WO2018159323A1 - エジェクタモジュール、および蒸発器ユニット - Google Patents
エジェクタモジュール、および蒸発器ユニット Download PDFInfo
- Publication number
- WO2018159323A1 WO2018159323A1 PCT/JP2018/005442 JP2018005442W WO2018159323A1 WO 2018159323 A1 WO2018159323 A1 WO 2018159323A1 JP 2018005442 W JP2018005442 W JP 2018005442W WO 2018159323 A1 WO2018159323 A1 WO 2018159323A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- refrigerant
- evaporator
- ejector
- pressure
- nozzle
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04F—PUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
- F04F5/00—Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
- F04F5/44—Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04F—PUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
- F04F5/00—Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
- F04F5/44—Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
- F04F5/48—Control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B5/00—Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
- F25B5/04—Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
Definitions
- the present disclosure relates to an ejector module and an evaporator unit that are applied to an ejector refrigeration cycle.
- an ejector type refrigeration cycle which is a refrigeration cycle apparatus including an ejector as a refrigerant decompression device, is known.
- the pressure of the refrigerant sucked into the compressor can be made higher than the refrigerant evaporation pressure in the evaporator by the pressurizing action of the ejector.
- the power consumption of a compressor can be reduced and the coefficient of performance (COP) of a cycle can be improved.
- Patent Document 1 discloses an ejector-type refrigeration cycle applied to an air conditioner and including an evaporator unit.
- the evaporator unit of Patent Document 1 is an integrated unit (in other words, unitized or modularized) of a branching unit, an ejector, a fixed throttle, a first evaporator, a second evaporator, etc., among the components of the ejector refrigeration cycle. It has been made.
- the branch part branches the flow of the high-pressure refrigerant that has flowed out of the radiator, and flows it out to the nozzle part side and the fixed throttle side of the ejector.
- the second evaporator is a heat exchanger that evaporates the refrigerant flowing out from the diffuser portion of the ejector by exchanging heat with the blown air blown into the air-conditioning target space and evaporates the evaporated refrigerant to the suction port side of the compressor.
- the first evaporator is a heat exchanger that evaporates the refrigerant decompressed by the fixed throttle by heat exchange with the blown air that has passed through the second evaporator, and flows the evaporated refrigerant to the refrigerant suction port side of the ejector.
- the evaporator unit of Patent Document 1 employs a fixed throttle, and further employs a fixed nozzle portion that cannot change the passage cross-sectional area of the refrigerant passage as the nozzle portion of the ejector. For this reason, when load fluctuation occurs in the applied ejector refrigeration cycle and the flow rate of the refrigerant flowing into the nozzle portion changes, the energy conversion efficiency of the ejector may decrease.
- Patent Document 1 may adopt a variable throttle mechanism configured to be able to change the passage cross-sectional area (that is, the throttle opening degree) instead of the fixed throttle, and the nozzle portion of the ejector. It is described that a variable nozzle portion configured to be able to change the passage sectional area of the refrigerant passage may be adopted.
- the flow rate of the refrigerant flowing into the variable throttle mechanism and the flow rate of the refrigerant flowing into the nozzle part are adjusted by adjusting the throttle opening of the variable throttle mechanism or the passage sectional area of the nozzle part according to the load fluctuation of the ejector refrigeration cycle. Can be adjusted appropriately. Therefore, it is possible to cause the ejector refrigeration cycle to exhibit a high COP by causing the ejector to exhibit a sufficient boosting action and exhibit sufficient refrigeration capacity in both evaporators regardless of load fluctuations.
- a drive device for changing the throttle opening is required.
- a variable nozzle portion is adopted as the nozzle portion of the ejector.
- This type of drive device is relatively large in size.
- a general ejector is formed in an elongated cylindrical shape extending in the axial direction of the nozzle portion.
- a unit (or module) in which components including the variable aperture mechanism and the ejector are integrated in a state where the variable aperture mechanism and the ejector are arranged so as not to interfere with each other is likely to be large.
- the downsizing effect of the ejector refrigeration cycle as a whole due to the integration of the components is impaired.
- the present disclosure has a first object to provide an ejector module configured such that the cross-sectional area of the passage can be changed without increasing the size of the applied ejector refrigeration cycle.
- a second object of the present disclosure is to provide an evaporator unit that suppresses refrigerant passing sound without causing a decrease in the coefficient of performance of the applied ejector refrigeration cycle.
- the ejector module according to the first aspect of the present disclosure is applied to an ejector refrigeration cycle having a compressor, a radiator, a first evaporator, and a second evaporator.
- the ejector module includes a nozzle part, a pressure reducing part, a body part, and a pressure raising part.
- a nozzle part decompresses and injects some refrigerant
- the decompression unit decompresses another part of the refrigerant that has flowed out of the radiator.
- the body part has a refrigerant suction port that sucks the refrigerant from the outside by the suction action of the jetted refrigerant jetted from the nozzle part.
- the booster boosts the mixed refrigerant of the jetted refrigerant and the suction refrigerant sucked from the refrigerant suction port.
- the refrigerant inlet side of the first evaporator is connected to the throttle side outlet through which the refrigerant flows out from the decompression unit.
- the refrigerant outlet side of the first evaporator is connected to the refrigerant suction port.
- the refrigerant inlet side of the second evaporator is connected to the ejector side outlet from which the refrigerant flows out from the booster.
- At least one of the nozzle part and the pressure reducing part is configured to be able to change the passage cross-sectional area.
- At least a part of the booster can be housed in at least one of the first evaporator and the second evaporator or in a pipe connected to at least one of the first evaporator and the second evaporator. It is arranged to protrude from.
- At least one of the passage sectional area of the nozzle portion and the passage sectional area of the decompression portion can be changed.
- coolant flow volume which flows in into a pressure reduction part can be adjusted appropriately. As a result, a high coefficient of performance can be exhibited in the ejector refrigeration cycle regardless of load fluctuations.
- an ejector can be configured.
- the booster can be accommodated in at least one of the first evaporator and the second evaporator, or in a pipe connected to at least one of the first evaporator and the second evaporator. Therefore, the increase in size of the applied ejector refrigeration cycle as a whole can be suppressed.
- an ejector module configured such that the passage cross-sectional area can be changed without increasing the size of the applied ejector-type refrigeration cycle.
- the evaporator unit according to the second aspect of the present disclosure is applied to an ejector refrigeration cycle.
- the evaporator unit includes a branching part that branches the flow of the refrigerant, an ejector, a decompression part, a first evaporator, and a second evaporator.
- the ejector includes a nozzle part that depressurizes one of the refrigerants branched at the branch part, a body part formed with a refrigerant suction port that sucks the refrigerant from the outside by a suction action of the jetted refrigerant jetted from the nozzle part, and the jetted refrigerant And a pressure increasing unit that pressurizes the mixed refrigerant of the suction refrigerant sucked from the refrigerant suction port.
- the decompression unit decompresses the other refrigerant branched at the branching unit.
- a 1st evaporator evaporates the refrigerant
- a 2nd evaporator evaporates the refrigerant
- At least one of the nozzle part and the pressure reducing part is configured to be able to change the passage cross-sectional area.
- the branch portion and the decompression portion are formed integrally with the body portion.
- At least a part of the booster is accommodated in at least one of the first evaporator and the second evaporator or in a pipe connected to at least one of the first evaporator and the second evaporator.
- the nozzle part and the pressure reducing part are arranged outside the first evaporator, the second evaporator, and the piping.
- At least one of the passage sectional area of the nozzle portion and the passage sectional area of the decompression portion can be changed.
- coolant flow rate which flows in into a pressure reduction part from a branch part can be adjusted appropriately.
- a high COP can be exhibited in the ejector refrigeration cycle regardless of load fluctuations.
- the boosting unit is accommodated in at least one of the first evaporator and the second evaporator or in a pipe connected to at least one of the first evaporator and the second evaporator. . Therefore, it is possible to reduce the size of the evaporator unit as a whole. As a result, the overall size of the ejector refrigeration cycle can be reduced.
- the nozzle part and the pressure reducing part of the ejector are arranged outside the first evaporator, the second evaporator and the piping. Therefore, the vibration at the time of depressurizing the refrigerant in the nozzle part and the pressure reducing part is difficult to propagate to the first evaporator and the second evaporator. As a result, it is possible to suppress the refrigerant passing sound that is annoying to the user from increasing.
- the ejector module 20 of the present embodiment is applied to an ejector refrigeration cycle 10 that is a vapor compression refrigeration cycle apparatus including an ejector as a refrigerant decompression device, as shown in the overall configuration diagram of FIG.
- This ejector-type refrigeration cycle 10 is applied to a vehicle air conditioner, and fulfills a function of cooling blown air that is blown into a vehicle interior that is a space to be cooled. Therefore, the fluid to be cooled in the ejector refrigeration cycle 10 is blown air.
- the ejector refrigeration cycle 10 employs an HFC refrigerant (specifically, R134a) as a refrigerant, and constitutes a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure of the cycle does not exceed the critical pressure of the refrigerant. Furthermore, refrigeration oil for lubricating the compressor 11 is mixed in the refrigerant. A part of the refrigerating machine oil circulates in the cycle together with the refrigerant.
- HFC refrigerant specifically, R134a
- the compressor 11 sucks the refrigerant and compresses and discharges it until it becomes a high-pressure refrigerant. More specifically, the compressor 11 of the present embodiment is an electric compressor that is configured by housing a fixed capacity type compression mechanism and an electric motor that drives the compression mechanism in one housing.
- various compression mechanisms such as a scroll-type compression mechanism and a vane-type compression mechanism can be employed. Further, the operation (rotation speed) of the electric motor is controlled by a control signal output from an air conditioning control device (not shown), and either an AC motor or a DC motor may be adopted.
- the refrigerant inlet side of the condenser 12 a of the radiator 12 is connected to the discharge port of the compressor 11.
- the radiator 12 is a heat dissipation heat exchanger that radiates and cools the high-pressure refrigerant by exchanging heat between the high-pressure refrigerant discharged from the compressor 11 and the outside air (outside air) blown from the cooling fan 12c. is there.
- the radiator 12 is configured as a so-called receiver-integrated condenser having a condensing part 12a and a receiver part 12b.
- the condensing unit 12a is a heat exchanging unit for condensation that exchanges heat between the high-pressure gas-phase refrigerant discharged from the compressor 11 and the outside air blown from the cooling fan 12c, and dissipates the high-pressure gas-phase refrigerant to condense.
- the receiver unit 12b is a refrigerant container that separates the gas-liquid refrigerant flowing out from the condensing unit 12a and stores excess liquid-phase refrigerant.
- the cooling fan 12c is an electric blower whose number of rotations (amount of blown air) is controlled by a control voltage output from the air conditioning control device.
- the high-pressure inlet 21 a side provided in the body part 21 of the ejector module 20 is connected to the refrigerant outlet of the receiver part 12 b of the radiator 12.
- the ejector module 20 is obtained by integrating (in other words, modularizing) the cycle constituent devices surrounded by the broken lines in FIG. More specifically, the ejector module 20 is obtained by integrating the branching section 14, the ejector 15, the variable aperture mechanism 16, and the like.
- the branch portion 14 branches the flow of the refrigerant that has flowed out of the radiator 12, causes one of the branched refrigerant to flow out to the nozzle portion 51 side of the ejector 15, and the other branched refrigerant flows to the inlet side of the variable throttle mechanism 16. Fulfills the function of draining
- the branch portion 14 is formed by connecting a plurality of refrigerant passages formed inside the body portion 21 of the ejector module 20.
