WO2018159427A1 - 1,1,1,3,3,3-ヘキサフルオロプロパン-2-オールと脂肪族炭化水素系溶媒を用いた二相系反応媒体 - Google Patents

1,1,1,3,3,3-ヘキサフルオロプロパン-2-オールと脂肪族炭化水素系溶媒を用いた二相系反応媒体 Download PDF

Info

Publication number
WO2018159427A1
WO2018159427A1 PCT/JP2018/006337 JP2018006337W WO2018159427A1 WO 2018159427 A1 WO2018159427 A1 WO 2018159427A1 JP 2018006337 W JP2018006337 W JP 2018006337W WO 2018159427 A1 WO2018159427 A1 WO 2018159427A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
acid
liquid phase
phase
organic
Prior art date
Application number
PCT/JP2018/006337
Other languages
English (en)
French (fr)
Inventor
淳士 市川
健志 藤田
一光 高橋
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Publication of WO2018159427A1 publication Critical patent/WO2018159427A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/40Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals
    • C07C15/56Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals polycyclic condensed
    • C07C15/60Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals polycyclic condensed containing three rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/35Preparation of halogenated hydrocarbons by reactions not affecting the number of carbon or of halogen atoms in the reaction
    • C07C17/358Preparation of halogenated hydrocarbons by reactions not affecting the number of carbon or of halogen atoms in the reaction by isomerisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C25/00Compounds containing at least one halogen atom bound to a six-membered aromatic ring
    • C07C25/18Polycyclic aromatic halogenated hydrocarbons
    • C07C25/22Polycyclic aromatic halogenated hydrocarbons with condensed rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/34Halogenated alcohols
    • C07C31/38Halogenated alcohols containing only fluorine as halogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/22Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by isomerisation
    • C07C5/27Rearrangement of carbon atoms in the hydrocarbon skeleton
    • C07C5/31Rearrangement of carbon atoms in the hydrocarbon skeleton changing the number of rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/02Monocyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/16Monocyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with a six-membered ring
    • C07C13/18Monocyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with a six-membered ring with a cyclohexane ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/28Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/32Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
    • C07C13/47Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with a bicyclo ring system containing ten carbon atoms
    • C07C13/48Completely or partially hydrogenated naphthalenes
    • C07C13/50Decahydronaphthalenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C9/00Aliphatic saturated hydrocarbons
    • C07C9/14Aliphatic saturated hydrocarbons with five to fifteen carbon atoms
    • C07C9/15Straight-chain hydrocarbons

