WO2018159446A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2018159446A1
WO2018159446A1 PCT/JP2018/006448 JP2018006448W WO2018159446A1 WO 2018159446 A1 WO2018159446 A1 WO 2018159446A1 JP 2018006448 W JP2018006448 W JP 2018006448W WO 2018159446 A1 WO2018159446 A1 WO 2018159446A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
indoor heat
heat exchange
indoor
heat exchanger
Prior art date
Application number
PCT/JP2018/006448
Other languages
French (fr)
Japanese (ja)
Inventor
秀樹 本條
宜仁 渡邉
大樹 奥野
順之佑 西川
Original Assignee
株式会社富士通ゼネラル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017036408A external-priority patent/JP6824779B2/en
Priority claimed from JP2017184926A external-priority patent/JP6399181B1/en
Application filed by 株式会社富士通ゼネラル filed Critical 株式会社富士通ゼネラル
Priority to AU2018228986A priority Critical patent/AU2018228986B2/en
Priority to CN201880014547.3A priority patent/CN110382970B/en
Priority to EP18761214.8A priority patent/EP3591306A4/en
Publication of WO2018159446A1 publication Critical patent/WO2018159446A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/30Condensation of water from cooled air

Definitions

  • the present invention relates to an air conditioner that suppresses the growth of mold and bacteria in an indoor unit.
  • the indoor heat exchanger is heated in order to dry the interior of the indoor unit after the cooling operation.
  • the temperature of the indoor heat exchanger is not much different from the temperature during heating operation, and does not lead to a decrease in the number of molds and bacteria.
  • the temperature of the indoor heat exchanger is set to about 40 ° C., but this temperature only suppresses the growth of mold and bacteria. When the cooling operation is performed again, molds and bacteria whose growth has been suppressed may be propagated again.
  • the indoor heat exchanger is further heated to increase the temperature of the indoor heat exchanger.
  • the target temperature of the indoor heat exchanger may be set to 50 ° C. or higher. It is done. At this time, in order to significantly reduce the number of molds and bacteria in a short time, it is desirable to make the target temperature as high as possible.
  • the air conditioner is capable of executing protection control that prevents the discharge pressure of the compressor from exceeding the upper limit value of the operating range.
  • protection control a temperature lower than the temperature corresponding to the upper limit value of the discharge pressure range of the compressor is set as a threshold temperature, and the compressor is stopped when the indoor heat exchange temperature exceeds the threshold temperature.
  • the threshold temperature of the protection control described above is the target of the indoor heat exchanger during sterilization. If the temperature is lower than the temperature, the compressor is stopped by protection control before the indoor heat exchange temperature reaches the target temperature, and there is a problem that the number of molds and bacteria cannot be reduced.
  • the present invention solves the problems described above, and is an air that prevents the discharge pressure of the compressor from exceeding the upper limit value of the operating range when the operation is performed to reduce the number of molds and bacteria.
  • the purpose is to provide a harmony machine.
  • an air conditioner includes an indoor unit having an indoor heat exchanger temperature sensor that detects an indoor heat exchanger temperature that is a temperature of the indoor heat exchanger and the indoor heat exchanger, and a compressor. And an outdoor unit having control means for controlling the compressor.
  • the control means can execute the first protection control and the second protection control when the indoor heat exchanger is functioning as a condenser, and the first protection control is configured such that the indoor heat exchange temperature is a predetermined first threshold room.
  • the second protection control is executed when the temperature is higher than the heat exchange temperature, and the second protection control is executed when the indoor heat exchange temperature is higher than a predetermined second threshold indoor heat exchange temperature higher than the first threshold indoor heat exchange temperature.
  • the second protection control is performed. Do. Therefore, it is possible to prevent the discharge pressure of the compressor from exceeding the upper limit value of the use range when performing an operation for reducing the number of molds and bacteria.
  • FIG. 1 is an explanatory diagram of an air conditioner according to an embodiment of the present invention, in which (A) is an external perspective view of an indoor unit and an outdoor unit, and (B) is an XX cross-sectional view in (A).
  • FIG. 2 is an explanatory diagram of an air conditioner according to an embodiment of the present invention, in which (A) is a refrigerant circuit diagram, and (B) is a block diagram of an outdoor unit control unit and an indoor unit control unit.
  • FIG. 3 is a flowchart showing a process flow of the heating operation control.
  • FIG. 4 is a flowchart showing the flow of processing for protection control during heating operation.
  • FIG. 5 is data showing the residual rate of mold or bacteria at each indoor heat exchange temperature, (A) is data on mold, and (B) is data on E. coli.
  • FIG. 6 is a control table of each fan at the time of indoor heat exchange heating operation, (A) is an indoor fan control table, and (B) is an outdoor fan control table.
  • FIG. 7 is a flowchart showing the flow of processing of the main routine of the indoor heat exchanger heating operation.
  • FIG. 8 is a flowchart of the indoor heat exchanger heating operation, and is a flowchart showing the flow of processing for preheating operation control.
  • FIG. 9 is a subroutine of the indoor heat exchange heating operation, and is a flowchart showing a flow of processing of indoor fan control during temperature maintenance.
  • FIG. 10 is a subroutine of the indoor heat exchange heating operation, and is a flowchart showing a flow of processing of outdoor fan control during temperature maintenance.
  • FIG. 11 is a flowchart showing a flow of processing of protection control during indoor heat exchanger heating operation.
  • FIG. 12 is a flowchart showing a process flow of the wetting control operation.
  • Compressor release interval time tfi ... Indoor fan release interval time Rc ; Compressor rotation speed Rcr ; Compressor release times Rotational speed Rcm ; Compressor minimum rotational speed Rfi ... Indoor fan rotational speed Rfia ... Indoor fan rotational speed Rfir ... Indoor fan release rotational speed Rfim ; Indoor fan minimum rotational speed Rfip ... Indoor fan initial rotational speed Rfo ... Outdoor fan rotational speed Rfoa: outdoor fan rotation speed before heating Rfob: outdoor fan rotation speed during maintenance D: expansion valve opening Dp: predetermined expansion valve opening
  • an air conditioner 1 includes an outdoor unit 2 installed outdoors, and is installed indoors and connected to the outdoor unit 2 with a liquid pipe 4 and a gas pipe 5.
  • An indoor unit 3 is provided.
  • the indoor unit 3 includes an indoor unit housing 30 that has a horizontally long and substantially rectangular parallelepiped shape.
  • the indoor unit housing 30 is formed by a top panel 30a, a right panel 30b, a left panel 30c, a bottom panel 30d, and a front panel 30e. Each of these panels is formed using a resin material.
  • the top panel 30a is formed in a substantially square shape to form the top surface of the indoor unit housing 30. As shown in FIG. 1B, the top panel 30a is provided with a suction port 30f for taking indoor air into the interior of the indoor unit 3. Although illustration is omitted, the suction port 30f is formed in a lattice shape.
  • the right side panel 30b and the left side panel 30c form the left and right side surfaces of the indoor unit housing 30.
  • the right side panel 30b and the left side panel 30c are formed in curved surfaces having a predetermined curvature, and are symmetric.
  • the bottom panel 30d is formed in a substantially square shape to form the bottom surface of the indoor unit housing 30. As shown in FIG. 1B, a base 30j, which will be described later, is fixed to the bottom panel 30d.
  • the front panel 30e is formed in a substantially square shape and is disposed so as to cover the front surface of the indoor unit housing 30.
  • the front panel 30 e forms the design surface of the indoor unit 3.
  • the top panel 30a is provided with the suction port 30f, and below the front panel 30e, indoor air that has been heat-exchanged with the refrigerant by the indoor heat exchanger 31 described later is placed indoors.
  • An outlet 30g for blowing out is provided.
  • the ventilation path 30h that connects the suction port 30f and the outlet 30g is provided with an indoor fan 32 that sucks indoor air from the inlet 30f and blows it out from the outlet 30g.
  • an indoor heat exchanger 31 having a bent portion 30n and having an inverted V shape is disposed above the indoor fan 32.
  • the indoor heat exchanger 31 and the indoor fan 32 are fixed to a base 30j for attaching the indoor unit 3 to the wall surface.
  • the blower outlet 30g is formed by the lower part of the base 30j and the lower surface of the casing 30k attached to the front panel 30e.
  • the upper surfaces of the base 30j and the casing 30k are a drain pan 30m that receives the condensed water generated in the indoor heat exchanger 31.
  • the air outlet 30g is provided with two upper and lower wind direction plates 35 that deflect the air blown from the air outlet 30g in the vertical direction.
  • Each of the two up-and-down air direction plates 35 is formed of a resin material, and when the indoor unit 3 is not in operation, each of the up-and-down air direction plates 35 can be rotated to close the outlet 30g. It is said that.
  • Each vertical wind direction plate 35 is fixed to a rotating shaft (not shown), and each vertical wind direction plate 35 rotates in the vertical direction to deflect the air blown from the outlet 30g in the vertical direction.
  • a plurality of left and right wind direction plates 36 that deflect the air blown from the blower outlet 30g in the left-right direction are provided on the upstream side of the blower outlet 30g as viewed from the vertical wind direction plate 35 (inside the indoor unit housing 30). ing.
  • Each of the left and right wind direction plates 36 is formed of a resin material and is fixed to a rotation shaft (not shown). When each left and right wind direction plate 36 rotates in the left and right direction, the air blown from the outlet 30g is deflected in the left and right direction. To do.
  • a filter 38 for removing dust contained in the air taken into the indoor unit 3 is provided on the upstream side of the indoor heat exchanger 31 (between the indoor heat exchanger 31 and the suction port 30f) in the ventilation path 30h.
  • the filter 38 is formed, for example, by braiding fibers made of a resin material into a mesh shape.
  • each device constituting the outdoor unit 2 and the indoor unit 3 and the refrigerant circuit of the air conditioner 1 in which the outdoor unit 2 and the indoor unit 3 are connected by refrigerant piping will be described in detail with reference to FIG. .
  • the outdoor unit 2 and the indoor unit 3 are connected by the liquid pipe 4 and the gas pipe 5 which are refrigerant pipes.
  • the shutoff valve 25 of the outdoor unit 2 and the liquid pipe connection portion 33 of the indoor unit 3 are connected by the liquid pipe 4.
  • the shutoff valve 26 of the outdoor unit 2 and the gas pipe connection part 34 of the indoor unit 3 are connected by the gas pipe 5.
  • the refrigerant circuit 10 of the air conditioner 1 is configured as described above.
  • the outdoor unit 2 includes a compressor 21, a four-way valve 22, an outdoor heat exchanger 23, an outdoor fan 27, a closing valve 25 to which the liquid pipe 4 is connected, and a closing valve 26 to which the gas pipe 5 is connected.
  • the expansion valve 24 and the outdoor unit control means 200 are provided. And these each apparatus except the outdoor fan 27 and the outdoor unit control means 200 is mutually connected by each refrigerant
  • the compressor 21 is a variable capacity compressor that can change the operating capacity by controlling the rotation speed by an inverter (not shown).
  • the refrigerant discharge side of the compressor 21 is connected to the port a of the four-way valve 22 by a discharge pipe 61.
  • the refrigerant suction side of the compressor 21 is connected to the port c of the four-way valve 22 by a suction pipe 66.
  • the four-way valve 22 is a valve for switching the direction in which the refrigerant flows, and has four ports a, b, c, and d.
  • the port a is connected to the refrigerant discharge side of the compressor 21 by the discharge pipe 61 as described above.
  • the port b is connected to one refrigerant inlet / outlet of the outdoor heat exchanger 23 by a refrigerant pipe 62.
  • the port c is connected to the refrigerant suction side of the compressor 21 by the suction pipe 66 as described above.
  • the port d is connected to the shutoff valve 26 and the outdoor unit gas pipe 64.
  • the outdoor heat exchanger 23 exchanges heat between the refrigerant and the outside air taken into the outdoor unit 2 by the rotation of the outdoor fan 27 described later.
  • one refrigerant inlet / outlet of the outdoor heat exchanger 23 is connected to the port b of the four-way valve 22 by the refrigerant pipe 62, and the other refrigerant inlet / outlet is connected to the closing valve 25 by the outdoor unit liquid pipe 63.
  • the expansion valve 24 is, for example, an electronic expansion valve.
  • the expansion valve 24 adjusts the amount of refrigerant flowing through the indoor unit 3 by adjusting the opening degree of the expansion valve 24 according to the cooling capacity and heating capacity required by the indoor unit 3.
  • the outdoor fan 27 is formed of a resin material and is disposed in the vicinity of the outdoor heat exchanger 23.
  • the outdoor fan 27 is rotated by a fan motor (not shown) to take outside air from a suction port (not shown) of the outdoor unit 2 into the outdoor unit 2, and the outdoor air exchanged heat with the refrigerant in the outdoor heat exchanger 23. It discharges from the blower outlet which is not illustrated to the exterior of the outdoor unit 2.
  • the outdoor unit 2 is provided with the following three sensors.
  • the discharge pipe 61 is provided with a discharge temperature sensor 71 that detects the temperature of the refrigerant discharged from the compressor 21.
  • An outdoor heat exchanger temperature sensor 72 that detects the temperature of the outdoor heat exchanger 23 (hereinafter referred to as an outdoor heat exchanger temperature) is provided at a substantially intermediate portion of a refrigerant path (not shown) of the outdoor heat exchanger 23.
  • An outdoor air temperature sensor 73 that detects the temperature of the outside air flowing into the outdoor unit 2, that is, the outside air temperature, is provided near the suction port (not shown) of the outdoor unit 2.
  • the outdoor unit control means 200 is mounted on a control board stored in an electrical component box (not shown) of the outdoor unit 2. As shown in FIG. 2B, the outdoor unit control means 200 includes a CPU 210, a storage unit 220, a communication unit 230, and a sensor input unit 240.
  • the storage unit 220 includes a ROM and a RAM, and stores detection values corresponding to detection programs from the control program of the outdoor unit 2 and various sensors, control states of the compressor 21 and the outdoor fan 27, and the like.
  • the communication unit 230 is an interface that performs communication with the indoor unit 3.
  • the sensor input unit 240 captures detection results from various sensors of the outdoor unit 2 and outputs them to the CPU 210.
  • CPU210 takes in the detection result in each sensor of outdoor unit 2 mentioned above via sensor input part 240.
  • FIG. the CPU 210 takes in a control signal transmitted from the indoor unit 3 via the communication unit 230.
  • the CPU 210 performs drive control of the compressor 21 and the outdoor fan 27 based on the detection results and control signals taken in.
  • the CPU 210 performs switching control of the four-way valve 22 based on the detection results and control signals taken in.
  • the CPU 210 adjusts the opening degree of the expansion valve 24 based on the acquired detection result and control signal.
  • the indoor unit 3 includes a liquid pipe connection portion 33 to which the liquid pipe 4 is connected, a gas A gas pipe connecting portion 34 to which the pipe 5 is connected and an indoor unit control means 300 are provided.
  • These devices other than the indoor fan 32, the up / down air direction plate 35, the left / right air direction plate 36, the filter 38, and the indoor unit control means 300 are connected to each other through the refrigerant pipes described in detail below, and are connected to the refrigerant circuit 10.
  • the indoor unit refrigerant circuit 10b that constitutes a part of the indoor unit refrigerant circuit 10b is configured.
  • the indoor heat exchanger 31 exchanges heat between indoor air taken into the indoor unit 3 through the suction port 30f of the indoor unit 3 by rotation of the refrigerant and the indoor fan 32, and one refrigerant inlet / outlet is connected to the liquid pipe.
  • the other refrigerant inlet / outlet port is connected to the gas pipe connection part 34 and the indoor unit gas pipe 68.
  • the indoor heat exchanger 31 functions as an evaporator when the indoor unit 3 performs a cooling operation, and functions as a condenser when the indoor unit 3 performs a heating operation.
  • coolant piping is connected by welding, a flare nut, etc.
  • the indoor fan 32 is formed of a resin material, and is arranged on the downstream side of the indoor heat exchanger 31 in the ventilation path 30h as described above.
  • the indoor fan 31 is rotated by a fan motor (not shown), thereby taking indoor air into the indoor unit 3 from the suction port 30f of the indoor unit 3, and converting the indoor air heat exchanged with the refrigerant in the indoor heat exchanger 31 to the indoor unit 3. It blows out into the room from 30g of the air outlet.
  • the indoor unit 3 is provided with two sensors described below.
  • An indoor heat exchange temperature sensor 74 that detects the temperature of the indoor heat exchanger 31 (hereinafter referred to as the indoor heat exchange temperature) is provided at a substantially intermediate portion of the refrigerant path (not shown) of the indoor heat exchanger 31. Further, as shown in FIG. 1B, between the suction port 30f of the indoor unit 3 and the filter 38, the temperature of the air sucked into the interior of the indoor unit 3 from the suction port 30f, that is, the indoor temperature for detecting the indoor temperature. A sensor 75 is provided.
  • the indoor unit control means 300 is mounted on a control board stored in an electrical component box (not shown) of the indoor unit 3. As shown in FIG. 2B, the indoor unit control means 300 includes a CPU 310, a storage unit 320, a communication unit 330, and a sensor input unit 340.
  • the storage unit 320 includes a ROM and a RAM, and stores a control program for the indoor unit 3, detection values corresponding to detection signals from various sensors, a control state of the indoor fan 32, and the like.
  • the communication unit 330 is an interface for communicating with the outdoor unit control means 200 of the outdoor unit 2.
  • the sensor input unit 340 takes in the detection results of the indoor heat exchanger temperature sensor 74 and the indoor temperature sensor 75 of the indoor unit 3 and outputs them to the CPU 110.
  • CPU310 takes in the detection result in each sensor of indoor unit 3 mentioned above via sensor input part 340. Further, the CPU 310 takes in an operation information signal including an operation mode (cooling operation / heating operation), an air volume, and the like transmitted from a remote controller (not shown) operated by the user via the communication unit 330. The CPU 310 performs drive control of the indoor fan 32, the up / down air direction plate 35, and the left / right air direction plate 36 based on the detection result and the operation information signal taken in.
  • an operation information signal including an operation mode (cooling operation / heating operation), an air volume, and the like transmitted from a remote controller (not shown) operated by the user via the communication unit 330.
  • the CPU 310 performs drive control of the indoor fan 32, the up / down air direction plate 35, and the left / right air direction plate 36 based on the detection result and the operation information signal taken in.
  • the high-pressure refrigerant discharged from the compressor 21 flows through the discharge pipe 61 and flows into the four-way valve 22, and flows from the four-way valve 22 through the refrigerant pipe 62 to the outdoor heat exchanger. 23.
  • the refrigerant flowing into the outdoor heat exchanger 23 is condensed by exchanging heat with the outside air taken into the outdoor unit 2 by the rotation of the outdoor fan 27.
  • the refrigerant that has flowed out of the outdoor heat exchanger 23 into the outdoor unit liquid pipe 63 is reduced in pressure when passing through the expansion valve 24 that has an opening degree corresponding to the cooling capacity required by the user in the indoor unit 3 and is closed. It flows into the liquid pipe 4 through the valve 25.
  • the refrigerant flowing through the liquid pipe 4 and flowing into the indoor unit 3 through the liquid side connection portion 33 flows through the indoor unit liquid pipe 67 and flows into the indoor heat exchanger 31, and from the suction port 30 f by the rotation of the indoor fan 32. It evaporates by exchanging heat with the indoor air taken into the ventilation path 30h of the indoor unit 3.
  • the indoor heat exchanger 31 functions as an evaporator, and the indoor unit 3 is installed when the indoor air that has exchanged heat with the refrigerant in the indoor heat exchanger 31 is blown into the room through the outlet 30g. The room is cooled.
  • the refrigerant that has flowed out of the indoor heat exchanger 31 flows through the indoor unit gas pipe 68 and flows into the gas pipe 5 through the gas side connection portion 34.
  • the refrigerant flowing through the gas pipe 5 and flowing into the outdoor unit 2 through the closing valve 26 sequentially flows through the outdoor unit gas pipe 64, the four-way valve 22, and the suction pipe 66, and is sucked into the compressor 21 and compressed again.
  • the high-pressure refrigerant discharged from the compressor 21 flows through the discharge pipe 61 and flows into the four-way valve 22, and flows from the four-way valve 22 through the outdoor unit gas pipe 64 to the closing valve. It flows into the gas pipe 5 through 26.
  • the refrigerant flowing through the gas pipe 5 flows into the indoor unit 3 through the gas pipe connection part 34.
  • the refrigerant flowing into the indoor unit 3 flows through the indoor unit gas pipe 68 and flows into the indoor heat exchanger 31, and the indoor air taken into the ventilation path 30 h of the indoor unit 3 from the suction port 30 f by the rotation of the indoor fan 32. Heat exchange to condense.
  • the indoor heat exchanger 31 functions as a condenser, and the indoor air exchanged with the refrigerant in the indoor heat exchanger 31 is blown into the room from the outlet 30g, whereby the indoor unit 3 is installed. The room is heated.
  • the refrigerant that has flowed out of the indoor heat exchanger 31 flows through the indoor unit liquid pipe 67 and flows into the liquid pipe 4 through the liquid pipe connecting portion 33.
  • the refrigerant flowing through the liquid pipe 4 and flowing into the outdoor unit 2 through the shut-off valve 25 flows through the outdoor unit liquid pipe 63 and has an opening degree corresponding to the heating capacity required by the user in the indoor unit 3. When passing through the expansion valve 24, the pressure is reduced.
  • the refrigerant that has passed through the expansion valve 24 and has flowed into the outdoor heat exchanger 23 evaporates by exchanging heat with the outside air taken into the outdoor unit 2 by the rotation of the outdoor fan 27.
  • the refrigerant that has flowed out of the outdoor heat exchanger 23 into the refrigerant pipe 62 flows through the four-way valve 22 and the suction pipe 66, is sucked into the compressor 21, and is compressed again.
  • the outdoor unit control means 200 and the indoor unit control means 300 described above constitute the control means of the present invention. Therefore, in the description of the subsequent control and processing including FIG. 3, the control body of the air conditioner 1 will be described using the control means, and the control body of the individual devices of the outdoor unit 2 and the indoor unit 3 will be described. The description will be made using the outdoor unit control means 200 (CPU 210) and the indoor unit control means 300 (CPU 310) as appropriate.
  • the control means takes in the room temperature (hereinafter referred to as the room temperature Ti) and reads out the set temperature (hereinafter referred to as the set temperature Tp) (ST1). .
  • the CPU 310 of the indoor unit control means 300 takes in the room temperature Ti detected by the room temperature sensor 75 periodically (for example, every 30 seconds) via the sensor input unit 340.
  • CPU 310 reads set temperature Tp that has been set by the operation of a remote controller (not shown) by the user and stored in storage unit 320.
  • control means calculates the temperature difference between the set temperature Tp read in ST1 and the captured room temperature Ti (hereinafter referred to as temperature difference ⁇ T) (ST2). Specifically, the CPU 310 calculates the temperature difference ⁇ T by subtracting the room temperature Ti from the set temperature Tp.
  • the control means drives the compressor 21 with the rotational speed of the compressor 21 (hereinafter referred to as the compressor rotational speed Rc) corresponding to the temperature difference ⁇ T calculated in ST2 (ST3).
  • the CPU 310 transmits the compressor rotation speed Rc corresponding to the calculated temperature difference ⁇ T to the outdoor unit 2 via the communication unit 330.
  • the CPU 210 of the outdoor unit control means 200 that has received the compressor speed Rc transmitted from the indoor unit 3 via the communication unit 230 drives the compressor 21 with the received compressor speed Rc.
  • the control means sets the opening degree of the expansion valve 24 (hereinafter referred to as the expansion valve opening degree D) to an opening degree corresponding to the heating capacity required by the user in the indoor unit 3 (ST4).
  • the CPU 310 adjusts the expansion valve opening D so that the discharge temperature of the compressor 21 detected by the discharge temperature sensor 71 during the heating operation becomes a predetermined target temperature.
  • the control means drives the outdoor fan 27 with the rotational speed of the outdoor fan 27 (hereinafter referred to as outdoor fan rotational speed Rfo) corresponding to the compressor rotational speed Rc determined in ST3 (ST5).
  • the CPU 210 drives the outdoor fan 27 at the outdoor fan rotational speed Rfo corresponding to the compressor rotational speed Rc.
  • the control means determines whether or not the air volume of the conditioned air blown from the outlet 30g of the indoor unit 3 by the user is automatically set (ST6). If the air volume is set to automatic (ST6-Yes), the control means uses the indoor fan 32 at the rotational speed of the indoor fan 32 (hereinafter referred to as indoor fan rotational speed Rfi) corresponding to the temperature difference ⁇ T calculated at ST2. 32 is driven (ST7). If the air volume is not set to automatic (ST6-No), the control means drives the indoor fan 32 at the indoor fan rotation speed Rfi according to the air volume set by the user (ST8). Specifically, the CPU 310 drives the indoor fan 32 at the indoor fan rotation speed Rfi according to either the temperature difference ⁇ T or the air volume set by the user.
  • the control means controls the vertical and horizontal wind direction plates 35 and 36 so that the wind direction set by the user is obtained (ST9), and returns the process to ST1. Specifically, if the user setting is “swing”, the CPU 310 automatically rotates the vertical wind direction plate 35 up and down and automatically rotates the left and right wind direction plate 36 left and right. If the user's setting is a predetermined position, the up / down wind direction plate 35 and the left / right wind direction plate 36 are rotated so as to be the position set by the user.
  • the control means takes in the temperature of the indoor heat exchanger 31 (hereinafter referred to as indoor heat exchange temperature Tc) and the discharge temperature of the compressor 21 (hereinafter referred to as discharge temperature Td) (ST11).
  • the CPU 310 periodically captures the indoor heat exchange temperature Tc detected by the indoor heat exchange temperature sensor 74 via the sensor input unit 340 (for example, every 30 seconds).
  • the CPU 210 fetches the discharge temperature Td detected by the discharge temperature sensor 71 periodically (for example, every 30 seconds) via the sensor input unit 240.
  • the control means determines whether or not the indoor heat exchange temperature Tc captured in ST11 is equal to or higher than a predetermined temperature (hereinafter referred to as a first threshold indoor heat exchange temperature Tch1) (ST12). Specifically, CPU 310 reads out first threshold indoor heat exchange temperature Tch1 stored in advance in storage unit 320 and compares it with indoor heat exchange temperature Tc.
  • the first threshold indoor heat exchange temperature Tch1 is obtained by performing a test or the like in advance, and is based on the indoor heat exchange temperature Tc corresponding to the upper limit value of the use range of the discharge pressure of the compressor 21 described above.
  • the temperature is a predetermined low temperature, for example 55 ° C.
  • the control means sets the rotation speed of the compressor 21 to a predetermined compressor release interval time (hereinafter referred to as compressor release interval). Every time (denoted as time tc), the predetermined compressor release rotational speed (hereinafter referred to as compressor release rotational speed Rcr) is decreased (ST16). Specifically, the CPU 310 transmits a signal indicating that the indoor heat exchange temperature Tc is equal to or higher than the first threshold indoor heat exchange temperature Tch1 to the outdoor unit 2 via the communication unit 330, and communicates this signal.
  • the CPU 210 received via the unit 230 controls the compressor 21 so that the rotation speed is reduced by the compressor release rotation speed Rcr at each compressor release interval time tc from the current compressor rotation speed Rc.
  • the compressor release interval time tc and the compressor release rotation speed Rcr are values in which the effect of reducing the indoor heat exchange temperature Tc by performing a test or the like in advance is confirmed, for example, the compressor release interval The time tc is 60 seconds, and the compressor release rotational speed Rcr is 2 rps.
  • the control means that has finished the processing of ST16 takes in the indoor heat exchange temperature Tc (ST17), and determines whether the taken-in indoor heat exchange temperature Tc is equal to or higher than the first threshold indoor heat exchange temperature Tch1 (ST18). Specifically, the CPU 310 takes in the indoor heat exchange temperature Tc, and determines whether or not the taken in indoor heat exchange temperature Tc is equal to or higher than the first threshold indoor heat exchange temperature Tch1.
  • the control unit returns the process to ST11. If the captured indoor heat exchange temperature Tc is equal to or higher than the first threshold indoor heat exchange temperature Tch1 (ST18-Yes), the control means stops the heating operation (ST19) and ends the heating operation protection control. Specifically, if the captured indoor heat exchange temperature Tc is equal to or higher than the first threshold indoor heat exchange temperature Tch1, the CPU 310 stops the indoor fan 32 and the captured indoor heat exchange temperature Tc is equal to the first threshold indoor heat exchange temperature Tc1. A signal indicating that the temperature is equal to or higher than the alternating temperature Tch1 is transmitted to the outdoor unit 2 via the communication unit 330. CPU210 which received this signal via the communication part 230 stops the compressor 21 and the outdoor fan 27. FIG.
  • the control means detects that the discharge temperature Td detected in ST11 is a predetermined first threshold discharge temperature (hereinafter referred to as “first threshold discharge temperature”). It is determined whether the temperature is lower than a predetermined second threshold discharge temperature (hereinafter referred to as a second threshold discharge temperature Tdh2) higher than the first threshold discharge temperature Tdh1 (hereinafter referred to as a first threshold discharge temperature Tdh1). ST13).
  • the CPU 210 periodically captures the discharge temperature Td detected by the discharge temperature sensor 71 via the sensor input unit 240 (for example, every 30 seconds), and stores the captured discharge temperature Td in the storage unit 220. It is determined whether or not the first threshold discharge temperature Tdh1 or higher is lower than the second threshold discharge temperature Tdh2.
  • the first threshold discharge temperature Tdh1 and the second threshold discharge temperature Tdh2 are obtained by performing a test or the like in advance and stored in the storage unit 220, and the use range of the discharge pressure of the compressor 21 described above.
  • the first threshold discharge temperature Tdh1 is 105 ° C.
  • the second threshold discharge temperature Tdh2 is 115 ° C.
  • the control means compresses the rotation speed of the compressor 21 at every compressor release interval time tc.
  • the machine release rotation speed Rcr is decreased (ST15), and the process returns to ST11. Since the process of ST15 has the same contents as the process of ST16 described above, detailed description thereof is omitted.
  • the control unit determines that the captured discharge temperature Td is equal to or higher than the second threshold discharge temperature Tdh2. It is determined whether or not there is (ST14). Specifically, the CPU 210 determines whether or not the fetched discharge temperature Td is equal to or higher than the second threshold discharge temperature Tdh2.
  • the control means advances the process to ST19. If the taken discharge temperature Td is not equal to or higher than the second threshold discharge temperature Tdh2 (ST14-Yes), that is, if the taken discharge temperature Td is lower than the first threshold discharge temperature Tdh1, the control unit returns the process to ST11. .
  • the indoor heat exchange heating operation means that the refrigerant circuit 10 of the air conditioner 1 is in the same state as in the heating operation, and the temperature of the indoor heat exchanger 31 is higher than the temperature (about 40 ° C.) during the heating operation.
  • the purpose is to kill mold and bacteria and reduce the number.
  • a remote controller (not shown) for operating the indoor unit 3 is provided with a button for instructing the start of the indoor heat exchanger heating operation. When the user operates this button, the indoor heat exchanger heating operation is performed.
  • the indoor heat exchange heating operation may be automatically executed at the end of the cooling operation or the dehumidifying operation.
  • the indoor heat exchanger heating operation is optimal for the air conditioner 1 such that the indoor unit 3 includes a human detection sensor and is detected when the human detection sensor detects that the user is not in the room.
  • the indoor heat exchange heating operation may be performed by judging the timing.
  • the applicant conducted an experiment to greatly increase the number of molds and bacteria by maintaining the indoor heat exchange temperature Tc at 55 ° C. or higher for 10 minutes when performing the above-described indoor heat exchange heating operation. Found that can be reduced.
  • Tc indoor heat exchange temperature
  • FIG. 5A is a graph of Cladopolis (hereinafter referred to as “mold”), which is a kind of mold (black mold) that looks dark.
  • the horizontal axis of the graph in FIG. 5A is the heating time (unit: minutes) that is the time for maintaining the indoor heat exchange temperature Tc at 40 ° C., 45 ° C., and 50 ° C., and the vertical axis is the heating time.
  • This is the mold residual rate (mold residual rate in FIG. 5A. Unit:%) with the number of molds (the number of mold colonies) at 0 minutes (before heating) as 100.
  • the indoor heat exchange temperature Tc when the indoor heat exchange temperature Tc is 40 ° C., the number of molds hardly changes even when the heating time is 10 minutes, and the mold residual rate after 10 minutes has passed is almost 100. %.
  • the indoor heat exchange temperature Tc when the indoor heat exchange temperature Tc is set to 45 ° C. or 50 ° C., the mold residual rate becomes smaller than 10% at any indoor heat exchange temperature Tc when the heating time becomes 5 minutes.
  • the indoor heat exchange temperature Tc when the indoor heat exchange temperature Tc is set to 50 ° C., the mold residual rate when the heating time is 5 minutes is less than 1%, and the number of molds is greatly reduced in a short time.
  • FIG. 5B is a graph for E. coli which is a kind of bacteria.
  • the horizontal axis of the graph of FIG. 5B is the heating time (unit: minutes) that is the time for maintaining the indoor heat exchange temperature Tc at 40 ° C., 45 ° C., 50 ° C., and 55 ° C.
  • the vertical axis is E. coli survival rate with the number of E. coli at 100 minutes when the heating time is 0 minutes (before heating) (bacterial survival rate in FIG. 5B, unit:%).
  • the bacteria remaining rate does not become 50% or less even when the heating time is 10 minutes, and the number of bacteria can be significantly reduced. I can't say.
  • the indoor heat exchange temperature Tc is 55 ° C.
  • the bacterial survival rate becomes less than 10% when the heating time becomes 4 minutes, and the bacterial survival rate when the heating time becomes 5 minutes. If the heating time is further extended to 10 minutes, the bacterial residual rate is less than 1%. That is, the number of bacteria can be greatly reduced by maintaining the indoor heat exchange temperature Tc at 55 ° C. for 10 minutes.
  • the indoor heat exchange temperature Tc is set to 55 ° C. or more, and this state is maintained for 10 minutes. It is preferable to continue. This is because the entire surface of mold and bacteria is covered with condensed water, so that the amount of heat acting on mold and bacteria from condensed water acts on mold and bacteria only from the surface of the indoor heat exchanger 31 without condensed water. This is due to the fact that the amount of heat increases.
  • the dew condensation water generated in the indoor heat exchanger 31 when the air conditioner 1 is cooled is driven by driving the indoor fan 32 and passing the air through the indoor heat exchanger 31 after the cooling operation is completed. Even if the drying operation to evaporate is performed, the V-shaped bent portion 30n in the indoor heat exchanger 31 and the portion where the air near the drain pan 30m is difficult to pass through cannot be completely dried. Thus, even if the condensed water stays for a long time without being completely dried, if the indoor heat exchange heating operation of the present embodiment is performed, the condensed water staying in a place where it is difficult for the air to pass as described above. Since the temperature is higher than or equal to ° C., it is possible to significantly reduce the mold and bacteria remaining in these places.
  • the indoor fan control table 400 shown in FIG. 6A is obtained by performing a test or the like in advance and is stored in the storage unit 320 of the indoor unit control means 300.
  • the indoor fan control table 400 controls the indoor fan 32 on the basis of the indoor fan control table 400 when the indoor heat exchanger 31 functions as a condenser during the indoor heat exchange operation. It has been found that Tc can be maintained in the range of 55 ° C to 57 ° C.
  • the indoor fan rotation speed Rfi (unit: rpm) is set according to each of the indoor heat exchange temperature Tc (unit: ° C.) and when the indoor heat exchange temperature Tc is rising / maintaining / decreasing. It has been established.
  • Tc rise when the indoor heat exchange temperature Tc rises (“Tc rise” in FIG. 6A), two indoor heat exchange temperatures Tc detected at a time are used to detect the indoor heat exchange detected earlier. This is a case where the indoor heat exchange temperature Tc detected after the temperature Tc is high.
  • the indoor heat exchange temperature Tc is maintained (in FIG. 6A, “when Tc is maintained”), the previously detected indoor heat exchange temperature Tc and the later detected indoor heat exchange temperature Tc are the same.
  • the two indoor heat exchange temperatures Tc detected at a time are used to detect the indoor heat exchange temperature previously detected. This is a case where the indoor heat exchange temperature Tc detected after Tc is low.
  • the indoor fan rotation speed Rfi when “Tc rises” is the rotation speed obtained by adding 70 rpm to the current indoor fan rotation speed Rfi when the indoor heat exchange temperature Tc is 57 ° C. or higher. .
  • the current indoor fan rotation speed Rfi is not changed.
  • the indoor heat exchange temperature Tc is not less than 53 ° C. and less than 55 ° C., and when the indoor heat exchange temperature Tc is less than 53 ° C., the rotation speed is obtained by subtracting 10 rpm from the current indoor fan rotation speed Rfi. .
  • the indoor heat exchanger temperature Tc is set to Each time it is detected (for example, every 30 seconds), the indoor fan rotation speed Rfi is decreased by 10 rpm. Thereby, the air quantity which flows into the indoor heat exchanger 31 decreases, and the indoor heat exchange temperature Tc quickly reaches 55 ° C. or higher.
  • the indoor heat exchange temperature Tc is 55 ° C. or more and less than 57 ° C. when the indoor heat exchange temperature Tc is rising, the indoor fan rotation speed Rfi is not changed. Thereby, the air quantity which flows into the indoor heat exchanger 31 does not change, and the indoor heat exchange temperature Tc is maintained in a range of 55 ° C. or more and less than 57 ° C.
  • the indoor heat exchange temperature Tc is 59 ° C. or more by increasing the indoor fan rotation speed Rfi by 70 rpm and increasing the amount of air flowing to the indoor heat exchanger 31. I am trying not to become.
  • the indoor fan rotation speed Rfi when “Tc is maintained” is the rotation speed obtained by adding 50 rpm to the current indoor fan rotation speed Rfi when the indoor heat exchange temperature Tc is 57 ° C. or higher.
  • the current indoor fan rotation speed Rfi is not changed.
  • the rotation speed is obtained by subtracting 30 rpm from the current indoor fan rotation speed Rfi.
  • the rotation speed is obtained by subtracting 40 rpm from the current indoor fan rotation speed Rfi.
  • the indoor fan rotation speed Rfi is set to 40 rpm each time the indoor heat exchange temperature Tc is detected (for example, every 30 seconds). Lower it step by step.
  • the indoor fan rotation speed Rfi is decreased by 30 rpm each time the indoor heat exchange temperature Tc is detected. Thereby, the air quantity which flows into the indoor heat exchanger 31 decreases, and the indoor heat exchange temperature Tc quickly reaches 55 ° C. or higher.
  • the indoor fan rotation is greater than when “Tc is increased” even at the same indoor heat exchange temperature Tc.
  • the rotational speed at which the indoor fan rotational speed Rfi is reduced is increased so that the number Rfi is lowered.
  • the indoor heat exchange temperature Tc is 55 ° C. or more and less than 57 ° C. when the indoor heat exchange temperature Tc is not changed, the indoor fan rotation speed Rfi is not changed. Thereby, the air quantity which flows into the indoor heat exchanger 31 does not change, and the indoor heat exchange temperature Tc is maintained in a range of 55 ° C. or more and less than 57 ° C.
  • the indoor heat exchange temperature Tc is 59 ° C. or more by increasing the indoor fan rotation speed Rfi by 50 rpm and increasing the amount of air flowing to the indoor heat exchanger 31. I am trying not to become.
  • the indoor fan rotation is greater than when “Tc is increased” even at the same indoor heat exchange temperature Tc.
  • the rotational speed applied to the indoor fan rotational speed Rfi is lowered so that the number Rfi is lowered.
  • the fan rotation speed Rfi is not changed.
  • the rotation speed is obtained by subtracting 40 rpm from the current indoor fan rotation speed Rfi. .
  • the indoor heat exchanger temperature Tc is lower than 53 ° C. when the indoor heat exchanger temperature Tc is decreasing, or when the indoor heat exchanger temperature Tc is not lower than 53 ° C. and lower than 55 ° C.
  • the indoor heat exchanger temperature Tc is Each time it is detected (for example, every 30 seconds), the indoor fan rotation speed Rfi is decreased by 40 rpm to decrease the amount of air flowing through the indoor heat exchanger 31. As a result, the amount of air flowing through the indoor heat exchanger 31 is reduced so that the indoor heat exchange temperature Tc quickly reaches 55 ° C. or higher.
  • the indoor fan rotation is performed so that the indoor fan rotation speed Rfi is lower than that when “Tc is maintained” even when the indoor heat exchange temperature Tc is the same.
  • the number of revolutions subtracted from the number Rfi is increased.
  • the indoor fan rotational speed Rfi is set. Do not change. Thereby, the air quantity which flows into the indoor heat exchanger 31 does not change, and the indoor heat exchange temperature Tc is maintained in a range of 55 ° C. or more and less than 57 ° C. It should be noted that when “Tc is lowered”, it is considered that the indoor heat exchange temperature Tc is less likely to rise than when “Tc is maintained”, and therefore, when the indoor heat exchange temperature Tc is 55 ° C. or higher, the indoor fan rotational speed Rfi is Even if it is not changed, the indoor heat exchange temperature Tc does not become 59 ° C. or higher.
  • the indoor fan rotation speed Rfi is increased or decreased.
  • the upper limit rotational speed is, for example, 900 rpm
  • the lower limit rotational speed is, for example, 300 rpm. If the indoor fan rotational speed Rfi is increased by 900 rpm by increasing the rotational speed determined by the indoor fan control table 400, then the indoor fan rotational speed Rfi is increased to 900 rpm even when the indoor fan rotational speed Rfi is increased. Maintained.
  • the indoor fan rotational speed Rfi is decreased by the rotational speed determined by the indoor fan control table 400 to reach 300 rpm, the indoor fan rotational speed Rfi is 300 rpm even when the indoor fan rotational speed Rfi is subsequently decreased. Maintained.
  • 300 rpm of the said minimum rotation speed in indoor heat exchanger heating operation is made into rotation speed lower than the minimum rotation speed (for example, 420 rpm) of the indoor fan 32 at the time of heating operation. This is because in the indoor heat exchange heating operation, the indoor heat exchange temperature Tc rises quickly by reducing the amount of air flowing into the indoor heat exchanger 31 by reducing the rotational speed of the indoor fan 32 as much as possible. It is.
  • the outdoor fan control table 500 illustrated in FIG. 6B is obtained by performing a test or the like in advance and is stored in the storage unit 220 of the outdoor unit control means 200.
  • the outdoor fan control table 500 is used when the indoor fan 32 is controlled based on the indoor fan control table 400 so that the indoor heat exchange temperature Tc is maintained at 55 ° C. to 57 ° C. during the indoor heat exchange heating operation. It has been found that by controlling the outdoor fan 27 based on the fan control table 500, the discharge pressure of the compressor 21 can be prevented from exceeding the upper limit value of the use range.
  • the rotational speed of the outdoor fan (unit: ° C.) detected by the outdoor temperature sensor 73 and the indoor temperature Ti (unit: ° C.) and the outdoor fan rotation speed (unit: ° C.) are determined.
  • the outdoor fan rotation speed Rfo is set to 0 rpm regardless of the indoor temperature Ti.
  • the outdoor fan rotation speed Rfo is 0 rpm if the indoor temperature Ti is 27 ° C. or higher, and if the indoor temperature Ti is lower than 27 ° C.
  • the fan rotation speed Rfo is 190 rpm.
  • the outdoor fan rotation speed Rfo is set to the same control as that in the heating operation, that is, the rotation speed according to the compressor rotation speed Rc.
  • the outdoor air temperature To is 24 ° C. or higher
  • the evaporation pressure in the outdoor heat exchanger 23 that functions as an evaporator during the indoor heat exchanger heating operation is higher than when the outdoor air temperature To is less than 24 ° C.
  • the condensation pressure in the indoor heat exchanger 31 functioning as a condenser also increases, so that the discharge pressure of the compressor 21 increases and may exceed the upper limit of the use range. Therefore, when the outdoor air temperature To is 24 ° C. or higher, the outdoor fan rotation speed Rfo is 0 rpm, that is, stopped regardless of the indoor temperature Ti, thereby reducing the evaporation capacity in the outdoor heat exchanger 23 and increasing the evaporation pressure. Do not.
  • the room heat functioning as a condenser is compared with the case where the room temperature Ti is less than 27 ° C.
  • the condensation capacity in the exchanger 31 is reduced and the condensation pressure is increased.
  • the outdoor fan rotation speed Rfo is set to 0 rpm, that is, the outdoor heat exchanger 23 is stopped. Decrease evaporation capacity so that evaporation pressure does not increase.
  • the outdoor temperature To is 16 ° C. or higher and lower than 24 ° C. and the indoor temperature Ti is lower than 27 ° C.
  • the condensation pressure is lower than that when the indoor temperature Ti is 27 ° C. or higher.
  • the discharge pressure of the compressor 21 is unlikely to exceed the upper limit of the use range. Therefore, when the outdoor air temperature To is 16 ° C. or higher and lower than 24 ° C. and the indoor temperature Ti is lower than 27 ° C., the outdoor fan rotational speed Rfo is set to the discharge pressure of the compressor 21 due to the increase in the evaporation pressure. Is driven at a rotation speed that does not exceed the upper limit of the use range, for example, 190 rpm, which is the rotation speed in the present embodiment. Thereby, while preventing the discharge pressure of the compressor 21 from being excessively increased, the evaporation pressure in the outdoor heat exchanger 23 is increased, and the condensation temperature in the indoor heat exchanger 31, that is, the indoor heat exchange temperature Tc is quickly increased.
  • the outdoor fan rotation speed Rfo when the outdoor air temperature To is 16 ° C. or higher and lower than 24 ° C. and the indoor temperature Ti is lower than 27 ° C. during the indoor heat exchanger operation is 190 rpm.
  • the lower rotational speed (for example, 500 rpm) of the outdoor fan 27 is set to a lower rotational speed. This is because in the indoor heat exchanger heating operation, the discharge pressure of the compressor 21 is likely to exceed the upper limit of the use range due to raising the indoor heat exchanger temperature Tc to a temperature higher than that in the heating operation.
  • the outdoor fan rotational speed Rfo is set to the same control as that in the heating operation, that is, the rotational speed corresponding to the compressor rotational speed Rc regardless of the indoor temperature Ti.
  • FIG. 7 is a main routine of processing performed by the control unit of the air conditioner 1 during the indoor heat exchanger heating operation.
  • FIG. 8 is a subroutine of the processing performed by the control means during the indoor heat exchanger heating operation, and the pre-heating operation performed for the purpose of suppressing the generation of condensed water inside the indoor unit 3 before heating the indoor heat exchanger 31.
  • the flow of processing related to control is shown.
  • FIG. 9 is a subroutine of processing performed by the control means during the indoor heat exchanger heating operation.
  • the indoor heat exchanger temperature Tc is set within the range of 55 ° C. to 57 ° C. using the indoor fan control table 400 shown in FIG.
  • the flow of the process related to indoor fan control during temperature maintenance performed for the purpose of maintaining is shown.
  • FIG. 10 is a subroutine of the processing performed by the control means during the indoor heat exchanger heating operation, and the indoor heat exchanger temperature Tc is set within the range of 55 ° C. to 57 ° C. using the outdoor fan control table 500 shown in FIG. 6 (B).
  • the flow of the process regarding outdoor fan control at the time of temperature maintenance performed when maintaining is shown.
  • Tc1 to Tc4 (hereinafter referred to as first indoor heat exchange temperature Tc1 to fourth indoor heat exchange temperature Tc4) shown in FIGS. 7 and 9 are second indoor heat exchange temperature Tc2 to fourth indoor heat. This corresponds to the indoor heat exchange temperature Tc described in the indoor fan control table 400, the second indoor heat exchange temperature Tc2 is 53 ° C., the third indoor heat exchange temperature Tc3 is 55 ° C., and the fourth indoor heat exchange temperature. Tc4 is 57 ° C.
  • the first indoor heat exchange temperature Tc1 is a temperature at which a temperature maintenance operation described later is started, and a temperature lower than the second indoor heat exchange temperature Tc2 by a predetermined temperature, for example, 50 ° C.
  • the third indoor heat exchange temperature Tc3 is the first temperature of the present invention
  • the fourth indoor heat exchange temperature Tc4 is the second temperature of the present invention
  • the first indoor heat exchange temperature Tc1 is the third temperature of the present invention. It is.
  • the control means drives the compressor 21 at a predetermined minimum rotational speed (hereinafter referred to as a compressor minimum rotational speed Rcm) (ST42).
  • the CPU 210 of the outdoor unit control means 200 reads the compressor minimum rotational speed Rcm stored in advance in the storage unit 220, and drives the compressor 21 at the read compressor minimum rotational speed Rcm.
  • the minimum compressor rotation speed Rcm is obtained by conducting a test or the like in advance, and even in a situation where the indoor heat exchange temperature Tc is higher than that during normal heating operation in the indoor heat exchange heating operation, This is the rotational speed at which the discharge pressure of the compressor 21 has been found not to exceed the upper limit of the use range.
  • the minimum compressor rotation speed Rcm is, for example, 30 rps.
  • the control means sets the expansion valve 24 to a predetermined opening (hereinafter referred to as a predetermined expansion valve opening Dp) (ST43).
  • a predetermined expansion valve opening Dp a predetermined opening stored in advance in the storage unit 220 so that the expansion valve opening D becomes the read predetermined expansion valve opening Dp.
  • a drive pulse corresponding to a predetermined expansion valve opening Dp is applied to a step motor (not shown) of the expansion valve 24.
  • the predetermined expansion valve opening Dp is obtained by performing a test or the like in advance, and when the indoor heat exchanger heating operation of the present invention is performed by the air conditioner 1, only the control of the indoor fan 32 is performed.
  • the opening is such that an amount of the refrigerant necessary for setting the indoor heat exchange temperature Tc to a temperature in the range of 55 ° C. or higher and lower than 57 ° C. can be passed through the indoor heat exchanger 31.
  • the predetermined expansion valve opening degree Dp is 200 pulses when expressed by the number of drive pulses applied to the expansion valve 24, for example.
  • the control means sets the outdoor fan rotation speed Rfo to a rotation speed corresponding to the compressor rotation speed Rc (ST44). Specifically, the CPU 210 drives the outdoor fan 27 at the outdoor fan rotational speed Rfo corresponding to the compressor rotational speed Rc. Since the outdoor fan 27 is already driven by the pre-heating operation control described later at the time of performing the process of ST43, the outdoor fan rotational speed Rfo is changed to a rotational speed corresponding to the compressor rotational speed Rc in ST43.
  • the outdoor fan rotation speed Rfo at this time is, for example, 500 rpm.
  • the control means sets the indoor fan 32 to a predetermined rotation speed (hereinafter referred to as an indoor fan initial rotation speed Rfip) (ST45).
  • the CPU 310 of the indoor unit control means 300 reads out the indoor fan initial rotational speed Rfip stored in advance in the storage unit 320, and the indoor fan 32 as the indoor fan initial rotational speed Rfip read out from the indoor fan rotational speed Rfi. Drive.
  • the indoor fan initial rotational speed Rfip is obtained by performing a test or the like in advance, and is caused by the small amount of indoor air supplied to the indoor heat exchanger 31 by the rotation of the indoor fan 32.
  • the indoor heat exchange temperature Tc can be increased as quickly as possible while preventing the indoor heat exchange temperature Tc from rapidly rising and stopping the protection by the indoor heat exchange heating operation protection control described later.
  • the indoor fan initial rotational speed Rfip is, for example, 600 rpm. Further, at the time of performing the process of ST44, since the indoor fan 32 has already been driven by the pre-heating operation control described later, in ST44, the indoor fan rotation speed Rfi is changed to the indoor fan initial rotation speed Rfip.
  • the control means places the vertical wind direction plate 35 in the horizontal position (ST46). Specifically, the CPU 310 rotates the vertical wind direction plate 35 so as to be in the horizontal position. If the up-and-down wind direction plate 35 is in the horizontal position, a part of the air heated by the indoor heat exchanger 31 and blown out from the outlet 30g can be sucked into the inlet 30f. Accordingly, the indoor heat exchange temperature Tc rises faster than when the up-and-down airflow direction plate 35 is set to a position other than the horizontal position.
  • the control means starts measuring the timer 1 (ST47). Specifically, the CPU 310 has a timer measurement function, and the CPU 310 starts measuring the timer 1. Note that the timer measurement function may be provided in the CPU 210, or may be provided in addition to the CPU 210 and the CPU 310.
  • the control means takes in the indoor heat exchange temperature Tc (ST48). Specifically, the CPU 310 periodically captures the indoor heat exchange temperature Tc detected by the indoor heat exchange temperature sensor 74 via the sensor input unit 340 (for example, every 30 seconds).
  • control means determines whether or not the indoor heat exchange temperature Tc captured in ST48 is less than the first indoor heat exchange temperature Tc1 (ST49). Specifically, the CPU 310 reads the first indoor heat exchange temperature Tc1 from the storage unit 320 and compares it with the captured indoor heat exchange temperature Tc.
  • the control means starts the measurement of the timer 1 in ST47, and then starts a predetermined time (hereinafter, the first predetermined time tp1). Is described) (ST58). Specifically, CPU 310 determines whether or not first predetermined time tp1 has elapsed since start of measurement of timer 1 in ST47.
  • the first predetermined time tp1 is predetermined and stored in the storage unit 330, for example, 10 minutes.
  • the control unit resets the timer 1 (ST61) and ends the indoor unit heat exchanger heating operation control.
  • the CPU 310 resets the timer 1 and stops the indoor fan 31 and transmits a signal including the end of the indoor unit heat exchanger heating operation control to the outdoor unit 2 via the communication unit 330.
  • CPU210 which received this signal via the communication part 230 stops the compressor 21 and the outdoor fan 27.
  • the control means determines whether the current indoor fan rotational speed Rfi is a predetermined minimum rotational speed (hereinafter referred to as indoor fan minimum rotational speed Rfim). It is determined whether or not (ST59). Specifically, CPU 310 reads the indoor fan minimum rotational speed Rfim stored in advance in storage unit 320 and compares it with the current indoor fan rotational speed Rfi.
  • the indoor fan minimum rotation speed Rfim is the lower limit rotation speed of the use range of the indoor fan 32, and is, for example, 300 rpm.
  • the control means maintains the indoor fan minimum rotational speed Rfim (ST60). Driving continues at the rotational speed Rfim, and the process returns to ST48. Specifically, the CPU 310 continues to drive the indoor fan 32 at the indoor fan minimum rotational speed Rfim.
  • the control means sets the indoor fan rotational speed Rfi to a predetermined indoor fan release interval time (hereinafter referred to as indoor fan release interval).
  • indoor fan release interval a predetermined indoor fan release rotational speed
  • the CPU 310 decreases the indoor fan rotation speed Rfi by the indoor fan release rotation speed Rfi at every indoor fan release interval time tfi.
  • the indoor fan release interval time tfi and the indoor fan release rotation speed Rfir are determined in advance through a test or the like, and the indoor heat exchange temperature Tc is rapidly increased to protect the indoor heat exchange heating operation described later. It has been confirmed that the indoor heat exchanger temperature Tc is raised while suppressing the protection stop by the control.
  • the indoor fan release interval time tfi is, for example, 60 seconds
  • the indoor fan release rotation speed Rfir is, for example, 50 rpm.
  • the processing of ST47 to ST49 and ST58 to ST62 described above is an operation for raising the indoor heat exchange temperature Tc in the indoor unit heat exchange heating operation to the first indoor heat exchange temperature Tc1 (hereinafter referred to as a temperature raising operation). To be described). By performing the temperature raising operation, the indoor heat exchange temperature Tc is set to the first indoor temperature Tc1 (in this embodiment, 50 ° C.) as soon as possible while preventing protection from being stopped by protection control during indoor heat exchange heating operation described later. ).
  • the indoor heat exchanger heating operation is terminated when the indoor heat exchanger temperature Tc does not become equal to or higher than the first indoor heat exchanger temperature Tc1 even after the first predetermined time tp1 has elapsed. If the indoor heat exchange temperature Tc does not become equal to or higher than the first indoor heat exchange temperature Tc1 even after the temperature raising operation described above is performed for the first predetermined time tp1, the indoor heat exchange temperature Tc is unlikely to rise for some reason. It is for avoiding useless operation as a result of continuing the indoor heat exchanger heating operation as it is.
  • the control means starts measuring the timer 2 (ST50). Specifically, CPU 310 starts measuring timer 2.
  • control means executes indoor fan control during temperature maintenance, which is a subroutine for indoor heat exchange heating operation control (ST51), and also performs outdoor fan control during temperature maintenance, which is a subroutine for indoor heat exchange heating operation control. (ST52).
  • indoor fan control during temperature maintenance and the outdoor fan control during temperature maintenance will be described later.
  • the control means determines whether or not the flag is 1 (ST53). For example, the CPU 310 has this flag, and when the indoor heat exchange temperature Tc rises during the indoor heat exchange operation, the flag becomes the third indoor heat exchange temperature Tc3 (55 ° C. in the present embodiment) or higher for the first time. , 0 is changed to 1.
  • the flag is set to 0 by default (at the time of factory shipment).
  • the control means resets the timer 1 (ST63) and goes to ST56. Proceed with the process. Specifically, if the CPU 310 confirms the flag and is 1, the timer 1 is reset.
  • the control means determines that the indoor heat exchange temperature Tc captured in ST48 is the third heat exchange temperature Tc. It is determined whether or not the indoor heat exchange temperature Tc3 is reached (ST54). Specifically, the CPU 310 reads out the third indoor heat exchange temperature Tc3 from the storage unit 320 and compares it with the captured indoor heat exchange temperature Tc.
  • control means sets the flag to 1 and resets the timer 1 (ST55), and the process proceeds to ST56. To proceed. Specifically, CPU 310 sets the flag to 1 and resets timer 1.
  • the control means starts the measurement of the timer 1 in ST47 and the first predetermined time tp1 has elapsed. Whether or not is determined (ST64). Note that the processing of ST63 is performed by the CPU 310 in the same manner as the processing of ST58.
  • the control means If the first predetermined time tp1 has elapsed (ST64-Yes), the control means resets the timer 1 (ST65) and ends the indoor unit heat exchanger heating operation control. Note that the processing of ST65 is performed by the CPU 310 in the same manner as the processing of ST61. If the first predetermined time tp1 has not elapsed (ST64-No), the control unit returns the process to ST53.
  • the indoor heat exchange heating operation is terminated. This is because if the indoor heat exchange temperature Tc does not become equal to or higher than the third indoor heat exchange temperature Tc3 even if the temperature raising operation and the temperature maintenance operation described later are performed for the first predetermined time tp1, the indoor heat exchange temperature Tc for some reason. This is for avoiding useless operation as a result of continuing the indoor heat exchanger heating operation as it is.
  • the control means that has finished the process of ST55 determines whether or not a predetermined time (hereinafter referred to as a second predetermined time tp2) has elapsed since the start of the timer 2 measurement in ST50 (ST56). Specifically, CPU 310 determines whether or not second predetermined time tp2 has elapsed since the start of timer 2 measurement in ST50.
  • the second predetermined time tp2 is predetermined and stored in the storage unit 330. In order to greatly reduce the number of molds and bacteria present in the indoor heat exchanger 31 described above, This is the time for maintaining the heat exchange temperature Tc at 55 ° C. or higher, for example, 10 minutes.
  • the control unit returns the process to ST51. If the second predetermined time tp2 has not elapsed (ST56-No), the control unit returns the process to ST51. If the second predetermined time tp2 has elapsed (ST56-Yes), the control means resets the timer 2 and resets the flag (ST57), and ends the indoor unit heat exchanger heating operation control. Specifically, the CPU 310 resets the timer 2 and the flag. In addition, the CPU 310 stops the indoor fan 31 and transmits a signal including that the indoor unit heat exchanger heating operation control is terminated to the outdoor unit 2 via the communication unit 330. CPU210 which received this signal via the communication part 230 stops the compressor 21 and the outdoor fan 27. FIG.
  • the processes from ST50 to ST56 and ST63 to ST65 described above maintain the indoor heat exchange temperature Tc at or above the third indoor heat exchange temperature Tc3 (55 ° C. in the present embodiment) for the second predetermined time tp2.
  • This is processing related to the operation to be performed (hereinafter referred to as temperature maintenance operation).
  • control means determines whether or not the cooling operation was performed before the indoor heat exchanger heating operation (ST71). If the cooling operation is not performed (ST71-No), the control means ends the pre-heating operation control. If the cooling operation is being performed (ST71-Yes), the control means starts measuring the timer 3 (ST72). Specifically, CPU 310 starts measuring timer 3.
  • the control means drives the indoor fan 32 with the indoor fan rotation speed Rfi as a predetermined rotation speed (hereinafter referred to as the pre-heating indoor fan rotation speed Rfia) (ST73).
  • the CPU 310 drives the indoor fan 32 with the indoor fan rotation speed Rfi as the pre-heating indoor fan rotation speed Rfia.
  • the indoor fan rotation speed Rfia before heating is obtained by performing a test or the like in advance, and during a third predetermined time tp3 described later, the indoor air is passed through the indoor unit 3 for cooling.
  • the number of revolutions can suppress the generation of dew condensation water due to the temperature difference between the temperature of the indoor unit 3 and the indoor heat exchange temperature Tc during the temperature rising operation by warming the indoor unit 3 cooled during operation.
  • the indoor fan rotation speed Rfia before heating is, for example, 900 rpm.
  • the control means drives the outdoor fan 27 with the outdoor fan rotational speed Rfo as a predetermined rotational speed (hereinafter referred to as the pre-heating outdoor fan rotational speed Rfoa) (ST74).
  • the CPU 210 drives the outdoor fan 27 with the outdoor fan rotation speed Rfo as the pre-heating outdoor fan rotation speed Rfoa.
  • the pre-heating outdoor fan rotation speed Rfoa is obtained in advance by performing a test or the like, and during the third predetermined time tp3 described later, the outdoor unit control means 200 (particularly, the heat generated during the cooling operation).
  • the number of rotations is such that the temperature of the outdoor unit control means 200 can be suppressed from being excessively increased when the indoor heat exchange heating operation is performed by cooling the inverter unit (not shown) that drives the compressor 21.
  • the pre-heating outdoor fan rotation speed Rfoa is, for example, 650 rpm.
  • the control means determines whether or not a predetermined time (hereinafter referred to as a third predetermined time tp3) has elapsed after starting the measurement of the timer 3 in ST72 (ST75). Specifically, CPU 310 determines whether or not third predetermined time tp3 has elapsed since the start of timer 3 measurement in ST75.
  • the third predetermined time tp3 is predetermined and stored in the storage unit 330, and the indoor fan rotation speed Rfi is set to the pre-heating indoor fan rotation speed Rfia and the outdoor fan rotation speed Rfo is heated.
  • the indoor unit 3 cooled during the cooling operation can be heated to the extent that no dew condensation water is generated during the heating operation, and the cooling operation This is the time during which the outdoor unit control means 200 that generated heat can be cooled.
  • the third predetermined time tp3 is, for example, 15 minutes.
  • the control unit If the third predetermined time tp3 has not elapsed (ST75-No), the control unit returns the process to ST75. If the third predetermined time tp3 has elapsed (ST75-Yes), the control means resets the timer 3 (ST76), ends the pre-heating operation control, and returns to the main routine.
  • the housing 30 of the indoor unit 3 cooled during the cooling operation is performed by performing the pre-heating operation control prior to the temperature raising operation. Can warm up.
  • casing 30 resulting from the temperature difference of the temperature of the indoor unit 3 and indoor heat exchanger temperature Tc can be suppressed at the time of temperature rising operation, when performing indoor heat exchanger heating operation It is possible to prevent the dew condensation water from scattering from the air outlet 30g of the indoor unit 3 into the room.
  • the outdoor unit control means 200 that is at a high temperature during the cooling operation with a high outside air temperature can be cooled.
  • the CPU 310 takes in the indoor heat exchange temperature Tc (ST80).
  • the CPU 310 uses the two indoor heat exchange temperatures Tc captured at a certain time, and the indoor heat exchange temperature Tc captured immediately before (for example, 30 seconds before) the most recently captured indoor heat exchange temperature Tc. Is calculated (hereinafter referred to as indoor heat exchange temperature difference ⁇ Tc) (ST81).
  • CPU 310 determines whether or not the indoor heat exchanger temperature difference ⁇ Tc calculated in ST81 is greater than 0, that is, whether or not the indoor heat exchanger temperature Tc has increased (ST82). If the indoor heat exchanger temperature difference ⁇ Tc is greater than 0 (ST82-Yes), the CPU 310 refers to “when Tc rises” in the indoor fan rotation speed table 400 of FIG. Steps ST83 to ST85 are performed.
  • the CPU 310 determines whether or not the current indoor heat exchange temperature Tc is lower than the third indoor heat exchange temperature Tc3 (ST83). If the current indoor heat exchange temperature Tc is lower than the third indoor heat exchange temperature Tc3 (ST83-Yes), the CPU 310 sets the indoor fan rotational speed Rfi as the rotational speed obtained by subtracting 10 rpm from the current indoor fan rotational speed Rfi ( ST86) Ends indoor fan control during temperature maintenance and returns to the main routine.
  • the CPU 310 determines that the current indoor heat exchanger temperature Tc is equal to or greater than the third indoor heat exchanger temperature Tc3 and the fourth indoor heat exchanger temperature Tc3. It is determined whether it is less than Tc4 (ST84). If the current indoor heat exchange temperature Tc is not less than the third indoor heat exchange temperature Tc3 and less than the fourth indoor heat exchange temperature Tc4 (ST84-Yes), the CPU 310 does not change the indoor fan rotational speed Rfi (ST87). When the temperature is maintained, the indoor fan control is terminated and the process returns to the main routine.
  • the current indoor heat exchange temperature Tc is not greater than or equal to the third indoor heat exchange temperature Tc3 and less than the fourth indoor heat exchange temperature Tc4 (ST84-No), that is, the current indoor heat exchange temperature Tc is equal to the fourth indoor heat exchange temperature Tc4. If it is above, CPU310 makes indoor fan rotation speed Rfi the rotation speed which added 70rpm to the current indoor fan rotation speed Rfi (ST85), ends indoor fan control at the time of temperature maintenance, and returns to the main routine.
  • the CPU 310 determines whether or not there is (ST88). If the indoor heat exchange temperature difference ⁇ Tc is 0 (ST88-Yes), the CPU 310 refers to “when maintaining Tc” in the indoor fan rotation speed table 400 of FIG. Processing of ST89 to ST95 is performed.
  • the CPU 310 determines whether or not the current indoor heat exchange temperature Tc is lower than the second indoor heat exchange temperature Tc2 (ST89). If the current indoor heat exchange temperature Tc is lower than the second indoor heat exchange temperature Tc2 (ST89-Yes), the CPU 310 sets the indoor fan rotation speed Rfi as the rotation speed obtained by subtracting 40 rpm from the current indoor fan rotation speed Rfi ( ST93) Ends indoor fan control during temperature maintenance and returns to the main routine.
  • the CPU 310 determines that the current indoor heat exchange temperature Tc is equal to or greater than the second indoor heat exchange temperature Tc2 and the third indoor heat exchange temperature. It is determined whether it is less than Tc3 (ST90). If the current indoor heat exchange temperature Tc is equal to or greater than the second indoor heat exchange temperature Tc2 and less than the third indoor heat exchange temperature Tc3 (ST90-Yes), the CPU 310 calculates the indoor fan rotational speed Rfi from the current indoor fan rotational speed Rfi. As the number of revolutions reduced by 30 rpm (ST94), the indoor fan control is terminated when the temperature is maintained, and the process returns to the main routine.
  • the CPU 310 determines that the current indoor heat exchanger temperature Tc is the third indoor heat exchanger temperature Tc. It is determined whether it is Tc3 or higher and lower than the fourth indoor heat exchange temperature Tc4 (ST91). If the current indoor heat exchange temperature Tc is not less than the third indoor heat exchange temperature Tc3 and less than the fourth indoor heat exchange temperature Tc4 (ST91-Yes), the CPU 310 does not change the indoor fan rotation speed Rfi (ST95). When the temperature is maintained, the indoor fan control is terminated and the process returns to the main routine.
  • the current indoor heat exchange temperature Tc is not equal to or higher than the third indoor heat exchange temperature Tc3 and lower than the fourth indoor heat exchange temperature Tc4 (ST93-No), that is, the current indoor heat exchange temperature Tc is equal to the fourth indoor heat exchange temperature Tc4. If it is above, CPU310 makes indoor fan rotation speed Rfi the rotation speed which added 50rpm to the current indoor fan rotation speed Rfi (ST98), ends indoor fan control at the time of temperature maintenance, and returns to the main routine.
  • the CPU 310 determines whether or not the current indoor heat exchange temperature Tc is lower than the third indoor heat exchange temperature Tc3 (ST96). If the current indoor heat exchanger temperature Tc is lower than the third indoor heat exchanger temperature Tc3 (ST96-Yes), the CPU 310 sets the indoor fan rotational speed Rfi to a rotational speed obtained by subtracting 40 rpm from the current indoor fan rotational speed Rfi ( ST98) Ends indoor fan control during temperature maintenance and returns to the main routine.
  • the CPU 310 Without changing the indoor fan rotation speed Rfi (ST97), the indoor fan control is terminated when the temperature is maintained, and the process returns to the main routine.
  • the indoor fan when performing indoor fan control during temperature maintenance using the indoor fan control table 400, the indoor fan is between the upper and lower rotational speeds (900 rpm and 300 rpm) of the indoor fan rotational speed Rfi.
  • a rotational speed Rfi is set. If the indoor fan rotational speed Rfi is increased by 900 rpm by increasing the rotational speed determined by the indoor fan control table 400, the indoor fan rotational speed Rfi is maintained at 900 rpm even when the indoor fan rotational speed Rfi is subsequently increased. Is done.
  • the indoor fan rotational speed Rfi is decreased by the rotational speed determined by the indoor fan control table 400 to reach 300 rpm, the indoor fan rotational speed Rfi is 300 rpm even when the indoor fan rotational speed Rfi is subsequently decreased. Maintained.
  • the indoor heat exchange temperature Tc is set to the third indoor heat exchange by performing the indoor fan control during the temperature maintenance using the indoor fan control table 400 during the temperature maintenance operation performed during the indoor heat exchange heating operation.
  • the CPU 210 takes in the room temperature Ti from the indoor unit 3 via the communication 230 and takes in the outside air temperature To detected by the outside air temperature sensor 73 via the sensor input unit 240 (ST111).
  • the CPU 210 takes in the room temperature Ti and the outside air temperature To periodically (for example, every 30 seconds).
  • the CPU 210 determines whether or not the outside air temperature To taken in in ST111 is lower than a predetermined first outside air temperature (hereinafter referred to as a first threshold outside air temperature Top1) (ST112).
  • a predetermined first outside air temperature hereinafter referred to as a first threshold outside air temperature Top1
  • the first threshold outside air temperature Top1 is the outside air temperature: 16 ° C. defined in the outdoor fan control table 500 of FIG.
  • the CPU 210 refers to the outdoor fan control table 500 stored in the storage unit 220 and rotates the outdoor fan 27 in the compressor. Driving is performed at the outdoor fan rotation speed Rfo corresponding to the number Rc (ST117), the outdoor fan control at the time of temperature maintenance is terminated, and the process returns to the main routine.
  • the CPU 210 determines that the taken-in outside air temperature To is equal to or higher than the first threshold outside air temperature Top1 and a predetermined second outside air temperature (hereinafter referred to as a second temperature). It is determined whether or not the temperature is below the threshold outside air temperature Top2 (ST113).
  • the second threshold outside air temperature Top2 is higher than the first threshold outside air temperature Top1, and is, for example, the outside air temperature: 24 ° C. defined in the outdoor fan control table 500 in FIG. 6B.
  • the CPU 210 Referring to outdoor fan control table 500 stored in storage unit 220, outdoor fan rotation speed Rfo is set to 0 rpm (ST118), that is, outdoor fan 27 is stopped and outdoor fan control is terminated when temperature is maintained. And return to the main routine.
  • the CPU 210 determines that the room temperature Ti taken in at ST111 is a predetermined room temperature (hereinafter referred to as the threshold room temperature). It is determined whether it is less than (describes Tip) (ST114).
  • the threshold indoor temperature Tip is the indoor temperature: 27 ° C. defined in the outdoor fan control table 500 in FIG.
  • the CPU 210 determines whether or not the current outdoor fan rotation speed Rfo is 0 rpm (ST115).
  • the CPU 210 proceeds to ST118, that is, maintains the state where the outdoor fan 27 is stopped. If the current outdoor fan rotation speed Rfo is not 0 rpm (ST115-No), CPU 210 sets outdoor fan rotation speed Rfo as a predetermined rotation speed (hereinafter referred to as maintenance outdoor fan rotation speed Rfob) (ST116). When the temperature is maintained, the outdoor fan control is terminated and the process returns to the main routine.
  • the maintenance-time outdoor fan rotation speed Rfob is the outdoor fan rotation speed Rfo: 190 rpm defined in the outdoor fan control table 500 of FIG.
  • the outdoor fan control is performed during the temperature maintenance using the outdoor fan control table 500.
  • the indoor heat exchange temperature Tc is maintained in the range of 55 ° C. to 57 ° C. by controlling the outdoor fan 27 based on the outdoor fan control table 500, the discharge pressure of the compressor 21 is within the usage range. It is possible not to exceed the upper limit.
  • FIG. 11 ⁇ Protection control during indoor heat exchanger operation>
  • protection control during indoor heat exchanger heating operation so that the discharge pressure of the compressor 21 does not exceed the upper limit value of the use range during the indoor heat exchanger heating operation described above will be described.
  • ST represents a process step, and the number following this represents a step number.
  • the indoor heat exchange heating operation protection control is executed when the indoor heat exchange heating operation is performed, and is different from the heating operation protection control executed when the heating operation is performed. It is.
  • the control means takes in the indoor heat exchange temperature Tc, the discharge temperature Td, the temperature of the outdoor heat exchanger 23 (hereinafter referred to as the outdoor heat exchange temperature Te), and the outdoor air temperature To (ST131).
  • the indoor heat exchange temperature Tc and the discharge temperature Td are captured in the same manner as ST11 in the heating operation protection control described with reference to FIG.
  • the outside air temperature To is taken in by the same method as ST111 in the outdoor fan control during temperature maintenance described with reference to FIG.
  • the CPU 210 takes in the outdoor heat exchange temperature Te detected by the outdoor heat exchange temperature sensor 72 periodically (for example, every 30 seconds) via the sensor input unit 240.
  • the control means is equal to or higher than a predetermined temperature (hereinafter referred to as second threshold indoor heat exchange temperature Tch2) at which the indoor heat exchange temperature Tc captured in ST131 is higher than the first threshold indoor heat exchange temperature Tch1. It is determined whether or not (ST132). Specifically, CPU 310 reads out second threshold indoor heat exchange temperature Tch2 stored in advance in storage unit 320 and compares it with indoor heat exchange temperature Tc.
  • the second threshold indoor heat exchange temperature Tch2 is obtained in advance through a test or the like, is higher than the first threshold indoor heat exchange temperature Tch1, and uses the discharge pressure of the compressor 21 described above.
  • the temperature is a predetermined temperature lower than the indoor heat exchange temperature Tc corresponding to the upper limit value of the range.
  • the second threshold indoor heat exchange temperature Tch2 is, for example, 59 ° C.
  • the control means stops the indoor heat exchanger heating operation (ST136) and performs protection control during the indoor heat exchanger heating operation. End the process involved. In addition, you may stop the driving
  • the opening degree D of the expansion valve 24 is made larger than that in the indoor heat exchanger heating operation, and the indoor fan rotation speed Rfi is also increased, so that the discharge pressure of the compressor 21 is higher than that in the indoor heat exchanger heating operation. Also decreases.
  • the control unit determines whether or not the discharge temperature Td captured in ST131 is equal to or higher than the first threshold discharge temperature Tdh1. (ST133). Specifically, the CPU 210 determines whether or not the discharge temperature Td is equal to or higher than the first threshold discharge temperature Tdh1.
  • the control means advances the process to ST136.
  • the control means determines that the outdoor heat exchange temperature Te taken in ST131 is a predetermined outdoor heat exchange temperature (hereinafter, the threshold outdoor heat exchange temperature). It is determined whether or not (described as Teh) (ST134). Specifically, the CPU 210 determines whether or not the captured outdoor heat exchange temperature Te is equal to or higher than the threshold outdoor heat exchange temperature Teh.
  • the threshold outdoor heat exchange temperature Teh is obtained in advance by performing a test or the like and stored in the storage unit 220. If the outdoor heat exchange temperature Te is equal to or higher than the threshold outdoor heat exchange temperature Teh, compression is performed. The temperature at which the suction pressure of the compressor 21 rises and the compression ratio of the compressor 21 (the ratio between the discharge pressure and the suction pressure) may fall below the lower limit value of the use range.
  • the control means determines that the outside air temperature To taken in ST131 is a predetermined outside air temperature (hereinafter referred to as a third threshold outside air temperature Top3). It is determined whether or not it is (described) (ST135). Specifically, the CPU 310 determines whether or not the taken-in outside temperature To is equal to or higher than the third threshold outside temperature Top3.
  • the third threshold outside air temperature Top3 is obtained by performing a test or the like in advance and stored in the storage unit 220. When the outside air temperature To is equal to or higher than the third threshold outside air temperature Top3, the indoor heat exchange is performed.
  • the third threshold outside temperature Top3 is higher than the first threshold outside temperature Top1 and the second threshold outside temperature Top2 described above, and is 43 ° C., for example.
  • the control unit If the taken-in outside temperature To is not equal to or higher than the third threshold outside temperature Top3 (ST134-No), the control unit returns the process to ST131. If the taken-out outside temperature To is equal to or higher than the third threshold outside temperature Top3 (ST134-Yes), the control unit returns the process to ST136.
  • the indoor heat exchange temperature Tc can be maintained at 55 ° C. to 57 ° C., and if the indoor heat exchange temperature Tc becomes equal to or higher than the second threshold indoor heat exchange temperature Tch2, the compressor 21 Therefore, it is possible to suppress the discharge pressure of the compressor 21 from exceeding the upper limit value of the use range.
  • the indoor heat exchange temperature Tc is maintained at 55 ° C. to 57 ° C. in the indoor heat exchange heating operation, the discharge temperature Td of the compressor 21 is likely to rise and the discharge pressure is likely to rise.
  • the protection control during indoor heat exchange heating operation includes the stop of the compressor 21 due to the outdoor heat exchange temperature Te that is not included in the protection control during heating operation. It is considered that the indoor heat exchange heating operation of the present invention is often performed in the summer when cooling operation is performed in which the possibility of mold and bacteria breeding is increased by the condensed water generated in the indoor heat exchanger 31.
  • the outdoor air temperature To is high and the outdoor air temperature To is high, so that in the indoor heat exchanger heating operation, the outdoor heat exchanger temperature Te of the outdoor heat exchanger 23 that functions as an evaporator increases.
  • the suction pressure of the compressor 21 may increase due to the increase in the outdoor heat exchange temperature Te.
  • the compressor 21 is stopped to prevent the suction pressure of the compressor 21 from increasing. Moreover, it can suppress that the compression ratio of the compressor 21 falls below the lower limit of the use range.
  • the wetting control operation may be performed as follows.
  • the indoor heat exchange temperature is controlled so that the surface of the indoor heat exchanger 31 is wetted with condensed water having a specific amount of water based on the temperature and humidity of the indoor heat exchanger 31 after the cooling operation.
  • the indoor heat exchange temperature is maintained at a high temperature in the presence of condensed water on the surface of the indoor heat exchanger 31, the residual rate of mold and bacteria existing on the surface of the indoor heat exchanger 31 is greatly increased. Can be reduced.
  • an information signal including humidity information of the measured humidity is supplied from the indoor humidity sensor (not shown) that measures the relative humidity in the indoor unit 3 to the sensor input unit 340 of the indoor unit control means 300 in the indoor unit 3. Is done.
  • the control means when the control means recognizes the end of the cooling operation, it stops the rotation of the indoor fan 32 in ST137.
  • the rest of the indoor fan 32 suppresses evaporation of condensed water from the surface of the indoor heat exchanger 31.
  • the control means may stop the rotation of the indoor fan 32, reduce the rotation speed of the indoor fan 32, or perform intermittent rotation.
  • the rotation of the indoor fan 32 may be adjusted as appropriate according to the amount of condensed water.
  • the control means specifies the wet amount of the indoor heat exchanger 31 from the amount of condensed water generated on the surface of the indoor heat exchanger 31 in ST138. In specifying the wetting amount, the control means estimates the saturated water vapor amount from the output signals of the indoor temperature sensor 75 and the indoor humidity sensor. The control means specifies the amount of condensed water from the estimated saturated water vapor amount and the values of duration and elapsed time measured by a timer (not shown) incorporated in the indoor unit 3. Generally, after the cooling operation, the temperature of the indoor heat exchanger 31 is low, and condensed water is generated on the surface of the indoor heat exchanger 31.
  • the control means cools the indoor heat exchanger 31 in ST139.
  • the control means instructs the operations of the expansion valve 24 and the compressor 21 that lower the evaporation temperature of the refrigerant in the indoor heat exchanger 31.
  • the temperature of the indoor heat exchanger 31 decreases and the generation of condensed water is promoted. Sufficient wetting is ensured on the surface of the indoor heat exchanger 31.
  • Wet heat sterilization that can reduce the number of bacteria by killing bacteria at a temperature lower than the temperature in a dry state by giving heat to bacteria and mold in a high humidity state to a predetermined prescribed amount of wetness In order to carry out, it should just be set to the amount of water which does not lose the effectiveness of wet heat sterilization by evaporating during the heating of the indoor heat exchanger 31.
  • the control means heats the indoor heat exchanger 31 in ST140. Refrigerant condensation is used for heating the indoor heat exchanger 31. At this time, the control means executes switching of the four-way valve 22. The four-way valve 22 is switched to the position during heating operation.
  • the temperature of the indoor heat exchanger 31 during heating is set to 45 degrees Celsius or more.
  • the temperature of the indoor heat exchanger 31 is set to 60 degrees Celsius or more.
  • the indoor heat exchanger 31 is heated without evaporating condensed water on the surface of the indoor heat exchanger 31 without passing through the drying operation conventionally performed.
  • the condensed water is heated by the indoor heat exchanger 31. Bacteria and mold are heated in the heated condensed water. Therefore, bacteria and molds are sterilized by wet heat. Can kill bacteria and mold to reduce the number.
  • the temperature of the indoor heat exchanger 31 when the temperature of the indoor heat exchanger 31 is set to 45 degrees Celsius or higher, the dew condensation water is heated to 45 degrees Celsius or higher, so that the heat sterilization of bacteria and molds is effectively realized. Further, when the temperature of the indoor heat exchanger 31 is set to 60 degrees Celsius or more, the wet heat sterilization of bacteria and fungi is more effectively realized. The time to sterilization can be shortened. However, in order to suppress the evaporation of condensed water as much as possible, it is desirable that the temperature of the indoor heat exchanger 31 is set as low as possible at 70 degrees Celsius or less. In a state where the heat exchanger is dry, even if the temperature is set to 45 degrees Celsius or higher, it does not lead to sterilization of bacteria and mold.
  • the opening degree of the expansion valve 24 and the rotation of the fans 27 and 32 are appropriately adjusted so that the temperature of the indoor heat exchanger 31 does not exceed 60 degrees and an overload condition is reached. It only has to be done.
  • the control means determines completion of wet heat sterilization. For the determination, for example, the control means uses a timer. The timer measures the duration of the set temperature. When the duration of the set temperature reaches a specified value, the control means ends the wet heat sterilization. If the duration of the set temperature is less than the specified value, the control means continues the heating operation.
  • the specified value for the duration of the set temperature may be equal to or longer than the time during which the effect of wet heat sterilization is obtained. According to the applicant's experiment, it has been found that the effect of wet heat sterilization can be obtained by setting it to 3 minutes or more for Escherichia coli and 5 minutes or more for black mold. Further, it has been found that 10 minutes or more is desirable for Legionella bacteria.
  • control means observes the operation of the compressor 21 in ST142. If an overload of the compressor 21 is detected in heating up to the set temperature, the control means lowers the discharge temperature of the compressor 21 in ST7 and ends the heating operation. If no overload is detected, the heating operation is continued until it is determined in ST141 that the wet heat sterilization is completed.
  • the overload condition of the compressor 21 set at the time of condensation is relaxed compared to the overload condition of the compressor 21 set at the time of heating operation. That is, the discharge temperature that is the threshold for the overload condition is set high, or the time until the overload protection operation is performed when the discharge temperature exceeds the threshold for the overload condition for a predetermined time is set long. Since the overload condition of the compressor 21 is relaxed during the wetting control operation, the indoor heat exchanger 31 can be heated to a higher temperature than during the heating operation. Bacterial and mold sterilization is achieved.
  • a drying process in the indoor unit 3 may be performed following the wet heat sterilization process.
  • the rotation of the indoor fan 32 is started while the heating of the indoor heat exchanger 31 is maintained.
  • the control means specifies the number of rotations of the indoor fan 32.
  • the rotation of the indoor fan 32 promotes evaporation of heated condensed water.
  • the air outlet of the indoor unit 3 may be closed by the up / down wind direction plate 35.
  • the control means may specify the minimum angle of the up / down wind direction plate 35. In this way, warm air blowing after the cooling operation is avoided. In this way, the drying and heating are continued following the wet heat sterilization treatment, thereby suppressing the growth of bacteria and mold remaining by the wet heat sterilization.