- the ejector 15 includes a nozzle portion 51 that decompresses and injects one of the refrigerants branched at the branching portion 14, and functions as a refrigerant decompression device. Furthermore, the ejector 15 functions as a refrigerant circulation device that sucks and circulates the refrigerant from outside by the suction action of the refrigerant injected from the nozzle portion 51. More specifically, the ejector 15 sucks the refrigerant that has flowed out of the first evaporator 17 described later.
- the ejector 15 converts the kinetic energy of the mixed refrigerant of the refrigerant injected from the nozzle part 51 and the refrigerant sucked from the refrigerant suction port 21b formed in the body part 21 into pressure energy. It functions as an energy conversion device that boosts the pressure of the mixed refrigerant.
- the ejector 15 causes the pressurized refrigerant to flow out to the refrigerant inlet side of the second evaporator 18 described later.
- the nozzle part 51 is a variable nozzle part comprised so that passage cross-sectional area could be changed.
- the variable throttle mechanism 16 has a throttle passage 20a that depressurizes the other refrigerant branched by the branching section 14.
- the variable throttle mechanism 16 is configured to be able to change the passage cross-sectional area (that is, the throttle opening) of the throttle passage 20a.
- the variable throttle mechanism 16 causes the decompressed refrigerant to flow out to the refrigerant inlet side of the first evaporator 17.
- FIGS. 2 to 5 The up and down arrows in FIGS. 2 to 4 indicate the up and down directions in a state where the ejector refrigeration cycle 10 is mounted on the vehicle air conditioner.
- FIG. 2 is a cross-sectional view taken along the line II-II in FIGS. 4 and 5
- FIG. 3 is a cross-sectional view taken along the line III-III in FIGS. 4 is a view in the direction of arrow IV in FIG.
- FIG. 5 is a view in the direction of arrow V in FIG.
- the refrigerant flow direction in the ejector 15 shown in the overall configuration diagram of FIG. 1 is different from the refrigerant flow direction in the ejector 15 shown in FIGS. It has become.
- the body part 21 is formed by combining a plurality of structural members made of metal (in this embodiment, made of aluminum).
- the body portion 21 forms the outer shell of the ejector module 20 and functions as a housing that accommodates components such as the ejector 15 and the variable throttle mechanism 16 therein.
- the branch portion 14 and the variable aperture mechanism 16 are formed integrally with the body portion 21 of the ejector 15.
- the body part 21 may be formed of resin.
- the body portion 21 is provided with a plurality of refrigerant inlets and outlets such as a high pressure inlet 21a, a refrigerant suction port 21b, a throttle side outlet 21d, a low pressure inlet 21e, and a low pressure outlet 21f. Further, an ejector side outlet 21c is provided at the most downstream part of the refrigerant flow of a diffuser portion 52 of the ejector 15 described later, which is fixed to the body portion 21.
- the high-pressure inlet 21 a is a refrigerant inlet through which the refrigerant flowing out from the refrigerant outlet of the receiver 12 b of the radiator 12 flows into the ejector module 20. Accordingly, the high-pressure inlet 21 a serves as a refrigerant inlet for the branch portion 14.
- the refrigerant suction port 21 b is a refrigerant inlet that sucks the refrigerant that has flowed out of the first evaporator 17.
- the suction refrigerant sucked from the refrigerant suction port 21 b merges with the jet refrigerant jetted from the nozzle portion 51. Accordingly, the refrigerant passage through which the suction refrigerant sucked from the refrigerant suction port 21b is circulated and merged with the injection refrigerant is the suction-side passage 20b.
- the ejector-side outlet 21c is a refrigerant outlet that causes the refrigerant whose pressure has been increased by the diffuser portion 52 to flow out to the inlet side of the second evaporator 18.
- the throttle-side outlet 21 d is a refrigerant outlet that allows the refrigerant decompressed by the variable throttle mechanism 16 to flow out to the inlet side of the first evaporator 17.
- the low-pressure inlet 21e is a refrigerant inlet through which the refrigerant that has flowed out of the second evaporator 18 flows, as shown in FIG.
- the low-pressure outlet 21 f is a refrigerant outlet that allows the refrigerant flowing from the low-pressure inlet 21 e to flow out to the suction port side of the compressor 11. Therefore, the refrigerant passage from the low pressure inlet 21e to the low pressure outlet 21f is the outflow side passage 20c.
- the high-pressure inlet 21a and the low-pressure outlet 21f are open in the same direction on the same plane.
- the ejector side outlet 21c, the low pressure inlet 21e, the refrigerant suction port 21b, and the throttle side outlet 21d open in the same direction.
- the low pressure inlet 21e, the refrigerant suction port 21b, and the throttle side outlet 21d are open on the same plane.
- the refrigerant inlet / outlet opening in the same direction means that the refrigerant inflow / outflow directions coincide with each other.
- the ejector 15 includes a nozzle portion 51, a refrigerant suction port 21b and a suction side passage 20b formed in the body portion 21, a diffuser portion 52, a needle valve 53, a nozzle portion side drive mechanism 54, and the like. It is constituted by.
- the nozzle portion 51 is an isentropic decompression of the refrigerant in the refrigerant passage formed therein and injects it. As shown in FIG. 2, the nozzle portion 51 is formed of a substantially cylindrical metal (in this embodiment, stainless alloy or brass) that tapers in the refrigerant flow direction. The nozzle part 51 is fixed to the body part 21 by means such as press fitting.
- a throat portion having the smallest refrigerant passage area is formed, and further, the refrigerant passage area gradually increases from the throat portion toward the refrigerant injection port for injecting the refrigerant.
- a divergent section is provided. That is, the nozzle part 51 is configured as a Laval nozzle part.
- the nozzle unit 51 is set such that the flow rate of the injected refrigerant injected from the refrigerant injection port is equal to or higher than the speed of sound during normal operation of the ejector refrigeration cycle 10.
- an inlet hole through which one refrigerant branched by the branch portion 14 flows into the refrigerant passage is formed.
- the suction side passage 20b described above is formed so as to guide the suction refrigerant to the space on the outer peripheral side of the nozzle portion 51 so that the refrigerant suction port 21b and the refrigerant injection port of the nozzle portion 51 communicate with each other.
- the diffuser unit 52 is a pressure increasing unit that increases the pressure of the mixed refrigerant.
- the diffuser part 52 is formed of a cylindrical metal (in this embodiment, aluminum).
- the diffuser portion 52 of the present embodiment is fixed to the body portion 21 by means such as press fitting.
- An anti-vibration member made of rubber or resin may be interposed between the diffuser portion 52 and the body portion 21. Further, the diffuser portion 52 may be integrally formed with the same member as the body portion 21.
- the refrigerant passage formed in the diffuser portion 52 has a substantially truncated cone shape in which the passage cross-sectional area gradually increases toward the downstream side of the refrigerant flow.
- the kinetic energy of the mixed refrigerant flowing through the diffuser part 52 is converted into pressure energy by such a passage shape.
- the diffuser portion 52 protrudes from the body portion 21 toward the downstream side of the refrigerant flow. Therefore, the ejector side outlet 21c formed in the most downstream portion of the refrigerant flow of the diffuser portion 52 is a plane different from the refrigerant suction port 21b, the throttle side outlet 21d, and the low pressure inlet 21e, as shown in FIGS. Open on top.
- the needle valve 53 is a nozzle part side valve body part that changes the cross-sectional area of the refrigerant passage formed inside the nozzle part 51.
- the needle valve 53 is formed in a needle shape (or a shape combining a conical shape, a cylindrical shape, etc.).
- the central axis of the needle valve 53 is arranged coaxially with the central axis of the nozzle part 51 and the central axis of the refrigerant passage of the diffuser part 52.
- the needle valve 53 changes the cross-sectional area of the refrigerant passage of the nozzle portion 51 by being displaced in the central axis direction. Further, the nozzle part 51 can be closed by bringing the needle valve 53 into contact with the throat part of the nozzle part 51.
- the nozzle part side drive mechanism 54 is a nozzle part side drive part that displaces the needle valve 53 in the central axis direction of the nozzle part 51.
- the nozzle part side drive mechanism 54 is configured by a mechanical mechanism.
- the nozzle part side drive mechanism 54 is a nozzle part side deformable member (specifically, a diaphragm 54b on the nozzle part side) that deforms according to the temperature and pressure of the refrigerant flowing out from the second evaporator 18.
- the nozzle part side temperature sensing part 54a which has is provided. Then, by transmitting the deformation of the diaphragm 54b to the needle valve 53, the needle valve 53 is displaced.
- the diaphragm 54b on the nozzle part side forms an enclosed space 54c in which a temperature-sensitive medium whose pressure changes with temperature change is enclosed in the nozzle part-side temperature sensing part 54a.
- the temperature-sensitive medium is mainly composed of a refrigerant circulating in the ejector refrigeration cycle 10.
- the nozzle part side temperature sensing part 54a is arranged in a space formed in the body part 21 and communicating with the outflow side passage 20c. For this reason, the pressure of the temperature-sensitive medium in the enclosed space 54c changes according to the temperature of the low-pressure refrigerant (that is, the refrigerant that has flowed out of the second evaporator 18) that flows through the outflow side passage 20c. And the diaphragm 54b deform
- the diaphragm 54b is formed of a material that is rich in elasticity and excellent in pressure resistance and airtightness. Therefore, in this embodiment, a circular metal thin plate made of stainless steel (SUS304) is adopted as the diaphragm 54b.
- a part of the diaphragm 54 b is fixed to the body part 21.
- a needle valve 53 is fixed to the case.
- the case forms an enclosed space 54c together with the diaphragm 54b.
- the nozzle side drive mechanism 54 can displace the needle valve 53 according to the degree of superheat of the refrigerant that has flowed out of the second evaporator 18. Therefore, the nozzle unit side drive mechanism 54 of the present embodiment is configured so that the superheat degree of the refrigerant on the outlet side of the second evaporator 18 approaches a predetermined nozzle unit side reference superheat degree (specifically, 1 ° C.). The valve 53 is displaced.
- the nozzle unit side drive mechanism 54 has a coil spring that is an elastic member that applies a load on the side on which the needle valve 53 reduces the passage sectional area of the nozzle unit 51 to the nozzle unit side temperature sensing unit 54a.
- the nozzle part side reference superheat degree can be adjusted by changing the load of the coil spring.
- the nozzle part side drive mechanism 54 defines the central axis in the displacement direction for displacing the needle valve 53 as the nozzle part side central axis CL1
- the nozzle part side central axis CL1 is the central axis of the nozzle part 51
- the needle valve 53 and the central axis of the diffuser portion 52 coincide with the central axis.
- variable throttle mechanism 16 includes a throttle passage 20a, a throttle valve 61, a pressure reducing side drive mechanism 62, and the like.
- the throttle passage 20a is a decompression section that decompresses the other refrigerant branched by the branch section 14 by reducing the passage cross-sectional area.
- the throttle passage 20a is formed in a rotating body shape such as a columnar shape or a truncated cone shape.
- the decompression part of this embodiment is formed integrally with the body part 21.
- An orifice formed as a separate member with respect to the body portion 21 may be adopted as the pressure reducing portion, and may be integrally fixed to the body portion 21 by means such as press fitting.
- the throttle valve 61 is formed in a spherical shape, and is a pressure-reducing valve body portion that changes the cross-sectional area (that is, the throttle opening) of the throttle passage 20a by being displaced in the central axis direction of the throttle passage 20a. Furthermore, the throttle passage 20a can be closed by bringing the throttle valve 61 into contact with the outlet of the throttle passage 20a.
- the pressure reducing side driving mechanism 62 is a pressure reducing side driving unit that displaces the throttle valve 61 in the central axis direction of the throttle passage 20a.