Definitions

  • the present invention relates to a two-phase reaction medium using 1,1,1,3,3,3-hexafluoropropan-2-ol and an aliphatic hydrocarbon solvent.
  • the present invention also relates to a method for producing phenacenes using an acid catalyst using the two-phase reaction medium as a reaction solvent.
  • 1,1,1,3,3,3-hexafluoropropan-2-ol has a strong hydrogen bond donation on its hydroxy group due to the strong electron withdrawing properties of two trifluoromethyl groups Therefore, a high-speed and high-efficiency cycloaddition reaction between quinone monoacetal and an active alkene such as allyltrimethylsilane or styrene has been reported (Non-patent Document 1). In this example, it is shown that the desired reaction is very slow with other general-purpose organic solvents, and even a similar fluorine-based solvent, 2,2,2-trifluoroethanol, does not provide a sufficient reaction rate. Yes.
  • Patent Document 2 In addition to the extremely large hydrogen bond donating ability, this is thought to be due to multiple characteristics such as excellent cation stabilization effect due to high solvation effect, outstanding polarity, low nucleophilic ability, and specific coordination ability. Yes.
  • 1,1,1,3,3,3-hexafluoropropan-2-ol is miscible with water at an arbitrary ratio.
  • a specific substrate and a reaction reagent are added to Friedel.
  • the desired reaction proceeds with high efficiency while separating the system into two phases of 1,1,1,3,3,3-hexafluoropropan-2-ol phase and aqueous phase, It has been reported that the target product can be easily isolated (Non-patent Document 4).
  • An organic reaction system using HFIP as a solvent can be said to be a very attractive reaction system because the reactivity is often increased due to its high solvation effect as in the above example.
  • a reaction system that performs C—C bond formation via a carbocation intermediate particularly a system that synthesizes polycyclic aromatic hydrocarbons typified by acenes, phenacenes, triphenylenes, etc. via a carbocation intermediate
  • the reactivity increases greatly by using HFIP as a reaction solvent. This is probably because the carbocation intermediate is stabilized by the high solvation effect of HFIP.
  • a second liquid phase composed of a solvent containing these as a main component the main component means containing 50% or more of these aliphatic hydrocarbons
  • an organic The inventors have found a two-phase reaction medium for reaction.
  • HFIP and the above-described aliphatic hydrocarbon are substantially incompatible with each other and form a stable two-phase reaction medium.
  • substantially incompatible means that HFIP and the aliphatic hydrocarbon do not have mutual affinity to form a two-phase solvent system, specifically, the other phase in one phase. It means that the saturated solubility of the phase solvent is preferably below 1 g / 100 g, more preferably below 0.1 g / 100 g.
  • the intermediate active species (reaction intermediate) of the organic reaction is stabilized in the HFIP phase (first liquid phase). It is unevenly distributed in one liquid phase. As a result, the target organic reaction mainly proceeds in the first liquid phase, and the reactivity increasing effect of the HFIP system is manifested. On the other hand, the raw materials and products of the organic reaction are unevenly distributed in the second liquid phase because the affinity with the aliphatic hydrocarbon is relatively high as described above.
  • reaction under acidic conditions There are no particular restrictions on the type of organic reaction that can be carried out in the two-phase reaction medium of the present invention, but (1) reaction under acidic conditions, (2) reaction under neutral conditions, and (3) use of a metal catalyst.
  • the reaction is roughly classified into the following reactions and (4) radical reactions.
  • reaction accelerators such as “acid catalysts” or “metal catalysts”.
  • the “acid catalyst” or “metal catalyst” tends to be distributed to the HFIP phase (first liquid phase) in the two-phase reaction medium of the present invention due to its high polarity. After the reaction is completed, the “acid catalyst” or “metal catalyst” usually remains in the HFIP phase (first liquid phase). Therefore, when the above organic reaction is carried out in the presence of an “acid catalyst” or “metal catalyst”, the target product and reaction raw materials (when the reaction is not completed) are unevenly distributed in the second liquid phase, and after completion of the reaction.
  • the first liquid phase is maintained in a state where the “acid catalyst” or “metal catalyst” is dissolved in HFIP, and can be reused in the next reaction batch if desired.
  • the reaction medium is a particularly preferred reaction medium.
  • the present inventors also obtained the following characteristic findings in organic reactions using the two-phase reaction medium of the present invention. That is, the first liquid phase using HFIP as a solvent and the second liquid phase mainly containing an aliphatic hydrocarbon having 5 to 30 carbon atoms are extremely easy to separate in a liquid state. Separation (separation) is possible with almost no mixing of the two. For this reason, as shown in the examples described later, after the completion of the reaction, in particular, the first liquid phase using HFIP as a solvent is almost quantitatively (with a recovery rate of 95% or more, or 99% or more if desired) It can be recovered. Since HFIP is an expensive compound, the fact that this compound can be recovered at a high recovery rate and can be used as it is for the next reaction batch is extremely beneficial in using HFIP on a large scale.
  • Non-Patent Document 3 after performing the Friedel-Crafts acylation reaction twice in the “HFIP single solvent system”, the obtained reaction mixture is subjected to distillation recovery, and HFIP is taken out and recycled. is doing.
  • the reaction system using the two-phase reaction medium of the present invention has a very high recovery rate of HFIP after completion of the reaction, which is economically advantageous and environmentally friendly. Can be said to have been realized.
  • the present inventors have found a two-phase reaction medium using 1,1,1,3,3,3-hexafluoropropan-2-ol (HFIP), and used the novel reaction medium.
  • HFIP 1,1,1,3,3,3-hexafluoropropan-2-ol
  • the present invention includes the following [Invention 1] to [Invention 12].
  • the aliphatic hydrocarbon in the second liquid phase is an aliphatic hydrocarbon having 5 to 30 carbon atoms (the aliphatic hydrocarbon is linear, branched or cyclic, and part of the C—C bond) 2 may form a double bond or a triple bond).
  • the two-phase reaction medium for organic reaction according to claim 1.
  • the aliphatic hydrocarbon in the second liquid phase is n-pentane, cyclopentane, n-hexane, 2-methylpentane, cyclohexane, n-heptane, methylcyclohexane, cycloheptane, n-octane, cyclooctane, 2-methylheptane.
  • the two-phase reaction medium for organic reactions according to Invention 1 which is at least one selected from the group consisting of ethylcyclohexane, n-decane, decalin, and cyclodecane.
  • invention 4 A two-phase reaction medium for an organic reaction according to any one of Inventions 1 to 3, wherein the applied organic reaction is performed under acidic conditions, an S N 1 reaction, an E1 reaction, a rearrangement reaction, A two-phase reaction medium that is one of an Aldol reaction, a Michael reaction, an esterification reaction, a Friedel-Crafts reaction, and a Nazarov cyclization reaction.
  • Acid catalysts include hydrochloric acid, sulfuric acid, nitric acid, perchloric acid, tetrafluoroboric acid, hexafluorophosphoric acid, hydrofluoric acid, trifluoromethanesulfonic acid, p-toluenesulfonic acid monohydrate, methanesulfonic acid, (+ ) -10-camphorsulfonic acid, trifluoroacetic acid, FSO 3 H ⁇ SbF 5 , a two-phase reaction medium for organic reaction according to any one of inventions 1 to 4, comprising at least one of Tf 2 NH.
  • a method for producing organic compound B comprising the following first to third steps.
  • First step: (a) a first liquid phase using 1,1,1,3,3,3-hexafluoropropan-2-ol as a solvent and the 1,1,1,3,3,3-hexa Aliphatic hydrocarbons that are substantially incompatible with fluoropropan-2-ol (the aliphatic hydrocarbons are linear, branched, or cyclic, and part of the C—C bond is doubled)
  • a second liquid phase composed of a solvent having a bond or a triple bond as a main component (the main component means containing 50% or more of these aliphatic hydrocarbons).
  • a step of preparing an organic reaction system comprising: a two-phase reaction medium for organic reaction, and (b) an organic reaction raw material group A dissolved or dispersed in the two-phase reaction medium.
  • Second step In the organic reaction system prepared in the first step, a step of setting conditions sufficient for the organic reaction raw material A to undergo an organic reaction and at least a part thereof to be converted into the organic compound B.
  • Third step After the second step, the organic reaction system is separated into the first liquid phase and the second liquid phase, and the second liquid phase is dissolved or dispersed therein. A step of taking out with the organic compound B.
  • the aliphatic hydrocarbon in the second liquid phase is an aliphatic hydrocarbon having 5 to 30 carbon atoms (the aliphatic hydrocarbon is linear, branched or cyclic, and part of the C—C bond) Is a double bond or a triple bond).
  • [Invention 9] A method for producing a phenacene represented by the following general formula [2], comprising the following first to third steps.
  • R 1 represents a linear, branched or cyclic alkyl group having 1 to 12 carbon atoms, an aromatic hydrocarbon group, a hydrogen atom, a halogen atom (fluorine, chlorine, bromine, And iodine), an oxygen atom, a carbonyl group, a sulfur atom, a nitrogen atom, or —SiR 3 (wherein R is independently a linear, branched or cyclic alkyl group having 1 to 12 carbon atoms, or aromatic carbonization) Represents a hydrogen group or a hydrogen atom), and part of the C—C bond of the alkyl group may form a double bond or a triple bond, the alkyl group, or the aromatic hydrocarbon A part of the phenacene represented by Formula [2].
  • R 1 represents a linear, branched or cyclic alkyl group having 1 to 12 carbon atoms, an aromatic hydrocarbon group, a hydrogen atom, a halogen atom (fluorine, chlorine, bromine, And
  • R 2 and R 3 each independently represents a linear, branched or cyclic alkyl group having 1 to 12 carbon atoms, or an aromatic hydrocarbon group, and a part of the C—C bond of the alkyl group is a double bond. or triple bond may form a, may form a ring each other connected plurality of R 2 or R 3 together with each other when it is (n + m) is 2 or more, the ring has a multiple bond
  • a part of the hydrogen atom or carbon atom of the alkyl group or the aromatic hydrocarbon group may be a halogen atom (fluorine, chlorine, bromine, and iodine), an oxygen atom, a carbonyl group, a sulfur atom, or a nitrogen atom. It may be replaced.
  • n and n each independently represents an arbitrary integer of 0 to 4.
  • each of R 2 and R 3 is plural, each may be the same or different.
  • the formula [1] and the formula is not particularly limited, and may be the position of R 2 and R 3 are each substituted for [2], the substituents on the structure, may be present in a range that can be taken. ]
  • the aliphatic hydrocarbon in the second liquid phase is n-pentane, cyclopentane, n-hexane, 2-methylpentane, cyclohexane, n-heptane, methylcyclohexane, cycloheptane, n-octane, cyclooctane, 2-methylheptane.
  • Ethylcyclohexane, n-decane, decalin, cyclodecane, and the acid catalyst is hydrochloric acid, sulfuric acid, nitric acid, perchloric acid, tetrafluoroboric acid, hexafluorophosphoric acid, Consists of hydrofluoric acid, trifluoromethanesulfonic acid, p-toluenesulfonic acid monohydrate, methanesulfonic acid, (+)-10-camphorsulfonic acid, trifluoroacetic acid, FSO 3 H ⁇ SbF 5 , Tf 2 NH
  • the method for producing phenacenes according to Invention 9 or Invention 10 which is at least one selected from the group.
  • the reaction raw materials and products can be produced while exhibiting the reactivity promoting effect of the 1,1,1,3,3,3-hexafluoropropan-2-ol (HFIP) solvent system.
  • the resulting side reaction is suppressed, and as a result, the desired organic reaction can be carried out with a high yield.
  • the first liquid phase using HFIP as a solvent and the aliphatic hydrocarbon having 5 to 30 carbon atoms as a main component are used.
  • the second liquid phase can be separated with little mixing, and the first liquid phase using HFIP as a solvent can be recovered at a high recovery rate after the reaction is completed.
  • the yield of the target product is higher than when HFIP is used alone as a solvent. Significantly improved.
  • the present invention has realized a reaction system capable of performing an organic synthesis reaction with high yield and low cost.
  • the two-phase reaction medium in the reaction system of the present invention includes a first liquid phase using HFIP as a solvent, an aliphatic hydrocarbon that is substantially incompatible with the HFIP, and preferably an aliphatic hydrocarbon having 5 to 30 carbon atoms. Hydrocarbons (the aliphatic hydrocarbons are linear, branched or cyclic, and part of the C—C bond may form a double bond or triple bond) or the main And a second liquid phase composed of a solvent having a component (the main component means containing 50% or more of these aliphatic hydrocarbons).
  • HFIP constituting the first liquid phase is not limited to pure HFIP, and even a mixture with other substances is included in the scope of the present invention.
  • HFIP mixes with a portion of water or alcohol to form a one-phase uniform liquid. For this reason, it is not prevented that a mixture with such a liquid is also used as the first liquid phase.
  • HFIP is a solvent having an effect of promoting the specific organic reaction, and the present inventors have conceived the reaction system in order to make use of the characteristics. Therefore, it is not preferable that the characteristics of the HFIP be disturbed by impurities contained in the HFIP, and it is preferable to use a highly pure HFIP.
  • a purity of 90% or more is preferable, and a purity of 99% or more is more preferable.
  • high-purity that is, expensive
  • the main component aliphatic hydrocarbon constituting the second liquid phase is substantially incompatible with 1,1,1,3,3,3-hexafluoropropan-2-ol, Preferably, it is an aliphatic hydrocarbon having 5 to 30 carbon atoms (the aliphatic hydrocarbon is linear, branched or cyclic, and a part of the C—C bond has a double bond or a triple bond. May be formed) or a mixture thereof.
  • the two-phase reaction medium of the present invention is a first liquid mainly composed of HFIP.
  • the second liquid phase is used in combination with the phase, which is incompatible with the phase. If many impurities are contained in the second liquid phase, the characteristics of the second liquid phase may be diluted accordingly. Accordingly, the aliphatic hydrocarbon constituting the second liquid phase is usually preferably less than 10% and more preferably less than 1% of impurities.
  • aliphatic hydrocarbons constituting the second liquid phase those which exhibit a liquid at around room temperature are preferable because they are easy to handle and can be easily recovered after the reaction. From such points, a cyclic aliphatic hydrocarbon having 5 to 20 carbon atoms or a mixture thereof, which may be linear or branched or branched, or a mixture thereof, among them, an aliphatic hydrocarbon having 5 to 10 carbon atoms is more preferable.
  • Preferred examples of the aliphatic hydrocarbon organic solvent include n-pentane, cyclopentane, n-hexane, 2-methylpentane, cyclohexane, n-heptane, methylcyclohexane, cycloheptane, n-octane, cyclooctane, Examples include, but are not necessarily limited to, 2-methylheptane, ethylcyclohexane, n-decane, decalin, cyclodecane and the like.
  • n-hexane, cyclohexane, n-heptane, methylcyclohexane, and decalin are excellent in the ability to extract and separate reaction products while having an appropriate boiling point as a solvent.
  • the medium ratio between the first liquid phase and the second liquid phase is not particularly limited and can be adjusted as appropriate by those skilled in the art.
  • the mass of the second liquid phase with respect to 1 may be in the range of 0.1 to 10.
  • the medium ratio of the second liquid phase is doubled with respect to the first liquid phase, the product is extracted and separated into the second liquid phase without excess or deficiency. We gained industrially superior knowledge that we can do it.
