JP7031650B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP7031650B2
JP7031650B2 JP2019231287A JP2019231287A JP7031650B2 JP 7031650 B2 JP7031650 B2 JP 7031650B2 JP 2019231287 A JP2019231287 A JP 2019231287A JP 2019231287 A JP2019231287 A JP 2019231287A JP 7031650 B2 JP7031650 B2 JP 7031650B2
Authority
JP
Japan
Prior art keywords
heat exchanger
air
indoor
ventilation
indoor heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019231287A
Other languages
Japanese (ja)
Other versions
JP2021099191A (en
Inventor
研太郎 望月
匠貴 三浦
智己 楠瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2019231287A priority Critical patent/JP7031650B2/en
Priority to CN202080085312.0A priority patent/CN114867969A/en
Priority to EP20906348.6A priority patent/EP4083531A4/en
Priority to PCT/JP2020/048318 priority patent/WO2021132412A1/en
Publication of JP2021099191A publication Critical patent/JP2021099191A/en
Application granted granted Critical
Publication of JP7031650B2 publication Critical patent/JP7031650B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0043Indoor units, e.g. fan coil units characterised by mounting arrangements
    • F24F1/0047Indoor units, e.g. fan coil units characterised by mounting arrangements mounted in the ceiling or at the ceiling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0071Indoor units, e.g. fan coil units with means for purifying supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/20Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • F24F13/222Means for preventing condensation or evacuating condensate for evacuating condensate
    • F24F2013/225Means for preventing condensation or evacuating condensate for evacuating condensate by evaporating the condensate in the cooling medium, e.g. in air flow from the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • F24F2013/228Treatment of condensate, e.g. sterilising

Description

本発明は、空気調和機の室内機に関する。 The present invention relates to an indoor unit of an air conditioner.

空気調和機には、屋外に設置される室外機と空調室内に設置される室内機とが冷媒配管で接続されており、室内機として天井裏に設置される天井埋込型のもの(以下、天井埋込型空気調和機と言う。)があるが、近年、天井埋込型空気調和機として熱交換容量を増大させることが望まれている。 In the air conditioner, the outdoor unit installed outdoors and the indoor unit installed in the air conditioning room are connected by a refrigerant pipe, and the air conditioner is a ceiling-embedded type installed behind the ceiling as an indoor unit (hereinafter,). There is a ceiling-embedded air conditioner), but in recent years, it has been desired to increase the heat exchange capacity as a ceiling-embedded air conditioner.

熱交換容量を増大させるための天井埋込型空気調和機として、図4に示した特許文献1では、前面側に配置された空気吹出口14b及び背面側に配置された空気吸込口14aを有する筐体10の内部に、前面側寄りに配置される室内熱交換器としての第1熱交換器20Aと、背面側寄りに配置される同じく室内熱交換器としての第2熱交換器20Bと、第1熱交換器20Aと第2熱交換器20Bの間に配置されたシロッコファン30と、第1熱交換器20A及び第2熱交換器20Bの下側に配置されて、第1熱交換器20Aと第2熱交換器20Bに付着した結露水を集めるドレンパン40と、シロッコファン30の吹出通風路33bから吹き出される空気を空気吹出口14bにガイドするよう吹出通風路33bと空気吹出口14bとをつなぐ吹出ガイド50と、を備えて、第2熱交換器20Bと背面板12との間に、空気吸込口14aが開口する第1スペースS1と、第1熱交換器20Aと前面板11との間に第3スペースS3と、ドレンパン40と底面板14との間に第1スペースS1と第3スペースS3とに接続する第2スペースS2と、が形成された天井埋込型空気調和機100Aの室内機が開示されている。
また、空気調和機は冷房運転を行うと、室内熱交換器の周囲が高湿な状態になるので、雑菌(カビ類を含む)が増殖して悪臭が発生してしまうことから、イオン発生装置等の公知の浄化手段を用いて室内機内部の浄化が行われている。
As a ceiling-embedded air conditioner for increasing the heat exchange capacity, Patent Document 1 shown in FIG. 4 has an air outlet 14b arranged on the front side and an air suction port 14a arranged on the back side. Inside the housing 10, a first heat exchanger 20A as an indoor heat exchanger arranged closer to the front side and a second heat exchanger 20B as an indoor heat exchanger arranged closer to the back side. A sirocco fan 30 arranged between the first heat exchanger 20A and the second heat exchanger 20B, and a first heat exchanger arranged below the first heat exchanger 20A and the second heat exchanger 20B. The drain pan 40 that collects the dew condensation water adhering to the 20A and the second heat exchanger 20B, and the outlet air passage 33b and the air outlet 14b so as to guide the air blown out from the outlet air passage 33b of the sirocco fan 30 to the air outlet 14b. A first space S1 in which an air suction port 14a opens between the second heat exchanger 20B and the back plate 12, and a first heat exchanger 20A and a front plate 11 are provided with a blowout guide 50 for connecting the two. A ceiling-embedded air exchanger in which a third space S3 and a second space S2 connected to the first space S1 and the third space S3 are formed between the drain pan 40 and the bottom plate 14. A 100A indoor unit is disclosed.
In addition, when the air conditioner is cooled, the area around the indoor heat exchanger becomes highly humid, and germs (including mold) grow and generate a foul odor. The inside of the indoor unit is purified by using a known purification means such as.

特開2019-203629号公報Japanese Unexamined Patent Publication No. 2019-203629

特許文献1に開示の天井埋込型空気調和機のように、複数の室内熱交換器が配置された構造の室内機の場合、浄化手段としてのイオン発生装置等を用いても、複数の各室内熱交換器の除菌が十分に行えないという問題がある。
本発明は、上記課題に鑑み、圧縮機と四方弁を備えた室外機と、複数の室内熱交換器と室内機ファンとを含み室外機に接続する室内機と、少なくとも圧縮機と室内機ファンと四方弁を制御して複数の室内熱交換器を冷房の場合は蒸発器として機能させる共に暖房の場合は凝縮器として機能させて、室内機が設置された室内の温調を行う空気調和機において、複数の室内熱交換器の除菌を実施できる空気調和機を提供するものである。
In the case of an indoor unit having a structure in which a plurality of indoor heat exchangers are arranged, such as the ceiling-embedded air conditioner disclosed in Patent Document 1, each of the plurality of indoor units may be used even if an ion generator or the like as a purification means is used. There is a problem that the indoor heat exchanger cannot be sufficiently sterilized.
In view of the above problems, the present invention comprises an outdoor unit provided with a compressor and a four-way valve, an indoor unit including a plurality of indoor heat exchangers and an indoor unit fan, and connected to the outdoor unit, and at least a compressor and an indoor unit fan. An air conditioner that controls multiple indoor heat exchangers to function as an evaporator in the case of cooling and as a condenser in the case of heating to control the temperature of the room in which the indoor unit is installed. In the present invention, an air conditioner capable of disinfecting a plurality of indoor heat exchangers is provided.

本発明の一態様は、圧縮機、四方弁、複数の室内熱交換器、膨張弁が接続されて冷媒が循環する冷凍回路と、圧縮機と四方弁を備えた室外機と、複数の室内熱交換器と室内機ファンとを含み室外機に接続する室内機と、を備え、少なくとも圧縮機と室内機ファンと四方弁を制御して複数の室内熱交換器を冷房の場合は蒸発器として機能させると共に暖房の場合は凝縮器として機能させて、前記室内機が設置された室内の温調を行う空気調和機において、室内機は、空気吸込口と空気吹出口とを有すると共にそれら空気吸込口と空気吹出口との間にあって前記空気吸込口から分岐する複数の通風路を有する筐体と、複数の通風路のそれぞれに配置された少なくとも1つの室内熱交換器と、空気吸込口から吸い込んだ空気を複数の通風路のそれぞれを経由して空気吹出口へ導く室内機ファンと、を備えて、一の通風路の通風抵抗は、他の通風路の通風抵抗よりも大きく、通風抵抗の大小に応じて一の通風路に配置された一の室内熱交換器を流れる冷媒量は、他の通風路に配置された他の室内熱交換器を流れる冷媒量よりも少なく、設定されて、複数の室内熱交換器が蒸発器として機能した場合に室内熱交換器に付着した結露水を、複数の室内熱交換器を凝縮器として機能させて所定温度まで加熱させ、複数の室内熱交換器の加熱除菌を行う空気調和機である。
One aspect of the present invention includes a compressor, a four-way valve, a plurality of indoor heat exchangers, a refrigeration circuit in which an expansion valve is connected to circulate a refrigerant, an outdoor unit having a compressor and a four-way valve, and a plurality of indoor heats. It is equipped with an indoor unit that includes an exchanger and an indoor unit fan and is connected to the outdoor unit, and at least controls the compressor, the indoor unit fan, and the four-way valve to function as an evaporator in the case of cooling multiple indoor heat exchangers. In the air exchanger that controls the temperature in the room where the indoor unit is installed by functioning as a condenser in the case of heating, the indoor unit has an air suction port and an air outlet, and these air suction ports. From the housing having a plurality of ventilation passages branching from the air suction port between the air outlet and at least one indoor heat exchanger arranged in each of the plurality of ventilation passages, and from the air suction port. Equipped with an indoor unit fan that guides the sucked air to the air outlet via each of multiple ventilation passages, the ventilation resistance of one ventilation passage is greater than the ventilation resistance of the other ventilation passages, and the ventilation resistance The amount of refrigerant flowing through one indoor heat exchanger arranged in one ventilation path according to the size of is set to be smaller than the amount of refrigerant flowing through other indoor heat exchangers arranged in another ventilation path. , When multiple indoor heat exchangers function as evaporators, the dew condensation water adhering to the indoor heat exchangers is heated to a predetermined temperature by making the multiple indoor heat exchangers function as condensers, and multiple indoor heat exchanges are performed. It is an air conditioner that heats and disinfects the vessel.