- the decompression side drive mechanism 62 is composed of a mechanical mechanism similar to the nozzle part side drive mechanism 54.
- the decompression-side drive mechanism 62 includes a decompression-side deformation member (specifically, a decompression-side diaphragm 62b) that deforms according to the temperature and pressure of the refrigerant that has flowed out of the first evaporator 17.
- a side temperature sensing part 62a is provided. Then, by transmitting the deformation of the diaphragm 62b to the throttle valve 61, the throttle valve 61 is displaced.
- a part of the decompression side temperature sensing unit 62a is disposed in the suction side passage 20b. Further, in the pressure reducing side drive mechanism 62 of the present embodiment, the displacement of the diaphragm 62 b is transmitted to the throttle valve 61 via the operating rod 63.
- the operating rod 63 is formed in a cylindrical shape extending in the displacement direction of the throttle valve 61.
- the decompression side drive mechanism 62 can displace the throttle valve 61 according to the degree of superheat of the refrigerant flowing out from the first evaporator 17.
- the nozzle side drive mechanism 54 of the present embodiment has the throttle valve 61 so that the degree of superheat of the refrigerant on the outlet side of the first evaporator 17 approaches a predetermined decompression side reference superheat degree (specifically, 0 ° C.). Is displaced. That is, the nozzle unit side drive mechanism 54 of the present embodiment displaces the throttle valve 61 so that the refrigerant on the outlet side of the first evaporator 17 becomes a saturated gas phase refrigerant.
- the decompression-side reference superheat degree can also be adjusted by changing the load of the coil spring, which is an elastic member that applies a load to the throttle valve 61, in the same manner as the nozzle-part-side reference superheat degree.
- the pressure reducing side drive mechanism 62 defines the central axis in the displacement direction for displacing the throttle valve 61 as the pressure reducing side central axis CL2
- the pressure reducing side central axis CL2 is the center axis of the throttle passage 20a and the center of the operating rod 63. Coincides with the axis.
- the nozzle part side central axis CL1 and the pressure reducing side central axis CL2 are in a twisted positional relationship, and one of the nozzle part side central axis CL1 and the pressure reducing side central axis CL2 is the center.
- the drive unit corresponding to one central axis and the other central axis are superposed.
- the nozzle part side drive mechanism 54 when viewed from the direction of the nozzle part side central axis CL1, the nozzle part side drive mechanism 54 occupying the area shown by the point hatching in FIG. Has been. Further, as shown in FIG. 5, when viewed from the direction of the pressure-reducing side central axis CL2, the pressure-reducing side driving mechanism 62 occupying the area indicated by the point hatching in FIG. ing.
- the torsional positional relationship means a positional relationship in which two straight lines are not parallel and do not intersect.
- the angle formed by the nozzle part side central axis CL1 and the pressure reducing side central axis CL2 that is, the angle formed by the vector of the nozzle part side central axis CL1 and the vector of the pressure reducing side central axis CL2 is 90 °. Yes.
- the second evaporator 18 shown in FIG. 1 includes the blown air blown from the blower 18a toward the vehicle interior and the ejector side outlet 21c of the ejector module 20 (that is, the refrigerant outlet of the diffuser portion 52 of the ejector 15). It is a heat-absorbing heat exchanger that cools blown air by exchanging heat with the low-pressure refrigerant that has flowed out of the air and evaporating the low-pressure refrigerant to exert its endothermic action.
- the blower 18a is an electric blower in which the rotation speed (the amount of blown air) is controlled by a control voltage output from the air conditioning control device.
- the refrigerant outlet of the second evaporator 18 is connected to the low pressure inlet 21 e side of the ejector module 20.
- the first evaporator 17 exchanges heat between the blown air that has passed through the second evaporator 18 and the low-pressure refrigerant that has flowed out from the throttle-side outlet 21d of the ejector module 20 (that is, the refrigerant outlet of the variable throttle mechanism 16).
- This is an endothermic heat exchanger that cools blown air by evaporating the refrigerant to exhibit an endothermic effect.
- the refrigerant outlet of the first evaporator 17 is connected to the refrigerant suction port 21 b side of the ejector module 20.
- first evaporator 17 and the second evaporator 18 of the present embodiment are integrally configured.
- each of the first evaporator 17 and the second evaporator 18 includes a plurality of tubes that circulate the refrigerant, and a collection or distribution of refrigerants that are arranged on both ends of the plurality of tubes and circulate through the tubes.
- a so-called tank-and-tube heat exchanger having a pair of collective distribution tanks.
- the first evaporator 17 and the second evaporator 18 are integrated by forming the collective distribution tank 181 of the first evaporator 17 and the second evaporator 18 with the same member.
- the first evaporator 17 and the second evaporator 18 are changed to the blown air flow so that the second evaporator 18 is arranged on the upstream side of the blower air flow with respect to the first evaporator 17.
- they are arranged in series. Accordingly, the blown air flows as shown by the arrows drawn by the two-dot chain line in FIG.
- the collective distribution tank 181 of the first evaporator 17 and the second evaporator 18 is formed of the same member. Therefore, the collective distribution tank 181 includes not only a part that functions as a collective distribution tank for the first evaporator 17 and a part that functions as a collective distribution tank for the second evaporator 18. In addition, an auxiliary tank or the like for communicating each space for collective distribution is also included.
- This type of auxiliary tank also functions as a pipe connected to the collective distribution tank for the first evaporator 17 and the collective distribution tank for the second evaporator 18.
- each refrigerant inlet / outlet 21b-21e of the ejector module 20 and each refrigerant inlet / outlet of the integrated first evaporator 17 and second evaporator 18 is shown in FIGS.
- the connection is made using a dedicated collective pipe 19.
- the refrigerant inlets and outlets of the first evaporator 17 and the second evaporator 18 are formed on one end side of the collective distribution tank 181 of the first evaporator 17 and the second evaporator 18.
- a plurality of metal refrigerant pipes or plate members of the collective pipe 19 are integrated by a joining means such as brazing.
- the collective pipe 19 has first to fourth connection passages 19a to 19d.
- the collective piping 19 may be formed by providing a plurality of refrigerant passages in a massive member such as a metal block or a resin block.
- the first connection passage 19 a is a refrigerant passage that connects the throttle-side outlet 21 d of the ejector module 20 and the refrigerant inlet of the first evaporator 17.
- the second connection passage 19b is a refrigerant passage that connects the refrigerant outlet of the first evaporator 17 and the refrigerant suction port 21b.
- the third connection passage 19 c is a refrigerant passage that connects the ejector side outlet 21 c and the refrigerant inlet of the second evaporator 18.
- the fourth connection passage 19d is a refrigerant passage that connects the refrigerant outlet of the second evaporator 18 and the low-pressure inlet 21e.
- the collective distribution tank of the nozzle portion side central axis CL1 that is, the longitudinal direction of the diffuser portion 52
- the first evaporator 17 and the second evaporator 18 is used.
- the angle formed by the longitudinal direction of 181 is about 90 °.
- the collective piping 19 of the present embodiment is formed in a curved shape.
- the first to fourth connection passages 19a to 19d are formed in a bent shape.
- the collective pipe 19 changes the flow direction of the refrigerant flowing out from the ejector module 20 toward the refrigerant inlet / outlet side of the first evaporator 17 and the second evaporator 18, and also the first evaporator 17 and the second evaporator 17.
- the flow direction of the refrigerant flowing out of the evaporator 18 is turned toward the refrigerant inlet / outlet 21b to 21e side of the ejector module 20.
- a cylindrical space that conforms to the outer shape of the diffuser portion 52 is formed in the third connection passage 19c of the collective pipe 19 of the present embodiment.
- part which protruded from the body part 21 of the diffuser part 52 is accommodated in the 3rd connection channel
- the diffuser part 52 is formed so as to be accommodated in the collective pipe 19 by protruding from the body part 21.
- the collective piping 19 and the ejector module 20 are integrated by bolting or the like.
- a gasket 191 as a sealing member is disposed between the collective pipe 19 and the ejector module 20, and the refrigerant does not leak from the gap between the ejector module 20 and the collective pipe 19.
- the ejector module 20 is integrated with the first evaporator 17 and the second evaporator 18 via the collecting pipe 19. That is, in the present embodiment, the ejector module 20, the collecting pipe 19, the first evaporator 17 and the second evaporator 18 are integrated as an evaporator unit 200.
- the diffuser portion 52 is accommodated in the third connection passage 19 c of the collecting pipe 19. Further, the nozzle portion 51 and the throttle passage 20 a are disposed outside the first evaporator 17 and the second evaporator 18 and outside the collecting pipe 19.
- An air conditioning control device (not shown) is composed of a well-known microcomputer including a CPU, ROM, RAM, etc. and its peripheral circuits, and performs various calculations and processing based on a control program stored in the ROM, and is connected to the output side. The operation of the various controlled devices 11, 12c, 18a and the like is controlled.
- the air conditioning control device includes an inside air temperature sensor that detects the temperature inside the vehicle, an outside air temperature sensor that detects the outside air temperature, a solar radiation sensor that detects the amount of solar radiation in the vehicle interior, and the temperature of the air blown out from the first evaporator 17.
- Sensor groups such as an evaporator temperature sensor for detecting (evaporator temperature) are connected, and detection values of these air conditioning sensor groups are input.
- an operation panel (not shown) is connected to the input side of the air conditioning control device, and operation signals from various operation switches provided on the operation panel are input to the air conditioning control device.
- an air conditioning operation switch that requests air conditioning
- a vehicle interior temperature setting switch that sets the vehicle interior temperature, and the like are provided.
- the air conditioning control device of the present embodiment is configured such that a control unit that controls the operation of various control target devices connected to the output side is integrally configured.
- a configuration (hardware and software) for controlling the operation of the device constitutes a control unit of each control target device.
- operation of the compressor 11 comprises the discharge capability control means.
- the air conditioning control device operates the compressor 11, the cooling fan 12c, the blower 18a, and the like.
- the compressor 11 sucks the refrigerant, compresses it, and discharges it.
- the high-temperature and high-pressure refrigerant discharged from the compressor 11 flows into the radiator 12.
- the refrigerant flowing into the radiator 12 is condensed by exchanging heat with the outside air blown from the cooling fan 12c in the condensing unit 12a.
- the refrigerant cooled by the condensing unit 12a is gas-liquid separated by the receiver unit 12b.
- the liquid phase refrigerant separated by the receiver unit 12b flows into the high-pressure inlet 21a of the ejector module 20.
- the refrigerant that has flowed into the ejector module 20 is branched at the branching section 14.
- One of the branched refrigerant flows into the nozzle portion 51 of the ejector 15 and is isentropically decompressed and injected.
- coolant which flowed out from the 1st evaporator 17 is attracted
- the nozzle part side drive mechanism 54 determines that the superheat degree of the refrigerant flowing through the outflow side passage 20c (in other words, the refrigerant on the outlet side of the second evaporator 18) is the nozzle part side reference superheat degree (specifically, 1
- the needle valve 53 is displaced so as to approach (° C.).
- the injection refrigerant injected from the nozzle part 51 and the suction refrigerant sucked from the refrigerant suction port 21b flow into the diffuser part 52 of the ejector 15.
- the velocity energy of the refrigerant is converted into pressure energy by expanding the refrigerant passage area.
- the pressure of the mixed refrigerant of the injection refrigerant and the suction refrigerant increases.
- the refrigerant whose pressure has been increased in the diffuser section 52 flows out from the ejector side outlet 21c.
- the refrigerant that has flowed out of the ejector side outlet 21c flows into the second evaporator 18 through the third connection passage 19c of the collecting pipe 19.