Abstract

Provided is an air conditioner wherein, in the protective control during indoor heat exchange-heating operation, a compressor (21) is stopped when an indoor heat exchange temperature (Tc) becomes equal to or higher than a second threshold indoor heat exchange temperature (Tch2) which is higher than a first threshold indoor heat exchange temperature (Tch1) in the protective control during warming operation. Alternatively, the compressor (21) is stopped when a discharge temperature (Td) is equal to or higher than a first threshold discharge temperature (Tdh1) in the protective control during warming operation. Alternatively, as a mode which is not executed in the protective control during warming operation, the compressor (21) is stopped and the suction pressure of the compressor (21) is prevented from rising, when an outdoor heat exchange temperature (Te) is equal to or higher than a threshold outdoor heat exchange temperature (Teh). As a result, it is possible to provide an air conditioner that prevents the discharge pressure of the compressor from exceeding the upper limit value of the use range when the operation of decreasing the number of fungi or bacteria is performed.

Description

空気調和機Air conditioner
 本発明は、室内機でのカビや細菌の繁殖を抑制する空気調和機に関する。 The present invention relates to an air conditioner that suppresses the growth of mold and bacteria in an indoor unit.
 空気調和機が冷房運転を行うときは、蒸発器として機能する室内熱交換器で凝縮水が生成される。室内熱交換器で生成された凝縮水は室内熱交換器でカビや細菌が繁殖する要因となり、カビや細菌が繁殖すると、室内機から吹き出される空調空気が不快な臭いとなる。そこで、冷房運転後に室内熱交換器を含む室内機の内部を乾燥させる空気調和機が提案されている(例えば、特許文献1や特許文献2を参照)。 When the air conditioner performs cooling operation, condensed water is generated by the indoor heat exchanger that functions as an evaporator. The condensed water generated by the indoor heat exchanger causes mold and bacteria to propagate in the indoor heat exchanger, and when mold and bacteria propagate, the conditioned air blown out from the indoor unit has an unpleasant odor. Then, the air conditioner which dries the inside of the indoor unit containing an indoor heat exchanger after air_conditionaing | cooling operation is proposed (for example, refer patent document 1 and patent document 2).
日本特開平10-62000号公報Japanese Unexamined Patent Publication No. 10-62000 日本特開2016-65687号公報Japanese Unexamined Patent Publication No. 2016-65687
 特許文献1や特許文献2に記載の空気調和機では、冷房運転後に室内機の内部を乾燥させるために、室内熱交換器を加熱する。しかし、上記のような乾燥のための加熱では、室内熱交換器の温度は暖房運転時の温度とさほど変わらず、カビや細菌の数の減少にはつながらない。一般的には、上記のような室内機の内部を乾燥させる運転では、室内熱交換器の温度が40℃程度に設定されるが、この温度ではカビや細菌の生育が抑制されるのみであり、再度冷房運転が行われると生育が抑制されていたカビや細菌が再び繁殖する可能性がある。 In the air conditioners described in Patent Document 1 and Patent Document 2, the indoor heat exchanger is heated in order to dry the interior of the indoor unit after the cooling operation. However, in the heating for drying as described above, the temperature of the indoor heat exchanger is not much different from the temperature during heating operation, and does not lead to a decrease in the number of molds and bacteria. In general, in the operation of drying the interior of the indoor unit as described above, the temperature of the indoor heat exchanger is set to about 40 ° C., but this temperature only suppresses the growth of mold and bacteria. When the cooling operation is performed again, molds and bacteria whose growth has been suppressed may be propagated again.
 そこで、カビや細菌の数を減少させるために、室内熱交換器をさらに加熱して室内熱交換器の温度を高くする、例えば、室内熱交換器の目標温度を50℃以上とすることが考えられる。このとき、短時間でカビや細菌の数を大幅に減少させるためには、目標温度をできるだけ高くすることが望ましい。 Therefore, in order to reduce the number of molds and bacteria, the indoor heat exchanger is further heated to increase the temperature of the indoor heat exchanger. For example, the target temperature of the indoor heat exchanger may be set to 50 ° C. or higher. It is done. At this time, in order to significantly reduce the number of molds and bacteria in a short time, it is desirable to make the target temperature as high as possible.
 一方で、空気調和機には、圧縮機の吐出圧力が使用範囲の上限値を超えることがないようにする保護制御が実行できるようにされている。保護制御の一種として、圧縮機の吐出圧力の使用範囲の上限値に対応する温度より低い温度を閾温度とし、室内熱交温度がこの閾温度を超えると圧縮機を停止させるものがある。 On the other hand, the air conditioner is capable of executing protection control that prevents the discharge pressure of the compressor from exceeding the upper limit value of the operating range. As one type of protection control, a temperature lower than the temperature corresponding to the upper limit value of the discharge pressure range of the compressor is set as a threshold temperature, and the compressor is stopped when the indoor heat exchange temperature exceeds the threshold temperature.
 上記のような保護制御ができる空気調和機で、カビや細菌の数を減少させるために室内熱交換器を加熱するときに、上述した保護制御の閾温度が殺菌時の室内熱交換器の目標温度より低いと、室内熱交温度が目標温度に到達する前に保護制御によって圧縮機が停止するので、カビや細菌の数を減少させることができないという問題があった。 When the indoor heat exchanger is heated to reduce the number of molds and bacteria in the air conditioner capable of protection control as described above, the threshold temperature of the protection control described above is the target of the indoor heat exchanger during sterilization. If the temperature is lower than the temperature, the compressor is stopped by protection control before the indoor heat exchange temperature reaches the target temperature, and there is a problem that the number of molds and bacteria cannot be reduced.
 本発明は以上述べた問題点を解決するものであって、カビや細菌の数を減少させる運転を行っているときに、圧縮機の吐出圧力が使用範囲の上限値を超えないようにする空気調和機を提供することを目的とする。 The present invention solves the problems described above, and is an air that prevents the discharge pressure of the compressor from exceeding the upper limit value of the operating range when the operation is performed to reduce the number of molds and bacteria. The purpose is to provide a harmony machine.
 上記の課題を解決するために、本発明の空気調和機は、室内熱交換器と室内熱交換器の温度である室内熱交温度を検出する室内熱交温度センサを有する室内機と、圧縮機を有する室外機と、圧縮機を制御する制御手段を有する。そして、制御手段は、室内熱交換器を凝縮器として機能させているとき、第1保護制御と第2保護制御を実行でき、第1保護制御は、室内熱交温度が所定の第1閾室内熱交温度より高い温度となれば実行され、第2保護制御は、室内熱交温度が第1閾室内熱交温度より高い所定の第2閾室内熱交温度より高い温度となれば実行される。 In order to solve the above problems, an air conditioner according to the present invention includes an indoor unit having an indoor heat exchanger temperature sensor that detects an indoor heat exchanger temperature that is a temperature of the indoor heat exchanger and the indoor heat exchanger, and a compressor. And an outdoor unit having control means for controlling the compressor. The control means can execute the first protection control and the second protection control when the indoor heat exchanger is functioning as a condenser, and the first protection control is configured such that the indoor heat exchange temperature is a predetermined first threshold room. The second protection control is executed when the temperature is higher than the heat exchange temperature, and the second protection control is executed when the indoor heat exchange temperature is higher than a predetermined second threshold indoor heat exchange temperature higher than the first threshold indoor heat exchange temperature. .
 上記のように構成した本発明の空気調和機によれば、室内熱交温度が第1閾室内熱交温度より高い所定の第2閾室内熱交温度より高い温度となれば第2保護制御を行う。従って、カビや細菌の数を減少させる運転を行っているときに、圧縮機の吐出圧力が使用範囲の上限値を超えないようにすることができる。 According to the air conditioner of the present invention configured as described above, when the indoor heat exchange temperature is higher than a predetermined second threshold indoor heat exchange temperature higher than the first threshold indoor heat exchange temperature, the second protection control is performed. Do. Therefore, it is possible to prevent the discharge pressure of the compressor from exceeding the upper limit value of the use range when performing an operation for reducing the number of molds and bacteria.
図1は本発明の実施形態における、空気調和機の説明図であり、(A)は室内機および室外機の外観斜視図、(B)は(A)におけるX-X断面図である。FIG. 1 is an explanatory diagram of an air conditioner according to an embodiment of the present invention, in which (A) is an external perspective view of an indoor unit and an outdoor unit, and (B) is an XX cross-sectional view in (A). 図2は本発明の実施形態における、空気調和機の説明図であり、(A)は冷媒回路図、(B)は室外機制御手段および室内機制御手段のブロック図である。FIG. 2 is an explanatory diagram of an air conditioner according to an embodiment of the present invention, in which (A) is a refrigerant circuit diagram, and (B) is a block diagram of an outdoor unit control unit and an indoor unit control unit. 図3は暖房運転制御の処理の流れを示すフローチャートである。FIG. 3 is a flowchart showing a process flow of the heating operation control. 図4は暖房運転時保護制御の処理の流れを示すフローチャートである。FIG. 4 is a flowchart showing the flow of processing for protection control during heating operation. 図5は室内熱交温度毎のカビあるいは細菌の残存率を示すデータであり、(A)はカビについて、(B)は大腸菌についてのデータである。FIG. 5 is data showing the residual rate of mold or bacteria at each indoor heat exchange temperature, (A) is data on mold, and (B) is data on E. coli. 図6は室内熱交加熱運転時の各ファンの制御テーブルであり、(A)は室内ファン制御テーブル、(B)は室外ファン制御テーブルである。FIG. 6 is a control table of each fan at the time of indoor heat exchange heating operation, (A) is an indoor fan control table, and (B) is an outdoor fan control table. 図7は室内熱交加熱運転のメインルーチンの処理の流れを示すフローチャートである。FIG. 7 is a flowchart showing the flow of processing of the main routine of the indoor heat exchanger heating operation. 図8は室内熱交加熱運転のサブルーチンであり、加熱前運転制御の処理の流れを示すフローチャートである。FIG. 8 is a flowchart of the indoor heat exchanger heating operation, and is a flowchart showing the flow of processing for preheating operation control. 図9は室内熱交加熱運転のサブルーチンであり、温度維持時室内ファン制御の処理の流れを示すフローチャートである。FIG. 9 is a subroutine of the indoor heat exchange heating operation, and is a flowchart showing a flow of processing of indoor fan control during temperature maintenance. 図10は室内熱交加熱運転のサブルーチンであり、温度維持時室外ファン制御の処理の流れを示すフローチャートである。FIG. 10 is a subroutine of the indoor heat exchange heating operation, and is a flowchart showing a flow of processing of outdoor fan control during temperature maintenance. 図11は室内熱交加熱運転時保護制御の処理の流れを示すフローチャートである。FIG. 11 is a flowchart showing a flow of processing of protection control during indoor heat exchanger heating operation. 図12は濡れ制御運転の処理の流れを示すフローチャートである。FIG. 12 is a flowchart showing a process flow of the wetting control operation.
1…空気調和機
2…室外機
3…室内機
10…冷媒回路
21…圧縮機
27…室外ファン
32…室内ファン
35…上下風向板
71…吐出温度センサ
72…室外熱交温度センサ
73…外気温度センサ
74…室内熱交温度センサ
75…室内温度センサ
200…室外機制御手段
210…室外機CPU
300…室内機制御手段
310…室内機CPU
400…室内ファン制御テーブル
500…室外ファン制御テーブル
Tc…室内熱交温度
Tch1…第1閾室内熱交温度
Tch2…第2閾室内熱交温度
Tc1~Tc5…第1~第5閾室内熱交温度
ΔTc…室内熱交温度変化
Te…室外熱交温度
Teh…閾室外熱交温度
Td…吐出温度
Tdh1…第1閾吐出温度
Tdh2…第2閾吐出温度
Ti…室内温度
Tip…閾室内温度
To…外気温度
Top1…第1閾外気温度
Top2…第2閾外気温度
Top3…第3閾外気温度
Tp…設定温度
ΔT…温度差
Tch1…第1上下室内熱交温度
Tch2…第2上下室内熱交温度
tp1…第1所定時間
tp2…第2所定時間
tp3…第3所定時間
tc…圧縮機レリース間隔時間
tfi…室内ファンレリース間隔時間
Rc…圧縮機回転数
Rcr…圧縮機レリース回転数
Rcm…圧縮機最低回転数
Rfi…室内ファン回転数
Rfia…加熱前室内ファン回転数
Rfir…室内ファンレリース回転数
Rfim…室内ファン最低回転数
Rfip…室内ファン初期回転数
Rfo…室外ファン回転数
Rfoa…加熱前室外ファン回転数
Rfob…維持時室外ファン回転数
D…膨張弁開度
Dp…所定膨張弁開度
DESCRIPTION OF SYMBOLS 1 ... Air conditioner 2 ... Outdoor unit 3 ... Indoor unit 10 ... Refrigerant circuit 21 ... Compressor 27 ... Outdoor fan 32 ... Indoor fan 35 ... Vertical wind direction plate 71 ... Discharge temperature sensor 72 ... Outdoor heat exchanger temperature sensor 73 ... Outdoor temperature Sensor 74 ... Indoor heat exchanger temperature sensor 75 ... Indoor temperature sensor 200 ... Outdoor unit control means 210 ... Outdoor unit CPU
300 ... Indoor unit control means 310 ... Indoor unit CPU
400 ... Indoor fan control table 500 ... Outdoor fan control table Tc ... Indoor heat exchange temperature Tch1 ... First threshold indoor heat exchange temperature Tch2 ... Second threshold indoor heat exchange temperature Tc1 to Tc5 ... First to fifth threshold indoor heat exchange temperatures ΔTc ... Indoor heat exchange temperature change Te ... Outdoor heat exchange temperature Teh ... Threshold outdoor heat exchange temperature Td ... Discharge temperature Tdh1 ... First threshold discharge temperature Tdh2 ... Second threshold discharge temperature Ti ... Indoor temperature Tip ... Threshold indoor temperature To ... Outdoor air Temperature Top1 ... First threshold outside air temperature Top2 ... Second threshold outside air temperature Top3 ... Third threshold outside air temperature Tp ... Set temperature ΔT ... Temperature difference Tch1 ... First upper / lower indoor heat exchange temperature Tch2 ... Second upper / lower indoor heat exchange temperature tp1 ... 1st predetermined time tp2 ... 2nd predetermined time tp3 ... 3rd predetermined time tc ... Compressor release interval time tfi ... Indoor fan release interval time Rc ... Compressor rotation speed Rcr ... Compressor release times Rotational speed Rcm ... Compressor minimum rotational speed Rfi ... Indoor fan rotational speed Rfia ... Indoor fan rotational speed Rfir ... Indoor fan release rotational speed Rfim ... Indoor fan minimum rotational speed Rfip ... Indoor fan initial rotational speed Rfo ... Outdoor fan rotational speed Rfoa: outdoor fan rotation speed before heating Rfob: outdoor fan rotation speed during maintenance D: expansion valve opening Dp: predetermined expansion valve opening
 以下、本発明の実施の形態を、添付図面に基づいて詳細に説明する。実施形態としては、室外機と室内機が2本の冷媒配管で接続された空気調和機を例に挙げて説明する。尚、本発明は以下の実施形態に限定されることはなく、本発明の主旨を逸脱しない範囲で種々変形することが可能である。
[実施例]
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. As an embodiment, an air conditioner in which an outdoor unit and an indoor unit are connected by two refrigerant pipes will be described as an example. The present invention is not limited to the following embodiments, and can be variously modified without departing from the gist of the present invention.
[Example]
 図1(A)に示すように、本実施例における空気調和機1は、屋外に設置される室外機2と、室内に設置されて室外機2に液管4およびガス管5で接続される室内機3を有している。 As shown in FIG. 1A, an air conditioner 1 according to this embodiment includes an outdoor unit 2 installed outdoors, and is installed indoors and connected to the outdoor unit 2 with a liquid pipe 4 and a gas pipe 5. An indoor unit 3 is provided.
 <室内機の形状および装置の配置>
 室内機3は、横長の略直方体形状とされた室内機筐体30を有している。室内機筐体30は、天面パネル30aと、右側面パネル30bと、左側面パネル30cと、底面パネル30dと、前面パネル30eで形成されている。これら各パネルは、全て樹脂材を用いて形成されている。
<Indoor unit shape and device layout>
The indoor unit 3 includes an indoor unit housing 30 that has a horizontally long and substantially rectangular parallelepiped shape. The indoor unit housing 30 is formed by a top panel 30a, a right panel 30b, a left panel 30c, a bottom panel 30d, and a front panel 30e. Each of these panels is formed using a resin material.
 天面パネル30aは略四方形状に形成されて室内機筐体30の天面を形成する。天面パネル30aには、図1(B)に示すように、室内機3の内部に室内空気を取り込むための吸込口30fが設けられている。図示は省略するが、吸込口30fは格子状に形成されている。 The top panel 30a is formed in a substantially square shape to form the top surface of the indoor unit housing 30. As shown in FIG. 1B, the top panel 30a is provided with a suction port 30f for taking indoor air into the interior of the indoor unit 3. Although illustration is omitted, the suction port 30f is formed in a lattice shape.
 右側面パネル30bおよび左側面パネル30cは、室内機筐体30の左右側面を形成する。右側面パネル30bおよび左側面パネル30cは、所定の曲率を有する曲面に形成されており、左右対称形状とされている。 The right side panel 30b and the left side panel 30c form the left and right side surfaces of the indoor unit housing 30. The right side panel 30b and the left side panel 30c are formed in curved surfaces having a predetermined curvature, and are symmetric.
 底面パネル30dは略四方形状に形成されて室内機筐体30の底面を形成する。底面パネル30dには、図1(B)に示すように、後述するベース30jが固定されている。 The bottom panel 30d is formed in a substantially square shape to form the bottom surface of the indoor unit housing 30. As shown in FIG. 1B, a base 30j, which will be described later, is fixed to the bottom panel 30d.
 前面パネル30eは略四方形状に形成されて室内機筐体30の前面を覆うように配置されている。前面パネル30eは、室内機3の意匠面を形成する。 The front panel 30e is formed in a substantially square shape and is disposed so as to cover the front surface of the indoor unit housing 30. The front panel 30 e forms the design surface of the indoor unit 3.
 前述したように、天面パネル30aには吸込口30fが設けられており、また、前面パネル30eの下方には、後述する室内熱交換器31で冷媒と熱交換を行った室内空気を室内に吹き出すための吹出口30gが設けられている。吸込口30fと吹出口30gとを繋ぐ通風路30hには、吸込口30fから室内空気を吸い込み、吹出口30gから吹き出すための室内ファン32が設けられている。また、室内ファン32の上方には折り曲げ部30nを有することで逆V字型とされた室内熱交換器31が配置されている。室内熱交換器31や室内ファン32は、室内機3を壁面に取り付けるためのベース30jに固定されている。 As described above, the top panel 30a is provided with the suction port 30f, and below the front panel 30e, indoor air that has been heat-exchanged with the refrigerant by the indoor heat exchanger 31 described later is placed indoors. An outlet 30g for blowing out is provided. The ventilation path 30h that connects the suction port 30f and the outlet 30g is provided with an indoor fan 32 that sucks indoor air from the inlet 30f and blows it out from the outlet 30g. In addition, an indoor heat exchanger 31 having a bent portion 30n and having an inverted V shape is disposed above the indoor fan 32. The indoor heat exchanger 31 and the indoor fan 32 are fixed to a base 30j for attaching the indoor unit 3 to the wall surface.
 吹出口30gは、ベース30jの下部と、前面パネル30eに取り付けられたケーシング30kの下面で形成されている。尚、ベース30jおよびケーシング30kの上面は、室内熱交換器31で生じた結露水を受けるドレンパン30mとされている。 The blower outlet 30g is formed by the lower part of the base 30j and the lower surface of the casing 30k attached to the front panel 30e. The upper surfaces of the base 30j and the casing 30k are a drain pan 30m that receives the condensed water generated in the indoor heat exchanger 31.
 吹出口30gには、吹出口30gから吹き出される空気を上下方向に偏向する2枚の上下風向板35が設けられている。2枚の上下風向板35は各々が樹脂材で形成されており、室内機3が運転を停止しているときは、各上下風向板35が回動して吹出口30gを塞ぐことができる形状とされている。各上下風向板35は図示しない回転軸に固定されており、各上下風向板35が上下方向に回動することで吹出口30gから吹き出される空気を上下方向に偏向する。 The air outlet 30g is provided with two upper and lower wind direction plates 35 that deflect the air blown from the air outlet 30g in the vertical direction. Each of the two up-and-down air direction plates 35 is formed of a resin material, and when the indoor unit 3 is not in operation, each of the up-and-down air direction plates 35 can be rotated to close the outlet 30g. It is said that. Each vertical wind direction plate 35 is fixed to a rotating shaft (not shown), and each vertical wind direction plate 35 rotates in the vertical direction to deflect the air blown from the outlet 30g in the vertical direction.
 上下風向板35から見て吹出口30gの上流側(室内機筐体30の内部側)には、吹出口30gから吹き出される空気を左右方向に偏向する複数枚の左右風向板36が設けられている。各々の左右風向板36は樹脂材で形成されて図示しない回転軸に固定されており、各左右風向板36が左右方向に回動することで吹出口30gから吹き出される空気を左右方向に偏向する。 A plurality of left and right wind direction plates 36 that deflect the air blown from the blower outlet 30g in the left-right direction are provided on the upstream side of the blower outlet 30g as viewed from the vertical wind direction plate 35 (inside the indoor unit housing 30). ing. Each of the left and right wind direction plates 36 is formed of a resin material and is fixed to a rotation shaft (not shown). When each left and right wind direction plate 36 rotates in the left and right direction, the air blown from the outlet 30g is deflected in the left and right direction. To do.
 通風路30hにおける室内熱交換器31の上流側(室内熱交換器31と吸込口30fとの間)には、室内機3の内部に取り込んだ空気に含まれる塵埃を除去するためのフィルタ38が配置されている。このフィルタ38は、例えば、樹脂材からなる繊維を網目状に編み込んで形成されている。吸込口30fから室内機3の筐体30の内部に取り込まれた室内空気がフィルタ38を通過する際は、この室内空気に含まれるフィルタ38の網目より大きな塵埃が、フィルタ38に捕捉される。 On the upstream side of the indoor heat exchanger 31 (between the indoor heat exchanger 31 and the suction port 30f) in the ventilation path 30h, a filter 38 for removing dust contained in the air taken into the indoor unit 3 is provided. Has been placed. The filter 38 is formed, for example, by braiding fibers made of a resin material into a mesh shape. When the room air taken into the housing 30 of the indoor unit 3 through the suction port 30f passes through the filter 38, dust larger than the mesh of the filter 38 contained in the room air is captured by the filter 38.
 <空気調和機の構成と冷媒回路>
 次に、室外機2および室内機3を構成する各装置と、室外機2と室内機3が冷媒配管で接続されてなる空気調和機1の冷媒回路について、図2を用いて詳細に説明する。前述したように、室外機2と室内機3は冷媒配管である液管4とガス管5で接続されている。詳細には、室外機2の閉鎖弁25と室内機3の液管接続部33が液管4で接続されている。また、室外機2の閉鎖弁26と室内機3のガス管接続部34がガス管5で接続されている。以上により、空気調和機1の冷媒回路10が構成されている。
<Configuration of air conditioner and refrigerant circuit>
Next, each device constituting the outdoor unit 2 and the indoor unit 3 and the refrigerant circuit of the air conditioner 1 in which the outdoor unit 2 and the indoor unit 3 are connected by refrigerant piping will be described in detail with reference to FIG. . As described above, the outdoor unit 2 and the indoor unit 3 are connected by the liquid pipe 4 and the gas pipe 5 which are refrigerant pipes. Specifically, the shutoff valve 25 of the outdoor unit 2 and the liquid pipe connection portion 33 of the indoor unit 3 are connected by the liquid pipe 4. Further, the shutoff valve 26 of the outdoor unit 2 and the gas pipe connection part 34 of the indoor unit 3 are connected by the gas pipe 5. The refrigerant circuit 10 of the air conditioner 1 is configured as described above.
 <室外機の構成>
 室外機2は、圧縮機21と、四方弁22と、室外熱交換器23と、室外ファン27と、液管4が接続された閉鎖弁25と、ガス管5が接続された閉鎖弁26と、膨張弁24と、室外機制御手段200を備えている。そして、室外ファン27と室外機制御手段200を除くこれら各装置が、以下で詳述する各冷媒配管で相互に接続されて冷媒回路10の一部をなす室外機冷媒回路10aを構成している。
<Configuration of outdoor unit>
The outdoor unit 2 includes a compressor 21, a four-way valve 22, an outdoor heat exchanger 23, an outdoor fan 27, a closing valve 25 to which the liquid pipe 4 is connected, and a closing valve 26 to which the gas pipe 5 is connected. The expansion valve 24 and the outdoor unit control means 200 are provided. And these each apparatus except the outdoor fan 27 and the outdoor unit control means 200 is mutually connected by each refrigerant | coolant piping explained in full detail below, and comprises the outdoor unit refrigerant circuit 10a which makes a part of refrigerant circuit 10. FIG. .
 圧縮機21は、図示しないインバータにより回転数が制御されることで、運転容量を変えることができる容量可変型圧縮機である。圧縮機21の冷媒吐出側は、四方弁22のポートaと吐出管61で接続されている。また、圧縮機21の冷媒吸入側は、四方弁22のポートcと吸入管66で接続されている。 The compressor 21 is a variable capacity compressor that can change the operating capacity by controlling the rotation speed by an inverter (not shown). The refrigerant discharge side of the compressor 21 is connected to the port a of the four-way valve 22 by a discharge pipe 61. The refrigerant suction side of the compressor 21 is connected to the port c of the four-way valve 22 by a suction pipe 66.
 四方弁22は、冷媒の流れる方向を切り換えるための弁であり、a、b、c、dの4つのポートを備えている。ポートaは、上述したように圧縮機21の冷媒吐出側と吐出管61で接続されている。ポートbは、室外熱交換器23の一方の冷媒出入口と冷媒配管62で接続されている。ポートcは、上述したように圧縮機21の冷媒吸入側と吸入管66で接続されている。そして、ポートdは、閉鎖弁26と室外機ガス管64で接続されている。 The four-way valve 22 is a valve for switching the direction in which the refrigerant flows, and has four ports a, b, c, and d. The port a is connected to the refrigerant discharge side of the compressor 21 by the discharge pipe 61 as described above. The port b is connected to one refrigerant inlet / outlet of the outdoor heat exchanger 23 by a refrigerant pipe 62. The port c is connected to the refrigerant suction side of the compressor 21 by the suction pipe 66 as described above. The port d is connected to the shutoff valve 26 and the outdoor unit gas pipe 64.
 室外熱交換器23は、冷媒と、後述する室外ファン27の回転により室外機2の内部に取り込まれた外気を熱交換させるものである。室外熱交換器23の一方の冷媒出入口は、上述したように四方弁22のポートbと冷媒配管62で接続され、他方の冷媒出入口は室外機液管63で閉鎖弁25と接続されている。 The outdoor heat exchanger 23 exchanges heat between the refrigerant and the outside air taken into the outdoor unit 2 by the rotation of the outdoor fan 27 described later. As described above, one refrigerant inlet / outlet of the outdoor heat exchanger 23 is connected to the port b of the four-way valve 22 by the refrigerant pipe 62, and the other refrigerant inlet / outlet is connected to the closing valve 25 by the outdoor unit liquid pipe 63.
 膨張弁24は、例えば電子膨張弁である。膨張弁24は、室内機3で要求される冷房能力や暖房能力に応じてその開度が調整されることで、室内機3に流れる冷媒量を調節する。 The expansion valve 24 is, for example, an electronic expansion valve. The expansion valve 24 adjusts the amount of refrigerant flowing through the indoor unit 3 by adjusting the opening degree of the expansion valve 24 according to the cooling capacity and heating capacity required by the indoor unit 3.
 室外ファン27は樹脂材で形成されており、室外熱交換器23の近傍に配置されている。室外ファン27は、図示しないファンモータによって回転することで室外機2の図示しない吸込口から室外機2の内部へ外気を取り込み、室外熱交換器23において冷媒と熱交換した外気を室外機2の図示しない吹出口から室外機2外部へ放出する。 The outdoor fan 27 is formed of a resin material and is disposed in the vicinity of the outdoor heat exchanger 23. The outdoor fan 27 is rotated by a fan motor (not shown) to take outside air from a suction port (not shown) of the outdoor unit 2 into the outdoor unit 2, and the outdoor air exchanged heat with the refrigerant in the outdoor heat exchanger 23. It discharges from the blower outlet which is not illustrated to the exterior of the outdoor unit 2.
 以上説明した各装置の他に、室外機2には以下に記載する3つのセンサが設けられている。図1(A)に示すように、吐出管61には、圧縮機21から吐出される冷媒の温度を検出する吐出温度センサ71が設けられている。室外熱交換器23の図示しない冷媒パスの略中間部には、室外熱交換器23の温度(以降、室外熱交温度と記載する)を検出する室外熱交温度センサ72が設けられている。そして、室外機2の図示しない吸込口付近には、室外機2の内部に流入する外気の温度、すなわち外気温度を検出する外気温度センサ73が備えられている。 In addition to the devices described above, the outdoor unit 2 is provided with the following three sensors. As shown in FIG. 1A, the discharge pipe 61 is provided with a discharge temperature sensor 71 that detects the temperature of the refrigerant discharged from the compressor 21. An outdoor heat exchanger temperature sensor 72 that detects the temperature of the outdoor heat exchanger 23 (hereinafter referred to as an outdoor heat exchanger temperature) is provided at a substantially intermediate portion of a refrigerant path (not shown) of the outdoor heat exchanger 23. An outdoor air temperature sensor 73 that detects the temperature of the outside air flowing into the outdoor unit 2, that is, the outside air temperature, is provided near the suction port (not shown) of the outdoor unit 2.
 室外機制御手段200は、室外機2の図示しない電装品箱に格納されている制御基板に搭載されている。図2(B)に示すように、室外機制御手段200は、CPU210と、記憶部220と、通信部230と、センサ入力部240とを備えている。 The outdoor unit control means 200 is mounted on a control board stored in an electrical component box (not shown) of the outdoor unit 2. As shown in FIG. 2B, the outdoor unit control means 200 includes a CPU 210, a storage unit 220, a communication unit 230, and a sensor input unit 240.
 記憶部220は、ROMやRAMで構成されており、室外機2の制御プログラムや各種センサからの検出信号に対応した検出値、圧縮機21や室外ファン27の制御状態等を記憶している。通信部230は、室内機3との通信を行うインターフェイスである。センサ入力部240は、室外機2の各種センサでの検出結果を取り込んでCPU210に出力する。 The storage unit 220 includes a ROM and a RAM, and stores detection values corresponding to detection programs from the control program of the outdoor unit 2 and various sensors, control states of the compressor 21 and the outdoor fan 27, and the like. The communication unit 230 is an interface that performs communication with the indoor unit 3. The sensor input unit 240 captures detection results from various sensors of the outdoor unit 2 and outputs them to the CPU 210.
 CPU210は、前述した室外機2の各センサでの検出結果を、センサ入力部240を介して取り込む。また、CPU210は、室内機3から送信される制御信号を、通信部230を介して取り込む。CPU210は、取り込んだ検出結果や制御信号に基づいて、圧縮機21や室外ファン27の駆動制御を行う。また、CPU210は、取り込んだ検出結果や制御信号に基づいて、四方弁22の切り換え制御を行う。さらには、CPU210は、取り込んだ検出結果や制御信号に基づいて、膨張弁24の開度調整を行う。 CPU210 takes in the detection result in each sensor of outdoor unit 2 mentioned above via sensor input part 240. FIG. In addition, the CPU 210 takes in a control signal transmitted from the indoor unit 3 via the communication unit 230. The CPU 210 performs drive control of the compressor 21 and the outdoor fan 27 based on the detection results and control signals taken in. In addition, the CPU 210 performs switching control of the four-way valve 22 based on the detection results and control signals taken in. Furthermore, the CPU 210 adjusts the opening degree of the expansion valve 24 based on the acquired detection result and control signal.
 <室内機の構成>
 室内機3は、前述した室内熱交換器31、室内ファン32、上下風向板35、左右風向板36、および、フィルタ38に加えて、液管4が接続された液管接続部33と、ガス管5が接続されたガス管接続部34と、室内機制御手段300を備えている。そして、室内ファン32、上下風向板35、左右風向板36、フィルタ38、および、室内機制御手段300を除くこれら各装置が、以下で詳述する各冷媒配管で相互に接続されて冷媒回路10の一部をなす室内機冷媒回路10bを構成している。
<Configuration of indoor unit>
In addition to the indoor heat exchanger 31, the indoor fan 32, the up-and-down air direction plate 35, the left and right air direction plate 36, and the filter 38, the indoor unit 3 includes a liquid pipe connection portion 33 to which the liquid pipe 4 is connected, a gas A gas pipe connecting portion 34 to which the pipe 5 is connected and an indoor unit control means 300 are provided. These devices other than the indoor fan 32, the up / down air direction plate 35, the left / right air direction plate 36, the filter 38, and the indoor unit control means 300 are connected to each other through the refrigerant pipes described in detail below, and are connected to the refrigerant circuit 10. The indoor unit refrigerant circuit 10b that constitutes a part of the indoor unit refrigerant circuit 10b is configured.
 室内熱交換器31は、冷媒と室内ファン32の回転により室内機3の吸込口30fから室内機3の内部に取り込まれた室内空気を熱交換させるものであり、一方の冷媒出入口が液管接続部33と室内機液管67で接続され、他方の冷媒出入口がガス管接続部34と室内機ガス管68で接続されている。室内熱交換器31は、室内機3が冷房運転を行う場合は蒸発器として機能し、室内機3が暖房運転を行う場合は凝縮器として機能する。尚、液管接続部33やガス管接続部34では、各冷媒配管が溶接やフレアナット等により接続されている。 The indoor heat exchanger 31 exchanges heat between indoor air taken into the indoor unit 3 through the suction port 30f of the indoor unit 3 by rotation of the refrigerant and the indoor fan 32, and one refrigerant inlet / outlet is connected to the liquid pipe. The other refrigerant inlet / outlet port is connected to the gas pipe connection part 34 and the indoor unit gas pipe 68. The indoor heat exchanger 31 functions as an evaporator when the indoor unit 3 performs a cooling operation, and functions as a condenser when the indoor unit 3 performs a heating operation. In addition, in the liquid pipe connection part 33 and the gas pipe connection part 34, each refrigerant | coolant piping is connected by welding, a flare nut, etc.
 室内ファン32は樹脂材で形成されており、前述したように通風路30hにおける室内熱交換器31の下流側に配置されている。室内ファン31は、図示しないファンモータによって回転することで、室内機3の吸込口30fから室内機3内に室内空気を取り込み、室内熱交換器31において冷媒と熱交換した室内空気を室内機3の吹出口30gから室内へ吹き出す。 The indoor fan 32 is formed of a resin material, and is arranged on the downstream side of the indoor heat exchanger 31 in the ventilation path 30h as described above. The indoor fan 31 is rotated by a fan motor (not shown), thereby taking indoor air into the indoor unit 3 from the suction port 30f of the indoor unit 3, and converting the indoor air heat exchanged with the refrigerant in the indoor heat exchanger 31 to the indoor unit 3. It blows out into the room from 30g of the air outlet.
 以上説明した各装置の他に、室内機3には以下に記載する2つのセンサが設けられている。室内熱交換器31の図示しない冷媒パスの略中間部には、室内熱交換器31の温度(以降、室内熱交温度と記載する)を検出する室内熱交温度センサ74が設けられている。また、図1(B)に示すように、室内機3の吸込口30fとフィルタ38の間には、吸込口30fから室内機3の内部に吸い込む空気の温度、すなわち室内温度を検出する室内温度センサ75が設けられている。 In addition to the devices described above, the indoor unit 3 is provided with two sensors described below. An indoor heat exchange temperature sensor 74 that detects the temperature of the indoor heat exchanger 31 (hereinafter referred to as the indoor heat exchange temperature) is provided at a substantially intermediate portion of the refrigerant path (not shown) of the indoor heat exchanger 31. Further, as shown in FIG. 1B, between the suction port 30f of the indoor unit 3 and the filter 38, the temperature of the air sucked into the interior of the indoor unit 3 from the suction port 30f, that is, the indoor temperature for detecting the indoor temperature. A sensor 75 is provided.
 室内機制御手段300は、室内機3の図示しない電装品箱に格納されている制御基板に搭載されている。図2(B)に示すように、室内機制御手段300は、CPU310と、記憶部320と、通信部330と、センサ入力部340を備えている。 The indoor unit control means 300 is mounted on a control board stored in an electrical component box (not shown) of the indoor unit 3. As shown in FIG. 2B, the indoor unit control means 300 includes a CPU 310, a storage unit 320, a communication unit 330, and a sensor input unit 340.
 記憶部320は、ROMやRAMで構成されており、室内機3の制御プログラムや各種センサからの検出信号に対応した検出値、室内ファン32の制御状態等を記憶している。通信部330は、室外機2の室外機制御手段200との通信を行うためのインターフェイスである。センサ入力部340は、室内機3の室内熱交温度センサ74や室内温度センサ75での検出結果を取り込んでCPU110に出力する。 The storage unit 320 includes a ROM and a RAM, and stores a control program for the indoor unit 3, detection values corresponding to detection signals from various sensors, a control state of the indoor fan 32, and the like. The communication unit 330 is an interface for communicating with the outdoor unit control means 200 of the outdoor unit 2. The sensor input unit 340 takes in the detection results of the indoor heat exchanger temperature sensor 74 and the indoor temperature sensor 75 of the indoor unit 3 and outputs them to the CPU 110.
 CPU310は、前述した室内機3の各センサでの検出結果を、センサ入力部340を介して取り込む。また、CPU310は、使用者が操作する図示しないリモコンから送信される、運転モード(冷房運転/暖房運転)や風量等を含む運転情報信号を、通信部330を介して取り込む。CPU310は、取り込んだ検出結果や運転情報信号に基づいて、室内ファン32や上下風向板35、左右風向板36の駆動制御を行う。 CPU310 takes in the detection result in each sensor of indoor unit 3 mentioned above via sensor input part 340. Further, the CPU 310 takes in an operation information signal including an operation mode (cooling operation / heating operation), an air volume, and the like transmitted from a remote controller (not shown) operated by the user via the communication unit 330. The CPU 310 performs drive control of the indoor fan 32, the up / down air direction plate 35, and the left / right air direction plate 36 based on the detection result and the operation information signal taken in.
 <冷媒回路の動作>
 次に、本実施形態における空気調和機1の空調運転時の冷媒回路10における冷媒の流れや各部の動作について、図2(A)を用いて説明する。尚、以下の説明では、まず室内機3が冷房運転を行う場合について説明し、次に室内機3が暖房運転を行う場合について説明する。尚、図2(A)において、実線矢印は冷房運転時の冷媒の流れを示し、破線矢印は暖房運転時の冷媒の流れを示している。
<Operation of refrigerant circuit>
