  • the solvent is preferably tetrahydrofuran.
  • the reaction is usually performed at -100 ° C to 150 ° C, preferably -20 ° C to 50 ° C. While the reaction time varies depending on the kind of compound (II), organometallic reagent, formylating agent, and solvent and reaction temperature, it is generally 1 min to 24 hr, preferably 1 min to 5 hr.
  • Step 04 a flow chemistry technique can be applied.
  • the flow chemistry technique a method commonly used in the chemical synthesis field is used. Specifically, after compound (II) is dissolved in a solvent inert to the above reaction, the resulting solution is sent to a tube-like reaction vessel, and an organometallic reagent and formylation are performed on the solution flowing in the reaction vessel. By sequentially adding the agent, the formylation reaction of the compound (II) detailed in Step 04 can be performed in a very short time.
  • the organometallic reagents include n-butyllithium, lithium diisopropylamide, lithium dicyclohexylamide, lithium 2,2,6,6-tetramethylpiperidide, diisopropylaminomagnesium chloride, diisopropylaminomagnesium bromide 2,2,6,6-tetramethylpiperidinomagnesium chloride and 2,2,6,6-tetramethylpiperidinomagnesium chloride / lithium chloride complex are preferable. Of these, n-butyllithium is preferable.
  • the amount of the organometallic reagent used varies depending on the type of solvent and other reaction conditions, but is usually 0.1 to 20 mol, preferably 1.0 to 3.0, with respect to 1 mol of compound (II) as the substrate. Is a mole.
  • the amount of formylating agent used varies depending on the type of solvent and other reaction conditions, but is usually 0.1 to 40 mol, preferably 1 to 33, relative to 1 mol of the compound (II) as the substrate. Is a mole.
  • the reaction is usually carried out at -100 ° C to 30 ° C, preferably -60 ° C to 0 ° C.
  • reaction time varies depending on the type of compound (II), organometallic reagent, formylating agent, and solvent and the reaction temperature, but is usually 0.01 seconds to 1 minute, preferably 0.01 seconds to 1 second. is there.
  • PHBO is produced by subjecting compound (I) to a hydrolysis reaction.
  • the reaction may be performed in the presence of an acid or a base, if desired. Moreover, you may add an additive to the said reaction depending on necessity.
  • Examples of the acid include mineral acids such as hydrofluoric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, nitric acid, sulfuric acid, and sulfurous acid; phosphoric acid, phosphorous acid, carbonic acid, bicarbonate; formic acid, acetic acid, Carboxylic acids such as trifluoroacetic acid, phthalic acid, fumaric acid, oxalic acid, tartaric acid, maleic acid, citric acid, succinic acid and malic acid; acidic amino acids such as aspartic acid and glutamic acid; methanesulfonic acid, trifluoromethanesulfonic acid and benzene Examples thereof include sulfonic acids such as sulfonic acid, p-toluenesulfonic acid, and camphorsulfonic acid.
  • mineral acids such as hydrofluoric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, nitric acid, sulfuric acid, and sulfurous acid
  • the base those exemplified in the aforementioned step 01-1-2 can be used.
  • the additive include sodium salts such as sodium chloride, sodium bromide and sodium iodide, and potassium salts such as potassium chloride, potassium bromide and potassium iodide. Of these, sodium bromide is preferable.
  • the amount of the acid used varies depending on the type of solvent and other reaction conditions, but is usually 0.1 to 10000 mol, preferably 1 to 10 mol, per 1 mol of compound (I) as the substrate.
  • the acid may be used as a solvent.
  • the amount of the base used varies depending on the type of solvent and other reaction conditions, but is usually 0.1 to 10000 mol, preferably 1 to 10 mol, relative to 1 mol of compound (I) as the substrate.
  • An organic base may be used as a solvent.
  • the amount of the additive used varies depending on the type of solvent and other reaction conditions, but is usually 0.1 to 10 mol, preferably 1 to 5 mol, relative to 1 mol of compound (I) as the substrate.
  • This reaction is preferably performed in the presence of an acid.
  • the acid is preferably hydrobromic acid, sulfuric acid, or p-toluenesulfonic acid.
  • the generation of impurities can be suppressed by using hydrobromic acid and p-toluenesulfonic acid in combination as acids.
  • this reaction is advantageously carried out without a solvent or in the presence of a solvent inert to the reaction.
  • the solvent inert to the reaction those exemplified in the aforementioned step 01-1-2 are used.
  • the reaction is usually performed at -20 ° C to 200 ° C, preferably 0 ° C to 150 ° C. While the reaction time varies depending on the kind of compound (I), acid, base, additive, solvent and reaction temperature, it is generally 1 min to 24 hr, preferably 1 min to 12 hr.
  • Step 06 compound A is produced by reacting PHBO with ATHP.
  • the reaction is preferably performed in the presence of a reducing agent.
  • the reducing agent include sodium borohydride, lithium borohydride, calcium borohydride, sodium cyanoborohydride, sodium borohydride such as sodium triacetoxyborohydride, borane-pyridine complex, 2-picoline. -Borane complex, borane such as 5-ethyl-2-methylpyridine-borane complex, etc. may be mentioned, and two or more of these may be mixed and used as necessary.
  • Hydrogen can also be used as a reducing agent together with a metal catalyst such as palladium carbon, platinum carbon, Raney nickel and the like.
  • the reducing agent is preferably sodium triacetoxyborohydride.
  • the amount of the reducing agent to be used varies depending on the type of solvent and other reaction conditions, but is usually 0.1 to 10 mol, preferably 1 to 5 mol, relative to 1 mol of PHBO as a substrate.
  • the amount of ATHP used varies depending on the type of solvent and other reaction conditions, but is usually 0.1 to 10 mol, preferably 1 to 5 mol, relative to 1 mol of PHBO as a substrate.
  • This reaction is advantageously carried out without a solvent or in the presence of a solvent inert to the reaction.
  • the solvent inert to the reaction is not particularly limited as long as the reaction proceeds.
  • the solvent may be mixed and used at an appropriate ratio.
  • the solvent is preferably a mixture of tetrahydrofuran and acetic acid in any proportion.
  • the reaction is usually performed at -20 ° C to 150 ° C, preferably 0 ° C to 100 ° C. While the reaction time varies depending on the kind of the reducing agent and solvent and the reaction temperature, it is generally 1 minute to 24 hours, preferably 1 minute to 3 hours.
  • 1,4-diazabicyclo [2.2.2] octane salt of 3-fluoro-2-formyl-4-methyl-5- [4- (1H-pyrazol-1-yl) benzyl] benzoic acid is used as PHBO.
  • compound A can be produced with high purity by washing the reaction crude product under basic conditions. Washing under basic conditions is preferably carried out using aqueous ammonia.
  • the present invention also relates to a process for producing PHBO, which comprises subjecting compound (VIII) to a formylation reaction and then optionally a hydrolysis reaction.
  • a scheme of the above reaction is shown below (hereinafter referred to as step (iv-1)).
  • Step (iv-1) corresponds to Step 10 in the production method described later.
  • the present invention also relates to a method for producing compound (VIII), which comprises subjecting compound (IX) to a reduction reaction.
  • a scheme of the above reaction is shown below (hereinafter referred to as step (iii-1)).
  • Step (iii-1) corresponds to Step 09 (including Step 09-1) in the production method described later.
  • the present invention also relates to a method for producing compound (IX), which comprises subjecting compound (X) to a hydroxy group protection reaction.
  • a scheme of the above reaction is shown below (hereinafter referred to as step (ii-1)).
  • Step (ii-1) corresponds to Step 08 (including Step 08-1, Step 08-2, Step 08-3, Step 08-4, Step 08-5, Step 08-6) in the production method described later. To do.
  • the present invention also relates to a method for producing compound (X), which comprises reacting compound (XI) with 4- (1H-pyrazol-1-yl) benzaldehyde.
  • a scheme of the above reaction is shown below (hereinafter referred to as step (i-1)).
  • Step (i-1) corresponds to Step 07 (including Step 07-1 and Step 07-2) in the manufacturing method described later.
  • step (i-1) reacting compound (XI) with 4- (1H-pyrazol-1-yl) benzaldehyde to obtain compound (X), and step (ii-1):
  • the present invention relates to a method for producing compound (IX), which comprises a step of subjecting compound (X) to a hydroxy group protection reaction.
  • Step (i-1) and Step (ii-1) are respectively Step 07 (including Step 07-1 and Step 07-2) and Step 08 (Step 08-1, Step 08-2, Step 08-3, Step 08-4, Step 08-5, Step 08-6).
  • the present invention also provides a step (i-1): a step of reacting compound (XI) with 4- (1H-pyrazol-1-yl) benzaldehyde to obtain compound (X), step (ii-1): compound (X) is subjected to a hydroxy group protection reaction to obtain compound (IX), and step (iii-1): production of compound (VIII) comprising subjecting compound (IX) to a reduction reaction Regarding the method.
  • Step (i-1), Step (ii-1), and Step (iii-1) are respectively Step 07 (including Step 07-1 and Step 07-2) and Step 08 (Step 08) in the production method described later.
  • the present invention also provides a step (i-1): a step of reacting compound (XI) with 4- (1H-pyrazol-1-yl) benzaldehyde to obtain compound (X), step (ii-1): compound (X) is subjected to a hydroxy group protection reaction to obtain compound (IX), step (iii-1): compound (IX) is subjected to a reduction reaction to obtain compound (VIII), and Step (iv-1):
  • the present invention relates to a process for producing PHBO, which comprises subjecting compound (VIII) to a formylation reaction and then optionally a hydrolysis reaction.
  • Step (i-1), Step (ii-1), Step (iii-1) and Step (iv-1) are each Step 07 (including Step 07-1 and Step 07-2) in the production method described later.
  • Step 08 including Step 08-1, Step 08-2, Step 08-3, Step 08-4, Step 08-5, Step 08-6), Step 09 (including Step 09-1) and Step 10 It corresponds to.
  • the present invention also provides a step (i-1): a step of reacting compound (XI) with 4- (1H-pyrazol-1-yl) benzaldehyde to obtain compound (X), step (ii-1): compound (X) is subjected to a hydroxy group protection reaction to obtain compound (IX), step (iii-1): Compound (IX) is subjected to a reduction reaction to obtain compound (VIII), step (Iv-1): a step of subjecting compound (VIII) to a formylation reaction and then optionally a hydrolysis reaction to obtain PHBO, and a step (v-1): a step of reacting PHBO with ATHP.
  • the present invention relates to a method for producing Compound A.
  • Step (i-1), Step (ii-1), Step (iii-1) and Step (iv-1) are each Step 07 (including Step 07-1 and Step 07-2) in the production method described later.
  • Step 08 including Step 08-1, Step 08-2, Step 08-3, Step 08-4, Step 08-5, Step 08-6
  • Step 09 including Step 09-1) and Step 10 It corresponds to.
  • Step (v-1) corresponds to Step 06 described above.
  • Compound A can be produced by the production method shown in the following reaction formula.
  • room temperature usually indicates about 10 ° C. to about 35 ° C.
  • R 6 represents a hydrogen atom or an optionally substituted C 1-6 alkyl group, and R 7 represents a protecting group.
  • Step 07 In this step, compound (X) is produced by reacting compound (XI) with 4- (1H-pyrazol-1-yl) benzaldehyde. Step 07 includes, for example, the following step 07-1 and step 07-2.
  • Step 07-1 The reaction of Step 07 can be performed by reacting 4- (1H-pyrazol-1-yl) benzaldehyde after activating compound (XI) with a metal. Moreover, you may perform this reaction in presence of an additive depending on necessity.
  • the metal include alkali metals such as lithium, sodium, and potassium; and alkaline earth metals such as magnesium.
  • the additive include iodine, 1,2-dibromoethane, diisobutylaluminum hydride, sodium bis (2-methoxyethoxy) aluminum hydride, and the like.
  • the amount of metal used varies depending on the type of solvent and other reaction conditions, but is usually 0.1 to 10 mol, preferably 1 to 5 mol, per 1 mol of compound (XI).
  • the amount of 4- (1H-pyrazol-1-yl) benzaldehyde varies depending on the type of solvent and other reaction conditions, but is usually 0.1 to 10 mol, preferably 0.9 to 5 mol, per 1 mol of compound (XI). It is.
  • the amount of the additive to be used varies depending on the type of solvent and other reaction conditions, but is usually 0.001 to 10 mol, preferably 0.01 to 1 mol, relative to 1 mol of compound (XI). This reaction is advantageously carried out without a solvent or in the presence of a solvent inert to the reaction.
  • the solvent inert to the reaction is not particularly limited as long as the reaction proceeds.
  • the reaction is usually performed at a low temperature or a high temperature, preferably -100 ° C to 200 ° C, more preferably -80 ° C to 150 ° C. While the reaction time varies depending on the kind of compound (XI), metal, additive and solvent and reaction temperature, it is generally 1 min to 24 hr, preferably 1 min to 5 hr.
  • Step 07-2 The reaction in Step 07 can also be performed by reacting compound (XI) with an organometallic reagent and then reacting with 4- (1H-pyrazol-1-yl) benzaldehyde.
  • organometallic reagent include alkyllithium such as methyllithium, n-butyllithium and cyclohexyllithium, aryllithium such as phenyllithium, lithium diisopropylamide, lithium dicyclohexylamide, lithium 2,2,6,6-tetramethyl.
  • Lithium amide such as piperidide, isopropylmagnesium chloride, isopropylmagnesium bromide, alkylmagnesium such as isopropylmagnesium chloride / lithium chloride complex, diisopropylaminomagnesium chloride, diisopropylaminomagnesium bromide, bis (isopropylamino) magnesium, 2,2,6 , 6-Tetramethylpiperidinomagnesium chloride, 2,2,6,6-tetramethylpiperidinomagnesium Bromide, 2,2,6,6-tetramethyl piperidino magnesium chloride magnesium amides such as ride-lithium chloride complex.
  • isopropylmagnesium bromide and isopropylmagnesium chloride / lithium chloride complex are preferable.
  • the amount of the organometallic reagent to be used varies depending on the type of solvent and other reaction conditions, but is usually 0.1 to 10 mol, preferably 1 to 5 mol, per 1 mol of compound (XI).
  • the amount of 4- (1H-pyrazol-1-yl) benzaldehyde varies depending on the type of solvent and other reaction conditions, but is usually 0.1 to 10 mol, preferably 0.9 to 5 mol, per 1 mol of compound (XI). It is. This reaction is advantageously carried out without a solvent or in the presence of a solvent inert to the reaction.
  • reaction As the solvent inert to the reaction, those exemplified in the aforementioned Step 07-1 can be used. Of these, tetrahydrofuran is preferred.
  • the reaction is usually performed at -100 ° C to 200 ° C, preferably -80 ° C to 150 ° C. While the reaction time varies depending on the kind of compound (XI), organometallic reagent and solvent and reaction temperature, it is generally 1 min to 24 hr, preferably 1 min to 5 hr.
  • Step 08 In this step, for example, compound (X) is produced by subjecting compound (X) to a hydroxy group protection reaction.
  • Step 08 includes, for example, the following step 08-1, step 08-2, step 08-3, step 08-4, step 08-5, and step 08-6.
  • Step 08-1 The reaction in step 08 can be performed, for example, by reacting compound (X) with an acid anhydride in the presence of a base.
  • the reaction may be performed in the presence of a catalyst as desired.
  • the base include inorganic bases and organic bases.
  • Examples of the inorganic base include alkali metal hydroxides such as lithium hydroxide, potassium hydroxide, sodium hydroxide, cesium hydroxide; lithium methoxide, sodium methoxide, potassium methoxide, lithium ethoxide, sodium ethoxide, Alkali metal C 1-6 alkoxides such as potassium ethoxide, lithium propoxide, sodium propoxide, potassium propoxide, lithium isopropoxide, sodium isopropoxide, potassium isopropoxide, sodium tert-butoxide, potassium tert-butoxide; alkali metal thio C 1-6 alkoxides such as sodium thiomethoxide; sodium carbonate, potassium carbonate, carbonates such as cesium carbonate, sodium hydrogen carbonate, hydrogen carbonates such as potassium hydrogen carbonate; Sodium, acetate and potassium acetate; tripotassium phosphate, phosphate salts such as sodium phosphate; potassium monohydrogen phosphate include phosphoric acid monohydrogen salt such as sodium
  • organic base examples include fats such as trimethylamine, triethylamine, N-methylmorpholine, N, N-diisopropylethylamine, diethylamine, diisopropylamine, cyclohexylamine, ethylenediamine, and 1,8-diazabicyclo [5.4.0] undecene.
  • Aromatic amines such as pyridine, picoline and N, N-dimethylaniline, and basic amino acids such as arginine, lysine and ornithine.
  • a tertiary amine such as triethylamine, N-methylmorpholine, N, N-diisopropylethylamine is preferable.
  • the acid anhydride include carboxylic acid anhydrides such as acetic anhydride, propionic anhydride, butyric anhydride, pivalic anhydride, trifluoroacetic anhydride, benzoic anhydride, methanesulfonic anhydride, p -Toluenesulfonic acid anhydride, sulfonic acid anhydride such as trifluoromethanesulfonic acid anhydride, and the like, and di-tert-butyl dicarbonate.
  • the catalyst examples include N, N-dimethyl-4-aminopyridine, pyridine, 4-pyrrolidinopyridine and the like.
  • the amount of base used varies depending on the type of solvent and other reaction conditions, but the compound (X ) It is usually 0.1 to 10 moles, preferably 1 to 5 moles per mole.
  • An organic base may be used as a solvent.
  • the amount of acid anhydride to be used varies depending on the type of solvent and other reaction conditions, but is usually 0.1 to 10 mol, preferably 1 to 5 mol, per 1 mol of compound (X).
  • the amount of catalyst used varies depending on the type of solvent and other reaction conditions, but is usually 0.001 to 1 mol, preferably 0.01 to 0.5 mol, per 1 mol of compound (X).
  • This reaction is carried out without solvent or in the presence of a solvent inert to the reaction.
  • the solvent inert to the reaction is not particularly limited as long as the reaction proceeds.
  • the reaction is usually performed at -20 ° C to 150 ° C, preferably 0 ° C to 100 ° C. While the reaction time varies depending on the kind of compound (X), the acid anhydride, base, catalyst and solvent and the reaction temperature, it is generally 1 min to 24 hr, preferably 1 min to 5 hr.
  • Step 08-2 The reaction in Step 08 can also be performed by reacting compound (X) with an acid chloride in the presence of a base.
  • a base those exemplified in the aforementioned Step 08-1 can be used.
  • a tertiary amine such as triethylamine, N-methylmorpholine, N, N-diisopropylethylamine is preferable.
  • Examples of the acid chloride include carboxylic acid chlorides such as acetyl chloride, propionyl chloride, butyryl chloride, pivaloyl chloride, benzoyl chloride, sulfones such as methanesulfonyl chloride, p-toluenesulfonyl chloride, trifluoromethanesulfonyl chloride, and the like.
  • Examples thereof include acid chlorides such as chloride, ethyl chloroformate, isopropyl chloroformate, and isobutyl chloroformate.
  • the amount of the base to be used varies depending on the type of solvent and other reaction conditions, but is usually 0.1 to 10 mol, preferably 1 to 5 mol, per 1 mol of compound (X).
  • An organic base may be used as a solvent.
  • the amount of the acid chloride to be used varies depending on the kind of solvent and other reaction conditions, but is usually 0.1 to 10 mol, preferably 1 to 5 mol, per 1 mol of compound (X).
  • This reaction is carried out without solvent or in the presence of a solvent inert to the reaction.
  • the solvent inert to the reaction those exemplified in the aforementioned Step 08-1 can be used.
  • the reaction is usually performed at -20 ° C to 150 ° C, preferably 0 ° C to 100 ° C. While the reaction time varies depending on the kind of compound (X), acid chloride, base and solvent and reaction temperature, it is generally 1 min to 24 hr, preferably 1 min to 5 hr.
  • Step 08-3 The reaction in Step 08 can also be performed by converting the acid into an acid chloride and then reacting the resulting acid chloride with compound (X).
  • Step 08-3-1 The conversion of the acid to the acid chloride in step 08-3 is performed using a chlorinating agent. Moreover, you may perform the said reaction in presence of a catalyst depending on necessity.
  • the acid include carboxylic acids such as acetic acid, propionic acid, butyric acid, pivalic acid, trifluoroacetic acid, and benzoic acid; and sulfonic acids such as methanesulfonic acid, p-toluenesulfonic acid, and trifluoromethanesulfonic acid. .
  • Examples of the chlorinating agent include phosphorus oxychloride, oxalyl chloride, thionyl chloride, sulfuryl chloride, phosphorus trichloride, phosphorus pentachloride and the like.
  • Examples of the catalyst include N, N-dimethylformamide, pyridine, N, N-dimethyl-4-aminopyridine and the like.
  • the amount of the chlorinating agent varies depending on the type of solvent and other reaction conditions, but is usually 0.1 to 10 mol, preferably 1 to 5 mol, per 1 mol of acid.
  • the chlorinating agent may be used as a solvent.
  • the amount of the catalyst used varies depending on the type of solvent and other reaction conditions, but is usually 0.001 to 1 mol, preferably 0.01 to 0.5 mol, per 1 mol of the acid.
  • Conversion to the acid chloride is carried out without solvent or in the presence of a solvent inert to the reaction.
  • a solvent inert to the reaction those exemplified in the aforementioned Step 08-1 can be used.
  • Conversion to the acid chloride is usually performed at -20 ° C to 150 ° C, preferably 0 ° C to 100 ° C. While the reaction time varies depending on the kind of acid, chlorinating agent, catalyst and solvent and the reaction temperature, it is generally 1 min to 24 hr, preferably 1 min to 5 hr.
  • Step 08-3-2 The reaction between the acid chloride in step 08-3 and compound (X) can be carried out in the presence of a base.
  • a base those exemplified in the aforementioned Step 08-1 can be used.
  • a tertiary amine such as triethylamine, N-methylmorpholine, N, N-diisopropylethylamine is preferable.
  • the amount of the acid chloride to be used varies depending on the type of solvent and other reaction conditions, but is usually 0.1 to 10 mol, preferably 1 to 5 mol, per 1 mol of compound (X).
  • the amount of the base used varies depending on the type of solvent and other reaction conditions, but is usually 0.1 to 10 mol, preferably 1 to 5 mol, relative to 1 mol of compound (X).
  • An organic base may be used as a solvent.
  • the reaction between the acid chloride and compound (X) is carried out without solvent or in the presence of a solvent inert to the reaction.
  • a solvent inert to the reaction those exemplified in the aforementioned Step 08-1 can be used.
  • the reaction between the acid chloride and compound (X) is usually performed at -20 ° C to 150 ° C, preferably 0 ° C to 100 ° C. While the reaction time varies depending on the kind of compound (X), acid chloride, base and solvent and reaction temperature, it is generally 1 min to 24 hr, preferably 1 min to 5 hr.
  • Step 08-4 The reaction in Step 08 can also be carried out by converting the acid into an active acid anhydride and then reacting the resulting active acid anhydride with compound (X).
  • Step 08-4-1 The conversion of the acid to the active acid anhydride in Step 08-4 can be performed using an active acid anhydride agent in the presence of a base.
  • an active acid anhydride agent examples include acid chlorides such as ethyl chloroformate, isopropyl chloroformate, and pivaloyl chloride, di-tert-butyl dicarbonate, carbonyldiimidazole, and the like.
  • the amount of the base used varies depending on the type of solvent and other reaction conditions, but is usually 0.1 to 10 mol, preferably 1 to 5 mol, relative to 1 mol of the acid.
  • An organic base may be used as a solvent.
  • the amount of the active acid anhydride agent used varies depending on the type of solvent and other reaction conditions, but is usually 0.1 to 10 moles, preferably 1 to 5 moles per mole of acid.
  • the conversion to the active acid anhydride is carried out without a solvent or in the presence of a solvent inert to the reaction. As the solvent inert to the reaction, those exemplified in the aforementioned Step 08-1 can be used.
  • Conversion to the active acid anhydride is usually performed at -20 ° C to 150 ° C, preferably 0 ° C to 100 ° C. While the reaction time varies depending on the kind of acid, base, active acid anhydride agent, solvent and reaction temperature, it is generally 1 min to 24 hr, preferably 1 min to 5 hr.
  • Step 08-4-2 The reaction of the active acid anhydride in step 08-4 with compound (X) can be carried out in the presence of a base. In addition, the reaction may be performed in the presence of a catalyst as desired.
  • a base those exemplified in the aforementioned Step 08-1 can be used.
  • the base for example, tertiary amines such as triethylamine, N-methylmorpholine, N, N-diisopropylethylamine are preferable.
  • the catalyst those exemplified in Step 08-1 can be used.
  • the amount of the base used varies depending on the type of solvent and other reaction conditions, but is usually 0.1 to 10 mol, preferably 1 to 5 mol, relative to 1 mol of the active acid anhydride.
  • An organic base may be used as a solvent.
  • the amount of the active acid anhydride to be used varies depending on the type of solvent and other reaction conditions, but is usually 0.1 to 10 mol, preferably 1 to 5 mol, per 1 mol of compound (X).
  • the amount of catalyst used varies depending on the type of solvent and other reaction conditions, but is usually 0.001 to 1 mol, preferably 0.01 to 0.5 mol, per 1 mol of compound (X).
  • the reaction of the active acid anhydride and compound (X) is carried out without solvent or in the presence of a solvent inert to the reaction.
  • a solvent inert to the reaction those exemplified in the aforementioned Step 08-1 can be used.
  • the reaction between the active acid anhydride and compound (X) is usually performed at -20 ° C to 150 ° C, preferably 0 ° C to 100 ° C. While the reaction time varies depending on the kind of compound (X), active acid anhydride, base, catalyst and solvent and reaction temperature, it is generally 1 min to 24 hr, preferably 1 min to 5 hr.
  • Step 08-5 The reaction in Step 08 can also be performed by reacting an acid with compound (X) using a condensing agent.
  • the reaction using the condensing agent can also be performed in the presence of a base and an additive.
  • As the acid those exemplified in the aforementioned step 08-3-1 are used.
  • condensing agent examples include 1- [3- (dimethylamino) propyl] -3-ethylcarbodiimide or its hydrochloride, N, N′-dicyclohexylcarbodiimide, N, N′-diisopropylcarbodiimide, 4- (4, 6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride n-hydrate, 1H-benzotriazol-1-yloxytris (dimethylamino) phosphonium hexafluorophosphate 1H-benzotriazol-1-yloxytripyrrolidinophosphonium hexafluorophosphate, (7-azabenzotriazol-1-yloxy) tripyrrolidinophosphonium hexafluorophosphate, chlorotripyrrolidinophosphonium hexafluorophosphate Salt, bromotris (dimethylamino) phosphonium
  • Step 08-1 those exemplified in the aforementioned Step 08-1 can be used.
  • the base for example, tertiary amines such as triethylamine, N-methylmorpholine, N, N-diisopropylethylamine are preferable.
  • the additive include 1-hydroxybenzotriazole, 1-hydroxy-7-azabenzotriazole, N-hydroxysuccinimide, N, N′-disuccinimidyl carbonate, and the like.
  • the amount of the acid to be used varies depending on the type of solvent and other reaction conditions, but is usually 0.1 to 10 mol, preferably 1 to 5 mol, per 1 mol of compound (X).
  • the amount of the condensing agent to be used varies depending on the kind of solvent and other reaction conditions, but is usually 0.1 to 10 mol, preferably 1 to 5 mol, relative to 1 mol of compound (X).
  • the amount of the base used varies depending on the type of solvent and other reaction conditions, but is usually 0.1 to 10 mol, preferably 1 to 5 mol, relative to 1 mol of compound (X).
  • An organic base may be used as a solvent.
  • the amount of the additive used varies depending on the type of solvent and other reaction conditions, but is usually 0.1 to 10 mol, preferably 1 to 5 mol, relative to 1 mol of compound (X).
  • the reaction using the condensing agent is performed without a solvent or in the presence of a solvent inert to the reaction.
  • the solvent inert to the reaction is not particularly limited as long as the reaction proceeds.
  • the reaction using a condensing agent is usually performed at -20 ° C to 150 ° C, preferably 0 ° C to 100 ° C. While the reaction time varies depending on the kind of compound (X), the acid, the condensing agent, the base, the additive, the solvent, and the reaction temperature, it is generally 1 minute to 24 hours, preferably 1 minute to 5 hours.
  • Step 08-6 The reaction in Step 08 can also be performed by reacting an acid with compound (X) using boric acid.
  • the acid those exemplified in the aforementioned step 08-3-1 are used.
  • the boric acid include tri-C 1-6 alkyl borate such as trimethyl borate, isopropyl borate, tris (2,2,2-trifluoroethyl) borate; boron trifluoride-ethyl ether complex and 2 , 4,6-tris (3,4,5-trifluorophenyl) boroxine, boric acid.
  • the amount of the acid to be used varies depending on the type of solvent and other reaction conditions, but is usually 0.1 to 10 mol, preferably 1 to 5 mol, per 1 mol of compound (X).
  • the amount of boric acid to be used varies depending on the type of solvent and other reaction conditions, but is usually 0.1 to 10 mol, preferably 1 to 5 mol, per 1 mol of compound (X).
  • the acid may be used as a solvent.
  • the reaction using boric acid is performed without a solvent or in the presence of a solvent inert to the reaction. As the solvent inert to the reaction, those exemplified in the aforementioned Step 08-5 can be used.
  • the reaction using boric acid is usually performed at -20 ° C to 150 ° C, preferably 0 ° C to 100 ° C. While the reaction time varies depending on the kind of compound (X), acid, boric acid and solvent and reaction temperature, it is generally 1 min to 24 hr, preferably 1 min to 5 hr.
  • compound (VIII) is produced by subjecting compound (IX) to a reduction reaction.
  • the reaction is preferably performed in the presence of a reducing agent.
  • the reducing agent include sodium borohydride, lithium borohydride, calcium borohydride, sodium cyanoborohydride, sodium borohydride such as sodium triacetoxyborohydride, and triethylsilane.
  • an acid such as a trifluoroborane-ether complex, aluminum chloride, or trifluoroacetic acid.
  • Hydrogen can also be used as a reducing agent together with a metal catalyst such as palladium carbon, platinum carbon, Raney nickel and the like.
  • hydrogen is preferably used together with palladium carbon.
  • the amount of the reducing agent to be used varies depending on the type of solvent and other reaction conditions, but is usually 0.01 to 10 mol, preferably 1 to 5 mol, per 1 mol of compound (IX). This reaction is advantageously carried out without a solvent or in the presence of a solvent inert to the reaction.
  • the solvent inert to the reaction is not particularly limited as long as the reaction proceeds.
  • the solvent may be mixed and used at an appropriate ratio.
  • the solvent is preferably methanol or a mixture of ethanol and tetrahydrofuran in any proportion.
  • the reaction is usually performed at -20 ° C to 150 ° C, preferably 0 ° C to 100 ° C. While the reaction time varies depending on the kind of the reducing agent and solvent and the reaction temperature, it is generally 1 minute to 24 hours, preferably 1 minute to 3 hours.
  • step 08 and step 09 compound (X) can be subjected to the same reduction reaction as in step 09, whereby step 08 and step 09 can be performed in one step to produce compound (VIII).
  • the reduction reaction is usually performed using a reducing agent, and as the reducing agent, those exemplified in the aforementioned step 09 are used.
  • the amount of the reducing agent to be used varies depending on the type of solvent and other reaction conditions, but is usually 0.01 to 10 mol, preferably 1 to 5 mol, relative to 1 mol of compound (X) as a substrate.
  • the reduction reaction is advantageously carried out without solvent or in the presence of a solvent inert to the reaction.
  • the solvent inert to the reaction those exemplified in the aforementioned step 09 can be used.
  • the reduction reaction is usually performed at -20 ° C to 150 ° C, preferably 0 ° C to 100 ° C. While the reaction time varies depending on the kind of the reducing agent and solvent and the reaction temperature, it is generally 1 minute to 48 hours, preferably 1 minute to 24 hours.
  • PHBO is produced by subjecting compound (VIII) to a formylation reaction and then, if desired, a hydrolysis reaction.
  • the formylation reaction is usually performed using a formylation agent.
  • the formylation reaction is preferably performed in the presence of an organometallic reagent.
  • the hydrolysis reaction is usually performed using an acid.
  • the organometallic reagent those exemplified in Step 07-2 can be used.
  • organometallic reagent examples include n-butyllithium, lithium diisopropylamide, lithium dicyclohexylamide, lithium 2,2,6,6-tetramethylpiperidide, diisopropylaminomagnesium chloride, diisopropylaminomagnesium bromide, 2,2,6 , 6-tetramethylpiperidinomagnesium chloride, 2,2,6,6-tetramethylpiperidinomagnesium chloride / lithium chloride complex are preferred. Of these, 2,2,6,6-tetramethylpiperidinomagnesium chloride and 2,2,6,6-tetramethylpiperidinomagnesium chloride / lithium chloride complex are more preferable.
  • Examples of the formylating agent include N, N-disubstituted formylamides such as dimethylformamide, N-formylmorpholine and N-formylpiperidine; formate esters such as methyl formate and ethyl formate; methyl orthoformate and ethyl orthoformate Ortho-formic acid ester of N-ethoxymethyleneaniline and the like.
  • dimethylformamide and N-formylmorpholine are preferable.
  • N-formylmorpholine is more preferred.
  • Examples of the acid include mineral acids such as hydrofluoric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, nitric acid, sulfuric acid, and sulfurous acid; phosphoric acid, phosphorous acid, carbonic acid, bicarbonate; formic acid, acetic acid, Carboxylic acids such as trifluoroacetic acid, phthalic acid, fumaric acid, oxalic acid, tartaric acid, maleic acid, citric acid, succinic acid and malic acid; acidic amino acids such as aspartic acid and glutamic acid; methanesulfonic acid, trifluoromethanesulfonic acid and benzene Examples thereof include sulfonic acids such as sulfonic acid, p-toluenesulfonic acid, and camphorsulfonic acid.
  • mineral acids such as hydrofluoric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, nitric acid, sulfuric acid, and sulfurous acid
  • the amount of the organometallic reagent to be used varies depending on the type of solvent and other reaction conditions, but is usually 0.1 to 100 mol, preferably 1 to 10 mol, relative to 1 mol of compound (VIII).
  • the amount of the formylating agent to be used varies depending on the type of solvent and other reaction conditions, but is usually 0.1 to 40 mol, preferably 1 to 10 mol, per 1 mol of compound (VIII).
  • the amount of the acid to be used varies depending on the type of solvent and other reaction conditions, but is usually 0.1 to 10000 mol, preferably 1 to 100 mol, per 1 mol of compound (VIII).
  • This reaction is advantageously carried out without a solvent or in the presence of a solvent inert to the reaction.
  • the solvent inert to the reaction is not particularly limited as long as the reaction proceeds.
  • the solvent may be mixed and used at an appropriate ratio.
  • the solvent is preferably tetrahydrofuran.
  • the reaction is usually performed at -100 ° C to 150 ° C, preferably -20 ° C to 50 ° C. While the reaction time varies depending on the kind of compound (VIII), organometallic reagent, formylating agent, acid and solvent and reaction temperature, it is generally 1 min to 24 hr, preferably 1 min to 5 hr.
  • Compound A can be produced by subjecting PHBO produced in Step 10 to the reaction in Step 06.
  • the present invention also includes (1) a step of reacting compound (XIII) with 4- (1H-pyrazol-1-yl) benzaldehyde to obtain compound (XII), and (2) the compound (XII) is optionally substituted with a hydroxy group.
  • a method for producing compound (II) comprises a step of subjecting to a protection reaction of The scheme of the above reaction is shown below (hereinafter, the step of reacting compound (XIII) with 4- (1H-pyrazol-1-yl) benzaldehyde to obtain compound (XII) is step (a), and compound (XII) is If desired, the step of subjecting to a hydroxy group protection reaction and then the reduction reaction is referred to as step (b)).
  • Step (a) is performed in the same manner as Step 07 (including Step 07-1 and Step 07-2).
  • the step (b) includes the step 08 (including step 08-1, step 08-2, step 08-3, step 08-4, step 08-5, step 08-6) and the step 09 (step 09- 1 is included).
  • the compound (II) obtained by the production method N can then be subjected to the steps of the production method C, the production method D or the production method E as desired.
  • the raw materials and reagents used in each of the above steps and the obtained compound may each form a salt.
  • Examples of such salts include those similar to the salts of the aforementioned compound (I) or (II).
  • the compound obtained in each of the above steps is a free compound, it can be converted into a target salt by a method known per se.
  • the compound obtained in each step is a salt, it can be converted into a free form or other types of desired salts by a method known per se.
  • the compound obtained in each of the above steps can be used in the next reaction as it is as a reaction solution or as a crude product.
  • the compound obtained in each step may be isolated and / or purified from the reaction mixture according to a conventional method by separation means such as concentration, crystallization, recrystallization, distillation, solvent extraction, fractional distillation, chromatography and the like. it can.
  • MS Mass spectrum M: Molar concentration N: Normality CDCl 3 : Deuterated chloroform DMSO: Dimethyl sulfoxide DMSO-d 6 : Heavy dimethyl sulfoxide 1 H NMR: proton nuclear magnetic resonance spectrum LC / MS: Liquid chromatograph mass spectrometer ESI: Electrospray ionization APCI: Atmospheric pressure chemical ionization DMF: N, N-dimethylformamide THF: tetrahydrofuran DABCO: 1,4-diazabicyclo [2.2.2] octane
  • a peak from which H 2 O is eliminated may be observed as a fragment ion.
  • a salt a free molecular ion peak or a fragment ion peak is usually observed.
  • the unit of sample concentration (c) in optical rotation ([ ⁇ ] D ) is g / 100 mL.
  • Toluene was added to the concentrated solution to 300 mL, and then slowly added dropwise to a solution of diisopropylamine (108 g) in tetrahydrofuran (500 mL) at 0 to 15 ° C. The mixture was reacted at the same temperature for 1 hour, and then ethyl acetate (200 mL) and water (500 mL) were added for liquid separation. The organic layer was washed successively with 10% brine (500 mL), 1M hydrochloric acid (500 mL), 10% brine (500 mL), and concentrated. Acetonitrile was added to the concentrate to 500 mL, and water (750 mL) was slowly added dropwise at room temperature.
  • the activated carbon was washed with ethyl acetate (280 mL), combined with the filtrate, and washed twice with 10% brine (700 mL). The organic layer was concentrated, and dimethoxyethane was added to 700 mL. To this solution, water (700 mL), sodium carbonate (81.6 g) and 1- [4- (chloromethyl) phenyl] -1-H-pyrazole (77.9 g) were added, and vacuum and nitrogen substitution were performed three times. . [1,1′-Bis (diphenylphosphino) ferrocene] palladium (II) dichloride (2.82 g) was added to the mixture, and the pressure was reduced and the nitrogen substitution was repeated three times.
  • the mixture was reacted at 70 ° C. to 80 ° C. for 3 hours, then cooled to 50 ° C., and ethyl acetate (1.12 L), water (1.12 L), and tetrahydrofuran (1.12 L) were added for liquid separation. .
  • Ethyl acetate (280 mL), tetrahydrofuran (280 mL), and 0.5M hydrochloric acid (700 mL) were added to the organic layer for liquid separation.
  • the organic layer was washed sequentially with 10% brine (700 mL), 28% aqueous ammonia (700 mL), and 10% brine (700 mL ⁇ 2).
  • Activated carbon 14 g was added to the organic layer and stirred, and then the activated carbon was removed by filtration.
  • the activated carbon was washed with ethanol (280 mL), combined with the filtrate, and concentrated. Ethanol was added to 1.4 L, and water (700 mL) was slowly added dropwise at 40-50 ° C. The mixture was cooled to room temperature, stirred for 3 hours, and the crystals were collected by filtration. The crystals were washed twice with ethanol / water (1: 2, 280 mL). The obtained wet crystals were added to ethyl acetate (420 mL), and n-heptane (840 mL) was slowly added dropwise at 40 ° C.
  • Tetrahydrofuran 600 mL
  • 1- [4- (chloromethyl) phenyl] -1-H-pyrazole 47.7 g
  • triphenylphosphine 2.89 g
  • aqueous solution 400 mL
  • sodium carbonate 58.4 g
  • Palladium (II) acetate 618 mg was added to the mixture, and decompression and nitrogen substitution were again performed 3 times.
  • the mixture was reacted at 55 ° C. to 65 ° C.
  • Ethanol 1000 mL was added to the concentrated residue, and water (500 mL) was slowly added dropwise at 55 to 65 ° C. After the mixture was cooled to 0 ° C. to 10 ° C., the crystals were collected by filtration and washed twice with ethanol / water (1: 2, 200 mL). Ethyl acetate (300 mL) was added to the wet crystals, and n-heptane (900 mL) was slowly added dropwise at 45 ° C to 55 ° C. The mixture was cooled to 0 ° C.
  • the organic layers were combined, 0.5M aqueous sodium hydroxide solution (500 mL) and 8M aqueous sodium hydroxide solution (50 mL) were added to adjust the pH of the aqueous layer to 12.5 or higher, and liquid separation was performed.
  • the organic layer was re-extracted with 0.5M aqueous sodium hydroxide solution (250 mL).
  • the aqueous layers were combined, and toluene (125 mL) and tetrahydrofuran (125 mL) were added for liquid separation.
  • Activated carbon (5.0 g) was added to the organic layer, and the mixture was stirred at room temperature for 30 minutes, and then the activated carbon was removed by filtration. The mixture was washed 3 times with ethyl acetate (100 mL) and then concentrated. Ethyl acetate (400 mL) was added to the concentrated residue, and 1,4-diazabicyclo [2.2.2] octane (12.0 g) was added at 45 ° C to 55 ° C. The mixture was cooled to 0 ° C. to 10 ° C., and the crystals were collected by filtration and washed 3 times with cooled ethyl acetate (50 mL) to give the title compound (40.1 g) as pale yellow crystals.
  • Example 3 1,5-Anhydro-2,4-dideoxy-2- (4-fluoro-5-methyl-1-oxo-6- (4- (1H-pyrazol-1-yl) benzyl) -1,3-dihydro- Synthesis of 2H-isoindol-2-yl) -L-threo-pentitol 1 of 3-fluoro-2-formyl-4-methyl-5- [4- (1H-pyrazol-1-yl) benzyl] benzoic acid , 4-Diazabicyclo [2.2.2] octane salt (5.00 g) and 2-amino-1,5-anhydro-2,4-dideoxy-L-threo-pentitol (1.37 g) in tetrahydrofuran (50 mL) Was added acetic acid (5 mL).
  • the mixture was stirred at 15 ° C. to 35 ° C. for 15 minutes, and then sodium triacetoxyborohydride (4.70 g) was added at the same temperature.
  • the mixture was stirred at 15 ° C. to 35 ° C. for 30 minutes and then heated to 50 ° C. to 60 ° C.
  • the mixture was reacted at the same temperature for 2 hours, cooled to 15 ° C. to 35 ° C., and ethyl acetate (50 mL) was added.
  • 2M hydrochloric acid 50 mL
  • liquid separation was performed. Ethyl acetate (25 mL) was added to the aqueous layer for re-extraction.
  • toluene (75 mL) and tetrahydrofuran (75 mL) were added to perform re-extraction.
  • the organic layers were combined and washed twice with water (150 mL).
  • 2-butanone (300 mL) and 5% aqueous sodium hydrogen carbonate solution (300 mL) were added and heated to 30 ° C. to 40 ° C., followed by liquid separation.
  • a 5% aqueous sodium hydrogen carbonate solution (150 mL) was added to the organic layer, and the mixture was heated to 30 ° C. to 40 ° C. and then re-extracted (first time).
  • a 5% aqueous sodium hydrogen carbonate solution (150 mL) was added to the organic layer, and the mixture was heated to 30 ° C. to 40 ° C. and then re-extracted (second time).
  • the aqueous layers were combined, ethyl acetate (300 mL) was added, and 6M hydrochloric acid (60 mL) was added dropwise at 20-30 ° C. to adjust the pH of the aqueous layer to 2-3.
  • the organic layer was washed twice with water (150 mL).
  • Activated carbon (3.0 g) was added to the organic layer, and the mixture was stirred at room temperature for 30 minutes, and then the activated carbon was removed by filtration.
  • toluene (75 mL) and tetrahydrofuran (75 mL) were added to perform re-extraction.
  • the organic layers were combined and washed twice with water (150 mL).
  • 2-butanone (300 mL) and 5% aqueous sodium hydrogen carbonate solution (300 mL) were added and heated to 30 ° C. to 40 ° C., followed by liquid separation.
  • a 5% aqueous sodium hydrogen carbonate solution (300 mL) was added to the organic layer, and the mixture was heated to 30 ° C. to 40 ° C. and then re-extracted (first time).
  • a 5% aqueous sodium hydrogen carbonate solution (150 mL) was added to the organic layer, and the mixture was heated to 30 ° C. to 40 ° C. and then re-extracted (second time).
  • the aqueous layers were combined, toluene (150 mL) and tetrahydrofuran (150 mL) were added, and 6M hydrochloric acid (57 mL) was added dropwise at 20-30 ° C. to adjust the pH of the aqueous layer to 2-3.
  • the organic layer was washed with water (150 mL).
  • 2-butanone (300 mL) and 5% aqueous sodium hydrogen carbonate solution (300 mL) were added and heated to 30 ° C.
  • Example 7 1,5-Anhydro-2,4-dideoxy-2- (4-fluoro-5-methyl-1-oxo-6- (4- (1H-pyrazol-1-yl) benzyl) -1,3-dihydro- Synthesis of 2H-isoindol-2-yl) -L-threo-pentitol 1 of 3-fluoro-2-formyl-4-methyl-5- [4- (1H-pyrazol-1-yl) benzyl] benzoic acid , 4-diazabicyclo [2.2.2] octane salt (15.0 g) and 2-amino-1,5-anhydro-2,4-dideoxy-L-threo-pentitol (4.1 g) in tetrahydrofuran (150 mL) Was added acetic acid (15 mL).
  • the mixture was stirred at 15 ° C. to 35 ° C. for 15 minutes, and sodium triacetoxyborohydride (14.1 g) was added at the same temperature.
  • the mixture was stirred at 15 ° C. to 35 ° C. for 30 minutes and then heated to 50 ° C. to 60 ° C.
  • the mixture was reacted at the same temperature for 2 hours, cooled to 15 ° C. to 35 ° C., and ethyl acetate (150 mL) was added.
  • 2M hydrochloric acid 150 mL
  • liquid separation was performed.
  • Ethyl acetate (75 mL) was added to the aqueous layer for re-extraction.
  • Example 8 Synthesis of 5- (4- (1H-pyrazol-1-yl) benzyl) -3-fluoro-2-formyl-N, N-diisopropyl-4-methylbenzamide using a flow reactor Aryl with n-butyllithium Generation of lithium species and subsequent reaction with dimethylformamide was carried out using the flow reactor shown in FIG. 1, and 5- (4- (1H-pyrazol-1-yl) benzyl) -3-fluoro-2-formyl -N, N-diisopropyl-4-methylbenzamide was synthesized.
  • T-shaped micromixers M1, M2; stainless steel SUS tee made by GL Sciences Inc.
  • tube reactor R1; stainless steel tube made by GL Sciences Inc., outer diameter 1/16 inch (1.58mm), inner diameter 1.0 3 tube reactors for pre-cooling (P1, P2, P3; GL Sciences Inc. stainless steel tube, 1/16 inch outer diameter (1.58 mm), inner diameter 1.0 mm, length 500 mm) was connected to provide a flow system for reaction. This was buried in a thermostat set to minus 50 ° C.
  • the T in each step is performed at a predetermined flow rate using a syringe pump manufactured by Isis. Supplied to a character mixer.
  • dimethylformamide (neat) is fed to the T-shaped mixer M2 (inner diameter 1000 ⁇ m) from the tube reactor P3 at a flow rate of 16 mL / min, and the T-shaped mixer M1 is fed in the first reaction. And reacted with the aryllithium intermediate generated in the tube reactor R1.
  • the residence time of the tube reactor R1 was 0.038 seconds. After the start of the liquid delivery by the syringe pump, it was discarded for several seconds until the liquid delivery was stabilized, and the reaction liquid discharged from the flow reactor was collected for 10 seconds after the liquid delivery was stabilized.
  • the reaction solution obtained here was HPLC (Shimadzu Corporation LC-2010C HT, column; YMC-Pack ODS-A 150 ⁇ 4.6 mm (S-5 ⁇ m, 12 nm), acetonitrile / 0.01M potassium dihydrogen phosphate aqueous solution mobile phase.
  • Example 9 Synthesis and isolation of 5- (4- (1H-pyrazol-1-yl) benzyl) -3-fluoro-2-formyl-N, N-diisopropyl-4-methylbenzamide using a flow reactor
  • Generation of the aryllithium species used and subsequent reaction with dimethylformamide was carried out using the flow reactor shown in FIG. 2 to give 5- (4- (1H-pyrazol-1-yl) benzyl) -3-fluoro- 2-Formyl-N, N-diisopropyl-4-methylbenzamide was synthesized.
  • T-shaped micromixers M1, M2; stainless steel SUS tee made by GL Sciences Inc.
  • tube reactor R1; stainless steel tube made by GL Sciences Inc., outer diameter 1/16 inch (1.58mm), inner diameter 1.0 3 tube reactors for pre-cooling (P1, P2, P3; GL Sciences Inc. stainless steel tube, 1/16 inch outer diameter (1.58 mm), inner diameter 1.0 mm, length 500 mm) was connected to provide a flow system for reaction. This was buried in a thermostat set to minus 50 ° C.
  • the T in each step is performed at a predetermined flow rate using a syringe pump manufactured by Isis. Supplied to a character mixer.
  • dimethylformamide (neat) is fed to the T-shaped mixer M2 (inner diameter 1000 ⁇ m) from the tube reactor P3 at a flow rate of 16 mL / min, and the T-shaped mixer M1 is fed in the first reaction. And reacted with the aryllithium intermediate generated in the tube reactor R1.
  • the residence time of the tube reactor R1 was 0.032 seconds. After the start of liquid feeding by the syringe pump, the several seconds until the liquid feeding became stable was discarded, and the reaction liquid discharged from the flow reactor was collected for 90 seconds after the liquid feeding became stable.
  • the reaction solution obtained here was quenched with 67.5 mL of 1M hydrochloric acid, and 45 mL of ethyl acetate was added for liquid separation.
  • Activated carbon 300 mg was added to the organic layer, and the mixture was stirred at room temperature for 30 minutes, and then the activated carbon was filtered off and washed with tetrahydrofuran (9 mL ⁇ 3). The filtrate was concentrated, and ethyl acetate (15 mL) and tetrahydrofuran (6 mL) were added to the concentrated residue. DABCO (827 mg, 0.9 eq) was added to the mixture at 55 ° C., and the mixture was stirred at 50 ° C. to 60 ° C. for 1 hour.
  • 1,5-anhydro-2,4-dideoxy-2- (4-fluoro-5-) useful as a preventive and / or therapeutic agent for Alzheimer's disease and the like without using a highly toxic reagent.
  • Efficient methyl-1-oxo-6- (4- (1H-pyrazol-1-yl) benzyl) -1,3-dihydro-2H-isoindol-2-yl) -L-threo-pentitol (example , Short process, high yield, high selectivity).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