- the refrigerant flowing into the second evaporator 18 absorbs heat from the blown air blown by the blower 18a and evaporates. Thereby, the blowing air blown by the blower 18a is cooled.
- the refrigerant that has flowed out of the second evaporator 18 is sucked into the compressor 11 through the fourth connection passage 19d of the collecting pipe 19 and the outflow side passage 20c of the ejector module 20, and is compressed again.
- the other refrigerant branched by the branching section 14 flows into the throttle passage 20a of the variable throttle mechanism 16 and is decompressed in an enthalpy manner.
- the decompression side drive mechanism 62 causes the superheat degree of the suction side passage 20b (in other words, the first evaporator 17 outlet side refrigerant) to become the decompression side reference superheat degree (specifically, 0 ° C.).
- the throttle valve 61 is displaced so as to approach.
- the refrigerant decompressed by the variable throttle mechanism 16 flows out from the throttle-side outlet 21d.
- the refrigerant that has flowed out of the throttle-side outlet 21d flows into the first evaporator 17 through the first connection passage 19a of the collecting pipe 19.
- the refrigerant flowing into the first evaporator 17 absorbs heat from the blown air after passing through the second evaporator 18 and evaporates. Thereby, the blown air after passing through the second evaporator 18 is further cooled.
- the refrigerant flowing out from the first evaporator 17 is sucked from the refrigerant suction port 21b through the second connection passage 19b of the collecting pipe 19.
- the blown air blown into the vehicle compartment can be cooled by the first evaporator 17 and the second evaporator 18.
- the refrigerant on the downstream side of the second evaporator 18, that is, the refrigerant whose pressure has been increased by the diffuser portion 52 of the ejector 15 can be sucked into the compressor 11. Therefore, in the ejector-type refrigeration cycle 10, the power consumption of the compressor 11 is reduced and the coefficient of performance (COP) of the cycle is reduced as compared with a normal refrigeration cycle apparatus in which the refrigerant evaporation pressure in the evaporator is equal to the suction refrigerant pressure. Can be improved.
- COP coefficient of performance
- the refrigerant evaporation pressure in the second evaporator 18 is set to the refrigerant pressure increased by the diffuser unit 52, and the refrigerant evaporation pressure in the first evaporator 17 is set by the nozzle unit 51.
- a low refrigerant pressure immediately after depressurization can be achieved. Therefore, the temperature difference between the refrigerant evaporation temperature and the blown air in each evaporator can be secured and the blown air can be efficiently cooled.
- the ejector 15 having the variable nozzle portion configured by the nozzle portion 51, the needle valve 53, the nozzle portion side drive mechanism 54, and the like, the throttle passage 20a, the throttle valve 61, the pressure reducing side.
- a variable diaphragm mechanism 16 constituted by a drive mechanism 62 and the like is provided.
- the flow rate of the refrigerant flowing into the nozzle portion 51 and the variable throttle are changed by changing the passage sectional area of the nozzle portion 51 of the ejector 15 and the throttle opening of the variable throttle mechanism 16 according to the load fluctuation of the ejector refrigeration cycle 10.
- the flow rate of the refrigerant flowing into the mechanism 16 can be adjusted appropriately.
- the ejector refrigeration cycle 10 can exhibit a high COP regardless of load fluctuations.
- the ejector refrigeration cycle 10 as a whole is integrated. It is possible to aim for downsizing and improvement of productivity.
- the ejector 15 and the variable throttle mechanism 16 having the variable nozzle part there are drive devices (in this embodiment, the nozzle part side drive mechanism 54 and the pressure reduction side drive mechanism 62) for changing the passage sectional area or the throttle opening. Necessary. Such a drive device is relatively large in size as compared with the needle valve 53, the throttle valve 61, and the like. Furthermore, the ejector 15 is formed in an elongated cylindrical shape extending in the direction of the nozzle portion side central axis CL1.
- the ejector module 20 of the present embodiment at least a part of the diffuser portion 52 protrudes from the body portion 21 and is accommodated inside the collective piping 19. Therefore, it is possible to reduce the size of the ejector refrigeration cycle 10 as a whole. That is, according to the ejector module 20 of the present embodiment, even if the passage cross-sectional area of the nozzle portion 51 and the passage cross-sectional area of the throttle passage 20a can be changed, the applied ejector refrigeration cycle 10 can be increased in size. Is not invited.
- the high pressure inlet 21a and the low pressure outlet 21f of the body portion 21 are opened in the same direction. Further, the ejector side outlet 21c, the low pressure inlet 21e, the refrigerant suction port 21b, and the throttle side outlet 21d open in the same direction.
- the ejector side outlet 21c, the low pressure inlet 21e, the refrigerant suction port 21b, and the throttle side outlet 21d connected to the integrated first evaporator 17 and second evaporator 18 open in the same direction. Therefore, it is easy to connect the ejector module 20 to the first evaporator 17 and the second evaporator 18.
- the ejector module 20 of the present embodiment functions as a joint portion (connecting portion) of the evaporator unit 200 and can improve the assemblability of the ejector refrigeration cycle 10. Thereby, the productivity as the ejector-type refrigeration cycle 10 as a whole can be further improved.
- the ejector module 20 of the present embodiment when integrating the variable throttle mechanism 16 and the ejector 15, when viewed from one central axis direction of the nozzle part side central axis CL1 and the pressure reducing side central axis CL2, It arrange
- the decompression side drive mechanism 62 and the nozzle part side drive mechanism 54 having relatively large physique can be arranged while being shifted in the direction of any of the central axes CL1 and CL2. Therefore, the main body portion (that is, the portion excluding the decompression side driving mechanism 62) of the variable throttle mechanism 16 and the main body portion of the ejector 15 (that is, the portion excluding the nozzle portion side driving mechanism 54) can be arranged close to each other.
- variable throttle mechanism 16 does not interfere with the pressure reducing side driving mechanism 62 and the nozzle portion side driving mechanism 54. And the main body of the ejector 15 can be effectively brought close to each other. Therefore, the enlargement of the applied ejector type refrigeration cycle 10 can be further suppressed.
- the outflow side passage 20c is formed in the body portion 21, and a part of the nozzle portion side temperature sensing portion 54a of the nozzle portion side drive mechanism 54 communicates with the outflow side passage 20c. It is arranged in the space to be.
- the nozzle part side temperature sensing part 54a and the outflow side passage 20c can be brought close to each other. Therefore, the temperature and pressure of the refrigerant flowing through the outflow side passage 20c can be accurately transmitted to the nozzle portion side temperature sensing portion 54a without increasing the size of the ejector module 20.
- the suction side passage 20b is formed in the body portion 21, and a part of the pressure reduction side temperature sensing portion 62a of the pressure reduction side drive mechanism 62 is disposed in the suction side passage 20b. ing.
- the decompression side temperature sensing part 62a and the suction side passage 20b can be brought close to each other. Therefore, the temperature and pressure of the refrigerant flowing through the suction side passage 20b can be accurately transmitted to the decompression side temperature sensing unit 62a without causing an increase in the size of the ejector module 20.
- the decompression side drive mechanism 62 displaces the throttle valve 61 so that the degree of superheat of the first evaporator 17 outlet side refrigerant approaches 0 ° C. According to this, it can suppress that the dryness of the refrigerant
- the evaporator unit 200 of the present embodiment at least a part of the diffuser portion 52 of the ejector module 20 is accommodated in the third connection passage 19c of the collective pipe 19, so that the evaporator unit 200 as a whole is small. Can be achieved.
- the nozzle portion 51 and the throttle passage 20a are arranged outside the first evaporator 17 and the second evaporator 18 and outside the collecting pipe 19. Therefore, the vibration when the pressure of the refrigerant is reduced in the nozzle portion 51 and the throttle passage 20a is not easily propagated to the first evaporator 17 and the second evaporator 18.
- the diffuser portion 52 and the body portion 21 are formed as separate members. Therefore, in contrast to the case where the diffuser portion 52 and the body portion 21 are formed of the same member, the vibration when the refrigerant is depressurized in the nozzle portion 51 and the throttle passage 20a is further increased. 2 It becomes difficult to propagate to the evaporator 18.
- the collective piping 19 is formed in a curved shape.
- the degree of freedom in the arrangement of the ejector module 20 with respect to the first evaporator 17 and the second evaporator 18 is set. Can be improved.
- the nozzle portion 51 of the ejector 15 of the present embodiment is a fixed nozzle portion whose passage sectional area does not change.
- 9 and 10 correspond to FIGS. 2 and 5 described in the first embodiment, respectively.
- 9 and 10 the same or equivalent parts as those in the first embodiment are denoted by the same reference numerals. The same applies to the following drawings.
- the positional relationship between the ejector 15 and the variable aperture mechanism 16 is substantially the same as that of the first embodiment. That is, the central axis CL of the nozzle portion 51 and the pressure-reducing side central axis CL2 are in a torsional positional relationship, and when viewed from the pressure-reducing side central axis CL2, the pressure-reducing driving The mechanism 62 and the central axis CL of the nozzle portion 51 are arranged so as to overlap.
- variable throttle mechanism 16 is connected to the other refrigerant outlet side of the branch portion 14, by adjusting the throttle opening of the variable throttle mechanism 16, the flow rate of the refrigerant flowing into the throttle passage 20a, And both the refrigerant
- the ejector module 20 and the evaporator unit 200 of the present embodiment at least a part of the diffuser portion 52 can be accommodated inside the collective piping 19, and the ejector refrigeration is the same as in the first embodiment.
- the overall size of the cycle 10 can be reduced.
- the needle valve 53 and the nozzle part side drive mechanism 54 are abolished. Therefore, by simply adjusting the passage sectional area of the throat part of the nozzle part 51 in advance, It is difficult to appropriately adjust the degree of superheat of the refrigerant on the outlet side of the first evaporator 17.
- the gas-phase refrigerant separated by separating the gas-liquid of the low-pressure refrigerant between the low-pressure outlet 21f of the ejector module 20 and the suction port of the compressor 11 is used as the compressor. You may arrange
- FIG. 11 is a partially exploded perspective view seen from the downstream side in the flow direction of the blown air
- FIG. 12 is a side view seen from the upstream side in the flow direction of the blown air.
- the collective piping 19 is abolished, and the portion of the diffuser portion 52 that protrudes from the body portion 21 is accommodated in the components of the first evaporator 17 and the second evaporator 18.
- Other configurations and operations of the ejector module 20 and the ejector refrigeration cycle 10 are the same as those in the first embodiment. Therefore, the same effects as those of the first embodiment can be obtained also in the ejector refrigeration cycle 10 of the present embodiment.
- the diffuser portion 52 is accommodated inside the collective pipe 19 having an appropriate shape according to the relative positional relationship of the ejector module 20 with respect to the first evaporator 17 and the second evaporator 18.
- the overall size of the ejector refrigeration cycle 10 can be reduced.
- the ejector module 20 according to the present disclosure is applied to the ejector refrigeration cycle 10 mounted on a vehicle, but the application of the ejector module 20 is not limited thereto.
- the present invention may be applied to an ejector-type refrigeration cycle used in a stationary air conditioner, a cold / hot storage, or the like.
- the ejector module 20 including the variable throttle mechanism 16 and the ejector 15 having the variable nozzle unit has been described.
- the variable throttle mechanism 16 and the nozzle unit according to the load fluctuation of the ejector refrigeration cycle 10.
- variable throttle mechanism 16 may be employed, and the ejector 15 having the fixed nozzle portion may be employed.
- the throttle valve 61 and the pressure reducing side drive mechanism 62 may be eliminated from the first embodiment. That is, instead of the variable aperture mechanism 16, a fixed aperture may be employed, and an ejector 15 having a variable nozzle portion may be employed.