本発明によれば、複数の室内熱交換器が蒸発器として機能した場合に室内熱交換器に付着した結露水を、複数の室内熱交換器を凝縮器として機能させて所定温度まで加熱させ、複数の室内熱交換器の加熱除菌を行うため、複数の室内熱交換器の除菌を実施することができる空気調和機を提供できる。
本発明によれば、さらに、一の前記通風路の通風抵抗は、他の前記通風路の通風抵抗よりも大きく、前記通風抵抗の大小に応じて前記一の通風路に配置された一の前記室内熱交換器を流れる冷媒量は、前記他の通風路に配置された他の前記室内熱交換器を流れる冷媒量よりも少なく、設定されているため、一の前記室内熱交換器の温度と他の前記室内熱交換器の温度とを相違なく加熱することができるため、各室内熱交換器の除菌が不均衡になることを抑制できる空気調和機を提供できる。
According to the present invention, when a plurality of indoor heat exchangers function as evaporators, the dew condensation water adhering to the indoor heat exchangers is heated to a predetermined temperature by making the plurality of indoor heat exchangers function as condensers. Since heat sterilization of a plurality of indoor heat exchangers is performed, it is possible to provide an air conditioner capable of sterilizing a plurality of indoor heat exchangers.
According to the present invention, the ventilation resistance of one of the ventilation passages is larger than the ventilation resistance of the other ventilation passages, and the one of the above is arranged in the one ventilation passage according to the magnitude of the ventilation resistance. Since the amount of refrigerant flowing through the indoor heat exchanger is set to be smaller than the amount of refrigerant flowing through the other indoor heat exchangers arranged in the other ventilation passages, it is set to the temperature of one of the indoor heat exchangers. Since the temperature of the other indoor heat exchangers can be heated without any difference, it is possible to provide an air conditioner capable of suppressing imbalance in the sterilization of each indoor heat exchanger.

室内調和機の冷凍回路図である。It is a refrigerating circuit diagram of an indoor harmonizer. 冷凍回路図における室内熱交換器の拡大図である。It is an enlarged view of the indoor heat exchanger in the refrigeration circuit diagram. 室内機の断面図である。It is sectional drawing of an indoor unit. 従来の天井埋込型空気調和機の室内機の断面図である。It is sectional drawing of the indoor unit of the conventional ceiling-embedded type air conditioner.

以下、本発明の実施形態を、添付図面に基づいて詳細に説明する。実施形態としては、室内機が室外機に接続され、室内機には二つの室内熱交換器が配置されて、冷房運転および暖房運転が行える空気調和機を例に挙げて説明する。尚、本発明は以下の実施形態に限定されることはなく、本発明の主旨を逸脱しない範囲で種々変形することが可能である。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. As an embodiment, an air conditioner capable of performing cooling operation and heating operation by connecting an indoor unit to an outdoor unit and arranging two indoor heat exchangers in the indoor unit will be described as an example. The present invention is not limited to the following embodiments, and various modifications can be made without departing from the gist of the present invention.

図1は本発明の一実施形態に係る空気調和機11の冷凍回路の構成を概略的に示す。空気調和機11は室内機12および室外機13を備える。室内機12は例えば建物内の室内空間に設置される。その他、室内機12は室内空間に相当する空間に設置されればよい。室内機12には熱交換器としての室内熱交換器14が組み込まれる。室外機13には圧縮機15、室外熱交換器16、膨張弁17および四方弁18が組み込まれる。室内熱交換器14、圧縮機15、室外熱交換器16、膨張弁17および四方弁18は冷凍回路19を形成する。室外機13は、室外空気との熱交換が可能な屋外に設置されればよい。 FIG. 1 schematically shows a configuration of a refrigerating circuit of an air conditioner 11 according to an embodiment of the present invention. The air conditioner 11 includes an indoor unit 12 and an outdoor unit 13. The indoor unit 12 is installed, for example, in an indoor space inside a building. In addition, the indoor unit 12 may be installed in a space corresponding to the indoor space. The indoor unit 12 incorporates an indoor heat exchanger 14 as a heat exchanger. The outdoor unit 13 incorporates a compressor 15, an outdoor heat exchanger 16, an expansion valve 17, and a four-way valve 18. The indoor heat exchanger 14, the compressor 15, the outdoor heat exchanger 16, the expansion valve 17, and the four-way valve 18 form a refrigerating circuit 19. The outdoor unit 13 may be installed outdoors where heat exchange with the outdoor air is possible.

冷凍回路19は第1循環経路21を備える。第1循環経路21は四方弁18の第1口18aおよび第2口18bを相互に結ぶ。第1循環経路21には圧縮機15が設けられている。圧縮機15の吸入管15aは四方弁18の第1口18aに冷媒配管を介して接続される。第1口18aからガス冷媒は圧縮機15の吸入管15aに供給される。圧縮機15は低圧のガス冷媒を所定の圧力まで圧縮する。圧縮機15の吐出管15bは四方弁18の第2口18bに冷媒配管を介して接続される。圧縮機15の吐出管15bからガス冷媒は四方弁18の第2口18bに供給される。冷媒配管は例えば銅管であればよい。
尚、四方弁18は流路切換弁として用いているが、四方弁18ではなく電磁弁を複数組み合わせても構わない。
The refrigeration circuit 19 includes a first circulation path 21. The first circulation path 21 connects the first port 18a and the second port 18b of the four-way valve 18 to each other. A compressor 15 is provided in the first circulation path 21. The suction pipe 15a of the compressor 15 is connected to the first port 18a of the four-way valve 18 via a refrigerant pipe. The gas refrigerant is supplied from the first port 18a to the suction pipe 15a of the compressor 15. The compressor 15 compresses the low pressure gas refrigerant to a predetermined pressure. The discharge pipe 15b of the compressor 15 is connected to the second port 18b of the four-way valve 18 via a refrigerant pipe. The gas refrigerant is supplied from the discharge pipe 15b of the compressor 15 to the second port 18b of the four-way valve 18. The refrigerant pipe may be, for example, a copper pipe.
Although the four-way valve 18 is used as a flow path switching valve, a plurality of solenoid valves may be combined instead of the four-way valve 18.

冷凍回路19は第2循環経路22をさらに備える。第2循環経路22は四方弁18の第3口18cおよび第4口18dを相互に結ぶ。第2循環経路22には、第3口18c側から順番に室外熱交換器16、膨張弁17および室内熱交換器14が組み込まれる。室外熱交換器16は、通過する冷媒と周囲の空気との間で熱エネルギーを交換する。室内熱交換器14は、通過する冷媒と周囲の空気との間で熱エネルギーを交換する。
尚、図1において、室内熱交換器14は1台で示されているが、図2の説明で後述するように室内熱交換器14は、2台の第1熱交換器14Aと第2熱交換器14Bとで構成されている。
The refrigeration circuit 19 further includes a second circulation path 22. The second circulation path 22 connects the third port 18c and the fourth port 18d of the four-way valve 18 to each other. The outdoor heat exchanger 16, the expansion valve 17, and the indoor heat exchanger 14 are incorporated in the second circulation path 22 in order from the third port 18c side. The outdoor heat exchanger 16 exchanges heat energy between the passing refrigerant and the surrounding air. The indoor heat exchanger 14 exchanges heat energy between the passing refrigerant and the surrounding air.
Although the indoor heat exchanger 14 is shown as one unit in FIG. 1, as will be described later in the description of FIG. 2, the indoor heat exchanger 14 has two first heat exchangers 14A and a second heat. It is composed of an exchanger 14B.