アルツハイマー病等の予防および/または治療薬として有用な複素環化合物の製造方法を提供すること。4-フルオロ-3-ヒドロキシ-5-メチル-6-[4-(1H-ピラゾール-1-イル)ベンジル]-2-ベンゾフラン-1(3H)-オンもしくはその塩、 3-フルオロ-2-ホルミル-4-メチル-5-[4-(1H-ピラゾール-1-イル)ベンジル]安息香酸もしくはその塩、 またはその混合物を、 2-アミノ-1,5-アンヒドロ-2,4-ジデオキシ-L-トレオ-ペンチトールと反応させることを含む、 1,5-アンヒドロ-2,4-ジデオキシ-2-(4-フルオロ-5-メチル-1-オキソ-6-(4-(1H-ピラゾール-1-イル)ベンジル)-1,3-ジヒドロ-2H-イソインドール-2-イル)-L-トレオ-ペンチトールまたはその塩の製造方法。

Description

複素環化合物の製造方法
 本発明は、アルツハイマー病等の予防および/または治療に有用な複素環化合物の製造方法に関する。
(発明の背景)
 1,5-アンヒドロ-2,4-ジデオキシ-2-(4-フルオロ-5-メチル-1-オキソ-6-(4-(1H-ピラゾール-1-イル)ベンジル)-1,3-ジヒドロ-2H-イソインドール-2-イル)-L-トレオ-ペンチトールは、アルツハイマー病等の予防および/または治療薬として有用であることが知られている(特許文献1)。
WO2015/163485
 本発明の目的は、毒性の強い試薬を使用することなく、1,5-アンヒドロ-2,4-ジデオキシ-2-(4-フルオロ-5-メチル-1-オキソ-6-(4-(1H-ピラゾール-1-イル)ベンジル)-1,3-ジヒドロ-2H-イソインドール-2-イル)-L-トレオ-ペンチトールを効率的(例、短工程、高収率、高選択的)に製造する方法を提供することである。
 本発明者らは、上記課題を解決すべく鋭意検討した結果、毒性の強い試薬を使用することなく、1,5-アンヒドロ-2,4-ジデオキシ-2-(4-フルオロ-5-メチル-1-オキソ-6-(4-(1H-ピラゾール-1-イル)ベンジル)-1,3-ジヒドロ-2H-イソインドール-2-イル)-L-トレオ-ペンチトールを効率的(例、短工程、高収率、高選択的)に製造することができることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下の通りである。
[1] 4-フルオロ-3-ヒドロキシ-5-メチル-6-[4-(1H-ピラゾール-1-イル)ベンジル]-2-ベンゾフラン-1(3H)-オンもしくはその塩、
3-フルオロ-2-ホルミル-4-メチル-5-[4-(1H-ピラゾール-1-イル)ベンジル]安息香酸もしくはその塩、
またはその混合物(本明細書中、「PHBO」と略記する場合がある)を、
2-アミノ-1,5-アンヒドロ-2,4-ジデオキシ-L-トレオ-ペンチトール(本明細書中、「ATHP」と略記する場合がある)と反応させることを含む、
1,5-アンヒドロ-2,4-ジデオキシ-2-(4-フルオロ-5-メチル-1-オキソ-6-(4-(1H-ピラゾール-1-イル)ベンジル)-1,3-ジヒドロ-2H-イソインドール-2-イル)-L-トレオ-ペンチトールまたはその塩(本明細書中、「化合物A」と略記する場合がある)の製造方法。
[2] 式(I)
Figure JPOXMLDOC01-appb-C000030
[式中、
R1とR2は、それぞれ独立して、水素原子、または置換されていてもよい炭化水素基を示すか、または、
R1とR2は、隣接する窒素原子と一緒になって、3ないし8員単環式含窒素非芳香族複素環を形成する。]
で表される化合物またはその塩(本明細書中、「化合物(I)」と略記する場合がある)を、加水分解反応に付すことを含む、
PHBOの製造方法。
[3] 式(II)
Figure JPOXMLDOC01-appb-C000031
[式中、
R1とR2は、それぞれ独立して、水素原子、または置換されていてもよい炭化水素基を示すか、または、
R1とR2は、隣接する窒素原子と一緒になって、3ないし8員単環式含窒素非芳香族複素環を形成する。]
で表される化合物またはその塩(本明細書中、「化合物(II)」と略記する場合がある)を、ホルミル化反応に付すことを含む、
化合物(I)の製造方法。
[4] 工程(i):化合物(II)を、ホルミル化反応に付し、化合物(I)を得る工程、および
 工程(ii):化合物(I)を加水分解反応に付す工程、
を含む、PHBOの製造方法。
[5] 工程(i):化合物(II)を、ホルミル化反応に付し、化合物(I)を得る工程、
 工程(ii):化合物(I)を加水分解反応に付し、PHBOを得る工程、および
 工程(iii):PHBOを、ATHPと反応させる工程、
を含む、化合物Aの製造方法。
[6] 4-フルオロ-3-ヒドロキシ-5-メチル-6-[4-(1H-ピラゾール-1-イル)ベンジル]-2-ベンゾフラン-1(3H)-オンまたはその塩。
[7] 3-フルオロ-2-ホルミル-4-メチル-5-[4-(1H-ピラゾール-1-イル)ベンジル]安息香酸またはその塩。
[8] 3-フルオロ-2-ホルミル-4-メチル-N,N-ジ(プロパン-2-イル)-5-[4-(1H-ピラゾール-1-イル)ベンジル]ベンズアミドまたはその塩。
[9] 3-フルオロ-4-メチル-N,N-ジ(プロパン-2-イル)-5-[4-(1H-ピラゾール-1-イル)ベンジル]ベンズアミドまたはその塩。
[10] 式(VIII)
Figure JPOXMLDOC01-appb-C000032
[式中、R6は、水素原子、または置換されていてもよいC1-6アルキル基を示す。]
で表される化合物またはその塩(本明細書中、「化合物(VIII)」と略記する場合がある)を、ホルミル化反応、次いで所望により加水分解反応に付すことを含む、
PHBOの製造方法。
[11] 式(IX)
Figure JPOXMLDOC01-appb-C000033
[式中、
R6は、水素原子、または置換されていてもよいC1-6アルキル基を示し、および
R7は、保護基を示す。]
で表される化合物またはその塩(本明細書中、「化合物(IX)」と略記する場合がある)を、還元反応に付すことを含む、
化合物(VIII)の製造方法。
[12] 式(X)
Figure JPOXMLDOC01-appb-C000034
[式中、R6は、水素原子、または置換されていてもよいC1-6アルキル基を示す。]
で表される化合物またはその塩(本明細書中、「化合物(X)」と略記する場合がある)を、ヒドロキシ基の保護反応に付すことを含む、
化合物(IX)の製造方法。
[13] 式(XI)
Figure JPOXMLDOC01-appb-C000035
[式中、R6は、水素原子、または置換されていてもよいC1-6アルキル基を示す。]
で表される化合物またはその塩(本明細書中、「化合物(XI)」と略記する場合がある)を、
4-(1H-ピラゾール-1-イル)ベンズアルデヒドと反応させることを含む、
化合物(X)の製造方法。
[14] 工程(i):化合物(XI)を、
4-(1H-ピラゾール-1-イル)ベンズアルデヒドと反応させることを含む、
化合物(X)を得る工程、および
 工程(ii):化合物(X)を、ヒドロキシ基の保護反応に付す工程を含む、
化合物(IX)の製造方法。
[15] 工程(i):化合物(XI)を、
4-(1H-ピラゾール-1-イル)ベンズアルデヒドと反応させ、
化合物(X)を得る工程、
 工程(ii):化合物(X)を、ヒドロキシ基の保護反応に付し、
化合物(IX)を得る工程、および
 工程(iii):化合物(IX)を、還元反応に付す工程を含む、
化合物(VIII)の製造方法。
[16] 工程(i):化合物(XI)を、
4-(1H-ピラゾール-1-イル)ベンズアルデヒドと反応させ、
化合物(X)を得る工程、
 工程(ii):化合物(X)を、ヒドロキシ基の保護反応に付し、
化合物(IX)を得る工程、
 工程(iii):化合物(IX)を、還元反応に付し、
化合物(VIII)を得る工程、および
 工程(iv):化合物(VIII)を、ホルミル化反応、次いで所望により加水分解反応に付す工程を含む、
PHBOの製造方法。
[17] 工程(i):化合物(XI)を、
4-(1H-ピラゾール-1-イル)ベンズアルデヒドと反応させることを含む、
化合物(X)を得る工程、
 工程(ii):化合物(X)を、ヒドロキシ基の保護反応に付し、
化合物(IX)を得る工程、
 工程(iii):化合物(IX)を、還元反応に付し、
化合物(VIII)を得る工程、
 工程(iv):化合物(VIII)を、ホルミル化反応、次いで所望により加水分解反応に付し、
PHBOを得る工程、および
 工程(v):PHBOを、ATHPと反応させる工程、
を含む、
化合物Aの製造方法。
 本発明によれば、毒性の強い試薬を使用することなく、アルツハイマー病等の予防および/または治療薬として有用な1,5-アンヒドロ-2,4-ジデオキシ-2-(4-フルオロ-5-メチル-1-オキソ-6-(4-(1H-ピラゾール-1-イル)ベンジル)-1,3-ジヒドロ-2H-イソインドール-2-イル)-L-トレオ-ペンチトールを効率的(例、短工程、高収率、高選択的)に製造することができる。
 毒性の強い試薬としては、例えばスズ、オスミウムが挙げられる。本発明では、これらの試薬の使用に伴うリスク(例、目的物製造者の曝露リスク、目的物への混入リスク)を回避することができる。
実施例8で使用する反応装置(フローリアクター)を示す概略図である。図中のMeはメチル基、i-Prはイソプロピル基を示す。 実施例9で使用する反応装置(フローリアクター)を示す概略図である。図中のMeはメチル基、i-Prはイソプロピル基を示す。
(発明の詳細な説明)
 以下に、本発明を詳細に説明する。
 以下、本明細書中で用いられる各置換基の定義について詳述する。特記しない限り各置換基は以下の定義を有する。
 本明細書中、「ハロゲン原子」としては、例えば、フッ素、塩素、臭素、ヨウ素が挙げられる。
 本明細書中、「C1-6アルキル基」としては、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル、ペンチル、イソペンチル、ネオペンチル、1-エチルプロピル、ヘキシル、イソヘキシル、1,1-ジメチルブチル、2,2-ジメチルブチル、3,3-ジメチルブチル、2-エチルブチルが挙げられる。
 本明細書中、「ハロゲン化されていてもよいC1-6アルキル基」としては、例えば、1ないし7個、好ましくは1ないし5個のハロゲン原子を有していてもよいC1-6アルキル基が挙げられる。具体例としては、メチル、クロロメチル、ジフルオロメチル、トリクロロメチル、トリフルオロメチル、エチル、2-ブロモエチル、2,2,2-トリフルオロエチル、テトラフルオロエチル、ペンタフルオロエチル、プロピル、2,2―ジフルオロプロピル、3,3,3-トリフルオロプロピル、イソプロピル、ブチル、4,4,4-トリフルオロブチル、イソブチル、sec-ブチル、tert-ブチル、ペンチル、イソペンチル、ネオペンチル、5,5,5-トリフルオロペンチル、ヘキシル、6,6,6-トリフルオロヘキシルが挙げられる。
 本明細書中、「C2-6アルケニル基」としては、例えば、エテニル、1-プロペニル、2-プロペニル、2-メチル-1-プロペニル、1-ブテニル、2-ブテニル、3-ブテニル、3-メチル-2-ブテニル、1-ペンテニル、2-ペンテニル、3-ペンテニル、4-ペンテニル、4-メチル-3-ペンテニル、1-ヘキセニル、3-ヘキセニル、5-ヘキセニルが挙げられる。
 本明細書中、「C2-6アルキニル基」としては、例えば、エチニル、1-プロピニル、2-プロピニル、1-ブチニル、2-ブチニル、3-ブチニル、1-ペンチニル、2-ペンチニル、3-ペンチニル、4-ペンチニル、1-ヘキシニル、2-ヘキシニル、3-ヘキシニル、4-ヘキシニル、5-ヘキシニル、4-メチル-2-ペンチニルが挙げられる。
 本明細書中、「C3-10シクロアルキル基」としては、例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、ビシクロ[2.2.1]ヘプチル、ビシクロ[2.2.2]オクチル、ビシクロ[3.2.1]オクチル、アダマンチルが挙げられる。
 本明細書中、「ハロゲン化されていてもよいC3-10シクロアルキル基」としては、例えば、1ないし7個、好ましくは1ないし5個のハロゲン原子を有していてもよいC3-10シクロアルキル基が挙げられる。具体例としては、シクロプロピル、2,2-ジフルオロシクロプロピル、2,3-ジフルオロシクロプロピル、シクロブチル、ジフルオロシクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチルが挙げられる。
 本明細書中、「C3-10シクロアルケニル基」としては、例えば、シクロプロペニル、シクロブテニル、シクロペンテニル、シクロヘキセニル、シクロヘプテニル、シクロオクテニルが挙げられる。
 本明細書中、「C6-14アリール基」としては、例えば、フェニル、1-ナフチル、2-ナフチル、1-アントリル、2-アントリル、9-アントリルが挙げられる。
 本明細書中、「C7-16アラルキル基」としては、例えば、ベンジル、フェネチル、ナフチルメチル、フェニルプロピルが挙げられる。
 本明細書中、「C1-6アルコキシ基」としては、例えば、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、イソブトキシ、sec-ブトキシ、tert-ブトキシ、ペンチルオキシ、ヘキシルオキシが挙げられる。
 本明細書中、「ハロゲン化されていてもよいC1-6アルコキシ基」としては、例えば、1ないし7個、好ましくは1ないし5個のハロゲン原子を有していてもよいC1-6アルコキシ基が挙げられる。具体例としては、メトキシ、ジフルオロメトキシ、トリフルオロメトキシ、エトキシ、2,2,2-トリフルオロエトキシ、プロポキシ、イソプロポキシ、ブトキシ、4,4,4-トリフルオロブトキシ、イソブトキシ、sec-ブトキシ、ペンチルオキシ、ヘキシルオキシが挙げられる。
 本明細書中、「C3-10シクロアルキルオキシ基」としては、例えば、シクロプロピルオキシ、シクロブチルオキシ、シクロペンチルオキシ、シクロヘキシルオキシ、シクロヘプチルオキシ、シクロオクチルオキシが挙げられる。
 本明細書中、「C1-6アルキルチオ基」としては、例えば、メチルチオ、エチルチオ、プロピルチオ、イソプロピルチオ、ブチルチオ、sec-ブチルチオ、tert-ブチルチオ、ペンチルチオ、ヘキシルチオが挙げられる。
 本明細書中、「ハロゲン化されていてもよいC1-6アルキルチオ基」としては、例えば、1ないし7個、好ましくは1ないし5個のハロゲン原子を有していてもよいC1-6アルキルチオ基が挙げられる。具体例としては、メチルチオ、ジフルオロメチルチオ、トリフルオロメチルチオ、エチルチオ、プロピルチオ、イソプロピルチオ、ブチルチオ、4,4,4-トリフルオロブチルチオ、ペンチルチオ、ヘキシルチオが挙げられる。
 本明細書中、「C1-6アルキル-カルボニル基」としては、例えば、アセチル、プロパノイル、ブタノイル、2-メチルプロパノイル、ペンタノイル、3-メチルブタノイル、2-メチルブタノイル、2,2-ジメチルプロパノイル、ヘキサノイル、ヘプタノイルが挙げられる。
 本明細書中、「ハロゲン化されていてもよいC1-6アルキル-カルボニル基」としては、例えば、1ないし7個、好ましくは1ないし5個のハロゲン原子を有していてもよいC1-6アルキル-カルボニル基が挙げられる。具体例としては、アセチル、クロロアセチル、トリフルオロアセチル、トリクロロアセチル、プロパノイル、ブタノイル、ペンタノイル、ヘキサノイルが挙げられる。
 本明細書中、「C1-6アルコキシ-カルボニル基」としては、例えば、メトキシカルボニル、エトキシカルボニル、プロポキシカルボニル、イソプロポキシカルボニル、ブトキシカルボニル、イソブトキシカルボニル、sec-ブトキシカルボニル、tert-ブトキシカルボニル、ペンチルオキシカルボニル、ヘキシルオキシカルボニルが挙げられる。
 本明細書中、「C6-14アリール-カルボニル基」としては、例えば、ベンゾイル、1-ナフトイル、2-ナフトイルが挙げられる。
 本明細書中、「C7-16アラルキル-カルボニル基」としては、例えば、フェニルアセチル、フェニルプロピオニルが挙げられる。
 本明細書中、「5ないし14員芳香族複素環カルボニル基」としては、例えば、ニコチノイル、イソニコチノイル、テノイル、フロイルが挙げられる。
 本明細書中、「3ないし14員非芳香族複素環カルボニル基」としては、例えば、モルホリニルカルボニル、ピペリジニルカルボニル、ピロリジニルカルボニルが挙げられる。
 本明細書中、「モノ-またはジ-C1-6アルキル-カルバモイル基」としては、例えば、メチルカルバモイル、エチルカルバモイル、ジメチルカルバモイル、ジエチルカルバモイル、N-エチル-N-メチルカルバモイルが挙げられる。
 本明細書中、「モノ-またはジ-C7-16アラルキル-カルバモイル基」としては、例えば、ベンジルカルバモイル、フェネチルカルバモイルが挙げられる。
 本明細書中、「C1-6アルキルスルホニル基」としては、例えば、メチルスルホニル、エチルスルホニル、プロピルスルホニル、イソプロピルスルホニル、ブチルスルホニル、sec-ブチルスルホニル、tert-ブチルスルホニルが挙げられる。
 本明細書中、「ハロゲン化されていてもよいC1-6アルキルスルホニル基」としては、例えば、1ないし7個、好ましくは1ないし5個のハロゲン原子を有していてもよいC1-6アルキルスルホニル基が挙げられる。具体例としては、メチルスルホニル、ジフルオロメチルスルホニル、トリフルオロメチルスルホニル、エチルスルホニル、プロピルスルホニル、イソプロピルスルホニル、ブチルスルホニル、4,4,4-トリフルオロブチルスルホニル、ペンチルスルホニル、ヘキシルスルホニルが挙げられる。
 本明細書中、「C6-14アリールスルホニル基」としては、例えば、フェニルスルホニル、1-ナフチルスルホニル、2-ナフチルスルホニルが挙げられる。
 本明細書中、「炭化水素基」(「置換されていてもよい炭化水素基」における「炭化水素基」を含む)としては、例えば、C1-6アルキル基、C2-6アルケニル基、C2-6アルキニル基、C3-10シクロアルキル基、C3-10シクロアルケニル基、C6-14アリール基、C7-16アラルキル基が挙げられる。
 本明細書中、「置換されていてもよい炭化水素基」としては、例えば、下記の置換基群Aから選ばれる置換基を有していてもよい炭化水素基が挙げられる。
[置換基群A]
(1)ハロゲン原子、
(2)ニトロ基、
(3)シアノ基、
(4)オキソ基、
(5)ヒドロキシ基、
(6)ハロゲン化されていてもよいC1-6アルコキシ基、
(7)C6-14アリールオキシ基(例、フェノキシ、ナフトキシ)、
(8)C7-16アラルキルオキシ基(例、ベンジルオキシ)、
(9)5ないし14員芳香族複素環オキシ基(例、ピリジルオキシ)、
(10)3ないし14員非芳香族複素環オキシ基(例、モルホリニルオキシ、ピペリジニルオキシ)、
(11)C1-6アルキル-カルボニルオキシ基(例、アセトキシ、プロパノイルオキシ)、
(12)C6-14アリール-カルボニルオキシ基(例、ベンゾイルオキシ、1-ナフトイルオキシ、2-ナフトイルオキシ)、
(13)C1-6アルコキシ-カルボニルオキシ基(例、メトキシカルボニルオキシ、エトキシカルボニルオキシ、プロポキシカルボニルオキシ、ブトキシカルボニルオキシ)、
(14)モノ-またはジ-C1-6アルキル-カルバモイルオキシ基(例、メチルカルバモイルオキシ、エチルカルバモイルオキシ、ジメチルカルバモイルオキシ、ジエチルカルバモイルオキシ)、
(15)C6-14アリール-カルバモイルオキシ基(例、フェニルカルバモイルオキシ、ナフチルカルバモイルオキシ)、
(16)5ないし14員芳香族複素環カルボニルオキシ基(例、ニコチノイルオキシ)、
(17)3ないし14員非芳香族複素環カルボニルオキシ基(例、モルホリニルカルボニルオキシ、ピペリジニルカルボニルオキシ)、
(18)ハロゲン化されていてもよいC1-6アルキルスルホニルオキシ基(例、メチルスルホニルオキシ、トリフルオロメチルスルホニルオキシ)、
(19)C1-6アルキル基で置換されていてもよいC6-14アリールスルホニルオキシ基(例、フェニルスルホニルオキシ、トルエンスルホニルオキシ)、
(20)ハロゲン化されていてもよいC1-6アルキルチオ基、
(21)5ないし14員芳香族複素環基、
(22)3ないし14員非芳香族複素環基、
(23)ホルミル基、
(24)カルボキシ基、
(25)ハロゲン化されていてもよいC1-6アルキル-カルボニル基、
(26)C6-14アリール-カルボニル基、
(27)5ないし14員芳香族複素環カルボニル基、
(28)3ないし14員非芳香族複素環カルボニル基、
(29)C1-6アルコキシ-カルボニル基、
(30)C6-14アリールオキシ-カルボニル基(例、フェニルオキシカルボニル、1-ナフチルオキシカルボニル、2-ナフチルオキシカルボニル)、
(31)C7-16アラルキルオキシ-カルボニル基(例、ベンジルオキシカルボニル、フェネチルオキシカルボニル)、
(32)カルバモイル基、
(33)チオカルバモイル基、
(34)モノ-またはジ-C1-6アルキル-カルバモイル基、
(35)C6-14アリール-カルバモイル基(例、フェニルカルバモイル)、
(36)5ないし14員芳香族複素環カルバモイル基(例、ピリジルカルバモイル、チエニルカルバモイル)、
(37)3ないし14員非芳香族複素環カルバモイル基(例、モルホリニルカルバモイル、ピペリジニルカルバモイル)、
(38)ハロゲン化されていてもよいC1-6アルキルスルホニル基、
(39)C6-14アリールスルホニル基、
(40)5ないし14員芳香族複素環スルホニル基(例、ピリジルスルホニル、チエニルスルホニル)、
(41)ハロゲン化されていてもよいC1-6アルキルスルフィニル基、
(42)C6-14アリールスルフィニル基(例、フェニルスルフィニル、1-ナフチルスルフィニル、2-ナフチルスルフィニル)、
(43)5ないし14員芳香族複素環スルフィニル基(例、ピリジルスルフィニル、チエニルスルフィニル)、
(44)アミノ基、
(45)モノ-またはジ-C1-6アルキルアミノ基(例、メチルアミノ、エチルアミノ、プロピルアミノ、イソプロピルアミノ、ブチルアミノ、ジメチルアミノ、ジエチルアミノ、ジプロピルアミノ、ジブチルアミノ、N-エチル-N-メチルアミノ)、
(46)モノ-またはジ-C6-14アリールアミノ基(例、フェニルアミノ)、
(47)5ないし14員芳香族複素環アミノ基(例、ピリジルアミノ)、
(48)C7-16アラルキルアミノ基(例、ベンジルアミノ)、
(49)ホルミルアミノ基、
(50)C1-6アルキル-カルボニルアミノ基(例、アセチルアミノ、プロパノイルアミノ、ブタノイルアミノ)、
(51)(C1-6アルキル)(C1-6アルキル-カルボニル)アミノ基(例、N-アセチル-N-メチルアミノ)、
(52)C6-14アリール-カルボニルアミノ基(例、フェニルカルボニルアミノ、ナフチルカルボニルアミノ)、
(53)C1-6アルコキシ-カルボニルアミノ基(例、メトキシカルボニルアミノ、エトキシカルボニルアミノ、プロポキシカルボニルアミノ、ブトキシカルボニルアミノ、tert-ブトキシカルボニルアミノ)、
(54)C7-16アラルキルオキシ-カルボニルアミノ基(例、ベンジルオキシカルボニルアミノ)、
(55)C1-6アルキルスルホニルアミノ基(例、メチルスルホニルアミノ、エチルスルホニルアミノ)、
(56)C1-6アルキル基で置換されていてもよいC6-14アリールスルホニルアミノ基(例、フェニルスルホニルアミノ、トルエンスルホニルアミノ)、
(57)ハロゲン化されていてもよいC1-6アルキル基、
(58)C2-6アルケニル基、
(59)C2-6アルキニル基、
(60)C3-10シクロアルキル基、
(61)C3-10シクロアルケニル基、及び
(62)C6-14アリール基。
 「置換されていてもよい炭化水素基」における上記置換基の数は、例えば、1ないし5個、好ましくは1ないし3個である。置換基数が2個以上の場合、各置換基は同一であっても異なっていてもよい。
 本明細書中、「芳香族複素環基」(「5ないし14員芳香族複素環基」を含む)としては、例えば、環構成原子として炭素原子以外に窒素原子、硫黄原子および酸素原子から選ばれる1ないし4個のヘテロ原子を含有する5ないし14員(好ましくは5ないし10員)の芳香族複素環基が挙げられる。
 該「芳香族複素環基」の好適な例としては、チエニル、フリル、ピロリル、イミダゾリル、ピラゾリル、チアゾリル、イソチアゾリル、オキサゾリル、イソオキサゾリル、ピリジル、ピラジニル、ピリミジニル、ピリダジニル、1,2,4-オキサジアゾリル、1,3,4-オキサジアゾリル、1,2,4-チアジアゾリル、1,3,4-チアジアゾリル、トリアゾリル、テトラゾリル、トリアジニルなどの5ないし6員単環式芳香族複素環基;
ベンゾチオフェニル、ベンゾフラニル、ベンゾイミダゾリル、ベンゾオキサゾリル、ベンゾイソオキサゾリル、ベンゾチアゾリル、ベンゾイソチアゾリル、ベンゾトリアゾリル、イミダゾピリジニル、チエノピリジニル、フロピリジニル、ピロロピリジニル、ピラゾロピリジニル、オキサゾロピリジニル、チアゾロピリジニル、イミダゾピラジニル、イミダゾピリミジニル、チエノピリミジニル、フロピリミジニル、ピロロピリミジニル、ピラゾロピリミジニル、オキサゾロピリミジニル、チアゾロピリミジニル、ピラゾロトリアジニル、ナフト[2,3-b]チエニル、フェノキサチイニル、インドリル、イソインドリル、1H-インダゾリル、プリニル、イソキノリル、キノリル、フタラジニル、ナフチリジニル、キノキサリニル、キナゾリニル、シンノリニル、カルバゾリル、β-カルボリニル、フェナントリジニル、アクリジニル、フェナジニル、フェノチアジニル、フェノキサジニルなどの8ないし14員縮合多環式(好ましくは2または3環式)芳香族複素環基が挙げられる。
 本明細書中、「非芳香族複素環基」(「3ないし14員非芳香族複素環基」を含む)としては、例えば、環構成原子として炭素原子以外に窒素原子、硫黄原子および酸素原子から選ばれる1ないし4個のヘテロ原子を含有する3ないし14員(好ましくは4ないし10員)の非芳香族複素環基が挙げられる。
 該「非芳香族複素環基」の好適な例としては、アジリジニル、オキシラニル、チイラニル、アゼチジニル、オキセタニル、チエタニル、テトラヒドロチエニル、テトラヒドロフラニル、ピロリニル、ピロリジニル、イミダゾリニル、イミダゾリジニル、オキサゾリニル、オキサゾリジニル、ピラゾリニル、ピラゾリジニル、チアゾリニル、チアゾリジニル、テトラヒドロイソチアゾリル、テトラヒドロオキサゾリル、テトラヒドロイソオキサゾリル、ピペリジニル、ピペラジニル、テトラヒドロピリジニル、ジヒドロピリジニル、ジヒドロチオピラニル、テトラヒドロピリミジニル、テトラヒドロピリダジニル、ジヒドロピラニル、テトラヒドロピラニル、テトラヒドロチオピラニル、モルホリニル、チオモルホリニル、アゼパニル、ジアゼパニル、アゼピニル、オキセパニル、アゾカニル、ジアゾカニルなどの3ないし8員単環式非芳香族複素環基;
ジヒドロベンゾフラニル、ジヒドロベンゾイミダゾリル、ジヒドロベンゾオキサゾリル、ジヒドロベンゾチアゾリル、ジヒドロベンゾイソチアゾリル、ジヒドロナフト[2,3-b]チエニル、テトラヒドロイソキノリル、テトラヒドロキノリル、4H-キノリジニル、インドリニル、イソインドリニル、テトラヒドロチエノ[2,3-c]ピリジニル、テトラヒドロベンゾアゼピニル、テトラヒドロキノキサリニル、テトラヒドロフェナントリジニル、ヘキサヒドロフェノチアジニル、ヘキサヒドロフェノキサジニル、テトラヒドロフタラジニル、テトラヒドロナフチリジニル、テトラヒドロキナゾリニル、テトラヒドロシンノリニル、テトラヒドロカルバゾリル、テトラヒドロ-β-カルボリニル、テトラヒドロアクリジニル、テトラヒドロフェナジニル、テトラヒドロチオキサンテニル、オクタヒドロイソキノリルなどの9ないし14員縮合多環式(好ましくは2または3環式)非芳香族複素環基が挙げられる。
 本明細書中、「置換されていてもよいヒドロキシ基」としては、例えば、「置換基群Aから選ばれる1ないし3個の置換基をそれぞれ有していてもよい、C1-6アルキル基、C2-6アルケニル基、C3-10シクロアルキル基、C6-14アリール基、C7-16アラルキル基、C1-6アルキル-カルボニル基、C6-14アリール-カルボニル基、C7-16アラルキル-カルボニル基、5ないし14員芳香族複素環カルボニル基、3ないし14員非芳香族複素環カルボニル基、C1-6アルコキシ-カルボニル基、5ないし14員芳香族複素環基、カルバモイル基、モノ-またはジ-C1-6アルキル-カルバモイル基、モノ-またはジ-C7-16アラルキル-カルバモイル基、C1-6アルキルスルホニル基およびC6-14アリールスルホニル基から選ばれる置換基」を有していてもよいヒドロキシ基が挙げられる。
 置換されていてもよいヒドロキシ基の好適な例としては、ヒドロキシ基、C1-6アルコキシ基、C2-6アルケニルオキシ基(例、アリルオキシ、2-ブテニルオキシ、2-ペンテニルオキシ、3-ヘキセニルオキシ)、C3-10シクロアルキルオキシ基(例、シクロヘキシルオキシ)、C6-14アリールオキシ基(例、フェノキシ、ナフチルオキシ)、C7-16アラルキルオキシ基(例、ベンジルオキシ、フェネチルオキシ)、C1-6アルキル-カルボニルオキシ基(例、アセチルオキシ、プロピオニルオキシ、ブチリルオキシ、イソブチリルオキシ、ピバロイルオキシ)、C6-14アリール-カルボニルオキシ基(例、ベンゾイルオキシ)、C7-16アラルキル-カルボニルオキシ基(例、ベンジルカルボニルオキシ)、5ないし14員芳香族複素環カルボニルオキシ基(例、ニコチノイルオキシ)、3ないし14員非芳香族複素環カルボニルオキシ基(例、ピペリジニルカルボニルオキシ)、C1-6アルコキシ-カルボニルオキシ基(例、tert-ブトキシカルボニルオキシ)、5ないし14員芳香族複素環オキシ基(例、ピリジルオキシ)、カルバモイルオキシ基、C1-6アルキル-カルバモイルオキシ基(例、メチルカルバモイルオキシ)、C7-16アラルキル-カルバモイルオキシ基(例、ベンジルカルバモイルオキシ)、C1-6アルキルスルホニルオキシ基(例、メチルスルホニルオキシ、エチルスルホニルオキシ)、C6-14アリールスルホニルオキシ基(例、フェニルスルホニルオキシ)が挙げられる。
 以下に、式(I)、(II)および(VIII)~(XI)中の各記号の定義について詳述する。