- the nozzle part side driving mechanism 54 and the pressure reducing side driving mechanism 62 are configured by mechanical mechanisms.
- the nozzle part side driving mechanism 54 and the pressure reducing side driving mechanism are described.
- an electric drive mechanism having an actuator constituted by a stepping motor or the like may be employed.
- the present invention is not limited to this.
- the miniaturization effect of accommodating at least a part of the diffuser part 52 in the collecting pipe 19 or the second evaporator 18 is obtained even if the nozzle part side central axis CL1 and the pressure reducing side central axis CL2 are arranged in parallel. Can do.
- the example in which the nozzle portion side temperature sensing portion 54a is disposed in the space communicating with the outflow side passage 20c has been described, but at least a part of the nozzle portion side temperature sensing portion 54a is provided in the outflow side passage 20c. You may arrange. Furthermore, although the example which has arrange
- Each component device constituting the ejector refrigeration cycle 10 is not limited to that disclosed in the above-described embodiment.
- an electric compressor is employed as the compressor 11
- the compressor 11 is driven by a rotational driving force transmitted from a vehicle traveling engine via a pulley, a belt, or the like.
- An engine driven compressor may be employed.
- the variable capacity compressor that can adjust the refrigerant discharge capacity by changing the discharge capacity, or the refrigerant discharge capacity can be adjusted by changing the operating rate of the compressor by intermittently connecting the electromagnetic clutch A fixed-capacity compressor can be employed.
- the radiator 12 has a supercooling unit that supercools the liquid-phase refrigerant flowing out from the receiver unit 12b.
- a so-called subcool condenser may be employed.
- first evaporator 17 and the second evaporator 18 are configured integrally.
- first evaporator 17 and the second evaporator 18 may be configured separately.
- different refrigerant target fluids may be cooled in different temperature zones.
- R134a is adopted as the refrigerant
- the refrigerant is not limited to this.
- R1234yf, R600a, R410A, R404A, R32, R407C, etc. may be adopted.
- a supercritical refrigeration cycle in which carbon dioxide is employed as the refrigerant and the high-pressure side refrigerant pressure is equal to or higher than the critical pressure of the refrigerant may be configured.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Fluid Mechanics (AREA)
- Thermal Sciences (AREA)
- Jet Pumps And Other Pumps (AREA)
Abstract
エジェクタモジュールは、ノズル部(51)と、減圧部(20a)と、ボデー部(21)と、昇圧部(52)と、を備える。ボデー部は、ノズル部から噴射された噴射冷媒の吸引作用によって外部から冷媒を吸引する冷媒吸引口(21b)を有する。減圧部から冷媒を流出させる絞り側出口(21d)には、第1蒸発器(17)の冷媒入口側が接続される。冷媒吸引口には、第1蒸発器の冷媒出口側が接続される。昇圧部から冷媒を流出させるエジェクタ側出口(21c)には、第2蒸発器(18)の冷媒入口側が接続される。ノズル部および減圧部の少なくとも一方は、通路断面積を変更可能に構成されている。昇圧部の少なくとも一部は、第1蒸発器および第2蒸発器の少なくとも一方の内部、あるいは第1蒸発器および第2蒸発器の少なくとも一方に接続された配管(19)の内部に収容可能に、ボデー部から突出して配置されている。
Description
本出願は、2017年3月2日に出願された日本特許出願番号2017-039255号と、2017年9月27日に出願された日本特許出願番号2017-185919号に基づくもので、ここにその記載内容を援用する。
本開示は、エジェクタ式冷凍サイクルに適用されるエジェクタモジュール、および蒸発器ユニットに関する。
従来、冷媒減圧装置としてエジェクタを備える冷凍サイクル装置であるエジェクタ式冷凍サイクルが知られている。この種のエジェクタ式冷凍サイクルでは、エジェクタの昇圧作用によって、圧縮機へ吸入される冷媒の圧力を、蒸発器における冷媒蒸発圧力よりも上昇させることができる。これにより、エジェクタ式冷凍サイクルでは、圧縮機の消費動力を低減させてサイクルの成績係数(COP)を向上させることができる。
さらに、特許文献1には、空調装置に適用されたエジェクタ式冷凍サイクルであって、蒸発器ユニットを備えるものが開示されている。特許文献1の蒸発器ユニットは、エジェクタ式冷凍サイクルの構成機器のうち、分岐部、エジェクタ、固定絞り、第1蒸発器、第2蒸発器等を一体化(換言すると、ユニット化あるいはモジュール化)させたものである。
より詳細には、分岐部は、放熱器から流出した高圧冷媒の流れを分岐して、エジェクタのノズル部側および固定絞り側へ流出させる。第2蒸発器は、エジェクタのディフューザ部から流出した冷媒を空調対象空間へ送風される送風空気と熱交換させて蒸発させる熱交換器であり、蒸発させた冷媒を圧縮機の吸入口側へ流出させる。第1蒸発器は、固定絞りにて減圧された冷媒を第2蒸発器通過後の送風空気と熱交換させて蒸発させる熱交換器であり、蒸発させた冷媒をエジェクタの冷媒吸引口側へ流出させる。
特許文献1の蒸発器ユニットでは、上記のようなサイクル構成機器の一部を一体化させることによって、適用されたエジェクタ式冷凍サイクル全体としての小型化、および生産性の向上を図っている。
特許文献1の蒸発器ユニットでは、固定絞りを採用し、さらに、エジェクタのノズル部として冷媒通路の通路断面積を変更することのできない固定ノズル部を採用している。このため、適用されたエジェクタ式冷凍サイクルに負荷変動が生じて、ノズル部へ流入する冷媒流量が変化すると、エジェクタのエネルギ変換効率が低下してしまうことがある。
従って、エジェクタ式冷凍サイクルに負荷変動が生じると、エジェクタが充分な昇圧作用を発揮できなくなってしまうことや、エジェクタの吸引作用が低下して蒸発器に適切な流量の冷媒を供給できなくなってしまうことがある。その結果、特許文献1の蒸発器ユニットでは、エジェクタ式冷凍サイクルに負荷変動が生じると、上述したCOP向上効果を充分に得ることができなくなってしまうおそれがある。
これに対して、特許文献1には、固定絞りに代えて通路断面積(すなわち、絞り開度)を変更可能に構成された可変絞り機構を採用してもよいこと、並びに、エジェクタのノズル部として冷媒通路の通路断面積を変更可能に構成された可変ノズル部を採用してもよいことが記載されている。
これによれば、エジェクタ式冷凍サイクルの負荷変動に応じて可変絞り機構の絞り開度あるいはノズル部の通路断面積を調整して、可変絞り機構へ流入する冷媒流量およびノズル部へ流入する冷媒流量を適切に調整することができる。従って、負荷変動によらず、エジェクタに充分な昇圧作用を発揮させるとともに、双方の蒸発器にて充分な冷凍能力を発揮させて、エジェクタ式冷凍サイクルに高いCOPを発揮させることができる。
しかしながら、固定絞りに代えて可変絞り機構を採用すると、絞り開度を変化させるための駆動装置が必要となる。このことは、エジェクタのノズル部として可変ノズル部を採用した場合も同様である。この種の駆動装置は、比較的体格が大きい。さらに、一般的なエジェクタは、ノズル部の軸方向に延びる長細円筒状に形成されている。
このため、可変絞り機構とエジェクタとを互いに干渉しないように配置した状態で、可変絞り機構およびエジェクタを含む構成機器を一体化させたユニット(あるいは、モジュール)は、大型化しやすい。その結果、構成機器を一体化したことによるエジェクタ式冷凍サイクル全体としての小型化効果が損なわれてしまうおそれがある。
また、特許文献1の蒸発器ユニットのように、エジェクタ、固定絞り、第1蒸発器、第2蒸発器等を一体化させると、エジェクタのノズル部や固定絞りにて冷媒を減圧させる際の振動が第1蒸発器および第2蒸発器に伝播して、冷媒通過音が大きくなりやすいおそれがある。さらに、蒸発器ユニットは空調対象空間である室内側に配置されるので、このような冷媒通過音はユーザにとって耳障りとなりやすいおそれがある。
本開示は、上記点に鑑み、適用されたエジェクタ式冷凍サイクルの大型化を招くことなく、通路断面積を変更可能に構成されたエジェクタモジュールを提供することを第1の目的とする。
また、本開示は、適用されたエジェクタ式冷凍サイクルの成績係数の低下を招くことなく、冷媒通過音を抑制させた蒸発器ユニットを提供することを第2の目的とする。