Next, the flow of the refrigerant and the operation of each part in the refrigerant circuit 10 during the air conditioning operation of the air conditioner 1 in the present embodiment will be described with reference to FIG. In the following description, the case where the indoor unit 3 performs the cooling operation will be described first, and then the case where the indoor unit 3 performs the heating operation will be described. In FIG. 2A, a solid line arrow indicates the refrigerant flow during the cooling operation, and a broken line arrow indicates the refrigerant flow during the heating operation.
 <冷房運転>
 室内機3が冷房運転を行う場合、図2(A)に示すように、四方弁22が実線で示す状態、すなわち、四方弁22のポートaとポートbとが連通するよう、また、ポートcとポートdとが連通するよう、切り換えられる。これにより、冷媒回路10において室外熱交換器23が凝縮器として機能するとともに室内熱交換器31が蒸発器として機能するようになり、冷媒回路10は実線矢印で示す方向に冷媒が循環する冷房サイクルとなる。
<Cooling operation>
When the indoor unit 3 performs a cooling operation, as shown in FIG. 2A, the four-way valve 22 is in a state indicated by a solid line, that is, the port a and the port b of the four-way valve 22 communicate with each other, and the port c And the port d are switched. As a result, the outdoor heat exchanger 23 functions as a condenser and the indoor heat exchanger 31 functions as an evaporator in the refrigerant circuit 10, and the refrigerant circuit 10 has a cooling cycle in which the refrigerant circulates in the direction indicated by the solid line arrow. It becomes.
 上記のような冷媒回路10の状態で、圧縮機21から吐出された高圧の冷媒は、吐出管61を流れて四方弁22に流入し、四方弁22から冷媒配管62を流れて室外熱交換器23に流入する。室外熱交換器23に流入した冷媒は、室外ファン27の回転により室外機2の内部に取り込まれた外気と熱交換を行って凝縮する。室外熱交換器23から室外機液管63に流出した冷媒は、室内機3で使用者により要求される冷房能力に応じた開度とされている膨張弁24を通過する際に減圧され、閉鎖弁25を介して液管4に流入する。 In the state of the refrigerant circuit 10 as described above, the high-pressure refrigerant discharged from the compressor 21 flows through the discharge pipe 61 and flows into the four-way valve 22, and flows from the four-way valve 22 through the refrigerant pipe 62 to the outdoor heat exchanger. 23. The refrigerant flowing into the outdoor heat exchanger 23 is condensed by exchanging heat with the outside air taken into the outdoor unit 2 by the rotation of the outdoor fan 27. The refrigerant that has flowed out of the outdoor heat exchanger 23 into the outdoor unit liquid pipe 63 is reduced in pressure when passing through the expansion valve 24 that has an opening degree corresponding to the cooling capacity required by the user in the indoor unit 3 and is closed. It flows into the liquid pipe 4 through the valve 25.
 液管4を流れて液側接続部33を介して室内機3に流入した冷媒は、室内機液管67を流れて室内熱交換器31に流入し、室内ファン32の回転により吸込口30fから室内機3の通風路30hに取り込まれた室内空気と熱交換を行って蒸発する。このように、室内熱交換器31が蒸発器として機能し、室内熱交換器31で冷媒と熱交換を行った室内空気が吹出口30gから室内に吹き出されることによって、室内機3が設置された室内の冷房が行われる。 The refrigerant flowing through the liquid pipe 4 and flowing into the indoor unit 3 through the liquid side connection portion 33 flows through the indoor unit liquid pipe 67 and flows into the indoor heat exchanger 31, and from the suction port 30 f by the rotation of the indoor fan 32. It evaporates by exchanging heat with the indoor air taken into the ventilation path 30h of the indoor unit 3. Thus, the indoor heat exchanger 31 functions as an evaporator, and the indoor unit 3 is installed when the indoor air that has exchanged heat with the refrigerant in the indoor heat exchanger 31 is blown into the room through the outlet 30g. The room is cooled.
 室内熱交換器31から流出した冷媒は、室内機ガス管68を流れてガス側接続部34を介してガス管5に流入する。ガス管5を流れて閉鎖弁26を介して室外機2に流入した冷媒は、順に室外機ガス管64、四方弁22、吸入管66を流れ、圧縮機21に吸入されて再び圧縮される。 The refrigerant that has flowed out of the indoor heat exchanger 31 flows through the indoor unit gas pipe 68 and flows into the gas pipe 5 through the gas side connection portion 34. The refrigerant flowing through the gas pipe 5 and flowing into the outdoor unit 2 through the closing valve 26 sequentially flows through the outdoor unit gas pipe 64, the four-way valve 22, and the suction pipe 66, and is sucked into the compressor 21 and compressed again.
 <暖房運転>
 室内機3が暖房運転を行う場合、図2(A)に示すように、四方弁22が破線で示す状態、すなわち、四方弁22のポートaとポートdとが連通するよう、また、ポートbとポートcとが連通するよう、切り換えられる。これにより、冷媒回路10において室外熱交換器23が蒸発器として機能するとともに室内熱交換器31が凝縮器として機能するようになり、冷媒回路10は破線矢印で示す方向に冷媒が循環する暖房サイクルとなる。
<Heating operation>
When the indoor unit 3 performs a heating operation, as shown in FIG. 2A, the four-way valve 22 is in a state indicated by a broken line, that is, the port a and the port d of the four-way valve 22 communicate with each other, and the port b And the port c are switched. As a result, the outdoor heat exchanger 23 functions as an evaporator and the indoor heat exchanger 31 functions as a condenser in the refrigerant circuit 10, and the refrigerant circuit 10 has a heating cycle in which the refrigerant circulates in the direction indicated by the dashed arrow. It becomes.
 上記のような冷媒回路10の状態で、圧縮機21から吐出された高圧の冷媒は、吐出管61を流れて四方弁22に流入し、四方弁22から室外機ガス管64を流れて閉鎖弁26を介してガス管5に流入する。ガス管5を流れる冷媒は、ガス管接続部34を介して室内機3に流入する。 In the state of the refrigerant circuit 10 as described above, the high-pressure refrigerant discharged from the compressor 21 flows through the discharge pipe 61 and flows into the four-way valve 22, and flows from the four-way valve 22 through the outdoor unit gas pipe 64 to the closing valve. It flows into the gas pipe 5 through 26. The refrigerant flowing through the gas pipe 5 flows into the indoor unit 3 through the gas pipe connection part 34.
 室内機3に流入した冷媒は、室内機ガス管68を流れて室内熱交換器31に流入し、室内ファン32の回転により吸込口30fから室内機3の通風路30hに取り込まれた室内空気と熱交換を行って凝縮する。このように、室内熱交換器31が凝縮器として機能し、室内熱交換器31で冷媒と熱交換を行った室内空気が吹出口30gから室内に吹き出されることによって、室内機3が設置された室内の暖房が行われる。 The refrigerant flowing into the indoor unit 3 flows through the indoor unit gas pipe 68 and flows into the indoor heat exchanger 31, and the indoor air taken into the ventilation path 30 h of the indoor unit 3 from the suction port 30 f by the rotation of the indoor fan 32. Heat exchange to condense. Thus, the indoor heat exchanger 31 functions as a condenser, and the indoor air exchanged with the refrigerant in the indoor heat exchanger 31 is blown into the room from the outlet 30g, whereby the indoor unit 3 is installed. The room is heated.
 室内熱交換器31から流出した冷媒は室内機液管67を流れ、液管接続部33を介して液管4に流入する。液管4を流れ閉鎖弁25を介して室外機2に流入した冷媒は、室外機液管63を流れて、室内機3で使用者により要求される暖房能力に応じた開度とされている膨張弁24を通過する際に減圧される。 The refrigerant that has flowed out of the indoor heat exchanger 31 flows through the indoor unit liquid pipe 67 and flows into the liquid pipe 4 through the liquid pipe connecting portion 33. The refrigerant flowing through the liquid pipe 4 and flowing into the outdoor unit 2 through the shut-off valve 25 flows through the outdoor unit liquid pipe 63 and has an opening degree corresponding to the heating capacity required by the user in the indoor unit 3. When passing through the expansion valve 24, the pressure is reduced.
 膨張弁24を通過して室外熱交換器23に流入した冷媒は、室外ファン27の回転により室外機2の内部に取り込まれた外気と熱交換を行って蒸発する。室外熱交換器23から冷媒配管62に流出した冷媒は、四方弁22、吸入管66を流れ、圧縮機21に吸入されて再び圧縮される。 The refrigerant that has passed through the expansion valve 24 and has flowed into the outdoor heat exchanger 23 evaporates by exchanging heat with the outside air taken into the outdoor unit 2 by the rotation of the outdoor fan 27. The refrigerant that has flowed out of the outdoor heat exchanger 23 into the refrigerant pipe 62 flows through the four-way valve 22 and the suction pipe 66, is sucked into the compressor 21, and is compressed again.
 <暖房運転時の圧縮機、室外ファン、および、室内ファンの駆動制御>
 次に、暖房運転時の圧縮機21、室外ファン27、および、室内ファン32の駆動制御(以降、暖房運転制御と記載する)について、図3に示すフローチャートを用いて詳細に説明する。図3において、STは処理のステップを表し、これに続く数字はステップ番号を表している。
<Drive control of compressor, outdoor fan, and indoor fan during heating operation>
Next, drive control (hereinafter referred to as heating operation control) of the compressor 21, the outdoor fan 27, and the indoor fan 32 during heating operation will be described in detail with reference to the flowchart shown in FIG. In FIG. 3, ST represents a process step, and the number following this represents a step number.
 尚、前述した室外機制御手段200と室内機制御手段300で、本発明の制御手段が構成される。従って、図3を含むこれ以降の制御や処理の説明の際は、空気調和機1の制御主体としては制御手段を用いて説明し、室外機2や室内機3の個々の装置の制御主体として、適宜室外機制御手段200(のCPU210)や室内機制御手段300(のCPU310)を用いて説明する。 The outdoor unit control means 200 and the indoor unit control means 300 described above constitute the control means of the present invention. Therefore, in the description of the subsequent control and processing including FIG. 3, the control body of the air conditioner 1 will be described using the control means, and the control body of the individual devices of the outdoor unit 2 and the indoor unit 3 will be described. The description will be made using the outdoor unit control means 200 (CPU 210) and the indoor unit control means 300 (CPU 310) as appropriate.
 使用者の指示により暖房運転の開始指示があれば、制御手段は室内温度(以降、室内温度Tiと記載する)を取り込むとともに、設定温度(以降、設定温度Tpと記載する)を読み出す(ST1)。具体的には、室内機制御手段300のCPU310は、室内温度センサ75で検出した室内温度Tiを、センサ入力部340を介して定期的(例えば、30秒毎)に取り込む。また、CPU310は、使用者による図示しないリモコンの操作によって設定されて記憶部320に記憶されていた設定温度Tpを読み出す。 If there is a heating operation start instruction by the user's instruction, the control means takes in the room temperature (hereinafter referred to as the room temperature Ti) and reads out the set temperature (hereinafter referred to as the set temperature Tp) (ST1). . Specifically, the CPU 310 of the indoor unit control means 300 takes in the room temperature Ti detected by the room temperature sensor 75 periodically (for example, every 30 seconds) via the sensor input unit 340. In addition, CPU 310 reads set temperature Tp that has been set by the operation of a remote controller (not shown) by the user and stored in storage unit 320.
 次に、制御手段は、ST1で読み出した設定温度Tpと取り込んだ室内温度Tiの温度差(以降、温度差ΔTと記載する)を算出する(ST2)。具体的には、CPU310が設定温度Tpから室内温度Tiを減じて温度差ΔTを算出する。 Next, the control means calculates the temperature difference between the set temperature Tp read in ST1 and the captured room temperature Ti (hereinafter referred to as temperature difference ΔT) (ST2). Specifically, the CPU 310 calculates the temperature difference ΔT by subtracting the room temperature Ti from the set temperature Tp.
 次に、制御手段は、ST2で算出した温度差ΔTに応じた圧縮機21の回転数(以降、圧縮機回転数Rcと記載する)で圧縮機21を駆動する(ST3)。具体的には、CPU310は、算出した温度差ΔTに応じた圧縮機回転数Rcを、通信部330を介して室外機2に送信する。室内機3から送信された圧縮機回転数Rcを通信部230を介して受信した室外機制御手段200のCPU210は、受信した圧縮機回転数Rcで圧縮機21を駆動する。 Next, the control means drives the compressor 21 with the rotational speed of the compressor 21 (hereinafter referred to as the compressor rotational speed Rc) corresponding to the temperature difference ΔT calculated in ST2 (ST3). Specifically, the CPU 310 transmits the compressor rotation speed Rc corresponding to the calculated temperature difference ΔT to the outdoor unit 2 via the communication unit 330. The CPU 210 of the outdoor unit control means 200 that has received the compressor speed Rc transmitted from the indoor unit 3 via the communication unit 230 drives the compressor 21 with the received compressor speed Rc.
 次に、制御手段は、膨張弁24の開度(以降、膨張弁開度Dと記載する)を、室内機3で使用者により要求される暖房能力に応じた開度とする(ST4)。具体的には、CPU310が、暖房運転時に吐出温度センサ71で検出する圧縮機21の吐出温度が所定の目標温度となるように、膨張弁開度Dを調整する。 Next, the control means sets the opening degree of the expansion valve 24 (hereinafter referred to as the expansion valve opening degree D) to an opening degree corresponding to the heating capacity required by the user in the indoor unit 3 (ST4). Specifically, the CPU 310 adjusts the expansion valve opening D so that the discharge temperature of the compressor 21 detected by the discharge temperature sensor 71 during the heating operation becomes a predetermined target temperature.
 次に、制御手段は、ST3で決定した圧縮機回転数Rcに応じた室外ファン27の回転数(以降、室外ファン回転数Rfoと記載する)で室外ファン27を駆動する(ST5)。具体的には、CPU210が、圧縮機回転数Rcに応じた室外ファン回転数Rfoで室外ファン27を駆動する。 Next, the control means drives the outdoor fan 27 with the rotational speed of the outdoor fan 27 (hereinafter referred to as outdoor fan rotational speed Rfo) corresponding to the compressor rotational speed Rc determined in ST3 (ST5). Specifically, the CPU 210 drives the outdoor fan 27 at the outdoor fan rotational speed Rfo corresponding to the compressor rotational speed Rc.
 次に、制御手段は、使用者により室内機3の吹出口30gから吹き出される空調空気の風量が自動に設定されているか否かを判断する(ST6)。風量が自動に設定されていれば(ST6-Yes)、制御手段は、ST2で算出した温度差ΔTに応じた室内ファン32の回転数(以降、室内ファン回転数Rfiと記載する)で室内ファン32を駆動する(ST7)。また、風量が自動に設定されていなければ(ST6-No)、制御手段は、使用者によって設定された風量に応じた室内ファン回転数Rfiで室内ファン32を駆動する(ST8)。具体的には、CPU310が、温度差ΔTあるいは使用者が設定した風量のいずれかに応じた室内ファン回転数Rfiで室内ファン32を駆動する。 Next, the control means determines whether or not the air volume of the conditioned air blown from the outlet 30g of the indoor unit 3 by the user is automatically set (ST6). If the air volume is set to automatic (ST6-Yes), the control means uses the indoor fan 32 at the rotational speed of the indoor fan 32 (hereinafter referred to as indoor fan rotational speed Rfi) corresponding to the temperature difference ΔT calculated at ST2. 32 is driven (ST7). If the air volume is not set to automatic (ST6-No), the control means drives the indoor fan 32 at the indoor fan rotation speed Rfi according to the air volume set by the user (ST8). Specifically, the CPU 310 drives the indoor fan 32 at the indoor fan rotation speed Rfi according to either the temperature difference ΔT or the air volume set by the user.
 次に、制御手段は、使用者によって設定された風向となるように、上下風向板35および左右風向板36を制御し(ST9)、ST1に処理を戻す。具体的には、使用者の設定が「スイング」であれば、CPU310は、上下風向板35を上下に自動で回動させ、左右風向板36を左右に自動で回動させる。また、使用者の設定が所定の位置であれば、使用者が設定した位置になるように上下風向板35および左右風向板36を回動させる。 Next, the control means controls the vertical and horizontal wind direction plates 35 and 36 so that the wind direction set by the user is obtained (ST9), and returns the process to ST1. Specifically, if the user setting is “swing”, the CPU 310 automatically rotates the vertical wind direction plate 35 up and down and automatically rotates the left and right wind direction plate 36 left and right. If the user's setting is a predetermined position, the up / down wind direction plate 35 and the left / right wind direction plate 36 are rotated so as to be the position set by the user.
 <暖房運転時保護制御>
 次に、暖房運転を行っているときに、圧縮機21の吐出圧力が使用範囲の上限値を超えないようにする暖房運転時保護制御について、図4を用いて説明する。図4において、STは処理のステップを表し、これに続く数字はステップ番号を表している。
<Protection control during heating operation>
Next, protection control during heating operation that prevents the discharge pressure of the compressor 21 from exceeding the upper limit value of the use range during the heating operation will be described with reference to FIG. In FIG. 4, ST represents a process step, and the number following this represents a step number.
 まず、制御手段は、室内熱交換器31の温度(以降、室内熱交温度Tcと記載する)と圧縮機21の吐出温度(以降、吐出温度Tdと記載する)を取り込む(ST11)。具体的には、CPU310は、室内熱交温度センサ74で検出した室内熱交温度Tcを、センサ入力部340を介して定期的(例えば、30秒毎)に取り込む。一方、CPU210は、吐出温度センサ71で検出した吐出温度Tdを、センサ入力部240を介して定期的(例えば、30秒毎)に取り込む。 First, the control means takes in the temperature of the indoor heat exchanger 31 (hereinafter referred to as indoor heat exchange temperature Tc) and the discharge temperature of the compressor 21 (hereinafter referred to as discharge temperature Td) (ST11). Specifically, the CPU 310 periodically captures the indoor heat exchange temperature Tc detected by the indoor heat exchange temperature sensor 74 via the sensor input unit 340 (for example, every 30 seconds). On the other hand, the CPU 210 fetches the discharge temperature Td detected by the discharge temperature sensor 71 periodically (for example, every 30 seconds) via the sensor input unit 240.
 次に、制御手段は、ST11で取り込んだ室内熱交温度Tcが所定の温度(以降、第1閾室内熱交温度Tch1と記載する)以上であるか否かを判断する(ST12)。具体的には、CPU310は、記憶部320に予め記憶されている第1閾室内熱交温度Tch1を読み出して室内熱交温度Tcと比較する。ここで、第1閾室内熱交温度Tch1は、予め試験などを行って求められているものであり、前述した圧縮機21の吐出圧力の使用範囲の上限値に対応する室内熱交温度Tcより所定温度低い温度とされており、例えば55℃である。 Next, the control means determines whether or not the indoor heat exchange temperature Tc captured in ST11 is equal to or higher than a predetermined temperature (hereinafter referred to as a first threshold indoor heat exchange temperature Tch1) (ST12). Specifically, CPU 310 reads out first threshold indoor heat exchange temperature Tch1 stored in advance in storage unit 320 and compares it with indoor heat exchange temperature Tc. Here, the first threshold indoor heat exchange temperature Tch1 is obtained by performing a test or the like in advance, and is based on the indoor heat exchange temperature Tc corresponding to the upper limit value of the use range of the discharge pressure of the compressor 21 described above. The temperature is a predetermined low temperature, for example 55 ° C.
 室内熱交温度Tcが第1閾室内熱交温度Tch1以上であれば(ST12-Yes)、制御手段は、圧縮機21の回転数を、所定の圧縮機レリース間隔時間(以降、圧縮機レリース間隔時間tcと記載する)毎に所定の圧縮機レリース回転数(以降、圧縮機レリース回転数Rcrと記載する)だけ低下させる(ST16)。具体的には、CPU310が、室内熱交温度Tcが第1閾室内熱交温度Tch1以上であると判断した旨の信号を、通信部330を介して室外機2に送信し、この信号を通信部230を介して受信したCPU210が、現在の圧縮機回転数Rcから圧縮機レリース間隔時間tc毎に圧縮機レリース回転数Rcrだけ低下させた回転数となるように、圧縮機21を制御する。ここで、圧縮機レリース間隔時間tcおよび圧縮機レリース回転数Rcrは、それぞれが予め試験などを行って室内熱交温度Tcを低下させる効果が確認されている値であり、例えば、圧縮機レリース間隔時間tcは60秒、圧縮機レリース回転数Rcrは2rpsである。 If the indoor heat exchange temperature Tc is equal to or higher than the first threshold indoor heat exchange temperature Tch1 (ST12-Yes), the control means sets the rotation speed of the compressor 21 to a predetermined compressor release interval time (hereinafter referred to as compressor release interval). Every time (denoted as time tc), the predetermined compressor release rotational speed (hereinafter referred to as compressor release rotational speed Rcr) is decreased (ST16). Specifically, the CPU 310 transmits a signal indicating that the indoor heat exchange temperature Tc is equal to or higher than the first threshold indoor heat exchange temperature Tch1 to the outdoor unit 2 via the communication unit 330, and communicates this signal. The CPU 210 received via the unit 230 controls the compressor 21 so that the rotation speed is reduced by the compressor release rotation speed Rcr at each compressor release interval time tc from the current compressor rotation speed Rc. Here, the compressor release interval time tc and the compressor release rotation speed Rcr are values in which the effect of reducing the indoor heat exchange temperature Tc by performing a test or the like in advance is confirmed, for example, the compressor release interval The time tc is 60 seconds, and the compressor release rotational speed Rcr is 2 rps.
 ST16の処理を終えた制御手段は、室内熱交温度Tcを取り込み(ST17)、取り込んだ室内熱交温度Tcが第1閾室内熱交温度Tch1以上であるか否かを判断する(ST18)。具体的には、CPU310が室内熱交温度Tcを取り込み、取り込んだ室内熱交温度Tcが第1閾室内熱交温度Tch1以上であるか否かを判断する。 The control means that has finished the processing of ST16 takes in the indoor heat exchange temperature Tc (ST17), and determines whether the taken-in indoor heat exchange temperature Tc is equal to or higher than the first threshold indoor heat exchange temperature Tch1 (ST18). Specifically, the CPU 310 takes in the indoor heat exchange temperature Tc, and determines whether or not the taken in indoor heat exchange temperature Tc is equal to or higher than the first threshold indoor heat exchange temperature Tch1.
 取り込んだ室内熱交温度Tcが第1閾室内熱交温度Tch1以上でなければ(ST18-No)、制御手段は、ST11に処理を戻す。取り込んだ室内熱交温度Tcが第1閾室内熱交温度Tch1以上であれば(ST18-Yes)、制御手段は、暖房運転を停止して(ST19)、暖房運転時保護制御を終了する。具体的には、CPU310は、取り込んだ室内熱交温度Tcが第1閾室内熱交温度Tch1以上であれば、室内ファン32を停止させるとともに、取り込んだ室内熱交温度Tcが第1閾室内熱交温度Tch1以上となったことを示す信号を、通信部330を介して室外機2に送信する。この信号を通信部230を介して受信したCPU210は、圧縮機21と室外ファン27を停止させる。 If the captured indoor heat exchange temperature Tc is not equal to or higher than the first threshold indoor heat exchange temperature Tch1 (ST18-No), the control unit returns the process to ST11. If the captured indoor heat exchange temperature Tc is equal to or higher than the first threshold indoor heat exchange temperature Tch1 (ST18-Yes), the control means stops the heating operation (ST19) and ends the heating operation protection control. Specifically, if the captured indoor heat exchange temperature Tc is equal to or higher than the first threshold indoor heat exchange temperature Tch1, the CPU 310 stops the indoor fan 32 and the captured indoor heat exchange temperature Tc is equal to the first threshold indoor heat exchange temperature Tc1. A signal indicating that the temperature is equal to or higher than the alternating temperature Tch1 is transmitted to the outdoor unit 2 via the communication unit 330. CPU210 which received this signal via the communication part 230 stops the compressor 21 and the outdoor fan 27. FIG.
 ST12において、室内熱交温度Tcが第1閾室内熱交温度Tch1以上でなければ(ST12-No)、制御手段は、ST11で検出した吐出温度Tdが、所定の第1閾吐出温度(以降、第1閾吐出温度Tdh1と記載する)以上、第1閾吐出温度Tdh1より高い所定の第2閾吐出温度(以降、第2閾吐出温度Tdh2と記載する)未満であるか否かを判断する(ST13)。具体的には、CPU210が、吐出温度センサ71で検出した吐出温度Tdを、センサ入力部240を介して定期的(例えば、30秒毎)に取り込み、取り込んだ吐出温度Tdが記憶部220に記憶されている第1閾吐出温度Tdh1以上第2閾吐出温度Tdh2未満であるか否かを判断する。 In ST12, if the indoor heat exchange temperature Tc is not equal to or higher than the first threshold indoor heat exchange temperature Tch1 (ST12-No), the control means detects that the discharge temperature Td detected in ST11 is a predetermined first threshold discharge temperature (hereinafter referred to as “first threshold discharge temperature”). It is determined whether the temperature is lower than a predetermined second threshold discharge temperature (hereinafter referred to as a second threshold discharge temperature Tdh2) higher than the first threshold discharge temperature Tdh1 (hereinafter referred to as a first threshold discharge temperature Tdh1). ST13). Specifically, the CPU 210 periodically captures the discharge temperature Td detected by the discharge temperature sensor 71 via the sensor input unit 240 (for example, every 30 seconds), and stores the captured discharge temperature Td in the storage unit 220. It is determined whether or not the first threshold discharge temperature Tdh1 or higher is lower than the second threshold discharge temperature Tdh2.
 ここで、第1閾吐出温度Tdh1および第2閾吐出温度Tdh2は、予め試験などを行って求められて記憶部220に記憶されているものであり、前述した圧縮機21の吐出圧力の使用範囲の上限値に対応する吐出温度Tdより所定温度低い温度とされており、例えば、第1閾吐出温度Tdh1が105℃、第2閾吐出温度Tdh2が115℃である。 Here, the first threshold discharge temperature Tdh1 and the second threshold discharge temperature Tdh2 are obtained by performing a test or the like in advance and stored in the storage unit 220, and the use range of the discharge pressure of the compressor 21 described above. For example, the first threshold discharge temperature Tdh1 is 105 ° C. and the second threshold discharge temperature Tdh2 is 115 ° C.
 取り込んだ吐出温度Tdが第1閾吐出温度Tdh1以上第2閾吐出温度Tdh2未満であれば(ST13-Yes)、制御手段は、圧縮機21の回転数を、圧縮機レリース間隔時間tc毎に圧縮機レリース回転数Rcrずつ低下させて(ST15)、ST11に処理を戻す。尚、ST15の処理は前述したST16の処理と同じ内容であるため、詳細な説明は省略する。また、ST15やST16の処理において、圧縮機回転数Rcを圧縮機レリース回転数Rcrずつ低下させたことによって、圧縮機回転数Rcが使用範囲の下限回転数まで低下した場合は、次にST15やST16の処理を行う際には圧縮機回転数Rcを下限回転数に維持する。 If the taken-in discharge temperature Td is equal to or higher than the first threshold discharge temperature Tdh1 and lower than the second threshold discharge temperature Tdh2 (ST13-Yes), the control means compresses the rotation speed of the compressor 21 at every compressor release interval time tc. The machine release rotation speed Rcr is decreased (ST15), and the process returns to ST11. Since the process of ST15 has the same contents as the process of ST16 described above, detailed description thereof is omitted. Further, in the processing of ST15 and ST16, if the compressor rotational speed Rc is reduced to the lower limit rotational speed of the use range by reducing the compressor rotational speed Rc by the compressor release rotational speed Rcr, then ST15 or ST15 When performing the process of ST16, the compressor speed Rc is maintained at the lower limit speed.
 ST13において、取り込んだ吐出温度Tdが第1閾吐出温度Tdh1以上第2閾吐出温度Tdh2未満でなければ(ST13-Yes)、制御手段は、取り込んだ吐出温度Tdが第2閾吐出温度Tdh2以上であるか否かを判断する(ST14)。具体的には、CPU210が、取り込んだ吐出温度Tdが第2閾吐出温度Tdh2以上であるか否かを判断する。 In ST13, if the captured discharge temperature Td is not equal to or higher than the first threshold discharge temperature Tdh1 and lower than the second threshold discharge temperature Tdh2 (ST13-Yes), the control unit determines that the captured discharge temperature Td is equal to or higher than the second threshold discharge temperature Tdh2. It is determined whether or not there is (ST14). Specifically, the CPU 210 determines whether or not the fetched discharge temperature Td is equal to or higher than the second threshold discharge temperature Tdh2.
 取り込んだ吐出温度Tdが第2閾吐出温度Tdh2以上であれば(ST14-Yes)、制御手段は、ST19に処理を進める。取り込んだ吐出温度Tdが第2閾吐出温度Tdh2以上でなければ(ST14-Yes)、つまり、取り込んだ吐出温度Tdが第1閾吐出温度Tdh1未満であれば、制御手段は、ST11に処理を戻す。 If the fetched discharge temperature Td is equal to or higher than the second threshold discharge temperature Tdh2 (ST14-Yes), the control means advances the process to ST19. If the taken discharge temperature Td is not equal to or higher than the second threshold discharge temperature Tdh2 (ST14-Yes), that is, if the taken discharge temperature Td is lower than the first threshold discharge temperature Tdh1, the control unit returns the process to ST11. .
 <室内熱交加熱運転について>
 次に、図5乃至図11を用いて、本発明の室内熱交加熱運転について説明する。ここで、室内熱交加熱運転とは、空気調和機1の冷媒回路10を暖房運転時と同じ状態とし、室内熱交換器31の温度を暖房運転時の温度(40℃程度)より高くすることで、カビや細菌を殺して数を減少させることを目的に行うものである。尚、本実施形態では、室内機3を操作する図示しないリモコンに、室内熱交加熱運転の開始を指示するボタンが設けられており、使用者がこのボタンを操作すれば室内熱交加熱運転が実行されるものとするが、冷房運転や除湿運転の終了時に自動的に室内熱交加熱運転が実行されてもよい。また、室内熱交加熱運転は、室内機3に人検知センサを備え、使用者が部屋にいないことを人検知センサで検知したときに実行される、というように、空気調和機1で最適なタイミングを判断して室内熱交加熱運転を行ってもよい。
<About indoor heat exchanger heating operation>
Next, the indoor heat exchanger heating operation of the present invention will be described with reference to FIGS. Here, the indoor heat exchange heating operation means that the refrigerant circuit 10 of the air conditioner 1 is in the same state as in the heating operation, and the temperature of the indoor heat exchanger 31 is higher than the temperature (about 40 ° C.) during the heating operation. The purpose is to kill mold and bacteria and reduce the number. In the present embodiment, a remote controller (not shown) for operating the indoor unit 3 is provided with a button for instructing the start of the indoor heat exchanger heating operation. When the user operates this button, the indoor heat exchanger heating operation is performed. The indoor heat exchange heating operation may be automatically executed at the end of the cooling operation or the dehumidifying operation. The indoor heat exchanger heating operation is optimal for the air conditioner 1 such that the indoor unit 3 includes a human detection sensor and is detected when the human detection sensor detects that the user is not in the room. The indoor heat exchange heating operation may be performed by judging the timing.
 出願人は実験を行うことによって、上述した室内熱交加熱運転を実施する際に、室内熱交温度Tcを55℃以上に維持する状態を10分間継続させることによって、カビや細菌の数を大幅に減少させることができることを見出した。以下、図5を用いて、得られた知見について説明する。 The applicant conducted an experiment to greatly increase the number of molds and bacteria by maintaining the indoor heat exchange temperature Tc at 55 ° C. or higher for 10 minutes when performing the above-described indoor heat exchange heating operation. Found that can be reduced. Hereinafter, the obtained knowledge will be described with reference to FIG.
 図5に示すグラフは、室内熱交換器31に結露水が存在する状態で室内熱交温度Tcを一定の温度に維持したときの、カビや細菌の数の時間変化を表したものである。図5(A)は、黒っぽく見えるカビ(クロカビ)の一種であるクラドスポリスム(以降、「カビ」と記載する)についてのグラフである。図5(A)のグラフの横軸は、室内熱交温度Tcを40℃、45℃、および、50℃に維持する時間である加熱時間(単位:分)であり、縦軸は加熱時間が0分(加熱前)のときのカビの数(カビのコロニー数)を100としたカビの残存率(図5(A)ではカビ残存率。単位:%)である。 The graph shown in FIG. 5 represents changes over time in the number of molds and bacteria when the indoor heat exchange temperature Tc is maintained at a constant temperature in the presence of condensed water in the indoor heat exchanger 31. FIG. 5A is a graph of Cladopolis (hereinafter referred to as “mold”), which is a kind of mold (black mold) that looks dark. The horizontal axis of the graph in FIG. 5A is the heating time (unit: minutes) that is the time for maintaining the indoor heat exchange temperature Tc at 40 ° C., 45 ° C., and 50 ° C., and the vertical axis is the heating time. This is the mold residual rate (mold residual rate in FIG. 5A. Unit:%) with the number of molds (the number of mold colonies) at 0 minutes (before heating) as 100.
 図5(A)を見ると、室内熱交温度Tcを40℃にした場合は、加熱時間が10分となってもほとんどカビの数は変わらず、10分経過後のカビ残存率がほぼ100%である。これに対し、室内熱交温度Tcを45℃あるいは50℃にした場合は、加熱時間が5分となった時点でいずれの室内熱交温度Tcでもカビ残存率が10%より小さくなる。特に、室内熱交温度Tcを50℃にした場合は、加熱時間が5分となった時点でのカビ残存率が1%未満となり、短時間でカビの数を大幅に減少している。 Referring to FIG. 5A, when the indoor heat exchange temperature Tc is 40 ° C., the number of molds hardly changes even when the heating time is 10 minutes, and the mold residual rate after 10 minutes has passed is almost 100. %. On the other hand, when the indoor heat exchange temperature Tc is set to 45 ° C. or 50 ° C., the mold residual rate becomes smaller than 10% at any indoor heat exchange temperature Tc when the heating time becomes 5 minutes. In particular, when the indoor heat exchange temperature Tc is set to 50 ° C., the mold residual rate when the heating time is 5 minutes is less than 1%, and the number of molds is greatly reduced in a short time.
 一方、図5(B)は、細菌の一種である大腸菌についてのグラフである。図5(B)のグラフの横軸は、室内熱交温度Tcを40℃、45℃、50℃、および、55℃に維持する時間である加熱時間(単位:分)であり、縦軸は加熱時間が0分(加熱前)のときの大腸菌の数を100とした大腸菌の残存率(図5(B)では細菌残存率。単位:%)である。 On the other hand, FIG. 5B is a graph for E. coli which is a kind of bacteria. The horizontal axis of the graph of FIG. 5B is the heating time (unit: minutes) that is the time for maintaining the indoor heat exchange temperature Tc at 40 ° C., 45 ° C., 50 ° C., and 55 ° C. The vertical axis is E. coli survival rate with the number of E. coli at 100 minutes when the heating time is 0 minutes (before heating) (bacterial survival rate in FIG. 5B, unit:%).
 図5(B)を見ると、室内熱交温度Tcが50℃以下の場合は、加熱時間が10分となっても細菌残存率が50%以下とならず、細菌の数を顕著に減らせているとはいえない。これに対し、室内熱交温度Tcを55℃にした場合は、加熱時間が4分となった時点で細菌残存率が10%より小さくなり、加熱時間が5分となった時点では細菌残存率がほぼ1%となり、さらに加熱時間を10分まで延ばせば、細菌残存率が1%未満となっている。つまり、室内熱交温度Tcを55℃に10分間維持することで、細菌の数を大幅に減らすことができている。 As shown in FIG. 5B, when the indoor heat exchange temperature Tc is 50 ° C. or less, the bacteria remaining rate does not become 50% or less even when the heating time is 10 minutes, and the number of bacteria can be significantly reduced. I can't say. On the other hand, when the indoor heat exchange temperature Tc is 55 ° C., the bacterial survival rate becomes less than 10% when the heating time becomes 4 minutes, and the bacterial survival rate when the heating time becomes 5 minutes. If the heating time is further extended to 10 minutes, the bacterial residual rate is less than 1%. That is, the number of bacteria can be greatly reduced by maintaining the indoor heat exchange temperature Tc at 55 ° C. for 10 minutes.
 以上説明した図5の各グラフより、室内熱交換器31に存在するカビや細菌の残存率を大幅に減少させるには、室内熱交換器31に結露水が存在する状態、例えば、空気調和機1が冷房運転を行っているときに室内熱交換器31で発生した結露水が冷房運転終了後に残留している状態で、室内熱交温度Tcを55℃以上とし、かつ、この状態を10分間継続させることが好ましい。これは、結露水によりカビや細菌の表面全体が覆われていることにより、結露水からカビや細菌に作用する熱量が、結露水がなく室内熱交換器31の表面のみからカビや細菌に作用する熱量と比べて多くなることに起因する。 From the graphs of FIG. 5 described above, in order to significantly reduce the residual rate of mold and bacteria present in the indoor heat exchanger 31, a state in which condensed water exists in the indoor heat exchanger 31, for example, an air conditioner In the state where the dew condensation water generated in the indoor heat exchanger 31 when the air cooling operation 1 is in the cooling operation remains after the cooling operation is completed, the indoor heat exchange temperature Tc is set to 55 ° C. or more, and this state is maintained for 10 minutes. It is preferable to continue. This is because the entire surface of mold and bacteria is covered with condensed water, so that the amount of heat acting on mold and bacteria from condensed water acts on mold and bacteria only from the surface of the indoor heat exchanger 31 without condensed water. This is due to the fact that the amount of heat increases.
 また、空気調和機1を冷房運転したときに室内熱交換器31で発生する結露水は、冷房運転の終了後に室内ファン32を駆動して室内熱交換器31に空気を通すことで結露水を蒸発させる乾燥運転を行っても、室内熱交換器31におけるV字形状の折れ曲がり部30nやドレンパン30m付近の空気が通りにくい箇所は乾燥しきらない。このように、結露水が乾燥しきらずに長時間滞留する箇所であっても、本実施形態の室内熱交加熱運転を行えば、上記のような空気が通りにくい箇所に滞留する結露水が55℃以上となるので、これらの箇所で繁殖しているカビや細菌残存率を大幅に減少させることができる。 Further, the dew condensation water generated in the indoor heat exchanger 31 when the air conditioner 1 is cooled is driven by driving the indoor fan 32 and passing the air through the indoor heat exchanger 31 after the cooling operation is completed. Even if the drying operation to evaporate is performed, the V-shaped bent portion 30n in the indoor heat exchanger 31 and the portion where the air near the drain pan 30m is difficult to pass through cannot be completely dried. Thus, even if the condensed water stays for a long time without being completely dried, if the indoor heat exchange heating operation of the present embodiment is performed, the condensed water staying in a place where it is difficult for the air to pass as described above. Since the temperature is higher than or equal to ° C., it is possible to significantly reduce the mold and bacteria remaining in these places.
 <室内ファン制御テーブルと室外ファン制御テーブル>
 次に、室内熱交加熱運転を行う際に使用する、室内熱交加熱運転での室内ファン32の制御と室外ファン27の制御に使用するテーブルについて、図6を用いて説明する。
<Indoor fan control table and outdoor fan control table>
Next, a table used for controlling the indoor fan 32 and controlling the outdoor fan 27 in the indoor heat exchange operation, which is used when performing the indoor heat exchange operation, will be described with reference to FIG.
 <室内ファン制御テーブル>
 まず、図6(A)に示す室内ファン制御テーブル400について説明する。この室内ファン制御テーブル400は、予め試験などを行って求められて、室内機制御手段300の記憶部320に記憶されているものである。室内ファン制御テーブル400は、室内熱交加熱運転時に室内熱交換器31が凝縮器として機能しているときに、室内ファン制御テーブル400に基づいて室内ファン32を制御することで、室内熱交温度Tcを55℃~57℃の範囲に維持できることが判明しているものである。
<Indoor fan control table>
First, the indoor fan control table 400 shown in FIG. 6A will be described. The indoor fan control table 400 is obtained by performing a test or the like in advance and is stored in the storage unit 320 of the indoor unit control means 300. The indoor fan control table 400 controls the indoor fan 32 on the basis of the indoor fan control table 400 when the indoor heat exchanger 31 functions as a condenser during the indoor heat exchange operation. It has been found that Tc can be maintained in the range of 55 ° C to 57 ° C.