 R1とR2は、それぞれ独立して、水素原子、または置換されていてもよい炭化水素基を示すか、または、R1とR2は、隣接する窒素原子と一緒になって、3ないし8員単環式含窒素非芳香族複素環を形成する。
 R1またはR2で示される「置換されていてもよい炭化水素基」は、好ましくはC1-6アルキル基(例、メチル、エチル、イソプロピル、tert-ブチル)、C3-10シクロアルキル基、C6-14アリール基(例、フェニル)、C7-16アラルキル基であり、さらに好ましくはC1-6アルキル基であり、とりわけイソプロピルが好ましい。
 R1とR2とが隣接する窒素原子と一緒になって形成する「3ないし8員単環式含窒素非芳香族複素環」の好適なものとしては、ピロリジン環、ピペリジン環、モルホリン環等が挙げられる。
 R1とR2は、好ましくは、それぞれ独立して、水素原子、C1-6アルキル基(好ましくは、メチル、エチル、イソプロピル、tert-ブチル)またはC6-14アリール基(好ましくは、フェニル)であるか、または、R1とR2は、隣接する窒素原子と一緒になって、3ないし8員単環式含窒素非芳香族複素環(好ましくは、ピロリジン環)を形成する。R1とR2は、より好ましくは、それぞれ独立して、C1-6アルキル基(好ましくは、メチル、エチル、イソプロピル、tert-ブチル)であり、さらに好ましくは、ともにイソプロピルである。
 なお、化合物(I)において、R1およびR2のいずれか一方が水素原子である場合、以下のようにホルミル基とアミド基とが結合して閉環構造を取り得る。このような閉環構造体もまた、化合物(I)に含まれる。
Figure JPOXMLDOC01-appb-C000036
[式中の記号は前記と同意義を示す]
 好ましい実施態様では、
 化合物(I)が、3-フルオロ-2-ホルミル-4-メチル-N,N-ジ(プロパン-2-イル)-5-[4-(1H-ピラゾール-1-イル)ベンジル]ベンズアミドまたはその塩であり、好ましくは3-フルオロ-2-ホルミル-4-メチル-N,N-ジ(プロパン-2-イル)-5-[4-(1H-ピラゾール-1-イル)ベンジル]ベンズアミドであり、
 化合物(II)が、3-フルオロ-4-メチル-N,N-ジ(プロパン-2-イル)-5-[4-(1H-ピラゾール-1-イル)ベンジル]ベンズアミドまたはその塩、好ましくは3-フルオロ-4-メチル-N,N-ジ(プロパン-2-イル)-5-[4-(1H-ピラゾール-1-イル)ベンジル]ベンズアミドである。
 R6は、水素原子、または置換されていてもよいC1-6アルキル基を示す。
 R6で示される「置換されていてもよいC1-6アルキル基」は、好ましくはC1-6アルキル基(例、エチル、tert-ブチル)であり、より好ましくはtert-ブチルである。
 R7は、保護基を示す。
 R7で示される「保護基」としては、当該分野においてヒドロキシ基の保護基として通常用いられる基が挙げられる。R7で示される「保護基」は、好ましくはC1-6アルキル-カルボニル基(例、メチルカルボニル)であり、より好ましくはメチルカルボニルである。
 化合物(I)、化合物(II)または化合物(VIII)~(XI)が塩である場合、このような塩としては、例えば、金属塩、アンモニウム塩、有機塩基との塩、無機酸との塩、有機酸との塩、塩基性又は酸性アミノ酸との塩が挙げられる。
 金属塩の好適な例としては、ナトリウム塩、カリウム塩などのアルカリ金属塩;カルシウム塩、マグネシウム塩、バリウム塩などのアルカリ土類金属塩;アルミニウム塩などが挙げられる。
 有機塩基との塩の好適な例としては、トリメチルアミン、トリエチルアミン、ピリジン、ピコリン、2,6-ルチジン、エタノールアミン、ジエタノールアミン、トリエタノールアミン、シクロヘキシルアミン、ジシクロヘキシルアミン、N,N’-ジベンジルエチレンジアミンなどとの塩が挙げられる。
 無機酸との塩の好適な例としては、フッ化水素酸、塩酸、臭化水素酸、ヨウ化水素酸、硝酸、硫酸、亜硫酸、リン酸、亜リン酸、炭酸、重炭酸などとの塩が挙げられる。
 有機酸との塩の好適な例としては、カルボン酸(即ち、1個以上のカルボキシ基を有する有機化合物;具体例としては、ギ酸、酢酸、安息香酸、トリフルオロ酢酸、フタル酸、フマル酸、シュウ酸、酒石酸、マレイン酸、クエン酸、コハク酸、リンゴ酸など);スルホン酸(即ち、1個以上のスルホ基を有する有機化合物;具体例としては、メタンスルホン酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、カンファースルホン酸など)との塩が挙げられる。
 塩基性アミノ酸との塩の好適な例としては、アルギニン、リジン、オルニチンなどとの塩が挙げられ、酸性アミノ酸との塩の好適な例としては、アスパラギン酸、グルタミン酸などとの塩が挙げられる。
 化合物(I)、化合物(II)および化合物(VIII)~(XI)には、エナンチオマーあるいはジアステレオマーなどの異性体が存在しうる。このような異性体およびそれらの混合物はすべて化合物(I)、(II)および(VIII)~(XI)に包含される。また、コンホメーションあるいは互変異性による異性体が生成する場合があるが、このような異性体あるいはその混合物も化合物(I)、(II)および(VIII)~(XI)に包含される。
 化合物(I)、化合物(II)および化合物(VIII)~(XI)は、それぞれ、溶媒和物(例、水和物、エタノール和物等)であっても、無溶媒和物(例、非水和物等)であってもよく、いずれも化合物(I)、(II)および(VIII)~(XI)に包含される。
 同位元素(例、H、H、11C、14C、18F、35S、125Iなど)等で標識された化合物も、化合物(I)、化合物(II)および化合物(VIII)~(XI)に包含される。
 以下、本発明の製造方法について詳述する。
(製造法A)
 本発明は、PHBOをATHPと反応させることを含む、化合物Aの製造方法である。
 上記反応のスキームを以下に示す(以下、工程(iii)と称す)。
Figure JPOXMLDOC01-appb-C000037
 工程(iii)は、後述の製造法における工程06に相当する。
 PHBOとしては、4-フルオロ-3-ヒドロキシ-5-メチル-6-[4-(1H-ピラゾール-1-イル)ベンジル]-2-ベンゾフラン-1(3H)-オンまたはその塩、3-フルオロ-2-ホルミル-4-メチル-5-[4-(1H-ピラゾール-1-イル)ベンジル]安息香酸またはその塩、およびこれらの任意の割合での混合物のいずれを用いてもよい。ここで、塩としては、化合物(I)または(II)における塩として例示したものが用いられる。
 PHBOは、好ましくは3-フルオロ-2-ホルミル-4-メチル-5-[4-(1H-ピラゾール-1-イル)ベンジル]安息香酸またはその塩であり、さらに好ましくは3-フルオロ-2-ホルミル-4-メチル-5-[4-(1H-ピラゾール-1-イル)ベンジル]安息香酸の1,4-ジアザビシクロ[2.2.2]オクタン塩である。
 化合物Aにおける塩としては、化合物(I)などにおける塩として例示したもののうち、薬理学的に許容し得る塩が用いられる。化合物Aは、好ましくは1,5-アンヒドロ-2,4-ジデオキシ-2-(4-フルオロ-5-メチル-1-オキソ-6-(4-(1H-ピラゾール-1-イル)ベンジル)-1,3-ジヒドロ-2H-イソインドール-2-イル)-L-トレオ-ペンチトールである。
(製造法B)
 本発明はまた、化合物(I)を、加水分解反応に付すことを含む、PHBOの製造方法に関する。
 上記反応のスキームを以下に示す(以下、工程(ii)と称す)。
Figure JPOXMLDOC01-appb-C000038
[式中の記号は前記と同意義を示す]
 工程(ii)は、後述の製造法における工程05に相当する。
(製造法C)
 本発明はまた、化合物(II)を、ホルミル化反応に付すことを含む、化合物(I)の製造方法に関する。
 上記反応のスキームを以下に示す(以下、工程(i)と称す)。
Figure JPOXMLDOC01-appb-C000039
[式中の記号は前記と同意義を示す]
 工程(i)は、後述の製造法における工程04(工程04-1を含む)に相当する。
 工程(i)の別の実施態様として、化合物(II)を、フローリアクターでホルミル化反応に付すことを含む、連続した製造方法が挙げられる。
(製造法D)
 本発明はまた、工程(i):化合物(II)を、ホルミル化反応に付し、化合物(I)を得る工程、および工程(ii):化合物(I)を加水分解反応に付す工程を含む、PHBOの製造方法に関する。
 上記反応のスキームを以下に示す。
Figure JPOXMLDOC01-appb-C000040
[式中の記号は前記と同意義を示す]
 工程(i)および工程(ii)は、それぞれ後述の製造法における工程04(工程04-1を含む)および05に相当する。
(製造法E)
 本発明はまた、工程(i):化合物(II)を、ホルミル化反応に付し、化合物(I)を得る工程、工程(ii):化合物(I)を加水分解反応に付し、PHBOを得る工程、および工程(iii):PHBOを、ATHPと反応させる工程を含む、化合物Aの製造方法に関する。
 上記反応のスキームを以下に示す。
Figure JPOXMLDOC01-appb-C000041
[式中の記号は前記と同意義を示す]
 工程(i)、工程(ii)および工程(iii)は、それぞれ以下で説明する製造法における工程04(工程04-1を含む)、05および06に相当する。
 なお、PHBOに含まれる4-フルオロ-3-ヒドロキシ-5-メチル-6-[4-(1H-ピラゾール-1-イル)ベンジル]-2-ベンゾフラン-1(3H)-オンまたはその塩は新規化合物である。
 また、PHBOに含まれる3-フルオロ-2-ホルミル-4-メチル-5-[4-(1H-ピラゾール-1-イル)ベンジル]安息香酸またはその塩は新規化合物である。
 3-フルオロ-2-ホルミル-4-メチル-N,N-ジ(プロパン-2-イル)-5-[4-(1H-ピラゾール-1-イル)ベンジル]ベンズアミド(R1およびR2がともにイソプロピルである化合物(I))またはその塩は新規化合物である。
 3-フルオロ-4-メチル-N,N-ジ(プロパン-2-イル)-5-[4-(1H-ピラゾール-1-イル)ベンジル]ベンズアミド(R1およびR2がともにイソプロピルである式(II)の化合物)またはその塩は新規化合物である。
 化合物Aは、下記の反応式に示す製造法によって製造することができる。
 下記の反応式に示す製造法において「室温」は通常約10℃ないし約35℃を示す。
Figure JPOXMLDOC01-appb-C000042
[式中、
 R1とR2は前記と同意義を示す。
 R3、R4は、それぞれ独立して、水素原子、または置換されていてもよい炭化水素基を示すか、または、R3とR4は、隣接するホウ素原子と一緒になって、3ないし8員単環式含ホウ素非芳香族複素環、または9ないし14員縮合2環式含ホウ素非芳香族複素環を形成する。R5は(1)水素原子、(2)置換されていてもよいC1-6アルコキシ基、(3)(i)C1-6アルキル基および(ii)フェニル基から選ばれる1ないし3個の置換基で置換されていてもよいケイ素、(4)C1-6アルコキシ基およびヒドロキシ基から選ばれる1ないし3個の置換基で置換されていてもよいホウ素原子、または4,4,5,5-テトラメチル-[1,3,2]ジオキサボロラン-2-イル基を示す。
 Xはハロゲン原子、または置換されていてもよいヒドロキシ基を示す。]
 R3、R4で示される置換されていてもよい炭化水素基は、好ましくはC1-6アルキル基(好ましくは、イソプロピル)である。
 R5で示される置換されていてもよいC1-6アルコキシ基としては、前記の置換基群Aから選ばれる1ないし3個の置換基を有していてもよいC1-6アルコキシ基が挙げられる。なかでも、C1-6アルコキシ基(好ましくはイソプロポキシ)が好ましい。
 上記3ないし8員単環式含ホウ素非芳香族複素環としては、環構成原子として少なくとも1個のホウ素原子(好ましくは1個)を含む3ないし8員単環式非芳香族複素環が挙げられる。該3ないし8員単環式含ホウ素非芳香族複素環は、ホウ素原子以外に環構成原子として窒素原子、硫黄原子、酸素原子を含んでいてもよく、好ましくは、ホウ素原子以外に酸素原子を含むものが挙げられる。
 上記9ないし14員縮合2環式含ホウ素非芳香族複素環としては、環構成原子として少なくとも1個のホウ素原子(好ましくは1個)を含む9ないし14員縮合2環式非芳香族複素環が挙げられる。該9ないし14員縮合2環式含ホウ素非芳香族複素環は、ホウ素原子以外に環構成原子として窒素原子、硫黄原子、酸素原子を含んでいてもよく、好ましくは、ホウ素原子以外に酸素原子を含むものが挙げられる。
 Xは、好ましくはハロゲン原子(好ましくは塩素原子)である。
 以下に、上記製造法に用いる試薬や条件について工程ごとに詳述する。
[工程01]
 当該工程では、3-フルオロ-5-ヨード-4-メチル安息香酸またはその塩(本明細書中、「FIMA」と略記する場合がある)を式(V)で表される化合物またはその塩(本明細書中、「化合物(V)」と略記する場合がある)と反応させることにより、式(III)で表される化合物またはその塩(本明細書中、「化合物(III)」と略記する場合がある)を製造する。
 工程01は、例えば以下の工程01-1、01-2、01-3、01-4を含む。
[工程01-1]
 工程01の反応は、FIMAを酸クロライドへと変換した後、得られる酸クロライドを化合物(V)と反応させることにより行うことができる。
[工程01-1-1]
 工程01-1の酸クロライドへの変換は、塩素化剤を用いて行われる。また、当該反応は、所望により触媒の存在下に行ってもよい。
 該塩素化剤としては、例えば、オキシ塩化リン、塩化オキサリル、塩化チオニル、塩化スルフリル、三塩化リン、五塩化リン等が挙げられる。
 該触媒としては、例えば、N,N-ジメチルホルムアミド、ピリジン、N,N-ジメチル-4-アミノピリジン等が挙げられる。
 塩素化剤の使用量は、溶媒の種類、その他の反応条件により異なるが、基質であるFIMA1モルに対し、通常0.1~10モル、好ましくは1~5モルである。塩素化剤は溶媒として用いてもよい。
 触媒の使用量は、溶媒の種類、その他の反応条件により異なるが、基質であるFIMA1モルに対し、通常0.001~1モル、好ましくは0.01~0.5モルである。
 酸クロライドへの変換は、無溶媒で、または反応に不活性な溶媒の存在下で行われる。
 反応に不活性な溶媒としては、反応が進行する限り特に限定されないが、例えば、ジエチルエーテル、ジイソプロピルエーテル、tert-ブチルメチルエーテル、ジフェニルエーテル、テトラヒドロフラン、1,4-ジオキサン、メチルテトラヒドロフラン、1,2-ジメトキシエタン、1,1-ジエトキシプロパン、1,1-ジメトキシメタン、2,2-ジメトキシプロパン、アニソールなどのエーテル類;ベンゼン、トルエン、キシレン、クメン、クロロベンゼンなどの芳香族炭化水素類;ヘキサン、ヘプタン、ペンタン、シクロヘキサン、メチルシクロヘキサン、イソオクタン、石油エーテルなどの飽和炭化水素類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ホルムアミド、ヘキサメチルホスホルアミド、N-メチルピロリドン、1,3-ジメチル-2-イミダゾリジノンなどのアミド類;クロロホルム、ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタンなどのハロゲン化炭化水素類;アセトニトリル、プロピオニトリルなどのニトリル類;ジメチルスルホキシドなどのスルホキシド類;ジメチルスルホン、スルホランなどのスルホン類;アセトン、エチルメチルケトン、メチルイソプロピルケトン、メチルブチルケトンなどのケトン類;酢酸エチル、酢酸イソプロピル、酢酸n-プロピル、酢酸n-ブチル、酢酸イソブチル、酢酸メチル、ギ酸エチルなどのエステル類;ニトロメタンなどが用いられる。これらの溶媒は、適宜の割合で混合して用いてもよい。
 酸クロライドへの変換は、通常、-20℃~150℃、好ましくは0℃~100℃で行われる。
 反応時間は、塩素化剤、触媒、および溶媒の種類や反応温度により異なるが、通常1分~24時間、好ましくは1分~5時間である。
[工程01-1-2]
 工程01-1の酸クロライドと化合物(V)の反応は、塩基の存在下に行うことができる。
 該塩基としては、無機塩基または有機塩基が挙げられる。
 該無機塩基としては、例えば、水酸化リチウム、水酸化カリウム、水酸化ナトリウム、水酸化セシウムなどの水酸化アルカリ金属;リチウムメトキシド、ナトリウムメトキシド、カリウムメトキシド、リチウムエトキシド、ナトリウムエトキシド、カリウムエトキシド、リチウムプロポキシド、ナトリウムプロポキシド、カリウムプロポキシド、リチウムイソプロポキシド、ナトリウムイソプロポキシド、カリウムイソプロポキシド、ナトリウムtert-ブトキシド、カリウムtert-ブトキシドなどのアルカリ金属C1-6アルコキシド;ナトリウムチオメトキシドなどのアルカリ金属チオC1-6アルコキシド;炭酸ナトリウム、炭酸カリウム、炭酸セシウム等の炭酸塩;炭酸水素ナトリウム、炭酸水素カリウム等の炭酸水素塩;酢酸ナトリウム、酢酸カリウム等の酢酸塩;リン酸三カリウム、リン酸ナトリウム等のリン酸塩;リン酸一水素カリウム、リン酸一水素ナトリウム等のリン酸一水素塩が挙げられる。
 該有機塩基としては、例えば、トリメチルアミン、トリエチルアミン、N-メチルモルホリン、N,N-ジイソプロピルエチルアミン、ジエチルアミン、ジイソプロピルアミン、シクロヘキシルアミン、エチレンジアミン、1,8-ジアザビシクロ[5.4.0]ウンデセン等の脂肪族アミン;ピリジン、ピコリン、N,N-ジメチルアニリン等の芳香族アミン類、およびアルギニン、リジン、オルニチン等の塩基性アミノ酸が挙げられる。
 本工程で用いる塩基としては、例えば、トリエチルアミン、N-メチルモルホリン、N,N-ジイソプロピルエチルアミン等の第3級アミンが好ましい。
 化合物(V)の使用量は、溶媒の種類、その他の反応条件により異なるが、基質である酸クロライド1モルに対し、通常0.1~10モル、好ましくは1~5モルである。
 塩基の使用量は、溶媒の種類、その他の反応条件により異なるが、基質である酸クロライド1モルに対し、通常0.1~10モル、好ましくは1~5モルである。有機塩基は溶媒として用いてもよい。
 酸クロライドと化合物(V)の反応は、無溶媒で、または反応に不活性な溶媒の存在下で行われる。反応に不活性な溶媒としては、反応が進行する限り特に限定されないが、例えば、ジエチルエーテル、ジイソプロピルエーテル、tert-ブチルメチルエーテル、ジフェニルエーテル、テトラヒドロフラン、1,4-ジオキサン、メチルテトラヒドロフラン、1,2-ジメトキシエタン、1,1-ジエトキシプロパン、1,1-ジメトキシメタン、2,2-ジメトキシプロパン、アニソールなどのエーテル類;メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、2-ブタノール、tert-ブタノール、3-メチル-1-ブタノール、2-メチル-1-プロパノール、1-ペンタノール、ベンジルアルコール、2-メトキシエタノール、2-エトキシエタノール、エチレングリコールなどのアルコール類;ベンゼン、トルエン、キシレン、クメン、クロロベンゼンなどの芳香族炭化水素類;ヘキサン、ヘプタン、ペンタン、シクロヘキサン、メチルシクロヘキサン、イソオクタン、石油エーテルなどの飽和炭化水素類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ホルムアミド、ヘキサメチルホスホルアミド、N-メチルピロリドン、1,3-ジメチル-2-イミダゾリジノンなどのアミド類;クロロホルム、ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタンなどのハロゲン化炭化水素類;アセトニトリル、プロピオニトリルなどのニトリル類;ジメチルスルホキシドなどのスルホキシド類;ジメチルスルホン、スルホランなどのスルホン類;アセトン、エチルメチルケトン、メチルイソプロピルケトン、メチルブチルケトンなどのケトン類;酢酸エチル、酢酸イソプロピル、酢酸n-プロピル、酢酸n-ブチル、酢酸イソブチル、酢酸メチル、ギ酸エチルなどのエステル類;ニトロメタン;水などが用いられる。これらの溶媒は、適宜の割合で混合して用いてもよい。
 酸クロライドと化合物(V)の反応は、通常、-20℃~150℃、好ましくは0℃~100℃で行われる。
 反応時間は、塩基、化合物(V)、および溶媒の種類や反応温度により異なるが、通常1分~24時間、好ましくは1分~5時間である。
[工程01-2]
 工程01の反応は、FIMAを活性酸無水物へと変換した後、得られる活性酸無水物を化合物(V)と反応させることにより行うことができる。
[工程01-2-1]
 工程01-2の活性酸無水物への変換は、塩基の存在下に、活性酸無水物化剤を用いて行うこともできる。
 該塩基としては、前記工程01-1-2で例示したものが用いられる。
 該活性酸無水物化剤としては、例えば、クロロギ酸エチル、クロロギ酸イソプロピル、ピバロイルクロライド等の酸塩化物;カルボニルジイミダゾール等が挙げられる。
 塩基の使用量は、溶媒の種類、その他の反応条件により異なるが、基質であるFIMA1モルに対し、通常0.1~10モル、好ましくは1~5モルである。有機塩基は溶媒として用いてもよい。
 活性酸無水物化剤の使用量は、溶媒の種類、その他の反応条件により異なるが、基質であるFIMA1モルに対し、通常0.1~10モル、好ましくは1~5モルである。
 活性酸無水物への変換は、無溶媒で、または反応に不活性な溶媒の存在下で行われる。
 反応に不活性な溶媒としては、前記工程01-1-2で例示したものが用いられる。
 活性酸無水物への変換は、通常、-20℃~150℃、好ましくは0℃~100℃で行われる。
 反応時間は、塩基、活性酸無水物化剤、および溶媒の種類や反応温度により異なるが、通常1分~24時間、好ましくは1分~5時間である。
[工程01-2-2]
 工程01-2の活性酸無水物と化合物(V)との反応は、塩基の存在下に行うこともできる。
 該塩基としては、前記工程01-1-2で例示したものが用いられる。
 本工程で用いてもよい塩基としては、例えば、トリエチルアミン、N-メチルモルホリン、N,N-ジイソプロピルエチルアミン等の第3級アミンが好ましい。
 塩基の使用量は、溶媒の種類、その他の反応条件により異なるが、基質である活性酸無水物1モルに対し、通常0.1~10モル、好ましくは1~5モルである。有機塩基は溶媒として用いてもよい。
 化合物(V)の使用量は、溶媒の種類、その他の反応条件により異なるが、基質である
活性酸無水物1モルに対し、通常0.1~10モル、好ましくは1~5モルである。
 活性酸無水物と化合物(V)の反応は、無溶媒で、または反応に不活性な溶媒の存在下で行われる。
 反応に不活性な溶媒としては、前記工程01-1-2で例示したものが用いられる。
 活性酸無水物と化合物(V)の反応は、通常、-20℃~150℃、好ましくは0℃~100℃で行われる。
 反応時間は、塩基、化合物(V)、および溶媒の種類や反応温度により異なるが、通常1分~24時間、好ましくは1分~5時間である。
[工程01-3]
 工程01の反応は、FIMAおよび縮合剤を用いて、化合物(V)と反応させることによっても行うことができる。
 該縮合剤を用いた反応は、塩基、添加剤の存在下に行うこともできる。
 該縮合剤としては、例えば、1-[3-(ジメチルアミノ)プロピル]-3-エチルカルボジイミドもしくはその塩酸塩、N,N’-ジシクロヘキシルカルボジイミド、N,N’-ジイソプロピルカルボジイミド、4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウム=クロライドn水和物、1H-ベンゾトリアゾール-1-イルオキシトリス(ジメチルアミノ)ホスホニウムヘキサフルオロりん酸塩、1H-ベンゾトリアゾール-1-イルオキシトリピロリジノホスホニウムヘキサフルオロりん酸塩、(7-アザベンゾトリアゾール-1-イルオキシ)トリピロリジノホスホニウムヘキサフルオロりん酸塩、クロロトリピロリジノホスホニウムヘキサフルオロりん酸塩、ブロモトリス(ジメチルアミノ)ホスホニウムヘキサフルオロりん酸塩、3-(ジエトキシホスホリルオキシ)-1,2,3-ベンゾトリアジン-4(3H)-オン、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロりん酸塩、O-(7-アザベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロりん酸塩、O-(N-スクシンイミジル)-N,N,N’,N’-テトラメチルウロニウムテトラフルオロホウ酸塩、O-(3,4-ジヒドロ-4-オキソ-1,2,3-ベンゾトリアジン-3-イル)-N,N,N’,N’-テトラメチルウロニウムテトラフルオロホウ酸塩、S-(1-オキシド-2-ピリジル)-N,N,N’,N’-テトラメチルチウロニウムテトラフルオロホウ酸塩、O-[2-オキソ-1(2H)-ピリジル]-N,N,N’,N’-テトラメチルウロニウムテトラフルオロホウ酸塩、{{[(1-シアノ-2-エトキシ-2-オキソエチリデン)アミノ]オキシ}-4-モルホリノメチレン}ジメチルアンモニウムヘキサフルオロりん酸塩、2-クロロ-1,3-ジメチルイミダゾリニウムヘキサフルオロりん酸塩、1-(クロロ-1-ピロリジニルメチレン)ピロリジニウムヘキサフルオロりん酸塩、2-フルオロ-1,3-ジメチルイミダゾリニウムヘキサフルオロりん酸塩、フルオロ-N,N,N’,N’-テトラメチルホルムアミジニウムヘキサフルオロりん酸塩等が挙げられ、必要に応じてこれらの2種以上を混合して用いても良い。
 該塩基としては、前記工程01-1-2で例示したものが用いられる。
 本工程で用いてもよい塩基としては、例えば、トリエチルアミン、N-メチルモルホリン、N,N-ジイソプロピルエチルアミン等の第3級アミンが好ましい。
 該添加剤としては、例えば、1-ヒドロキシベンゾトリアゾール、1-ヒドロキシ-7-アザベンゾトリアゾール、N-ヒドロキシこはく酸イミド、炭酸N,N’-ジスクシンイミジル等が挙げられる。
 縮合剤の使用量は、溶媒の種類、その他の反応条件により異なるが、基質であるFIMA1モルに対し、通常0.1~10モル、好ましくは1~5モルである。
 塩基の使用量は、溶媒の種類、その他の反応条件により異なるが、基質であるFIMA1モルに対し、通常0.1~10モル、好ましくは1~5モルである。有機塩基は溶媒として使用してもよい。
 添加剤の使用量は、溶媒の種類、その他の反応条件により異なるが、基質であるFIMA1モルに対し、通常0.1~10モル、好ましくは1~5モルである。
 化合物(V)の使用量は、溶媒の種類、その他の反応条件により異なるが、基質であるFIMA1モルに対し、通常0.1~10モル、好ましくは1~5モルである。
 縮合剤を用いた化合物(V)との反応は、無溶媒で、または反応に不活性な溶媒の存在下で行われる。
 反応に不活性な溶媒としては、前記工程01-1-2で例示したものが用いられる。
 縮合剤を用いた化合物(V)との反応は、通常、-20℃~150℃、好ましくは0℃~100℃で行われる。
 反応時間は、縮合剤、塩基、添加剤、化合物(V)、および溶媒の種類や反応温度により異なるが、通常1分~24時間、好ましくは1分~5時間である。
[工程01-4]
 工程01の反応は、FIMAおよび酸を用いて、化合物(V)と反応させることによっても行うことができる。
 該酸として、例えば、カテコールボラン、ボラン-トリメチルアミン錯体、ボラン-テトラヒドロフラン錯体等のボラン、ホウ酸トリメチル、ホウ酸イソプロピル、ホウ酸トリス(2,2,2-トリフルオロエチル)等のホウ酸トリアルキル;ボロントリフルオリド-エチルエーテル錯体や2,4,6-トリス(3,4,5-トリフルオロフェニル)ボロキシン、ホウ酸が挙げられる。
 酸の使用量は、溶媒の種類、その他の反応条件により異なるが、基質であるFIMA1モルに対し、通常0.1~10モル、好ましくは1~5モルである。酸は溶媒として用いてもよい。
 化合物(V)の使用量は、溶媒の種類、その他の反応条件により異なるが、基質であるFIMA1モルに対し、通常0.1~10モル、好ましくは1~5モルである。
 酸を用いた化合物(V)との反応は、無溶媒で、または反応に不活性な溶媒の存在下で行われる。
 反応に不活性な溶媒としては、前記工程01-1-2で例示したものが用いられる。
 酸を用いた化合物(V)の反応は、通常、-20℃~150℃、好ましくは0℃~100℃で行われる。
 反応時間は、酸、化合物(V)、および溶媒の種類や反応温度により異なるが、通常1分~24時間、好ましくは1分~5時間である。
 なお、式(III)においてR1およびR2がともにイソプロピルである化合物:
Figure JPOXMLDOC01-appb-C000043
またはその塩は新規化合物である。
[工程02]
 当該工程では、化合物(III)をホウ素化剤(VI)と反応させることにより、式(IV)で表される化合物またはその塩(本明細書中、「化合物(IV)」と略記する場合がある)を製造する。
 工程02は、例えば以下の工程02-1、02-2、02-3、02-4を含む。
[工程02-1]
 工程02の反応は、化合物(III)を金属で活性化後、ホウ素化剤(VI)と反応させることにより行うことができる。また、当該反応は、所望により、添加剤の存在下に行ってもよい。
 該金属として、例えば、リチウム、ナトリウム、カリウム等のアルカリ金属;マグネシウム等のアルカリ土類金属が挙げられる。
 該ホウ素化剤(VI)としては、ホウ酸トリメチル、ホウ酸トリエチル、ホウ酸トリイソプロピル等のホウ酸トリC1-6アルキル;イソプロポキシボロン酸ピナコールが好ましい。
 該添加剤としては、例えば、ヨウ素、1,2-ジブロモエタン、水素化ジイソブチルアルミニウム、水素化ビス(2-メトキシエトキシ)アルミニウムナトリウム等が挙げられる。
 金属の使用量は、溶媒の種類、その他の反応条件により異なるが、基質である化合物(III)1モルに対し、通常0.1~10モル、好ましくは1~5モルである。
 ホウ素化剤の使用量は、溶媒の種類、その他の反応条件により異なるが、基質である化合物(III)1モルに対し、通常0.1~10モル、好ましくは1~5モルである。
 添加剤の使用量は、溶媒の種類、その他の反応条件により異なるが、基質である化合物(III)1モルに対し、通常0.001~10モル、好ましくは0.01~1モルである。
 本反応は、無溶媒で、または反応に不活性な溶媒の存在下で行うのが有利である。