本開示の第1態様によるエジェクタモジュールは、圧縮機、放熱器、第1蒸発器、および第2蒸発器を有するエジェクタ式冷凍サイクルに適用される。エジェクタモジュールは、ノズル部と、減圧部と、ボデー部と、昇圧部と、を備える。ノズル部は、放熱器から流出した冷媒のうち一部の冷媒を減圧させて噴射する。減圧部は、放熱器から流出した冷媒のうち別の一部の冷媒を減圧させる。ボデー部は、ノズル部から噴射された噴射冷媒の吸引作用によって外部から冷媒を吸引する冷媒吸引口を有する。昇圧部は、噴射冷媒と冷媒吸引口から吸引された吸引冷媒との混合冷媒を昇圧させる。減圧部から冷媒を流出させる絞り側出口には、第1蒸発器の冷媒入口側が接続される。冷媒吸引口には、第1蒸発器の冷媒出口側が接続される。昇圧部から冷媒を流出させるエジェクタ側出口には、第2蒸発器の冷媒入口側が接続される。ノズル部および減圧部の少なくとも一方は、通路断面積を変更可能に構成されている。昇圧部の少なくとも一部は、第1蒸発器および第2蒸発器の少なくとも一方の内部、あるいは第1蒸発器および第2蒸発器の少なくとも一方に接続された配管の内部に収容可能に、ボデー部から突出して配置されている。
これによれば、ノズル部の通路断面積および減圧部の通路断面積の少なくとも一方を変化させることができる。そして、エジェクタ式冷凍サイクルの負荷変動に応じて、ノズル部へ流入する冷媒流量、および減圧部へ流入する冷媒流量を適切に調整することができる。その結果、負荷変動によらずエジェクタ式冷凍サイクルに高い成績係数を発揮させることができる。
さらに、ノズル部、ボデー部、昇圧部を備えているので、エジェクタを構成することができる。そして、昇圧部を第1蒸発器および第2蒸発器の少なくとも一方の内部、あるいは第1蒸発器および第2蒸発器の少なくとも一方に接続された配管の内部に収容することができる。従って、適用されたエジェクタ式冷凍サイクル全体としての大型化を抑制することができる。
すなわち、第1態様によれば、適用されたエジェクタ式冷凍サイクルの大型化を招くことなく、通路断面積を変更可能に構成されたエジェクタモジュールを提供することができる。
本開示の第2態様による蒸発器ユニットは、エジェクタ式冷凍サイクルに適用される。蒸発器ユニットは、冷媒の流れを分岐する分岐部と、エジェクタと、減圧部と、第1蒸発器と、第2蒸発器と、を備える。エジェクタは、分岐部にて分岐された一方の冷媒を減圧させるノズル部、ノズル部から噴射された噴射冷媒の吸引作用によって外部から冷媒を吸引する冷媒吸引口が形成されたボデー部、および噴射冷媒と冷媒吸引口から吸引された吸引冷媒との混合冷媒を昇圧させる昇圧部を有する。減圧部は、分岐部にて分岐された他方の冷媒を減圧させる。第1蒸発器は、減圧部から流出した冷媒を蒸発させて冷媒吸引口側へ流出させる。第2蒸発器は、昇圧部から流出した冷媒を蒸発させる。ノズル部および減圧部の少なくとも一方は、通路断面積を変更可能に構成されている。分岐部および減圧部は、ボデー部に一体的に形成されている。昇圧部の少なくとも一部は、第1蒸発器および第2蒸発器の少なくとも一方の内部、あるいは第1蒸発器および第2蒸発器の少なくとも一方に接続された配管の内部に収容されている。ノズル部および減圧部は、第1蒸発器、第2蒸発器、および配管の外部に配置されている。
これによれば、ノズル部の通路断面積および減圧部の通路断面積の少なくとも一方を変化させることができる。そして、エジェクタ式冷凍サイクルの負荷変動に応じて、分岐部からノズル部へ流入する冷媒流量、および分岐部から減圧部へ流入する冷媒流量を適切に調整することができる。その結果、負荷変動によらずエジェクタ式冷凍サイクルに高いCOPを発揮させることができる。
さらに、昇圧部の少なくとも一部が、第1蒸発器および第2蒸発器の少なくとも一方の内部、あるいは第1蒸発器および第2蒸発器の少なくとも一方に接続された配管の内部に収容されている。従って、蒸発器ユニット全体としての小型化を図ることができる。延いては、エジェクタ式冷凍サイクル全体としての小型化を図ることができる。
これに加えて、エジェクタのノズル部および減圧部が、第1蒸発器、第2蒸発器、および配管の外部に配置されている。従って、ノズル部および減圧部にて、冷媒を減圧させる際の振動が、第1蒸発器および第2蒸発器に伝播しにくくなる。その結果、ユーザにとって耳障りとなる冷媒通過音が大きくなってしまうことを抑制することができる。
すなわち、第2態様によれば、適用されたエジェクタ式冷凍サイクルのCOPの低下を招くことなく、冷媒通過音を抑制させた蒸発器ユニットを提供することができる。
以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示してなくとも実施形態同士を部分的に組み合せることも可能である。
(第1実施形態)
図1~図8を用いて、本開示の第1実施形態を説明する。本実施形態のエジェクタモジュール20は、図1の全体構成図に示すように、冷媒減圧装置としてエジェクタを備える蒸気圧縮式の冷凍サイクル装置であるエジェクタ式冷凍サイクル10に適用されている。このエジェクタ式冷凍サイクル10は、車両用空調装置に適用されており、冷却対象空間である車室内へ送風される送風空気を冷却する機能を果たす。従って、エジェクタ式冷凍サイクル10の冷却対象流体は、送風空気である。
図1~図8を用いて、本開示の第1実施形態を説明する。本実施形態のエジェクタモジュール20は、図1の全体構成図に示すように、冷媒減圧装置としてエジェクタを備える蒸気圧縮式の冷凍サイクル装置であるエジェクタ式冷凍サイクル10に適用されている。このエジェクタ式冷凍サイクル10は、車両用空調装置に適用されており、冷却対象空間である車室内へ送風される送風空気を冷却する機能を果たす。従って、エジェクタ式冷凍サイクル10の冷却対象流体は、送風空気である。
エジェクタ式冷凍サイクル10では、冷媒としてHFC系冷媒(具体的には、R134a)を採用しており、サイクルの高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成している。さらに、冷媒には圧縮機11を潤滑するための冷凍機油が混入されている。冷凍機油の一部は冷媒とともにサイクルを循環している。
エジェクタ式冷凍サイクル10の構成機器のうち、圧縮機11は、冷媒を吸入して高圧冷媒となるまで圧縮して吐出するものである。より具体的には、本実施形態の圧縮機11は、1つのハウジング内に固定容量型の圧縮機構、および圧縮機構を駆動する電動モータを収容して構成された電動圧縮機である。
この圧縮機構としては、スクロール型圧縮機構、ベーン型圧縮機構等の各種圧縮機構を採用することができる。また、電動モータは、図示しない空調制御装置から出力される制御信号によって、その作動(回転数)が制御されるもので、交流モータ、直流モータのいずれの形式のものを採用してもよい。
圧縮機11の吐出口には、放熱器12の凝縮部12aの冷媒入口側が接続されている。放熱器12は、圧縮機11から吐出された高圧側冷媒と冷却ファン12cから送風された車室外空気(外気)を熱交換させることによって、高圧冷媒を放熱させて冷却する放熱用熱交換器である。
より具体的には、放熱器12は、凝縮部12aおよびレシーバ部12bを有する、いわゆるレシーバ一体型の凝縮器として構成されている。凝縮部12aは、圧縮機11から吐出された高圧気相冷媒と冷却ファン12cから送風された外気とを熱交換させて、高圧気相冷媒を放熱させて凝縮させる凝縮用の熱交換部である。レシーバ部12bは、凝縮部12aから流出した冷媒の気液を分離して余剰液相冷媒を蓄える冷媒容器である。
冷却ファン12cは、空調制御装置から出力される制御電圧によって回転数(送風空気量)が制御される電動送風機である。
放熱器12のレシーバ部12bの冷媒出口には、エジェクタモジュール20のボデー部21に設けられた高圧入口21a側が接続されている。エジェクタモジュール20は、図1の破線で囲まれたサイクル構成機器を一体化(換言すると、モジュール化)させたものである。より具体的には、エジェクタモジュール20は、分岐部14、エジェクタ15、可変絞り機構16等を一体化させたものである。
分岐部14は、放熱器12から流出した冷媒の流れを分岐し、分岐された一方の冷媒をエジェクタ15のノズル部51側へ流出させ、分岐された他方の冷媒を可変絞り機構16の入口側へ流出させる機能を果たす。分岐部14は、エジェクタモジュール20のボデー部21の内部に形成された複数の冷媒通路を接続することによって形成されている。
エジェクタ15は、分岐部14にて分岐された一方の冷媒を減圧させて噴射するノズル部51を有し、冷媒減圧装置としての機能を果たす。さらに、エジェクタ15は、ノズル部51から噴射された噴射冷媒の吸引作用によって、外部から冷媒を吸引して循環させる冷媒循環装置としての機能を果たす。より具体的には、エジェクタ15は、後述する第1蒸発器17から流出した冷媒を吸引する。
これに加えて、エジェクタ15は、ノズル部51から噴射された噴射冷媒とボデー部21に形成された冷媒吸引口21bから吸引された吸引冷媒との混合冷媒の運動エネルギを圧力エネルギに変換して、混合冷媒を昇圧させるエネルギ変換装置としての機能を果たす。エジェクタ15は、昇圧させた冷媒を後述する第2蒸発器18の冷媒入口側へ流出させる。また、ノズル部51は、通路断面積を変更可能に構成された可変ノズル部である。
可変絞り機構16は、分岐部14にて分岐された他方の冷媒を減圧させる絞り通路20aを有している。可変絞り機構16は、絞り通路20aの通路断面積(すなわち、絞り開度)を変更可能に構成されている。可変絞り機構16は、減圧させた冷媒を第1蒸発器17の冷媒入口側へ流出させる。
次に、図1に加えて、図2~図5を用いて、エジェクタモジュール20の詳細構成を説明する。図2~図4における上下の各矢印は、エジェクタ式冷凍サイクル10を車両用空調装置に搭載した状態における上下の各方向を示している。このことは、以下の図面でも同様である。図2は、図4、図5のII-II断面図であり、図3は、図4、図5のIII-III断面図である。図4は、図2の矢印IV方向の矢視図である。図5は、図2の矢印V方向の矢視図である。
なお、図示の簡略化および説明の明確化のため、図1の全体構成図に示したエジェクタ15における冷媒流れ方向と、図2、図5等に示されるエジェクタ15における冷媒流れ方向は、異なる方向となっている。
ボデー部21は、金属製(本実施形態では、アルミニウム製)の複数の構成部材を組み合わせることによって形成されている。ボデー部21は、エジェクタモジュール20の外殻を形成するとともに、内部にエジェクタ15、可変絞り機構16等の構成部材を収容するハウジングとしての機能を果たす。換言すると、分岐部14および可変絞り機構16は、エジェクタ15のボデー部21に一体的に形成されている。ボデー部21は、樹脂にて形成されていてもよい。
ボデー部21の内部には、後述する各種の冷媒通路20a~20cが形成されている。ボデー部21には、高圧入口21a、冷媒吸引口21b、絞り側出口21d、低圧入口21e、および低圧出口21fといった複数の冷媒出入口が設けられている。さらに、ボデー部21に固定された後述するエジェクタ15のディフューザ部52の冷媒流れ最下流部には、エジェクタ側出口21cが設けられている。
高圧入口21aは、図3に示すように、放熱器12のレシーバ部12bの冷媒出口から流出した冷媒をエジェクタモジュール20の内部へ流入させる冷媒入口である。従って、高圧入口21aは、分岐部14の冷媒入口となる。
冷媒吸引口21bは、図3に示すように、第1蒸発器17から流出した冷媒を吸引する冷媒入口である。冷媒吸引口21bから吸引された吸引冷媒は、ノズル部51から噴射された噴射冷媒と合流する。従って、冷媒吸引口21bから吸引された吸引冷媒を流通させて、噴射冷媒と合流させる冷媒通路は、吸引側通路20bである。
エジェクタ側出口21cは、ディフューザ部52にて昇圧された冷媒を第2蒸発器18の入口側へ流出させる冷媒出口である。絞り側出口21dは、図3に示すように、可変絞り機構16にて減圧された冷媒を、第1蒸発器17の入口側へ流出させる冷媒出口である。
低圧入口21eは、図2に示すように、第2蒸発器18から流出した冷媒を流入させる冷媒入口である。低圧出口21fは、図2に示すように、低圧入口21eから流入した冷媒を、圧縮機11の吸入口側へ流出させる冷媒出口である。従って、低圧入口21eから低圧出口21fへ至る冷媒通路は、流出側通路20cである。