 室内ファン制御テーブル400では、室内熱交温度Tc(単位:℃)と、室内熱交温度Tcの上昇時/維持時/下降時のそれぞれに応じて、室内ファン回転数Rfi(単位:rpm)が定められている。ここで、室内熱交温度Tcの上昇時(図6(A)では「Tc上昇時」)とは、時間をおいて検出した2つの室内熱交温度Tcを用い、先に検出した室内熱交温度Tcより後に検出した室内熱交温度Tcが高い場合である。また、室内熱交温度Tcの維持時(図6(A)では「Tc維持時」)とは、先に検出した室内熱交温度Tcと後に検出した室内熱交温度Tcが同じ場合である。また、室内熱交温度Tcの下降時(図6(A)では「Tc下降時」)とは、時間をおいて検出した2つの室内熱交温度Tcを用い、先に検出した室内熱交温度Tcより後に検出した室内熱交温度Tcが低い場合である。 In the indoor fan control table 400, the indoor fan rotation speed Rfi (unit: rpm) is set according to each of the indoor heat exchange temperature Tc (unit: ° C.) and when the indoor heat exchange temperature Tc is rising / maintaining / decreasing. It has been established. Here, when the indoor heat exchange temperature Tc rises (“Tc rise” in FIG. 6A), two indoor heat exchange temperatures Tc detected at a time are used to detect the indoor heat exchange detected earlier. This is a case where the indoor heat exchange temperature Tc detected after the temperature Tc is high. Further, when the indoor heat exchange temperature Tc is maintained (in FIG. 6A, “when Tc is maintained”), the previously detected indoor heat exchange temperature Tc and the later detected indoor heat exchange temperature Tc are the same. In addition, when the indoor heat exchange temperature Tc is lowered (in FIG. 6A, “when Tc is lowered”), the two indoor heat exchange temperatures Tc detected at a time are used to detect the indoor heat exchange temperature previously detected. This is a case where the indoor heat exchange temperature Tc detected after Tc is low.
 具体的には、「Tc上昇時」の室内ファン回転数Rfiは、室内熱交温度Tcが57℃以上である場合は、現在の室内ファン回転数Rfiに70rpmを加算した回転数とされている。室内熱交温度Tcが55℃以上57℃未満である場合は、現在の室内ファン回転数Rfiを変化させないとされている。室内熱交温度Tcが53℃以上55℃未満である場合、および、室内熱交温度Tcが53℃未満である場合は、現在の室内ファン回転数Rfiから10rpmを減算した回転数とされている。 Specifically, the indoor fan rotation speed Rfi when “Tc rises” is the rotation speed obtained by adding 70 rpm to the current indoor fan rotation speed Rfi when the indoor heat exchange temperature Tc is 57 ° C. or higher. . When the indoor heat exchange temperature Tc is 55 ° C. or higher and lower than 57 ° C., the current indoor fan rotation speed Rfi is not changed. When the indoor heat exchange temperature Tc is not less than 53 ° C. and less than 55 ° C., and when the indoor heat exchange temperature Tc is less than 53 ° C., the rotation speed is obtained by subtracting 10 rpm from the current indoor fan rotation speed Rfi. .
 室内熱交温度Tcが上昇しているときに室内熱交温度Tcが53℃未満である場合、あるいは、室内熱交温度Tcが53℃以上55℃未満である場合は、室内熱交温度Tcを検出する度(例えば、30秒毎)に、室内ファン回転数Rfiを10rpmずつ低くする。これにより、室内熱交換器31に流れる空気量が少なくなって、室内熱交温度Tcが早く55℃以上となる。 When the indoor heat exchanger temperature Tc is lower than 53 ° C. when the indoor heat exchanger temperature Tc is increased, or when the indoor heat exchanger temperature Tc is not lower than 53 ° C. and lower than 55 ° C., the indoor heat exchanger temperature Tc is set to Each time it is detected (for example, every 30 seconds), the indoor fan rotation speed Rfi is decreased by 10 rpm. Thereby, the air quantity which flows into the indoor heat exchanger 31 decreases, and the indoor heat exchange temperature Tc quickly reaches 55 ° C. or higher.
 室内熱交温度Tcが上昇しているときに室内熱交温度Tcが55℃以上57℃未満である場合は、室内ファン回転数Rfiを変化させない。これにより、室内熱交換器31に流れる空気量が変化せず、室内熱交温度Tcが55℃以上57℃未満の範囲に維持される。そして、室内熱交温度Tcが57℃以上のときは、室内ファン回転数Rfiを70rpmずつ高くして室内熱交換器31に流れる空気量を多くすることで、室内熱交温度Tcが59℃以上とならないようにしている。 If the indoor heat exchange temperature Tc is 55 ° C. or more and less than 57 ° C. when the indoor heat exchange temperature Tc is rising, the indoor fan rotation speed Rfi is not changed. Thereby, the air quantity which flows into the indoor heat exchanger 31 does not change, and the indoor heat exchange temperature Tc is maintained in a range of 55 ° C. or more and less than 57 ° C. When the indoor heat exchange temperature Tc is 57 ° C. or more, the indoor heat exchange temperature Tc is 59 ° C. or more by increasing the indoor fan rotation speed Rfi by 70 rpm and increasing the amount of air flowing to the indoor heat exchanger 31. I am trying not to become.
 次に、「Tc維持時」の室内ファン回転数Rfiは、室内熱交温度Tcが57℃以上である場合は、現在の室内ファン回転数Rfiに50rpmを加算した回転数とされている。室内熱交温度Tcが55℃以上57℃未満である場合は、現在の室内ファン回転数Rfiを変化させないとされている。室内熱交温度Tcが53℃以上55℃未満である場合は、現在の室内ファン回転数Rfiから30rpmを減算した回転数とされている。室内熱交温度Tcが53℃未満である場合は、現在の室内ファン回転数Rfiから40rpmを減算した回転数とされている。 Next, the indoor fan rotation speed Rfi when “Tc is maintained” is the rotation speed obtained by adding 50 rpm to the current indoor fan rotation speed Rfi when the indoor heat exchange temperature Tc is 57 ° C. or higher. When the indoor heat exchange temperature Tc is 55 ° C. or higher and lower than 57 ° C., the current indoor fan rotation speed Rfi is not changed. When the indoor heat exchange temperature Tc is not less than 53 ° C. and less than 55 ° C., the rotation speed is obtained by subtracting 30 rpm from the current indoor fan rotation speed Rfi. When the indoor heat exchange temperature Tc is less than 53 ° C., the rotation speed is obtained by subtracting 40 rpm from the current indoor fan rotation speed Rfi.
 室内熱交温度Tcに変化がないときに室内熱交温度Tcが53℃未満である場合は、室内熱交温度Tcを検出する度(例えば、30秒毎)に、室内ファン回転数Rfiを40rpmずつ低くする。また、室内熱交温度Tcが53℃以上55℃未満である場合は、室内熱交温度Tcを検出する度に、室内ファン回転数Rfiを30rpmずつ低くする。これにより、室内熱交換器31に流れる空気量が少なくなって、室内熱交温度Tcが早く55℃以上となる。尚、「Tc維持時」は、「Tc上昇時」と比べて室内熱交温度Tcが上がりづらい状態と考えられるので、同じ室内熱交温度Tcであっても「Tc上昇時」より室内ファン回転数Rfiが低くなるように、室内ファン回転数Rfiをから減じる回転数を高くしている。 If the indoor heat exchange temperature Tc is less than 53 ° C. when there is no change in the indoor heat exchange temperature Tc, the indoor fan rotation speed Rfi is set to 40 rpm each time the indoor heat exchange temperature Tc is detected (for example, every 30 seconds). Lower it step by step. When the indoor heat exchange temperature Tc is not less than 53 ° C. and less than 55 ° C., the indoor fan rotation speed Rfi is decreased by 30 rpm each time the indoor heat exchange temperature Tc is detected. Thereby, the air quantity which flows into the indoor heat exchanger 31 decreases, and the indoor heat exchange temperature Tc quickly reaches 55 ° C. or higher. In addition, since it is considered that the indoor heat exchange temperature Tc is less likely to increase when “Tc is maintained” than when “Tc is increased”, the indoor fan rotation is greater than when “Tc is increased” even at the same indoor heat exchange temperature Tc. The rotational speed at which the indoor fan rotational speed Rfi is reduced is increased so that the number Rfi is lowered.
 室内熱交温度Tcに変化がないときに室内熱交温度Tcが55℃以上57℃未満である場合は、室内ファン回転数Rfiを変化させない。これにより、室内熱交換器31に流れる空気量が変化せず、室内熱交温度Tcが55℃以上57℃未満の範囲に維持される。そして、室内熱交温度Tcが57℃以上のときは、室内ファン回転数Rfiを50rpmずつ高くして室内熱交換器31に流れる空気量を多くすることで、室内熱交温度Tcが59℃以上とならないようにしている。尚、「Tc維持時」は、「Tc上昇時」と比べて室内熱交温度Tcが上がりづらい状態と考えられるので、同じ室内熱交温度Tcであっても「Tc上昇時」より室内ファン回転数Rfiが低くなるように、室内ファン回転数Rfiに加える回転数を低くしている。 If the indoor heat exchange temperature Tc is 55 ° C. or more and less than 57 ° C. when the indoor heat exchange temperature Tc is not changed, the indoor fan rotation speed Rfi is not changed. Thereby, the air quantity which flows into the indoor heat exchanger 31 does not change, and the indoor heat exchange temperature Tc is maintained in a range of 55 ° C. or more and less than 57 ° C. When the indoor heat exchange temperature Tc is 57 ° C. or more, the indoor heat exchange temperature Tc is 59 ° C. or more by increasing the indoor fan rotation speed Rfi by 50 rpm and increasing the amount of air flowing to the indoor heat exchanger 31. I am trying not to become. In addition, since it is considered that the indoor heat exchange temperature Tc is less likely to increase when “Tc is maintained” than when “Tc is increased”, the indoor fan rotation is greater than when “Tc is increased” even at the same indoor heat exchange temperature Tc. The rotational speed applied to the indoor fan rotational speed Rfi is lowered so that the number Rfi is lowered.
 そして、「Tc下降時」の室内ファン回転数Rfiは、室内熱交温度Tcが57℃以上である場合、および、室内熱交温度Tcが55℃以上57℃未満である場合は、現在の室内ファン回転数Rfiを変化させないとされている。室内熱交温度Tcが53℃以上55℃未満である場合、および、室内熱交温度Tcが53℃未満である場合は、現在の室内ファン回転数Rfiから40rpmを減算した回転数とされている。 When the indoor heat exchange temperature Tc is 57 ° C. or more and when the indoor heat exchange temperature Tc is 55 ° C. or more and less than 57 ° C., The fan rotation speed Rfi is not changed. When the indoor heat exchange temperature Tc is not less than 53 ° C. and less than 55 ° C. and when the indoor heat exchange temperature Tc is less than 53 ° C., the rotation speed is obtained by subtracting 40 rpm from the current indoor fan rotation speed Rfi. .
 室内熱交温度Tcが下降しているときに室内熱交温度Tcが53℃未満である場合、あるいは、室内熱交温度Tcが53℃以上55℃未満である場合は、室内熱交温度Tcを検出する度(例えば、30秒毎)に、室内ファン回転数Rfiを40rpmずつ低くして室内熱交換器31に流れる空気量を少なくする。これにより、室内熱交換器31に流れる空気量を少なくなって、室内熱交温度Tcが早く55℃以上となるようにする。「Tc下降時」は室内熱交温度Tcが下降している状態なので、同じ室内熱交温度Tcであっても「Tc維持時」よりさらに室内ファン回転数Rfiが低くなるように、室内ファン回転数Rfiから減じる回転数を高くしている。 When the indoor heat exchanger temperature Tc is lower than 53 ° C. when the indoor heat exchanger temperature Tc is decreasing, or when the indoor heat exchanger temperature Tc is not lower than 53 ° C. and lower than 55 ° C., the indoor heat exchanger temperature Tc is Each time it is detected (for example, every 30 seconds), the indoor fan rotation speed Rfi is decreased by 40 rpm to decrease the amount of air flowing through the indoor heat exchanger 31. As a result, the amount of air flowing through the indoor heat exchanger 31 is reduced so that the indoor heat exchange temperature Tc quickly reaches 55 ° C. or higher. Since the indoor heat exchange temperature Tc is decreasing when “Tc is falling”, the indoor fan rotation is performed so that the indoor fan rotation speed Rfi is lower than that when “Tc is maintained” even when the indoor heat exchange temperature Tc is the same. The number of revolutions subtracted from the number Rfi is increased.
 室内熱交温度Tcが下降しているときに室内熱交温度Tcが55℃以上57℃未満である場合、あるいは、室内熱交温度Tcが57℃以上である場合は、室内ファン回転数Rfiを変化させない。これにより、室内熱交換器31に流れる空気量が変化せず、室内熱交温度Tcが55℃以上57℃未満の範囲に維持される。尚、「Tc下降時」は、「Tc維持時」と比べて室内熱交温度Tcが上がりづらい状態と考えられるので、室内熱交温度Tcが55℃以上である場合に室内ファン回転数Rfiを変化させなくても、室内熱交温度Tcが59℃以上となることはない。 When the indoor heat exchanger temperature Tc is 55 ° C. or higher and lower than 57 ° C. when the indoor heat exchanger temperature Tc is decreasing, or when the indoor heat exchanger temperature Tc is 57 ° C. or higher, the indoor fan rotational speed Rfi is set. Do not change. Thereby, the air quantity which flows into the indoor heat exchanger 31 does not change, and the indoor heat exchange temperature Tc is maintained in a range of 55 ° C. or more and less than 57 ° C. It should be noted that when “Tc is lowered”, it is considered that the indoor heat exchange temperature Tc is less likely to rise than when “Tc is maintained”, and therefore, when the indoor heat exchange temperature Tc is 55 ° C. or higher, the indoor fan rotational speed Rfi is Even if it is not changed, the indoor heat exchange temperature Tc does not become 59 ° C. or higher.
 尚、以上説明した室内ファン制御テーブル400を用いて室内ファン回転数Rfiを高くあるいは低くする際は、室内ファン回転数Rfiの上限回転数と下限回転数(後述する室内ファン最低回転数Rfimに相当)の間で、室内ファン回転数Rfiが高くあるいは低くされる。ここで、上限回転数は例えば900rpmであり、下限回転数は例えば300rpmである。室内ファン回転数Rfiを室内ファン制御テーブル400で定めた回転数ずつ高くして900rpmに到達すれば、その後は室内ファン回転数Rfiを高くする場合であっても、室内ファン回転数Rfiは900rpmに維持される。また、室内ファン回転数Rfiを室内ファン制御テーブル400で定めた回転数ずつ低くして300rpmに到達すれば、その後室内ファン回転数Rfiを低くする場合であっても、室内ファン回転数Rfiは300rpmに維持される。 When the indoor fan rotation speed Rfi is increased or decreased using the indoor fan control table 400 described above, the upper limit rotation speed and the lower limit rotation speed of the indoor fan rotation speed Rfi (corresponding to the indoor fan minimum rotation speed Rfim described later). ), The indoor fan rotation speed Rfi is increased or decreased. Here, the upper limit rotational speed is, for example, 900 rpm, and the lower limit rotational speed is, for example, 300 rpm. If the indoor fan rotational speed Rfi is increased by 900 rpm by increasing the rotational speed determined by the indoor fan control table 400, then the indoor fan rotational speed Rfi is increased to 900 rpm even when the indoor fan rotational speed Rfi is increased. Maintained. Further, if the indoor fan rotational speed Rfi is decreased by the rotational speed determined by the indoor fan control table 400 to reach 300 rpm, the indoor fan rotational speed Rfi is 300 rpm even when the indoor fan rotational speed Rfi is subsequently decreased. Maintained.
 尚、室内熱交加熱運転における上記下限回転数の300rpmは、暖房運転時の室内ファン32の下限回転数(例えば、420rpm)より低い回転数とされる。これは、室内熱交加熱運転では、可能な限り室内ファン32の回転数を下げることで室内熱交換器31に流れる空気量を減らすことで、室内熱交温度Tcが早く上昇するようにするためである。 In addition, 300 rpm of the said minimum rotation speed in indoor heat exchanger heating operation is made into rotation speed lower than the minimum rotation speed (for example, 420 rpm) of the indoor fan 32 at the time of heating operation. This is because in the indoor heat exchange heating operation, the indoor heat exchange temperature Tc rises quickly by reducing the amount of air flowing into the indoor heat exchanger 31 by reducing the rotational speed of the indoor fan 32 as much as possible. It is.
 <室外ファン制御テーブル>
 次に、図6(B)に示す室外ファン制御テーブル500について説明する。この室外ファン制御テーブル500は、予め試験などを行って求められて、室外機制御手段200の記憶部220に記憶されているものである。室外ファン制御テーブル500は、室内熱交加熱運転時に室内熱交温度Tcを55℃~57℃に維持するように、室内ファン制御テーブル400に基づいて室内ファン32を制御しているときに、室外ファン制御テーブル500に基づいて室外ファン27を制御することで、圧縮機21の吐出圧力が使用範囲の上限値を超えないようにできることが判明しているものである。
<Outdoor fan control table>
Next, the outdoor fan control table 500 illustrated in FIG. 6B will be described. The outdoor fan control table 500 is obtained by performing a test or the like in advance and is stored in the storage unit 220 of the outdoor unit control means 200. The outdoor fan control table 500 is used when the indoor fan 32 is controlled based on the indoor fan control table 400 so that the indoor heat exchange temperature Tc is maintained at 55 ° C. to 57 ° C. during the indoor heat exchange heating operation. It has been found that by controlling the outdoor fan 27 based on the fan control table 500, the discharge pressure of the compressor 21 can be prevented from exceeding the upper limit value of the use range.
 室外ファン制御テーブル500では、外気温度センサ73で検出する外気温度(単位:℃。以降、外気温度Toと記載する)と、室内温度Ti(単位:℃)に応じて、室外ファンの回転数(単位:rpm。以降、室外ファン回転数Rfoと記載する)が定められている。具体的には、外気温度Toが24℃以上である場合は、室内温度Tiに関わらず室外ファン回転数Rfoは0rpmとされている。また、外気温度Toが16℃以上24℃未満である場合は、室内温度Tiが27℃以上であれば室外ファン回転数Rfoは0rpmとされており、室内温度Tiが27℃未満であれば室外ファン回転数Rfoは190rpmとされている。そして、外気温度Toが16℃未満である場合は、室外ファン回転数Rfoは暖房運転時と同じ制御、つまり、圧縮機回転数Rcに応じた回転数とされている。 In the outdoor fan control table 500, the rotational speed of the outdoor fan (unit: ° C.) detected by the outdoor temperature sensor 73 and the indoor temperature Ti (unit: ° C.) and the outdoor fan rotation speed (unit: ° C.) are determined. (Unit: rpm, hereinafter referred to as outdoor fan rotation speed Rfo). Specifically, when the outdoor air temperature To is 24 ° C. or higher, the outdoor fan rotation speed Rfo is set to 0 rpm regardless of the indoor temperature Ti. When the outdoor temperature To is 16 ° C. or higher and lower than 24 ° C., the outdoor fan rotation speed Rfo is 0 rpm if the indoor temperature Ti is 27 ° C. or higher, and if the indoor temperature Ti is lower than 27 ° C. The fan rotation speed Rfo is 190 rpm. When the outside air temperature To is less than 16 ° C., the outdoor fan rotation speed Rfo is set to the same control as that in the heating operation, that is, the rotation speed according to the compressor rotation speed Rc.
 外気温度Toが24℃以上の場合は、外気温度Toが24℃未満の場合と比べて室内熱交加熱運転時に蒸発器として機能する室外熱交換器23における蒸発圧力が高くなる。蒸発圧力が高くなると、凝縮器として機能している室内熱交換器31における凝縮圧力も高くなるので、圧縮機21の吐出圧力が高くなって使用範囲の上限値を超える恐れがある。従って、外気温度Toが24℃以上の場合は、室内温度Tiに関わらず室外ファン回転数Rfoを0rpm、つまり、停止させることで、室外熱交換器23における蒸発能力を低下させて蒸発圧力が上昇しないようにする。 When the outdoor air temperature To is 24 ° C. or higher, the evaporation pressure in the outdoor heat exchanger 23 that functions as an evaporator during the indoor heat exchanger heating operation is higher than when the outdoor air temperature To is less than 24 ° C. When the evaporation pressure increases, the condensation pressure in the indoor heat exchanger 31 functioning as a condenser also increases, so that the discharge pressure of the compressor 21 increases and may exceed the upper limit of the use range. Therefore, when the outdoor air temperature To is 24 ° C. or higher, the outdoor fan rotation speed Rfo is 0 rpm, that is, stopped regardless of the indoor temperature Ti, thereby reducing the evaporation capacity in the outdoor heat exchanger 23 and increasing the evaporation pressure. Do not.
 外気温度Toが16℃以上24℃未満であり、かつ、室内温度Tiが27℃以上である場合は、室内温度Tiが27℃未満である場合と比べて、凝縮器として機能している室内熱交換器31における凝縮能力が低下して凝縮圧力が高くなる。このとき、室外ファン27を駆動することで室外熱交換器23における蒸発能力が上昇して蒸発圧力が上昇すれば、元々高くなっている凝縮圧力がさらに高くなるので、圧縮機21の吐出圧力も上昇して使用範囲の上限値を超える恐れがある。従って、外気温度Toが16℃以上24℃未満であり、かつ、室内温度Tiが27℃以上である場合も、室外ファン回転数Rfoを0rpm、つまり、停止させることで、室外熱交換器23における蒸発能力を低下させて蒸発圧力が上昇しないようにする。 When the outside air temperature To is 16 ° C. or more and less than 24 ° C. and the room temperature Ti is 27 ° C. or more, the room heat functioning as a condenser is compared with the case where the room temperature Ti is less than 27 ° C. The condensation capacity in the exchanger 31 is reduced and the condensation pressure is increased. At this time, if the evaporation capability in the outdoor heat exchanger 23 is increased by driving the outdoor fan 27 and the evaporation pressure is increased, the condensing pressure that has been originally increased is further increased. Therefore, the discharge pressure of the compressor 21 is also increased. There is a risk of rising and exceeding the upper limit of the range of use. Therefore, even when the outdoor air temperature To is 16 ° C. or higher and lower than 24 ° C. and the indoor temperature Ti is 27 ° C. or higher, the outdoor fan rotation speed Rfo is set to 0 rpm, that is, the outdoor heat exchanger 23 is stopped. Decrease evaporation capacity so that evaporation pressure does not increase.
 一方、外気温度Toが16℃以上24℃未満であり、かつ、室内温度Tiが27℃未満である場合は、室内温度Tiが27℃以上である場合と比べて凝縮圧力が低いので、室外ファン27を駆動しても圧縮機21の吐出圧力が使用範囲の上限値を超えにくい。従って、外気温度Toが16℃以上24℃未満であり、かつ、室内温度Tiが27℃未満である場合は、室外ファン回転数Rfoを、蒸発圧力の上昇に起因して圧縮機21の吐出圧力が使用範囲の上限値を超えない程度の回転数、例えば、本実施形態での回転数である190rpmで駆動する。これにより、圧縮機21の吐出圧力の過昇を防ぎつつ、室外熱交換器23における蒸発圧力を上昇させて、室内熱交換器31における凝縮温度つまりは室内熱交温度Tcを早く上昇させる。 On the other hand, when the outdoor temperature To is 16 ° C. or higher and lower than 24 ° C. and the indoor temperature Ti is lower than 27 ° C., the condensation pressure is lower than that when the indoor temperature Ti is 27 ° C. or higher. 27, the discharge pressure of the compressor 21 is unlikely to exceed the upper limit of the use range. Therefore, when the outdoor air temperature To is 16 ° C. or higher and lower than 24 ° C. and the indoor temperature Ti is lower than 27 ° C., the outdoor fan rotational speed Rfo is set to the discharge pressure of the compressor 21 due to the increase in the evaporation pressure. Is driven at a rotation speed that does not exceed the upper limit of the use range, for example, 190 rpm, which is the rotation speed in the present embodiment. Thereby, while preventing the discharge pressure of the compressor 21 from being excessively increased, the evaporation pressure in the outdoor heat exchanger 23 is increased, and the condensation temperature in the indoor heat exchanger 31, that is, the indoor heat exchange temperature Tc is quickly increased.
 尚、上述した、室内熱交加熱運転時に外気温度Toが16℃以上24℃未満であり、かつ、室内温度Tiが27℃未満である場合の室外ファン回転数Rfoである190rpmは、暖房運転時の室外ファン27の下限回転数(例えば、500rpm)より低い回転数とされる。これは、室内熱交加熱運転では、室内熱交温度Tcを暖房運転時より高い温度に上昇させることに起因して圧縮機21の吐出圧力が使用範囲の上限値を超えやすいことを考慮したものであり、室内熱交加熱運転時に蒸発器として機能する室外熱交換器23に流れる空気量を暖房運転時より減少させて、室外熱交換器23における蒸発圧力が上昇することを抑制することで、圧縮機21の吐出圧力が過昇することを抑制するためである。 The outdoor fan rotation speed Rfo when the outdoor air temperature To is 16 ° C. or higher and lower than 24 ° C. and the indoor temperature Ti is lower than 27 ° C. during the indoor heat exchanger operation is 190 rpm. The lower rotational speed (for example, 500 rpm) of the outdoor fan 27 is set to a lower rotational speed. This is because in the indoor heat exchanger heating operation, the discharge pressure of the compressor 21 is likely to exceed the upper limit of the use range due to raising the indoor heat exchanger temperature Tc to a temperature higher than that in the heating operation. By reducing the amount of air flowing to the outdoor heat exchanger 23 that functions as an evaporator during the indoor heat exchanger heating operation from that during the heating operation, it is possible to suppress an increase in the evaporation pressure in the outdoor heat exchanger 23. This is to prevent the discharge pressure of the compressor 21 from excessively rising.
 外気温度Toが16℃未満である場合は、外気温度Toが16℃以上である場合と比べて室外ファン27を駆動しても室外熱交換器23における蒸発圧力が上昇しにくくなる。従って、外気温度Toが16℃未満である場合は、室内温度Tiに関わらず室外ファン回転数Rfoは暖房運転時と同じ制御、つまり、圧縮機回転数Rcに応じた回転数とする。これにより、室外熱交換器23における蒸発圧力を上昇させて、室内熱交換器31における凝縮温度つまりは室内熱交温度Tcを早く上昇させる。 When the outdoor air temperature To is less than 16 ° C., the evaporation pressure in the outdoor heat exchanger 23 is less likely to increase even when the outdoor fan 27 is driven than when the outdoor air temperature To is 16 ° C. or higher. Therefore, when the outdoor air temperature To is less than 16 ° C., the outdoor fan rotational speed Rfo is set to the same control as that in the heating operation, that is, the rotational speed corresponding to the compressor rotational speed Rc regardless of the indoor temperature Ti. Thereby, the evaporation pressure in the outdoor heat exchanger 23 is raised, and the condensation temperature in the indoor heat exchanger 31, that is, the indoor heat exchange temperature Tc is raised quickly.
 <室内熱交加熱運転制御>
 次に、図7乃至図10を用いて、室内熱交加熱運転に関わる処理の流れについて説明する。図7は、空気調和機1の制御手段が室内熱交加熱運転時に行う処理のメインルーチンである。図8は、制御手段が室内熱交加熱運転時に行う処理のサブルーチンであり、室内熱交換器31を加熱する前に室内機3の内部での結露水発生の抑制を目的に行われる加熱前運転制御に関わる処理の流れを示す。
<Indoor heat exchanger heating control>
Next, the flow of processing related to the indoor heat exchanger heating operation will be described with reference to FIGS. FIG. 7 is a main routine of processing performed by the control unit of the air conditioner 1 during the indoor heat exchanger heating operation. FIG. 8 is a subroutine of the processing performed by the control means during the indoor heat exchanger heating operation, and the pre-heating operation performed for the purpose of suppressing the generation of condensed water inside the indoor unit 3 before heating the indoor heat exchanger 31. The flow of processing related to control is shown.
 図9は、制御手段が室内熱交加熱運転時に行う処理のサブルーチンであり、図6(A)に示す室内ファン制御テーブル400を用いて、室内熱交温度Tcを55℃~57℃の範囲に維持することを目的に行われる温度維持時室内ファン制御に関わる処理の流れを示す。図10は、制御手段が室内熱交加熱運転時に行う処理のサブルーチンであり、図6(B)に示す室外ファン制御テーブル500を用いて、室内熱交温度Tcを55℃~57℃の範囲に維持する際に行われる温度維持時室外ファン制御に関わる処理の流れを示す。 FIG. 9 is a subroutine of processing performed by the control means during the indoor heat exchanger heating operation. The indoor heat exchanger temperature Tc is set within the range of 55 ° C. to 57 ° C. using the indoor fan control table 400 shown in FIG. The flow of the process related to indoor fan control during temperature maintenance performed for the purpose of maintaining is shown. FIG. 10 is a subroutine of the processing performed by the control means during the indoor heat exchanger heating operation, and the indoor heat exchanger temperature Tc is set within the range of 55 ° C. to 57 ° C. using the outdoor fan control table 500 shown in FIG. 6 (B). The flow of the process regarding outdoor fan control at the time of temperature maintenance performed when maintaining is shown.
 図7乃至図10の各フローチャートにおいて、STは処理のステップを表し、これに続く数字はステップ番号を表している。また、図7および図9に記載のあるTc1~Tc4(以降、第1室内熱交温度Tc1~第4室内熱交温度Tc4と記載する)は、第2室内熱交温度Tc2~第4室内熱交温度Tc4室内ファン制御テーブル400に記載の室内熱交温度Tcに対応しており、第2室内熱交温度Tc2が53℃、第3室内熱交温度Tc3が55℃、第4室内熱交温度Tc4が57℃である。また、第1室内熱交温度Tc1は、後述する温度維持運転を開始する温度であり、第2室内熱交温度Tc2より所定温度低い温度、例えば、が50℃である。尚、第3室内熱交温度Tc3が本発明の第1温度であり、第4室内熱交温度Tc4が本発明の第2温度であり、第1室内熱交温度Tc1が本発明の第3温度である。 7 to 10, ST represents a process step, and the number following this represents a step number. Further, Tc1 to Tc4 (hereinafter referred to as first indoor heat exchange temperature Tc1 to fourth indoor heat exchange temperature Tc4) shown in FIGS. 7 and 9 are second indoor heat exchange temperature Tc2 to fourth indoor heat. This corresponds to the indoor heat exchange temperature Tc described in the indoor fan control table 400, the second indoor heat exchange temperature Tc2 is 53 ° C., the third indoor heat exchange temperature Tc3 is 55 ° C., and the fourth indoor heat exchange temperature. Tc4 is 57 ° C. Further, the first indoor heat exchange temperature Tc1 is a temperature at which a temperature maintenance operation described later is started, and a temperature lower than the second indoor heat exchange temperature Tc2 by a predetermined temperature, for example, 50 ° C. The third indoor heat exchange temperature Tc3 is the first temperature of the present invention, the fourth indoor heat exchange temperature Tc4 is the second temperature of the present invention, and the first indoor heat exchange temperature Tc1 is the third temperature of the present invention. It is.
 <メインルーチン:室内熱交加熱運転制御>
 まず、図7を用いて、室内熱交加熱運転制御に関わる処理について説明する。使用者から室内熱交加熱運転の実行指示を受けた、あるいは、空気調和機1が冷房運転を終了すれば、制御手段はまず、室内熱交加熱運転制御のサブルーチンである加熱前運転制御を実行する(ST41)。加熱前運転制御については後述する。
<Main routine: Indoor heat exchanger heating control>
First, processing related to indoor heat exchanger heating operation control will be described with reference to FIG. When the execution instruction of the indoor heat exchange heating operation is received from the user or the air conditioner 1 finishes the cooling operation, the control means first executes the pre-heating operation control which is a subroutine of the indoor heat exchange heating operation control. (ST41). The pre-heating operation control will be described later.
 次に、制御手段は、圧縮機21を所定の最低回転数(以降、圧縮機最低回転数Rcmと記載する)で駆動する(ST42)。具体的には、室外機制御手段200のCPU210が、記憶部220に予め記憶されている圧縮機最低回転数Rcmを読み出し、読み出した圧縮機最低回転数Rcmで圧縮機21を駆動する。ここで、圧縮機最低回転数Rcmは、予め試験などを行って求められているものであり、室内熱交加熱運転で室内熱交温度Tcを通常の暖房運転時より高い温度とする状況でも、圧縮機21の吐出圧力が使用範囲の上限値を超えないことが判明している回転数である。尚、圧縮機最低回転数Rcmは、例えば30rpsである。 Next, the control means drives the compressor 21 at a predetermined minimum rotational speed (hereinafter referred to as a compressor minimum rotational speed Rcm) (ST42). Specifically, the CPU 210 of the outdoor unit control means 200 reads the compressor minimum rotational speed Rcm stored in advance in the storage unit 220, and drives the compressor 21 at the read compressor minimum rotational speed Rcm. Here, the minimum compressor rotation speed Rcm is obtained by conducting a test or the like in advance, and even in a situation where the indoor heat exchange temperature Tc is higher than that during normal heating operation in the indoor heat exchange heating operation, This is the rotational speed at which the discharge pressure of the compressor 21 has been found not to exceed the upper limit of the use range. The minimum compressor rotation speed Rcm is, for example, 30 rps.
 次に、制御手段は、膨張弁24を所定の開度(以降、所定膨張弁開度Dpと記載する)とする(ST43)。具体的には、室外機制御手段200のCPU210が、記憶部220に予め記憶されている所定膨張弁開度Dpを読み出し、膨張弁開度Dが読み出した所定膨張弁開度Dpとなるように、膨張弁24の図示しないステップモータに所定膨張弁開度Dpに応じた駆動パルスを加える。ここで、所定膨張弁開度Dpは、予め試験などを行って求められているものであり、空気調和機1で本発明の室内熱交加熱運転を行うときに、室内ファン32の制御のみで室内熱交温度Tcを55℃以上57℃未満の範囲の温度とするのに必要な量の冷媒を、室内熱交換器31に流せる開度である。尚、所定膨張弁開度Dpは、例えば膨張弁24に加える駆動パルス数で表すと200パルスである。 Next, the control means sets the expansion valve 24 to a predetermined opening (hereinafter referred to as a predetermined expansion valve opening Dp) (ST43). Specifically, the CPU 210 of the outdoor unit control means 200 reads a predetermined expansion valve opening Dp stored in advance in the storage unit 220 so that the expansion valve opening D becomes the read predetermined expansion valve opening Dp. A drive pulse corresponding to a predetermined expansion valve opening Dp is applied to a step motor (not shown) of the expansion valve 24. Here, the predetermined expansion valve opening Dp is obtained by performing a test or the like in advance, and when the indoor heat exchanger heating operation of the present invention is performed by the air conditioner 1, only the control of the indoor fan 32 is performed. The opening is such that an amount of the refrigerant necessary for setting the indoor heat exchange temperature Tc to a temperature in the range of 55 ° C. or higher and lower than 57 ° C. can be passed through the indoor heat exchanger 31. The predetermined expansion valve opening degree Dp is 200 pulses when expressed by the number of drive pulses applied to the expansion valve 24, for example.
 次に、制御手段は、室外ファン回転数Rfoを圧縮機回転数Rcに応じた回転数とする(ST44)。具体的には、CPU210が、圧縮機回転数Rcに応じた室外ファン回転数Rfoで室外ファン27を駆動する。尚、ST43の処理を行う時点では、後述する加熱前運転制御で室外ファン27は既に駆動しているので、ST43では室外ファン回転数Rfoを圧縮機回転数Rcに応じた回転数に変更することになり、このときの室外ファン回転数Rfoは、例えば500rpmである。 Next, the control means sets the outdoor fan rotation speed Rfo to a rotation speed corresponding to the compressor rotation speed Rc (ST44). Specifically, the CPU 210 drives the outdoor fan 27 at the outdoor fan rotational speed Rfo corresponding to the compressor rotational speed Rc. Since the outdoor fan 27 is already driven by the pre-heating operation control described later at the time of performing the process of ST43, the outdoor fan rotational speed Rfo is changed to a rotational speed corresponding to the compressor rotational speed Rc in ST43. The outdoor fan rotation speed Rfo at this time is, for example, 500 rpm.
 次に、制御手段は、室内ファン32を所定の回転数(以降、室内ファン初期回転数Rfipと記載する)とする(ST45)。具体的には、室内機制御手段300のCPU310が、記憶部320に予め記憶されている室内ファン初期回転数Rfipを読み出し、室内ファン回転数Rfiを読み出した室内ファン初期回転数Rfipとして室内ファン32を駆動する。ここで、室内ファン初期回転数Rfipは、予め試験などを行って求められているものであり、室内ファン32の回転により室内熱交換器31に供給される室内空気の量が少ないことに起因して室内熱交温度Tcが急激に上昇し、後述する室内熱交加熱運転時保護制御により保護停止となることを防ぎつつ、できる限り早く室内熱交温度Tcを上昇させることができる回転数である。尚、室内ファン初期回転数Rfipは、例えば600rpmである。また、ST44の処理を行う時点では、後述する加熱前運転制御で室内ファン32は既に駆動しているので、ST44では室内ファン回転数Rfiを室内ファン初期回転数Rfipに変更することになる。 Next, the control means sets the indoor fan 32 to a predetermined rotation speed (hereinafter referred to as an indoor fan initial rotation speed Rfip) (ST45). Specifically, the CPU 310 of the indoor unit control means 300 reads out the indoor fan initial rotational speed Rfip stored in advance in the storage unit 320, and the indoor fan 32 as the indoor fan initial rotational speed Rfip read out from the indoor fan rotational speed Rfi. Drive. Here, the indoor fan initial rotational speed Rfip is obtained by performing a test or the like in advance, and is caused by the small amount of indoor air supplied to the indoor heat exchanger 31 by the rotation of the indoor fan 32. Thus, the indoor heat exchange temperature Tc can be increased as quickly as possible while preventing the indoor heat exchange temperature Tc from rapidly rising and stopping the protection by the indoor heat exchange heating operation protection control described later. . The indoor fan initial rotational speed Rfip is, for example, 600 rpm. Further, at the time of performing the process of ST44, since the indoor fan 32 has already been driven by the pre-heating operation control described later, in ST44, the indoor fan rotation speed Rfi is changed to the indoor fan initial rotation speed Rfip.
 次に、制御手段は、上下風向板35を水平位置とする(ST46)。具体的には、CPU310が、上下風向板35を水平位置となるように回動させる。上下風向板35が水平位置となれば、室内熱交換器31で暖められて吹出口30gから吹き出される空気の一部を、吸込口30fに吸い込ませることができる。従って、上下風向板35が水平位置以外の位置とされている場合と比べて、室内熱交温度Tcが早く上昇する。 Next, the control means places the vertical wind direction plate 35 in the horizontal position (ST46). Specifically, the CPU 310 rotates the vertical wind direction plate 35 so as to be in the horizontal position. If the up-and-down wind direction plate 35 is in the horizontal position, a part of the air heated by the indoor heat exchanger 31 and blown out from the outlet 30g can be sucked into the inlet 30f. Accordingly, the indoor heat exchange temperature Tc rises faster than when the up-and-down airflow direction plate 35 is set to a position other than the horizontal position.
 次に、制御手段は、タイマー1の計測を開始する(ST47)。具体的には、CPU310はタイマー計測機能を有しており、CPU310が、タイマー1の計測を開始する。尚、タイマー計測機能はCPU210に設けられていてもよく、また、CPU210やCPU310以外に設けられてもよい。次に、制御手段は、室内熱交温度Tcを取り込む(ST48)。具体的には、CPU310は、室内熱交温度センサ74で検出した室内熱交温度Tcを、センサ入力部340を介して定期的(例えば、30秒毎)に取り込む。 Next, the control means starts measuring the timer 1 (ST47). Specifically, the CPU 310 has a timer measurement function, and the CPU 310 starts measuring the timer 1. Note that the timer measurement function may be provided in the CPU 210, or may be provided in addition to the CPU 210 and the CPU 310. Next, the control means takes in the indoor heat exchange temperature Tc (ST48). Specifically, the CPU 310 periodically captures the indoor heat exchange temperature Tc detected by the indoor heat exchange temperature sensor 74 via the sensor input unit 340 (for example, every 30 seconds).
 次に、制御手段は、ST48で取り込んだ室内熱交温度Tcが第1室内熱交温度Tc1未満であるか否かを判断する(ST49)。具体的には、CPU310が、記憶部320から第1室内熱交温度Tc1を読み出して、取り込んだ室内熱交温度Tcと比較する。 Next, the control means determines whether or not the indoor heat exchange temperature Tc captured in ST48 is less than the first indoor heat exchange temperature Tc1 (ST49). Specifically, the CPU 310 reads the first indoor heat exchange temperature Tc1 from the storage unit 320 and compares it with the captured indoor heat exchange temperature Tc.