  • the concentration of the solute is not particularly limited, and can be appropriately adjusted by those skilled in the art as long as it is a concentration that dissolves in the medium. What is necessary is just to implement in 0.01-10 mol / dm ⁇ 3 > with respect to a 2nd liquid phase.
  • the substance having the larger number of moles may be used in the range of 0.01 to 10 mol / dm 3 with respect to the second liquid phase.
  • reaction under acidic conditions There are no particular restrictions on the type of organic reaction that can be carried out in the two-phase reaction medium of the present invention, but (1) reaction under acidic conditions, (2) reaction under neutral conditions, and (3) use of a metal catalyst.
  • the reaction is roughly classified into the following reactions and (4) radical reactions.
  • the synthesis of phenacenes by “intramolecular hydroarylation of inert alkyne”, which will be described later, belongs to (1), and is representative of organic reactions that can be preferably applied in the two-phase reaction medium of the present invention.
  • a reaction using a reaction accelerator generally called “acid catalyst” is particularly preferable.
  • Such an “acid catalyst” may be a Lewis acid or a Bronsted acid as long as it is soluble in 1,1,1,3,3,3-hexafluoropropan-2-ol.
  • hydrochloric acid sulfuric acid, nitric acid, perchloric acid, tetrafluoroboric acid, hexafluorophosphoric acid, hydrofluoric acid, trifluoromethanesulfonic acid, p-toluenesulfonic acid monohydrate, methanesulfonic acid, (+)-10 -Camphorsulfonic acid, trifluoroacetic acid, FSO 3 H ⁇ SbF 5 , Tf 2 NH are preferred, and p-toluenesulfonic acid monohydrate is more preferred.
  • the amount of addition is usually 0.001 times mol with respect to the reaction substrate (reaction raw material, when a plurality of reaction raw materials are used, the raw material with the smaller number of equivalents). Although it is ⁇ 10 times mol, it is preferably 0.01 times mol to 5 times mol, more preferably 0.01 times mol to 3 times mol.
  • the reaction temperature varies depending on the reaction substrate and the type of the target reaction, but it is usually performed in the range of ⁇ 50 to 150 ° C.
  • the reaction vessel is not particularly limited, and can use a material that can withstand the pressure used during the reaction or a material that does not affect the reaction.
  • the reaction may be at normal pressure or under pressure, and can be appropriately adjusted by those skilled in the art depending on the type of reaction. Since it is a two-phase reaction, it is usually preferable to stir to bring the two phases into sufficient contact.
  • the reaction time is not particularly limited, but is usually within 24 hours.
  • the progress of the reaction is traced by analytical means such as gas chromatography, liquid chromatography, and NMR, and the raw material substrate is almost lost.
  • the time point is preferably the end point.
  • One suitable application example of the two-phase reaction medium of the present invention is a method for producing an organic compound B including the following first to third steps.
  • a step of preparing an organic reaction system comprising an organic reaction raw material group A.
  • Second step In the organic reaction system prepared in the first step, a step of setting conditions sufficient for the organic reaction raw material A to undergo an organic reaction and at least a part thereof to be converted into the organic compound B.
  • Third step After the second step, the organic reaction system is separated into the first liquid phase and the second liquid phase, and the second liquid phase is dissolved or dispersed therein. A step of taking out with the organic compound B.
  • the first step is a preparatory step before the start of the reaction.
  • the organic reaction raw material group A dissolved or dispersed in the two-phase reaction medium refers to the raw material compounds of the various organic synthesis reactions described above.
  • inactive alkyne which is a raw material corresponds to “organic reaction raw material group A”.
  • organic reaction raw material group A refers to all of these organic compounds.
  • the addition order of each reagent in the first step is not particularly limited.
  • the “organic reaction raw material group A” is largely unevenly distributed in the “second liquid phase”, that is, the hydrocarbon solvent phase, in the two-phase reaction medium of the present invention.
  • the catalyst is unevenly distributed in the “first liquid phase (HFIP phase)”. Accordingly, in the “first organic reaction raw material group A” in the first step, a substance that is easily soluble in the second liquid phase is dissolved in the second liquid phase in advance and easily dissolved (or easily dispersed) in the first liquid phase.
  • the substance can be dissolved (dispersed) in the first liquid phase in advance, and then the two liquid phases are brought into contact with each other to prepare a two-phase organic reaction system.
  • the organic reaction raw material group A may be added thereto.
  • the second step is a target organic reaction step, whereby at least part of the “organic reaction raw material group A” is converted into “organic compound B” which is the target product.
  • the conditions can be optimized with knowledge of those skilled in the art depending on the characteristics of the reaction.
  • the third step is a step of separating the first liquid phase and the second liquid phase after the second step (reaction step) is completed, and taking out at least the second liquid phase together with the organic compound B dissolved therein. It is. Separation of the first liquid phase and the second liquid phase may be performed by a normal liquid-liquid separation technique. Visual observation may be performed, or liquid-liquid separation may be performed by detecting electrical conductivity and other physical properties.
  • HFIP has a specific gravity of about 1.6, and has a higher specific gravity than aliphatic hydrocarbons. Therefore, the first liquid phase is usually the lower phase and the second liquid phase is the upper phase. As described above, in the present invention, the separation state of the first liquid phase and the second liquid phase is very good, and after the reaction is completed, for example, if the mixture is allowed to stand for 30 minutes to 1 hour, the two phases are almost completely separated. It can be said that it can be separated and there is almost no loss of solvent or product.
  • Fourth step A step of recovering the first liquid phase after the two-phase separation in the third step.
  • the acid catalyst when used in the reaction, the acid catalyst is usually dissolved in the first liquid phase.
  • the recovered first liquid phase contains “HFIP and acid catalyst” as they are at the start of the reaction, and can be reused as they are in the next batch if desired (see Examples below). .
  • R 1 is a linear, branched or cyclic alkyl group having 1 to 12 carbon atoms, an aromatic hydrocarbon group, or a hydrogen atom, or —SiR 3 (wherein R is independently a carbon number) Represents a straight-chain, branched-chain or cyclic alkyl group of 1 to 12, or an aromatic hydrocarbon group or a hydrogen atom, and a part of the C—C bond of the alkyl group is a double bond or a triple bond.
  • a bond may be formed, and a hydrogen atom or a part of the carbon atom of the alkyl group or the aromatic hydrocarbon group is a halogen atom (fluorine, chlorine, bromine, and iodine), an oxygen atom, a carbonyl group, sulfur An atom or a nitrogen atom may be substituted.
  • a hydrogen atom or a part of the carbon atom of the alkyl group or the aromatic hydrocarbon group is a halogen atom (fluorine, chlorine, bromine, and iodine), an oxygen atom, a carbonyl group, sulfur An atom or a nitrogen atom may be substituted.
  • Linear R 2 and R 3 are each independently a C 1-12, branched chain or cyclic alkyl group or an aromatic hydrocarbon group, a part of C-C bonds of the alkyl group is a double bond, Alternatively, a triple bond may be formed, and when (n + m) is 2 or more, a plurality of R 2 or R 3 may be connected to each other to form a ring, and the ring has multiple bonds.
  • a part of the hydrogen atom or carbon atom of the alkyl group or the aromatic hydrocarbon group may be a halogen atom (fluorine, chlorine, bromine, and iodine), an oxygen atom, a carbonyl group, a sulfur atom, or a nitrogen atom. It may be replaced.
  • the nitrogen atom may be protected with a protecting group as appropriate by those skilled in the art.
  • m and n each independently represents an arbitrary integer of 0 to 4.
  • each of R 2 and R 3 is plural, each may be the same or different. Note no particular restrictions on the positions R 2 and R 3 in the formula [1] is each substituted, the substituents on the structure, may be present in a range that can be taken.
  • the two-phase reaction medium that can be used in this reaction
  • the two-phase reaction medium already described can be cited again.
  • n-hexane, cyclohexane, n-heptane, methylcyclohexane and decalin are particularly preferable as the second liquid phase.
  • the ratio of the first liquid phase to the second liquid phase the above-mentioned ones can be mentioned again, but a particularly preferable ratio is that the medium ratio of the second liquid phase is twice the amount of the first liquid phase.
  • the temperature of this reaction is particularly preferably 15 to 35 ° C.
  • an acid catalyst it is preferably used.
  • acid catalyst those mentioned above can be mentioned again, but hydrochloric acid, sulfuric acid, nitric acid, perchloric acid, tetrafluoroboric acid, hexafluorophosphoric acid, hydrogen fluoride are particularly preferable for this reaction.
  • the amount is particularly preferably 1 to 20 mol% with respect to 2-ethynylbiphenyls.
  • reaction procedure is not particularly limited, according to the description of the first step described above, first, an organic reaction system of the present invention containing a reaction raw material (including a catalyst) is prepared, and then it is preferably equipped with a stirrer. What is necessary is just to put into a reactor and to start stirring at predetermined temperature (2nd process).
  • the progress of the reaction can be easily known by appropriately collecting an extracted reaction solution and extracting it into an extraction solvent and using an analytical means such as NMR, GC or HPLC as appropriate.
  • two-phase separation is performed according to the description in the third step described above, and the second liquid phase (usually the upper phase) may be collected. Since the target phenacene is dissolved therein, the phenacene can be isolated by a known purification means.
  • the HFIP and the acid catalyst are in their original state in the liquid phase. Moreover, the recovery rate of HFIP is almost quantitative. In other words, if desired, the recovered first liquid phase can be reused in the next batch as it is (without the need to replenish new HFIP or catalyst). That is, it is a particularly preferable aspect of the present invention to perform the fourth step in addition to the first to third steps.
  • Example 1 In a 10 mL glass reaction vessel equipped with a stir bar, 2- (phenylethynyl) biphenyl 1a, 76 mg (0.30 mmol), 3 mL cyclohexane, and 0.8 mL 1,1,1,3,3,3-hexa Fluoropropan-2-ol (HFIP) was added and the solution was stirred. To the reaction solution, 6.1 mg (32 ⁇ mol) of p-toluenesulfonic acid monohydrate and 0.7 mL of HFIP were added and vigorously stirred in air for 9 hours.
  • 2- (phenylethynyl) biphenyl 1a 76 mg (0.30 mmol)
  • 3 mL cyclohexane 3 mL cyclohexane
  • 0.8 mL 1,1,1,3,3,3-hexa Fluoropropan-2-ol (HFIP) was added and the solution was stirred.
  • HFIP 1,1,1,3,3,3-
  • Example 2 By operating in the same procedure as in Example 1 except that 3 mL of n-hexane was used instead of 3 mL of cyclohexane, 78% of product 2a and 9% of byproduct 3a were obtained in 9% yield. It was.
  • Example 3 By operating in the same procedure as in Example 1 except that 3 mL of decalin was used instead of 3 mL of cyclohexane, 67% of product 2a and 11% of byproduct 3a were obtained in a yield of 11%. .
  • Example 2 Example 1 except 3 mL of HFIP was used instead of 3 mL of cyclohexane and 2.8 ⁇ L (32 ⁇ mol) of trifluoromethanesulfonic acid was used instead of 6.1 mg (32 ⁇ mol) of p-toluenesulfonic acid monohydrate. The product 2a was obtained in a yield of 53% and the by-product 3a was obtained in a yield of 7%.
  • Example 1 with the exception that 3 mL HFIP was used instead of 3 mL cyclohexane and 2.1 ⁇ L (32 ⁇ mol) methanesulfonic acid was used instead of 6.1 mg (32 ⁇ mol) p-toluenesulfonic acid monohydrate. By operating in the same procedure, 47% of the product 2a and 7% of the by-product 3a were obtained.
  • Tables 1 and 2 summarize the yields of the reaction solvent, catalyst, product 2a, and byproduct 3a used in Examples 1 to 3 and Comparative Examples 1 to 9.
  • TsOH ⁇ H 2 O represents p-toluenesulfonic acid monohydrate
  • TfOH represents trifluoromethanesulfonic acid
  • MsOH represents methanesulfonic acid
  • CSA represents (+)-10-camphorsulfonic acid. Note that “trace” means “only a trace amount was detected”, and “ND” means “not detected”.
  • silica gel column chromatography eluent:
  • Example 5 4′-methyl-2- (2-phenylethynyl) -1,1′-biphenyl 1b, 80 mg (0.30 mmol) was used in place of 2- (phenylethynyl) biphenyl 76 mg (0.30 mmol) 1a Were operated in the same procedure as in Example 4 to obtain 86% of product 2b and 7% of byproduct 3b.
  • Example 6 3′-methyl-2- (2-phenylethynyl) -1,1′-biphenyl 1c, 80 mg (0.30 mmol) was used in place of 2- (phenylethynyl) biphenyl 76 mg (0.30 mmol) 1a
  • Were operated in the same procedure as in Example 4 to obtain a mixture of the products 2c and 2c ′ in a yield of 77% (2c: 2c ′ 53: 47) and a by-product 3c in a yield of 4%. .
  • Example 7 Instead of 76 mg (0.30 mmol) 1a of 2- (phenylethynyl) biphenyl, 3 ′, 5′-dimethyl-2- (2-phenylethynyl) -1,1′-biphenyl 1d, 85 mg (0.30 mmol) was used. By operating according to the procedure similar to Example 4 except having used it, 85% of product 2d and 3% of by-products 3d were obtained.
  • Example 8 Instead of 76 mg (0.30 mmol) 1a of 2- (phenylethynyl) biphenyl, 4′-tert-butyl-2- (2-phenylethynyl) -1,1′-biphenyl 1e, 93 mg (0.30 mmol) was used. The product 2e was obtained in a yield of 87% and the byproduct 3e was obtained in a yield of 3% by operating in the same procedure as in Example 4 except that.
  • Example 10 Instead of 76 mg (0.30 mmol) 1a of 2- (phenylethynyl) biphenyl, 1 g of 4′-chloro-2- (2-phenylethynyl) -1,1′-biphenyl, 87 mg (0.30 mmol) was used. Were operated in the same procedure as in Example 4 to obtain 2 g of product in a yield of 84% and 3 g of by-product in a yield of 5%.
  • Example 11 4'-fluoro-2- (2-phenylethynyl) -1,1'-biphenyl 1h, 82 mg (0.30 mmol) was used in place of 2- (phenylethynyl) biphenyl 76 mg (0.30 mmol) 1a Were operated in the same procedure as in Example 4 to obtain 82% of the product 2h and 9% of the by-product 3h.
  • Example 12 To a 10 ml glass reaction vessel equipped with a stir bar, 0.076 g (0.30 mmol) of 2- (phenylethynyl) biphenyl 1a, 3.00 mL of cyclohexane, and 0.80 mL of HFIP were added, and the solution was stirred. To the reaction solution, a solution of p-toluenesulfonic acid monohydrate 6.1 mg (0.032 mmol) and HFIP (0.70 mL) was added, and the mixture was vigorously stirred in air for 9 hours. After completion of the reaction, the upper cyclohexane phase and the lower HFIP phase were separated and recovered.
  • the HFIP phase as the first liquid phase can be quantitatively recovered by the two-phase separation after the completion of the reaction process, and the recovered HFIP phase can be reused as it is as the solvent phase of the next batch. It was. It was revealed that the yield of the target product 2a was maintained at a very high level even when it was reused multiple times.
  • Example 13 In a glass reaction vessel equipped with a stirrer, 2- (phenylethynyl) biphenyl 1a, cyclohexane, HFIP, p-toluenesulfonic acid monohydrate, and the same molar amount as 1a were produced in the same ratio as in Example 1. Compound 2a was added and stirred.
  • Table 5 shows the distribution ratio of each compound to the first liquid phase and the second liquid phase. Note that “quant.” Means “almost the entire amount has been recovered” and “ND” means “not detected”.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本発明の有機反応用の二相系反応媒体は、1,1,1,3,3,3-ヘキサフルオロプロパン-2-オール(HFIP)を溶媒とする第1液相と、前記HFIPと実質的に相溶しない、脂肪族炭化水素、好ましくは、炭素数が5~30の脂肪族炭化水素(当該脂肪族炭化水素は、直鎖状、分岐鎖状または環状のものであり、C-C結合の一部が二重結合または三重結合を形成していても良い)またはこれらを主成分(これらの成分を50%以上含むことを意味する)とする溶媒からなる第2液相と、を含む。当該二相系反応媒体の使用により、HFIP溶媒の持つ、有機反応の反応性促進効果を維持しつつ、望まれない副反応を抑制できる新規反応システムを実現することができる。とりわけ、当該二相系反応媒体を用いると、「不活性アルキンの分子内ヒドロアリール化」によるフェナセン類の合成反応において、目的物の収率が、HFIPを単独で溶媒として用いる場合に比べ格段に向上する。