さらに、高圧入口21aと低圧出口21fは、図2~図4に示すように、同一平面上で同一方向に開口している。エジェクタ側出口21c、低圧入口21e、冷媒吸引口21b、および絞り側出口21dは、同一方向に開口している。低圧入口21e、冷媒吸引口21b、および絞り側出口21dは、同一平面上で開口している。ここで、冷媒出入口が同一方向に開口しているとは、冷媒の流入出方向が一致していることを意味している。
エジェクタ15は、図2、図3に示すように、ノズル部51、ボデー部21に形成された冷媒吸引口21bおよび吸引側通路20b、ディフューザ部52、ニードル弁53、ノズル部側駆動機構54等によって構成されている。
ノズル部51は、内部に形成された冷媒通路にて冷媒を等エントロピ的に減圧させて噴射するものである。ノズル部51は、図2に示すように、冷媒の流れ方向に向かって先細る略円筒状の金属(本実施形態では、ステンレス合金または真鍮)で形成されている。ノズル部51は、圧入等の手段によりボデー部21に固定されている。
ノズル部51の内部に形成された冷媒通路には、冷媒通路面積が最も縮小した喉部が形成され、さらに、この喉部から冷媒を噴射する冷媒噴射口へ向かって冷媒通路面積が徐々に拡大する末広部が設けられている。つまり、ノズル部51は、ラバールノズル部として構成されている。
さらに、本実施形態では、ノズル部51として、エジェクタ式冷凍サイクル10の通常運転時に、冷媒噴射口から噴射される噴射冷媒の流速が音速以上となるように設定されたものが採用されている。もちろん、ノズル部51を先細ノズル部で構成してもよい。
ノズル部51の筒状側面には、分岐部14にて分岐された一方の冷媒を冷媒通路へ流入させる入口穴が形成されている。また、前述した吸引側通路20bは、吸引冷媒をノズル部51の外周側の空間に導いて、冷媒吸引口21bとノズル部51の冷媒噴射口とを連通させるように形成されている。
ディフューザ部52は、混合冷媒を昇圧させる昇圧部である。ディフューザ部52は、円筒状の金属(本実施形態では、アルミニウム)で形成されている。本実施形態のディフューザ部52は、圧入等の手段によりボデー部21に固定されている。ディフューザ部52とボデー部21との間に、ゴムや樹脂にて形成された防振部材を介在させてもよい。また、ディフューザ部52をボデー部21と同一の部材で一体的に形成してもよい。
ディフューザ部52の内部に形成された冷媒通路は、通路断面積が冷媒流れ下流側に向かって徐々に拡大する略円錐台形状に形成されている。ディフューザ部52では、このような通路形状によって、ディフューザ部52を流通する混合冷媒の運動エネルギが圧力エネルギに変換される。
また、ディフューザ部52は、ボデー部21から冷媒流れ下流側に向かって突出している。このため、ディフューザ部52の冷媒流れ最下流部に形成されるエジェクタ側出口21cは、図2、図3に示すように、冷媒吸引口21b、絞り側出口21d、および低圧入口21eとは異なる平面上で開口している。
ニードル弁53は、ノズル部51の内部に形成された冷媒通路の通路断面積を変化させるノズル部側弁体部である。
ニードル弁53は、針状(あるいは、円錐形状、円柱形状等を組み合わせた形状)に形成されている。ニードル弁53の中心軸は、ノズル部51の中心軸、ディフューザ部52の冷媒通路の中心軸と同軸上に配置されている。ニードル弁53は、中心軸方向に変位することによって、ノズル部51の冷媒通路の通路断面積を変化させる。さらに、ニードル弁53を、ノズル部51の喉部に当接させることによって、ノズル部51を閉塞させることもできる。
ノズル部側駆動機構54は、ニードル弁53をノズル部51の中心軸方向に変位させるノズル部側駆動部である。ノズル部側駆動機構54は、機械的機構で構成されている。
より具体的には、ノズル部側駆動機構54は、第2蒸発器18から流出した冷媒の温度および圧力に応じて変形するノズル部側変形部材(具体的には、ノズル部側のダイヤフラム54b)を有するノズル部側感温部54aを備えている。そして、このダイヤフラム54bの変形をニードル弁53に伝達することによって、ニードル弁53を変位させる。
ノズル部側のダイヤフラム54bは、ノズル部側感温部54aにおいて温度変化に伴って圧力変化する感温媒体が封入される封入空間54cを形成している。本実施形態では、感温媒体として、エジェクタ式冷凍サイクル10を循環する冷媒を主成分とするものを採用している。
ノズル部側感温部54aは、ボデー部21に形成されて流出側通路20cに連通する空間に配置されている。このため、封入空間54c内の感温媒体の圧力は、流出側通路20cを流通する低圧冷媒(すなわち、第2蒸発器18から流出した冷媒)の温度に応じて変化する。そして、ダイヤフラム54bは、流出側通路20cを流通する低圧冷媒の圧力と封入空間54c内の感温媒体の圧力との圧力差に応じて変形する。
従って、ダイヤフラム54bは弾性に富み、かつ耐圧性および気密性に優れる材質で形成されていることが望ましい。そこで、本実施形態では、ダイヤフラム54bとして、ステンレス(SUS304)製の円形状の金属薄板を採用している。
さらに、本実施形態のノズル部側駆動機構54では、ダイヤフラム54bの一部がボデー部21に固定されている。そして、ニードル弁53がケースに固定されている。ケースは、ダイヤフラム54bとともに封入空間54cを形成するものである。
従って、流出側通路20cを流通する低圧冷媒の温度(過熱度)が上昇すると、封入空間54c内の感温媒体の飽和圧力が上昇し、封入空間54c内の感温媒体の圧力から流出側通路20cを流通する低圧冷媒の圧力を減算した圧力差が大きくなる。これにより、ダイヤフラム54bは、封入空間54cが膨らむ側に変形する。その結果、ニードル弁53がノズル部51の通路断面積を拡大させる側(すなわち、喉部から離れる側)に変位する。
一方、流出側通路20cを流通する低圧冷媒の温度(過熱度)が低下すると、封入空間54c内の感温媒体の飽和圧力が低下し、封入空間54c内の感温媒体の圧力から流出側通路20cを流通する低圧冷媒の圧力を減算した圧力差が小さくなる。これにより、ダイヤフラム54bは、封入空間54cが縮まる側に変形する。その結果、ニードル弁53がノズル部51の通路断面積を縮小させる側(すなわち、喉部へ近づく側)に変位する。
つまり、ノズル部側駆動機構54は、第2蒸発器18から流出した冷媒の過熱度に応じて、ニードル弁53を変位させることができる。そこで、本実施形態のノズル部側駆動機構54は、第2蒸発器18出口側冷媒の過熱度が予め定めたノズル部側基準過熱度(具体的には、1℃)に近づくように、ニードル弁53を変位させる。
なお、ノズル部側駆動機構54は、ノズル部側感温部54aに対してニードル弁53がノズル部51の通路断面積を縮小させる側の荷重をかける弾性部材であるコイルバネを有している。ノズル部側基準過熱度は、このコイルバネの荷重を変更することによって、調整することができる。
ここで、ノズル部側駆動機構54が、ニードル弁53を変位させる変位方向の中心軸をノズル部側中心軸CL1と定義すると、ノズル部側中心軸CL1は、ノズル部51の中心軸、ニードル弁53の中心軸、ディフューザ部52の中心軸と一致している。
可変絞り機構16は、図3に示すように、絞り通路20a、絞り弁61、減圧側駆動機構62等によって構成されている。
絞り通路20aは、通路断面積を縮小させることによって、分岐部14にて分岐された他方の冷媒を減圧させる減圧部である。絞り通路20aは、円柱形状や円錐台形状等の回転体形状に形成されている。本実施形態の減圧部は、ボデー部21に一体的に形成されている。減圧部として、ボデー部21に対して別部材で形成されたオリフィスを採用して、圧入等の手段によってボデー部21に一体的に固定してもよい。
絞り弁61は、球状に形成されており、絞り通路20aの中心軸方向に変位することによって、絞り通路20aの通路断面積(すなわち、絞り開度)を変化させる減圧側弁体部である。さらに、絞り弁61を絞り通路20aの出口部に当接させることによって、絞り通路20aを閉塞させることもできる。
減圧側駆動機構62は、絞り弁61を絞り通路20aの中心軸方向に変位させる減圧側駆動部である。減圧側駆動機構62は、ノズル部側駆動機構54と同様の機械的機構で構成されている。
より具体的には、減圧側駆動機構62は、第1蒸発器17から流出した冷媒の温度および圧力に応じて変形する減圧側変形部材(具体的には、減圧側のダイヤフラム62b)を有する減圧側感温部62aを備えている。そして、このダイヤフラム62bの変形を絞り弁61に伝達することによって、絞り弁61を変位させる。
減圧側駆動機構62では、減圧側感温部62aの一部が、吸引側通路20b内に配置されている。さらに、本実施形態の減圧側駆動機構62では、ダイヤフラム62bの変位が作動棒63を介して絞り弁61に伝達される。作動棒63は、絞り弁61の変位方向に延びる円柱状に形成されている。
そして、吸引側通路20bを流通する低圧冷媒の温度(過熱度)が上昇すると、減圧側駆動機構62の封入空間62c内の感温媒体の飽和圧力が上昇し、封入空間62c内の感温媒体の圧力から吸引側通路20bを流通する低圧冷媒の圧力の圧力差が大きくなる。これにより、ダイヤフラム62bが変形すると、絞り弁61が絞り通路20aの絞り開度を拡大させる側に変位する。
一方、吸引側通路20bを流通する低圧冷媒の温度(過熱度)が低下すると、封入空間62c内の感温媒体の飽和圧力が低下し、封入空間62c内の感温媒体の圧力から吸引側通路20bを流通する低圧冷媒の圧力の圧力差が小さくなる。これにより、ダイヤフラム62bが変形すると、絞り弁61が絞り通路20aの絞り開度を縮小させる側に変位する。
つまり、減圧側駆動機構62は、第1蒸発器17から流出した冷媒の過熱度に応じて、絞り弁61を変位させることができる。そこで、本実施形態のノズル部側駆動機構54は、第1蒸発器17出口側冷媒の過熱度が予め定めた減圧側基準過熱度(具体的には、0℃)に近づくように絞り弁61を変位させる。すなわち、本実施形態のノズル部側駆動機構54は、第1蒸発器17出口側冷媒が飽和気相冷媒となるように絞り弁61を変位させる。
なお、減圧側基準過熱度についても、ノズル部側基準過熱度と同様に、絞り弁61に荷重をかける弾性部材であるコイルバネの荷重を変化させることによって、調整することができる。
ここで、減圧側駆動機構62が、絞り弁61を変位させる変位方向の中心軸を減圧側中心軸CL2と定義すると、減圧側中心軸CL2は、絞り通路20aの中心軸、作動棒63の中心軸と一致している。
さらに、本実施形態のエジェクタモジュール20では、ノズル部側中心軸CL1と減圧側中心軸CL2がねじれの位置関係となっており、ノズル部側中心軸CL1および減圧側中心軸CL2のうち一方の中心軸方向から見たときに、一方の中心軸に対応する駆動部と他方の中心軸が重合配置されている。
例えば、図4に示すように、ノズル部側中心軸CL1方向から見たときに、図4の点ハッチングで示す領域を占めるノズル部側駆動機構54と減圧側中心軸CL2が重合するように配置されている。また、図5に示すように、減圧側中心軸CL2方向から見たときに、図5の点ハッチングで示す領域を占める減圧側駆動機構62とノズル部側中心軸CL1が重合するように配置されている。
なお、ねじれの位置関係とは、2本の直線が平行ではなく、かつ、交わらないように配置された位置関係を意味している。さらに、本実施形態では、ノズル部側中心軸CL1と減圧側中心軸CL2がなす角度、すなわちノズル部側中心軸CL1のベクトルと減圧側中心軸CL2のベクトルがなす角度が、90°となっている。
次に、図1に示す第2蒸発器18は、送風機18aから車室内へ向けて送風された送風空気とエジェクタモジュール20のエジェクタ側出口21c(すなわち、エジェクタの15のディフューザ部52の冷媒出口)から流出した低圧冷媒とを熱交換させ、この低圧冷媒を蒸発させて吸熱作用を発揮させることによって送風空気を冷却する吸熱用熱交換器である。
送風機18aは、空調制御装置から出力される制御電圧によって回転数(送風空気量)が制御される電動送風機である。第2蒸発器18の冷媒出口には、エジェクタモジュール20の低圧入口21e側が接続されている。