室外機13には送風ファン23が組み込まれる。送風ファン23は室外熱交換器16に通風する。送風ファン23は例えば羽根車の回転に応じて気流を生成する。送風ファン23の働きで気流は室外熱交換器16を通り抜ける。室外の空気は室外熱交換器16を通り抜け冷媒と熱交換する。熱交換された冷気または暖気の気流は室外機13から吹き出される。通り抜ける気流の流量は羽根車の回転数に応じて調整される。 A blower fan 23 is incorporated in the outdoor unit 13. The blower fan 23 ventilates the outdoor heat exchanger 16. The blower fan 23 generates an air flow according to the rotation of the impeller, for example. The airflow passes through the outdoor heat exchanger 16 by the action of the blower fan 23. The outdoor air passes through the outdoor heat exchanger 16 and exchanges heat with the refrigerant. The heat-exchanged cold or warm airflow is blown out from the outdoor unit 13. The flow rate of the airflow passing through is adjusted according to the rotation speed of the impeller.

室内機12には室内機ファンとしてのシロッコファン24が組み込まれる。シロッコファン24は室内熱交換器14に通風する。シロッコファン24は羽根車の回転に応じて気流を生成する。シロッコファン24の働きで室内機12には室内空気が吸い込まれる。室内空気は室内熱交換器14を通り抜け冷媒と熱交換する。熱交換された冷気または暖気の気流は室内機12から吹き出される。通り抜ける気流の流量は羽根車の回転数に応じて調整される。 The sirocco fan 24 as an indoor unit fan is incorporated in the indoor unit 12. The sirocco fan 24 ventilates the indoor heat exchanger 14. The sirocco fan 24 generates an air flow according to the rotation of the impeller. Indoor air is sucked into the indoor unit 12 by the action of the sirocco fan 24. The indoor air passes through the indoor heat exchanger 14 and exchanges heat with the refrigerant. The heat-exchanged cold or warm airflow is blown out from the indoor unit 12. The flow rate of the airflow passing through is adjusted according to the rotation speed of the impeller.

冷凍回路19で冷房運転が実施される場合には、四方弁18は第2口18bおよび第3口18cを相互に接続し第1口18aおよび第4口18dを相互に接続する。したがって、圧縮機15の吐出管15bから高温高圧の冷媒が室外熱交換器16に供給される。冷媒は室外熱交換器16、膨張弁17および室内熱交換器14を順番に流通する。室外熱交換器16では冷媒から外気に放熱する。膨張弁17で冷媒は低圧まで減圧される。減圧された冷媒は室内熱交換器14で周囲の空気から吸熱する。冷気が生成される。冷気は送風ファン24の働きで室内空間に吹き出される。 When the cooling operation is carried out in the refrigeration circuit 19, the four-way valve 18 connects the second port 18b and the third port 18c to each other, and connects the first port 18a and the fourth port 18d to each other. Therefore, the high-temperature and high-pressure refrigerant is supplied to the outdoor heat exchanger 16 from the discharge pipe 15b of the compressor 15. The refrigerant flows through the outdoor heat exchanger 16, the expansion valve 17, and the indoor heat exchanger 14 in order. The outdoor heat exchanger 16 dissipates heat from the refrigerant to the outside air. The expansion valve 17 reduces the pressure of the refrigerant to a low pressure. The decompressed refrigerant absorbs heat from the surrounding air in the indoor heat exchanger 14. Cold air is generated. The cold air is blown into the interior space by the action of the blower fan 24.

冷凍回路19で暖房運転が実施される場合には、四方弁18は第2口18bおよび第4口18dを相互に接続し第1口18aおよび第3口18cを相互に接続する。圧縮機15から高温高圧の冷媒が室内熱交換器14に供給される。冷媒は室内熱交換器14、膨張弁17および室外熱交換器16を順番に流通する。室内熱交換器14では冷媒から周囲の空気に放熱する。暖気が生成される。暖気はシロッコファン24の働きで室内空間に吹き出される。膨張弁17で冷媒は低圧まで減圧される。減圧された冷媒は室外熱交換器16で周囲の空気から吸熱する。その後、冷媒は圧縮機15に戻る。尚、暖房運転が行われているときの室内熱交換器14の最高温度は53℃である。 When the heating operation is carried out in the refrigeration circuit 19, the four-way valve 18 connects the second port 18b and the fourth port 18d to each other, and connects the first port 18a and the third port 18c to each other. A high-temperature and high-pressure refrigerant is supplied from the compressor 15 to the indoor heat exchanger 14. The refrigerant flows through the indoor heat exchanger 14, the expansion valve 17, and the outdoor heat exchanger 16 in order. The indoor heat exchanger 14 dissipates heat from the refrigerant to the surrounding air. Warm air is generated. Warm air is blown into the interior space by the action of the sirocco fan 24. The expansion valve 17 reduces the pressure of the refrigerant to a low pressure. The decompressed refrigerant absorbs heat from the surrounding air by the outdoor heat exchanger 16. After that, the refrigerant returns to the compressor 15. The maximum temperature of the indoor heat exchanger 14 when the heating operation is being performed is 53 ° C.

空気調和機11は温度センサ26aおよび湿度センサ26bを備える。温度センサ26aは室内熱交換器14に接続される。温度センサ26aは室内熱交換器14の温度を計測する。温度センサ26aは、計測された温度の温度情報を含む温度信号を出力する。湿度センサ26bは室内機12内に設置される。湿度センサ26bは室内機12内の相対湿度を計測する。湿度センサ26bは、計測された湿度の湿度情報を含む湿度信号を出力する。 The air conditioner 11 includes a temperature sensor 26a and a humidity sensor 26b. The temperature sensor 26a is connected to the indoor heat exchanger 14. The temperature sensor 26a measures the temperature of the indoor heat exchanger 14. The temperature sensor 26a outputs a temperature signal including temperature information of the measured temperature. The humidity sensor 26b is installed in the indoor unit 12. The humidity sensor 26b measures the relative humidity in the indoor unit 12. The humidity sensor 26b outputs a humidity signal including humidity information of the measured humidity.

空気調和機11は制御部27を備える。制御部27は、例えば室外機13に組み込まれる図示しない制御ボード上に形成される。制御部27には、個別の信号線で、室外機13内の四方弁18、膨張弁17および圧縮機15が電気的に接続される。同様に、制御部27には、個別の信号線で室内機12内のシロッコファン24の駆動モータ、温度センサ26aおよび湿度センサ26bが電気的に接続される。制御部27は、温度センサ26aからの温度信号や湿度センサ26bからの湿度信号に基づき、室外機13内の四方弁18、膨張弁17および圧縮機15、並びに、室内機12内のシロッコファン24の動作を制御する。そうした制御の結果、後述されるように、空気調和機11の冷房運転や暖房運転、加熱除菌動作は実現される。制御部27は、リモコンから室内機12に入力される操作信号に基づき冷房運転中や暖房運転中にシロッコファン24の動作を制御して、冷気や暖気の風量を変えることができる。 The air conditioner 11 includes a control unit 27. The control unit 27 is formed on, for example, a control board (not shown) incorporated in the outdoor unit 13. The four-way valve 18, the expansion valve 17, and the compressor 15 in the outdoor unit 13 are electrically connected to the control unit 27 by individual signal lines. Similarly, the drive motor of the sirocco fan 24 in the indoor unit 12, the temperature sensor 26a, and the humidity sensor 26b are electrically connected to the control unit 27 by individual signal lines. The control unit 27 has a four-way valve 18 in the outdoor unit 13, an expansion valve 17 and a compressor 15, and a sirocco fan 24 in the indoor unit 12 based on the temperature signal from the temperature sensor 26a and the humidity signal from the humidity sensor 26b. Controls the behavior of. As a result of such control, as will be described later, the cooling operation, the heating operation, and the heating sterilization operation of the air conditioner 11 are realized. The control unit 27 can control the operation of the sirocco fan 24 during the cooling operation or the heating operation based on the operation signal input from the remote controller to the indoor unit 12, and can change the air volume of the cold air or the warm air.