Description

1,1,1,3,3,3-ヘキサフルオロプロパン-2-オールと脂肪族炭化水素系溶媒を用いた二相系反応媒体
 本発明は、1,1,1,3,3,3-ヘキサフルオロプロパン-2-オールと脂肪族炭化水素系溶媒を用いた二相系反応媒体に関する。また、当該二相系反応媒体を反応溶媒とする、酸触媒を用いたフェナセン類の製造方法に関する。
 近年、1,1,1,3,3,3-ヘキサフルオロプロパン-2-オール(以下、本明細書においてHFIPとも呼ぶ)を反応溶媒として用いた有機反応は、その特異な溶媒効果から学術的に大きな注目を集めており、従来使用されてきた汎用有機溶媒では成し得なかった反応や生成物の制御が可能になる溶媒として期待されている。
 例えば、1,1,1,3,3,3-ヘキサフルオロプロパン-2-オールは、2つのトリフルオロメチル基の強力な電子求引性に起因して、そのヒドロキシ基が強力な水素結合供与能を有することから、それを利用してキノンモノアセタールと、アリルトリメチルシランまたはスチレン類などの活性アルケンとの高速かつ高効率の付加環化反応が報告されている(非特許文献1)。この例では、他の汎用有機溶媒では所望の反応は極めて遅く、また類似のフッ素系溶媒である2,2,2-トリフルオロエタノールにおいてさえ十分な反応速度が得られないことが明らかにされている。
 また遷移金属触媒によるC-H結合活性化反応について、1,1,1,3,3,3-ヘキサフルオロプロパン-2-オールの使用により劇的な反応性向上効果が報告されている(非特許文献2)。これは極めて大きな水素結合供与能に加え、高い溶媒和効果による優れたカチオン安定化効果、際立った極性、低い求核能、特異的な配位能など複数の特徴が寄与していると考えられている。
 1,1,1,3,3,3-ヘキサフルオロプロパン-2-オール中でFriedel-Craftsアシル化反応を行った例では、通常必要とされるルイス酸の添加を必要とせず、室温下、溶媒のみで所望の反応が進行することが報告されている(非特許文献3)。さらにこの例では、余計な触媒等を加えていないことから通常の後処理工程を行う必要もなく、反応液の蒸留により1,1,1,3,3,3-ヘキサフルオロプロパン-2-オールを回収すれば、目的物は単離可能となっている。
 また、1,1,1,3,3,3-ヘキサフルオロプロパン-2-オールは水と任意の割合で混和するが、そのような混合溶媒系において特定の基質と反応試薬を添加してFriedel-Crafts型反応を行うと、系は1,1,1,3,3,3-ヘキサフルオロプロパン-2-オール相と水相の二相に分離しつつ高効率で所望の反応が進行し、目的物を容易に単離できることが報告されている(非特許文献4)。
 さらに産業用途においても、1,1,1,3,3,3-ヘキサフルオロプロパン-2-オールと超原子価ヨウ素反応剤を反応原料として用いることで、機能性材料の原料として有望なヘキサヒドロキシトリフェニレン類を製造する方法が報告されている(特許文献1)。
特許第5878842号
Org. Lett., 2011年, 13, 4814-4817頁 Org. Chem. Front., 2016年, 3, 394-400頁 Org. Lett., 2016年, 18, 3534-3537頁 Green Chem., 2016年, 18, 681-685頁
 HFIPを溶媒とする有機反応系は、上記した例のように、その高い溶媒和効果に起因して反応性がしばしば高められるため、非常に魅力的な反応系と言える。例えば、カルボカチオン中間体を経てC-C結合形成を行う反応システム、とりわけアセン類やフェナセン類、トリフェニレン類などに代表される多環式芳香族炭化水素を、カルボカチオン中間体を経て合成するシステムでは、HFIPを反応溶媒とすることで、反応性は大幅に増大する。これは、カルボカチオン中間体がHFIPの高い溶媒和効果によって安定化されていることが理由と考えられる。
 ところがこれらHFIPを溶媒とする有機反応系では、反応性(反応速度)は著しく増大するものの、しばしば最終的な目的物の収率は期待したほどには高まらない(すなわち目的化合物の収率が、低~中程度に留まることがある)という問題があった。
 この原因について発明者らは種々検討を行ったところ、HFIPを溶媒とする有機反応系では、所望の反応の他にHFIPの溶媒効果により安定化された反応中間体と基質との副反応や、反応中間体と目的物との後続反応が併発しており、その結果、目的物の収率が期待したほどには高まらないという知見を得た(後述の比較例1を参照)。
 つまり、HFIPを溶媒とする有機反応系では目的とする反応だけでなく望まれない副反応も促進される傾向があり、HFIPの持つ反応促進効果を維持しつつ、望まれない副反応を抑制できる新規反応システムが強く求められた。
 本発明者らは上記課題を解決するべく鋭意検討を行った。その結果、1,1,1,3,3,3-ヘキサフルオロプロパン-2-オール(HFIP)を溶媒とする第1液相と、前記HFIPと実質的に相溶しない、脂肪族炭化水素、好ましくは炭素数が5~30の脂肪族炭化水素(当該脂肪族炭化水素は、直鎖状、分岐鎖状または環状のものであり、C-C結合の一部が二重結合または三重結合を形成していても良い)またはこれらを主成分(当該主成分とは、これらの脂肪族炭化水素を50%以上含むことを意味する)とする溶媒からなる第2液相と、を含む、有機反応用の二相系反応媒体、を見出すに至った。
 発明者らは、HFIPと上述の脂肪族炭化水素とは、実質的に相溶せず、安定した二相系反応媒体を形成する、という特徴的事実を見出した。なお、「実質的に相溶しない」とは、HFIPと該脂肪族炭化水素が互いに親和せず、二相の溶媒系を形成することを意味し、具体的には、一方の相における他方の相の溶媒の飽和溶解度が、好ましくは1g/100gを下回ることを意味し、より好ましくは0.1g/100gを下回ることである。
 そして、当該二相系反応媒体中で、有機反応を実施したところ、「HFIPを溶媒とする有機反応」の有する高い反応性は維持されつつ、上述した副反応の発生を大幅に抑制できるという、特筆すべき知見を得た。その結果、「HFIPを単独で溶媒とする反応系」に比べ、より高い収率で目的物を得ることが可能となった。その理由として、発明者らは次のように考察している。
 前記の通り、HFIPと該脂肪族炭化水素の二相系反応媒体を使用する場合、有機反応の中間活性種(反応中間体)はHFIP相(第1液相)において安定化されるため、第1液相中に偏在する。それに起因して、目的とする有機反応は第1液相中で主に進行し、HFIP系の持つ反応性増大効果が発現する。一方、有機反応の原料や生成物は、前記の通り、脂肪族炭化水素との親和性が相対的に高いために第2液相に偏在する。その結果として、望まれない「反応中間体と原料の間で起こる副反応」、「反応中間体と目的物の間で起こる後続反応」はともに大幅に抑えられ、目的とする有機反応の収率の増大につながったものと考察している。
 本発明の二相系反応媒体中で実施できる有機反応の種類に特段の制限はないが、(1)酸性条件下の反応、(2)中性条件下の反応、(3)金属触媒を利用した反応、(4)ラジカル反応、に大別すると、次のような反応が挙げられる。
 (1)酸性条件下での反応;SN1反応、E1反応、転位反応、Aldol型反応、Michael型反応、エステル化反応、Friedel-Crafts型反応、Nazarov型環化反応。
 (2)中性条件下での反応;オキシラン類に対する酸素、窒素、硫黄各種求核剤によるC-O開裂反応、アレーン類のp-メトキシベンジル化反応、Diels-Alder型反応等のC-C結合形成反応、環化反応、エン反応、β-アリールチオアルキル化反応(β-クロロアルキルアリールチオエーテルを、ルイス酸存在下でアリルトリメチルシランなどの求核剤と反応させるもの。M. O. Ratnikov, V. V. Tumanov, W. A. Smit, Angew. Chem. Int. Ed. 2008, 47, 9739にある通り、この反応は、HFIPを溶媒とする場合、ルイス酸を必要とせずに進行する)。
 (3)金属触媒を利用した反応;Pd(OAc)2、Co(acac)2、[RhCp*Cl2]2やNi(cod)2を用いたC-H結合活性化反応。
 (4)ラジカル反応;ラジカル重合、ラジカルカップリング、ラジカル付加、光反応、電解反応。
 本発明の対象とする有機反応の中では、一般に「酸触媒」または「金属触媒」などの反応促進剤を用いる反応において、特に好ましい副次的効果を有する。当該「酸触媒」または「金属触媒」は、その高い極性に起因して、本発明の二相系反応媒体中ではHFIP相(第1液相)に分配される傾向が高い。そして反応が終了した後も、当該「酸触媒」または「金属触媒」はHFIP相(第1液相)に残存するのが通常である。したがって、上記した有機反応を「酸触媒」または「金属触媒」の存在下で実施した場合、目的物や反応原料(反応が完結しなかった場合)は第2液相に偏在し、反応終了後に第2液相から取り出せるのに対し、第1液相はHFIP中に「酸触媒」または「金属触媒」が溶存した状態が維持され、所望であれば、次の反応バッチで再利用することも可能である。すなわち、本発明の二相系反応媒体を用いた有機反応が「酸触媒」または「金属触媒」を用いて行う反応の場合、触媒の再利用が可能となることから、本発明の二相系反応媒体は特に好ましい反応媒体となる。
 さらに本発明者らは、本発明の二相系反応媒体を用いた有機反応における次の特徴的な知見も得た。すなわち、HFIPを溶媒とする第1液相と、とりわけ炭素数が5~30の脂肪族炭化水素を主成分としたときの第2液相とは、液体状態における二相分離が極めて容易であり、両者がほとんど混入し合うことなく、分離(分液)が可能である。このため後述の実施例に示す通り、反応終了後に、とりわけ、HFIPを溶媒とする第1液相が、ほぼ定量的に(所望であれば95%以上、さらには99%以上の回収率で)回収することができる。HFIPは高価な化合物であるから、この化合物を高い回収率で回収でき次の反応バッチにそのまま利用できるということは、大量規模でHFIPを使用するに当たってきわめて有益なことである。
 その点、例えば前述の非特許文献3においては、「HFIP単一溶媒系」でFriedel-Craftsアシル化反応を2回実施した後、得られた反応混合物に対する蒸留回収を行い、HFIPを取り出してリサイクルしている。そこでのHFIPの回収率は「79%」であり、確かに回収はなし得ているものの、蒸留ロスによるHFIP量の減少は避けられていない。
 これに比べると、本発明の二相系反応媒体を用いた反応システムは、反応終了後のHFIPの回収率が極めて高く、その点でも経済的に有利で環境にも優しい、大変優れた反応システムが実現したと言える。
 このように、本発明者らは、1,1,1,3,3,3-ヘキサフルオロプロパン-2-オール(HFIP)を用いた二相系反応媒体を見出し、それを用いた、新規の有機反応システムを見出し、本発明を完成させた。
 すなわち本発明は次の[発明1]~[発明12]を含む。
 [発明1]
 1,1,1,3,3,3-ヘキサフルオロプロパン-2-オールを溶媒とする第1液相と、前記1,1,1,3,3,3-ヘキサフルオロプロパン-2-オールと実質的に相溶しない、脂肪族炭化水素(当該脂肪族炭化水素は、直鎖状、分岐鎖状または環状のものであり、C-C結合の一部が二重結合または三重結合を形成していても良い)またはこれらを主成分(当該主成分とは、これらの脂肪族炭化水素を50%以上含むことを意味する)とする溶媒からなる第2液相と、を含む、有機反応用の二相系反応媒体。
 [発明2]
 第2液相における脂肪族炭化水素が、炭素数5~30の脂肪族炭化水素(当該脂肪族炭化水素は、直鎖状、分岐鎖状または環状のものであり、C-C結合の一部が二重結合または三重結合を形成していても良い)である、請求項1に記載の有機反応用の二相系反応媒体。
 [発明3]
 第2液相における脂肪族炭化水素が、n-ペンタン、シクロペンタン、n-ヘキサン、2-メチルペンタン、シクロヘキサン、n-ヘプタン、メチルシクロヘキサン、シクロヘプタン、n-オクタン、シクロオクタン、2-メチルヘプタン、エチルシクロヘキサン、n-デカン、デカリン、シクロデカンからなる群より選ばれる少なくとも1種である、発明1に記載の有機反応用の二相系反応媒体。
 [発明4]
 発明1乃至発明3の何れかに記載の有機反応用の二相系反応媒体であって、適用される該有機反応が、酸性条件下で行われる、SN1反応、E1反応、転位反応、Aldol型反応、Michael型反応、エステル化反応、Friedel-Crafts型反応、Nazarov型環化反応のうちの何れかである、二相系反応媒体。
 [発明5]
 酸触媒として、塩酸、硫酸、硝酸、過塩素酸、テトラフルオロホウ酸、ヘキサフルオロリン酸、フッ化水素酸、トリフルオロメタンスルホン酸、p-トルエンスルホン酸一水和物、メタンスルホン酸、(+)-10-カンファースルホン酸、トリフルオロ酢酸、FSO3H・SbF5、Tf2NHの少なくとも一つを含む、発明1乃至発明4の何れかに記載の有機反応用の二相系反応媒体。
 [発明6]
 次の第1~第3工程を含む、有機化合物Bの製造方法。
第1工程:(a)1,1,1,3,3,3-ヘキサフルオロプロパン-2-オールを溶媒とする第1液相と、前記1,1,1,3,3,3-ヘキサフルオロプロパン-2-オールと実質的に相溶しない、脂肪族炭化水素(当該脂肪族炭化水素は、直鎖状、分岐鎖状または環状のものであり、C-C結合の一部が二重結合または三重結合を形成していても良い)またはこれらを主成分(当該主成分とは、これらの脂肪族炭化水素を50%以上含むことを意味する)とする溶媒からなる第2液相と、を含む、有機反応用の二相系反応媒体と、(b)前記二相系反応媒体に溶存又は分散している、有機反応原料群Aと、を備える、有機反応システムを準備する工程。
第2工程:前記第1工程において準備した前記有機反応システムにおいて、該有機反応原料Aが有機反応を起こして、少なくともその一部が該有機化合物Bに変換するに十分な条件を設定する工程。
第3工程:前記第2工程を実施した後、該有機反応システムを前記第1液相と第2液相とに二相分離し、このうち、第2液相を、そこに溶存又は分散する該有機化合物Bと共に取り出す工程。
 [発明7]
 第2液相における脂肪族炭化水素が、炭素数5~30の脂肪族炭化水素(当該脂肪族炭化水素は、直鎖状、分岐鎖状または環状のものであり、C-C結合の一部が二重結合または三重結合を形成していても良い)である、発明6に記載の製造方法。
 [発明8]
 次の第4工程をさらに含む、発明6又は7に記載の製造方法。
第4工程:第3工程で二相分離を行った後の、第1液相を回収する工程。
 [発明9]
 次の第1~第3工程を含む、下記一般式[2]で表されるフェナセン類の製造方法。
第1工程:(a)1,1,1,3,3,3-ヘキサフルオロプロパン-2-オールを溶媒とする第1液相と、前記1,1,1,3,3,3-ヘキサフルオロプロパン-2-オールと実質的に相溶しない、炭素数が5~30の脂肪族炭化水素(当該脂肪族炭化水素は、鎖状、分岐鎖状または環状のものであり、C-C結合の一部が二重結合または三重結合を形成していても良い)またはこれらを主成分(当該主成分とは、これらの成分を50%以上含むことを意味する)とする溶媒からなる第2液相と、を含む、有機反応用の二相系反応媒体と、(b)前記二相系反応媒体に溶存する、下記一般式[1]で表される2-エチニルビフェニル類および酸触媒と、を備える、有機反応システムを準備する工程。
第2工程:前記第1工程において準備した前記有機反応システムにおいて、下記一般式[1]で表される2-エチニルビフェニル類が有機反応を起こして、少なくともその一部が下記一般式[2]で表されるフェナセン類に変換するに十分な条件を設定する工程。
第3工程:前記第2工程を実施した後、該有機反応システムを前記第1液相と第2液相とに二相分離し、このうち、第2液相を、そこに溶存する下記一般式[2]で表されるフェナセン類と共に取り出す工程。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