 反応に不活性な溶媒としては、反応が進行する限り特に限定されないが、例えば、ジエチルエーテル、ジイソプロピルエーテル、tert-ブチルメチルエーテル、ジフェニルエーテル、テトラヒドロフラン、1,4-ジオキサン、メチルテトラヒドロフラン、1,2-ジメトキシエタン、1,1-ジエトキシプロパン、1,1-ジメトキシメタン、2,2-ジメトキシプロパン、アニソールなどのエーテル類;ベンゼン、トルエン、キシレン、クメン、クロロベンゼンなどの芳香族炭化水素類;ヘキサン、ヘプタン、ペンタン、シクロヘキサン、メチルシクロヘキサン、イソオクタン、石油エーテルなどの飽和炭化水素類などが用いられる。これらの溶媒は、適宜の割合で混合して用いてもよい。
 反応は、通常、低温あるいは高温で行われ、好ましくは-100℃~200℃、より好ましくは-80℃~150℃で行われる。
 反応時間は、化合物(III)、金属、ホウ素化剤、添加剤、および溶媒の種類や反応温度により異なるが、通常1分~24時間、好ましくは1分~5時間である。
[工程02-2]
 工程02の反応は、化合物(III)を有機金属試薬と反応させた後、ホウ素化剤(VI)と反応させることによっても行える。
 該有機金属試薬としては、例えば、メチルリチウム、n-ブチルリチウム、シクロヘキシルリチウム等のアルキルリチウム、フェニルリチウム等のアリールリチウム、リチウムジイソプロピルアミド、リチウムジシクロヘキシルアミド、リチウム2,2,6,6-テトラメチルピペリジド等のリチウムアミド、イソプロピルマグネシウムクロライド、イソプロピルマグネシウムブロマイド、イソプロピルマグネシウムクロライド・塩化リチウム錯体等のアルキルマグネシウム、ジイソプロピルアミノマグネシウムクロライド、ジイソプロピルアミノマグネシウムブロマイド、ビス(イソプロピルアミノ)マグネシウム、2,2,6,6-テトラメチルピペリジノマグネシウムクロライド、2,2,6,6-テトラメチルピペリジノマグネシウムブロマイド、2,2,6,6-テトラメチルピペリジノマグネシウムクロライド・塩化リチウム錯体等のマグネシウムアミドが挙げられる。
 有機金属試薬の使用量は、溶媒の種類、その他の反応条件により異なるが、基質である化合物(III)1モルに対し、通常0.1~10モル、好ましくは1~5モルである。
 ホウ素化剤の使用量は、溶媒の種類、その他の反応条件により異なるが、基質である化合物(III)1モルに対し、通常0.1~10モル、好ましくは1~5モルである。
 本反応は、無溶媒で、または反応に不活性な溶媒の存在下で行うのが有利である。
 反応に不活性な溶媒としては、前記工程02-1で例示したものが用いられる。
 反応は、通常、-100℃~200℃、好ましくは-80℃~150℃で行われる。
 反応時間は、化合物(III)、有機金属試薬、ホウ素化剤、および溶媒の種類や反応温度により異なるが、通常1分~24時間、好ましくは1分~5時間である。
[工程02-3]
 工程02の反応は、化合物(III)を塩基存在下、金属触媒を用いてホウ素化剤(VI)と反応させることでも行える。また、当該反応には、所望により添加剤を加えて行ってもよい。
 該塩基としては、前記工程01-1-2で例示したものが用いられる。
 該金属触媒としては、例えば、テトラキス(トリフェニルホスフィン)パラジウム、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロライド、トリス(ジベンジリデンアセトン)ジパラジウム等のパラジウム触媒;臭化ニッケル、ビス(トリフェニルホスフィン)ニッケル(II)ジクロライド、[1,3-ビス(ジフェニルホスフィノ)プロパン]ニッケル(II)ジクロライド、ビス(1,5-シクロオクタジエン)ニッケル(0)等のニッケル触媒;塩化銅、ヨウ化銅、酸化銅、酢酸銅等の銅触媒;臭化鉄、[1,2-ビス(ジフェニルホスフィノ)エタン]ジクロロ鉄(II)、[1,2-ビス(ジシクロヘキシルホスフィノ)エタン]ジクロロ鉄(II)等の鉄触媒;が挙げられる。
 該添加剤としては、例えば、2,2’-ビス(ジフェニルホスフィノ)-1,1’-ビナフチル(以下、BINAPと略記することがある);BINAPのナフチル環にC1-6アルキル基やC6-14アリール基等の置換基をもつBINAP誘導体、例えば、2,2’-ビス(ジフェニルホスフィノ)-6,6’-ジメチル-1,1’-ビナフチル;BINAPのナフチル環が部分的に水素化されたBINAP誘導体、例えば、2,2’-ビス(ジフェニルホスフィノ)-5,6,7,8,5’,6’,7’,8’-オクタヒドロ-1,1’-ビナフチル(H8BINAP);BINAPのリン原子上のベンゼン環にC1-6アルキル基、ハロゲン原子、モノ又はジ-C1-6アルキルアミノ基、C1-6アルコキシ基、ピロリジニル基などの置換基を1ないし5個有するBINAP誘導体、例えば、2,2’-ビス[ビス(4-クロロフェニル)ホスフィノ)-1,1’-ビナフチル、2,2’-ビス(ジ-p-トリルホスフィノ)-1,1’-ビナフチル(tol-BINAP)、2,2’-ビス[ビス(3,5-ジメチルフェニル)ホスフィノ]-1,1’-ビナフチル(xyl-BINAP)、2,2’-ビス[ビス(3,5-ジエチルフェニル)ホスフィノ]-1,1’-ビナフチル、2,2’-ビス[ビス(3,5-ジイソプロピルフェニル)ホスフィノ]-1,1’-ビナフチル、2,2’-ビス[ビス(3,5-ジ-tert-ブチルフェニル)ホスフィノ]-1,1’-ビナフチル、2,2’-ビス〔ビス(4-ジメチルアミノフェニル)ホスフィノ〕-1,1’-ビナフチル、2,2’-ビス〔ビス(4-ジメチルアミノ-3,5-ジメチルフェニル)ホスフィノ〕-1,1’-ビナフチル、2,2’-ビス〔ビス(4-ジメチルアミノ-3,5-ジエチルフェニル)ホスフィノ〕-1,1’-ビナフチル、2,2’-ビス〔ビス(4-ジメチルアミノ-3,5-ジイソプロピルフェニル)ホスフィノ〕-1,1’-ビナフチル、2,2’-ビス[ビス(4-ジエチルアミノフェニル)ホスフィノ]-1,1’-ビナフチル、2,2’-ビス[ビス[4-(ピロリジン-1-イル)フェニル]ホスフィノ]-1,1’-ビナフチル、2,2’-ビス(ジ-p-メトキシフェニルホスフィノ)-1,1’-ビナフチル、2,2’-ビス[ビス(3,5-ジメチル-4-メトキシフェニル)ホスフィノ]-1,1’-ビナフチル、2,2’-ビス[ビス(3,5-ジ-tert-ブチル-4-メトキシフェニル)ホスフィノ]-1,1’-ビナフチル(DTBM-BINAP);2,2’-ビス(ジシクロヘキシルホスフィノ)-6,6’-ジメチル-1,1’-ビフェニル(BICHEP)、2,2’-ビス(ジフェニルホスフィノ)-6,6’-ジメトキシビフェニル(MeO-BIPHEP)、2,3-ビス(ジフェニルホスフィノ)ブタン(CHIRAPHOS)、1-シクロヘキシル-1,2-ビス(ジフェニルホスフィノ)エタン(CYCPHOS)、1,2-ビス[(2-メトキシフェニル)フェニルホスフィノ]エタン(DIPAMP)、1,2-ビス(ジフェニルホスフィノ)プロパン(PROPHOS)、2,4-ビス(ジフェニルホスフィノ)ペンタン(SKEWPHOS)、SKEWPHOSのリン原子上のベンゼン環にC1-6アルキル基などの置換基を1ないし5個有するSKEWPHOS誘導体、1-[1’,2-ビス(ジフェニルホスフィノ)フェロセニル]エチレンジアミン(BPPFA)、1-置換-3,4-ビス(ジフェニルホスフィノ)ピロリジン(DEGPHOS)、2,3-O-イソプロピリデン-2,3-ジヒドロキシ-1,4-ビス(ジフェニルホスフィノ)ブタン(DIOP)、置換-1,2-ビスホスホラノベンゼン(DuPHOS)、置換-1,2-ビスホスホラノエタン(BPE)、5,6-ビス(ジフェニルホスフィノ)-2-ノルボルネン(NORPHOS)、N,N’-ビス(ジフェニルホスフィノ)-N,N’-ビス(1-フェニルエチル)エチレンジアミン(PNNP)、2,2’-ジフェニルホスフィノ-1,1’-ビシクロペンチル(BICP)、4,12-ビス(ジフェニルホスフィノ)-[2,2]-パラシクロファン(PhanePHOS)、N-置換-N-ジフェニルホスフィノ-1-[2-(ジフェニルホスフィノ)フェロセニル]エチルアミン(BoPhoz)、1-[2-(2置換ホスフィノ)フェロセニル]エチル-2置換ホスフィン(Josiphos)、1-[2-(2’-2置換ホスフィノフェニル)フェロセニル]エチル-2置換ホスフィン(Walphos)、2,2’-ビス(α-N,N-ジメチルアミノフェニルメチル)-1,1’-ビス(2置換ホスフィノ)フェロセン(Mandyphos)、2置換ホスフィノ-2-[α-(N,N-ジメチルアミノ)-o-2置換ホスフィノフェニル-メチル]フェロセン(Taniaphos)、1,1-ビス(2置換-ホスホタノ)フェロセン(FerroTANE)、7,7’-ビス(ジフェニルホスフィノ)-3,3’,4,4’-テトラヒドロ-4,4’-ジメチル-8,8’-ビ(2H-1,4-ベンゾオキサジン)(Solphos)などが挙げられる。
 該ホウ素化剤(VI)としては、ビス(ピナコラト)ジボロン、テトラヒドロキシジボロン、ビス(ネオペンチルグリコラト)ジボロン、ビス(ヘキシレングリコラト)ジボロン、ビス(カテコラト)ジボロン等のジボロン、ホウ酸トリメチル、ホウ酸トリエチル、ホウ酸トリイソプロピル等のホウ酸トリC1-6アルキル;2-(ジメチルフェニルシリル)-4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン等のシリルボロン;ピナコールボラン等のボランが好ましい。
 塩基の使用量は、溶媒の種類、その他の反応条件により異なるが、基質である化合物(III)1モルに対し、通常0.1~10モル、好ましくは1~5モルである。
 金属触媒の使用量は、溶媒の種類、その他の反応条件により異なるが、基質である化合物(III)1モルに対し、通常0.0001~1モル、好ましくは0.01~0.1モルである。
 添加剤の使用量は、溶媒の種類、その他の反応条件により異なるが、基質である化合物(III)1モルに対し、通常0.0001~1モル、好ましくは0.01~0.1モルである。
 ホウ素化剤(VI)の使用量は、溶媒の種類、その他の反応条件により異なるが、基質である化合物(III)1モルに対し、通常0.1~10モル、好ましくは1~5モルである。
 本反応は、無溶媒で、または反応に不活性な溶媒の存在下で行うのが有利である。
 反応に不活性な溶媒としては、前記工程01-1-2で例示したものが用いられる。
 反応は、通常、-100℃~200℃、好ましくは-80℃~150℃で行われる。
 反応時間は、化合物(III)、塩基、金属触媒、添加剤、ホウ素化剤、および溶媒の種類や反応温度により異なるが、通常1分~24時間、好ましくは1分~10時間である。
[工程02-4]
 工程02の反応は、光照射により化合物(III)をホウ素化剤(VI)と反応させることによっても行える。光照射による方法は、Journal of the American Chemical Society 2016, 138, 2985-2988やOrganic Letters 2016, 18, 5248-5251に記載の方法、又はそれに準じた方法で行うことができる。
 なお、式(IV)においてR1およびR2がともにイソプロピルであり、かつR3およびR4がともに水素原子である化合物:
Figure JPOXMLDOC01-appb-C000044
またはその塩は新規化合物である。
[工程03]
 当該工程では、化合物(IV)を式(VII)で表される化合物またはその塩(本明細書中、「化合物(VII)」と略記する場合がある)と反応させることにより、化合物(II)を製造する。
 当該反応は、所望により、化合物(IV)を、金属触媒、塩基存在下に、化合物(VII)と反応させてもよい。また、当該反応には、所望により添加剤を加えてもよい。金属触媒を用いない場合、Tetrahedron Letters 2016, 57, 4142-4144に記載の方法、又はそれに準じた方法で行うことができる。
 該金属触媒としては、例えば、塩化パラジウム、酢酸パラジウム、テトラキス(トリフェニルホスフィン)パラジウム、ジクロロビス(トリフェニルホスフィン)パラジウム、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロライド、トリス(ジベンジリデンアセトン)ジパラジウム等のパラジウム触媒、塩化銅、ヨウ化銅等の銅触媒、トリス(2,4-ペンタンジオナト)鉄、1,2-フェニレンビス[ジフェニル]ホスフィン鉄錯体等の鉄触媒等が挙げられる。
 該塩基としては、前記工程01-1-2で例示したものが用いられる。
 該添加剤としては、前記工程02-3で例示したものが用いられる。
 金属触媒の使用量は、溶媒の種類、その他の反応条件により異なるが、基質である化合物(IV)1モルに対し、通常0.0001~1モル、好ましくは0.01~0.1モルである。
 塩基の使用量は、溶媒の種類、その他の反応条件により異なるが、基質である化合物(IV)1モルに対し、通常0.1~10モル、好ましくは1~5モルである。
 添加剤の使用量は、溶媒の種類、その他の反応条件により異なるが、基質である化合物(IV)1モルに対し、通常0.0001~1モル、好ましくは0.01~0.1モルである。
 化合物(VII)の使用量は、溶媒の種類、その他の反応条件により異なるが、基質である化合物(IV)1モルに対し、通常0.1~10モル、好ましくは1~5モルである。
 本反応は、無溶媒で、または反応に不活性な溶媒の存在下で行うのが有利である。
 反応に不活性な溶媒としては、前記工程01-1-2で例示したものが用いられる。
 反応は、通常、-20℃~150℃、好ましくは0℃~100℃で行われる。
 反応時間は、化合物(IV)、化合物(VII)、金属触媒、塩基、添加剤、および溶媒の種類や反応温度により異なるが、通常1分~24時間、好ましくは1分~5時間である。
[工程04]
 当該工程では、化合物(II)をホルミル化反応に付すことにより、化合物(I)を製造する。
 当該反応は、通常、ホルミル化剤を用いて行われる。
 当該反応は、有機金属試薬の存在下に行うことが好ましい。
 該有機金属試薬としては、前記工程02-2で例示したものが用いられる。
 該有機金属試薬としては、n-ブチルリチウム、リチウムジイソプロピルアミド、リチウムジシクロヘキシルアミド、リチウム2,2,6,6-テトラメチルピペリジド、ジイソプロピルアミノマグネシウムクロライド、ジイソプロピルアミノマグネシウムブロマイド、2,2,6,6-テトラメチルピペリジノマグネシウムクロライド、2,2,6,6-テトラメチルピペリジノマグネシウムクロライド・塩化リチウム錯体が好ましい。なかでも、n-ブチルリチウム、リチウムジイソプロピルアミド、2,2,6,6-テトラメチルピペリジノマグネシウムクロライド、および2,2,6,6-テトラメチルピペリジノマグネシウムクロライド・塩化リチウム錯体が好ましい。n-ブチルリチウム、リチウムジイソプロピルアミドおよび2,2,6,6-テトラメチルピペリジノマグネシウムクロライド・塩化リチウム錯体がより好ましい。
 有機金属試薬として、2,2,6,6-テトラメチルピペリジノマグネシウムクロライド・塩化リチウム錯体を用いることにより、化合物(I)を高収率かつ高純度で製造することができる。
 該ホルミル化剤としては、例えば、ジメチルホルムアミド、N-ホルミルモルホリン、N-ホルミルピペリジン等のN,N-二置換ホルミルアミド;ギ酸メチル、ギ酸エチル等のギ酸エステル;オルトギ酸メチル、オルトギ酸エチル等のオルトギ酸エステル;N-エトキシメチレンアニリン等が挙げられる。なかでも、ジメチルホルムアミドが好ましい。
 有機金属試薬の使用量は、溶媒の種類、その他の反応条件により異なるが、基質である化合物(II)1モルに対し、通常0.1~100モル、好ましくは1~10モルである。
 ホルミル化剤の使用量は、溶媒の種類、その他の反応条件により異なるが、基質である化合物(II)1モルに対し、通常0.1~40モル、好ましくは1~10モルである。
 有機金属試薬、およびホルミル化剤は、一度に加えてもよく、分割して添加してもよい。また、有機金属試薬存在下にホルミル化剤を添加しても、ホルミル化剤の存在下に有機金属試薬を添加してもよい。
 例えば、ジメチルホルムアミドの存在下に、n-ブチルリチウムを添加する場合、ジメチルホルムアミドにジイソプロピルアミンを添加することにより、化合物(I)を高収率かつ高純度で製造することができる。
 本反応は、無溶媒で、または反応に不活性な溶媒の存在下で行うのが有利である。
 反応に不活性な溶媒としては、反応が進行する限り特に限定されないが、例えば、ジエチルエーテル、ジイソプロピルエーテル、tert-ブチルメチルエーテル、ジフェニルエーテル、テトラヒドロフラン、1,4-ジオキサン、メチルテトラヒドロフラン、1,2-ジメトキシエタン、1,1-ジエトキシプロパン、1,1-ジメトキシメタン、2,2-ジメトキシプロパン、アニソールなどのエーテル類;ベンゼン、トルエン、キシレン、クメン、クロロベンゼンなどの芳香族炭化水素類;ヘキサン、ヘプタン、ペンタン、シクロヘキサン、メチルシクロヘキサン、イソオクタン、石油エーテルなどの飽和炭化水素類などが用いられる。これらの溶媒は、適宜の割合で混合して用いてもよい。溶媒は、好ましくはテトラヒドロフランである。
 反応は、通常、-100℃~150℃、好ましくは-20℃~50℃で行われる。
 反応時間は、化合物(II)、有機金属試薬、ホルミル化剤、および溶媒の種類や反応温度により異なるが、通常1分~24時間、好ましくは1分~5時間である。
[工程04-1]
 なお、工程04ではフローケミストリー技術を適用することが出来る。
 フローケミストリー技術としては、化学合成分野において慣用の方法が用いられる。
 具体的には、化合物(II)を、前記の反応に不活性な溶媒に溶解後、得られる溶液をチューブ状の反応容器に送液し、反応容器中を流れる溶液に有機金属試薬およびホルミル化剤を順次添加することにより、工程04で詳述した化合物(II)のホルミル化反応を極めて短時間で行うことができる。
 フローケミストリー技術を用いる場合、有機金属試薬としては、n-ブチルリチウム、リチウムジイソプロピルアミド、リチウムジシクロヘキシルアミド、リチウム2,2,6,6-テトラメチルピペリジド、ジイソプロピルアミノマグネシウムクロライド、ジイソプロピルアミノマグネシウムブロマイド、2,2,6,6-テトラメチルピペリジノマグネシウムクロライド、2,2,6,6-テトラメチルピペリジノマグネシウムクロライド・塩化リチウム錯体が好ましい。なかでも、n-ブチルリチウムが好ましい。
 フローケミストリー技術を用いる場合、有機金属試薬の使用量は、溶媒の種類、その他の反応条件により異なるが、基質である化合物(II)1モルに対し、通常0.1~20モル、好ましくは1.0~3.0モルである。
 フローケミストリー技術を用いる場合、ホルミル化剤の使用量は、溶媒の種類、その他の反応条件により異なるが、基質である化合物(II)1モルに対し、通常0.1~40モル、好ましくは1~33モルである。
 フローケミストリー技術を用いる場合、反応は、通常、-100℃~30℃、好ましくは-60℃~0℃で行われる。
 フローケミストリー技術を用いる場合、反応時間は、化合物(II)、有機金属試薬、ホルミル化剤、および溶媒の種類や反応温度により異なるが、通常0.01秒~1分、好ましくは0.01秒~1秒である。
[工程05]
 当該工程では、化合物(I)を加水分解反応に付すことによりPHBOを製造する。
 当該反応は、所望により、酸または塩基の存在下に行ってもよい。また、当該反応に、所望により添加剤を加えてもよい。
 該酸としては、例えば、フッ化水素酸、塩酸、臭化水素酸、ヨウ化水素酸、硝酸、硫酸、亜硫酸などの鉱酸;リン酸、亜リン酸、炭酸、重炭酸;ギ酸、酢酸、トリフルオロ酢酸、フタル酸、フマル酸、シュウ酸、酒石酸、マレイン酸、クエン酸、コハク酸、リンゴ酸などのカルボン酸;アスパラギン酸、グルタミン酸などの酸性アミノ酸;メタンスルホン酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、カンファースルホン酸などのスルホン酸が挙げられる。必要に応じて2種以上の酸を混合して用いても良い。
 該塩基としては、前記工程01-1-2で例示したものが用いられる。
 該添加剤としては、例えば、塩化ナトリウム、臭化ナトリウム、ヨウ化ナトリウム等のナトリウム塩、塩化カリウム、臭化カリウム、ヨウ化カリウム等のカリウム塩が挙げられる。なかでも、臭化ナトリウムが好ましい。
 酸の使用量は、溶媒の種類、その他の反応条件により異なるが、基質である化合物(I)1モルに対し、通常0.1~10000モル、好ましくは1~10モルである。酸は溶媒として用いてもよい。
 塩基の使用量は、溶媒の種類、その他の反応条件により異なるが、基質である化合物(I)1モルに対し、通常0.1~10000モル、好ましくは1~10モルである。有機塩基は溶媒として用いてもよい。
 添加剤の使用量は、溶媒の種類、その他の反応条件により異なるが、基質である化合物(I)1モルに対し、通常0.1~10モル、好ましくは1~5モルである。
 本反応は、酸の存在下に行うことが好ましい。該酸は、好ましくは臭化水素酸、硫酸、p-トルエンスルホン酸である。
 例えば、酸として臭化水素酸とp-トルエンスルホン酸とを併用することにより、不純物の生成を抑制することができる。
 例えば、本反応を硫酸および臭化ナトリウムの存在下に行なうことにより、不純物の生成を抑制でき、PHBOを高純度で製造することができる。
 本反応は、無溶媒で、または反応に不活性な溶媒の存在下で行うのが有利である。
 反応に不活性な溶媒としては、前記工程01-1-2で例示したものが用いられる。
 反応は、通常、-20℃~200℃、好ましくは0℃~150℃で行われる。
 反応時間は、化合物(I)、酸、塩基、添加剤、溶媒の種類や反応温度により異なるが、通常1分~24時間、好ましくは1分~12時間である。
[工程06]
 当該工程では、PHBOをATHPと反応させることで、化合物Aを製造する。
 当該反応は、還元剤存在下に行うことが好ましい。
 該還元剤としては、例えば、水素化ホウ素ナトリウム、水素化ホウ素リチウム、水素化ホウ素カルシウム、シアノ化水素ホウ素ナトリウム、水素化トリアセトキシホウ素ナトリウム等のホウ素化水素金属、ボラン-ピリジン錯体、2-ピコリン-ボラン錯体、5-エチル-2-メチルピリジン-ボラン錯体等のボラン等が挙げられ、必要に応じてこれらの2種以上を混合して用いても良い。また、水素をパラジウムカーボン、プラチナカーボン、ラネーニッケル等の金属触媒と共に還元剤として用いることもできる。還元剤は、好ましくは水素化トリアセトキシホウ素ナトリウムである。
 還元剤の使用量は、溶媒の種類、その他の反応条件により異なるが、基質であるPHBO1モルに対し、通常0.1~10モル、好ましくは1~5モルである。
 ATHPの使用量は、溶媒の種類、その他の反応条件により異なるが、基質であるPHBO1モルに対し、通常0.1~10モル、好ましくは1~5モルである。
 本反応は、無溶媒で、または反応に不活性な溶媒の存在下で行うのが有利である。
 反応に不活性な溶媒としては、反応が進行する限り特に限定されないが、例えば、ジエチルエーテル、ジイソプロピルエーテル、tert-ブチルメチルエーテル、ジフェニルエーテル、テトラヒドロフラン、1,4-ジオキサン、メチルテトラヒドロフラン、1,2-ジメトキシエタン、1,1-ジエトキシプロパン、1,1-ジメトキシメタン、2,2-ジメトキシプロパン、アニソールなどのエーテル類;メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、2-ブタノール、tert-ブタノール、3-メチル-1-ブタノール、2-メチル-1-プロパノール、1-ペンタノール、ベンジルアルコール、2-メトキシエタノール、2-エトキシエタノール、エチレングリコールなどのアルコール類;ベンゼン、トルエン、キシレン、クメン、クロロベンゼンなどの芳香族炭化水素類;ヘキサン、ヘプタン、ペンタン、シクロヘキサン、メチルシクロヘキサン、イソオクタン、石油エーテルなどの飽和炭化水素類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ホルムアミド、ヘキサメチルホスホルアミド、N-メチルピロリドン、1,3-ジメチル-2-イミダゾリジノンなどのアミド類;クロロホルム、ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタンなどのハロゲン化炭化水素類;アセトニトリル、プロピオニトリルなどのニトリル類;ジメチルスルホキシドなどのスルホキシド類;ジメチルスルホン、スルホランなどのスルホン類;アセトン、エチルメチルケトン、メチルイソプロピルケトン、メチルブチルケトンなどのケトン類;酢酸エチル、酢酸イソプロピル、酢酸n-プロピル、酢酸n-ブチル、酢酸イソブチル、酢酸メチル、ギ酸エチルなどのエステル類;ニトロメタン;水;酢酸などが用いられる。これらの溶媒は、適宜の割合で混合して用いてもよい。溶媒は、好ましくはテトラヒドロフランと酢酸との任意の割合での混合物である。
 反応は、通常、-20℃~150℃、好ましくは0℃~100℃で行われる。
 反応時間は、還元剤、および溶媒の種類や反応温度により異なるが、通常1分~24時間、好ましくは1分~3時間である。
 本反応において、PHBOとして3-フルオロ-2-ホルミル-4-メチル-5-[4-(1H-ピラゾール-1-イル)ベンジル]安息香酸の1,4-ジアザビシクロ[2.2.2]オクタン塩を用いる場合、反応粗生成物を塩基性条件下で洗浄することにより、化合物Aを高純度で製造することができる。塩基性条件下での洗浄は、好ましくはアンモニア水を用いて行なわれる。
(製造法F)
 本発明はまた、化合物(VIII)を、ホルミル化反応、次いで所望により加水分解反応に付すことを含む、PHBOの製造方法に関する。
 上記反応のスキームを以下に示す(以下、工程(iv-1)と称す)。
Figure JPOXMLDOC01-appb-C000045
[式中、R6は水素原子、または置換されていてもよいC1-6アルキル基を示す。]
 工程(iv-1)は、後述の製造法における工程10に相当する。
(製造法G)
 本発明はまた、化合物(IX)を、還元反応に付すことを含む、化合物(VIII)の製造方法に関する。
 上記反応のスキームを以下に示す(以下、工程(iii-1)と称す)。
Figure JPOXMLDOC01-appb-C000046
[式中、R6は前記と同意義を示し、およびR7は、保護基を示す。]
 工程(iii-1)は、後述の製造法における工程09(工程09-1を含む)に相当する。
(製造法H)
 本発明はまた、化合物(X)を、ヒドロキシ基の保護反応に付すことを含む、化合物(IX)の製造方法に関する。
 上記反応のスキームを以下に示す(以下、工程(ii-1)と称す)。
Figure JPOXMLDOC01-appb-C000047
[式中の記号は前記と同意義を示す]
 工程(ii-1)は、後述の製造法における工程08(工程08-1、工程08-2、工程08-3、工程08-4、工程08-5、工程08-6を含む)に相当する。
(製造法I)
 本発明はまた、化合物(XI)を、4-(1H-ピラゾール-1-イル)ベンズアルデヒドと反応させることを含む、化合物(X)の製造方法に関する。
 上記反応のスキームを以下に示す(以下、工程(i-1)と称す)。
Figure JPOXMLDOC01-appb-C000048
[式中の記号は前記と同意義を示す]
 工程(i-1)は、後述の製造法における工程07(工程07-1、工程07-2を含む)に相当する。
(製造法J)
 本発明はまた、工程(i-1):化合物(XI)を、4-(1H-ピラゾール-1-イル)ベンズアルデヒドと反応させ、化合物(X)を得る工程、および工程(ii-1):化合物(X)を、ヒドロキシ基の保護反応に付す工程を含む、化合物(IX)の製造方法に関する。
 工程(i-1)および工程(ii-1)は、それぞれ後述の製造法における工程07(工程07-1、工程07-2を含む)および工程08(工程08-1、工程08-2、工程08-3、工程08-4、工程08-5、工程08-6を含む)に相当する。
(製造法K)
 本発明はまた、工程(i-1):化合物(XI)を、4-(1H-ピラゾール-1-イル)ベンズアルデヒドと反応させ、化合物(X)を得る工程、工程(ii-1):化合物(X)を、ヒドロキシ基の保護反応に付し、化合物(IX)を得る工程、および工程(iii-1):化合物(IX)を、還元反応に付すことを含む、化合物(VIII)の製造方法に関する。
 工程(i-1)、工程(ii-1)、および工程(iii-1)は、それぞれ後述の製造法における工程07(工程07-1、工程07-2を含む)、工程08(工程08-1、工程08-2、工程08-3、工程08-4、工程08-5、工程08-6を含む)および工程09(工程09-1を含む)に相当する。
(製造法L)
 本発明はまた、工程(i-1):化合物(XI)を、4-(1H-ピラゾール-1-イル)ベンズアルデヒドと反応させ、化合物(X)を得る工程、工程(ii-1):化合物(X)を、ヒドロキシ基の保護反応に付し、化合物(IX)を得る工程、工程(iii-1):化合物(IX)を、還元反応に付し、化合物(VIII)を得る工程、および工程(iv-1):化合物(VIII)を、ホルミル化反応、次いで所望により加水分解反応に付すことを含む、PHBOの製造方法に関する。
 工程(i-1)、工程(ii-1)、工程(iii-1)および工程(iv-1)は、それぞれ後述の製造法における工程07(工程07-1、工程07-2を含む)、工程08(工程08-1、工程08-2、工程08-3、工程08-4、工程08-5、工程08-6を含む)、工程09(工程09-1を含む)および工程10に相当する。
(製造法M)
 本発明はまた、工程(i-1):化合物(XI)を、4-(1H-ピラゾール-1-イル)ベンズアルデヒドと反応させ、化合物(X)を得る工程、工程(ii-1):化合物(X)を、ヒドロキシ基の保護反応に付し、化合物(IX)を得る工程、工程(iii-1):化合物(IX)を、還元反応に付し、化合物(VIII)を得る工程、工程(iv-1):化合物(VIII)を、ホルミル化反応、次いで所望により加水分解反応に付し、PHBOを得る工程、および工程(v-1):PHBOを、ATHPと反応させる工程を含む、化合物Aの製造方法に関する。