図3は一実施形態に係る室内機12の断面概略的に示す。室内機12は天井埋込型空気調和機の室内機であり、室内の天井100の裏側に設置される。この室内機12は、筐体30で全体が囲まれている。筐体30は、前面板31、背面板32、天面板33、空気吸込口34及び空気吹出口35を有する底面板36、図3の紙面奥側に設けられる図示しない左側面板、及び図3の紙面手前側に設けられる図示しない右側面板を有する箱型であり、空気吸込口34は背面板32の側に配置され、空気吹出口35は空気吸込口34よりも前面板31の側に配置されている。底面板36の下面は室内に露出するのでその下面には化粧板として必要な図示しないデザインが施されている。 FIG. 3 schematically shows a cross section of the indoor unit 12 according to the embodiment. The indoor unit 12 is an indoor unit of a ceiling-embedded air conditioner, and is installed behind the ceiling 100 in the room. The indoor unit 12 is entirely surrounded by a housing 30. The housing 30 includes a front plate 31, a back plate 32, a top plate 33, a bottom plate 36 having an air suction port 34 and an air outlet 35, a left side plate (not shown) provided on the back side of the paper surface of FIG. 3, and FIG. It is a box type having a right side plate (not shown) provided on the front side of the paper surface, the air suction port 34 is arranged on the side of the back plate 32, and the air outlet 35 is arranged on the front plate 31 side of the air suction port 34. ing. Since the lower surface of the bottom plate 36 is exposed indoors, the lower surface thereof is provided with a design (not shown) necessary for a decorative plate.

天面板33の下面33aの前面板11の側に、天面板33に垂直な姿勢で平板形状の第1熱交換器14Aが取り付けられている。また、天面板33の下面33aの背面板32の側に、同様に天面板33に垂直な姿勢で平板形状の第2熱交換器14Bが取り付けられている。そして、第1熱交換器14Aと第2熱交換器14Bの間にシロッコファン24が配置されている。
このシロッコファン24は、ファンモータ41と、ファンモータ41の回転軸41aに固着された羽根車42と、側面に羽根車42に通じる吸込口44が形成され下面に羽根車42の外周面に対面する吹出通風路45が形成されたファンケーシング43を有する。
A flat plate-shaped first heat exchanger 14A is attached to the side of the front surface plate 11 of the lower surface 33a of the top plate 33 in a posture perpendicular to the top plate 33. Further, a flat plate-shaped second heat exchanger 14B is similarly attached to the side of the back plate 32 of the lower surface 33a of the top plate 33 in a posture perpendicular to the top plate 33. A sirocco fan 24 is arranged between the first heat exchanger 14A and the second heat exchanger 14B.
The sirocco fan 24 has a fan motor 41, an impeller 42 fixed to the rotating shaft 41a of the fan motor 41, and a suction port 44 leading to the impeller 42 on the side surface thereof, and faces the outer peripheral surface of the impeller 42 on the lower surface. It has a fan casing 43 in which a blowout air passage 45 is formed.

第1熱交換器14A及び第2熱交換器14Bの下には、それら第1熱交換器14A及び第2熱交換器14Bで生じた結露水を集めるドレンパン40が配置されている。
筐体30の内部には、第2熱交換器14Bと背面板32との間に通風路として機能する第1スペースS1が形成されており、第1スペースS1には、空気吸込口34が、直接、開口している。また、第1熱交換器14Aと前面板31との間にも通風路として機能する第2スペースS2が形成されており、さらに、ドレンパン40と底面板36との間にも通風路として機能し第1スペースS1と第2スペースS2とに接続する第3スペースS3が形成されている。
Under the first heat exchanger 14A and the second heat exchanger 14B, a drain pan 40 for collecting the dew condensation water generated in the first heat exchanger 14A and the second heat exchanger 14B is arranged.
Inside the housing 30, a first space S1 that functions as a ventilation path is formed between the second heat exchanger 14B and the back plate 32, and an air suction port 34 is provided in the first space S1. It is directly open. Further, a second space S2 that functions as a ventilation path is also formed between the first heat exchanger 14A and the front plate 31, and further functions as a ventilation path between the drain pan 40 and the bottom plate 36. A third space S3 connected to the first space S1 and the second space S2 is formed.

空気吸込口34は底面板36の背面板32の側に配置され、空気吹出口35は底面板36の空気吸込口34よりも前面板31の側に配置されている。そのため、空気吸込口34から第3スペースS3と第2スペースS2とを経由して第1熱交換器14Aに至るまでの通風路の距離が、空気吸込口34から第1スペースS1を経由して第2熱交換器14Bに至るまでの通風路の距離よりも、第3スペースS3の分だけ長くなる。
第1熱交換器14Aが配置されている空気吸込口34から空気吹出口35までの通風路の距離が、第2熱交換器14Bが配置されている空気吸込口34から空気吹出口35までの通風路の距離よりも長くなっていることから、第1熱交換器14Aが配置されている通風路の通風抵抗は、第2熱交換器14Bが配置されている通風路の通風抵抗よりも大きくなっている。
The air suction port 34 is arranged on the side of the back plate 32 of the bottom plate 36, and the air outlet 35 is arranged on the side of the front plate 31 with respect to the air suction port 34 of the bottom plate 36. Therefore, the distance of the ventilation path from the air suction port 34 to the first heat exchanger 14A via the third space S3 and the second space S2 is from the air suction port 34 via the first space S1. It is longer than the distance of the ventilation path to the second heat exchanger 14B by the amount of the third space S3.
The distance of the ventilation path from the air suction port 34 where the first heat exchanger 14A is arranged to the air outlet 35 is from the air suction port 34 where the second heat exchanger 14B is arranged to the air outlet 35. Since it is longer than the distance of the ventilation passage, the ventilation resistance of the ventilation passage in which the first heat exchanger 14A is arranged is larger than the ventilation resistance of the ventilation passage in which the second heat exchanger 14B is arranged. It has become.

前記したシロッコファン24の吹出通風路45には、底面板36の空気吹出口35に挿入される吹出ガイド50の上端開口51がつながっている。この吹出ガイド50は、上端開口51と下端開口52の間の導風路S4が下方向の前方にかけて湾曲した形状に形成され、下端開口52の開口面52aが前面板11の下面の前方を向くよう配置されている。また、この吹出ガイド50は、ドレンパン40の吹出開口53と底面板36の空気吹出口35を貫通し、その吹出ガイド50の下端開口52が実質的な空気吹出口となる。底面板36の空気吸込口34は、空気吹出開口35と背面板12との間に設けられている。 The blowout air passage 45 of the sirocco fan 24 is connected to the upper end opening 51 of the blowout guide 50 inserted into the air outlet 35 of the bottom plate 36. The blowout guide 50 is formed in a shape in which the air passage S4 between the upper end opening 51 and the lower end opening 52 is curved toward the front in the downward direction, and the opening surface 52a of the lower end opening 52 faces the front of the lower surface of the front plate 11. It is arranged like this. Further, the outlet guide 50 penetrates the outlet 53 of the drain pan 40 and the air outlet 35 of the bottom plate 36, and the lower end opening 52 of the outlet guide 50 becomes a substantial air outlet. The air suction port 34 of the bottom plate 36 is provided between the air outlet opening 35 and the back plate 12.

この室内機12は、シロッコファン24のファンモータ41が回転すると、空気吸込口34から第2熱交換器14Bと背面板12の間の第1スペースS1を経由して第2熱交換器14Bに空気を吸い込む他に、底面板36とドレンパン40の間の第3スペースS3と前面板31と第1熱交換器14Aの間の第2スペースS2を経由して第1熱交換器14Aに空気を吸い込む。そして、第1熱交換器14A及び第2熱交換器14Bにおいて冷媒と熱交換されてからシロッコファン24に吸い込まれる空気は、ファンケーシング43の吹出通風路45から吹出ガイド50の導風路S4を経由して前面板31の下方前方に吹き出される。 When the fan motor 41 of the sirocco fan 24 rotates, the indoor unit 12 enters the second heat exchanger 14B from the air suction port 34 via the first space S1 between the second heat exchanger 14B and the back plate 12. In addition to sucking air, air is sent to the first heat exchanger 14A via the third space S3 between the bottom plate 36 and the drain pan 40 and the second space S2 between the front plate 31 and the first heat exchanger 14A. Inhale. Then, the air sucked into the sirocco fan 24 after being heat-exchanged with the refrigerant in the first heat exchanger 14A and the second heat exchanger 14B passes through the outlet passage S4 of the outlet guide 50 from the outlet ventilation passage 45 of the fan casing 43. It is blown out downward and forward of the front plate 31 via.