[式[1]および式[2]中、R1は炭素数1~12の直鎖、分岐鎖もしくは環状のアルキル基、芳香族炭化水素基、水素原子、ハロゲン原子(フッ素、塩素、臭素、およびヨウ素)、酸素原子、カルボニル基、硫黄原子、窒素原子または-SiR3(ここでRは、それぞれ独立に、炭素数1~12の直鎖、分岐鎖もしくは環状のアルキル基、または芳香族炭化水素基、水素原子の何れかを表す)を表し、該アルキル基のC-C結合の一部が二重結合または三重結合を形成していても良く、該アルキル基、または該芳香族炭化水素基の水素原子または炭素原子の一部がハロゲン原子(フッ素、塩素、臭素、およびヨウ素)、酸素原子、カルボニル基、硫黄原子、窒素原子に置換されていても良い。R2およびR3はそれぞれ独立に炭素数1~12の直鎖、分岐鎖もしくは環状のアルキル基、または芳香族炭化水素基を表し、該アルキル基のC-C結合の一部が二重結合または三重結合を形成していても良く、(n+m)が2以上であるとき複数のR2もしくはR3同士が互いに繋がりあって環を形成していても良く、該環は多重結合を持っていても良く、該アルキル基、または該芳香族炭化水素基の水素原子または炭素原子の一部がハロゲン原子(フッ素、塩素、臭素、およびヨウ素)、酸素原子、カルボニル基、硫黄原子、窒素原子に置換されていても良い。m、nはそれぞれ独立に0~4の任意の整数を表す。R2およびR3のそれぞれが複数の場合、それぞれは同一でも異なっていても良い。なお式[1]および式[2]のR2およびR3がそれぞれ置換する位置については特に制限は無く、これらの置換基は構造上、とりうる範囲内で存在しても良い。]
 [発明10]
 次の第4工程をさらに含む、発明9に記載のフェナセン類の製造方法。
第4工程:第3工程で二相分離を行った後の、第1液相を回収する工程。
 [発明11]
 第2液相における脂肪族炭化水素が、n-ペンタン、シクロペンタン、n-ヘキサン、2-メチルペンタン、シクロヘキサン、n-ヘプタン、メチルシクロヘキサン、シクロヘプタン、n-オクタン、シクロオクタン、2-メチルヘプタン、エチルシクロヘキサン、n-デカン、デカリン、シクロデカンからなる群より選ばれる少なくとも1種であって、かつ、酸触媒が、塩酸、硫酸、硝酸、過塩素酸、テトラフルオロホウ酸、ヘキサフルオロリン酸、フッ化水素酸、トリフルオロメタンスルホン酸、p-トルエンスルホン酸一水和物、メタンスルホン酸、(+)-10-カンファースルホン酸、トリフルオロ酢酸、FSO3H・SbF5、Tf2NHからなる群より選ばれる少なくとも1種である、発明9又は発明10に記載のフェナセン類の製造方法。
 [発明12]
 R1がフェニル基であり、nが0である、発明9乃至発明11の何れかに記載のフェナセン類の製造方法。
 本発明の反応システムによれば、1,1,1,3,3,3-ヘキサフルオロプロパン-2-オール(HFIP)溶媒系の持つ反応性促進効果を発現させつつ、反応原料や生成物に起因する副反応を抑制し、結果として、高い収率で目的とする有機反応を実施できるという効果を奏する。
 また、第2液相として炭素数が5~30の脂肪族炭化水素を用いた場合、HFIPを溶媒とする第1液相と、当該炭素数が5~30の脂肪族炭化水素を主成分とする第2液相とは、両者がほとんど混入し合うことなく分液でき、反応終了後、HFIPを溶媒とする第1液相を高い回収率で回収することができるという効果を奏する。
 とりわけ、当該二相系反応媒体を用いると、「不活性アルキンの分子内ヒドロアリール化」によるフェナセン類の合成反応において、目的物の収率が、HFIPを単独で溶媒として用いる場合に比べて、有意に向上する。
 本発明によって、高収率かつ低コストで、有機合成反応を行うことができる反応システムが実現した。
 [有機反応用の二相系反応媒体]
 本発明の反応システムにおける二相系反応媒体は、HFIPを溶媒とする第1液相と、前記HFIPと実質的に相溶しない、脂肪族炭化水素、好ましくは炭素数が5~30の脂肪族炭化水素(当該脂肪族炭化水素は、直鎖状、分岐鎖状または環状のものであり、C-C結合の一部が二重結合または三重結合を形成していても良い)またはこれらを主成分(当該主成分とは、これらの脂肪族炭化水素を50%以上含むことを意味する)とする溶媒からなる第2液相と、から構成される。
 第1液相を構成するHFIPは純物質のHFIPに限られず、他の物質との混合物であっても、本発明の範疇に含まれる。例えばHFIPは水やアルコールの一部とは混ざり合って、一相の均一液体を形成する。このためこのような液体との混合物も第1液相として用いることは妨げられない。しかし、前記の通り、HFIPはその特異的な有機反応の促進効果を持つ溶媒であり、その特徴を活かすために本発明者らは当該反応システムに想到したものである。したがって、HFIPに含有される不純物によりその特徴が阻害されることは好ましくなく、HFIPは純度の高いものを用いることが好ましい。通常、純度90%以上が好ましく、純度99%以上のものがより好ましい。既に述べた通り、本発明において、反応を終了した後、第1液相と第2液相の分離は極めて効率的に行えるので、高純度の(すなわち価格の高い)HFIPを溶媒に用いたとしても、反応後に回収できるので、必ずしも経済的な不利にはならない。
 一方、第2液相を構成する主成分の脂肪族炭化水素は、1,1,1,3,3,3-ヘキサフルオロプロパン-2-オールと実質的に相溶しない、脂肪族炭化水素、好ましくは炭素数が5~30の脂肪族炭化水素(当該脂肪族炭化水素は、直鎖状、分岐鎖状または環状のものであり、C-C結合の一部が二重結合または三重結合を形成していても良い)またはそれらの混合物である。
 第2液相を構成する脂肪族炭化水素としては、第1液相のHFIPと同じく、不純物が少ないものを用いることが好ましい。不純物すなわち、当該脂肪族炭化水素以外の液体が混入したものを第2液相として使用することは妨げられるものではないが、本発明の二相系反応媒体は、HFIPを主とする第1液相と共に、それと相溶しない、第2液相を併用するところに大きな特徴がある。不純物が第2液相に多く含まれると、第2液相の特質がその分希釈化されてしまうことがある。よって、第2液相を構成する脂肪族炭化水素としては、通常、不純物は10%未満が好ましく、1%未満がより好ましい。
 第2液相を構成する脂肪族炭化水素の中でも、常温付近で液体を呈するものは、取り扱いが便利であり、反応後の回収も容易であるから好ましい。そうした点から、直鎖または分岐または分岐を有しても良い環状の炭素数5~20の脂肪族炭化水素またはそれらの混合物、中でも炭素数5~10の脂肪族炭化水素がより好ましい。
 上記脂肪族炭化水素系有機溶媒の好ましい具体例としては、n-ペンタン、シクロペンタン、n-ヘキサン、2-メチルペンタン、シクロヘキサン、n-ヘプタン、メチルシクロヘキサン、シクロヘプタン、n-オクタン、シクロオクタン、2-メチルヘプタン、エチルシクロヘキサン、n-デカン、デカリン、シクロデカンなどが挙げられるが、必ずしもこれらに限定されるものではない。特に好ましい具体例として、n-ヘキサン、シクロヘキサン、n-ヘプタン、メチルシクロヘキサン、デカリンは溶媒として適当な沸点を有しつつ反応生成物を抽出分離する性能に優れる。
 本発明の二相系反応媒体において、前記第1液相と第2液相の媒体比率は特に制限のあるものではなく、当業者が適宜調整することができるが、通常第1液相の質量が1に対して第2液相の質量は0.1~10の範囲で実施すれば良い。なお後述の実施例に示すように、特定の生成物については第2液相の媒体比率を第1液相に対して2倍量で行えば過不足無く生成物を第2液相に抽出分離できるという、工業的にも優位な知見を得た。
 本発明の二相系反応媒体において、溶質(有機反応の原料物質)の濃度は特に制限のあるものではなく、媒体に溶解する濃度であれば当業者が適宜調整することができるが、通常前記第2液相に対して0.01~10mol/dm3の範囲で実施すれば良い。原料物質が複数あるときは、モル数の多い方の物質について、前記第2液相に対して0.01~10mol/dm3の範囲で行えばよい。
 本発明の二相系反応媒体中で実施できる有機反応の種類に特段の制限はないが、(1)酸性条件下の反応、(2)中性条件下の反応、(3)金属触媒を利用した反応、(4)ラジカル反応、に大別すると、次のような反応が挙げられる。
 (1)酸性条件下での反応;SN1反応、E1反応、転位反応、Aldol型反応、Michael型反応、エステル化反応、Friedel-Crafts型反応、Nazarov型環化反応。
 (2)中性条件下での反応;オキシラン類に対する酸素、窒素、硫黄各種求核剤によるC-O開裂反応、アレーン類のp-メトキシベンジル化反応、Diels-Alder型反応等のC-C結合形成反応、環化反応、エン反応、β-アリールチオアルキル化(前記の通り)。
 (3)金属触媒を利用した反応;Pd(OAc)2やCo(acac)2、[RhCp*Cl2]2、Ni(cod)2を用いたC-H結合活性化反応(なお、Acはアセチル基、acacはアセチルアセトナト基、Cp*はペンタメチルシクロペンタジエニル基、codはシクロオクタジエン基を、それぞれ表す)。
 (4)ラジカル反応;ラジカル重合、ラジカルカップリング、ラジカル付加、光反応、電解反応。
 後述する「不活性アルキンの分子内ヒドロアリール化」によるフェナセン類の合成は、このうち(1)に属するもので、本発明の二相系反応媒体中を好ましく適用できる有機反応の代表的なものの1つである。
 これらの有機反応の中では、一般に「酸触媒」と言われる反応促進剤を用いる反応が、特に好ましい。そのような「酸触媒」としては、1,1,1,3,3,3-ヘキサフルオロプロパン-2-オールに可溶であればルイス酸であってもブレンステッド酸であっても良い。特に塩酸、硫酸、硝酸、過塩素酸、テトラフルオロホウ酸、ヘキサフルオロリン酸、フッ化水素酸、トリフルオロメタンスルホン酸、p-トルエンスルホン酸一水和物、メタンスルホン酸、(+)-10-カンファースルホン酸、トリフルオロ酢酸、FSO3H・SbF5、Tf2NHが好ましく、p-トルエンスルホン酸一水和物がより好ましい。
 「酸触媒」を使用する場合、その添加量については、反応基質(反応原料、複数の反応原料を用いる場合には、当量数の少ない方の原料を指す)に対して通常0.001倍モル~10倍モルであるが、好ましくは0.01倍モル~5倍モルであり、さらに好ましくは0.01倍モル~3倍モルである。
 本発明の二相系反応媒体を各種有機合成反応に適用する際、反応温度は反応基質および目的の反応の種類により変化するが、通常、-50~150℃の範囲で行えば良い。
 反応容器としては、特に制限は無く、反応時に使用する圧力に耐えるもの、または反応に影響を与えない材質のものを使用することが出来る。反応は常圧でも加圧下でも良く、反応の種類により当業者が適宜調整することができる。二相系の反応であるから、通常は二相を十分接触させるため、攪拌を行うことが好ましい。
 反応時間は、特に制限はないが、通常は24時間以内の範囲で行えばよく、ガスクロマトグラフィー、液体クロマトグラフィー、NMR等の分析手段により反応の進行状況を追跡し、原料基質がほとんど消失した時点を終点とするのが好ましい。
 [本発明の二相系反応媒体の適用例]
 本発明の二相系反応媒体の好適な応用例の1つは、次の第1~第3工程を含む、有機化合物Bの製造方法である。
第1工程:(a)HFIPを溶媒とする第1液相と、前記HFIPと実質的に相溶しない、炭素数が5~30の脂肪族炭化水素(当該脂肪族炭化水素は、直鎖状、分岐鎖状または環状のものであり、C-C結合の一部が二重結合または三重結合を形成していても良い)またはこれらを主成分(当該主成分とは、これらの成分を50%以上含むことを意味する)とする溶媒からなる第2液相と、を含む、有機反応用の二相系反応媒体と、(b)前記二相系反応媒体に溶存又は分散している、有機反応原料群Aと、を備える、有機反応システムを準備する工程。
第2工程:前記第1工程において準備した前記有機反応システムにおいて、該有機反応原料Aが有機反応を起こして、少なくともその一部が該有機化合物Bに変換するに十分な条件を設定する工程。
第3工程:前記第2工程を実施した後、該有機反応システムを前記第1液相と第2液相とに二相分離し、このうち、第2液相を、そこに溶存又は分散する該有機化合物Bと共に取り出す工程。
 このうち第1工程は、反応開始前の準備工程である。ここで、「前記二相系反応媒体に溶存又は分散している、有機反応原料群A」とは、前述した各種有機合成反応の原料化合物のことである。特に好ましい反応である「不活性アルキンの分子内ヒドロアリール化」によるフェナセン類の合成反応において、「有機反応原料群A」とは、原料である「不活性アルキン」がこれに該当する。複数の有機化合物が原料となって起こる反応においては「有機反応原料群A」とはそれら全ての有機化合物を指す。
 また、この他に、必要に応じて、触媒(酸触媒も含む)を反応系中に加えることも、妨げられない。
 第1工程における、各試薬の添加順序は特に限定されない。既に説明したように「有機反応原料群A」は、本発明の二相系反応媒体中では「第2液相」すなわち炭化水素系溶媒相に大きく偏在することとなる。また、触媒(特に酸触媒)を用いる場合には、当該触媒は「第1液相(HFIP相)」に偏在することとなる。したがって第1工程において「有機反応原料群A」の中で、第2液相に溶けやすい物質は、予め第2液相中に溶解させ、第1液相に溶けやすい(或は分散しやすい)物質は、予め第1液相中に溶解(分散させ)、かかる後に、両液相を接触させて二相にして、有機反応システムを準備することができる。一方、予め、第1液相と第2液相を接触させて二相系反応媒体を形成した後に、有機反応原料群Aをそこに投入してもよい。
 第2工程は、目的とする有機反応工程であって、それによって、前記「有機反応原料群A」の少なくとも一部が目的物である「有機化合物B」へと変換される。先に記した通り、諸条件は、反応の特性に応じて、当業者の知識によって最適化することができる。
 第3工程は、第2工程(反応工程)が終了した後に、第1液相と第2液相を分離し、このうち少なくとも第2液相を、そこに溶存する該有機化合物Bと共に取り出す工程である。第1液相と第2液相の分離は、通常の液-液分離の手法によれば良い。目視によってもよいし、電気伝導度その他の物性を検知して、液-液分離を行っても良い。
 なお、HFIPは比重が約1.6あり、脂肪族炭化水素に比べると比重が大きいため、通常第1液相が下相、第2液相が上相となる。先にも述べた通り、本発明において、第1液相と第2液相の分離状況は極めて良好であり、反応終了後、例えば30分~1時間静置すれば、2相はほぼ完全に分離でき、溶媒や生成物のロスがほとんどないのが利点と言える。
 本発明において、前記第1~第3工程までに加えて、さらに次の第4工程も実施するのが、さらに好ましい。
 第4工程:第3工程で二相分離を行った後の、第1液相を回収する工程。
 先に説明した通り、反応に酸触媒を用いた場合、第1液相中には、当該酸触媒が溶け込んでいることが通常である。この場合、回収された第1液相は「HFIPと酸触媒」を反応開始時のまま含むこととなり、所望であれば次のバッチにそのまま再利用することもできる(後述の実施例を参照)。
 [本発明の特に好適な実施態様:酸触媒を用いるフェナセン類の合成]
 本発明の特に好適な実施態様の1つは、次の式3で表される「酸触媒を用いるフェナセン類の合成」である。
Figure JPOXMLDOC01-appb-C000005
式3中、R1は炭素数1~12の直鎖、分岐鎖もしくは環状のアルキル基、芳香族炭化水素基、又は水素原子、または-SiR3(ここでRは、それぞれ独立に、炭素数1~12の直鎖、分岐鎖もしくは環状のアルキル基、または芳香族炭化水素基、水素原子の何れかを表す)を表し、該アルキル基のC-C結合の一部が二重結合または三重結合を形成していても良く、該アルキル基、または該芳香族炭化水素基の水素原子または炭素原子の一部がハロゲン原子(フッ素、塩素、臭素、およびヨウ素)、酸素原子、カルボニル基、硫黄原子、窒素原子に置換されていても良い。R2およびR3はそれぞれ独立に炭素数1~12の直鎖、分岐鎖もしくは環状のアルキル基、または芳香族炭化水素基を表し、該アルキル基のC-C結合の一部が二重結合または三重結合を形成していても良く、(n+m)が2以上であるとき複数のR2もしくはR3同士が互いに繋がりあって環を形成していても良く、該環は多重結合を持っていても良く、該アルキル基、または該芳香族炭化水素基の水素原子または炭素原子の一部がハロゲン原子(フッ素、塩素、臭素、およびヨウ素)、酸素原子、カルボニル基、硫黄原子、窒素原子に置換されていても良い。また該窒素原子は当業者により適宜、保護基で保護しておいても良い。m、nはそれぞれ独立に0~4の任意の整数を表す。R2およびR3のそれぞれが複数の場合、それぞれは同一でも異なっていても良い。なお式[1]のR2およびR3がそれぞれ置換する位置については特に制限は無く、これらの置換基は構造上、とりうる範囲内で存在しても良い。