 取り込んだ室内熱交温度Tcが第1室内熱交温度Tc1未満であれば(ST49-Yes)、制御手段は、ST47でタイマー1の計測を開始してから所定時間(以降、第1所定時間tp1と記載する)が経過したか否かを判断する(ST58)。具体的には、CPU310が、ST47でタイマー1の計測を開始してから第1所定時間tp1が経過したか否かを判断する。ここで、第1所定時間tp1は予め定められて記憶部330に記憶されているものであり、例えば10分間である。 If the captured indoor heat exchange temperature Tc is lower than the first indoor heat exchange temperature Tc1 (ST49-Yes), the control means starts the measurement of the timer 1 in ST47, and then starts a predetermined time (hereinafter, the first predetermined time tp1). Is described) (ST58). Specifically, CPU 310 determines whether or not first predetermined time tp1 has elapsed since start of measurement of timer 1 in ST47. Here, the first predetermined time tp1 is predetermined and stored in the storage unit 330, for example, 10 minutes.
 第1所定時間tp1が経過していれば(ST58-Yes)、制御手段は、タイマー1をリセットして(ST61)、室内機熱交加熱運転制御を終了する。具体的には、CPU310が、タイマー1をリセットするとともに室内ファン31を停止し、また、室内機熱交加熱運転制御を終了する旨を含む信号を、通信部330を介して室外機2に送信する。この信号を通信部230を介して受信したCPU210は、圧縮機21と室外ファン27を停止する。 If the first predetermined time tp1 has elapsed (ST58-Yes), the control unit resets the timer 1 (ST61) and ends the indoor unit heat exchanger heating operation control. Specifically, the CPU 310 resets the timer 1 and stops the indoor fan 31 and transmits a signal including the end of the indoor unit heat exchanger heating operation control to the outdoor unit 2 via the communication unit 330. To do. CPU210 which received this signal via the communication part 230 stops the compressor 21 and the outdoor fan 27. FIG.
 第1所定時間tp1が経過していなければ(ST58-No)、制御手段は、現在の室内ファン回転数Rfiが所定の最低回転数(以降、室内ファン最低回転数Rfimと記載する)であるか否かを判断する(ST59)。具体的には、CPU310が、記憶部320に予め記憶されている室内ファン最低回転数Rfimを読み出して、現在の室内ファン回転数Rfiと比較する。ここで、室内ファン最低回転数Rfimは、室内ファン32の使用範囲の下限回転数であり、例えば300rpmである。 If the first predetermined time tp1 has not elapsed (ST58-No), the control means determines whether the current indoor fan rotational speed Rfi is a predetermined minimum rotational speed (hereinafter referred to as indoor fan minimum rotational speed Rfim). It is determined whether or not (ST59). Specifically, CPU 310 reads the indoor fan minimum rotational speed Rfim stored in advance in storage unit 320 and compares it with the current indoor fan rotational speed Rfi. Here, the indoor fan minimum rotation speed Rfim is the lower limit rotation speed of the use range of the indoor fan 32, and is, for example, 300 rpm.
 現在の室内ファン回転数Rfiが室内ファン最低回転数Rfimであれば(ST59-Yes)、制御手段は、この室内ファン最低回転数Rfimを維持する(ST60)、つまり、室内ファン32を室内ファン最低回転数Rfimで駆動し続けて、ST48に処理を戻す。具体的には、CPU310が、室内ファン32を室内ファン最低回転数Rfimで駆動し続ける。 If the current indoor fan rotational speed Rfi is the indoor fan minimum rotational speed Rfim (ST59-Yes), the control means maintains the indoor fan minimum rotational speed Rfim (ST60). Driving continues at the rotational speed Rfim, and the process returns to ST48. Specifically, the CPU 310 continues to drive the indoor fan 32 at the indoor fan minimum rotational speed Rfim.
 一方、現在の室内ファン回転数Rfiが室内ファン最低回転数Rfimでなければ(ST59-No)、制御手段は、室内ファン回転数Rfiを、所定の室内ファンレリース間隔時間(以降、室内ファンレリース間隔時間tfiと記載する)毎に所定の室内ファンレリース回転数(以降、室内ファンレリース回転数Rfirと記載する)だけ低下させて(ST62)、ST48に処理を戻す。具体的には、CPU310が、室内ファン回転数Rfiを室内ファンレリース間隔時間tfi毎に室内ファンレリース回転数Rfirだけ低下させる。尚、室内ファンレリース間隔時間tfiおよび室内ファンレリース回転数Rfirは、予め試験などを行って定められたものであり、室内熱交温度Tcが急激に上昇して後述する室内熱交加熱運転時保護制御により保護停止となることを抑制しつつ、室内熱交温度Tcを上昇させることが確認できているものである。室内ファンレリース間隔時間tfiは、例えば、60秒であり、室内ファンレリース回転数Rfirは、例えば50rpmである。 On the other hand, if the current indoor fan rotational speed Rfi is not the indoor fan minimum rotational speed Rfim (ST59-No), the control means sets the indoor fan rotational speed Rfi to a predetermined indoor fan release interval time (hereinafter referred to as indoor fan release interval). Each time (denoted as tfi) is decreased by a predetermined indoor fan release rotational speed (hereinafter referred to as indoor fan release rotational speed Rfire) (ST62), and the process returns to ST48. Specifically, the CPU 310 decreases the indoor fan rotation speed Rfi by the indoor fan release rotation speed Rfi at every indoor fan release interval time tfi. Note that the indoor fan release interval time tfi and the indoor fan release rotation speed Rfir are determined in advance through a test or the like, and the indoor heat exchange temperature Tc is rapidly increased to protect the indoor heat exchange heating operation described later. It has been confirmed that the indoor heat exchanger temperature Tc is raised while suppressing the protection stop by the control. The indoor fan release interval time tfi is, for example, 60 seconds, and the indoor fan release rotation speed Rfir is, for example, 50 rpm.
 以上説明したST47~ST49、および、ST58~ST62の処理が、室内機熱交加熱運転における室内熱交温度Tcを第1室内熱交温度Tc1まで昇温させるための運転(以降、昇温運転と記載する)に関わる処理である。昇温運転を行うことで、後述する室内熱交加熱運転時保護制御により保護停止となることを防ぎつつ、できる限り早く室内熱交温度Tcを第1室内温度Tc1(本実施形態では、50℃)まで上昇させることができる。 The processing of ST47 to ST49 and ST58 to ST62 described above is an operation for raising the indoor heat exchange temperature Tc in the indoor unit heat exchange heating operation to the first indoor heat exchange temperature Tc1 (hereinafter referred to as a temperature raising operation). To be described). By performing the temperature raising operation, the indoor heat exchange temperature Tc is set to the first indoor temperature Tc1 (in this embodiment, 50 ° C.) as soon as possible while preventing protection from being stopped by protection control during indoor heat exchange heating operation described later. ).
 尚、ST58の処理において、第1所定時間tp1が経過しても室内熱交温度Tcが第1室内熱交温度Tc1以上とならない場合に、室内熱交加熱運転を終了している。これは、上述した昇温運転を第1所定時間tp1行っても室内熱交温度Tcが第1室内熱交温度Tc1以上とならないときは、何らかの原因で室内熱交温度Tcが上昇しにくい状態であり、このまま室内熱交加熱運転を継続した結果無駄な運転となることを回避するためである。 In the process of ST58, the indoor heat exchanger heating operation is terminated when the indoor heat exchanger temperature Tc does not become equal to or higher than the first indoor heat exchanger temperature Tc1 even after the first predetermined time tp1 has elapsed. If the indoor heat exchange temperature Tc does not become equal to or higher than the first indoor heat exchange temperature Tc1 even after the temperature raising operation described above is performed for the first predetermined time tp1, the indoor heat exchange temperature Tc is unlikely to rise for some reason. It is for avoiding useless operation as a result of continuing the indoor heat exchanger heating operation as it is.
 ST49において、取り込んだ室内熱交温度Tcが第1室内熱交温度Tc1未満でなければ(ST49-No)、制御手段は、タイマー2の計測を開始する(ST50)。具体的には、CPU310がタイマー2の計測を開始する。 In ST49, if the captured indoor heat exchange temperature Tc is not less than the first indoor heat exchange temperature Tc1 (ST49-No), the control means starts measuring the timer 2 (ST50). Specifically, CPU 310 starts measuring timer 2.
 次に、制御手段は、室内熱交加熱運転制御のサブルーチンである温度維持時室内ファン制御を実行する(ST51)とともに、室内熱交加熱運転制御のサブルーチンである温度維持時室外ファン制御を実行する(ST52)。温度維持時室内ファン制御および温度維持時室外ファン制御については、後述する。 Next, the control means executes indoor fan control during temperature maintenance, which is a subroutine for indoor heat exchange heating operation control (ST51), and also performs outdoor fan control during temperature maintenance, which is a subroutine for indoor heat exchange heating operation control. (ST52). The indoor fan control during temperature maintenance and the outdoor fan control during temperature maintenance will be described later.
 次に、制御手段は、フラグが1であるか否かを判断する(ST53)。このフラグは、例えばCPU310が有しており、室内熱交加熱運転において室内熱交温度Tcが上昇して初めて第3室内熱交温度Tc3(本実施形態では、55℃)以上となったときに、0から1へと変更されるものである。尚、フラグは、デフォルト(工場出荷時)では0とされている。 Next, the control means determines whether or not the flag is 1 (ST53). For example, the CPU 310 has this flag, and when the indoor heat exchange temperature Tc rises during the indoor heat exchange operation, the flag becomes the third indoor heat exchange temperature Tc3 (55 ° C. in the present embodiment) or higher for the first time. , 0 is changed to 1. The flag is set to 0 by default (at the time of factory shipment).
 フラグが1であれば(ST53-Yes)、つまり、すでに室内熱交温度Tcが第3室内熱交温度Tc3になっていれば、制御手段は、タイマー1をリセットして(ST63)、ST56に処理を進める。具体的には、CPU310が、フラグを確認して1であれば、タイマー1をリセットする。 If the flag is 1 (ST53-Yes), that is, if the indoor heat exchange temperature Tc has already reached the third indoor heat exchange temperature Tc3, the control means resets the timer 1 (ST63) and goes to ST56. Proceed with the process. Specifically, if the CPU 310 confirms the flag and is 1, the timer 1 is reset.
 フラグが1でなければ(ST53-No)、つまり、室内熱交温度Tcがまだ第3室内熱交温度Tc3になっていなければ、制御手段は、ST48で取り込んだ室内熱交温度Tcが第3室内熱交温度Tc3以上となったか否かを判断する(ST54)。具体的には、CPU310が、記憶部320から第3室内熱交温度Tc3を読み出して、取り込んだ室内熱交温度Tcと比較する。 If the flag is not 1 (ST53-No), that is, if the indoor heat exchange temperature Tc has not yet reached the third indoor heat exchange temperature Tc3, the control means determines that the indoor heat exchange temperature Tc captured in ST48 is the third heat exchange temperature Tc. It is determined whether or not the indoor heat exchange temperature Tc3 is reached (ST54). Specifically, the CPU 310 reads out the third indoor heat exchange temperature Tc3 from the storage unit 320 and compares it with the captured indoor heat exchange temperature Tc.
 取り込んだ室内熱交温度Tcが第3室内熱交温度Tc3以上となっていれば(ST54-Yes)、制御手段は、フラグを1とするとともにタイマー1をリセットして(ST55)、ST56に処理を進める。具体的には、CPU310が、フラグを1とするとともにタイマー1をリセットする。 If the captured indoor heat exchange temperature Tc is equal to or higher than the third indoor heat exchange temperature Tc3 (ST54-Yes), the control means sets the flag to 1 and resets the timer 1 (ST55), and the process proceeds to ST56. To proceed. Specifically, CPU 310 sets the flag to 1 and resets timer 1.
 取り込んだ室内熱交温度Tcが第3室内熱交温度Tc3以上となっていなければ(ST54-No)、制御手段は、ST47でタイマー1の計測を開始してから第1所定時間tp1が経過したか否かを判断する(ST64)。尚、ST63の処理は、ST58の処理と同様に、CPU310が行う。 If the taken-in indoor heat exchange temperature Tc is not equal to or higher than the third indoor heat exchange temperature Tc3 (ST54-No), the control means starts the measurement of the timer 1 in ST47 and the first predetermined time tp1 has elapsed. Whether or not is determined (ST64). Note that the processing of ST63 is performed by the CPU 310 in the same manner as the processing of ST58.
 第1所定時間tp1が経過していれば(ST64-Yes)、制御手段は、タイマー1をリセットして(ST65)、室内機熱交加熱運転制御を終了する。尚、ST65の処理は、ST61の処理と同様に、CPU310が行う。第1所定時間tp1が経過していなければ(ST64-No)、制御手段は、ST53に処理を戻す。 If the first predetermined time tp1 has elapsed (ST64-Yes), the control means resets the timer 1 (ST65) and ends the indoor unit heat exchanger heating operation control. Note that the processing of ST65 is performed by the CPU 310 in the same manner as the processing of ST61. If the first predetermined time tp1 has not elapsed (ST64-No), the control unit returns the process to ST53.
 尚、ST64の処理において、第1所定時間tp1が経過しても室内熱交温度Tcが第3室内熱交温度Tc3以上とならない場合に、室内熱交加熱運転を終了する。これは、上述した昇温運転および後述する温度維持運転を第1所定時間tp1行っても室内熱交温度Tcが第3室内熱交温度Tc3以上とならないときは、何らかの原因で室内熱交温度Tcが上昇しにくい状態であり、このまま室内熱交加熱運転を継続した結果無駄な運転となることを回避するためである。 In the process of ST64, if the indoor heat exchange temperature Tc does not become equal to or higher than the third indoor heat exchange temperature Tc3 even after the first predetermined time tp1 has elapsed, the indoor heat exchange heating operation is terminated. This is because if the indoor heat exchange temperature Tc does not become equal to or higher than the third indoor heat exchange temperature Tc3 even if the temperature raising operation and the temperature maintenance operation described later are performed for the first predetermined time tp1, the indoor heat exchange temperature Tc for some reason. This is for avoiding useless operation as a result of continuing the indoor heat exchanger heating operation as it is.
 ST55の処理を終えた制御手段は、ST50でタイマー2の計測を開始してから所定時間(以降、第2所定時間tp2と記載する)が経過したか否かを判断する(ST56)。具体的には、CPU310が、ST50でタイマー2の計測を開始してから第2所定時間tp2が経過したか否かを判断する。ここで、第2所定時間tp2は、予め定められて記憶部330に記憶されているものであり、前述した室内熱交換器31に存在するカビや細菌の数を大幅に減少させるために、室内熱交温度Tcを55℃以上に維持する時間であり、例えば10分間である。 The control means that has finished the process of ST55 determines whether or not a predetermined time (hereinafter referred to as a second predetermined time tp2) has elapsed since the start of the timer 2 measurement in ST50 (ST56). Specifically, CPU 310 determines whether or not second predetermined time tp2 has elapsed since the start of timer 2 measurement in ST50. Here, the second predetermined time tp2 is predetermined and stored in the storage unit 330. In order to greatly reduce the number of molds and bacteria present in the indoor heat exchanger 31 described above, This is the time for maintaining the heat exchange temperature Tc at 55 ° C. or higher, for example, 10 minutes.
 第2所定時間tp2が経過していなければ(ST56-No)、制御手段は、ST51に処理を戻す。第2所定時間tp2が経過していれば(ST56-Yes)、制御手段は、タイマー2をリセットするとともにフラグをリセットして(ST57)、室内機熱交加熱運転制御を終了する。具体的には、CPU310が、タイマー2をリセットするとともにフラグをリセットする。また、CPU310が、室内ファン31を停止するとともに、室内機熱交加熱運転制御を終了する旨を含む信号を、通信部330を介して室外機2に送信する。この信号を通信部230を介して受信したCPU210は、圧縮機21と室外ファン27を停止する。 If the second predetermined time tp2 has not elapsed (ST56-No), the control unit returns the process to ST51. If the second predetermined time tp2 has elapsed (ST56-Yes), the control means resets the timer 2 and resets the flag (ST57), and ends the indoor unit heat exchanger heating operation control. Specifically, the CPU 310 resets the timer 2 and the flag. In addition, the CPU 310 stops the indoor fan 31 and transmits a signal including that the indoor unit heat exchanger heating operation control is terminated to the outdoor unit 2 via the communication unit 330. CPU210 which received this signal via the communication part 230 stops the compressor 21 and the outdoor fan 27. FIG.
 以上説明したST50~ST56、および、ST63~ST65までの処理が、室内熱交温度Tcを第2所定時間tp2の間、第3室内熱交温度Tc3(本実施形態では、55℃)以上に維持する運転(以降、温度維持運転と記載する)に関わる処理である。温度維持運転を第2所定時間tp2の間継続することにより、室内熱交温度Tcが40℃程度となる従来の乾燥運転を行った場合と比べて、室内熱交換器31に存在するカビや細菌の数を大幅に減少させることができる。 The processes from ST50 to ST56 and ST63 to ST65 described above maintain the indoor heat exchange temperature Tc at or above the third indoor heat exchange temperature Tc3 (55 ° C. in the present embodiment) for the second predetermined time tp2. This is processing related to the operation to be performed (hereinafter referred to as temperature maintenance operation). By maintaining the temperature maintenance operation for the second predetermined time tp2, compared to the case where the conventional drying operation in which the indoor heat exchange temperature Tc is about 40 ° C. is performed, mold or bacteria present in the indoor heat exchanger 31 The number of can be greatly reduced.
 <サブルーチン:加熱前運転制御>
 次に、図8を用いて、室内熱交加熱運転制御のサブルーチンである加熱前運転制御について説明する。尚、加熱前運転制御では、圧縮機21は停止しており、冷媒回路10には冷媒が循環していない。
<Subroutine: Operation control before heating>
Next, the pre-heating operation control, which is a subroutine of the indoor heat exchanger heating operation control, will be described with reference to FIG. In the pre-heating operation control, the compressor 21 is stopped and no refrigerant is circulating in the refrigerant circuit 10.
 まず、制御手段は、室内熱交加熱運転前に冷房運転を行っていたか否かを判断する(ST71)。冷房運転を行っていなければ(ST71-No)、制御手段は、加熱前運転制御を終了する。冷房運転を行っていれば(ST71-Yes)、制御手段は、タイマー3の計測を開始する(ST72)。具体的には、CPU310が、タイマー3の計測を開始する。 First, the control means determines whether or not the cooling operation was performed before the indoor heat exchanger heating operation (ST71). If the cooling operation is not performed (ST71-No), the control means ends the pre-heating operation control. If the cooling operation is being performed (ST71-Yes), the control means starts measuring the timer 3 (ST72). Specifically, CPU 310 starts measuring timer 3.
 次に、制御手段は、室内ファン回転数Rfiを所定の回転数(以降、加熱前室内ファン回転数Rfiaと記載する)として室内ファン32を駆動する(ST73)。具体的には、CPU310が、室内ファン回転数Rfiを加熱前室内ファン回転数Rfiaとして室内ファン32を駆動する。ここで、加熱前室内ファン回転数Rfiaは、予め試験などを行って求められているものであり、後述する第3所定時間tp3の間に、室内機3の内部に室内空気を通過させて冷房運転中に冷却された室内機3を暖めることで、昇温運転の際に室内機3の温度と室内熱交温度Tcの温度差に起因した結露水が発生することを抑制できる回転数である。加熱前室内ファン回転数Rfiaは、例えば900rpmである。 Next, the control means drives the indoor fan 32 with the indoor fan rotation speed Rfi as a predetermined rotation speed (hereinafter referred to as the pre-heating indoor fan rotation speed Rfia) (ST73). Specifically, the CPU 310 drives the indoor fan 32 with the indoor fan rotation speed Rfi as the pre-heating indoor fan rotation speed Rfia. Here, the indoor fan rotation speed Rfia before heating is obtained by performing a test or the like in advance, and during a third predetermined time tp3 described later, the indoor air is passed through the indoor unit 3 for cooling. The number of revolutions can suppress the generation of dew condensation water due to the temperature difference between the temperature of the indoor unit 3 and the indoor heat exchange temperature Tc during the temperature rising operation by warming the indoor unit 3 cooled during operation. . The indoor fan rotation speed Rfia before heating is, for example, 900 rpm.
 次に、制御手段は、室外ファン回転数Rfoを所定の回転数(以降、加熱前室外ファン回転数Rfoaと記載する)として室外ファン27を駆動する(ST74)。具体的には、CPU210が、室外ファン回転数Rfoを加熱前室外ファン回転数Rfoaとして室外ファン27を駆動する。ここで、加熱前室外ファン回転数Rfoaは、予め試験などを行って求められているものであり、後述する第3所定時間tp3の間に、冷房運転中に発熱した室外機制御手段200(特に、圧縮機21を駆動する図示しないインバータ部)を冷却することで、室内熱交加熱運転を行っているときに室外機制御手段200の温度が過昇することを抑制できる回転数である。加熱前室外ファン回転数Rfoaは、例えば650rpmである。 Next, the control means drives the outdoor fan 27 with the outdoor fan rotational speed Rfo as a predetermined rotational speed (hereinafter referred to as the pre-heating outdoor fan rotational speed Rfoa) (ST74). Specifically, the CPU 210 drives the outdoor fan 27 with the outdoor fan rotation speed Rfo as the pre-heating outdoor fan rotation speed Rfoa. Here, the pre-heating outdoor fan rotation speed Rfoa is obtained in advance by performing a test or the like, and during the third predetermined time tp3 described later, the outdoor unit control means 200 (particularly, the heat generated during the cooling operation). The number of rotations is such that the temperature of the outdoor unit control means 200 can be suppressed from being excessively increased when the indoor heat exchange heating operation is performed by cooling the inverter unit (not shown) that drives the compressor 21. The pre-heating outdoor fan rotation speed Rfoa is, for example, 650 rpm.
 次に、制御手段は、ST72でタイマー3の計測を開始してから所定時間(以降、第3所定時間tp3と記載する)が経過したか否かを判断する(ST75)。具体的には、CPU310が、ST75でタイマー3の計測を開始してから第3所定時間tp3が経過したか否かを判断する。ここで、第3所定時間tp3は、予め定められて記憶部330に記憶されているものであり、室内ファン回転数Rfiを加熱前室内ファン回転数Rfia、および、室外ファン回転数Rfoを加熱前室外ファン回転数Rfoaとして第3所定時間tp3の間それぞれを駆動すれば、冷房運転中に冷却された室内機3を昇温運転時に結露水が発生しない程度に暖めることができること、および、冷房運転中に発熱した室外機制御手段200を冷却できる時間である。第3所定時間tp3は、例えば15分間である。 Next, the control means determines whether or not a predetermined time (hereinafter referred to as a third predetermined time tp3) has elapsed after starting the measurement of the timer 3 in ST72 (ST75). Specifically, CPU 310 determines whether or not third predetermined time tp3 has elapsed since the start of timer 3 measurement in ST75. Here, the third predetermined time tp3 is predetermined and stored in the storage unit 330, and the indoor fan rotation speed Rfi is set to the pre-heating indoor fan rotation speed Rfia and the outdoor fan rotation speed Rfo is heated. If each of the outdoor fan rotation speeds Rfoa is driven for the third predetermined time tp3, the indoor unit 3 cooled during the cooling operation can be heated to the extent that no dew condensation water is generated during the heating operation, and the cooling operation This is the time during which the outdoor unit control means 200 that generated heat can be cooled. The third predetermined time tp3 is, for example, 15 minutes.
 第3所定時間tp3が経過していなければ(ST75-No)、制御手段は、ST75に処理を戻す。第3所定時間tp3が経過していれば(ST75-Yes)、制御手段は、タイマー3をリセットして(ST76)、加熱前運転制御を終了してメインルーチンに戻る。 If the third predetermined time tp3 has not elapsed (ST75-No), the control unit returns the process to ST75. If the third predetermined time tp3 has elapsed (ST75-Yes), the control means resets the timer 3 (ST76), ends the pre-heating operation control, and returns to the main routine.
 以上説明したように、室内熱交加熱運転前に冷房運転を行っているときに、昇温運転に先駆けて加熱前運転制御を行うことで、冷房運転時に冷却された室内機3の筐体30を暖めることができる。これにより、昇温運転時に、室内機3の温度と室内熱交温度Tcの温度差に起因した筐体30での結露水の発生を抑制できるので、室内熱交加熱運転を行っているときに室内機3の吹出口30gから室内に結露水が飛散することを防止できる。また、加熱前運転制御で室外ファン27を駆動することで、外気温度が高い冷房運転時に高い温度となっている室外機制御手段200を冷却できる。 As described above, when the cooling operation is performed before the indoor heat exchanger heating operation, the housing 30 of the indoor unit 3 cooled during the cooling operation is performed by performing the pre-heating operation control prior to the temperature raising operation. Can warm up. Thereby, since the generation | occurrence | production of the dew condensation water in the housing | casing 30 resulting from the temperature difference of the temperature of the indoor unit 3 and indoor heat exchanger temperature Tc can be suppressed at the time of temperature rising operation, when performing indoor heat exchanger heating operation It is possible to prevent the dew condensation water from scattering from the air outlet 30g of the indoor unit 3 into the room. Further, by driving the outdoor fan 27 with the pre-heating operation control, the outdoor unit control means 200 that is at a high temperature during the cooling operation with a high outside air temperature can be cooled.
 <サブルーチン:温度維持時室内ファン制御>
 次に、図9を用いて、室内熱交加熱運転制御のサブルーチンである温度維持時室内ファン制御について説明する。尚、室内ファン32の駆動制御は室内機制御手段300のみが行うため、以下の説明では、制御主体を室内機制御手段300のCPU310として説明する。
<Subroutine: Indoor fan control during temperature maintenance>
Next, the indoor fan control during temperature maintenance, which is a subroutine of indoor heat exchange heating operation control, will be described with reference to FIG. In addition, since the drive control of the indoor fan 32 is performed only by the indoor unit control means 300, in the following description, the control entity will be described as the CPU 310 of the indoor unit control means 300.
 まず、CPU310は、室内熱交温度Tcを取り込む(ST80)。尚、室内熱交温度Tcの取り込みについては、図4を用いて説明した暖房運転時保護制御におけるST11と同様の方法で取り込むため、説明は省略する。次に、CPU310は、時間をおいて取り込んだ2つの室内熱交温度Tcを用い、直近に取り込んだ室内熱交温度Tcから1つ前(例えば、30秒前)に取り込んだ室内熱交温度Tcを減じた温度差(以降、室内熱交温度差ΔTcと記載する)を算出する(ST81)。 First, the CPU 310 takes in the indoor heat exchange temperature Tc (ST80). In addition, about taking in indoor heat exchanger temperature Tc, since it takes in by the method similar to ST11 in heating operation protection control demonstrated using FIG. 4, description is abbreviate | omitted. Next, the CPU 310 uses the two indoor heat exchange temperatures Tc captured at a certain time, and the indoor heat exchange temperature Tc captured immediately before (for example, 30 seconds before) the most recently captured indoor heat exchange temperature Tc. Is calculated (hereinafter referred to as indoor heat exchange temperature difference ΔTc) (ST81).
 次に、CPU310は、ST81で算出した室内熱交温度差ΔTcが0超であるか否か、つまり、室内熱交温度Tcが上昇しているか否かを判断する(ST82)。室内熱交温度差ΔTcが0超であれば(ST82-Yes)、CPU310は、記憶部320に記憶している図6の室内ファン回転数テーブル400の「Tc上昇時」を参照して、以下のST83~ST85の処理を行う。 Next, CPU 310 determines whether or not the indoor heat exchanger temperature difference ΔTc calculated in ST81 is greater than 0, that is, whether or not the indoor heat exchanger temperature Tc has increased (ST82). If the indoor heat exchanger temperature difference ΔTc is greater than 0 (ST82-Yes), the CPU 310 refers to “when Tc rises” in the indoor fan rotation speed table 400 of FIG. Steps ST83 to ST85 are performed.
 まず、CPU310は、現在の室内熱交温度Tcが第3室内熱交温度Tc3未満であるか否かを判断する(ST83)。現在の室内熱交温度Tcが第3室内熱交温度Tc3未満であれば(ST83-Yes)、CPU310は、室内ファン回転数Rfiを現在の室内ファン回転数Rfiから10rpmを減じた回転数として(ST86)、温度維持時室内ファン制御を終了してメインルーチンに戻る。 First, the CPU 310 determines whether or not the current indoor heat exchange temperature Tc is lower than the third indoor heat exchange temperature Tc3 (ST83). If the current indoor heat exchange temperature Tc is lower than the third indoor heat exchange temperature Tc3 (ST83-Yes), the CPU 310 sets the indoor fan rotational speed Rfi as the rotational speed obtained by subtracting 10 rpm from the current indoor fan rotational speed Rfi ( ST86) Ends indoor fan control during temperature maintenance and returns to the main routine.
 現在の室内熱交温度Tcが第3室内熱交温度Tc3未満でなければ(ST83-No)、CPU310は、現在の室内熱交温度Tcが第3室内熱交温度Tc3以上第4室内熱交温度Tc4未満であるか否かを判断する(ST84)。現在の室内熱交温度Tcが第3室内熱交温度Tc3以上第4室内熱交温度Tc4未満であれば(ST84-Yes)、CPU310は、室内ファン回転数Rfiを変化させずに(ST87)、温度維持時室内ファン制御を終了してメインルーチンに戻る。 If the current indoor heat exchanger temperature Tc is not less than the third indoor heat exchanger temperature Tc3 (ST83-No), the CPU 310 determines that the current indoor heat exchanger temperature Tc is equal to or greater than the third indoor heat exchanger temperature Tc3 and the fourth indoor heat exchanger temperature Tc3. It is determined whether it is less than Tc4 (ST84). If the current indoor heat exchange temperature Tc is not less than the third indoor heat exchange temperature Tc3 and less than the fourth indoor heat exchange temperature Tc4 (ST84-Yes), the CPU 310 does not change the indoor fan rotational speed Rfi (ST87). When the temperature is maintained, the indoor fan control is terminated and the process returns to the main routine.
 現在の室内熱交温度Tcが第3室内熱交温度Tc3以上第4室内熱交温度Tc4未満でなければ(ST84-No)、つまり、現在の室内熱交温度Tcが第4室内熱交温度Tc4以上であれば、CPU310は、室内ファン回転数Rfiを現在の室内ファン回転数Rfiに70rpmを加えた回転数として(ST85)、温度維持時室内ファン制御を終了してメインルーチンに戻る。 If the current indoor heat exchange temperature Tc is not greater than or equal to the third indoor heat exchange temperature Tc3 and less than the fourth indoor heat exchange temperature Tc4 (ST84-No), that is, the current indoor heat exchange temperature Tc is equal to the fourth indoor heat exchange temperature Tc4. If it is above, CPU310 makes indoor fan rotation speed Rfi the rotation speed which added 70rpm to the current indoor fan rotation speed Rfi (ST85), ends indoor fan control at the time of temperature maintenance, and returns to the main routine.
 ST82において、室内熱交温度差ΔTcが0超でなければ(ST82-No)、CPU310は、ST81で算出した室内熱交温度差ΔTcが0である、つまり、室内熱交温度Tcが変化していないか否かを判断する(ST88)。室内熱交温度差ΔTcが0であれば(ST88-Yes)、CPU310は、記憶部320に記憶している図6の室内ファン回転数テーブル400の「Tc維持時」を参照して、以下のST89~ST95の処理を行う。 In ST82, if the indoor heat exchanger temperature difference ΔTc is not greater than 0 (ST82-No), the CPU 310 indicates that the indoor heat exchanger temperature difference ΔTc calculated in ST81 is 0, that is, the indoor heat exchanger temperature Tc has changed. It is determined whether or not there is (ST88). If the indoor heat exchange temperature difference ΔTc is 0 (ST88-Yes), the CPU 310 refers to “when maintaining Tc” in the indoor fan rotation speed table 400 of FIG. Processing of ST89 to ST95 is performed.
 まず、CPU310は、現在の室内熱交温度Tcが第2室内熱交温度Tc2未満であるか否かを判断する(ST89)。現在の室内熱交温度Tcが第2室内熱交温度Tc2未満であれば(ST89-Yes)、CPU310は、室内ファン回転数Rfiを現在の室内ファン回転数Rfiから40rpmを減じた回転数として(ST93)、温度維持時室内ファン制御を終了してメインルーチンに戻る。 First, the CPU 310 determines whether or not the current indoor heat exchange temperature Tc is lower than the second indoor heat exchange temperature Tc2 (ST89). If the current indoor heat exchange temperature Tc is lower than the second indoor heat exchange temperature Tc2 (ST89-Yes), the CPU 310 sets the indoor fan rotation speed Rfi as the rotation speed obtained by subtracting 40 rpm from the current indoor fan rotation speed Rfi ( ST93) Ends indoor fan control during temperature maintenance and returns to the main routine.
 現在の室内熱交温度Tcが第2室内熱交温度Tc2未満でなければ(ST89-No)、CPU310は、現在の室内熱交温度Tcが第2室内熱交温度Tc2以上第3室内熱交温度Tc3未満であるか否かを判断する(ST90)。現在の室内熱交温度Tcが第2室内熱交温度Tc2以上第3室内熱交温度Tc3未満であれば(ST90-Yes)、CPU310は、室内ファン回転数Rfiを現在の室内ファン回転数Rfiから30rpmを減じた回転数として(ST94)、温度維持時室内ファン制御を終了してメインルーチンに戻る。 If the current indoor heat exchange temperature Tc is not less than the second indoor heat exchange temperature Tc2 (ST89-No), the CPU 310 determines that the current indoor heat exchange temperature Tc is equal to or greater than the second indoor heat exchange temperature Tc2 and the third indoor heat exchange temperature. It is determined whether it is less than Tc3 (ST90). If the current indoor heat exchange temperature Tc is equal to or greater than the second indoor heat exchange temperature Tc2 and less than the third indoor heat exchange temperature Tc3 (ST90-Yes), the CPU 310 calculates the indoor fan rotational speed Rfi from the current indoor fan rotational speed Rfi. As the number of revolutions reduced by 30 rpm (ST94), the indoor fan control is terminated when the temperature is maintained, and the process returns to the main routine.
 現在の室内熱交温度Tcが第2室内熱交温度Tc2以上第3室内熱交温度Tc3未満でなければ(ST90-No)、CPU310は、現在の室内熱交温度Tcが第3室内熱交温度Tc3以上第4室内熱交温度Tc4未満であるか否かを判断する(ST91)。現在の室内熱交温度Tcが第3室内熱交温度Tc3以上第4室内熱交温度Tc4未満であれば(ST91-Yes)、CPU310は、室内ファン回転数Rfiを変化させずに(ST95)、温度維持時室内ファン制御を終了してメインルーチンに戻る。 If the current indoor heat exchanger temperature Tc is not equal to or greater than the second indoor heat exchanger temperature Tc2 and less than the third indoor heat exchanger temperature Tc3 (ST90-No), the CPU 310 determines that the current indoor heat exchanger temperature Tc is the third indoor heat exchanger temperature Tc. It is determined whether it is Tc3 or higher and lower than the fourth indoor heat exchange temperature Tc4 (ST91). If the current indoor heat exchange temperature Tc is not less than the third indoor heat exchange temperature Tc3 and less than the fourth indoor heat exchange temperature Tc4 (ST91-Yes), the CPU 310 does not change the indoor fan rotation speed Rfi (ST95). When the temperature is maintained, the indoor fan control is terminated and the process returns to the main routine.
 現在の室内熱交温度Tcが第3室内熱交温度Tc3以上第4室内熱交温度Tc4未満でなければ(ST93-No)、つまり、現在の室内熱交温度Tcが第4室内熱交温度Tc4以上であれば、CPU310は、室内ファン回転数Rfiを現在の室内ファン回転数Rfiに50rpmを加えた回転数として(ST98)、温度維持時室内ファン制御を終了してメインルーチンに戻る。 If the current indoor heat exchange temperature Tc is not equal to or higher than the third indoor heat exchange temperature Tc3 and lower than the fourth indoor heat exchange temperature Tc4 (ST93-No), that is, the current indoor heat exchange temperature Tc is equal to the fourth indoor heat exchange temperature Tc4. If it is above, CPU310 makes indoor fan rotation speed Rfi the rotation speed which added 50rpm to the current indoor fan rotation speed Rfi (ST98), ends indoor fan control at the time of temperature maintenance, and returns to the main routine.
 ST88において、室内熱交温度差ΔTcが0でなければ(ST88-No)、つまり、室内熱交温度Tcが低下しているのであれば、CPU310は、記憶部320に記憶している図6の室内ファン回転数テーブル400の「Tc下降時」を参照して、以下のST96~ST98の処理を行う。 In ST88, if the indoor heat exchange temperature difference ΔTc is not 0 (ST88-No), that is, if the indoor heat exchange temperature Tc is lowered, the CPU 310 stores the storage unit 320 in FIG. With reference to “when Tc is lowered” in the indoor fan rotation speed table 400, the following processes of ST96 to ST98 are performed.
 まず、CPU310は、現在の室内熱交温度Tcが第3室内熱交温度Tc3未満であるか否かを判断する(ST96)。現在の室内熱交温度Tcが第3室内熱交温度Tc3未満であれば(ST96-Yes)、CPU310は、室内ファン回転数Rfiを現在の室内ファン回転数Rfiから40rpmを減じた回転数として(ST98)、温度維持時室内ファン制御を終了してメインルーチンに戻る。 First, the CPU 310 determines whether or not the current indoor heat exchange temperature Tc is lower than the third indoor heat exchange temperature Tc3 (ST96). If the current indoor heat exchanger temperature Tc is lower than the third indoor heat exchanger temperature Tc3 (ST96-Yes), the CPU 310 sets the indoor fan rotational speed Rfi to a rotational speed obtained by subtracting 40 rpm from the current indoor fan rotational speed Rfi ( ST98) Ends indoor fan control during temperature maintenance and returns to the main routine.
 現在の室内熱交温度Tcが第3室内熱交温度Tc3未満でなければ(ST96-No)、つまり、現在の室内熱交温度Tcが第3室内熱交温度Tc3以上であれば、CPU310は、室内ファン回転数Rfiを変化させずに(ST97)、温度維持時室内ファン制御を終了してメインルーチンに戻る。 If the current indoor heat exchanger temperature Tc is not lower than the third indoor heat exchanger temperature Tc3 (ST96-No), that is, if the current indoor heat exchanger temperature Tc is equal to or higher than the third indoor heat exchanger temperature Tc3, the CPU 310 Without changing the indoor fan rotation speed Rfi (ST97), the indoor fan control is terminated when the temperature is maintained, and the process returns to the main routine.
 尚、前述したように、室内ファン制御テーブル400を用いて温度維持時室内ファン制御を行う際は、室内ファン回転数Rfiの上限回転数と下限回転数(900rpmと300rpm)の間で、室内ファン回転数Rfiが設定される。室内ファン回転数Rfiを室内ファン制御テーブル400で定めた回転数ずつ高くして900rpmに到達すれば、その後室内ファン回転数Rfiを高くする場合であっても、室内ファン回転数Rfiは900rpmに維持される。また、室内ファン回転数Rfiを室内ファン制御テーブル400で定めた回転数ずつ低くして300rpmに到達すれば、その後室内ファン回転数Rfiを低くする場合であっても、室内ファン回転数Rfiは300rpmに維持される。 As described above, when performing indoor fan control during temperature maintenance using the indoor fan control table 400, the indoor fan is between the upper and lower rotational speeds (900 rpm and 300 rpm) of the indoor fan rotational speed Rfi. A rotational speed Rfi is set. If the indoor fan rotational speed Rfi is increased by 900 rpm by increasing the rotational speed determined by the indoor fan control table 400, the indoor fan rotational speed Rfi is maintained at 900 rpm even when the indoor fan rotational speed Rfi is subsequently increased. Is done. Further, if the indoor fan rotational speed Rfi is decreased by the rotational speed determined by the indoor fan control table 400 to reach 300 rpm, the indoor fan rotational speed Rfi is 300 rpm even when the indoor fan rotational speed Rfi is subsequently decreased. Maintained.
 以上説明したように、室内熱交加熱運転時に行われる温度維持運転中に、室内ファン制御テーブル400を用いて温度維持時室内ファン制御を行うことによって、室内熱交温度Tcを第3室内熱交温度Tc3(=55℃)と第4室内熱交温度Tc4(=57℃)の間に10分間維持することができる。 As described above, the indoor heat exchange temperature Tc is set to the third indoor heat exchange by performing the indoor fan control during the temperature maintenance using the indoor fan control table 400 during the temperature maintenance operation performed during the indoor heat exchange heating operation. The temperature can be maintained for 10 minutes between the temperature Tc3 (= 55 ° C.) and the fourth indoor heat exchange temperature Tc4 (= 57 ° C.).