シロッコファン24の動作により空気吸込口34から筐体30内に吸い込まれた空気は、第1熱交換器14A側と第2熱交換器14B側とへ分かれて流れるが、空気吸込口34から第1熱交換器14Aに至るまでの通風路の距離が、空気吸込口34から第2熱交換器14Bに至るまでの通風路の距離よりも長いため、通風抵抗の影響によって、第1熱交換器14Aに吸い込まれる空気の量は、第2熱交換器14Bに吸い込まれる空気の量よりも少なくなる。 The air sucked into the housing 30 from the air suction port 34 by the operation of the sirocco fan 24 flows separately to the first heat exchanger 14A side and the second heat exchanger 14B side. Since the distance of the ventilation path to the 1 heat exchanger 14A is longer than the distance of the ventilation path from the air suction port 34 to the 2nd heat exchanger 14B, the first heat exchanger is affected by the influence of the ventilation resistance. The amount of air sucked into the 14A is less than the amount of air sucked into the second heat exchanger 14B.

次に、図2を用いて、本実施形態の室内熱交換器14の構造について概略的に示す。
冷凍回路の19において、室内熱交換器14は、四方弁18と膨張弁17との間に第1熱交換器14Aと第2熱交換器14Bとが並列になるように接続されており、膨張弁17からの冷媒配管とはディストリビュータ60を介して接続し、四方弁18からの冷媒配管とはヘッダ61を介して接続している。ディストリビュータ60は、膨張弁17から流れてきた冷媒を第1熱交換器14Aと第2熱交換器14Bとへ分流させる機能を、あるいは、第1熱交換器14Aと第2熱交換器14Bから流れてきた冷媒を合流させて膨張弁17へと流す機能を有している。ヘッダ61は、第1熱交換器14Aと第2熱交換器14Bから流れてきた冷媒を合流させて四方弁18へと流す機能、あるいは、四方弁18から流れてきた冷媒を第1熱交換器14Aと第2熱交換器14Bとへ分流させる機能を有している。
Next, with reference to FIG. 2, the structure of the indoor heat exchanger 14 of the present embodiment is schematically shown.
In the refrigeration circuit 19, the indoor heat exchanger 14 is connected between the four-way valve 18 and the expansion valve 17 so that the first heat exchanger 14A and the second heat exchanger 14B are connected in parallel, and expands. The refrigerant pipe from the valve 17 is connected via the distributor 60, and the refrigerant pipe from the four-way valve 18 is connected via the header 61. The distributor 60 has a function of dividing the refrigerant flowing from the expansion valve 17 into the first heat exchanger 14A and the second heat exchanger 14B, or flows from the first heat exchanger 14A and the second heat exchanger 14B. It has a function of merging the incoming refrigerant and flowing it to the expansion valve 17. The header 61 has a function of merging the refrigerants flowing from the first heat exchanger 14A and the second heat exchanger 14B and flowing them to the four-way valve 18, or the first heat exchanger using the refrigerant flowing from the four-way valve 18. It has a function of dividing the flow into 14A and the second heat exchanger 14B.

第1熱交換器14Aと第2熱交換器14Bとのそれぞれは、複数の冷媒が流れる配管としてのパスを有しており、本実施形態では、第1熱交換器14Aは3本のパス14A1を有し、第2熱交換器14Bは5本のパス14B1を有している。
従って、第1熱交換器14Aを流れる冷媒量と第2熱交換器14Bを流れる冷媒量は異なっており、第1熱交換器14Aを流れる冷媒量よりも第2熱交換器14B流れる冷媒量の方が多くなる。
Each of the first heat exchanger 14A and the second heat exchanger 14B has paths as pipes through which a plurality of refrigerants flow, and in the present embodiment, the first heat exchanger 14A has three paths 14A1. The second heat exchanger 14B has five paths 14B1.
Therefore, the amount of the refrigerant flowing through the first heat exchanger 14A and the amount of the refrigerant flowing through the second heat exchanger 14B are different, and the amount of the refrigerant flowing through the second heat exchanger 14B is larger than the amount of the refrigerant flowing through the first heat exchanger 14A. There will be more.

第1熱交換器14Aが有するパス14A1の数と第2熱交換器14Bが有するパス14B1の数とは、シロッコファン24によって、第1熱交換器14Aに吸い込まれる空気の量と第2熱交換器14Bに吸い込まれる空気の量の差に応じて定められ、本実施形態では、第1熱交換器14Aに吸い込まれる空気の量が、第2熱交換器14Bに吸い込まれる空気の量よりも少ないことから、第1熱交換器14Aのパス14A1の数を第2熱交換器14Bのパス14B1の数よりも少なくしている。 The number of paths 14A1 possessed by the first heat exchanger 14A and the number of paths 14B1 possessed by the second heat exchanger 14B are the amount of air sucked into the first heat exchanger 14A by the sirocco fan 24 and the second heat exchange. It is determined according to the difference in the amount of air sucked into the container 14B, and in the present embodiment, the amount of air sucked into the first heat exchanger 14A is smaller than the amount of air sucked into the second heat exchanger 14B. Therefore, the number of paths 14A1 of the first heat exchanger 14A is smaller than the number of paths 14B1 of the second heat exchanger 14B.

従って、熱交換容量を増やすために、本実施形態のように室内熱交換器14を2台として、第1熱交換器14Aを流れる空気量と、第2熱交換器14Bを流れる空気量が異なる場合であっても、流れる空気量の違いに応じて、第1熱交換器14Aを構成するパス14A1の数と第2熱交換器14Bを構成するパス14B1の数を決めることによって、第1熱交換器14Aを流れる冷媒の温度と第2熱交換器14Bを流れる冷媒の温度との不均衡を改善することができる。
これにより、各熱交換器14A、14Bを加熱除菌する場合に、各熱交換器14A、14Bの温度を共に所定温度(例えば、55℃)とすることができる。
Therefore, in order to increase the heat exchange capacity, the amount of air flowing through the first heat exchanger 14A and the amount of air flowing through the second heat exchanger 14B are different from each other with two indoor heat exchangers 14 as in the present embodiment. Even in this case, the first heat is determined by determining the number of paths 14A1 constituting the first heat exchanger 14A and the number of paths 14B1 constituting the second heat exchanger 14B according to the difference in the amount of flowing air. It is possible to improve the imbalance between the temperature of the refrigerant flowing through the exchanger 14A and the temperature of the refrigerant flowing through the second heat exchanger 14B.
Thereby, when the heat exchangers 14A and 14B are sterilized by heating, the temperature of each of the heat exchangers 14A and 14B can be set to a predetermined temperature (for example, 55 ° C.).

尚、本実施形態では、空気吸込口34から第1熱交換器14Aまでの通風路の距離が、空気吸込口34から第2熱交換器14Bまでの通風路の距離より長くなっていることから、空気吸込口34から第1熱交換器14Aまでの通風路の通風抵抗の方が空気吸込口34から第2熱交換器14Bまでの通風路の通風路の通風抵抗より大きくなるが、通風抵抗は通風路の長さだけではなく、通風路の断面積や通風路内部の形状や通風路内部表面の摩擦係数等によっても影響を受ける。 In this embodiment, the distance of the ventilation path from the air suction port 34 to the first heat exchanger 14A is longer than the distance of the ventilation path from the air suction port 34 to the second heat exchanger 14B. , The ventilation resistance of the ventilation path from the air suction port 34 to the first heat exchanger 14A is larger than the ventilation resistance of the ventilation path of the ventilation path from the air suction port 34 to the second heat exchanger 14B, but the ventilation resistance. Is affected not only by the length of the ventilation passage, but also by the cross-sectional area of the ventilation passage, the shape of the inside of the ventilation passage, the friction coefficient of the inner surface of the ventilation passage, and the like.