 工程(i-1)、工程(ii-1)、工程(iii-1)および工程(iv-1)は、それぞれ後述の製造法における工程07(工程07-1、工程07-2を含む)、工程08(工程08-1、工程08-2、工程08-3、工程08-4、工程08-5、工程08-6を含む)、工程09(工程09-1を含む)および工程10に相当する。
 また、工程(v-1)は、前記工程06に相当する。
 化合物Aは、下記の反応式に示す製造法によって製造することができる。
 下記の反応式に示す製造法において「室温」は通常約10℃ないし約35℃を示す。
Figure JPOXMLDOC01-appb-C000049
[式中、
 Rは、水素原子、または置換されていてもよいC1-6アルキル基を示し、および
 R7は、保護基を示す。]
 以下に、上記製造法に用いる試薬や条件について工程ごとに詳述する。
[工程07]
 当該工程では、化合物(XI)を、4-(1H-ピラゾール-1-イル)ベンズアルデヒドと反応させることにより、化合物(X)を製造する。
 工程07は、例えば以下の工程07-1、工程07-2を含む。
[工程07-1]
 工程07の反応は、化合物(XI)を金属で活性化後、4-(1H-ピラゾール-1-イル)ベンズアルデヒドと反応させることにより行うことができる。また、当該反応は、所望により、添加剤の存在下に行ってもよい。
 該金属として、例えば、リチウム、ナトリウム、カリウム等のアルカリ金属;マグネシウム等のアルカリ土類金属が挙げられる。
 該添加剤としては、例えば、ヨウ素、1,2-ジブロモエタン、水素化ジイソブチルアルミニウム、水素化ビス(2-メトキシエトキシ)アルミニウムナトリウム等が挙げられる。
 金属の使用量は、溶媒の種類、その他の反応条件により異なるが、化合物(XI)1モルに対し、通常0.1~10モル、好ましくは1~5モルである。
 4-(1H-ピラゾール-1-イル)ベンズアルデヒドの使用量は、溶媒の種類、その他の反応条件により異なるが、化合物(XI)1モルに対し、通常0.1~10モル、好ましくは0.9~5モルである。
 添加剤の使用量は、溶媒の種類、その他の反応条件により異なるが、化合物(XI)1モルに対し、通常0.001~10モル、好ましくは0.01~1モルである。
 本反応は、無溶媒で、または反応に不活性な溶媒の存在下で行うのが有利である。
 反応に不活性な溶媒としては、反応が進行する限り特に限定されないが、例えば、ジエチルエーテル、ジイソプロピルエーテル、tert-ブチルメチルエーテル、ジフェニルエーテル、テトラヒドロフラン、1,4-ジオキサン、メチルテトラヒドロフラン、1,2-ジメトキシエタン、1,1-ジエトキシプロパン、1,1-ジメトキシメタン、2,2-ジメトキシプロパン、アニソールなどのエーテル類;ベンゼン、トルエン、キシレン、クメン、クロロベンゼンなどの芳香族炭化水素類;ヘキサン、ヘプタン、ペンタン、シクロヘキサン、メチルシクロヘキサン、イソオクタン、石油エーテルなどの飽和炭化水素類などが用いられる。これらの溶媒は、適宜の割合で混合して用いてもよい。
 反応は、通常、低温あるいは高温で行われ、好ましくは-100℃~200℃、より好ましくは-80℃~150℃で行われる。
 反応時間は、化合物(XI)、金属、添加剤、および溶媒の種類や反応温度により異なるが、通常1分~24時間、好ましくは1分~5時間である。
[工程07-2]
 工程07の反応は、化合物(XI)を有機金属試薬と反応させた後、4-(1H-ピラゾール-1-イル)ベンズアルデヒドと反応させることによっても行える。
 該有機金属試薬としては、例えば、メチルリチウム、n-ブチルリチウム、シクロヘキシルリチウム等のアルキルリチウム、フェニルリチウム等のアリールリチウム、リチウムジイソプロピルアミド、リチウムジシクロヘキシルアミド、リチウム2,2,6,6-テトラメチルピペリジド等のリチウムアミド、イソプロピルマグネシウムクロライド、イソプロピルマグネシウムブロマイド、イソプロピルマグネシウムクロライド・塩化リチウム錯体等のアルキルマグネシウム、ジイソプロピルアミノマグネシウムクロライド、ジイソプロピルアミノマグネシウムブロマイド、ビス(イソプロピルアミノ)マグネシウム、2,2,6,6-テトラメチルピペリジノマグネシウムクロライド、2,2,6,6-テトラメチルピペリジノマグネシウムブロマイド、2,2,6,6-テトラメチルピペリジノマグネシウムクロライド・塩化リチウム錯体等のマグネシウムアミドが挙げられる。なかでも、イソプロピルマグネシウムブロマイド、イソプロピルマグネシウムクロライド・塩化リチウム錯体が好ましい。
 有機金属試薬の使用量は、溶媒の種類、その他の反応条件により異なるが、化合物(XI)1モルに対し、通常0.1~10モル、好ましくは1~5モルである。
 4-(1H-ピラゾール-1-イル)ベンズアルデヒドの使用量は、溶媒の種類、その他の反応条件により異なるが、化合物(XI)1モルに対し、通常0.1~10モル、好ましくは0.9~5モルである。
 本反応は、無溶媒で、または反応に不活性な溶媒の存在下で行うのが有利である。
 反応に不活性な溶媒としては、前記工程07-1で例示したものが用いられる。なかでも、テトラヒドロフランが好ましい。
 反応は、通常、-100℃~200℃、好ましくは-80℃~150℃で行われる。
 反応時間は、化合物(XI)、有機金属試薬および溶媒の種類や反応温度により異なるが、通常1分~24時間、好ましくは1分~5時間である。
[工程08]
 当該工程では、例えば、化合物(X)を、ヒドロキシ基の保護反応に付すことにより、化合物(IX)を製造する。
 工程08は、例えば以下の工程08-1、工程08-2、工程08-3、工程08-4、工程08-5、工程08-6を含む。
[工程08-1]
 工程08の反応は、例えば、化合物(X)を塩基存在下、酸無水物と反応させることにより行うことができる。また、当該反応は、所望により、触媒の存在下に行ってもよい。
 該塩基としては、無機塩基または有機塩基が挙げられる。
 該無機塩基としては、例えば、水酸化リチウム、水酸化カリウム、水酸化ナトリウム、水酸化セシウムなどの水酸化アルカリ金属;リチウムメトキシド、ナトリウムメトキシド、カリウムメトキシド、リチウムエトキシド、ナトリウムエトキシド、カリウムエトキシド、リチウムプロポキシド、ナトリウムプロポキシド、カリウムプロポキシド、リチウムイソプロポキシド、ナトリウムイソプロポキシド、カリウムイソプロポキシド、ナトリウムtert-ブトキシド、カリウムtert-ブトキシドなどのアルカリ金属C1-6アルコキシド;ナトリウムチオメトキシドなどのアルカリ金属チオC1-6アルコキシド;炭酸ナトリウム、炭酸カリウム、炭酸セシウム等の炭酸塩;炭酸水素ナトリウム、炭酸水素カリウム等の炭酸水素塩;酢酸ナトリウム、酢酸カリウム等の酢酸塩;リン酸三カリウム、リン酸ナトリウム等のリン酸塩;リン酸一水素カリウム、リン酸一水素ナトリウム等のリン酸一水素塩が挙げられる。
 該有機塩基としては、例えば、トリメチルアミン、トリエチルアミン、N-メチルモルホリン、N,N-ジイソプロピルエチルアミン、ジエチルアミン、ジイソプロピルアミン、シクロヘキシルアミン、エチレンジアミン、1,8-ジアザビシクロ[5.4.0]ウンデセン等の脂肪族アミン;ピリジン、ピコリン、N,N-ジメチルアニリン等の芳香族アミン類、およびアルギニン、リジン、オルニチン等の塩基性アミノ酸が挙げられる。
 本工程で用いる塩基としては、例えば、トリエチルアミン、N-メチルモルホリン、N,N-ジイソプロピルエチルアミン等の第3級アミンが好ましい。
 該酸無水物としては、例えば、無水酢酸、プロピオン酸無水物、酪酸無水物、ピバル酸無水物、トリフルオロ酢酸無水物、安息香酸無水物等のカルボン酸無水物、メタンスルホン酸無水物、p-トルエンスルホン酸無水物、トリフルオロメタンスルホン酸無水物等のスルホン酸無水物等、二炭酸ジ-tert-ブチルが挙げられる。
 該触媒としては、例えば、N,N-ジメチル-4-アミノピリジン、ピリジン、4-ピロリジノピリジン等が挙げられる
 塩基の使用量は、溶媒の種類、その他の反応条件により異なるが、化合物(X)1モルに対し、通常0.1~10モル、好ましくは1~5モルである。有機塩基は溶媒として用いてもよい。
 酸無水物の使用量は、溶媒の種類、その他の反応条件により異なるが、化合物(X)1モルに対し、通常0.1~10モル、好ましくは1~5モルである。
 触媒の使用量は、溶媒の種類、その他の反応条件により異なるが、化合物(X)1モルに対し、通常0.001~1モル、好ましくは0.01~0.5モルである。
 本反応は、無溶媒で、または反応に不活性な溶媒の存在下で行われる。
 反応に不活性な溶媒としては、反応が進行する限り特に限定されないが、例えば、ジエチルエーテル、ジイソプロピルエーテル、tert-ブチルメチルエーテル、ジフェニルエーテル、テトラヒドロフラン、1,4-ジオキサン、メチルテトラヒドロフラン、1,2-ジメトキシエタン、1,1-ジエトキシプロパン、1,1-ジメトキシメタン、2,2-ジメトキシプロパン、アニソールなどのエーテル類;メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、2-ブタノール、tert-ブタノール、3-メチル-1-ブタノール、2-メチル-1-プロパノール、1-ペンタノール、ベンジルアルコール、2-メトキシエタノール、2-エトキシエタノール、エチレングリコールなどのアルコール類;ベンゼン、トルエン、キシレン、クメン、クロロベンゼンなどの芳香族炭化水素類;ヘキサン、ヘプタン、ペンタン、シクロヘキサン、メチルシクロヘキサン、イソオクタン、石油エーテルなどの飽和炭化水素類;クロロホルム、ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタンなどのハロゲン化炭化水素類;アセトニトリル、プロピオニトリルなどのニトリル類;ジメチルスルホン、スルホランなどのスルホン類;アセトン、エチルメチルケトン、メチルイソプロピルケトン、メチルブチルケトンなどのケトン類;酢酸エチル、酢酸イソプロピル、酢酸n-プロピル、酢酸n-ブチル、酢酸イソブチル、酢酸メチル、ギ酸エチルなどのエステル類;ニトロメタン;水などが用いられる。これらの溶媒は、適宜の割合で混合して用いてもよい。
 反応は、通常、-20℃~150℃、好ましくは0℃~100℃で行われる。
 反応時間は、化合物(X)、該酸無水物、塩基、触媒、および溶媒の種類や反応温度により異なるが、通常1分~24時間、好ましくは1分~5時間である。
[工程08-2]
 工程08の反応は、化合物(X)を塩基存在下、酸塩化物と反応させることにより行うこともできる。
 該塩基としては、前記工程08-1で例示したものが用いられる。
 本工程で用いる塩基としては、例えば、トリエチルアミン、N-メチルモルホリン、N,N-ジイソプロピルエチルアミン等の第3級アミンが好ましい。
 該酸塩化物としては、例えば、アセチルクロリド、プロピオニルクロリド、ブチリルクロリド、ピバロイルクロリド、ベンゾイルクロリド等のカルボン酸塩化物、メタンスルホニルクロリド、p-トルエンスルホニルクロリド、トリフルオロメタンスルホニルクロリド等のスルホン塩化物等、クロロギ酸エチル、クロロギ酸イソプロピル、クロロギ酸イソブチル等の酸塩化物が挙げられる。
 塩基の使用量は、溶媒の種類、その他の反応条件により異なるが、化合物(X)1モルに対し、通常0.1~10モル、好ましくは1~5モルである。有機塩基は溶媒として用いてもよい。
 酸塩化物の使用量は、溶媒の種類、その他の反応条件により異なるが、化合物(X)1モルに対し、通常0.1~10モル、好ましくは1~5モルである。
 本反応は、無溶媒で、または反応に不活性な溶媒の存在下で行われる。
 反応に不活性な溶媒としては、前記工程08-1で例示したものが用いられる。
 反応は、通常、-20℃~150℃、好ましくは0℃~100℃で行われる。
 反応時間は、化合物(X)、酸塩化物、塩基、および溶媒の種類や反応温度により異なるが、通常1分~24時間、好ましくは1分~5時間である。
[工程08-3]
 工程08の反応は、酸を酸塩化物へと変換した後、得られる酸塩化物を化合物(X)と反応させることにより行うこともできる。
[工程08-3-1]
 工程08-3における酸の酸塩化物への変換は、塩素化剤を用いて行われる。また、当該反応は、所望により触媒の存在下に行ってもよい。
 該酸としては、例えば、酢酸、プロピオン酸、酪酸、ピバリン酸、トリフルオロ酢酸、安息香酸等のカルボン酸;メタンスルホン酸、p-トルエンスルホン酸、トリフルオロメタンスルホン酸等のスルホン酸等が挙げられる。
 該塩素化剤としては、例えば、オキシ塩化リン、塩化オキサリル、塩化チオニル、塩化スルフリル、三塩化リン、五塩化リン等が挙げられる。
 該触媒としては、例えば、N,N-ジメチルホルムアミド、ピリジン、N,N-ジメチル-4-アミノピリジン等が挙げられる。
 塩素化剤の使用量は、溶媒の種類、その他の反応条件により異なるが、酸1モルに対し、通常0.1~10モル、好ましくは1~5モルである。塩素化剤は溶媒として用いてもよい。
 触媒の使用量は、溶媒の種類、その他の反応条件により異なるが、該酸1モルに対し、通常0.001~1モル、好ましくは0.01~0.5モルである。
 酸塩化物への変換は、無溶媒で、または反応に不活性な溶媒の存在下で行われる。
 反応に不活性な溶媒としては、前記工程08-1で例示したものが用いられる。
 酸塩化物への変換は、通常、-20℃~150℃、好ましくは0℃~100℃で行われる。
 反応時間は、酸、塩素化剤、触媒、および溶媒の種類や反応温度により異なるが、通常1分~24時間、好ましくは1分~5時間である。
[工程08-3-2]
 工程08-3の酸塩化物と化合物(X)の反応は、塩基の存在下に行うことができる。
 該塩基としては、前記工程08-1で例示したものが用いられる。
 本工程で用いる塩基としては、例えば、トリエチルアミン、N-メチルモルホリン、N,N-ジイソプロピルエチルアミン等の第3級アミンが好ましい。
 該酸塩化物の使用量は、溶媒の種類、その他の反応条件により異なるが、化合物(X)1モルに対し、通常0.1~10モル、好ましくは1~5モルである。
 塩基の使用量は、溶媒の種類、その他の反応条件により異なるが、化合物(X)1モルに対し、通常0.1~10モル、好ましくは1~5モルである。有機塩基は溶媒として用いてもよい。
 酸塩化物と化合物(X)の反応は、無溶媒で、または反応に不活性な溶媒の存在下で行われる。
 反応に不活性な溶媒としては、前記工程08-1で例示したものが用いられる。
 酸塩化物と化合物(X)の反応は、通常、-20℃~150℃、好ましくは0℃~100℃で行われる。
 反応時間は、化合物(X)、酸塩化物、塩基、および溶媒の種類や反応温度により異なるが、通常1分~24時間、好ましくは1分~5時間である。
[工程08-4]
 工程08の反応は、酸を活性酸無水物へと変換した後、得られる活性酸無水物を化合物(X)と反応させることにより行うこともできる。
[工程08-4-1]
 工程08-4における酸の活性酸無水物への変換は、塩基の存在下に、活性酸無水物化剤を用いて行うことができる。
 該酸としては、前記工程08-3-1で例示したものが用いられる。
 該塩基としては、前記工程08-1で例示したものが用いられる。
 該活性酸無水物化剤としては、例えば、クロロギ酸エチル、クロロギ酸イソプロピル、ピバロイルクロライド等の酸塩化物、二炭酸ジ-tert-ブチル、カルボニルジイミダゾール等が挙げられる。
 塩基の使用量は、溶媒の種類、その他の反応条件により異なるが、酸1モルに対し、通常0.1~10モル、好ましくは1~5モルである。有機塩基は溶媒として用いてもよい。
 活性酸無水物化剤の使用量は、溶媒の種類、その他の反応条件により異なるが、酸1モルに対し、通常0.1~10モル、好ましくは1~5モルである。
 活性酸無水物への変換は、無溶媒で、または反応に不活性な溶媒の存在下で行われる。
 反応に不活性な溶媒としては、前記工程08-1で例示したものが用いられる。
 活性酸無水物への変換は、通常、-20℃~150℃、好ましくは0℃~100℃で行われる。
 反応時間は、酸、塩基、活性酸無水物化剤、および溶媒の種類や反応温度により異なるが、通常1分~24時間、好ましくは1分~5時間である。
[工程08-4-2]
 工程08-4の活性酸無水物と化合物(X)との反応は、塩基の存在下に行うことができる。また、当該反応は、所望により、触媒の存在下に行ってもよい。
 該塩基としては、前記工程08-1で例示したものが用いられる。
 塩基としては、例えば、トリエチルアミン、N-メチルモルホリン、N,N-ジイソプロピルエチルアミン等の第3級アミンが好ましい。
 該触媒としては、前記工程08-1で例示したものが用いられる。
 塩基の使用量は、溶媒の種類、その他の反応条件により異なるが、活性酸無水物1モルに対し、通常0.1~10モル、好ましくは1~5モルである。有機塩基は溶媒として用いてもよい。
 活性酸無水物の使用量は、溶媒の種類、その他の反応条件により異なるが、化合物(X)1モルに対し、通常0.1~10モル、好ましくは1~5モルである。
 触媒の使用量は、溶媒の種類、その他の反応条件により異なるが、化合物(X)1モルに対し、通常0.001~1モル、好ましくは0.01~0.5モルである。
 活性酸無水物と化合物(X)の反応は、無溶媒で、または反応に不活性な溶媒の存在下で行われる。
 反応に不活性な溶媒としては、前記工程08-1で例示したものが用いられる。
 活性酸無水物と化合物(X)の反応は、通常、-20℃~150℃、好ましくは0℃~100℃で行われる。
 反応時間は、化合物(X)、活性酸無水物、塩基、触媒、および溶媒の種類や反応温度により異なるが、通常1分~24時間、好ましくは1分~5時間である。
[工程08-5]
 工程08の反応は、縮合剤を用いて、酸と化合物(X)とを反応させることによっても行うことができる。
 該縮合剤を用いた反応は、塩基、添加剤の存在下に行うこともできる。
 該酸としては、前記工程08-3-1で例示したものが用いられる。
 該縮合剤としては、例えば、1-[3-(ジメチルアミノ)プロピル]-3-エチルカルボジイミドもしくはその塩酸塩、N,N’-ジシクロヘキシルカルボジイミド、N,N’-ジイソプロピルカルボジイミド、4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウム=クロライドn水和物、1H-ベンゾトリアゾール-1-イルオキシトリス(ジメチルアミノ)ホスホニウムヘキサフルオロりん酸塩、1H-ベンゾトリアゾール-1-イルオキシトリピロリジノホスホニウムヘキサフルオロりん酸塩、(7-アザベンゾトリアゾール-1-イルオキシ)トリピロリジノホスホニウムヘキサフルオロりん酸塩、クロロトリピロリジノホスホニウムヘキサフルオロりん酸塩、ブロモトリス(ジメチルアミノ)ホスホニウムヘキサフルオロりん酸塩、3-(ジエトキシホスホリルオキシ)-1,2,3-ベンゾトリアジン-4(3H)-オン、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロりん酸塩、O-(7-アザベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロりん酸塩、O-(N-スクシンイミジル)-N,N,N’,N’-テトラメチルウロニウムテトラフルオロホウ酸塩、O-(3,4-ジヒドロ-4-オキソ-1,2,3-ベンゾトリアジン-3-イル)-N,N,N’,N’-テトラメチルウロニウムテトラフルオロホウ酸塩、S-(1-オキシド-2-ピリジル)-N,N,N’,N’-テトラメチルチウロニウムテトラフルオロホウ酸塩、O-[2-オキソ-1(2H)-ピリジル]-N,N,N’,N’-テトラメチルウロニウムテトラフルオロホウ酸塩、{{[(1-シアノ-2-エトキシ-2-オキソエチリデン)アミノ]オキシ}-4-モルホリノメチレン}ジメチルアンモニウムヘキサフルオロりん酸塩、2-クロロ-1,3-ジメチルイミダゾリニウムヘキサフルオロりん酸塩、1-(クロロ-1-ピロリジニルメチレン)ピロリジニウムヘキサフルオロりん酸塩、2-フルオロ-1,3-ジメチルイミダゾリニウムヘキサフルオロりん酸塩、フルオロ-N,N,N’,N’-テトラメチルホルムアミジニウムヘキサフルオロりん酸塩等が挙げられ、必要に応じてこれらの2種以上を混合して用いても良い。
 該塩基としては、前記工程08-1で例示したものが用いられる。
 塩基としては、例えば、トリエチルアミン、N-メチルモルホリン、N,N-ジイソプロピルエチルアミン等の第3級アミンが好ましい。
 該添加剤としては、例えば、1-ヒドロキシベンゾトリアゾール、1-ヒドロキシ-7-アザベンゾトリアゾール、N-ヒドロキシこはく酸イミド、炭酸N,N’-ジスクシンイミジル等が挙げられる。
 該酸の使用量は、溶媒の種類、その他の反応条件により異なるが、化合物(X)1モルに対し、通常0.1~10モル、好ましくは1~5モルである。
 縮合剤の使用量は、溶媒の種類、その他の反応条件により異なるが、化合物(X)1モルに対し、通常0.1~10モル、好ましくは1~5モルである。
 塩基の使用量は、溶媒の種類、その他の反応条件により異なるが、化合物(X)1モルに対し、通常0.1~10モル、好ましくは1~5モルである。有機塩基は溶媒として使用してもよい。
 添加剤の使用量は、溶媒の種類、その他の反応条件により異なるが、化合物(X)1モルに対し、通常0.1~10モル、好ましくは1~5モルである。
 縮合剤を用いた反応は、無溶媒で、または反応に不活性な溶媒の存在下で行われる。
 反応に不活性な溶媒としては、反応が進行する限り特に限定されないが、例えば、ジエチルエーテル、ジイソプロピルエーテル、tert-ブチルメチルエーテル、ジフェニルエーテル、テトラヒドロフラン、1,4-ジオキサン、メチルテトラヒドロフラン、1,2-ジメトキシエタン、1,1-ジエトキシプロパン、1,1-ジメトキシメタン、2,2-ジメトキシプロパン、アニソールなどのエーテル類;ベンゼン、トルエン、キシレン、クメン、クロロベンゼンなどの芳香族炭化水素類;ヘキサン、ヘプタン、ペンタン、シクロヘキサン、メチルシクロヘキサン、イソオクタン、石油エーテルなどの飽和炭化水素類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ホルムアミド、ヘキサメチルホスホルアミド、N-メチルピロリドン、1,3-ジメチル-2-イミダゾリジノンなどのアミド類;クロロホルム、ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタンなどのハロゲン化炭化水素類;アセトニトリル、プロピオニトリルなどのニトリル類;ジメチルスルホキシドなどのスルホキシド類;ジメチルスルホン、スルホランなどのスルホン類;アセトン、エチルメチルケトン、メチルイソプロピルケトン、メチルブチルケトンなどのケトン類;酢酸エチル、酢酸イソプロピル、酢酸n-プロピル、酢酸n-ブチル、酢酸イソブチル、酢酸メチル、ギ酸エチルなどのエステル類;ニトロメタンなどが用いられる。これらの溶媒は、適宜の割合で混合して用いてもよい。
 縮合剤を用いた反応は、通常、-20℃~150℃、好ましくは0℃~100℃で行われる。
 反応時間は、化合物(X)、該酸、縮合剤、塩基、添加剤、および溶媒の種類や反応温度により異なるが、通常1分~24時間、好ましくは1分~5時間である。
[工程08-6]
 工程08の反応は、ホウ酸を用いて、酸と化合物(X)とを反応させることによっても行うことができる。
 該酸としては、前記工程08-3-1で例示したものが用いられる。
 該ホウ酸としては、例えば、ホウ酸トリメチル、ホウ酸イソプロピル、ホウ酸トリス(2,2,2-トリフルオロエチル)等のホウ酸トリC1-6アルキル;ボロントリフルオリド-エチルエーテル錯体や2,4,6-トリス(3,4,5-トリフルオロフェニル)ボロキシン、ホウ酸が挙げられる。
 該酸の使用量は、溶媒の種類、その他の反応条件により異なるが、化合物(X)1モルに対し、通常0.1~10モル、好ましくは1~5モルである。
 該ホウ酸の使用量は、溶媒の種類、その他の反応条件により異なるが、化合物(X)1モルに対し、通常0.1~10モル、好ましくは1~5モルである。酸は溶媒として用いてもよい。
 ホウ酸を用いた反応は、無溶媒で、または反応に不活性な溶媒の存在下で行われる。
 反応に不活性な溶媒としては、前記工程08-5で例示したものが用いられる。
 ホウ酸を用いた反応は、通常、-20℃~150℃、好ましくは0℃~100℃で行われる。
 反応時間は、化合物(X)、酸、ホウ酸、および溶媒の種類や反応温度により異なるが、通常1分~24時間、好ましくは1分~5時間である。
[工程09]
 当該工程では、化合物(IX)を、還元反応に付すことにより、化合物(VIII)を製造する。
 当該反応は、還元剤存在下に行うことが好ましい。
 該還元剤としては、例えば、水素化ホウ素ナトリウム、水素化ホウ素リチウム、水素化ホウ素カルシウム、シアノ化水素ホウ素ナトリウム、水素化トリアセトキシホウ素ナトリウム等のホウ素化水素金属、トリエチルシラン等が挙げられ、必要に応じてトリフルオロボラン-エーテル錯体、塩化アルミニウム、トリフルオロ酢酸などの酸存在下で用いても良い。また、水素をパラジウムカーボン、プラチナカーボン、ラネーニッケル等の金属触媒と共に還元剤として用いることもできる。なかでも水素をパラジウムカーボンと共に使用するのが好ましい。
 還元剤の使用量は、溶媒の種類、その他の反応条件により異なるが、化合物(IX)1モルに対し、通常0.01~10モル、好ましくは1~5モルである。
 本反応は、無溶媒で、または反応に不活性な溶媒の存在下で行うのが有利である。
 反応に不活性な溶媒としては、反応が進行する限り特に限定されないが、例えば、ジエチルエーテル、ジイソプロピルエーテル、tert-ブチルメチルエーテル、ジフェニルエーテル、テトラヒドロフラン、1,4-ジオキサン、メチルテトラヒドロフラン、1,2-ジメトキシエタン、1,1-ジエトキシプロパン、1,1-ジメトキシメタン、2,2-ジメトキシプロパン、アニソールなどのエーテル類;メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、2-ブタノール、tert-ブタノール、3-メチル-1-ブタノール、2-メチル-1-プロパノール、1-ペンタノール、ベンジルアルコール、2-メトキシエタノール、2-エトキシエタノール、エチレングリコールなどのアルコール類;ベンゼン、トルエン、キシレン、クメン、クロロベンゼンなどの芳香族炭化水素類;ヘキサン、ヘプタン、ペンタン、シクロヘキサン、メチルシクロヘキサン、イソオクタン、石油エーテルなどの飽和炭化水素類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ホルムアミド、ヘキサメチルホスホルアミド、N-メチルピロリドン、1,3-ジメチル-2-イミダゾリジノンなどのアミド類;クロロホルム、ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタンなどのハロゲン化炭化水素類;アセトニトリル、プロピオニトリルなどのニトリル類;ジメチルスルホキシドなどのスルホキシド類;ジメチルスルホン、スルホランなどのスルホン類;アセトン、エチルメチルケトン、メチルイソプロピルケトン、メチルブチルケトンなどのケトン類;酢酸エチル、酢酸イソプロピル、酢酸n-プロピル、酢酸n-ブチル、酢酸イソブチル、酢酸メチル、ギ酸エチルなどのエステル類;ニトロメタン;水;酢酸などが用いられる。これらの溶媒は、適宜の割合で混合して用いてもよい。溶媒は、好ましくはメタノール、またはエタノールとテトラヒドロフランとの任意の割合での混合物である。
 反応は、通常、-20℃~150℃、好ましくは0℃~100℃で行われる。
 反応時間は、還元剤、および溶媒の種類や反応温度により異なるが、通常1分~24時間、好ましくは1分~3時間である。
[工程09-1]
 なお、工程08および工程09では、化合物(X)を工程09と同様の還元反応に付すことにより、工程08および工程09を1工程で行い、化合物(VIII)を製造することも出来る。
 還元反応は、通常還元剤を用いて行なわれ、該還元剤としては、前記工程09で例示したものが用いられる。
 還元剤の使用量は、溶媒の種類、その他の反応条件により異なるが、基質である化合物(X)1モルに対し、通常0.01~10モル、好ましくは1~5モルである。
 還元反応は、無溶媒で、または反応に不活性な溶媒の存在下で行うのが有利である。
 反応に不活性な溶媒としては、前記工程09で例示したものが用いられる。
 還元反応は、通常、-20℃~150℃、好ましくは0℃~100℃で行われる。
 反応時間は、還元剤、および溶媒の種類や反応温度により異なるが、通常1分~48時間、好ましくは1分~24時間である。
[工程10]
 当該工程では、化合物(VIII)をホルミル化反応、次いで所望により加水分解反応に付すことにより、PHBOを製造する。
 ホルミル化反応は、通常、ホルミル化剤を用いて行われる。
 ホルミル化反応は、有機金属試薬の存在下に行うことが好ましい。
 加水分解反応は、通常酸を用いて行われる。
 該有機金属試薬としては、前記工程07-2で例示したものが用いられる。
 該有機金属試薬としては、n-ブチルリチウム、リチウムジイソプロピルアミド、リチウムジシクロヘキシルアミド、リチウム2,2,6,6-テトラメチルピペリジド、ジイソプロピルアミノマグネシウムクロライド、ジイソプロピルアミノマグネシウムブロマイド、2,2,6,6-テトラメチルピペリジノマグネシウムクロライド、2,2,6,6-テトラメチルピペリジノマグネシウムクロライド・塩化リチウム錯体が好ましい。なかでも、2,2,6,6-テトラメチルピペリジノマグネシウムクロライド、および2,2,6,6-テトラメチルピペリジノマグネシウムクロライド・塩化リチウム錯体がより好ましい。
 該ホルミル化剤としては、例えば、ジメチルホルムアミド、N-ホルミルモルホリン、N-ホルミルピペリジン等のN,N-二置換ホルミルアミド;ギ酸メチル、ギ酸エチル等のギ酸エステル;オルトギ酸メチル、オルトギ酸エチル等のオルトギ酸エステル;N-エトキシメチレンアニリン等が挙げられる。なかでも、ジメチルホルムアミド、およびN-ホルミルモルホリンが好ましい。N-ホルミルモルホリンがより好ましい。
 該酸としては、例えば、フッ化水素酸、塩酸、臭化水素酸、ヨウ化水素酸、硝酸、硫酸、亜硫酸などの鉱酸;リン酸、亜リン酸、炭酸、重炭酸;ギ酸、酢酸、トリフルオロ酢酸、フタル酸、フマル酸、シュウ酸、酒石酸、マレイン酸、クエン酸、コハク酸、リンゴ酸などのカルボン酸;アスパラギン酸、グルタミン酸などの酸性アミノ酸;メタンスルホン酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、カンファースルホン酸などのスルホン酸が挙げられる。必要に応じて2種以上の酸を混合して用いても良い。