 <サブルーチン:温度維持時室外ファン制御>
 次に、室内熱交加熱運転制御のサブルーチンである温度維持時室外ファン制御について説明する。尚、室外ファン27の駆動制御は室外機制御手段200のみが行うため、以下の説明では、制御主体を室外機制御手段200のCPU210として説明する。
<Subroutine: Outdoor fan control during temperature maintenance>
Next, the outdoor fan control during temperature maintenance, which is a subroutine of indoor heat exchange heating operation control, will be described. In addition, since the drive control of the outdoor fan 27 is performed only by the outdoor unit control means 200, in the following description, the control entity will be described as the CPU 210 of the outdoor unit control means 200.
 まず、CPU210は、室内温度Tiを、通信230を介して室内機3から取り込むとともに、外気温度センサ73で検出した外気温度Toを、センサ入力部240を介して取り込む(ST111)。尚、CPU210は、室内温度Tiと外気温度Toを定期的(例えば、30秒毎)に取り込む。 First, the CPU 210 takes in the room temperature Ti from the indoor unit 3 via the communication 230 and takes in the outside air temperature To detected by the outside air temperature sensor 73 via the sensor input unit 240 (ST111). The CPU 210 takes in the room temperature Ti and the outside air temperature To periodically (for example, every 30 seconds).
 次に、CPU210は、ST111で取り込んだ外気温度Toが、所定の第1外気温度(以降、第1閾外気温度Top1と記載する)未満であるか否かを判断する(ST112)。例えば、第1閾外気温度Top1は、図6(B)の室外ファン制御テーブル500に定められている外気温度:16℃である。 Next, the CPU 210 determines whether or not the outside air temperature To taken in in ST111 is lower than a predetermined first outside air temperature (hereinafter referred to as a first threshold outside air temperature Top1) (ST112). For example, the first threshold outside air temperature Top1 is the outside air temperature: 16 ° C. defined in the outdoor fan control table 500 of FIG.
 取り込んだ外気温度Toが第1閾外気温度Top1未満であれば(ST112-Yes)、CPU210は、記憶部220に記憶されている室外ファン制御テーブル500を参照して、室外ファン27を圧縮機回転数Rcに応じた室外ファン回転数Rfoで駆動して(ST117)、温度維持時室外ファン制御を終了してメインルーチンに戻る。 If the taken-in outdoor temperature To is lower than the first threshold outdoor temperature Top1 (ST112-Yes), the CPU 210 refers to the outdoor fan control table 500 stored in the storage unit 220 and rotates the outdoor fan 27 in the compressor. Driving is performed at the outdoor fan rotation speed Rfo corresponding to the number Rc (ST117), the outdoor fan control at the time of temperature maintenance is terminated, and the process returns to the main routine.
 取り込んだ外気温度Toが第1閾外気温度Top1未満でなければ(ST112-No)、CPU210は、取り込んだ外気温度Toが第1閾外気温度Top1以上、所定の第2外気温度(以降、第2閾外気温度Top2と記載する)未満であるか否かを判断する(ST113)。第2閾外気温度Top2は第1閾外気温度Top1より高い温度であり、例えば、図6(B)の室外ファン制御テーブル500に定められている外気温度:24℃である。 If the taken-in outside air temperature To is not less than the first threshold outside air temperature Top1 (ST112-No), the CPU 210 determines that the taken-in outside air temperature To is equal to or higher than the first threshold outside air temperature Top1 and a predetermined second outside air temperature (hereinafter referred to as a second temperature). It is determined whether or not the temperature is below the threshold outside air temperature Top2 (ST113). The second threshold outside air temperature Top2 is higher than the first threshold outside air temperature Top1, and is, for example, the outside air temperature: 24 ° C. defined in the outdoor fan control table 500 in FIG. 6B.
 取り込んだ外気温度Toが第1閾外気温度Top1以上第2閾外気温度Top2未満でなければ(ST113-No)、つまり、取り込んだ外気温度Toが第2閾外気温度Top2以上であれば、CPU210は、記憶部220に記憶されている室外ファン制御テーブル500を参照して、室外ファン回転数Rfoを0rpmとする(ST118)、つまり、室外ファン27を停止して、温度維持時室外ファン制御を終了してメインルーチンに戻る。 If the taken-in outside temperature To is not the first threshold outside temperature Top1 or more and less than the second threshold outside temperature Top2 (ST113-No), that is, if the taken-out outside temperature To is the second threshold outside temperature Top2 or more, the CPU 210 Referring to outdoor fan control table 500 stored in storage unit 220, outdoor fan rotation speed Rfo is set to 0 rpm (ST118), that is, outdoor fan 27 is stopped and outdoor fan control is terminated when temperature is maintained. And return to the main routine.
 取り込んだ外気温度Toが第1閾外気温度Top1以上第2閾外気温度Top2未満であれば(ST113-Yes)、CPU210は、ST111で取り込んだ室内温度Tiが所定の室内温度(以降、閾室内温度Tipと記載する)未満であるか否かを判断する(ST114)。例えば、閾室内温度Tipは、図6(B)の室外ファン制御テーブル500に定められている室内温度:27℃である。 If the taken-in outside air temperature To is equal to or higher than the first threshold outside air temperature Top1 and lower than the second threshold outside air temperature Top2 (ST113-Yes), the CPU 210 determines that the room temperature Ti taken in at ST111 is a predetermined room temperature (hereinafter referred to as the threshold room temperature). It is determined whether it is less than (describes Tip) (ST114). For example, the threshold indoor temperature Tip is the indoor temperature: 27 ° C. defined in the outdoor fan control table 500 in FIG.
 取り込んだ室内温度Tiが閾室内温度Tip未満でなければ(ST114-No)、つまり、取り込んだ室内温度Tiが閾室内温度Tip以上であれば、CPU210は、ST118に処理を進める。取り込んだ室内温度Tiが閾室内温度Tip未満であれば(ST114-Yes)、CPU210は、現在の室外ファン回転数Rfoが0rpmとなっているか否かを判断する(ST115)。 If the fetched room temperature Ti is not less than the threshold room temperature Tip (ST114-No), that is, if the fetched room temperature Ti is equal to or higher than the threshold room temperature Tip, the CPU 210 proceeds to ST118. If the captured indoor temperature Ti is lower than the threshold indoor temperature Tip (ST114-Yes), the CPU 210 determines whether or not the current outdoor fan rotation speed Rfo is 0 rpm (ST115).
 現在の室外ファン回転数Rfoが0rpmとなっていれば(ST115-Yes)、CPU210は、ST118に処理を進める、つまり、室外ファン27が停止している状態を維持する。現在の室外ファン回転数Rfoが0rpmとなっていなければ(ST115-No)、CPU210は、室外ファン回転数Rfoを所定回転数(以降、維持時室外ファン回転数Rfobと記載する)として(ST116)、温度維持時室外ファン制御を終了してメインルーチンに戻る。例えば、維持時室外ファン回転数Rfobは、図6(B)の室外ファン制御テーブル500に定められている室外ファン回転数Rfo:190rpmである。 If the current outdoor fan rotation speed Rfo is 0 rpm (ST115-Yes), the CPU 210 proceeds to ST118, that is, maintains the state where the outdoor fan 27 is stopped. If the current outdoor fan rotation speed Rfo is not 0 rpm (ST115-No), CPU 210 sets outdoor fan rotation speed Rfo as a predetermined rotation speed (hereinafter referred to as maintenance outdoor fan rotation speed Rfob) (ST116). When the temperature is maintained, the outdoor fan control is terminated and the process returns to the main routine. For example, the maintenance-time outdoor fan rotation speed Rfob is the outdoor fan rotation speed Rfo: 190 rpm defined in the outdoor fan control table 500 of FIG.
 以上説明したように、室内熱交加熱運転時に行われる温度維持運転中に、室外ファン制御テーブル500を用いて温度維持時室外ファン制御を行う。これにより、室外ファン制御テーブル500に基づいて室外ファン27を制御することで室内熱交温度Tcを55℃~57℃の範囲に維持しているときに、圧縮機21の吐出圧力が使用範囲の上限値を超えないようにできる。 As described above, during the temperature maintenance operation performed during the indoor heat exchanger heating operation, the outdoor fan control is performed during the temperature maintenance using the outdoor fan control table 500. Thereby, when the indoor heat exchange temperature Tc is maintained in the range of 55 ° C. to 57 ° C. by controlling the outdoor fan 27 based on the outdoor fan control table 500, the discharge pressure of the compressor 21 is within the usage range. It is possible not to exceed the upper limit.
 尚、上記ST115の処理で説明したように、温度維持時室外ファン制御では、いったん室外ファン27を停止させると、その後は室内熱交加熱運転が終了するまでは室外ファン27を駆動しない。これは、室内熱交温度Tcを55℃以上に維持しているときに、室外ファン27を再起動することによって、室外熱交換器23における蒸発能力が上昇して蒸発圧力が上昇し、これに伴って圧縮機21の吐出圧力も上昇して使用範囲の上限値を超えることを防ぐためである。 As described in the process of ST115, in the outdoor fan control during temperature maintenance, once the outdoor fan 27 is stopped, the outdoor fan 27 is not driven until the indoor heat exchange heating operation is finished. This is because when the indoor heat exchange temperature Tc is maintained at 55 ° C. or higher, the outdoor fan 27 is restarted, whereby the evaporation capacity in the outdoor heat exchanger 23 is increased and the evaporation pressure is increased. This is to prevent the discharge pressure of the compressor 21 from increasing and exceeding the upper limit of the use range.
 <室内熱交加熱運転時保護制御>
 次に、上述した室内熱交加熱運転を行っているときに、圧縮機21の吐出圧力が使用範囲の上限値を超えないようにする室内熱交加熱運転時保護制御について、図11を用いて説明する。図11において、STは処理のステップを表し、これに続く数字はステップ番号を表している。尚、室内熱交加熱運転時保護制御は、室内熱交加熱運転を行っているときに実行されるものであり、暖房運転を行っているときに実行される暖房運転時保護制御とは異なるものである。
<Protection control during indoor heat exchanger operation>
Next, with reference to FIG. 11, protection control during indoor heat exchanger heating operation so that the discharge pressure of the compressor 21 does not exceed the upper limit value of the use range during the indoor heat exchanger heating operation described above will be described. explain. In FIG. 11, ST represents a process step, and the number following this represents a step number. The indoor heat exchange heating operation protection control is executed when the indoor heat exchange heating operation is performed, and is different from the heating operation protection control executed when the heating operation is performed. It is.
 まず、制御手段は、室内熱交温度Tcと吐出温度Tdと室外熱交換器23の温度(以降、室外熱交温度Teと記載する)と外気温度Toを取り込む(ST131)。これらのうち、室内熱交温度Tcと吐出温度Tdについては、図4を用いて説明した暖房運転時保護制御におけるST11と同様の方法で取り込むため、説明は省略する。また、外気温度Toについては、図10を用いて説明した温度維持時室外ファン制御におけるST111と同様の方法で取り込むため、説明は省略する。室外熱交温度Teは、CPU210が、室外熱交温度センサ72で検出した室外熱交温度Teを、センサ入力部240を介して定期的(例えば、30秒毎)に取り込む。 First, the control means takes in the indoor heat exchange temperature Tc, the discharge temperature Td, the temperature of the outdoor heat exchanger 23 (hereinafter referred to as the outdoor heat exchange temperature Te), and the outdoor air temperature To (ST131). Among these, the indoor heat exchange temperature Tc and the discharge temperature Td are captured in the same manner as ST11 in the heating operation protection control described with reference to FIG. Further, the outside air temperature To is taken in by the same method as ST111 in the outdoor fan control during temperature maintenance described with reference to FIG. As for the outdoor heat exchange temperature Te, the CPU 210 takes in the outdoor heat exchange temperature Te detected by the outdoor heat exchange temperature sensor 72 periodically (for example, every 30 seconds) via the sensor input unit 240.
 次に、制御手段は、ST131で取り込んだ室内熱交温度Tcが第1閾室内熱交温度Tch1よりも高い温度である所定の温度(以降、第2閾室内熱交温度Tch2と記載する)以上であるか否かを判断する(ST132)。具体的には、CPU310は、記憶部320に予め記憶されている第2閾室内熱交温度Tch2を読み出して室内熱交温度Tcと比較する。尚、第2閾室内熱交温度Tch2は、予め試験などを行って求められているものであり、第1閾室内熱交温度Tch1よりも高く、かつ、前述した圧縮機21の吐出圧力の使用範囲の上限値に対応する室内熱交温度Tcより所定温度低い温度とされている。第2閾室内熱交温度Tch2は、例えば59℃である。 Next, the control means is equal to or higher than a predetermined temperature (hereinafter referred to as second threshold indoor heat exchange temperature Tch2) at which the indoor heat exchange temperature Tc captured in ST131 is higher than the first threshold indoor heat exchange temperature Tch1. It is determined whether or not (ST132). Specifically, CPU 310 reads out second threshold indoor heat exchange temperature Tch2 stored in advance in storage unit 320 and compares it with indoor heat exchange temperature Tc. The second threshold indoor heat exchange temperature Tch2 is obtained in advance through a test or the like, is higher than the first threshold indoor heat exchange temperature Tch1, and uses the discharge pressure of the compressor 21 described above. The temperature is a predetermined temperature lower than the indoor heat exchange temperature Tc corresponding to the upper limit value of the range. The second threshold indoor heat exchange temperature Tch2 is, for example, 59 ° C.
 室内熱交温度Tcが第2閾室内熱交温度Tch2以上であれば(ST132-Yes)、制御手段は、室内熱交加熱運転を停止して(ST136)、室内熱交加熱運転時保護制御に関わる処理を終了する。尚、ST136の処理を行った後は、空気調和機1の運転を停止させてもよい。また、圧縮機21を停止させて室内ファン32のみ駆動し続ける送風運転としてもよい。あるいは、圧縮機21を所定回転数で駆動するとともに、膨張弁24の開度Dを室内熱交加熱運転時の所定膨張弁開度Dpよりも開き、かつ、室内ファン32を室内熱交加熱運転時よりも高い室内ファン回転数Rfiで駆動して、一定時間室内熱交換器31の乾燥運転を続けてもよい。この乾燥運転では、室内熱交加熱運転時よりも膨張弁24の開度Dを大きくし、かつ、室内ファン回転数Rfiも高くするので、圧縮機21の吐出圧力が室内熱交加熱運転時よりも低下する。 If the indoor heat exchanger temperature Tc is equal to or higher than the second threshold indoor heat exchanger temperature Tch2 (ST132-Yes), the control means stops the indoor heat exchanger heating operation (ST136) and performs protection control during the indoor heat exchanger heating operation. End the process involved. In addition, you may stop the driving | operation of the air conditioner 1 after performing the process of ST136. Moreover, it is good also as a ventilation operation which stops the compressor 21 and continues driving only the indoor fan 32. Alternatively, the compressor 21 is driven at a predetermined rotational speed, the opening D of the expansion valve 24 is opened more than the predetermined expansion valve opening Dp during the indoor heat exchange heating operation, and the indoor fan 32 is operated in the indoor heat exchange heating operation. It is possible to drive the indoor heat exchanger 31 for a certain period of time by driving at a higher indoor fan speed Rfi than the time. In this drying operation, the opening degree D of the expansion valve 24 is made larger than that in the indoor heat exchanger heating operation, and the indoor fan rotation speed Rfi is also increased, so that the discharge pressure of the compressor 21 is higher than that in the indoor heat exchanger heating operation. Also decreases.
 室内熱交温度Tcが第2閾室内熱交温度Tch2以上でなければ(ST132-No)、制御手段は、ST131で取り込んだ吐出温度Tdが第1閾吐出温度Tdh1以上であるか否かを判断する(ST133)。具体的には、CPU210が、吐出温度Tdが第1閾吐出温度Tdh1以上であるか否かを判断する。 If the indoor heat exchanger temperature Tc is not equal to or higher than the second threshold indoor heat exchanger temperature Tch2 (ST132-No), the control unit determines whether or not the discharge temperature Td captured in ST131 is equal to or higher than the first threshold discharge temperature Tdh1. (ST133). Specifically, the CPU 210 determines whether or not the discharge temperature Td is equal to or higher than the first threshold discharge temperature Tdh1.
 取り込んだ吐出温度Tdが第1閾吐出温度Tdh1以上であれば(ST133-Yes)、制御手段は、ST136に処理を進める。 If the fetched discharge temperature Td is equal to or higher than the first threshold discharge temperature Tdh1 (ST133-Yes), the control means advances the process to ST136.
 取り込んだ吐出温度Tdが第1閾吐出温度Tdh1以上でなければ(ST133-No)、制御手段は、ST131で取り込んだ室外熱交温度Teが所定の室外熱交温度(以降、閾室外熱交温度Tehと記載する)以上であるか否かを判断する(ST134)。具体的には、CPU210が、取り込んだ室外熱交温度Teが閾室外熱交温度Teh以上であるか否かを判断する。ここで、閾室外熱交温度Tehは、予め試験などを行って求められて記憶部220に記憶されているものであり、室外熱交温度Teが閾室外熱交温度Teh以上であれば、圧縮機21の吸入圧力が上昇して圧縮機21の圧縮比(吐出圧力と吸入圧力の比)が使用範囲の下限値を下回る恐れがある温度である。 If the taken discharge temperature Td is not equal to or higher than the first threshold discharge temperature Tdh1 (ST133-No), the control means determines that the outdoor heat exchange temperature Te taken in ST131 is a predetermined outdoor heat exchange temperature (hereinafter, the threshold outdoor heat exchange temperature). It is determined whether or not (described as Teh) (ST134). Specifically, the CPU 210 determines whether or not the captured outdoor heat exchange temperature Te is equal to or higher than the threshold outdoor heat exchange temperature Teh. Here, the threshold outdoor heat exchange temperature Teh is obtained in advance by performing a test or the like and stored in the storage unit 220. If the outdoor heat exchange temperature Te is equal to or higher than the threshold outdoor heat exchange temperature Teh, compression is performed. The temperature at which the suction pressure of the compressor 21 rises and the compression ratio of the compressor 21 (the ratio between the discharge pressure and the suction pressure) may fall below the lower limit value of the use range.
 取り込んだ室外熱交温度Teが閾室外熱交温度Teh以上であれば(ST134-Yes)、制御手段は、ST136に処理を進める。 If the fetched outdoor heat exchange temperature Te is equal to or higher than the threshold outdoor heat exchange temperature Teh (ST134-Yes), the control means proceeds to ST136.
 取り込んだ室外熱交温度Teが閾室外熱交温度Teh以上でなければ(ST134-No)、制御手段は、ST131で取り込んだ外気温度Toが所定の外気温度(以降、第3閾外気温度Top3と記載する)以上であるか否かを判断する(ST135)。具体的には、CPU310が、取り込んだ外気温度Toが第3閾外気温度Top3以上であるか否かを判断する。ここで、第3閾外気温度Top3は、予め試験などを行って求められて記憶部220に記憶されているものであり、外気温度Toが第3閾外気温度Top3以上であるときに室内熱交加熱運転を行えば、圧縮機21の吐出圧力が過昇して圧縮機21の吐出圧力の使用範囲の下限値を超える恐れがある温度である。第3閾外気温度Top3は、前述した第1閾外気温度Top1や第2閾外気温度Top2より高い温度であり、例えば43℃である。 If the taken-in outdoor heat exchange temperature Te is not equal to or higher than the threshold outdoor heat exchange temperature Teh (ST134-No), the control means determines that the outside air temperature To taken in ST131 is a predetermined outside air temperature (hereinafter referred to as a third threshold outside air temperature Top3). It is determined whether or not it is (described) (ST135). Specifically, the CPU 310 determines whether or not the taken-in outside temperature To is equal to or higher than the third threshold outside temperature Top3. Here, the third threshold outside air temperature Top3 is obtained by performing a test or the like in advance and stored in the storage unit 220. When the outside air temperature To is equal to or higher than the third threshold outside air temperature Top3, the indoor heat exchange is performed. If the heating operation is performed, the temperature is such that the discharge pressure of the compressor 21 is excessively increased and may exceed the lower limit value of the use range of the discharge pressure of the compressor 21. The third threshold outside temperature Top3 is higher than the first threshold outside temperature Top1 and the second threshold outside temperature Top2 described above, and is 43 ° C., for example.
 取り込んだ外気温度Toが第3閾外気温度Top3以上でなければ(ST134-No)、制御手段は、ST131に処理を戻す。取り込んだ外気温度Toが第3閾外気温度Top3以上であれば(ST134-Yes)、制御手段は、ST136に処理を戻す。 If the taken-in outside temperature To is not equal to or higher than the third threshold outside temperature Top3 (ST134-No), the control unit returns the process to ST131. If the taken-out outside temperature To is equal to or higher than the third threshold outside temperature Top3 (ST134-Yes), the control unit returns the process to ST136.
 以上説明したように、室内熱交加熱運転時保護制御では、室内熱交温度Tcが暖房運転時保護制御における第1閾室内熱交温度Tch1(=55℃)よりも高い第2閾室内熱交温度Tch2(=59℃)以上となるまで、圧縮機21を停止させない。これにより、室外熱交加熱運転において室内熱交温度Tcを55℃~57℃に維持することができ、かつ、室内熱交温度Tcが第2閾室内熱交温度Tch2以上となれば圧縮機21を停止させるので、圧縮機21の吐出圧力が使用範囲の上限値を超えることを抑制できる。 As described above, in the indoor heat exchange heating operation protection control, the second threshold indoor heat exchange in which the indoor heat exchange temperature Tc is higher than the first threshold indoor heat exchange temperature Tch1 (= 55 ° C.) in the heating operation protection control. The compressor 21 is not stopped until the temperature becomes equal to or higher than the temperature Tch2 (= 59 ° C.). Thereby, in the outdoor heat exchange heating operation, the indoor heat exchange temperature Tc can be maintained at 55 ° C. to 57 ° C., and if the indoor heat exchange temperature Tc becomes equal to or higher than the second threshold indoor heat exchange temperature Tch2, the compressor 21 Therefore, it is possible to suppress the discharge pressure of the compressor 21 from exceeding the upper limit value of the use range.
 また、室内熱交加熱運転時保護制御では、圧縮機21の吐出温度Tdが、暖房運転時保護制御で圧縮機21を停止させる閾温度である第2閾吐出温度Tdh2(=115℃)よりも低い温度である第1閾吐出温度Tdh1(=105℃)以上となれば、圧縮機21を停止させる。室内熱交加熱運転において室内熱交温度Tcを55℃~57℃に維持しているときは、圧縮機21の吐出温度Tdが上昇しやすくて吐出圧力も上昇しやすい。従って、吐出温度Tdが、第2閾吐出温度Tdh2よりも低い第1閾吐出温度Tdh1以上となれば圧縮機21を停止させることで、圧縮機21の吐出圧力が使用範囲の上限値を超えることを効果的に抑制できる。 Further, in the indoor heat exchanger heating operation protection control, the discharge temperature Td of the compressor 21 is higher than the second threshold discharge temperature Tdh2 (= 115 ° C.), which is the threshold temperature at which the compressor 21 is stopped by the heating operation protection control. When the temperature is equal to or higher than the first threshold discharge temperature Tdh1 (= 105 ° C.), which is a low temperature, the compressor 21 is stopped. When the indoor heat exchange temperature Tc is maintained at 55 ° C. to 57 ° C. in the indoor heat exchange heating operation, the discharge temperature Td of the compressor 21 is likely to rise and the discharge pressure is likely to rise. Therefore, when the discharge temperature Td becomes equal to or higher than the first threshold discharge temperature Tdh1 lower than the second threshold discharge temperature Tdh2, the compressor 21 is stopped, so that the discharge pressure of the compressor 21 exceeds the upper limit value of the use range. Can be effectively suppressed.
 さらには、室内熱交加熱運転時保護制御では、暖房運転時保護制御にはない室外熱交温度Teによる圧縮機21の停止も含まれている。本発明の室内熱交加熱運転は、室内熱交換器31で発生する凝縮水によりカビや細菌が繁殖する可能性が高くなる冷房運転が行われる夏季に実行されることが多いと考えられる。夏季は外気温度Toが高く、外気温度Toが高いことに起因して、室内熱交加熱運転では蒸発器として機能する室外熱交換器23の室外熱交温度Teが高くなる。この場合、室外熱交温度Teが高くなることに起因して圧縮機21の吸入圧力が上昇する恐れがある。そこで、室内熱交加熱運転時保護制御では、室外熱交温度Teが閾室外熱交温度Teh以上であれば圧縮機21を停止して圧縮機21の吸入圧力が上昇することを抑制することで、圧縮機21の圧縮比が使用範囲の下限値を下回ることを抑制できる。 Furthermore, the protection control during indoor heat exchange heating operation includes the stop of the compressor 21 due to the outdoor heat exchange temperature Te that is not included in the protection control during heating operation. It is considered that the indoor heat exchange heating operation of the present invention is often performed in the summer when cooling operation is performed in which the possibility of mold and bacteria breeding is increased by the condensed water generated in the indoor heat exchanger 31. In summer, the outdoor air temperature To is high and the outdoor air temperature To is high, so that in the indoor heat exchanger heating operation, the outdoor heat exchanger temperature Te of the outdoor heat exchanger 23 that functions as an evaporator increases. In this case, the suction pressure of the compressor 21 may increase due to the increase in the outdoor heat exchange temperature Te. Therefore, in the indoor heat exchanger heating operation protection control, if the outdoor heat exchanger temperature Te is equal to or higher than the threshold outdoor heat exchanger temperature Teh, the compressor 21 is stopped to prevent the suction pressure of the compressor 21 from increasing. Moreover, it can suppress that the compression ratio of the compressor 21 falls below the lower limit of the use range.
 <濡れ制御運転について>
 本発明では、前述の室内熱交加熱運転に先立って、以下のように濡れ制御運転が行われてもよい。濡れ制御運転は、冷房運転後に室内熱交換器31の温度および湿度に基づき特定の水量の結露水で室内熱交換器31の表面を濡らすように室内熱交温度を制御するものである。前述のように、室内熱交換器31の表面に結露水が存在する状態で室内熱交温度が高温に維持されると、室内熱交換器31の表面に存在するカビや細菌の残存率を大幅に減少させることができる。ここでは、室内機3で室内機制御手段300のセンサ入力部340には、室内機3内の相対湿度を計測する図示しない室内湿度センサから、計測された湿度の湿度情報を含む情報信号が供給される。
<Wet control operation>
In the present invention, prior to the indoor heat exchanger heating operation described above, the wetting control operation may be performed as follows. In the wetting control operation, the indoor heat exchange temperature is controlled so that the surface of the indoor heat exchanger 31 is wetted with condensed water having a specific amount of water based on the temperature and humidity of the indoor heat exchanger 31 after the cooling operation. As described above, when the indoor heat exchange temperature is maintained at a high temperature in the presence of condensed water on the surface of the indoor heat exchanger 31, the residual rate of mold and bacteria existing on the surface of the indoor heat exchanger 31 is greatly increased. Can be reduced. Here, an information signal including humidity information of the measured humidity is supplied from the indoor humidity sensor (not shown) that measures the relative humidity in the indoor unit 3 to the sensor input unit 340 of the indoor unit control means 300 in the indoor unit 3. Is done.
 図12に示されるように、制御手段は、冷房運転の終了を認識すると、ST137で室内ファン32の回転を停止する。室内ファン32の静止は室内熱交換器31の表面から結露水が蒸発することを抑制する。このとき、四方弁22は冷房運転時の位置が維持される。なお、ST137で制御手段は、室内ファン32の回転を停止するほか、室内ファン32の回転数を下げたり、間欠的な回転を実施したりしてもよい。室内ファン32の回転は、結露水の水量に応じて適宜に調整されればよい。 As shown in FIG. 12, when the control means recognizes the end of the cooling operation, it stops the rotation of the indoor fan 32 in ST137. The rest of the indoor fan 32 suppresses evaporation of condensed water from the surface of the indoor heat exchanger 31. At this time, the position of the four-way valve 22 during the cooling operation is maintained. In ST137, the control means may stop the rotation of the indoor fan 32, reduce the rotation speed of the indoor fan 32, or perform intermittent rotation. The rotation of the indoor fan 32 may be adjusted as appropriate according to the amount of condensed water.
 制御手段はST138で、室内熱交換器31の表面に生成される結露水の水量から、室内熱交換器31の濡れ量を特定する。濡れ量の特定にあたって制御手段は室内温度センサ75や室内湿度センサの出力信号から飽和水蒸気量を推定する。制御手段は、推定された飽和水蒸気量、および、室内機3に組み込まれるタイマー(図示しない)で計時された継続時間や経過時間の値から結露水の水量を特定する。一般に、冷房運転後には室内熱交換器31の温度は低く室内熱交換器31の表面に結露水は生成される。 The control means specifies the wet amount of the indoor heat exchanger 31 from the amount of condensed water generated on the surface of the indoor heat exchanger 31 in ST138. In specifying the wetting amount, the control means estimates the saturated water vapor amount from the output signals of the indoor temperature sensor 75 and the indoor humidity sensor. The control means specifies the amount of condensed water from the estimated saturated water vapor amount and the values of duration and elapsed time measured by a timer (not shown) incorporated in the indoor unit 3. Generally, after the cooling operation, the temperature of the indoor heat exchanger 31 is low, and condensed water is generated on the surface of the indoor heat exchanger 31.
 推定された濡れ量が予め定めた規定量に不足する場合には、制御手段はST139で室内熱交換器31を冷却する。室内熱交換器31の冷却にあたって制御手段は室内熱交換器31内で冷媒の蒸発温度を下げる膨張弁24および圧縮機21の動作を指示する。その結果、室内熱交換器31の温度が下がり、結露水の生成は促進される。室内熱交換器31の表面では十分な濡れが確保される。濡れ量の予め定めた規定量には、湿度が高い状態で細菌やカビに熱を与えることで、乾燥状態での温度よりも低い温度で細菌を殺して数を減少させることができる湿熱殺菌を行うために、室内熱交換器31の加熱中に蒸発することで湿熱殺菌の実効性が失われない水量に設定されればよい。 When the estimated amount of wetness is insufficient to a predetermined amount, the control means cools the indoor heat exchanger 31 in ST139. In cooling the indoor heat exchanger 31, the control means instructs the operations of the expansion valve 24 and the compressor 21 that lower the evaporation temperature of the refrigerant in the indoor heat exchanger 31. As a result, the temperature of the indoor heat exchanger 31 decreases and the generation of condensed water is promoted. Sufficient wetting is ensured on the surface of the indoor heat exchanger 31. Wet heat sterilization that can reduce the number of bacteria by killing bacteria at a temperature lower than the temperature in a dry state by giving heat to bacteria and mold in a high humidity state to a predetermined prescribed amount of wetness In order to carry out, it should just be set to the amount of water which does not lose the effectiveness of wet heat sterilization by evaporating during the heating of the indoor heat exchanger 31.
 推定された濡れ量が予め定めた規定量に達していれば、制御手段はST140で室内熱交換器31を加熱する。室内熱交換器31の加熱にあたって冷媒の凝縮が用いられる。このとき、制御手段は四方弁22の切り替えを実行する。四方弁22は暖房運転時の位置に切り替えられる。ここでは、加熱時の室内熱交換器31の温度は摂氏45度以上に設定される。好ましくは、室内熱交換器31の温度は摂氏60度以上に設定される。こうして従来行っていた乾燥の動作を経ずに、室内熱交換器31の表面で結露水を蒸発させずに室内熱交換器31は加熱される。室内熱交換器31によって結露水は加熱される。加熱された結露水中で細菌やカビは加熱される。したがって、細菌やカビは湿熱殺菌される。細菌やカビを殺して数を減少させることができる。 If the estimated wetting amount has reached a predetermined amount, the control means heats the indoor heat exchanger 31 in ST140. Refrigerant condensation is used for heating the indoor heat exchanger 31. At this time, the control means executes switching of the four-way valve 22. The four-way valve 22 is switched to the position during heating operation. Here, the temperature of the indoor heat exchanger 31 during heating is set to 45 degrees Celsius or more. Preferably, the temperature of the indoor heat exchanger 31 is set to 60 degrees Celsius or more. Thus, the indoor heat exchanger 31 is heated without evaporating condensed water on the surface of the indoor heat exchanger 31 without passing through the drying operation conventionally performed. The condensed water is heated by the indoor heat exchanger 31. Bacteria and mold are heated in the heated condensed water. Therefore, bacteria and molds are sterilized by wet heat. Can kill bacteria and mold to reduce the number.
 特に、室内熱交換器31の温度が摂氏45度以上に設定されると、結露水が摂氏45度以上に熱せられ、効果的に細菌やカビの湿熱殺菌は実現される。さらに、室内熱交換器31の温度が摂氏60度以上に設定されると、さらに効果的に細菌やカビの湿熱殺菌は実現される。殺菌までの時間は短縮されることができる。ただし、結露水の蒸発をできる限り抑制したいことから、室内熱交換器31の温度は摂氏70度以下でできる限り低い温度に設定されることが望まれる。前記熱交換器が乾燥している状態では、温度が摂氏45度以上に設定されても、細菌やカビの殺菌には繋がらない。 In particular, when the temperature of the indoor heat exchanger 31 is set to 45 degrees Celsius or higher, the dew condensation water is heated to 45 degrees Celsius or higher, so that the heat sterilization of bacteria and molds is effectively realized. Further, when the temperature of the indoor heat exchanger 31 is set to 60 degrees Celsius or more, the wet heat sterilization of bacteria and fungi is more effectively realized. The time to sterilization can be shortened. However, in order to suppress the evaporation of condensed water as much as possible, it is desirable that the temperature of the indoor heat exchanger 31 is set as low as possible at 70 degrees Celsius or less. In a state where the heat exchanger is dry, even if the temperature is set to 45 degrees Celsius or higher, it does not lead to sterilization of bacteria and mold.
 室内熱交換器31の加熱にあたって、室内熱交換器31の温度が60度を超えて過負荷条件とならないようにするために、膨張弁24の開度およびファン27、32の回転は適宜に調整されればよい。 When the indoor heat exchanger 31 is heated, the opening degree of the expansion valve 24 and the rotation of the fans 27 and 32 are appropriately adjusted so that the temperature of the indoor heat exchanger 31 does not exceed 60 degrees and an overload condition is reached. It only has to be done.
 ST141で制御手段は湿熱殺菌の完了を判断する。判断にあたって例えば制御手段はタイマーの計時を用いる。タイマーは設定温度の持続時間を計測する。設定温度の持続時間が規定値に達すると、制御手段は湿熱殺菌を終了する。設定温度の持続時間が規定値未満であれば、制御手段は加熱の動作を継続する。設定温度の持続時間の規定値は、湿熱殺菌の効果が得られる時間以上であればよい。出願人の実験によれば、大腸菌であれば3分以上、黒カビであれば5分以上とすることで、湿熱殺菌の効果が得られることが分かっている。またレジオネラ菌であれば10分以上が望ましいことが分かっている。このとき、制御手段はST142で圧縮機21の動作を観視する。設定温度までの加熱にあたって圧縮機21の過負荷が検知されると、ST7で制御手段は圧縮機21の吐出温度を低下させ、加熱の動作を終了する。過負荷が検知されなければ、ST141で湿熱殺菌の完了が判断されるまで、加熱の動作は継続される。 In ST141, the control means determines completion of wet heat sterilization. For the determination, for example, the control means uses a timer. The timer measures the duration of the set temperature. When the duration of the set temperature reaches a specified value, the control means ends the wet heat sterilization. If the duration of the set temperature is less than the specified value, the control means continues the heating operation. The specified value for the duration of the set temperature may be equal to or longer than the time during which the effect of wet heat sterilization is obtained. According to the applicant's experiment, it has been found that the effect of wet heat sterilization can be obtained by setting it to 3 minutes or more for Escherichia coli and 5 minutes or more for black mold. Further, it has been found that 10 minutes or more is desirable for Legionella bacteria. At this time, the control means observes the operation of the compressor 21 in ST142. If an overload of the compressor 21 is detected in heating up to the set temperature, the control means lowers the discharge temperature of the compressor 21 in ST7 and ends the heating operation. If no overload is detected, the heating operation is continued until it is determined in ST141 that the wet heat sterilization is completed.
 ここでは、凝縮時に設定される圧縮機21の過負荷条件は、暖房運転時に設定される圧縮機21の過負荷条件に比べて緩和される。つまり、過負荷条件の閾値となる吐出温度が高く設定されたり、吐出温度が過負荷条件の閾値を所定時間超えた際に過負荷保護動作となるまでの時間が長く設定されたりする。濡れ制御運転時には圧縮機21の過負荷条件は緩和されるので、暖房運転時に比べて室内熱交換器31は高い温度まで加熱されることができる。細菌やカビの湿熱殺菌は実現される。 Here, the overload condition of the compressor 21 set at the time of condensation is relaxed compared to the overload condition of the compressor 21 set at the time of heating operation. That is, the discharge temperature that is the threshold for the overload condition is set high, or the time until the overload protection operation is performed when the discharge temperature exceeds the threshold for the overload condition for a predetermined time is set long. Since the overload condition of the compressor 21 is relaxed during the wetting control operation, the indoor heat exchanger 31 can be heated to a higher temperature than during the heating operation. Bacterial and mold sterilization is achieved.
 空気調和機1の濡れ制御運転では湿熱殺菌の処理に続いて室内機3内の乾燥処理が実施されてもよい。この乾燥処理では室内熱交換器31の加熱が維持されたまま、室内ファン32の回転が開始される。室内ファン32の回転動作にあたって制御手段は室内ファン32の回転数を特定する。室内ファン32の回転は加熱された結露水の蒸発を促進する。このとき、室内機3の吹出口は上下風向板35で閉じられてもよい。吹出口の閉鎖にあたって制御手段は上下風向板35の最小角度を特定すればよい。こうして冷房運転後の暖気の吹き出しは回避される。こうして湿熱殺菌の処理に引き続き乾燥加熱が継続されることで、湿熱殺菌で残存する細菌やカビの成長は抑制される。 In the wetting control operation of the air conditioner 1, a drying process in the indoor unit 3 may be performed following the wet heat sterilization process. In this drying process, the rotation of the indoor fan 32 is started while the heating of the indoor heat exchanger 31 is maintained. In the rotation operation of the indoor fan 32, the control means specifies the number of rotations of the indoor fan 32. The rotation of the indoor fan 32 promotes evaporation of heated condensed water. At this time, the air outlet of the indoor unit 3 may be closed by the up / down wind direction plate 35. In closing the air outlet, the control means may specify the minimum angle of the up / down wind direction plate 35. In this way, warm air blowing after the cooling operation is avoided. In this way, the drying and heating are continued following the wet heat sterilization treatment, thereby suppressing the growth of bacteria and mold remaining by the wet heat sterilization.