従って、例えば、空気吸込口34から第1熱交換器14Aまでの通風路の距離と、空気吸込口34から第2熱交換器14Bまでの通風路の距離とが同じであっても、空気吸込口34から第1熱交換器14Aまでの通風路の断面積が、吸込口34から第2熱交換器14Bまでの通風路の断面積よりも小さい場合は、空気吸込口34から第1熱交換器14Aまでの通風路の通風抵抗の方が、空気吸込口34から第2熱交換器14Bまでの通風路の通風路の通風抵抗より大きくなるので、第1熱交換器14Aのパス14A1の数を第2熱交換器14Bのパス14B1の数より少なくすることによって、第1熱交換器14Aを流れる冷媒の温度と第2熱交換器14Bを流れる冷媒の温度との不均衡を図ることができる。 Therefore, for example, even if the distance of the ventilation path from the air suction port 34 to the first heat exchanger 14A and the distance of the ventilation path from the air suction port 34 to the second heat exchanger 14B are the same, air suction is performed. If the cross-sectional area of the ventilation path from the port 34 to the first heat exchanger 14A is smaller than the cross-sectional area of the ventilation path from the suction port 34 to the second heat exchanger 14B, the first heat exchange from the air suction port 34 Since the ventilation resistance of the ventilation passage to the vessel 14A is larger than the ventilation resistance of the ventilation passage of the ventilation passage from the air suction port 34 to the second heat exchanger 14B, the number of paths 14A1 of the first heat exchanger 14A Is less than the number of paths 14B1 of the second heat exchanger 14B, so that the temperature of the refrigerant flowing through the first heat exchanger 14A and the temperature of the refrigerant flowing through the second heat exchanger 14B can be imbalanced. ..

すなわち、空気吸込口34から第1熱交換器14Aまでの通風路の通風抵抗と、空気吸込口34から第2熱交換器14Bまでの通風路の通風抵抗とに応じて、第1熱交換器14Aを構成するパス14A1の数と第2熱交換器14Bを構成するパス14B1の数を決めればよい。
尚、第1熱交換器14Aを構成するパス14A1の数と第2熱交換器14Bを構成するパス14B1の数を決める場合、各室内熱交換器14A、14Bそれぞれから空気吹出口35までの通風路の通風抵抗も、各室内熱交換器14A、14Bそれぞれに吸い込まれる空気の量に影響するため、各室内熱交換器14A、14Bそれぞれから空気吹出口35までの通風路も含め、空気吸入口34から空気吹出口35までの通風路の通風抵抗について考慮する必要がある。
That is, the first heat exchanger corresponds to the ventilation resistance of the ventilation path from the air suction port 34 to the first heat exchanger 14A and the ventilation resistance of the ventilation path from the air suction port 34 to the second heat exchanger 14B. The number of paths 14A1 constituting 14A and the number of paths 14B1 constituting the second heat exchanger 14B may be determined.
When determining the number of paths 14A1 constituting the first heat exchanger 14A and the number of paths 14B1 constituting the second heat exchanger 14B, ventilation from each of the indoor heat exchangers 14A and 14B to the air outlet 35 is determined. Since the ventilation resistance of the passage also affects the amount of air sucked into each of the indoor heat exchangers 14A and 14B, the air suction port including the ventilation passage from each of the indoor heat exchangers 14A and 14B to the air outlet 35. It is necessary to consider the ventilation resistance of the ventilation path from 34 to the air outlet 35.

室内熱交換器14は、第1熱交換器14Aおよび第2熱交換器14Bの2台で構成されているが、室内熱交換器14の温度を計測する温度センサ26aと室内熱交換器14の湿度を計測する湿度センサ26bは、第1熱交換器14Aおよび第2熱交換器14Bのそれぞれに取り付ける必要はなく、第1熱交換器14Aまたは第2熱交換器14Bとのいずれか一方に取り付けられていればよい。本実施形態では、空気吸込口34から第1熱交換器14Aまでの通風路の距離と、空気吸込口34から第2熱交換器14Bまでの通風路の距離が異なるが、それに応じて、第1熱交換器14Aを構成するパス14A1の数と第2熱交換器14Bを構成するパス14B1の数を決めているため、第1熱交換器14Aを流れる冷媒の温度と第2熱交換器14Bを流れる冷媒の温度との不均衡が生じにくいことから、温度センサ26aを、第1熱交換器14Aおよび第2熱交換器14Bのそれぞれに取り付ける必要はないからである。 The indoor heat exchanger 14 is composed of two units, a first heat exchanger 14A and a second heat exchanger 14B, and the temperature sensor 26a for measuring the temperature of the indoor heat exchanger 14 and the indoor heat exchanger 14 The humidity sensor 26b for measuring humidity does not need to be attached to each of the first heat exchanger 14A and the second heat exchanger 14B, but is attached to either the first heat exchanger 14A or the second heat exchanger 14B. It suffices if it is done. In the present embodiment, the distance of the ventilation path from the air suction port 34 to the first heat exchanger 14A and the distance of the ventilation path from the air suction port 34 to the second heat exchanger 14B are different. Since the number of paths 14A1 constituting the first heat exchanger 14A and the number of paths 14B1 constituting the second heat exchanger 14B are determined, the temperature of the refrigerant flowing through the first heat exchanger 14A and the second heat exchanger 14B are determined. This is because it is not necessary to attach the temperature sensor 26a to each of the first heat exchanger 14A and the second heat exchanger 14B because imbalance with the temperature of the refrigerant flowing through the heat exchanger is unlikely to occur.

本実施形態では、図3に示すように、温度センサ26aと湿度センサ26bは第2熱交換器14Bの第1スペースS1側の面であって下部側に配置されている。第1スペースS1は空気吸込口34に、直接、開口するため、温度センサ26aが第2熱交換器14Bの第1スペースS1側の面であって下部側に配置されていると、温度センサ26aと湿度センサ26bを保守点検する際に、空気吸込口34から容易に点検することができるからである。 In the present embodiment, as shown in FIG. 3, the temperature sensor 26a and the humidity sensor 26b are the surfaces of the second heat exchanger 14B on the first space S1 side and are arranged on the lower side. Since the first space S1 opens directly to the air suction port 34, if the temperature sensor 26a is arranged on the lower side of the surface of the second heat exchanger 14B on the first space S1 side, the temperature sensor 26a This is because when the humidity sensor 26b is maintained and inspected, it can be easily inspected from the air suction port 34.

本実施形態の空気調和機11は、冷房運転によって、第1熱交換器14Aと第2熱交換器14Bとを蒸発器として機能させることにより第1熱交換器14Aと第2熱交換器14Bとに付着し結露水を、第1熱交換器14Aと第2熱交換器14Bとを凝縮器として機能させると共にシロッコファン24の回転数を制御することで、第1熱交換器14Aと第2熱交換器14Bの温度を暖房運転とは異なる温度帯の温度で加熱する加熱除菌運転を行う。 The air conditioner 11 of the present embodiment has the first heat exchanger 14A and the second heat exchanger 14B by making the first heat exchanger 14A and the second heat exchanger 14B function as evaporators by the cooling operation. The first heat exchanger 14A and the second heat exchanger 14A and the second heat are heated by controlling the rotation speed of the sirocco fan 24 while making the first heat exchanger 14A and the second heat exchanger 14B function as condensers. A heat sterilization operation is performed in which the temperature of the exchanger 14B is heated in a temperature range different from that of the heating operation.

加熱除菌運転は、室内の温調を目的とせずに、シロッコファン24の回転数を暖房運転の場合の回転数より低い回転数で駆動させることにより、第1熱交換器14Aと第2熱交換器14Bを流れる冷媒の温度を暖房運転とは異なる温度帯、例えば、55~59℃で加熱することにより、第1熱交換器14Aと第2熱交換器14Bとの表面に生成された結露水を蒸発させずに加熱して、結露水中の細菌やカビを湿熱除菌させる運転である。
暖房運転の場合、シロッコファン24の回転数は、約500rpm~1000rpmであるが、加熱除菌運転の場合は、シロッコファン24の回転数は、例えば、約200rpmである。シロッコファン24の回転数を暖房運転の場合より下げることで高圧側冷媒の圧力を上げて、第1熱交換器14Aと第2熱交換器14Bの温度を55℃~59℃を維持することができる。
In the heating sterilization operation, the first heat exchanger 14A and the second heat are driven by driving the rotation speed of the sirocco fan 24 at a rotation speed lower than the rotation speed in the case of the heating operation without aiming at the temperature control in the room. Dew condensation formed on the surfaces of the first heat exchanger 14A and the second heat exchanger 14B by heating the temperature of the refrigerant flowing through the exchanger 14B in a temperature range different from that of the heating operation, for example, 55 to 59 ° C. It is an operation to heat bacteria and mold in the dew condensation water by heating without evaporating the water.
In the case of the heating operation, the rotation speed of the sirocco fan 24 is about 500 rpm to 1000 rpm, but in the case of the heat sterilization operation, the rotation speed of the sirocco fan 24 is, for example, about 200 rpm. By lowering the rotation speed of the sirocco fan 24 compared to the case of heating operation, the pressure of the high-pressure side refrigerant can be increased to maintain the temperatures of the first heat exchanger 14A and the second heat exchanger 14B at 55 ° C to 59 ° C. can.