 本反応に用い得る二相系反応媒体としては、既に説明した二相系反応媒体を再び挙げることができる。このうち、第2液相として特に好ましいのはn-ヘキサン、シクロヘキサン、n-ヘプタン、メチルシクロヘキサン、デカリンである。第1液相と第2液相の比率についても、上記したものを再び挙げることができるが、特に好ましい比率は第二液相の媒体比率が第一液相に対して2倍量である。
 本反応の温度として特に好ましいのは15~35℃である。
 本反応は、酸触媒を用いることで促進されるので、使用することが好ましい。酸触媒の種類としては、上に挙げたものを再び挙げることができるが、特に本反応に好ましいのは塩酸、硫酸、硝酸、過塩素酸、テトラフルオロホウ酸、ヘキサフルオロリン酸、フッ化水素酸、トリフルオロメタンスルホン酸、p-トルエンスルホン酸一水和物、メタンスルホン酸、(+)-10-カンファースルホン酸、トリフルオロ酢酸、FSO3H・SbF5、Tf2NHである。その量は2-エチニルビフェニル類に対して1~20mol%が特に好ましい。
 反応の手順は、特段限定されないが、前述の第1工程の記載にしたがって、まず反応原料(触媒も含む)を含む本発明の有機反応システムを準備し、次いでそれを好ましくは攪拌器を備えた反応器に投入して、所定温度にて攪拌を開始すればよい(第2工程)。反応の進捗は適宜反応液を採取し抽出溶媒に抽出した上で、NMR、GCまたはHPLCなどの分析手段を適宜用いれば容易に知ることができる。
 反応が終了した後は、前述の第3工程の記載にしたがって二相分離を行い、第2液相(通常は上相となる)を採取すれば良い。この中に目的物のフェナセンが溶存しているので、公知の精製手段によって当該フェナセンを単離することができる。
 また、前述の第4工程の記載にしたがって、さらに第1液相(通常は下相となる)を採取すれば、その液相は、HFIPと酸触媒が、当初のままの状態となっている。しかも、HFIPの回収率もほぼ定量的である。つまりこの回収した第1液相は、所望であれば、次バッチにそのまま(新たなHFIPや触媒を補充する必要もなく)、次バッチの同反応に再利用することもできる。つまり、第1~第3工程までに加えて、第4工程も併せて行うことは、本発明の特に好ましい態様である。
 以下、実施例により本発明の実施の形態を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 [実施例1]
Figure JPOXMLDOC01-appb-C000006
 攪拌子を具備した10mLのガラス反応容器に、2-(フェニルエチニル)ビフェニル1a、76mg(0.30mmol)、3mLのシクロヘキサン、及び0.8mLの1,1,1,3,3,3-ヘキサフルオロプロパン-2-オール(HFIP)を加え、溶液を攪拌した。反応溶液にp-トルエンスルホン酸一水和物6.1mg(32μmol)、HFIP0.7mL溶液を加え、空気中で9時間激しく攪拌した。反応終了後、ジクロロメタン5mLを加え、その溶液をNaHCO3が充填されたフィルターに通過させた後、エバポレーターにより溶媒を減圧留去した。残留物を重クロロホルムで溶かし、内部標準物質としてCH2Br2を所定量加えてから1H-NMRを測定したところ、生成物2aが85%、副生成物3aが13%の収率で得られたことが確認できた。
 <2aの分析結果>
1H-NMR(溶媒:重クロロホルム);δ 7.40-7.44(m、1H)、7.46-7.53(m、5H)、7.55-7.58(m、1H)、7.60-7.63(m、2H)、7.65(s、1H)、7.84(dd、J=7.7、1.0Hz、1H)、7.90(dd、J=8.2、0.9Hz、1H)、8.67(d、J=8.2Hz、1H)、8.72(d、J=8.2Hz、1H).
13C-NMR(溶媒:重クロロホルム);δ 122.5、122.9、126.4、126.46、126.54、126.8、126.9、127.3、127.5、128.3、128.6、129.9、130.0、130.6、131.1、131.5、138.7、140.8.
IR(neat):ν 3057、3022、1491、1450、777、768、744、725、700 cm-1
HRMS(EI) m/z Calcd.for C2014 [M]+:254.
1090; Found: 254.1094.
 [実施例2]
 3mLのシクロヘキサンの代わりに3mLのn-ヘキサンを使用した以外は、実施例1と同様の手順で操作を行うことにより、生成物2aが78%、副生成物3aが9%の収率で得られた。
 [実施例3]
 3mLのシクロヘキサンの代わりに3mLのデカリンを使用した以外は、実施例1と同様の手順で操作を行うことにより、生成物2aが67%、副生成物3aが11%の収率で得られた。
 [比較例1]
 3mLのシクロヘキサンの代わりに3mLのHFIPを使用した以外は、実施例1と同様の手順で操作を行うことにより、生成物2aが54%、副生成物3aが5%の収率で得られた。
 [比較例2]
 3mLのシクロヘキサンの代わりに3mLのHFIPを使用し、p-トルエンスルホン酸一水和物6.1mg(32μmol)の代わりにトリフルオロメタンスルホン酸2.8μL(32μmol)を使用した以外は、実施例1と同様の手順で操作を行うことにより、生成物2aが53%、副生成物3aが7%の収率で得られた。
 [比較例3]
 3mLのシクロヘキサンの代わりに3mLのHFIPを使用し、p-トルエンスルホン酸一水和物6.1mg(32μmol)の代わりにメタンスルホン酸2.1μL(32μmol)を使用した以外は、実施例1と同様の手順で操作を行うことにより、生成物2aが47%、副生成物3aが7%の収率で得られた。
 [比較例4]
 3mLのシクロヘキサンの代わりに3mLのHFIPを使用し、p-トルエンスルホン酸一水和物6.1mg(32μmol)の代わりに42%テトラフルオロホウ酸水溶液5.1μL(32μmol)を使用した以外は、実施例1と同様の手順で操作を行うことにより、生成物2aが48%、副生成物3aが9%の収率で得られた。
 [比較例5]
 3mLのシクロヘキサンの代わりに3mLのHFIPを使用し、p-トルエンスルホン酸一水和物6.1mg(32μmol)の代わりに(+)-10-カンファースルホン酸7.4mg(32μmol)を使用した以外は、実施例1と同様の手順で操作を行うことにより、生成物2aが47%、副生成物3aが7%の収率で得られた。
 [比較例6]
 3mLのシクロヘキサンの代わりに3mLのn-ヘキサンを使用し、HFIP0.8mLおよびp-トルエンスルホン酸一水和物6.1mg(32μmol)を含むHFIP0.7mL溶液の代わりにp-トルエンスルホン酸一水和物6.1mg(32μmol)を含むヘキサン1.5mL溶液を使用した以外は、実施例1と同様の手順で操作を行った。その結果、生成物2a、副生成物3aはともに検出されなかった。
 [比較例7]
 3mLのシクロヘキサンの代わりに3mLのジクロロメタンを使用し、HFIP0.8mLおよびp-トルエンスルホン酸一水和物6.1mg(32μmol)を含むHFIP0.7mL溶液の代わりにp-トルエンスルホン酸一水和物6.1mg(32μmol)を含むジクロロメタン1.5mL溶液を使用した以外は、実施例1と同様の手順で操作を行った。その結果、ごく微量の生成物2aが検出され、副生成物3aは検出されなかった。
 [比較例8]
 3mLのシクロヘキサンの代わりに3mLのニトロメタンを使用し、HFIP0.8mLおよびp-トルエンスルホン酸一水和物6.1mg(32μmol)を含むHFIP0.7mL溶液の代わりにp-トルエンスルホン酸一水和物6.1mg(32μmol)を含むニトロメタン1.5mL溶液を使用した以外は、実施例1と同様の手順で操作を行った。その結果、生成物2aが1%の収率で得られ、副生成物3aは検出されなかった。
 [比較例9]
 3mLのシクロヘキサンの代わりに3mLのイソプロピルアルコールを使用し、HFIP0.8mLおよびp-トルエンスルホン酸一水和物6.1mg(32μmol)を含むHFIP1.5mL溶液の代わりにp-トルエンスルホン酸一水和物6.1mg(32μmol)を含むイソプロピルアルコール0.7mL溶液を使用した以外は、実施例1と同様の手順で操作を行った。その結果、生成物2a、副生成物3aはともに検出されなかった。
 実施例1~3、および比較例1~9について、使用した反応溶媒、触媒、生成物2a、および副生成物3aの収率について表1および表2にまとめた。表中のTsOH・H2Oはp-トルエンスルホン酸一水和物を、TfOHはトリフルオロメタンスルホン酸を、MsOHはメタンスルホン酸を、CSAは(+)-10-カンファースルホン酸をそれぞれ表す。なお、「trace」とは「痕跡量のみ検出された」、「N.D.」とは「検出されなかった」の意味である。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 このように、HFIPを単一の溶媒とする反応系の場合(比較例1~5)、生成物2aは40~50%の収率で生成しており、ヘキサン、ジクロロメタン、ニトロメタン、i-プロピルアルコールを溶媒とした比較例6~9に比べれば、環化反応の収率は高いものの、上記の実施例1~3の収率はさらに格段に高い。本発明の二相系反応システムの優位性が実証されたと言える。
 [実施例4]
 攪拌子を具備した10mLのガラス反応容器に、2-(フェニルエチニル)ビフェニル1a、76mg(0.30mmol)、3mLのシクロヘキサン、及び0.8mLのHFIPを加え、溶液を攪拌した。反応溶液にp-トルエンスルホン酸一水和物6.1mg(32μmol)、HFIP0.7mL溶液を加え、空気中で9時間激しく攪拌した。反応終了後、ジクロロメタン5mLを加え、その溶液をNaHCO3が充填されたフィルターに通過させた後、エバポレーターにより溶媒を減圧留去した。残留物をシリカゲルカラムクロマトグラフィー(溶離液:ヘキサン/ジクロロメタン=20/1)で精製することにより、生成物2aを86%、副生成物3aを10%の収率で得た。
 [実施例5]
Figure JPOXMLDOC01-appb-C000009
 2-(フェニルエチニル)ビフェニル76mg(0.30mmol)1aの代わりに、4’-メチル-2-(2-フェニルエチニル)-1,1’-ビフェニル1b、80mg(0.30mmol)を使用した以外は実施例4と同様の手順で操作を行うことにより、生成物2bを86%、副生成物3bを7%の収率で得た。
 [実施例6]
Figure JPOXMLDOC01-appb-C000010
 2-(フェニルエチニル)ビフェニル76mg(0.30mmol)1aの代わりに、3’-メチル-2-(2-フェニルエチニル)-1,1’-ビフェニル1c、80mg(0.30mmol)を使用した以外は実施例4と同様の手順で操作を行うことにより、生成物2c、2c’の混合物を77%(2c:2c’=53:47)、副生成物3cを4%の収率で得た。
 [実施例7]
Figure JPOXMLDOC01-appb-C000011
 2-(フェニルエチニル)ビフェニル76mg(0.30mmol)1aの代わりに、3’,5’-ジメチル-2-(2-フェニルエチニル)-1,1’-ビフェニル1d、85mg(0.30mmol)を使用した以外は実施例4と同様の手順で操作を行うことにより、生成物2dを85%、副生成物3dを3%の収率で得た。
 [実施例8]
Figure JPOXMLDOC01-appb-C000012
 2-(フェニルエチニル)ビフェニル76mg(0.30mmol)1aの代わりに、4’-t-ブチル-2-(2-フェニルエチニル)-1,1’-ビフェニル1e、93mg(0.30mmol)を使用した以外は実施例4と同様の手順で操作を行うことにより、生成物2eを87%、副生成物3eを3%の収率で得た。
 [実施例9]
Figure JPOXMLDOC01-appb-C000013
 2-(フェニルエチニル)ビフェニル76mg(0.30mmol)1aの代わりに、3’-i-プロピル-2-(2-フェニルエチニル)-1,1’-ビフェニル1f、89mg(0.30mmol)を使用した以外は実施例4と同様の手順で操作を行うことにより、生成物2f、2f’の混合物を92%(2f:2f’=65:35)、副生成物3fを7%の収率で得た。
 [実施例10]
Figure JPOXMLDOC01-appb-C000014
 2-(フェニルエチニル)ビフェニル76mg(0.30mmol)1aの代わりに、4’-クロロ-2-(2-フェニルエチニル)-1,1’-ビフェニル1g、87mg(0.30mmol)を使用した以外は実施例4と同様の手順で操作を行うことにより、生成物2gを84%、副生成物3gを5%の収率で得た。
 [実施例11]
Figure JPOXMLDOC01-appb-C000015
 2-(フェニルエチニル)ビフェニル76mg(0.30mmol)1aの代わりに、4’-フルオロ-2-(2-フェニルエチニル)-1,1’-ビフェニル1h、82mg(0.30mmol)を使用した以外は実施例4と同様の手順で操作を行うことにより、生成物2hを82%、副生成物3hを9%の収率で得た。
 実施例4~11について、使用した反応基質、生成物、生成物収率、生成比、副生成物、副生成物収率について表3にまとめた。
Figure JPOXMLDOC01-appb-T000016
 このようにベンゼン環の任意の位置が置換基によって置換されていても、フェナセンの合成反応は高い収率(選択率)で行えることが実証されたと言える。
 [実施例12]
 攪拌子を具備した10mlのガラス反応容器に、2-(フェニルエチニル)ビフェニル1a 0.076g(0.30mmol)、3.00mLのシクロヘキサン、及び0.80mLのHFIPを加え溶液を攪拌した。反応溶液にp-トルエンスルホン酸一水和物6.1mg(0.032mmol)、HFIP(0.70mL)溶液を加え、空気中で9時間激しく攪拌した。反応終了後、上相のシクロヘキサン相と下相のHFIP相を分離し、それぞれ回収した。シクロヘキサン相の溶液から、エバポレーターにより溶媒を減圧留去した。残留物を重クロロホルムで溶かし、内部標準物質としてCH2Br2を所定量加えてから1H-NMRを測定し、生成物2a、副生成物3aの収率を算出した。
 また回収した下相のHFIP相に3.00mLのシクロヘキサン、2-(フェニルエチニル)ビフェニル1a 0.076gを加え、空気中で9時間激しく攪拌した。反応終了後、上述の後処理と同様の操作を行い、生成物2a、副生成物3aを回収した。回収した下相のHFIP相を再び反応に用いる操作をさらに3回行い、合計5回の反応の、生成物2a、副生成物3aの収率を比較した。
 実施例12について、表4に5回の反応の生成物2aの収率、副生成物3aの収率についてまとめた。
Figure JPOXMLDOC01-appb-T000017
 このように、反応工程終了後の二相分離によって第1液相であるHFIP相は定量的に回収でき、かつ、当該回収HFIP相は、そのまま次のバッチの溶媒相として再利用できることが実証された。そして、複数回繰り返して再利用しても、目的物2aの収率はきわめて高いレベルを維持することが明らかになった。
 [実施例13]
Figure JPOXMLDOC01-appb-C000018
 攪拌子を具備したガラス反応容器に、実施例1と同様の比率にて2-(フェニルエチニル)ビフェニル1a、シクロヘキサン、HFIP、p-トルエンスルホン酸一水和物、および1aと同モル量の生成物2aを加え、攪拌した。
 実施例13について、表5に各化合物の第1液相、第2液相への分配比を示す。なお、「quant.」とは「ほぼ全量回収された」、「N.D.」とは「検出されなかった」の意味である。
Figure JPOXMLDOC01-appb-T000019
 このように、本発明の二相系反応媒体中においては「酸触媒」はほぼ全量、第1液相へ分配される一方、原料の大部分と生成物のほぼ全量は第2液相へ分配されていることを確認した。