Claims (10)

  1.  室内熱交換器と、同室内熱交換器の温度である室内熱交温度を検出する室内熱交温度センサとを有する室内機と、
     圧縮機を有する室外機と、
     前記圧縮機を制御する制御手段と、
    を有する空気調和機であって、前記制御手段は、
     前記室内熱交換器を凝縮器として機能させているとき、第1保護制御あるいは第2保護制御を実行し、
     前記第1保護制御は、前記室内熱交温度が所定の第1閾室内熱交温度より高い温度となれば実行されるものであり、
     前記第2保護制御は、前記室内熱交温度が前記第1閾室内熱交温度より高い所定の第2閾室内熱交温度より高い温度となれば実行されるものである、
    ことを特徴とする空気調和機。
    An indoor unit having an indoor heat exchanger and an indoor heat exchange temperature sensor that detects an indoor heat exchange temperature that is the temperature of the indoor heat exchanger;
    An outdoor unit having a compressor;
    Control means for controlling the compressor;
    The air conditioner has the control means,
    When the indoor heat exchanger is functioning as a condenser, the first protection control or the second protection control is executed,
    The first protection control is executed when the indoor heat exchange temperature is higher than a predetermined first threshold indoor heat exchange temperature,
    The second protection control is executed when the indoor heat exchange temperature is higher than a predetermined second threshold indoor heat exchange temperature higher than the first threshold indoor heat exchange temperature.
    An air conditioner characterized by that.
  2.  前記第1保護制御は、暖房運転時に実行され、
     前記第2保護制御は、前記室内熱交換器を凝縮器として機能させるとともに、前記室内熱交温度を同室内熱交換器に存在するカビや細菌の数を減少させる温度以上に維持する室内熱交加熱運転時に実行される、
    ことを特徴とする請求項1に記載の空気調和機。
    The first protection control is executed during heating operation,
    The second protection control causes the indoor heat exchanger to function as a condenser and maintains the indoor heat exchange temperature above a temperature at which the number of molds and bacteria existing in the indoor heat exchanger is reduced. Executed during heating operation,
    The air conditioner according to claim 1.
  3.  前記第2閾室内熱交温度は、前記室内熱交加熱運転時の前記室内熱交温度の目標温度より高い温度である、
    ことを特徴とする請求項1または請求項2のいずれかに記載の空気調和機。
    The second threshold indoor heat exchange temperature is a temperature higher than a target temperature of the indoor heat exchange temperature during the indoor heat exchange heating operation.
    The air conditioner according to any one of claims 1 and 2.
  4.  前記制御手段は、
     前記第1保護制御において、前記室内熱交温度が前記第1閾室内熱交温度より高い温度となれば、前記暖房運転を停止し、
     前記第2保護制御において、前記室内熱交温度が前記第2閾室内熱交温度より高い温度となれば、前記室内熱交加熱運転を停止する、
    ことを特徴とする請求項1乃至請求項3のいずれかに記載の空気調和機。
    The control means includes
    In the first protection control, if the indoor heat exchange temperature is higher than the first threshold indoor heat exchange temperature, the heating operation is stopped,
    In the second protection control, if the indoor heat exchange temperature is higher than the second threshold indoor heat exchange temperature, the indoor heat exchange heating operation is stopped.
    The air conditioner according to any one of claims 1 to 3, wherein the air conditioner is provided.
  5.  前記室外機は、前記圧縮機から吐出される冷媒の温度である吐出温度を検出する吐出温度センサを有し、
     前記第2保護制御は、前記室内熱交温度に加えて、前記吐出温度が所定の第1閾吐出温度より高い温度となれば実行され、
     前記第1保護制御は、前記室内熱交温度に加えて、前記吐出温度が前記第1閾吐出温度より高い所定の第2吐出温度となれば実行される、
    ことを特徴とする請求項1乃至請求項4のいずれかに記載の空気調和機。
    The outdoor unit has a discharge temperature sensor that detects a discharge temperature that is a temperature of refrigerant discharged from the compressor,
    The second protection control is executed when the discharge temperature is higher than a predetermined first threshold discharge temperature in addition to the indoor heat exchange temperature,
    The first protection control is executed when the discharge temperature becomes a predetermined second discharge temperature higher than the first threshold discharge temperature in addition to the indoor heat exchange temperature.
    The air conditioner according to any one of claims 1 to 4, wherein the air conditioner is provided.
  6.  前記室外機は、室外熱交換器と、同室外熱交換器の温度である室外熱交温度を検出する室外熱交温度センサを有し、
     前記第2保護制御は、前記室内熱交温度および前記吐出温度に加えて、前記室外熱交温度が所定の閾室外熱交温度より高い温度となれば実行される、
    ことを特徴とする請求項1乃至請求項5のいずれかに記載の空気調和機。
    The outdoor unit includes an outdoor heat exchanger and an outdoor heat exchanger temperature sensor that detects an outdoor heat exchanger temperature that is a temperature of the outdoor heat exchanger,
    The second protection control is executed when the outdoor heat exchange temperature is higher than a predetermined threshold outdoor heat exchange temperature in addition to the indoor heat exchange temperature and the discharge temperature.
    The air conditioner according to any one of claims 1 to 5, wherein the air conditioner is provided.
  7.  前記室外機は、外気温度を検出する外気温度センサを有し、
     前記第2保護制御は、前記室内熱交温度および前記吐出温度および前記室外熱交温度に加えて、前記外気温度が所定の閾外気温度より高い温度となれば実行される、
    ことを特徴とする請求項1乃至請求項6のいずれかに記載の空気調和機。
    The outdoor unit has an outside temperature sensor for detecting outside temperature,
    The second protection control is executed when the outside air temperature is higher than a predetermined threshold outside air temperature in addition to the indoor heat exchange temperature, the discharge temperature, and the outdoor heat exchange temperature.
    The air conditioner according to any one of claims 1 to 6, wherein the air conditioner is provided.
  8.  前記第1保護制御における前記暖房運転の停止、および、前記第2保護制御における前記室内熱交加熱運転の停止では、それぞれ前記圧縮機が停止される、
    ことを特徴とする請求項4に記載の空気調和機。
    In the stop of the heating operation in the first protection control and the stop of the indoor heat exchange heating operation in the second protection control, the compressor is stopped, respectively.
    The air conditioner according to claim 4.
  9.  前記制御手段は、前記室内熱交加熱運転にあたって、前記室内熱交換器の表面の結露水を蒸発させずに前記室内熱交換器を加熱する、
    ことを特徴とする請求項2に記載の空気調和機。
    The control means heats the indoor heat exchanger without evaporating condensed water on the surface of the indoor heat exchanger in the indoor heat exchanger heating operation.
    The air conditioner according to claim 2.
  10.  前記制御手段は、前記室内熱交加熱運転に先立って、特定の水量の結露水で前記室内熱交換器の表面を濡らすように前記室内熱交換器を蒸発器として機能させる濡れ制御運転を行う、
    ことを特徴とする請求項9に記載の空気調和機。
    Prior to the indoor heat exchanger heating operation, the control means performs a wetting control operation that causes the indoor heat exchanger to function as an evaporator so as to wet the surface of the indoor heat exchanger with a specific amount of condensed water.
    The air conditioner according to claim 9.
PCT/JP2018/006448 2017-02-28 2018-02-22 Air conditioner WO2018159446A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2018228986A AU2018228986B2 (en) 2017-02-28 2018-02-22 Air conditioner
CN201880014547.3A CN110382970B (en) 2017-02-28 2018-02-22 Air conditioner
EP18761214.8A EP3591306A4 (en) 2017-02-28 2018-02-22 Air conditioner