本実施形態の空気調和機11は、第1熱交換器14Aと第2熱交換器14Bが蒸発器として機能した場合に、第1熱交換器14Aと第2熱交換器14Bとに付着した結露水を、第1熱交換器14Aと第2熱交換器14Bを凝縮器として機能させて、暖房運転とは異なる温度帯である55~59℃で加熱することにより、第1熱交換器14Aと第2熱交換器14Bの加熱除菌を行うため、除菌を専用の装置を設けずに低コストで実施すると共に室内機12の内部が高湿な状態でも除菌することができる。 In the air conditioner 11 of the present embodiment, when the first heat exchanger 14A and the second heat exchanger 14B function as evaporators, dew condensation adheres to the first heat exchanger 14A and the second heat exchanger 14B. By making the first heat exchanger 14A and the second heat exchanger 14B function as condensers and heating the water at 55 to 59 ° C., which is a temperature range different from the heating operation, the water is heated with the first heat exchanger 14A. Since the second heat exchanger 14B is heat-sterilized, the sterilization can be carried out at low cost without providing a dedicated device, and the sterilization can be performed even when the inside of the indoor unit 12 is in a high humidity state.

また、空気吸込口34から第1熱交換器14Aまでの通風路の距離と、空気吸込口34から第2熱交換器14Bまでの通風路の距離が異なるような場合であっても、それに応じて、第1熱交換器14Aを構成するパス14A1の数と第2熱交換器14Bを構成するパス14B1の数を決めているため、加熱除菌運転の状態でも第1熱交換器14Aを流れる冷媒の温度と第2熱交換器14Bを流れる冷媒の温度との不均衡を抑制することができるので、第1熱交換器14Aと第2熱交換器14Bの除菌の不均衡を抑制することができる。
以上、限られた数の実施形態を参照しながら説明したが、権利範囲はそれらに限定されるものではなく、上記の開示に基づく実施形態の改変は、当業者にとって自明のことである。
Further, even if the distance of the ventilation path from the air suction port 34 to the first heat exchanger 14A and the distance of the ventilation path from the air suction port 34 to the second heat exchanger 14B are different, it corresponds to the case. Since the number of paths 14A1 constituting the first heat exchanger 14A and the number of paths 14B1 constituting the second heat exchanger 14B are determined, the first heat exchanger 14A flows even in the state of heat sterilization operation. Since the imbalance between the temperature of the refrigerant and the temperature of the refrigerant flowing through the second heat exchanger 14B can be suppressed, the imbalance of sterilization of the first heat exchanger 14A and the second heat exchanger 14B can be suppressed. Can be done.
Although the above description has been made with reference to a limited number of embodiments, the scope of rights is not limited thereto, and modifications of the embodiments based on the above disclosure are obvious to those skilled in the art.

11…空気調和機、13…室外機、12…室内機、14…室内熱交換器、14A…第1熱交換器、14B…第2熱交換器、14A1、14B1…パス、24…シロッコファン、26a…温度センサ、33…筐体、34…空気吸入口、35…空気吹出口、40…ドレンパン、S1…第1スペース、S2…第2スペース、S3…第3スペース、S4…導風路、45…吹出通風路 11 ... Air conditioner, 13 ... Outdoor unit, 12 ... Indoor unit, 14 ... Indoor heat exchanger, 14A ... 1st heat exchanger, 14B ... 2nd heat exchanger, 14A1, 14B1 ... Pass, 24 ... Sirocco fan, 26a ... temperature sensor, 33 ... housing, 34 ... air inlet, 35 ... air outlet, 40 ... drain pan, S1 ... first space, S2 ... second space, S3 ... third space, S4 ... air guide, 45 ... Blowout ventilation path

Claims (6)

圧縮機、四方弁、複数の室内熱交換器、膨張弁が接続されて冷媒が循環する冷凍回路と、
前記圧縮機と前記四方弁を備えた室外機と、
複数の前記室内熱交換器と室内機ファンとを含み前記室外機に接続する室内機と、を備え、
少なくとも前記圧縮機と前記室内機ファンと前記四方弁を制御して複数の前記室内熱交換器を冷房の場合は蒸発器として機能させると共に暖房の場合は凝縮器として機能させて、前記室内機が設置された室内の温調を行う空気調和機において、
前記室内機は、空気吸込口と空気吹出口とを有すると共にそれら空気吸込口と空気吹出口との間にあって前記空気吸込口から分岐する複数の通風路を有する筐体と、複数の前記通風路のそれぞれに配置された少なくとも1つの前記室内熱交換器と、前記空気吸込口から吸い込んだ空気を複数の前記通風路のそれぞれを経由して前記空気吹出口へ導く前記室内機ファンと、を備えて、
一の前記通風路の通風抵抗は、他の前記通風路の通風抵抗よりも大きく、前記通風抵抗の大小に応じて前記一の通風路に配置された一の前記室内熱交換器を流れる冷媒量は、前記他の通風路に配置された他の前記室内熱交換器を流れる冷媒量よりも少なく、設定されて、
複数の前記室内熱交換器が蒸発器として機能した場合に前記室内熱交換器に付着した結露水を、複数の前記室内熱交換器を凝縮器として機能させて所定温度まで加熱させ、複数の前記室内熱交換器の加熱除菌を行うことを特徴とする空気調和機。
A compressor, a four-way valve, multiple indoor heat exchangers, a refrigeration circuit to which an expansion valve is connected and a refrigerant circulates,
The compressor, the outdoor unit equipped with the four-way valve, and
An indoor unit including a plurality of the indoor heat exchangers and an indoor unit fan and connected to the outdoor unit is provided.
At least the compressor, the indoor unit fan, and the four-way valve are controlled so that the plurality of indoor heat exchangers function as evaporators in the case of cooling and as condensers in the case of heating. In the air conditioner that controls the temperature in the installed room
The indoor unit has a housing having an air suction port and an air outlet, and having a plurality of ventilation passages between the air suction port and the air outlet and branching from the air suction port , and a plurality of the above. At least one indoor heat exchanger arranged in each of the ventilation passages, and the indoor unit fan that guides the air sucked from the air suction port to the air outlet via each of the plurality of ventilation passages. In preparation for
The ventilation resistance of one of the ventilation passages is larger than the ventilation resistance of the other ventilation passages, and the amount of refrigerant flowing through the indoor heat exchanger arranged in the one ventilation passage according to the magnitude of the ventilation resistance. Is set to be less than the amount of refrigerant flowing through the other indoor heat exchangers located in the other ventilation passages.
When the plurality of indoor heat exchangers function as evaporators, the dew condensation water adhering to the indoor heat exchangers is heated to a predetermined temperature by making the plurality of indoor heat exchangers function as condensers, and the plurality of said indoor heat exchangers. An air conditioner characterized by heating and disinfecting an indoor heat exchanger.
複数の前記室内熱交換器は、いずれも冷媒が流れる複数のパスを有し、前記一の室内熱交換器のパス数は前記他の室内熱交換器のパス数よりも少なく設定されていることを特徴とする請求項1に記載の空気調和機。 Each of the plurality of indoor heat exchangers has a plurality of paths through which the refrigerant flows, and the number of passes of the one indoor heat exchanger is set to be smaller than the number of passes of the other indoor heat exchangers. The air conditioner according to claim 1, wherein the air conditioner is characterized by. 前記筐体は、前面板、背面板、天面板、底面板、左側面板、及び右側面板を有する箱型であり、The housing is a box type having a front plate, a back plate, a top plate, a bottom plate, a left side plate, and a right side plate.
前記底面板は、前記前面板側に配置された前記空気吹出口及び前記背面板側に配置された前記空気吸込口を有し、 The bottom plate has the air outlet arranged on the front plate side and the air suction port arranged on the back plate side.
複数の前記室内熱交換器は、前記筐体内の前記前面板寄りに取り付けられる前記一の室内熱交換器としての第1熱交換器と、前記背面板寄りに取り付けられる前記他の室内熱交換器としての第2熱交換器を含み、 The plurality of indoor heat exchangers include a first heat exchanger as the one indoor heat exchanger attached near the front plate in the housing, and the other indoor heat exchanger attached near the back plate. Including the second heat exchanger as
前記室内機ファンは、吹出通風路を有し、前記第1熱交換器と前記第2熱交換器の間の位置に配置され、 The indoor unit fan has an outlet ventilation passage and is arranged at a position between the first heat exchanger and the second heat exchanger.
前記第1熱交換器及び前記第2熱交換器の下側に配置されて、前記第1熱交換器と前記第2熱交換器に付着した前記結露水を集めるドレンパンと、 A drain pan arranged under the first heat exchanger and the second heat exchanger to collect the dew condensation water adhering to the first heat exchanger and the second heat exchanger.
前記室内機ファンの前記吹出通風路から吹き出される空気を前記空気吹出口にガイドするよう前記吹出通風路と前記空気吹出口とをつなぐ吹出ガイドと、を備え、 A blowout guide connecting the blowout air passage and the air outlet so as to guide the air blown from the blowout air passage of the indoor unit fan to the air outlet is provided.
前記第2熱交換器と前記背面板との間に、前記空気吸込口が開口する第1スペースを形成し、前記第1熱交換器と前記前面板との間に第2スペースを形成し、前記ドレンパンと前記底面板との間に前記第1スペースと前記第2スペースとを接続させる第3スペースを形成して、 A first space for opening the air suction port is formed between the second heat exchanger and the back plate, and a second space is formed between the first heat exchanger and the front plate. A third space for connecting the first space and the second space is formed between the drain pan and the bottom plate.
複数の前記通風路は、前記空気吸込口から前記第3スペース及び前記第2スペースを経由して前記第1熱交換器までの通風路と、前記空気吸込口から前記第1スペースを経由して前記第2熱交換器までの通風路と、を有していることを特徴とする請求項1または2に記載の空気調和機。 The plurality of ventilation passages are a ventilation passage from the air suction port to the first heat exchanger via the third space and the second space, and from the air suction port via the first space. The air conditioner according to claim 1 or 2, wherein the air conditioner has a ventilation path to the second heat exchanger.
前記空気吸込口から前記第3スペース及び前記第2スペースを経由して前記第1熱交換器までの通風路の通風抵抗が、前記空気吸込口から前記第1スペースを経由して前記第2熱交換器までの通風路の通風抵抗より大きくなるように、前記第1熱交換器と前記第2熱交換器が配置されていることを特徴とする請求項に記載の空気調和機。 The ventilation resistance of the ventilation path from the air suction port to the first heat exchanger via the third space and the second space is the second heat from the air suction port via the first space. The air conditioner according to claim 3 , wherein the first heat exchanger and the second heat exchanger are arranged so as to be larger than the ventilation resistance of the ventilation path to the exchanger. 複数の前記室内熱交換器は、前記冷凍回路において並列に接続されていることを特徴とする請求項1からのいずれか1項に記載の空気調和機。 The air conditioner according to any one of claims 1 to 4 , wherein the plurality of indoor heat exchangers are connected in parallel in the refrigeration circuit. 複数の前記室内熱交換器の加熱除菌は、前記室内機ファンの回転数を暖房の場合における室内機ファンの最低回転数よりも低い回転数で駆動させることを特徴とする請求項1からのいずれか1項に記載の空気調和機。 Claims 1 to 5 characterized in that the heating sterilization of the plurality of indoor heat exchangers drives the indoor unit fan at a rotation speed lower than the minimum rotation speed of the indoor unit fan in the case of heating. The air conditioner according to any one of the above items.
JP2019231287A 2019-12-23 2019-12-23 Air conditioner Active JP7031650B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019231287A JP7031650B2 (en) 2019-12-23 2019-12-23 Air conditioner
CN202080085312.0A CN114867969A (en) 2019-12-23 2020-12-23 Air conditioner
EP20906348.6A EP4083531A4 (en) 2019-12-23 2020-12-23 Air conditioner
PCT/JP2020/048318 WO2021132412A1 (en) 2019-12-23 2020-12-23 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019231287A JP7031650B2 (en) 2019-12-23 2019-12-23 Air conditioner