Claims (12)

  1.  1,1,1,3,3,3-ヘキサフルオロプロパン-2-オールを溶媒とする第1液相と、前記1,1,1,3,3,3-ヘキサフルオロプロパン-2-オールと実質的に相溶しない、脂肪族炭化水素(当該脂肪族炭化水素は、直鎖状、分岐鎖状または環状のものであり、C-C結合の一部が二重結合または三重結合を形成していても良い)またはこれらを主成分(当該主成分とは、これらの成分を50%以上含むことを意味する)とする溶媒からなる第2液相と、を含む、有機反応用の二相系反応媒体。
  2.  第2液相における脂肪族炭化水素が、炭素数5~30の脂肪族炭化水素(当該脂肪族炭化水素は、直鎖状、分岐鎖状または環状のものであり、C-C結合の一部が二重結合または三重結合を形成していても良い)である、請求項1に記載の有機反応用の二相系反応媒体。
  3.  第2液相における脂肪族炭化水素が、n-ペンタン、シクロペンタン、n-ヘキサン、2-メチルペンタン、シクロヘキサン、n-ヘプタン、メチルシクロヘキサン、シクロヘプタン、n-オクタン、シクロオクタン、2-メチルヘプタン、エチルシクロヘキサン、n-デカン、デカリン、シクロデカンからなる群より選ばれる少なくとも1種である、請求項1に記載の有機反応用の二相系反応媒体。
  4.  請求項1乃至請求項3の何れかに記載の有機反応用の二相系反応媒体であって、適用される該有機反応が、酸性条件下で行われる、SN1反応、E1反応、転位反応、Aldol型反応、Michael型反応、エステル化反応、Friedel-Crafts型反応、Nazarov型環化反応のうちの何れかである、二相系反応媒体。
  5.  酸触媒として、塩酸、硫酸、硝酸、過塩素酸、テトラフルオロホウ酸、ヘキサフルオロリン酸、フッ化水素酸、トリフルオロメタンスルホン酸、p-トルエンスルホン酸一水和物、メタンスルホン酸、(+)-10-カンファースルホン酸、トリフルオロ酢酸、FSO3H・SbF5、Tf2NHの少なくとも一つを含む、請求項1乃至請求項4の何れかに記載の有機反応用の二相系反応媒体。
  6.  次の第1~第3工程を含む、有機化合物Bの製造方法。
    第1工程:(a)1,1,1,3,3,3-ヘキサフルオロプロパン-2-オールを溶媒とする第1液相と、前記1,1,1,3,3,3-ヘキサフルオロプロパン-2-オールと実質的に相溶しない、脂肪族炭化水素(当該脂肪族炭化水素は、直鎖状、分岐鎖状または環状のものであり、C-C結合の一部が二重結合または三重結合を形成していても良い)またはこれらを主成分(当該主成分とは、これらの成分を50%以上含むことを意味する)とする溶媒からなる第2液相と、を含む、有機反応用の二相系反応媒体と、(b)前記二相系反応媒体に溶存又は分散している、有機反応原料群Aと、を備える、有機反応システムを準備する工程。
    第2工程:前記第1工程において準備した前記有機反応システムにおいて、該有機反応原料Aが有機反応を起こして、少なくともその一部が該有機化合物Bに変換するに十分な条件を設定する工程。
    第3工程:前記第2工程を実施した後、該有機反応システムを前記第1液相と第2液相とに二相分離し、このうち、第2液相を、そこに溶存又は分散する該有機化合物Bと共に取り出す工程。
  7.  第2液相における脂肪族炭化水素が、炭素数5~30の脂肪族炭化水素(当該脂肪族炭化水素は、直鎖状、分岐鎖状または環状のものであり、C-C結合の一部が二重結合または三重結合を形成していても良い)である、請求項6に記載の製造方法。
  8.  次の第4工程をさらに含む、請求項6又は7に記載の製造方法。
    第4工程:第3工程で二相分離を行った後の、第1液相を回収する工程。
  9.  次の第1~第3工程を含む、下記一般式[2]で表されるフェナセン類の製造方法。
    第1工程:(a)1,1,1,3,3,3-ヘキサフルオロプロパン-2-オールを溶媒とする第1液相と、前記1,1,1,3,3,3-ヘキサフルオロプロパン-2-オールと実質的に相溶しない、炭素数が5~30の脂肪族炭化水素(当該脂肪族炭化水素は、直鎖状、分岐鎖状または環状のものであり、C-C結合の一部が二重結合または三重結合を形成していても良い)またはこれらを主成分(当該主成分とは、これらの成分を50%以上含むことを意味する)とする溶媒からなる第2液相と、を含む、有機反応用の二相系反応媒体と、(b)前記二相系反応媒体に溶存する、下記一般式[1]で表される2-エチニルビフェニル類および酸触媒と、を備える、有機反応システムを準備する工程。
    第2工程:前記第1工程において準備した前記有機反応システムにおいて、下記一般式[1]で表される2-エチニルビフェニル類が有機反応を起こして、少なくともその一部が下記一般式[2]で表されるフェナセン類に変換するに十分な条件を設定する工程。
    第3工程:前記第2工程を実施した後、該有機反応システムを前記第1液相と第2液相とに二相分離し、このうち、第2液相を、そこに溶存する下記一般式[2]で表されるフェナセン類と共に取り出す工程。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    [式[1]および式[2]中、R1は炭素数1~12の直鎖、分岐鎖もしくは環状のアルキル基、芳香族炭化水素基、水素原子、または-SiR3(ここでRは、それぞれ独立に、炭素数1~12の直鎖、分岐鎖もしくは環状のアルキル基、または芳香族炭化水素基、水素原子の何れかを表す)を表し、該アルキル基のC-C結合の一部が二重結合または三重結合を形成していても良く、該アルキル基、または該芳香族炭化水素基の水素原子または炭素原子の一部がハロゲン原子(フッ素、塩素、臭素、およびヨウ素)、酸素原子、カルボニル基、硫黄原子、窒素原子に置換されていても良い。R2およびR3はそれぞれ独立に炭素数1~12の直鎖、分岐鎖もしくは環状のアルキル基、または芳香族炭化水素基を表し、該アルキル基のC-C結合の一部が二重結合または三重結合を形成していても良く、(n+m)が2以上であるとき複数のR2もしくはR3同士が互いに繋がりあって環を形成していても良く、該環は多重結合を持っていても良く、該アルキル基、または該芳香族炭化水素基の水素原子または炭素原子の一部がハロゲン原子(フッ素、塩素、臭素、およびヨウ素)、酸素原子、カルボニル基、硫黄原子、窒素原子に置換されていても良い。m、nはそれぞれ独立に0~4の任意の整数を表す。R2およびR3のそれぞれが複数の場合、それぞれは同一でも異なっていても良い。なお式[1]および式[2]のR2およびR3がそれぞれ置換する位置については特に制限は無く、これらの置換基は構造上、とりうる範囲内で存在しても良い。]
  10.  次の第4工程をさらに含む、請求項9に記載のフェナセン類の製造方法。
    第4工程:第3工程で二相分離を行った後の、第1液相を回収する工程。
  11.  第2液相における脂肪族炭化水素が、n-ペンタン、シクロペンタン、n-ヘキサン、2-メチルペンタン、シクロヘキサン、n-ヘプタン、メチルシクロヘキサン、シクロヘプタン、n-オクタン、シクロオクタン、2-メチルヘプタン、エチルシクロヘキサン、n-デカン、デカリン、シクロデカンからなる群より選ばれる少なくとも1種であって、かつ、酸触媒が、塩酸、硫酸、硝酸、過塩素酸、テトラフルオロホウ酸、ヘキサフルオロリン酸、フッ化水素酸、トリフルオロメタンスルホン酸、p-トルエンスルホン酸一水和物、メタンスルホン酸、(+)-10-カンファースルホン酸、トリフルオロ酢酸、FSO3H・SbF5、Tf2NHからなる群より選ばれる少なくとも1種である、請求項9又は請求項10に記載のフェナセン類の製造方法。
  12.  R1がフェニル基であり、nが0である、請求項9乃至請求項11の何れかに記載のフェナセン類の製造方法。
PCT/JP2018/006337 2017-03-02 2018-02-22 1,1,1,3,3,3-ヘキサフルオロプロパン-2-オールと脂肪族炭化水素系溶媒を用いた二相系反応媒体 WO2018159427A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-039790 2017-03-02
JP2017039790A JP6839356B2 (ja) 2017-03-02 2017-03-02 1,1,1,3,3,3−ヘキサフルオロプロパン−2−オールと脂肪族炭化水素系溶媒を用いた二相系反応媒体