 有機金属試薬の使用量は、溶媒の種類、その他の反応条件により異なるが、化合物(VIII)1モルに対し、通常0.1~100モル、好ましくは1~10モルである。
 ホルミル化剤の使用量は、溶媒の種類、その他の反応条件により異なるが、化合物(VIII)1モルに対し、通常0.1~40モル、好ましくは1~10モルである。
 酸の使用量は、溶媒の種類、その他の反応条件により異なるが、化合物(VIII)1モルに対し、通常0.1~10000モル、好ましくは1~100モルである。
 本反応は、無溶媒で、または反応に不活性な溶媒の存在下で行うのが有利である。
 反応に不活性な溶媒としては、反応が進行する限り特に限定されないが、例えば、ジエチルエーテル、ジイソプロピルエーテル、tert-ブチルメチルエーテル、ジフェニルエーテル、テトラヒドロフラン、1,4-ジオキサン、メチルテトラヒドロフラン、1,2-ジメトキシエタン、1,1-ジエトキシプロパン、1,1-ジメトキシメタン、2,2-ジメトキシプロパン、アニソールなどのエーテル類;ベンゼン、トルエン、キシレン、クメン、クロロベンゼンなどの芳香族炭化水素類;ヘキサン、ヘプタン、ペンタン、シクロヘキサン、メチルシクロヘキサン、イソオクタン、石油エーテルなどの飽和炭化水素類などが用いられる。これらの溶媒は、適宜の割合で混合して用いてもよい。溶媒は、好ましくはテトラヒドロフランである。
 反応は、通常、-100℃~150℃、好ましくは-20℃~50℃で行われる。
 反応時間は、化合物(VIII)、有機金属試薬、ホルミル化剤、該酸および溶媒の種類や反応温度により異なるが、通常1分~24時間、好ましくは1分~5時間である。
 工程10で製造されたPHBOを、前記工程06の反応に付すことにより、化合物Aを製造することができる。
(製造法N)
 本発明はまた、(1)化合物(XIII)を4-(1H-ピラゾール-1-イル)ベンズアルデヒドと反応させ、化合物(XII)を得る工程、および(2)化合物(XII)を所望によりヒドロキシ基の保護反応に付し、次いで還元反応に付す工程を含む、化合物(II)の製造方法を提供する。
 上記反応のスキームを以下に示す(以下、化合物(XIII)を4-(1H-ピラゾール-1-イル)ベンズアルデヒドと反応させ、化合物(XII)を得る工程を工程(a)、化合物(XII)を所望によりヒドロキシ基の保護反応に付し、次いで還元反応に付す工程を工程(b)と称す)。
Figure JPOXMLDOC01-appb-C000050
[式中の記号は前記と同意義を示す]
 工程(a)は、前記工程07(工程07-1および工程07-2を含む)と同様にして行なわれる。
 工程(b)は、前記工程08(工程08-1、工程08-2、工程08-3、工程08-4、工程08-5、工程08-6を含む)および前記工程09(工程09-1を含む)と同様にして行なわれる。。
 製造法Nで得られた化合物(II)は、所望により次いで製造法C、製造法Dまたは製造法Eの工程に付すことができる。
 上記各工程で用いられた原料や試薬、ならびに得られた化合物は、それぞれ塩を形成していてもよい。このような塩としては、例えば、前述の化合物(I)または(II)の塩と同様のもの等が挙げられる。
 上記各工程で得られた化合物が遊離化合物である場合には、自体公知の方法により、目的とする塩に変換することができる。逆に各工程で得られた化合物が塩である場合には、自体公知の方法により、遊離体または目的とする他の種類の塩に変換することができる。
 上記各工程で得られた化合物は反応液のままか、または粗生成物として得た後に、次反応に用いることもできる。あるいは、各工程で得られた化合物を、常法に従って、反応混合物から濃縮、晶出、再結晶、蒸留、溶媒抽出、分溜、クロマトグラフィーなどの分離手段により単離および/または精製することができる。
 上記各工程の原料や試薬の化合物が市販されている場合には、市販品をそのまま用いることができる。
 本発明は、更に以下の参考例および実施例によって詳しく説明されるが、これらは本発明を限定するものではなく、また本発明の範囲を逸脱しない範囲で変化させてもよい。
 以下の参考例および実施例中の「室温」は通常約10℃ないし約35℃を示す。混合溶媒において示した比は、特に断らない限り容量比を示す。%は、特に断らない限り重量%を示す。
 シリカゲルカラムクロマトグラフィーにおいて、NHと記載した場合は、アミノプロピルシラン結合シリカゲルを用いた。HPLC(高速液体クロマトグラフィー)において、C18と記載した場合は、オクタデシル結合シリカゲルを用いた。溶出溶媒の比は、特に断らない限り容量比を示す。
 以下の参考例および実施例においては下記の略号を使用する。
MS: マススペクトル
M: モル濃度
N: 規定度
CDCl3: 重クロロホルム
DMSO: ジメチルスルホキシド
DMSO-d6: 重ジメチルスルホキシド
1H NMR: プロトン核磁気共鳴スペクトル
LC/MS: 液体クロマトグラフ質量分析計
ESI: エレクトロスプレーイオン化
APCI: 大気圧化学イオン化
DMF: N,N-ジメチルホルムアミド
THF: テトラヒドロフラン
DABCO: 1,4-ジアザビシクロ[2.2.2]オクタン
 1H NMRはフーリエ変換型NMRで測定した。解析にはACD/SpecManager(商品名) などを用いた。水酸基やアミノ基などのプロトンが非常に緩やかなピークについては記載していない。
 MSは、LC/MSにより測定した。イオン化法としては、ESI法、または、APCI法を用いた。データは実測値 (found) を記載した。通常、分子イオンピーク ([M+H]+、[M-H]- など) が観測されるが、例えば、tert-ブトキシカルボニル基を有する化合物の場合は、フラグメントイオンとして、tert-ブトキシカルボニル基あるいはtert-ブチル基が脱離したピークが観測され、水酸基を有する化合物の場合は、フラグメントイオンとして、H2Oが脱離したピークが観測されることもある。塩の場合は、通常、フリー体の分子イオンピークもしくはフラグメントイオンピークが観測される。
 旋光度([α]D)における試料濃度(c)の単位はg/100 mLである。
 元素分析値(Anal.)は、計算値(Calcd)と実測値(Found)を記載した。
参考例1
3-フルオロ-5-ヨード-4-メチル安息香酸の合成
 3-フルオロ-4-メチル安息香酸(150 g)を硫酸(1050 mL)に溶解し、内温-10℃~0℃でN-ヨードスクシンイミド(284 g)を4分割して、1時間かけて添加した。0℃~10℃で6時間半反応させた後、同温度で一晩静置した。1M塩酸(2.25 L)に食塩(338 g)を溶解させた溶液を調製し、これに反応液をゆっくり注ぎ込んだ。混合物を2-メトキシ-2-メチルプロパン(300 mL)と水(150 mL)で洗いこんだ後、2-メトキシ-2-メチルプロパン(1.5 L)を加えて分液を行った。水層に2-メトキシ-2-メチルプロパン(1.2 L)を加えて再抽出を行った後、有機層を合わせて水(750 mL)、2M 水酸化ナトリウム水溶液(120 mL)を加えて、水層のpHを5.5に合わせた。水層に亜硫酸ナトリウム(75 g)を加えて、室温で30分間攪拌した。水層に3M 塩酸(200 mL)と少量の8M 水酸化ナトリウム水溶液を加えて、pHを3.5に合わせた後、分液を行った。有機層を10%食塩水(750 mL)で洗浄し、濃縮した。混合物にアセトニトリルを加えて600 mLとし、室温で水(675 mL)をゆっくり滴下した。混合物を室温で2時間半攪拌後、結晶を濾取した。結晶をアセトニトリル/水(1:3, 300 mL)で2回洗浄し、表題化合物(200 g)を白色結晶として得た。
1H NMR (600 MHz, DMSO-d6) δ 2.36 (d, J = 2.3 Hz, 3 H), 7.64 (dd, J = 9.8, 1.1 Hz, 1 H), 8.16 (s, 1 H), 13.5 (br s, 1 H).
参考例2
3-フルオロ-5-ヨード-4-メチル-N,N-ジ(プロパン-2-イル)ベンズアミドの合成
 3-フルオロ-5-ヨード-4-メチル安息香酸(100 g)およびN,N-ジメチルホルムアミド(2.61 g)をトルエン(500 mL)に加え、75から85℃で塩化チオニル(51.0 g)を滴下した。混合物を同温度で1時間反応した後、濃縮した。濃縮液にトルエンを加えて300 mLとした後、テトラヒドロフラン(500 mL)にジイソプロピルアミン(108 g)を加えた溶液に、0℃から15℃でゆっくり滴下した。混合物を同温度で1時間反応させた後、酢酸エチル(200 mL)と水(500 mL)を加えて分液した。有機層を10%食塩水(500 mL)、1M塩酸(500 mL)、10%食塩水(500 mL)で順次洗浄した後、濃縮した。濃縮液にアセトニトリルを加えて500 mLとし、室温で水(750 mL)をゆっくり滴下した。混合物を室温で3時間攪拌後、結晶を濾取した。結晶をアセトニトリル/水(1:3, 200 mL)で2回洗浄し、表題化合物(121 g)を白色結晶として得た。
1H NMR (600 MHz, CDCl3) δ 1.17 (br s, 6 H), 1.49 (br s, 6 H), 2.37 (d, J = 2.3 Hz, 3H), 3.52 (br s, 1 H), 3.79 (br s, 1 H), 6.97 (dd, J = 9.1, 1.5 Hz, 1 H), 7.55 (s, 1 H).
参考例3
3-フルオロ-4-メチル-N,N-ジ(プロパン-2-イル)-5-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)ベンズアミドの合成
 3-フルオロ-5-ヨード-4-メチル-N,N-ジ(プロパン-2-イル)ベンズアミド(25 g)、ビス(ピナコラト)ジボロン(22.7 g)、および1,1'-ビス(ジフェニルホスフィノ)フェロセン(1.91 g)をN,N-ジメチルホルムアミド(250 mL)に加え、減圧と窒素置換を3回行った。混合物に酢酸カリウム(20.3 g)と塩化パラジウム(II)(610 mg)を加えて、再度減圧と窒素置換を3回行った。混合物を、窒素雰囲気下、80℃~90℃で4時間反応させた。反応液を室温に戻し、活性炭(1.25 g)を加えて攪拌した後、不溶物と活性炭を濾去した。酢酸エチル(250 mL)で不溶物と活性炭を洗浄して濾液と合わせ、10%食塩水(125 mL)を加えて、分液を行った。水層に水(125 mL)と酢酸エチル(250 mL)を加えて再抽出を行った。有機層を合わせ、水(125 mL)で3回洗浄した。混合物を濃縮後、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/n-ヘキサン 1:15)で精製した。精製物を酢酸エチル/ n-ヘキサン(1:9, 56 mL)に懸濁した。懸濁液を氷浴下攪拌後、結晶を濾取し、表題化合物(22.2 g)を白色結晶として得た。
1H NMR (600 MHz, CDCl3) δ 1.26 (s, 6 H), 1.34 (s, 12 H), 1.54-1.63 (m, 6 H), 2.46 (d, J = 2.3 Hz, 3 H), 3.51 (br s, 1 H), 3.86 (br s, 1 H), 6.96-7.08 (m, 1 H), 7.50 (s, 1 H).
参考例4
3-フルオロ-4-メチル-N,N-ジ(プロパン-2-イル)-5-[4-(1H-ピラゾール-1-イル)ベンジル]ベンズアミドの合成
 3-フルオロ-4-メチル-N,N-ジ(プロパン-2-イル)-5-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)ベンズアミド(20.0 g)を、N,N-ジメチルホルムアミド(150 mL)と水(150 mL)の混液に加えた。混合物に1-[4-(クロロメチル)フェニル]-1-H-ピラゾール(11.7 g)、炭酸ナトリウム(11.7 g)を加え、減圧と窒素置換を3回行った。混合物に[1,1'-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロライド(757 mg)を加えて、再度減圧と窒素置換を3回行った。混合物を80℃で4時間反応した後、[1,1'-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロライド(282 mg)を追加して1.5時間反応した。反応液に1-[4-(クロロメチル)フェニル]-1-H-ピラゾール(1.06 g)を追加し、30分反応した後、室温まで冷却した。反応液から不溶物を濾去し、酢酸エチル(200 mL)で洗浄した。濾液洗を合わせて、分液した。水層から酢酸エチル(200 mL)で再抽出を行い、有機層を合わせて10%食塩水(100 mL)で3回洗浄した。有機層に活性炭(2 g)を加え室温で攪拌した後、活性炭を濾去した。濾液を濃縮して、濃縮残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/ n-ヘキサン 1:4~1:3)で精製した。濃縮残渣をn-ヘプタン中で懸濁攪拌し、濾取することで、表題化合物(7.82 g)を白色結晶として得た。
1H NMR (600 MHz, DMSO-d6) δ 1.12 (br s, 6 H), 1.49 (br s, 6 H), 2.16 (d, J = 1.5 Hz, 3 H), 3.49 (br s, 1 H), 3.84 (br s, 1 H), 4.03 (s, 2 H), 6.45 (t, J = 2.1 Hz, 1 H), 6.90 (s, 1 H), 6.92 (d, J = 9.4 Hz, 1 H), 7.19 (d, J = 8.3 Hz, 2 H), 7.60 (d, J = 8.7 Hz, 2 H), 7.71 (d, J = 1.5 Hz, 1 H), 7.89 (d, J = 2.6 Hz, 1 H).
参考例5
3-フルオロ-4-メチル-N,N-ジ(プロパン-2-イル)-5-[4-(1H-ピラゾール-1-イル)ベンジル]ベンズアミドの合成
 3-フルオロ-5-ヨード-4-メチル-N,N-ジ(プロパン-2-イル)ベンズアミド(140 g)、ビス(ピナコラト)ジボロン(108 g)、および酢酸カリウム(114 g)をジメチルスルホキシド(700 mL)に加え、減圧と窒素置換を3回行った。混合物に[1,1'-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロライド(4.23 g)を加えて、再度減圧と窒素置換を3回行った。混合物を、窒素雰囲気下、105℃~115℃で4時間反応した。反応液を50℃まで冷却後、酢酸エチル(1.4 L)と20%食塩水(1.4 L)を加えて分液を行った。有機層に活性炭(14 g)を加えて攪拌した後、活性炭を濾去した。活性炭を酢酸エチル(280 mL)で洗いこんだ後、濾液と合わせ、10%食塩水(700 mL)で2回洗浄した。有機層を濃縮し、ジメトキシエタンを加えて700 mLとした。この溶液に、水(700 mL)、炭酸ナトリウム(81.6 g)と1-[4-(クロロメチル)フェニル]-1-H-ピラゾール(77.9 g)を加え、減圧と窒素置換を3回行った。混合物に[1,1'-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロライド(2.82 g)を加えて、再度減圧と窒素置換を3回行った。混合物を70℃~80℃で3時間反応させた後、50℃まで冷却して、酢酸エチル(1.12 L)、水(1.12 L)、およびテトラヒドロフラン(1.12 L)を加えて、分液を行った。有機層に酢酸エチル(280 mL)、テトラヒドロフラン(280 mL)、および0.5M 塩酸(700 mL)を加えて、分液を行った。有機層を10%食塩水(700 mL)、28%アンモニア水(700 mL)、10%食塩水(700 mL×2)で順次洗浄した。有機層に活性炭(14 g)を加えて攪拌した後、活性炭を濾去した。活性炭をエタノール(280 mL)で洗いこんだ後、濾液と合わせ、濃縮した。エタノールを加えて1.4 Lとし、40℃~50℃で水(700 mL)をゆっくり滴下した。混合物を室温まで冷却後、3時間攪拌して結晶を濾取した。結晶をエタノール/水(1:2, 280 mL)で2回洗浄し、得られた湿結晶を酢酸エチル(420 mL)に加え、40℃でn-ヘプタン(840 mL)をゆっくり滴下した。室温まで冷却後、3時間半攪拌し、結晶を濾取した。結晶を酢酸エチル/n-ヘプタン(1:4, 280 mL)で2回洗浄し、表題化合物(123 g)を褐色結晶として得た。
参考例6
5-N,N-ジ(プロパン-2-イル)カルバモイル-3-フルオロ-2-メチルフェニルボロン酸の合成
 窒素雰囲気下、-5℃にて、3-フルオロ-5-ヨード-4-メチル-N,N-ジ(プロパン-2-イル)ベンズアミド(5.0 g)のテトラヒドロフラン(35 mL)溶液に、1.34Mイソプロピルマグネシウムクロライド・塩化リチウムのテトラヒドロフラン溶液(16.2 mL)を滴下した。混合物を同温にて30分撹拌後、ホウ酸トリイソプロピル (7.1 mL) のテトラヒドロフラン溶液(15 mL)を添加した。混合物を室温にて30分撹拌した。反応混合物を5℃まで冷却し、35℃を越えないように2M 塩酸(50 mL)を滴下した。混合物に酢酸エチル(50 mL)を加えて分液を行った。水層に酢酸エチル(25 mL)を加えて再抽出を行った。有機層を合わせ、2M 塩酸(25 mL)及び10%食塩水(25 mL)で2回洗浄した。混合物を濃縮後、残渣をシリカゲルカラムクロマトグラフィーで精製し、表題化合物(337 mg)を白色結晶として得た。
1H NMR (600 MHz, DMSO-d6) δ 1.12 (br s, 3 H), 1.41 (br s, 3 H), 2.32 (d, J = 2.27 Hz, 3 H), 3.65 (br s, 2 H), 7.04 (dd, J = 10.01, 1.32 Hz, 1 H), 7.13 (d, J = 1.51 Hz, 1 H), 8.31 (s, 2 H).
参考例7
3-フルオロ-4-メチル-N,N-ジ(プロパン-2-イル)-5-[4-(1H-ピラゾール-1-イル)ベンジル]ベンズアミドの合成
 窒素雰囲気下、-5℃にて、3-フルオロ-5-ヨード-4-メチル-N,N-ジ(プロパン-2-イル)ベンズアミド(100 g)のテトラヒドロフラン(750 mL)溶液に、1.34Mイソプロピルマグネシウムクロライド・塩化リチウムのテトラヒドロフラン溶液(330 mL)を滴下した。混合物を同温にて30分撹拌後、ホウ酸トリイソプロピル(126 mL) のテトラヒドロフラン溶液(250 mL)を添加した。室温にて1時間撹拌した後、反応混合物を5℃まで冷却し、35℃を越えないように2M 塩酸(1000 mL)を滴下した。混合物に酢酸エチル(1000 mL)を加えて分液を行った。水層に酢酸エチル(500 mL)を加えて再抽出を行った。有機層を合わせ、2M 塩酸(500 mL)及び10%食塩水(500 mL)で2回洗浄した後、濃縮した。濃縮残渣にテトラヒドロフラン(600 mL)、1-[4-(クロロメチル)フェニル]-1-H-ピラゾール(47.7 g)、およびトリフェニルホスフィン(2.89 g)を加えた。この溶液に炭酸ナトリウム(58.4 g)の水溶液(400 mL)を加え、減圧と窒素置換を3回行った。混合物に酢酸パラジウム(II)(618 mg)を加えて、再度減圧と窒素置換を3回行った。混合物を55℃~65℃で30分間反応させた後、30℃まで冷却して酢酸エチル(1000 mL)、および水(500 mL)を加えて分液を行った。有機層を1M塩酸(500 mL)、10%食塩水(500 mL)、14%アンモニア水(500 mL×2)、10%食塩水(500 mL)で順次洗浄した。有機層に活性炭(10.0 g)を加えて、室温で30分間攪拌した後、活性炭を濾去した。混合物をエタノール(200 mL)で3回洗い込んだ後、濃縮した。濃縮残渣にエタノール(1000 mL)を加え、55℃~65℃で水(500 mL)をゆっくり滴下した。混合物を0℃~10℃まで冷却後、結晶を濾取してエタノール/水(1:2, 200 mL)で2回洗浄した。湿結晶に酢酸エチル(300 mL)を加え、45℃~55℃でn-ヘプタン(900 mL)をゆっくり滴下した。混合物を0℃~10℃まで冷却後、結晶を濾取して酢酸エチル/ n-ヘプタン(1:4, 200 mL)で2回洗浄し、表題化合物(86.1 g)を微黄色結晶として得た。
参考例8
tert-ブチル-3-フルオロ-5-ヨード-4-メチルベンゾエートの合成
 3-フルオロ-5-ヨード-4-メチル安息香酸(30 g)、4-ジメチルアミノピリジン(13.1 g)をt-ブタノール/テトラヒドロフラン(9:1, 300 mL)に加え、ジ-tert-ブチル-ジカーボネート(46.7 g)を加えた。50℃で30分攪拌後、ジ-tert-ブチル-ジカーボネート(11.7 g)を追加して50℃で30分攪拌した。反応液に酢酸エチル(300 mL)、水(150 mL)、10%食塩水(150 mL)を加えて分液した。有機層を5%重曹水溶液(150 mL)、10%食塩水(150 mL)で順次洗浄した。室温で活性炭(3 g)を加えて、同温度で30分間攪拌した後、活性炭を濾去した。濾液を濃縮し、濃縮残渣にエタノール(90 mL)を加えた。40℃で水(180 mL)をゆっくり滴下した。室温まで冷却後、結晶を濾取してエタノール/水(1:4, 60 mL)で2回洗浄し、表題化合物(35.0 g)を白色結晶として得た。
1H NMR (600 MHz, CDCl3-d) δ 1.58 (s, 9 H), 2.40 (d, J=2.3 Hz, 3 H), 7.26 (s, 1 H), 8.20 (s, 1 H).
実施例1
3-フルオロ-2-ホルミル-4-メチル-N,N-ジ(プロパン-2-イル)-5-[4-(1H-ピラゾール-1-イル)ベンジル]ベンズアミドの合成
 窒素雰囲気下、-5℃にて、3-フルオロ-4-メチル-N,N-ジ(プロパン-2-イル)-5-[4-(1H-ピラゾール-1-イル)ベンジル]ベンズアミド(10.0 g)およびN,N-ジメチルホルムアミド(2.95 mL)のテトラヒドロフラン(150 mL)溶液に、1.73M リチウムジイソプロピルアミドのテトラヒドロフラン/n-ヘプタン/エチルベンゼン溶液(17.6 mL)を滴下した。混合物を同温にて1時間撹拌後、N,N-ジメチルホルムアミド(2.95 mL)、その後1.73M リチウムジイソプロピルアミドのテトラヒドロフラン/n-ヘプタン/エチルベンゼン溶液(17.6 mL)を順次滴下した。混合物を同温にて1時間撹拌後、N,N-ジメチルホルムアミド(2.16 mL)、その後1.73M リチウムジイソプロピルアミドのテトラヒドロフラン/n-ヘプタン/エチルベンゼン溶液(10.3 mL)を順次滴下した。混合物を同温にて1時間撹拌後、N,N-ジメチルホルムアミド(1.38 mL)、その後1.73M リチウムジイソプロピルアミドのテトラヒドロフラン/n-ヘプタン/エチルベンゼン溶液(7.34 mL)を順次滴下した。混合物を同温にて1時間撹拌後、10℃を越えないように2M 塩酸(100 mL)を滴下し、分液を行った。水層に酢酸エチル(100 mL)を加えて再抽出を行った。有機層を合わせ、2M 塩酸(50 mL×2)、5%炭酸水素ナトリウム水溶液(50 mL)、28%アンモニア水(50 mL)、10%食塩水(50 mL)で順次洗浄した。有機層に活性炭(1.0 g)を加えて、室温で30分間攪拌した後、活性炭を濾去した。混合物を酢酸エチル(20 mL)で3回洗い込んだ後、濃縮した。濃縮残渣に酢酸エチル(30 mL)を加え、45℃~55℃でn-ヘプタン(40 mL)をゆっくり滴下した。混合物を0℃~10℃まで冷却後、結晶を濾取して冷却した酢酸エチル/ n-ヘプタン(2:5, 5 mL)で3回洗浄し、表題化合物(7.32 g)を灰色結晶として得た。
実施例2
3-フルオロ-2-ホルミル-4-メチル-5-[4-(1H-ピラゾール-1-イル)ベンジル]安息香酸の1,4-ジアザビシクロ[2.2.2]オクタン塩の合成
 73%硫酸(750 mL)と臭化ナトリウム(24.4 g)の混合物に、3-フルオロ-2-ホルミル-4-メチル-N,N-ジ(プロパン-2-イル)-5-[4-(1H-ピラゾール-1-イル)ベンジル]ベンズアミド(50.0 g)を加えた。混合物を95℃~105℃で7時間反応させた後、0℃~10℃まで冷却してトルエン(250 mL)とテトラヒドロフラン(250 mL)を加えた。混合物に、30℃以下で8M水酸化ナトリウム水溶液(1000 mL)を滴下し、トルエン(150 mL)とテトラヒドロフラン(150 mL)を加えて分液を行った。水層にトルエン(125 mL)とテトラヒドロフラン(125 mL)および8M水酸化ナトリウム水溶液(250 mL)を加えて再抽出を行った。有機層を合わせ、0.5M水酸化ナトリウム水溶液(500 mL)及び8M水酸化ナトリウム水溶液(50 mL)を加え、水層のpHを12.5以上に合わせた後、分液を行った。有機層に0.5M水酸化ナトリウム水溶液(250 mL)を加えて再抽出を行った。水層を合わせ、トルエン(125 mL)とテトラヒドロフラン(125 mL)を加えて分液を行った。水層に6M 塩酸(58 mL)を加え、水層のpHを6.5に合わせた後、酢酸エチル(500 mL)を加えた。混合物に6M 塩酸(11 mL)を加え、水層のpHを5.0に合わせた後、分液を行なった。水層に酢酸エチル(500 mL)を加えた。混合物に6M 塩酸(2.0 mL)を加え、pHを5.0に合わせた後、分液を行なった。有機層を合わせ、10%食塩水(250 mL)で洗浄した。有機層に活性炭(5.0 g)を加えて、室温で30分間攪拌した後、活性炭を濾去した。混合物を酢酸エチル(100 mL)で3回洗い込んだ後、濃縮した。濃縮残渣に酢酸エチル(400 mL)を添加し、45℃~55℃で1,4-ジアザビシクロ[2.2.2]オクタン(12.0 g)を加えた。混合物を0℃~10℃まで冷却後、結晶を濾取して冷却した酢酸エチル(50 mL)で3回洗浄し、表題化合物(40.1 g)を淡黄色結晶として得た。
実施例3
1,5-アンヒドロ-2,4-ジデオキシ-2-(4-フルオロ-5-メチル-1-オキソ-6-(4-(1H-ピラゾール-1-イル)ベンジル)-1,3-ジヒドロ-2H-イソインドール-2-イル)-L-トレオ-ペンチトールの合成
 3-フルオロ-2-ホルミル-4-メチル-5-[4-(1H-ピラゾール-1-イル)ベンジル]安息香酸の1,4-ジアザビシクロ[2.2.2]オクタン塩(5.00 g)、および2-アミノ-1,5-アンヒドロ-2,4-ジデオキシ-L-トレオ-ペンチトール(1.37 g)のテトラヒドロフラン(50 mL)溶液に、酢酸(5 mL)を加えた。混合物を15℃~35℃で15分間撹拌した後、同温度で水素化トリアセトキシホウ素ナトリウム(4.70 g)を加えた。混合物を15℃~35℃で30分間撹拌した後、50℃~60℃に昇温した。混合物を同温度で2時間反応した後、15℃~35℃まで冷却して酢酸エチル(50 mL)を加えた。混合物に2M 塩酸(50 mL)を加え、分液を行なった。水層に酢酸エチル(25 mL)を加えて再抽出を行った。有機層を合わせ、水(25 mL)、20%炭酸カリウム水溶液(25 mL×2)、5%アンモニア水(25 mL×2)、20%食塩水(25 mL)で順次洗浄した。有機層に硫酸マグネシウム(10 g)、活性炭(0.5 g)及び酢酸エチル(5 mL)を加え、室温で30分間攪拌した後、不溶物を濾去した。混合物を酢酸エチル(15 mL)で3回洗い込んだ後、濃縮した。濃縮残渣にエタノール(25 mL)及びテトラヒドロフラン(12.5 mL)を加え、55℃~65℃へ加熱して析出結晶を溶解させた。混合物を40℃~50℃で2時間撹拌し、晶析させた後、20℃~30℃で水(75 mL)をゆっくり滴下した。混合物を0℃~10℃まで冷却後、結晶を濾取してエタノール/水(1:2, 15 mL)で2回洗浄し、表題化合物の粗結晶(3.93 g)を微褐色結晶として得た。
 粗1,5-アンヒドロ-2,4-ジデオキシ-2-(4-フルオロ-5-メチル-1-オキソ-6-(4-(1H-ピラゾール-1-イル)ベンジル)-1,3-ジヒドロ-2H-イソインドール-2-イル)-L-トレオ-ペンチトール(3 g)に、2-ブタノン(27 mL)及びジメチルスルホキシド(3 mL)を加えた。65℃~75℃へ加熱して溶解させた後、不溶物を濾去した。混合物を2-ブタノン(6 mL)で洗い込んだ。混合物に60℃~70℃でn-ヘプタン(30 mL)をゆっくり滴下し、同温度で2時間以上撹拌して晶析させた。混合物に60℃~70℃でn-ヘプタン(30 mL)をゆっくり滴下し、同温度で4時間以上撹拌した。0℃~10℃まで冷却後、結晶を濾取して2-ブタノン/ n-ヘプタン(1:3, 9 mL)で2回洗浄し、表題化合物の再結晶品(2.71 g)を白色結晶として得た。
実施例4
3-フルオロ-2-ホルミル-4-メチル-N,N-ジ(プロパン-2-イル)-5-[4-(1H-ピラゾール-1-イル)ベンジル]ベンズアミドの合成
 窒素雰囲気下20℃~30℃にて3-フルオロ-4-メチル-N,N-ジ(プロパン-2-イル)-5-[4-(1H-ピラゾール-1-イル)ベンジル]ベンズアミド(5.00 g)とN,N-ジメチルホルムアミド(1.27 mL)のテトラヒドロフラン(75 mL)溶液に、ジイソプロピルアミン(9.44 mL)を加えた。混合物を-10℃~0℃に冷却後、1.6M n-ブチルリチウムのn-ヘキサン溶液(8.68 mL)を滴下した。混合物を同温にて1時間撹拌後、N,N-ジメチルホルムアミド(9.44 mL)、1.6M n-ブチルリチウムのn-ヘキサン溶液(7.89 mL)を順次滴下した。混合物を同温にて1時間撹拌後、N,N-ジメチルホルムアミド(8.68 mL)、1.6M n-ブチルリチウムのn-ヘキサン溶液(5.52 mL)を順次滴下した。混合物を同温にて1時間撹拌後、10℃を越えないように2M 塩酸(50 mL)を滴下した。混合物に酢酸エチル(37.5 mL)を加えた後、分液を行った。有機層を2M 塩酸(25 mL×2)、水(25 mL)、20%炭酸カリウム水溶液(25 mL)、10%食塩水(25 mL)で順次洗浄した。有機層に活性炭(0.50 g)を加えて、室温で30分間攪拌した後、活性炭を濾去した。酢酸エチル(10 mL)で3回洗い込んだ後、濃縮した。濃縮残渣に酢酸エチル(25 mL)を加え、60℃~70℃でn-ヘプタン(37.5 mL)をゆっくり滴下した。0℃~10℃まで冷却後、結晶を濾取して酢酸エチル/ n-ヘプタン(1:3, 10 mL)で2回洗浄し、表題化合物(3.98 g)を白色~淡灰色結晶として得た。