Publications (2)

Publication Number Publication Date
JP2021099191A JP2021099191A (en) 2021-07-01
JP7031650B2 true JP7031650B2 (en) 2022-03-08

Family

ID=76541267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019231287A Active JP7031650B2 (en) 2019-12-23 2019-12-23 Air conditioner

Country Status (4)

Country Link
EP (1) EP4083531A4 (en)
JP (1) JP7031650B2 (en)
CN (1) CN114867969A (en)
WO (1) WO2021132412A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113669868A (en) * 2021-08-30 2021-11-19 海信(广东)空调有限公司 Air conditioner and control method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001174047A (en) 1999-12-17 2001-06-29 Matsushita Electric Ind Co Ltd Indoor unit of air conditioner
JP2002162052A (en) 2000-11-20 2002-06-07 Daikin Ind Ltd Air conditioner and indoor heat exchanger
JP2016200338A (en) 2015-04-13 2016-12-01 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Air conditioner
JP2018119718A (en) 2017-01-24 2018-08-02 株式会社富士通ゼネラル Ceiling-embedded air conditioner
WO2018159446A1 (en) 2017-02-28 2018-09-07 株式会社富士通ゼネラル Air conditioner
JP2018189251A (en) 2017-04-28 2018-11-29 株式会社富士通ゼネラル Indoor unit for ceiling embedded type air conditioner
JP2019178831A (en) 2018-03-30 2019-10-17 株式会社富士通ゼネラル Ceiling embedded type air conditioner
JP2019203629A (en) 2018-05-22 2019-11-28 株式会社富士通ゼネラル Ceiling embedded type air conditioner

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102247707A (en) * 2011-04-22 2011-11-23 李耀强 Embedded dehumidifying and sterilizing device
JP6824779B2 (en) * 2017-02-28 2021-02-03 株式会社富士通ゼネラル Antifungal method of air conditioner and air conditioner using it

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001174047A (en) 1999-12-17 2001-06-29 Matsushita Electric Ind Co Ltd Indoor unit of air conditioner
JP2002162052A (en) 2000-11-20 2002-06-07 Daikin Ind Ltd Air conditioner and indoor heat exchanger
JP2016200338A (en) 2015-04-13 2016-12-01 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Air conditioner
JP2018119718A (en) 2017-01-24 2018-08-02 株式会社富士通ゼネラル Ceiling-embedded air conditioner
WO2018159446A1 (en) 2017-02-28 2018-09-07 株式会社富士通ゼネラル Air conditioner
JP2018189251A (en) 2017-04-28 2018-11-29 株式会社富士通ゼネラル Indoor unit for ceiling embedded type air conditioner
JP2019178831A (en) 2018-03-30 2019-10-17 株式会社富士通ゼネラル Ceiling embedded type air conditioner
JP2019203629A (en) 2018-05-22 2019-11-28 株式会社富士通ゼネラル Ceiling embedded type air conditioner

Also Published As

Publication number Publication date
WO2021132412A1 (en) 2021-07-01
CN114867969A (en) 2022-08-05
EP4083531A1 (en) 2022-11-02
JP2021099191A (en) 2021-07-01
EP4083531A4 (en) 2024-01-17

Similar Documents

Publication Publication Date Title
US11346577B2 (en) Air conditioner
US10823433B2 (en) Air conditioner
US10684024B2 (en) Air conditioner
CN109855179B (en) Air conditioner
US11137148B2 (en) Air conditioner
WO2013146006A1 (en) Heat exchanger for air-conditioning device and air-conditioning device
KR102139084B1 (en) Air conditioner
JP4700513B2 (en) Air conditioner indoor unit
JP7457229B2 (en) air conditioning system
JP7031650B2 (en) Air conditioner
JP2003139382A (en) Air conditioner
JP5916346B2 (en) Air conditioning equipment
CN114667421A (en) Air conditioner
JP7031651B2 (en) Air conditioner
JP5239959B2 (en) Air conditioning system
US6272880B1 (en) Air conditioner
KR101798124B1 (en) Dehumidifier
JP2022050948A (en) Air conditioning ventilation system
JP4096890B2 (en) Heat pump air conditioner
JP2007333378A (en) Heat pump type air conditioner
JP2020186821A (en) Air conditioning system
JP2015124969A (en) Indoor unit of air conditioner
CN115751457A (en) Air conditioner
JP4099718B2 (en) Heat pump air conditioner
JP2022170196A (en) air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220207

R151 Written notification of patent or utility model registration

Ref document number: 7031650

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151