Publications (1)

Publication Number Publication Date
WO2018159427A1 true WO2018159427A1 (ja) 2018-09-07

Family

ID=63371414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006337 WO2018159427A1 (ja) 2017-03-02 2018-02-22 1,1,1,3,3,3-ヘキサフルオロプロパン-2-オールと脂肪族炭化水素系溶媒を用いた二相系反応媒体

Country Status (2)

Country Link
JP (1) JP6839356B2 (ja)
WO (1) WO2018159427A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021016256A3 (en) * 2019-07-22 2021-02-25 Angion Biomedica Corp. Ethynylheterocycles as rho-associated coiled-coil kinase (rock) inhibitors

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010530295A (ja) * 2007-06-04 2010-09-09 プレッシャー バイオサイエンシズ インコーポレイテッド 圧力で向上させた、分子の抽出および分配

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010530295A (ja) * 2007-06-04 2010-09-09 プレッシャー バイオサイエンシズ インコーポレイテッド 圧力で向上させた、分子の抽出および分配

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
FUJITA, TAKESHI ET AL., EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, vol. 2017, 2017, pages 262 - 265, XP055538453 *
LI, QI ET AL., CHEMICAL COMMUNICATIONS, vol. 51, 2015, pages 7219 - 7221 *
QIAN, JING ET AL.: "Distribution of neutral organic compounds between n-heptane and fluorine-containing alcohols", JOURNAL OF CHROMATOGRAPHY A, vol. 1143, 2007, pages 276 - 283, XP005879739 *
TAKAHASHI, IKKO: "Bronsted Acid-Catalyzed Cationic Cyclizations in Fluoroalcohols toward Facile Syntheses of Polycyclic Aromatic Hydrocarbons", DOCTORAL DISSERATATION EXAMINATION IN CHEMISTRY, GRADUATE SCHOOL OF PURE AND APPLIED SCIENCES, 2016, University of Tsukuba *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021016256A3 (en) * 2019-07-22 2021-02-25 Angion Biomedica Corp. Ethynylheterocycles as rho-associated coiled-coil kinase (rock) inhibitors

Also Published As

Publication number Publication date
JP2018145123A (ja) 2018-09-20
JP6839356B2 (ja) 2021-03-10

Similar Documents

Publication Publication Date Title
JP6810693B2 (ja) カンタリジンおよび生理活性カンタリジン誘導体の商業的に実現可能な合成
EP3359522B1 (en) Process for preparation of n-boc biphenyl alaninol
CN107011176B (zh) 用于制备环上卤代的n,n-二烷基苄胺的方法
JP6818741B2 (ja) 1,4−ビス(エトキシメチル)シクロヘキサンを調製する方法
JP5603169B2 (ja) (e)−3−メチル−2−シクロペンタデセノンの製造方法
US11634385B2 (en) Process for the preparation of haloalkanesulfonic acids from sulfur trioxide and a haloalkane
CN109651115B (zh) 一种制备l-薄荷酮的方法
Luo et al. Brønsted acid-catalyzed 1, 2-fluorine migration with fluoroepoxides
WO2018159427A1 (ja) 1,1,1,3,3,3-ヘキサフルオロプロパン-2-オールと脂肪族炭化水素系溶媒を用いた二相系反応媒体
US20190337873A1 (en) Method for producing fluorinated alkane, method for separating and recovering amidine base, and method for using recovered amidine base
KR101455870B1 (ko) 이산화탄소를 원료로 하는 알코올의 제조방법
US20110004028A1 (en) Process for production of dialcohol, process for production of allylhalide compound, and allylchloride compound
CN113698409A (zh) 一种多用途的二氮杂双环类化合物、制备方法及在合成药物中的应用
KR101182615B1 (ko) 광학 활성 2,2'-비페놀 유도체 및 그 제조 방법
US8212085B2 (en) Method for purifying optically active 1-(2-trifluoromethylphenyl)ethanol
EP1468983B1 (en) Process for producing 2,5-bis(trifluoromethyl)nitrobenzene
WO2018051996A1 (ja) 2-アルコキシエタノールの除去又は回収方法、及び(2-アルコキシエチル)ビニルエーテルの製造方法
JP4072341B2 (ja) エチル基含有脂環族第三アルコールの製造方法
CN114411181A (zh) 一种电催化下α-羰基-α’-氯亚砜叶立德的合成方法
WO1987005289A1 (fr) Catalyseur de couplage biarylique au ruthenium; nouveaux steganolides
US20130281742A1 (en) Method and synthesis of initiators for telechelic polyisobutylenes
CN111909065A (zh) 一种芳基苄基砜类化合物α位甲基化的方法
CN114702408A (zh) 一种克立硼罗杂质的制备方法和应用
AU2020311336A1 (en) Process for the synthesis of non-racemic cyclohexenes
WO2018066146A1 (ja) フッ素化化合物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18761212

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18761212

Country of ref document: EP

Kind code of ref document: A1