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017036408A JP6824779B2 (en) 2017-02-28 2017-02-28 Antifungal method of air conditioner and air conditioner using it
JP2017-036408 2017-02-28
JP2017-184926 2017-09-26
JP2017184926A JP6399181B1 (en) 2017-09-26 2017-09-26 Air conditioner

Publications (1)

Publication Number Publication Date
WO2018159446A1 true WO2018159446A1 (en) 2018-09-07

Family

ID=63371216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006448 WO2018159446A1 (en) 2017-02-28 2018-02-22 Air conditioner

Country Status (4)

Country Link
EP (1) EP3591306A4 (en)
CN (1) CN110382970B (en)
AU (1) AU2018228986B2 (en)
WO (1) WO2018159446A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6656472B1 (en) * 2018-10-16 2020-03-04 日立ジョンソンコントロールズ空調株式会社 Air conditioner
JP2020115065A (en) * 2019-01-18 2020-07-30 株式会社富士通ゼネラル Air conditioner
JP2021099192A (en) * 2019-12-23 2021-07-01 株式会社富士通ゼネラル Air conditioner
JP2021099191A (en) * 2019-12-23 2021-07-01 株式会社富士通ゼネラル Air conditioner
CN113405233A (en) * 2021-06-25 2021-09-17 海信(山东)空调有限公司 Air conditioner sterilization control method and device, air conditioner and storage medium
CN113405238A (en) * 2021-06-25 2021-09-17 海信(山东)空调有限公司 Air conditioner sterilization control method and device, air conditioner and storage medium

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111397128A (en) * 2020-03-27 2020-07-10 广东美的制冷设备有限公司 High-temperature sterilization method, frequency control method and air conditioner
CN111380152B (en) * 2020-03-27 2021-12-17 广东美的制冷设备有限公司 High-temperature sterilization control method and device, air conditioner and storage medium

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60147046A (en) * 1984-01-11 1985-08-02 Matsushita Refrig Co Defrosting control device of heat pump type air conditioner
JPH0490453A (en) * 1990-08-01 1992-03-24 Daikin Ind Ltd Freezer operation control device
JPH1062000A (en) 1996-08-20 1998-03-06 Fujitsu General Ltd Air conditioner
JP2006125801A (en) * 2004-11-01 2006-05-18 Matsushita Electric Ind Co Ltd Air conditioner and operation method therefor
JP2006138545A (en) * 2004-11-12 2006-06-01 Matsushita Electric Ind Co Ltd Air conditioner, and its operation method
JP2013083437A (en) * 2012-12-26 2013-05-09 Mitsubishi Electric Corp Air conditioning apparatus and safety management method for the same
JP2013167438A (en) * 2013-04-30 2013-08-29 Daikin Industries Ltd Air conditioner
JP2016065687A (en) 2014-09-25 2016-04-28 パナソニックIpマネジメント株式会社 Air conditioner

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06129656A (en) * 1992-08-11 1994-05-13 Osaka Gas Co Ltd Air conditioning device with fungs prevention function
JP2000213795A (en) * 1999-01-25 2000-08-02 Daikin Ind Ltd Air conditioner
CN101526257B (en) * 2009-03-26 2010-11-10 宁波海诚电器有限公司 Method for protecting compressor when air conditioner makes heat in high temperature environment
CN104913429B (en) * 2014-03-10 2018-04-13 广东美的制冷设备有限公司 Air conditioner method for disinfection and air conditioner
CN105987484B (en) * 2015-02-28 2019-01-11 青岛海尔空调器有限总公司 Defrosting control method and system when the frequent high temperature-proof of air-conditioning heating is protected
CN105180359B (en) * 2015-09-02 2018-04-20 珠海格力电器股份有限公司 A kind of high temperature-proof control method, device and air conditioner

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60147046A (en) * 1984-01-11 1985-08-02 Matsushita Refrig Co Defrosting control device of heat pump type air conditioner
JPH0490453A (en) * 1990-08-01 1992-03-24 Daikin Ind Ltd Freezer operation control device
JPH1062000A (en) 1996-08-20 1998-03-06 Fujitsu General Ltd Air conditioner
JP2006125801A (en) * 2004-11-01 2006-05-18 Matsushita Electric Ind Co Ltd Air conditioner and operation method therefor
JP2006138545A (en) * 2004-11-12 2006-06-01 Matsushita Electric Ind Co Ltd Air conditioner, and its operation method
JP2013083437A (en) * 2012-12-26 2013-05-09 Mitsubishi Electric Corp Air conditioning apparatus and safety management method for the same
JP2013167438A (en) * 2013-04-30 2013-08-29 Daikin Industries Ltd Air conditioner
JP2016065687A (en) 2014-09-25 2016-04-28 パナソニックIpマネジメント株式会社 Air conditioner

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3591306A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6656472B1 (en) * 2018-10-16 2020-03-04 日立ジョンソンコントロールズ空調株式会社 Air conditioner
JP2020115065A (en) * 2019-01-18 2020-07-30 株式会社富士通ゼネラル Air conditioner
JP7247594B2 (en) 2019-01-18 2023-03-29 株式会社富士通ゼネラル air conditioner
JP7031651B2 (en) 2019-12-23 2022-03-08 株式会社富士通ゼネラル Air conditioner
JP2021099191A (en) * 2019-12-23 2021-07-01 株式会社富士通ゼネラル Air conditioner
WO2021132412A1 (en) * 2019-12-23 2021-07-01 株式会社富士通ゼネラル Air conditioner
JP7031650B2 (en) 2019-12-23 2022-03-08 株式会社富士通ゼネラル Air conditioner
WO2021132413A1 (en) * 2019-12-23 2021-07-01 株式会社富士通ゼネラル Air conditioner
CN114867969A (en) * 2019-12-23 2022-08-05 富士通将军股份有限公司 Air conditioner
CN114867968A (en) * 2019-12-23 2022-08-05 富士通将军股份有限公司 Air conditioner
JP2021099192A (en) * 2019-12-23 2021-07-01 株式会社富士通ゼネラル Air conditioner
CN113405233A (en) * 2021-06-25 2021-09-17 海信(山东)空调有限公司 Air conditioner sterilization control method and device, air conditioner and storage medium
CN113405238A (en) * 2021-06-25 2021-09-17 海信(山东)空调有限公司 Air conditioner sterilization control method and device, air conditioner and storage medium

Also Published As

Publication number Publication date
CN110382970A (en) 2019-10-25
AU2018228986A1 (en) 2019-08-22
CN110382970B (en) 2021-06-08
AU2018228986B2 (en) 2021-02-25
EP3591306A4 (en) 2020-12-23
EP3591306A1 (en) 2020-01-08

Similar Documents

Publication Publication Date Title
WO2018159446A1 (en) Air conditioner
WO2018159444A1 (en) Air conditioner
JP6399181B1 (en) Air conditioner
JP6447693B1 (en) Air conditioner
AU2018226754B2 (en) Mold prevention method for air conditioner, and air conditioner using mold prevention method
CN105972764A (en) Sterilization method and device and air conditioner
JP2019060527A (en) Air conditioner
CN110207313A (en) Air conditioner and its air conditioning control method, control device and readable storage medium storing program for executing
JP6200241B2 (en) Drying equipment
CN110332654A (en) Air-conditioning system and air-conditioning system defrosting control method
JP4003101B2 (en) Control method and apparatus for air conditioner
JP4228194B2 (en) Control method of air conditioner
JP5266951B2 (en) Clothes dryer
JP2008261555A (en) Air conditioner
JP2017044424A (en) Air conditioner
JP5505540B2 (en) Air conditioner
JP2012207811A (en) Air conditioner
JPH1163632A (en) Air conditioner
JP3963196B2 (en) Air conditioner control device
JP4938536B2 (en) Air conditioner
JP7113775B2 (en) Antifungal method for air conditioner and air conditioner using the same
JP2012197980A (en) Air conditioner
WO2021038744A1 (en) Air conditioner
JP2018132210A5 (en)
JP7443887B2 (en) air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18761214

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018228986

Country of ref document: AU

Date of ref document: 20180222

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018761214

Country of ref document: EP

Effective date: 20190930