1H NMR (600 MHz, CDCl3) δ 1.06 (br s, 6 H), 1.58 (br s, 6 H), 2.22 (br d, J = 1.51 Hz, 3 H), 3.50 (tt, J = 13.08 Hz, 6.75 Hz, 2 H), 4.06 (br s, 2 H), 6.44-6.50 (m, 1 H), 6.82 (s, 1 H), 7.18 (br d, J = 8.31 Hz, 2 H), 7.62 (br d, J = 8.69 Hz, 2 H), 7.72 (br d, J = 1.13 Hz, 1 H), 7.90 (d, J = 2.27 Hz, 1 H), 10.35 (s, 1 H).
実施例5
3-フルオロ-2-ホルミル-4-メチル-5-[4-(1H-ピラゾール-1-イル)ベンジル]安息香酸の1,4-ジアザビシクロ[2.2.2]オクタン塩の合成
 3-フルオロ-2-ホルミル-4-メチル-N,N-ジ(プロパン-2-イル)-5-[4-(1H-ピラゾール-1-イル)ベンジル]ベンズアミド(30.0 g)と48%臭化水素酸(450 mL)の混合物に、パラトルエンスルホン酸・一水和物(135.4 g)を加えた。混合物を95℃~105℃で7時間反応した後、50℃~60℃まで冷却して水(150 mL)を添加した。混合物を10℃~30℃まで冷却してトルエン(150 mL)を加え、10℃~30℃で8M水酸化ナトリウム水溶液(150 mL)を滴下した。混合物にテトラヒドロフラン(300 mL)を加えて、10℃~30℃で8M水酸化ナトリウム水溶液(420 mL)を滴下し、pHを2~3に合わせた。混合物にトルエン(150 mL)を加えて分液を行った。水層にトルエン(75 mL)とテトラヒドロフラン(75 mL)を加えて再抽出を行った。有機層を合わせ、水(150 mL)で2回洗浄した。有機層に2-ブタノン(300 mL)及び5%炭酸水素ナトリウム水溶液(300 mL)を加えて30℃~40℃に加熱後、分液を行った。有機層に5%炭酸水素ナトリウム水溶液(150 mL)を加えて30℃~40℃に加熱後、再抽出(1回目)を行った。有機層に5%炭酸水素ナトリウム水溶液(150 mL)を加えて30℃~40℃に加熱後、再抽出(2回目)を行った。水層を合わせ、酢酸エチル(300 mL)を加えた後、20℃~30℃で6M 塩酸(60 mL)を滴下し水層のpHを2~3に合わせた。分液を行なった後、有機層を水(150 mL)で2回洗浄した。有機層に活性炭(3.0 g)を加えて、室温で30分間攪拌した後、活性炭を濾去した。酢酸エチル(90 mL)で3回洗い込んだ後、濃縮した。濃縮残渣に酢酸エチル(150 mL)、アセトニトリル(30 mL)及びテトラヒドロフラン(60 mL)を添加し、45℃~55℃で1,4-ジアザビシクロ[2.2.2]オクタン(7.19 g)を加えた。混合物を0℃~10℃まで冷却後、結晶を濾取して酢酸エチル(90 mL)で2回洗浄し、表題化合物(21.9 g)を淡黄色結晶として得た。
実施例6
3-フルオロ-2-ホルミル-4-メチル-5-[4-(1H-ピラゾール-1-イル)ベンジル]安息香酸の1,4-ジアザビシクロ[2.2.2]オクタン塩の合成
 3-フルオロ-2-ホルミル-4-メチル-N,N-ジ(プロパン-2-イル)-5-[4-(1H-ピラゾール-1-イル)ベンジル]ベンズアミド(30.0 g)と48%臭化水素酸(450 mL)の混合物に、パラトルエンスルホン酸・一水和物(135.4 g)を加えた。混合物を95℃~105℃で7時間反応した後、50℃~60℃まで冷却して水(150 mL)を添加した。混合物を10℃~30℃まで冷却してトルエン(150 mL)を加え、10℃~30℃で8M水酸化ナトリウム水溶液(150 mL)を滴下した。混合物にテトラヒドロフラン(300 mL)を加えて、10℃~30℃で8M水酸化ナトリウム水溶液(430 mL)を滴下し、pHを2~3に合わせた。混合物にトルエン(150 mL)を加えて分液を行った。水層にトルエン(75 mL)とテトラヒドロフラン(75 mL)を加えて再抽出を行った。有機層を合わせ、水(150 mL)で2回洗浄した。有機層に2-ブタノン(300 mL)及び5%炭酸水素ナトリウム水溶液(300 mL)を加えて30℃~40℃に加熱後、分液を行った。有機層に5%炭酸水素ナトリウム水溶液(300 mL)を加えて30℃~40℃に加熱後、再抽出(1回目)を行った。有機層に5%炭酸水素ナトリウム水溶液(150 mL)を加えて30℃~40℃に加熱後、再抽出(2回目)を行った。水層を合わせ、トルエン(150 mL)とテトラヒドロフラン(150 mL)を加えた後、20℃~30℃で6M 塩酸(57 mL)を滴下し水層のpHを2~3に合わせた。分液を行なった後、有機層を水(150 mL)で洗浄した。有機層に2-ブタノン(300 mL)及び5%炭酸水素ナトリウム水溶液(300 mL)を加えて30℃~40℃に加熱後、分液を行った。有機層に5%炭酸水素ナトリウム水溶液(150 mL)を加えて30℃~40℃に加熱後、再抽出(1回目)を行った。有機層に5%炭酸水素ナトリウム水溶液(150 mL)を加えて30℃~40℃に加熱後、再抽出(2回目)を行った。水層を合わせ、トルエン(150 mL)とテトラヒドロフラン(150 mL)を加えた後、20℃~30℃で6M 塩酸(55 mL)を滴下し水層のpHを2~3に合わせた。分液を行なった後、有機層を水(150 mL)で2回洗浄した。有機層に活性炭(3.0 g)を加えて、室温で30分間攪拌した後、活性炭を濾去した。テトラヒドロフラン(90 mL)で3回洗い込んだ後、濃縮した。濃縮残渣に酢酸エチル(150 mL)、アセトニトリル(30 mL)及びテトラヒドロフラン(60 mL)を添加し、55℃~65℃で1,4-ジアザビシクロ[2.2.2]オクタン(7.19 g)を加えた。混合物を0℃~10℃まで冷却後、結晶を濾取して酢酸エチル(90 mL)で2回洗浄し、表題化合物(21.7 g)を淡黄色結晶として得た。
1H NMR (600 MHz, DMSO-d6) δ 2.21 (s, 3 H), 2.81 (s, 12 H), 4.14 (s, 2 H), 6.49-6.57 (m, 1 H), 7.28 (br d, J = 8.69 Hz, 2 H), 7.47 (s, 1 H), 7.73 (d, J = 1.13, 1 H), 7.78 (br d, J = 8.69 Hz, 2 H), 8.46 (d, J = 2.27, 1 H), 8.64 (br s, 1 H).
実施例7
1,5-アンヒドロ-2,4-ジデオキシ-2-(4-フルオロ-5-メチル-1-オキソ-6-(4-(1H-ピラゾール-1-イル)ベンジル)-1,3-ジヒドロ-2H-イソインドール-2-イル)-L-トレオ-ペンチトールの合成
 3-フルオロ-2-ホルミル-4-メチル-5-[4-(1H-ピラゾール-1-イル)ベンジル]安息香酸の1,4-ジアザビシクロ[2.2.2]オクタン塩(15.0 g)、及び2-アミノ-1,5-アンヒドロ-2,4-ジデオキシ-L-トレオ-ペンチトール(4.1 g)のテトラヒドロフラン(150 mL)溶液に、酢酸(15 mL)を加えた。混合物を15℃~35℃で15分間撹拌した後、同温度で水素化トリアセトキシホウ素ナトリウム(14.1 g)を加えた。混合物を15℃~35℃で30分間撹拌した後、50℃~60℃に昇温した。混合物を同温度で2時間反応した後、15℃~35℃まで冷却して酢酸エチル(150 mL)を加えた。混合物に2M 塩酸(150 mL)を加え、分液を行なった。水層に酢酸エチル(75 mL)を加えて再抽出を行った。有機層を合わせ、水(75 mL)、20%炭酸カリウム水溶液(75 mL×2)、5%アンモニア水(75 mL×2)で順次洗浄した後、濃縮した。濃縮残渣にエタノール(75 mL)及びテトラヒドロフラン(37.5 mL)を加え、55℃~65℃へ加熱して析出結晶を溶解させた。混合物に同温度で水(225 mL)をゆっくり滴下した。0℃~10℃まで冷却後、結晶を濾取してエタノール/水(1:2, 45 mL)で2回洗浄し、表題化合物の粗結晶(13.3 g)を白色結晶として得た。
 粗1,5-アンヒドロ-2,4-ジデオキシ-2-(4-フルオロ-5-メチル-1-オキソ-6-(4-(1H-ピラゾール-1-イル)ベンジル)-1,3-ジヒドロ-2H-イソインドール-2-イル)-L-トレオ-ペンチトール(2.5 g)に、2-ブタノン(22.5 mL)及びジメチルスルホキシド(2.5 mL)を加えた。混合物を65℃~75℃へ加熱して溶解させた後、不溶物を濾去した。2-ブタノン(5 mL)で洗い込んだ。混合物に60℃~70℃でn-ヘプタン(25 mL)をゆっくり滴下し、同温度で2時間以上撹拌して晶析させた。混合物に60℃~70℃でn-ヘプタン(25 mL)をゆっくり滴下し、同温度で4時間以上撹拌した。混合物を0℃~10℃まで冷却後、結晶を濾取して2-ブタノン/n-ヘプタン(1:3, 7.5 mL)で2回洗浄し、表題化合物の再結晶品(2.27 g)を白色結晶として得た。
1H NMR (600 MHz, CDCl3) δ 1.75-1.86 (m, 1 H), 2.09-2.15 (m, 1 H), 2.21 (br d, J = 1.51 Hz, 3 H), 2.76 (br d, J = 5.29 Hz, 1 H), 3.44-3.50 (m, 1 H), 3.50-3.59 (m, 1 H), 4.00-4.05 (m, 2 H), 4.06-4.14 (m, 4 H), 4.39 (br d, J = 16.62 Hz, 1 H), 4.56 (br d, J = 17.00 Hz, 1 H), 6.41-6.49 (m, 1 H), 7.17 (br d, J = 8.31 Hz, 2 H), 7.46 (s, 1 H), 7.59 (br d, J = 8.69 Hz, 2 H), 7.71 (d, J = 1.13 Hz, 1 H), 7.88 (d, J = 1.89 Hz, 1 H).
実施例8
フローリアクターを用いた5-(4-(1H-ピラゾール-1-イル)ベンジル)-3-フルオロ-2-ホルミル-N,N-ジイソプロピル-4-メチルベンズアミドの合成
 n-ブチルリチウムを用いたアリールリチウム種の発生、及びそれに続くジメチルホルムアミドとの反応を、図1に示すフローリアクターを用いて行い、5-(4-(1H-ピラゾール-1-イル)ベンジル)-3-フルオロ-2-ホルミル-N,N-ジイソプロピル-4-メチルベンズアミドを合成した。
 2つのT字型マイクロミキサー(M1、M2;ジーエルサイエンス株式会社製ステンレス製SUSティー)と、チューブリアクター(R1;ジーエルサイエンス株式会社製ステンレスチューブ、外径1/16インチ(1.58mm)、内径1.0mm、長さ30mm)から構成されるフローリアクターに、プレクーリングのための3つのチューブリアクター(P1、P2、P3;ジーエルサイエンス株式会社製ステンレスチューブ、外径1/16インチ(1.58mm)、内径1.0mm、長さ500mm)を接続し、反応を行うフローシステムとした。これをマイナス50℃に設定した恒温槽に埋没させた。なお、プレクーリングのための3つのチューブリアクター(P1、P2、P3)から供給される溶液は全てガスタイトシリンジに吸い上げた後、アイシス社製シリンジポンプを用いて、所定の流速で各工程におけるT字型ミキサーに供給した。
 第1の反応として、(1)チューブリアクターP1から3-(4-(1H-ピラゾール-1-イル)ベンジル)-5-フルオロ-N,N-ジイソプロピル-4-メチルベンズアミドをTHFで希釈した溶液(0.2M)を、および(2)チューブリアクターP2から市販の1.6M n-ブチルリチウムを、それぞれT字型ミキサーM1(内経500μm)に(1)を32mL/min(6.4mmol/min)、(2)を4.8mL/min(7.68mmol/min)の流速で送液した。第2の反応として、T字型ミキサーM2(内経1000μm)に、ジメチルホルムアミド(neat)をチューブリアクターP3から16mL/minの流速で送液し、第1の反応にてT字型ミキサーM1を経由してチューブ型リアクターR1で発生させたアリールリチウム中間体と反応させた。なお、チューブ型リアクターR1の滞留時間は0.038秒であった。シリンジポンプによる送液開始後、送液が安定するまでの数秒間は廃棄し、送液が安定してから10秒間、フローリアクターから排出される反応液を回収した。ここで得られた反応液をHPLC(島津製作所製LC-2010C HT、カラム;YMC-Pack ODS-A 150×4.6mm(S-5μm、12nm)、アセトニトリル/0.01Mリン酸二水素カリウム水溶液移動相(グラジエント溶出プログラム:0~15分はA=B=50%で固定、15~30分はA=80 B=20に経時的に変化、30~45分はA=80 B=20で固定、45~60分はA=B=50%で固定)、1.0mL/min、UV検出器、25℃)で分析した。分析の結果、5-(4-(1H-ピラゾール-1-イル)ベンジル)-3-フルオロ-2-ホルミル-N,N-ジイソプロピル-4-メチルベンズアミド(HPLC保持時間17.1分)が96.2%の面積百分率値で生成していることを確認した。
実施例9
フローリアクターを用いた5-(4-(1H-ピラゾール-1-イル)ベンジル)-3-フルオロ-2-ホルミル-N,N-ジイソプロピル-4-メチルベンズアミドの合成と単離
 n-ブチルリチウムを用いたアリールリチウム種の発生、及びそれに続くジメチルホルムアミドとの反応を、図2に示すフローリアクターを用いて行い、5-(4-(1H-ピラゾール-1-イル)ベンジル)-3-フルオロ-2-ホルミル-N,N-ジイソプロピル-4-メチルベンズアミドを合成した。
 2つのT字型マイクロミキサー(M1、M2;ジーエルサイエンス株式会社製ステンレス製SUSティー)と、チューブリアクター(R1;ジーエルサイエンス株式会社製ステンレスチューブ、外径1/16インチ(1.58mm)、内径1.0mm、長さ30mm)から構成されるフローリアクターに、プレクーリングのための3つのチューブリアクター(P1、P2、P3;ジーエルサイエンス株式会社製ステンレスチューブ、外径1/16インチ(1.58mm)、内径1.0mm、長さ500mm)を接続し、反応を行うフローシステムとした。これをマイナス50℃に設定した恒温槽に埋没させた。なお、プレクーリングのための3つのチューブリアクター(P1、P2、P3)から供給される溶液は全てガスタイトシリンジに吸い上げた後、アイシス社製シリンジポンプを用いて、所定の流速で各工程におけるT字型ミキサーに供給した。
 第1の反応として、(1)チューブリアクターP1から3-(4-(1H-ピラゾール-1-イル)ベンジル)-5-フルオロ-N,N-ジイソプロピル-4-メチルベンズアミドをTHFで希釈した溶液(0.2M)を、(2)チューブリアクターP2から市販の1.6M n-ブチルリチウムを、それぞれT字型ミキサーM1(内経500μm)に(1)を32mL/min(6.4mmol/min)、(2)を12mL/min(19.2mmol/min)の流速で送液した。第2の反応として、T字型ミキサーM2(内経1000μm)にはジメチルホルムアミド(neat)をチューブリアクターP3から16mL/minの流速で送液し、第1の反応にてT字型ミキサーM1を経由してチューブ型リアクターR1で発生させたアリールリチウム中間体と反応させた。なお、チューブ型リアクターR1の滞留時間は0.032秒であった。シリンジポンプによる送液開始後、送液が安定するまでの数秒間は廃棄し、送液が安定してから90秒間、フローリアクターから排出される反応液を回収した。ここで得られた反応液を1M塩酸67.5mLでクエンチし、酢酸エチル45mLを加えて分液した。有機層に10w/w%食塩水45mLを加えて分液し、有機層をHPLC(島津製作所製LC-2010C HT、カラム;YMC-Pack ODS-A 150×4.6mm(S-5μm、12nm)、アセトニトリル/0.01Mリン酸二水素カリウム水溶液移動相(グラジエント溶出プログラム:0~15分はA=B=50%で固定、15~30分はA=80 B=20に経時的に変化、30~45分はA=80 B=20で固定、45~60分はA=B=50%で固定)、1.0mL/min、UV検出器、25℃)で分析した。分析の結果、5-(4-(1H-ピラゾール-1-イル)ベンジル)-3-フルオロ-2-ホルミル-N,N-ジイソプロピル-4-メチルベンズアミド(HPLC保持時間17.1分)が92.8%の面積百分率値で生成していることを確認した。この有機層を濃縮し(濃縮1回目)、これに酢酸エチル45mLを加えて濃縮した(濃縮2回目)。さらに、この濃縮物に酢酸エチル45mLを加えて濃縮した(濃縮3回目)。濃縮物に酢酸エチル18mLを加え77℃まで昇温し、析出物(5-(4-(1H-ピラゾール-1-イル)ベンジル)-3-フルオロ-2-ホルミル-N,N-ジイソプロピル-4-メチルベンズアミド)を溶解させた。混合物を60℃~70℃で攪拌し、n-ヘプタン37.8mLを1時間かけて滴下し、灰白色結晶の析出を確認した。混合物を60℃~70℃で1時間攪拌し、室温まで冷却した後、終夜攪拌を実施した。その後、混合物を0℃~10℃に冷却し、3時間熟成攪拌を行った後、ガラスフィルターでろ過して結晶を単離した。これを酢酸エチル/n-ヘプタン=1/3の混合溶液7.5mLで洗浄した上で、50℃に加熱しながら真空乾燥機で2時間乾燥し、3.64gの灰白色結晶を取得した(単離収率90%)。
実施例10
3-フルオロ-2-ホルミル-4-メチル-N,N-ジ(プロパン-2-イル)-5-[4-(1H-ピラゾール-1-イル)ベンジル]ベンズアミドの合成
 窒素雰囲気下20℃~30℃にて3-フルオロ-4-メチル-N,N-ジ(プロパン-2-イル)-5-[4-(1H-ピラゾール-1-イル)ベンジル]ベンズアミド(10.0 g)のテトラヒドロフラン(140 mL)溶液を、-10℃~0℃に冷却後、1.0 Mの2,2,6,6-テトラメチルピペリジノマグネシウムクロライド・塩化リチウムのテトラヒドロフラン/トルエン溶液(1:1, 43.2 mL)を滴下した。混合物を-10℃~0℃にて10分撹拌後、N,N-ジメチルホルムアミド(4.89 mL)のテトラヒドロフラン(5 mL)溶液を滴下した。混合物を-10℃~0℃にて10分間撹拌後、30℃を越えないように2M 塩酸(100 mL)を滴下した。混合物に酢酸エチル(50 mL)を加えた後、分液を行った。分液した水層に酢酸エチル(50 mL)を加え、再抽出を行った。合わせた有機層を、(1)2M 塩酸(50 mL×2)、(2)20%炭酸カリウム水溶液(50 mL)、 (3)10%食塩水(50 mL)で順次洗浄した後、濃縮した。濃縮残渣に酢酸エチル(70 mL)を加え、60℃~70℃でn-ヘプタン(100 mL)をゆっくり滴下した。0℃~10℃まで冷却後、結晶を濾取して酢酸エチル/n-ヘプタン(1:3, 20 mL)で2回洗浄し、表題化合物(9.70 g)を白色~淡灰色結晶として得た。
実施例11
tert-ブチル 3-フルオロ-4-メチル-5-[4-(1H-ピラゾール-1-イル)ベンジル]ベンゾエートの合成
 tert-ブチル-3-フルオロ-5-{ヒドロキシ[4-(1H-ピラゾール-1-イル)フェニル]メチル}-4-メチルベンゾエート(200 mg)をテトラヒドロフラン/メタノール(1:1, 6 mL)に加えて、減圧と窒素置換を3回行った。混合物に20wt%の水酸化パラジウム(20 mg)を加え、減圧と水素置換を3回行った。水素雰囲気下、40℃で8時間反応を行った。混合物を室温まで冷却後、触媒を濾去して濾液を濃縮した。濃縮残渣にメタノール(2 mL)を加え、35℃~45℃で水(4 mL)をゆっくり滴下した。混合物を室温まで冷却後、結晶を濾取してメタノール/水(1:3)で洗浄し、表題化合物(168 mg)を白色結晶として得た。
実施例12
tert-ブチル 3-フルオロ-5-{ヒドロキシ[4-(1H-ピラゾール-1-イル)フェニル]メチル}-4-メチルベンゾエートの合成
 tert-ブチル 3-フルオロ-5-ヨード-4-メチルベンゾエート(10 g)をテトラヒドロフラン(100 mL)に溶解し、-12℃~-4℃まで冷却した。イソプロピルマグネシウムクロライド・塩化リチウムのテトラヒドロフラン溶液(1.34 M, 34.4 mL)を、-5℃~-15℃で30分かけて滴下した。混合物を-5℃~-15℃で2時間反応したのち、イソプロピルマグネシウムクロライド・塩化リチウムのテトラヒドロフラン溶液(1.34 M, 5.5 mL)を追加した。混合物を-5℃~-15℃で30分間攪拌した後、4-(1H-ピラゾール-1-イル)ベンズアルデヒド(5.25 g)をテトラヒドロフラン(30 mL)に溶解した溶液を30分間かけて滴下した。混合物を-5℃~-15℃で30分間攪拌後、酢酸エチル(200 mL)と1M塩酸(100 mL)を加えて分液した。有機層を10%食塩水(50 mL)で2回洗浄した後、分液した。濃縮残渣にテトラヒドロフラン(100 mL)および活性炭(1 g)を加えて、室温で30分間攪拌した後、活性炭を濾去した。濾液を濃縮し、濃縮残渣に酢酸エチル(50 mL)を加えた。混合物に40℃でn-ヘプタン(50 mL)をゆっくり滴下した。室温まで冷却後、結晶を濾取して酢酸エチル/n-ヘプタン(1:3, 40 mL)で洗浄し、表題化合物(9.82 g)を白色結晶として得た。
1H NMR (600 MHz, CDCl3) δ 1.58-1.60 (m, 9 H), 2.15 (d, J = 1.9 Hz, 3 H), 2.46 (d, J = 4.2 Hz, 1 H), 6.02 (d, J = 3.8 Hz, 1 H), 6.46 (t, J = 2.1 Hz, 1 H), 7.38 (m, J = 8.7 Hz, 2 H), 7.59 (dd, J = 9.8, 1.5 Hz, 1 H), 7.66 (m, J = 8.7 Hz, 2 H), 7.72 (d, J = 1.5 Hz, 1 H), 7.90 (d, J = 2.6 Hz, 1 H), 8.03 (s, 1 H).
実施例13
tert-ブチル 3-フルオロ-4-メチル-5-[4-(1H-ピラゾール-1-イル)ベンジル]ベンゾエートの合成
 tert-ブチル-3-フルオロ-5-{ヒドロキシ[4-(1H-ピラゾール-1-イル)フェニル]メチル}-4-メチルベンゾエート(200 mg)をテトラヒドロフラン(1 mL)に加え、トリエチルアミン(159 mg)、4-ジメチルアミノピリジン(12.8 mg)および無水酢酸(107 mg)を加えた。混合物を50℃で1時間反応後、室温まで冷却した。混合物にメタノール(1 mL)を加えて、減圧と窒素置換を3回行った。混合物に10%Pd/C(PE type, 20 mg)を加え、減圧と水素置換を3回行った。水素雰囲気下、40℃で3時間反応を行った。混合物を室温まで冷却後、触媒を濾去して濾液を濃縮した。濃縮残渣にメタノール(1 mL)を加え、水(1 mL)をゆっくり滴下した。結晶を濾取してメタノール/水(1:3)で洗浄し、表題化合物(178 mg)を白色結晶として得た。
1H NMR (600 MHz, CDCl3) δ 1.58 (s, 9 H), 2.17 (d, J=2.3 Hz, 3 H), 4.07 (s, 2 H), 6.39-6.51 (m, 1 H), 7.17 (d, J=8.7 Hz, 2 H), 7.54 (dd, J=9.8, 1.5 Hz, 1 H), 7.58-7.62 (m, 2 H), 7.62 (s, 1 H), 7.71 (d, J=1.5 Hz, 1 H), 7.88 (d, J=2.6 Hz, 1 H).
実施例14
3-フルオロ-2-ホルミル-4-メチル-5-[4-(1H-ピラゾール-1-イル)ベンジル]安息香酸の1,4-ジアザビシクロ[2.2.2]オクタン塩の合成
 tert-ブチル 3-フルオロ-4-メチル-5-[4-(1H-ピラゾール-1-イル)ベンジル]ベンゾエート (3 g) をテトラヒドロフラン (36 mL)に溶解し、0 ℃~-10 ℃まで冷却した。混合物に1.0 Mの2,2,6,6-テトラメチルピペリジノマグネシウムクロライド・塩化リチウムのテトラヒドロフラン/トルエン溶液(1:1, 14.7 mL, 1.8 eq.) を0℃~-10℃でゆっくり滴下した。混合物をテトラヒドロフラン(1.5 mL)で洗い込んだ後、0℃~-10℃で約1時間撹拌した。4-ホルミルモルフォリン (2.1 mL, 2.5 eq.) のテトラヒドロフラン (3 mL) 溶液を、-10 ℃~0 ℃で混合物に滴下し、テトラヒドロフラン (1.5 mL)で洗い込んだ。混合物を-10℃~0℃で約1時間攪拌後、30℃を越えないように6 M塩酸(36 mL)を加えた。混合物を室温で終夜撹拌後、トルエン (30 mL)を加えて分液した。水層をトルエン/テトラヒドロフラン (15mL/15mL)で抽出した。あわせた有機層を(1)2M塩酸(15 mL)、(2)10%食塩水(15 mL)で2回、(3)水(15 mL)で順次洗浄した。有機層に活性炭(300 mg)を加えて、室温で30分間攪拌した後、活性炭を濾去し、テトラヒドロフラン (9 mL×3) で洗い込んだ。濾液を濃縮し、濃縮残渣に酢酸エチル(15 mL)およびテトラヒドロフラン (6 mL)を加えた。混合物に55℃でDABCO (827 mg, 0.9 eq) を加え、50℃~60℃で1時間撹拌した。混合物を5℃まで冷却後、結晶を濾取して酢酸エチル(9 mL×2)で洗浄し、表題化合物 (2.51 g)を淡黄色結晶として得た。
1H NMR (600 MHz, DMSO-d6) δ 2.21 (s, 3 H), 2.81 (s, 12 H), 4.14 (s, 2 H), 6.49-6.57 (m, 1 H), 7.28 (br d, J = 8.69 Hz, 2 H), 7.47 (s, 1 H), 7.73 (d, J = 1.13, 1 H), 7.78 (br d, J = 8.69 Hz, 2 H), 8.46 (d, J = 2.27, 1 H), 8.64 (br s, 1 H).
実施例15
3-フルオロ-4-メチル-N,N-ジ(プロパン-2-イル)-5-[4-(1H-ピラゾール-1-イル)ベンジル]ベンズアミドの合成
 窒素雰囲気下、5℃にて、3-フルオロ-5-ヨード-4-メチル-N,N-ジ(プロパン-2-イル)ベンズアミド(5 g)のテトラヒドロフラン(25 mL)溶液に、1.34Mイソプロピルマグネシウムクロライド・塩化リチウムのテトラヒドロフラン溶液(15.9 mL)を滴下した。混合物を5℃にて30分撹拌後、4-(1H-ピラゾール-1-イル)ベンズアルデヒド(2.19 g) のテトラヒドロフラン溶液(20 mL)を添加した。5℃にて1時間撹拌した後、反応混合物に35℃を越えないように2M 塩酸(50 mL)を滴下した。混合物に酢酸エチル(50 mL)を加えて分液を行った。水層に酢酸エチル(25 mL)を加えて再抽出を行った。有機層を合わせ、2M 塩酸(25 mL)、水(25 mL)、20%炭酸カリウム水溶液(25 mL)、水(25 mL)、20%食塩水(25 mL)で順次洗浄した。有機層に活性炭(1.0 g)を加えて、室温で1時間攪拌した後、活性炭を濾去した。混合物を酢酸エチル(15 mL)で3回洗い込んだ後、濃縮した。濃縮残渣にエタノール(50 mL)を加え、減圧と窒素置換を3回行った。混合物に20wt%水酸化パラジウム(1.50 g)を加えた後、水素ガス(0.5 mPa)で減圧と窒素置換を行った。水素雰囲気下、混合物を50℃~60℃で39時間反応させた。混合物を窒素で3回置換後、20℃~30℃まで冷却してテトラヒドロフラン(10 mL)を添加し、不溶物を濾去した。混合物をエタノール(15 mL)で3回洗い込んだ後、濃縮した。濃縮残渣にエタノール(40 mL)を加え、60℃~70℃で水(50 mL)をゆっくり滴下した。混合物を20℃~30℃まで冷却後、結晶を濾取してエタノール/水(2:3, 15 mL)で2回洗浄した。湿結晶に酢酸エチル(15 mL)を加え、45℃~55℃でn-ヘプタン(30mL)をゆっくり滴下した。混合物を0℃~10℃まで冷却後、結晶を濾取して酢酸エチル/n-ヘプタン(1:4, 10 mL)で2回洗浄し、表題化合物(3.50 g)を白色結晶として得た。
実施例16
3-フルオロ-4-メチル-N,N-ジ(プロパン-2-イル)-5-[4-(1H-ピラゾール-1-イル)ベンジル]ベンズアミドの合成
 3-フルオロ-4-メチル-N,N-ジ(プロパン-2-イル)-5-{ヒドロキシ[4-(1H-ピラゾール-1-イル)フェニル]メチル}ベンズアミド(100 mg)をテトラヒドロフラン(1 mL)に加え、トリエチルアミン(74.1 mg)、4-ジメチルアミノピリジン(6.0 mg)、および無水酢酸(49.9 mg)を加えた。50℃で1時間反応後、室温まで冷却した。混合物にメタノール(1 mL)を加えて、減圧と窒素置換を3回行った。混合物に10%Pd/C(PE type, 10 mg)を加え、減圧と水素置換を3回行った。混合物を、水素雰囲気下、40℃で3時間反応を行った。混合物を室温まで冷却後、触媒を濾去した。混合物をメタノール(1 mL)で3回洗い込んだ後、濃縮した。濃縮残渣にメタノール(1 mL)を加え、水(1 mL)をゆっくり滴下した。結晶を濾取してメタノール/水(1:3)で2回洗浄し、表題化合物(69.1 mg)を白色結晶として得た。
 本発明によれば、毒性の強い試薬を使用することなく、アルツハイマー病等の予防および/または治療薬として有用な1,5-アンヒドロ-2,4-ジデオキシ-2-(4-フルオロ-5-メチル-1-オキソ-6-(4-(1H-ピラゾール-1-イル)ベンジル)-1,3-ジヒドロ-2H-イソインドール-2-イル)-L-トレオ-ペンチトールを効率的(例、短工程、高収率、高選択的)に製造することができる。
 本出願は、日本で出願された特願2017-036898を基礎としており、その内容は本明細書にすべて包含されるものである。

Claims (17)

  1.  4-フルオロ-3-ヒドロキシ-5-メチル-6-[4-(1H-ピラゾール-1-イル)ベンジル]-2-ベンゾフラン-1(3H)-オンもしくはその塩、
    3-フルオロ-2-ホルミル-4-メチル-5-[4-(1H-ピラゾール-1-イル)ベンジル]安息香酸もしくはその塩、
    またはその混合物を、
    2-アミノ-1,5-アンヒドロ-2,4-ジデオキシ-L-トレオ-ペンチトールと反応させることを含む、
    1,5-アンヒドロ-2,4-ジデオキシ-2-(4-フルオロ-5-メチル-1-オキソ-6-(4-(1H-ピラゾール-1-イル)ベンジル)-1,3-ジヒドロ-2H-イソインドール-2-イル)-L-トレオ-ペンチトールまたはその塩の製造方法。
  2.  式(I)
    Figure JPOXMLDOC01-appb-C000001

    [式中、
    R1とR2は、それぞれ独立して、水素原子、または置換されていてもよい炭化水素基を示すか、または、
    R1とR2は、隣接する窒素原子と一緒になって、3ないし8員単環式含窒素非芳香族複素環を形成する。]
    で表される化合物またはその塩を、加水分解反応に付すことを含む、
    4-フルオロ-3-ヒドロキシ-5-メチル-6-[4-(1H-ピラゾール-1-イル)ベンジル]-2-ベンゾフラン-1(3H)-オンもしくはその塩、
    3-フルオロ-2-ホルミル-4-メチル-5-[4-(1H-ピラゾール-1-イル)ベンジル]安息香酸もしくはその塩、
    またはその混合物の製造方法。
  3.  式(II)
    Figure JPOXMLDOC01-appb-C000002

    [式中、
    R1とR2は、それぞれ独立して、水素原子、または置換されていてもよい炭化水素基を示すか、または、
    R1とR2は、隣接する窒素原子と一緒になって、3ないし8員単環式含窒素非芳香族複素環を形成する。]
    で表される化合物またはその塩を、ホルミル化反応に付すことを含む、
    式(I)
    Figure JPOXMLDOC01-appb-C000003

    [式中の各記号は前記と同意義を示す。]
    で表される化合物またはその塩の製造方法。
  4.  工程(i):式(II)
    Figure JPOXMLDOC01-appb-C000004

    [式中、
    R1とR2は、それぞれ独立して、水素原子、または置換されていてもよい炭化水素基を示すか、または、
    R1とR2は、隣接する窒素原子と一緒になって、3ないし8員単環式含窒素非芳香族複素環を形成する。]
    で表される化合物またはその塩を、ホルミル化反応に付し、
    式(I)
    Figure JPOXMLDOC01-appb-C000005

    [式中の各記号は前記と同意義を示す。]
    で表される化合物またはその塩を得る工程、および
     工程(ii):式(I)で表される化合物またはその塩を加水分解反応に付す工程、
    を含む、
    4-フルオロ-3-ヒドロキシ-5-メチル-6-[4-(1H-ピラゾール-1-イル)ベンジル]-2-ベンゾフラン-1(3H)-オンもしくはその塩、
    3-フルオロ-2-ホルミル-4-メチル-5-[4-(1H-ピラゾール-1-イル)ベンジル]安息香酸もしくはその塩、
    またはその混合物の製造方法。
  5.  工程(i):式(II)
    Figure JPOXMLDOC01-appb-C000006

    [式中、
    R1とR2は、それぞれ独立して、水素原子、または置換されていてもよい炭化水素基を示すか、または、
    R1とR2は、隣接する窒素原子と一緒になって、3ないし8員単環式含窒素非芳香族複素環を形成する。]
    で表される化合物またはその塩を、ホルミル化反応に付し、
    式(I)
    Figure JPOXMLDOC01-appb-C000007

    [式中の各記号は前記と同意義を示す。]
    で表される化合物またはその塩を得る工程、
     工程(ii):式(I)で表される化合物またはその塩を加水分解反応に付し、
    4-フルオロ-3-ヒドロキシ-5-メチル-6-[4-(1H-ピラゾール-1-イル)ベンジル]-2-ベンゾフラン-1(3H)-オンもしくはその塩、
    3-フルオロ-2-ホルミル-4-メチル-5-[4-(1H-ピラゾール-1-イル)ベンジル]安息香酸もしくはその塩、
    またはその混合物を得る工程、および
     工程(iii):
    4-フルオロ-3-ヒドロキシ-5-メチル-6-[4-(1H-ピラゾール-1-イル)ベンジル]-2-ベンゾフラン-1(3H)-オンもしくはその塩、
    3-フルオロ-2-ホルミル-4-メチル-5-[4-(1H-ピラゾール-1-イル)ベンジル]安息香酸もしくはその塩、
    またはその混合物を、2-アミノ-1,5-アンヒドロ-2,4-ジデオキシ-L-トレオ-ペンチトールと反応させる工程、
    を含む、
    1,5-アンヒドロ-2,4-ジデオキシ-2-(4-フルオロ-5-メチル-1-オキソ-6-(4-(1H-ピラゾール-1-イル)ベンジル)-1,3-ジヒドロ-2H-イソインドール-2-イル)-L-トレオ-ペンチトールまたはその塩の製造方法。
  6.  4-フルオロ-3-ヒドロキシ-5-メチル-6-[4-(1H-ピラゾール-1-イル)ベンジル]-2-ベンゾフラン-1(3H)-オンまたはその塩。
  7.  3-フルオロ-2-ホルミル-4-メチル-5-[4-(1H-ピラゾール-1-イル)ベンジル]安息香酸またはその塩。
  8.  3-フルオロ-2-ホルミル-4-メチル-N,N-ジ(プロパン-2-イル)-5-[4-(1H-ピラゾール-1-イル)ベンジル]ベンズアミドまたはその塩。
  9.  3-フルオロ-4-メチル-N,N-ジ(プロパン-2-イル)-5-[4-(1H-ピラゾール-1-イル)ベンジル]ベンズアミドまたはその塩。
  10.  式(VIII)
    Figure JPOXMLDOC01-appb-C000008

    [式中、R6は、水素原子、または置換されていてもよいC1-6アルキル基を示す。]
    で表される化合物またはその塩を、ホルミル化反応、次いで所望により加水分解反応に付すことを含む、
    4-フルオロ-3-ヒドロキシ-5-メチル-6-[4-(1H-ピラゾール-1-イル)ベンジル]-2-ベンゾフラン-1(3H)-オンもしくはその塩、
    3-フルオロ-2-ホルミル-4-メチル-5-[4-(1H-ピラゾール-1-イル)ベンジル]安息香酸もしくはその塩、
    またはその混合物の製造方法。
  11.  式(IX)
    Figure JPOXMLDOC01-appb-C000009

    [式中、
    R6は、水素原子、または置換されていてもよいC1-6アルキル基を示し、および
    R7は、保護基を示す。]
    で表される化合物またはその塩を、還元反応に付すことを含む、
    式(VIII)
    Figure JPOXMLDOC01-appb-C000010

    [式中の記号は前記と同意義を示す。]
    で表される化合物またはその塩の製造方法。
  12.  式(X)
    Figure JPOXMLDOC01-appb-C000011

    [式中、R6は、水素原子、または置換されていてもよいC1-6アルキル基を示す。]
    で表される化合物またはその塩を、ヒドロキシ基の保護反応に付すことを含む、
    式(IX)
    Figure JPOXMLDOC01-appb-C000012

    [式中、
    R6は、前記と同意義を示し、
    R7は、保護基を示す。]
    で表される化合物またはその塩の製造方法。
  13.  式(XI)
    Figure JPOXMLDOC01-appb-C000013

    [式中、R6は、水素原子、または置換されていてもよいC1-6アルキル基を示す。]
    で表される化合物またはその塩を、
    4-(1H-ピラゾール-1-イル)ベンズアルデヒドと反応させることを含む、
    式(X)
    Figure JPOXMLDOC01-appb-C000014

    [式中の記号は前記と同意義を示す。]
    で表される化合物またはその塩の製造方法。
  14.  工程(i):式(XI)
    Figure JPOXMLDOC01-appb-C000015

    [式中、R6は、水素原子、または置換されていてもよいC1-6アルキル基を示す。]
    で表される化合物またはその塩を、
    4-(1H-ピラゾール-1-イル)ベンズアルデヒドと反応させることを含む、
    式(X)
    Figure JPOXMLDOC01-appb-C000016

    [式中の記号は前記と同意義を示す。]
    で表される化合物またはその塩を得る工程、および
     工程(ii):式(X)で表される化合物またはその塩を、ヒドロキシ基の保護反応に付す工程を含む、
    式(IX)
    Figure JPOXMLDOC01-appb-C000017

    [式中、
    R6は、前記と同意義を示し、および
    R7は、保護基を示す。]
    で表される化合物またはその塩の製造方法。
  15.  工程(i):式(XI)
    Figure JPOXMLDOC01-appb-C000018

    [式中、R6は、水素原子、または置換されていてもよいC1-6アルキル基を示す。]
    で表される化合物またはその塩を、
    4-(1H-ピラゾール-1-イル)ベンズアルデヒドと反応させ、
    式(X)
    Figure JPOXMLDOC01-appb-C000019

    [式中の記号は前記と同意義を示す。]
    で表される化合物またはその塩を得る工程、
     工程(ii):式(X)で表される化合物またはその塩を、ヒドロキシ基の保護反応に付し、
    式(IX)
    Figure JPOXMLDOC01-appb-C000020

    [式中、
    R6は、前記と同意義を示し、および
    R7は、保護基を示す。]
    で表される化合物またはその塩を得る工程、および
     工程(iii):式(IX)で表される化合物またはその塩を、還元反応に付す工程を含む、
    式(VIII)
    Figure JPOXMLDOC01-appb-C000021

    [式中の記号は前記と同意義を示す。]
    で表される化合物またはその塩の製造方法。
  16.  工程(i):式(XI)
    Figure JPOXMLDOC01-appb-C000022

    [式中、R6は、水素原子、または置換されていてもよいC1-6アルキル基を示す。]
    で表される化合物またはその塩を、
    4-(1H-ピラゾール-1-イル)ベンズアルデヒドと反応させ、
    式(X)
    Figure JPOXMLDOC01-appb-C000023

    [式中の記号は前記と同意義を示す。]
    で表される化合物またはその塩を得る工程、
     工程(ii):式(X)で表される化合物またはその塩を、ヒドロキシ基の保護反応に付し、
    式(IX)
    Figure JPOXMLDOC01-appb-C000024

    [式中、
    R6は、前記と同意義を示し、および
    R7は、保護基を示す。]
    で表される化合物またはその塩を得る工程、
     工程(iii):式(IX)で表される化合物またはその塩を、還元反応に付し、
    式(VIII)
    Figure JPOXMLDOC01-appb-C000025

    [式中の記号は前記と同意義を示す。]
    で表される化合物またはその塩を得る工程、および
     工程(iv):式(VIII)で表される化合物またはその塩を、ホルミル化反応、次いで所望により加水分解反応に付す工程を含む、
    4-フルオロ-3-ヒドロキシ-5-メチル-6-[4-(1H-ピラゾール-1-イル)ベンジル]-2-ベンゾフラン-1(3H)-オンもしくはその塩、
    3-フルオロ-2-ホルミル-4-メチル-5-[4-(1H-ピラゾール-1-イル)ベンジル]安息香酸もしくはその塩、
    またはその混合物の製造方法。
  17.  工程(i):式(XI)
    Figure JPOXMLDOC01-appb-C000026

    [式中、R6は、水素原子、または置換されていてもよいC1-6アルキル基を示す。]
    で表される化合物またはその塩を、
    4-(1H-ピラゾール-1-イル)ベンズアルデヒドと反応させることを含む、
    式(X)
    Figure JPOXMLDOC01-appb-C000027

    [式中の記号は前記と同意義を示す。]
    で表される化合物またはその塩を得る工程、
     工程(ii):式(X)で表される化合物またはその塩を、ヒドロキシ基の保護反応に付し、
    式(IX)
    Figure JPOXMLDOC01-appb-C000028

    [式中、
    R6は、前記と同意義を示し、および
    R7は、保護基を示す。]
    で表される化合物またはその塩を得る工程、
     工程(iii):式(IX)で表される化合物またはその塩を、還元反応に付し、
    式(VIII)
    Figure JPOXMLDOC01-appb-C000029

    [式中の記号は前記と同意義を示す。]
    で表される化合物またはその塩を得る工程、
     工程(iv):式(VIII)で表される化合物またはその塩を、ホルミル化反応、次いで所望により加水分解反応に付し、
    4-フルオロ-3-ヒドロキシ-5-メチル-6-[4-(1H-ピラゾール-1-イル)ベンジル]-2-ベンゾフラン-1(3H)-オンもしくはその塩、
    3-フルオロ-2-ホルミル-4-メチル-5-[4-(1H-ピラゾール-1-イル)ベンジル]安息香酸もしくはその塩、
    またはその混合物を得る工程、および
     工程(v):4-フルオロ-3-ヒドロキシ-5-メチル-6-[4-(1H-ピラゾール-1-イル)ベンジル]-2-ベンゾフラン-1(3H)-オンもしくはその塩、
    3-フルオロ-2-ホルミル-4-メチル-5-[4-(1H-ピラゾール-1-イル)ベンジル]安息香酸もしくはその塩、
    またはその混合物を、2-アミノ-1,5-アンヒドロ-2,4-ジデオキシ-L-トレオ-ペンチトールと反応させる工程、
    を含む、
    1,5-アンヒドロ-2,4-ジデオキシ-2-(4-フルオロ-5-メチル-1-オキソ-6-(4-(1H-ピラゾール-1-イル)ベンジル)-1,3-ジヒドロ-2H-イソインドール-2-イル)-L-トレオ-ペンチトールまたはその塩の製造方法。
PCT/JP2018/007349 2017-02-28 2018-02-27 複素環化合物の製造方法 WO2018159639A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA3054773A CA3054773A1 (en) 2017-02-28 2018-02-27 Method for producing heterocyclic compound
JP2019503035A JP7069109B2 (ja) 2017-02-28 2018-02-27 複素環化合物の製造方法
US16/488,770 US10710989B2 (en) 2017-02-28 2018-02-27 Method for producing heterocyclic compound
CN202410006479.3A CN118005619A (zh) 2017-02-28 2018-02-27 用于生产杂环化合物的方法
CN201880014672.4A CN110753689B (zh) 2017-02-28 2018-02-27 用于生产杂环化合物的方法
EP18761137.1A EP3590936B1 (en) 2017-02-28 2018-02-27 Method for producing heterocyclic compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-036898 2017-02-28
JP2017036898 2017-02-28

Publications (1)

Publication Number Publication Date
WO2018159639A1 true WO2018159639A1 (ja) 2018-09-07

Family

ID=63370870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007349 WO2018159639A1 (ja) 2017-02-28 2018-02-27 複素環化合物の製造方法

Country Status (6)

Country Link
US (1) US10710989B2 (ja)
EP (1) EP3590936B1 (ja)
JP (1) JP7069109B2 (ja)
CN (2) CN110753689B (ja)
CA (1) CA3054773A1 (ja)
WO (1) WO2018159639A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55141457A (en) * 1979-04-19 1980-11-05 Hisamitsu Pharmaceut Co Inc Novel benzylidene derivative
SU1502568A1 (ru) * 1987-08-17 1989-08-23 Предприятие П/Я В-2343 Способ получени 6,7-диметокси-N-алкилфталимидинов
WO2015163485A1 (en) 2014-04-23 2015-10-29 Takeda Pharmaceutical Company Limited Isoindoline-1-one derivatives as cholinergic muscarinic m1 receptor positive alloesteric modulator activity for the treatment of alzheimers disease
JP2017036898A (ja) 2015-08-13 2017-02-16 パンパシフィック・カッパー株式会社 酸素製造装置の稼動方法
WO2017155050A1 (ja) * 2016-03-11 2017-09-14 武田薬品工業株式会社 芳香環化合物

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2942631A1 (en) * 2014-03-14 2015-09-17 Takeda Pharmaceutical Company Limited Process for producing heterocyclic compound
US10214508B2 (en) * 2014-06-13 2019-02-26 Takeda Pharmaceutical Company Limited Nitrogen-containing heterocyclic compound
JP6745824B2 (ja) * 2015-06-26 2020-08-26 武田薬品工業株式会社 複素環化合物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55141457A (en) * 1979-04-19 1980-11-05 Hisamitsu Pharmaceut Co Inc Novel benzylidene derivative
SU1502568A1 (ru) * 1987-08-17 1989-08-23 Предприятие П/Я В-2343 Способ получени 6,7-диметокси-N-алкилфталимидинов
WO2015163485A1 (en) 2014-04-23 2015-10-29 Takeda Pharmaceutical Company Limited Isoindoline-1-one derivatives as cholinergic muscarinic m1 receptor positive alloesteric modulator activity for the treatment of alzheimers disease
JP2017036898A (ja) 2015-08-13 2017-02-16 パンパシフィック・カッパー株式会社 酸素製造装置の稼動方法
WO2017155050A1 (ja) * 2016-03-11 2017-09-14 武田薬品工業株式会社 芳香環化合物

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 138, 2016, pages 2985 - 2988
NAYAL, ONKAR S. ET AL.: "Synthesis of tertiary arylamines: Lewis acid-catalyzed direct reductive N-alkylation of secondary amines with ketones through an alternative pathway", CHEMICAL COMMUNICATIONS, vol. 52, no. 62, 2016, pages 9648 - 9651, XP055605588 *
ORGANIC LETTERS, vol. 18, 2016, pages 5248 - 5251
See also references of EP3590936A4
TETRAHEDRON LETTERS, vol. 57, 2016, pages 4142 - 4144
UNO, M. ET AL.: "1-[4-(N-Benzylamino)phenyl]-3-phenylurea derivatives as a new class of hypoxia-inducible factor-1 a inhibitors", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 19, 2009, pages 3166 - 3169, XP026138491, DOI: doi:10.1016/j.bmcl.2009.04.122 *

Also Published As

Publication number Publication date
JP7069109B2 (ja) 2022-05-17
US20190375736A1 (en) 2019-12-12
US10710989B2 (en) 2020-07-14
EP3590936A4 (en) 2020-10-07
EP3590936A1 (en) 2020-01-08
CN110753689B (zh) 2024-01-26
JPWO2018159639A1 (ja) 2019-12-26
CN110753689A (zh) 2020-02-04
EP3590936B1 (en) 2021-09-01
CN118005619A (zh) 2024-05-10
CA3054773A1 (en) 2018-09-07

Similar Documents

Publication Publication Date Title
JP6571077B2 (ja) 含窒素複素環化合物
CN103930414B (zh) 7-{(3s,4s)-3-[(环丙基氨基)甲基]-4-氟吡咯烷-1-基}-6-氟-1-(2-氟乙基)-8-甲氧基-4-氧-1,4-二氢喹啉-3-羧酸晶体
JP7420865B2 (ja) 光学活性化合物の製造法
JP2020097526A (ja) 複素環化合物
KR102480594B1 (ko) 세포독성 벤조디아제핀 유도체를 제조하는 방법
KR102221087B1 (ko) 항종양 약물 니라파립을 합성하기 위한 중간체의 제조방법 및 중간체
US20180079741A1 (en) Process for producing heterocyclic compound
WO2018159639A1 (ja) 複素環化合物の製造方法
CN110709401B (zh) 杂环化合物
JP6592521B2 (ja) ピラゾール誘導体の製造方法
Claverie et al. The revisited synthesis of tert-butyl pyroglutamate derivatives
US9878981B2 (en) Method for producing heterocyclic compound
Belokon et al. Novel type of trifunctional chiral N-heterocyclic carbene (NHC) precursors
JPWO2009119817A1 (ja) 安定なヴィナミジニウム塩およびそれを用いた含窒素複素環合成
WO2017026538A1 (en) Production method of pyrazine
EP1634879A1 (en) Method of selectively introducing amino substituent
JP2015525788A (ja) マルチターゲットfaahおよびcoxインヒビターならびにその治療上の用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18761137

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019503035

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3054773

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018761137

Country of ref document: EP

Effective date: 20190930