第1蒸発器17は、第2蒸発器18を通過した送風空気とエジェクタモジュール20の絞り側出口21d(すなわち、可変絞り機構16の冷媒出口)から流出した低圧冷媒とを熱交換させ、この低圧冷媒を蒸発させて吸熱作用を発揮させることによって送風空気を冷却する吸熱用熱交換器である。第1蒸発器17の冷媒出口には、エジェクタモジュール20の冷媒吸引口21b側が接続されている。
また、本実施形態の第1蒸発器17および第2蒸発器18は、一体的に構成されている。具体的には、第1蒸発器17および第2蒸発器18は、いずれも冷媒を流通させる複数本のチューブと、この複数のチューブの両端側に配置されてチューブを流通する冷媒の集合あるいは分配を行う一対の集合分配用タンクとを有する、いわゆるタンクアンドチューブ型の熱交換器で構成されている。
そして、第1蒸発器17および第2蒸発器18の集合分配用タンク181を同一部材にて形成することによって、第1蒸発器17および第2蒸発器18を一体化している。この際、本実施形態では、第2蒸発器18が第1蒸発器17に対して送風空気流れ上流側に配置されるように、第1蒸発器17および第2蒸発器18を送風空気流れに対して直列に配置している。従って、送風空気は図1の二点鎖線で描いた矢印で示すように流れる。
ここで、本実施形態では、第1蒸発器17および第2蒸発器18の集合分配用タンク181が同一部材によって形成されている。このため、集合分配用タンク181には、第1蒸発器17用の集合分配用タンクとしての機能を果たす部位、および第2蒸発器18用の集合分配用タンクとしての機能を果たす部位のみならず、各集合分配用の空間同士を連通させるための補助タンク等も含まれる。
この種の補助タンクは、第1蒸発器17用の集合分配用タンクおよび第2蒸発器18用の集合分配用タンクに接続された配管としての機能も果たす。
さらに、本実施形態では、エジェクタモジュール20の各冷媒出入口21b~21eと、一体化された第1蒸発器17および第2蒸発器18の各冷媒出入口との間を、図6~図8に示すように、専用の集合配管19を用いて接続している。第1蒸発器17および第2蒸発器18の各冷媒出入口は、第1蒸発器17および第2蒸発器18の集合分配用タンク181の一端側に形成されている。
集合配管19の複数の金属製の冷媒配管、あるいはプレート部材をろう付け等の接合手段によって一体化させたものである。集合配管19は、第1~第4接続通路19a~19dを有している。もちろん、集合配管19は、金属ブロックや樹脂ブロック等のような塊状部材に複数の冷媒通路を設けることによって形成されたものであってもよい。
第1接続通路19aは、エジェクタモジュール20の絞り側出口21dと第1蒸発器17の冷媒入口とを接続する冷媒通路である。第2接続通路19bは、第1蒸発器17の冷媒出口と冷媒吸引口21bとを接続する冷媒通路である。第3接続通路19cは、エジェクタ側出口21cと第2蒸発器18の冷媒入口とを接続する冷媒通路である。第4接続通路19dは、第2蒸発器18の冷媒出口と低圧入口21eとを接続する冷媒通路である。
また、本実施形態では、図6~図8に示すように、ノズル部側中心軸CL1(すなわち、ディフューザ部52の長手方向)と第1蒸発器17および第2蒸発器18の集合分配用タンク181の長手方向がなす角度が、約90°となっている。このため、本実施形態の集合配管19は、湾曲した形状に形成されている。さらに、集合配管19では、第1~第4接続通路19a~19dが曲がった形状に形成されている。
これにより、集合配管19は、エジェクタモジュール20から流出した冷媒の流れ方向を第1蒸発器17および第2蒸発器18の各冷媒出入口側へ向けて転向させるとともに、第1蒸発器17および第2蒸発器18から流出した冷媒の流れ方向をエジェクタモジュール20の各冷媒出入口21b~21e側へ向けて転向させる。
さらに、本実施形態の集合配管19の第3接続通路19c内には、ディフューザ部52の外形に適合する円柱状の空間が形成されている。そして、ディフューザ部52のボデー部21から突出した部位が第3接続通路19c内に収容されている。換言すると、ディフューザ部52は、ボデー部21から突出していることによって、集合配管19内に収容可能に形成されている。
ここで、集合配管19とエジェクタモジュール20は、ボルト締めなどによって一体化されている。また、集合配管19とエジェクタモジュール20との間には、シール部材としてのガスケット191が配置されており、エジェクタモジュール20と集合配管19との隙間から冷媒が漏れることはない。
従って、エジェクタモジュール20は、集合配管19を介して、第1蒸発器17および第2蒸発器18に一体化されている。つまり、本実施形態では、エジェクタモジュール20、集合配管19、第1蒸発器17および第2蒸発器18が、蒸発器ユニット200として一体化されている。
そして、蒸発器ユニット200では、ディフューザ部52の少なくとも一部が、集合配管19の第3接続通路19c内に収容されている。さらに、ノズル部51および絞り通路20aが、第1蒸発器17および第2蒸発器18の外部、かつ、集合配管19の外部に配置されている。
次に、本実施形態のエジェクタ式冷凍サイクル10の電気制御部について説明する。図示しない空調制御装置は、CPU、ROM、RAM等を含む周知のマイクロコンピュータとその周辺回路から構成され、そのROM内に記憶された制御プログラムに基づいて各種演算、処理を行い、出力側に接続された各種制御対象機器11、12c、18a等の作動を制御する。
また、空調制御装置には、車室内温度を検出する内気温センサ、外気温を検出する外気温センサ、車室内の日射量を検出する日射センサ、第1蒸発器17から吹き出される吹出空気温度(蒸発器温度)を検出する蒸発器温度センサ等のセンサ群が接続され、これらの空調用センサ群の検出値が入力される。
さらに、空調制御装置の入力側には、図示しない操作パネルが接続され、この操作パネルに設けられた各種操作スイッチからの操作信号が空調制御装置へ入力される。操作パネルに設けられた各種操作スイッチとしては、空調を行うことを要求する空調作動スイッチ、車室内温度を設定する車室内温度設定スイッチ等が設けられている。
なお、本実施形態の空調制御装置は、その出力側に接続された各種の制御対象機器の作動を制御する制御部が一体に構成されたものであるが、空調制御装置のうち、各制御対象機器の作動を制御する構成(ハードウェアおよびソフトウェア)が各制御対象機器の制御部を構成している。例えば、本実施形態では、圧縮機11の作動を制御する構成が、吐出能力制御手段を構成している。
次に、上記構成における本実施形態のエジェクタ式冷凍サイクル10の作動について説明する。操作パネルの空調作動スイッチが投入(ON)されると、空調制御装置が、圧縮機11、冷却ファン12c、送風機18a等を作動させる。
これにより、圧縮機11が冷媒を吸入し、圧縮して吐出する。圧縮機11から吐出された高温高圧冷媒は、放熱器12へ流入する。放熱器12へ流入した冷媒は、凝縮部12aにて冷却ファン12cから送風された外気と熱交換して凝縮する。凝縮部12aにて冷却された冷媒は、レシーバ部12bにて気液分離される。
レシーバ部12bにて分離された液相冷媒は、エジェクタモジュール20の高圧入口21aへ流入する。エジェクタモジュール20の内部へ流入した冷媒は、分岐部14にて分岐される。分岐された一方の冷媒は、エジェクタ15のノズル部51へ流入して等エントロピ的に減圧されて噴射される。そして、この噴射冷媒の吸引作用によって、第1蒸発器17から流出した冷媒が、冷媒吸引口21bから吸引される。
この際、ノズル部側駆動機構54は、流出側通路20cを流通する冷媒(換言すると、第2蒸発器18出口側冷媒)の過熱度が、ノズル部側基準過熱度(具体的には、1℃)に近づくように、ニードル弁53を変位させる。
ノズル部51から噴射された噴射冷媒および冷媒吸引口21bから吸引された吸引冷媒は、エジェクタ15のディフューザ部52へ流入する。ディフューザ部52では、冷媒通路面積の拡大により、冷媒の速度エネルギが圧力エネルギに変換される。これにより、噴射冷媒と吸引冷媒との混合冷媒の圧力が上昇する。ディフューザ部52にて昇圧された冷媒は、エジェクタ側出口21cから流出する。
エジェクタ側出口21cから流出した冷媒は、集合配管19の第3接続通路19cを介して、第2蒸発器18へ流入する。第2蒸発器18へ流入した冷媒は、送風機18aによって送風された送風空気から吸熱して蒸発する。これにより、送風機18aによって送風された送風空気が冷却される。
第2蒸発器18から流出した冷媒は、集合配管19の第4接続通路19d、およびエジェクタモジュール20の流出側通路20cを介して、圧縮機11へ吸入されて再び圧縮される。
一方、分岐部14にて分岐された他方の冷媒は、可変絞り機構16の絞り通路20aへ流入して等エンタルピ的に減圧される。この際、減圧側駆動機構62は、吸引側通路20bを流通する(換言すると、第1蒸発器17出口側冷媒)の過熱度が、減圧側基準過熱度(具体的には、0℃)に近づくように、絞り弁61を変位させる。可変絞り機構16にて減圧された冷媒は、絞り側出口21dから流出する。
絞り側出口21dから流出した冷媒は、集合配管19の第1接続通路19aを介して、第1蒸発器17へ流入する。第1蒸発器17へ流入した冷媒は、第2蒸発器18通過後の送風空気から吸熱して蒸発する。これにより、第2蒸発器18通過後の送風空気がさらに冷却される。第1蒸発器17から流出した冷媒は、集合配管19の第2接続通路19bを介して、冷媒吸引口21bから吸引される。
以上の如く、本実施形態のエジェクタ式冷凍サイクル10によれば、第1蒸発器17および第2蒸発器18にて、車室内へ送風される送風空気を冷却することができる。
さらに、本実施形態のエジェクタ式冷凍サイクル10では、第2蒸発器18下流側の冷媒、すなわちエジェクタ15のディフューザ部52にて昇圧された冷媒を圧縮機11へ吸入させることができる。従って、エジェクタ式冷凍サイクル10では、蒸発器における冷媒蒸発圧力と吸入冷媒の圧力が同等となる通常の冷凍サイクル装置よりも、圧縮機11の消費動力を低減させて、サイクルの成績係数(COP)を向上させることができる。
また、本実施形態のエジェクタ式冷凍サイクル10では、第2蒸発器18における冷媒蒸発圧力をディフューザ部52にて昇圧された冷媒圧力とし、第1蒸発器17における冷媒蒸発圧力をノズル部51にて減圧された直後の低い冷媒圧力とすることができる。従って、各蒸発器における冷媒蒸発温度と送風空気との温度差を確保して、送風空気を効率的に冷却することができる。
また、本実施形態のエジェクタモジュール20では、ノズル部51、ニードル弁53、ノズル部側駆動機構54等によって構成される可変ノズル部を有するエジェクタ15、並びに、絞り通路20a、絞り弁61、減圧側駆動機構62等によって構成される可変絞り機構16を備えている。
従って、エジェクタ式冷凍サイクル10の負荷変動に応じて、エジェクタ15のノズル部51の通路断面積、および可変絞り機構16の絞り開度を変化させて、ノズル部51へ流入する冷媒流量および可変絞り機構16へ流入する冷媒流量を適切に調整することができる。その結果、負荷変動によらずエジェクタ式冷凍サイクル10に高いCOPを発揮させることができる。
さらに、本実施形態のエジェクタモジュール20では、サイクル構成機構のうち、分岐部14、可変ノズル部を有するエジェクタ15、および可変絞り機構16とを一体化させているので、エジェクタ式冷凍サイクル10全体としての小型化、および生産性の向上を狙うことができる。
ところが、可変ノズル部を有するエジェクタ15および可変絞り機構16では、通路断面積あるいは絞り開度を変化させるための駆動装置(本実施形態では、ノズル部側駆動機構54および減圧側駆動機構62)が必要となる。このような駆動装置は、ニードル弁53や絞り弁61等と比較して、比較的体格が大きい。さらに、エジェクタ15は、ノズル部側中心軸CL1方向に延びる細長円筒状に形成されている。
このため、可変ノズル部を有するエジェクタ15と可変絞り機構16とを互いに干渉しないように配置しようとすると、上述したエジェクタモジュール20全体としての小型化効果を得にくくなってしまう。
これに対して、本実施形態のエジェクタモジュール20では、ディフューザ部52の少なくとも一部が、ボデー部21から突出しており、集合配管19の内部に収容されている。従って、エジェクタ式冷凍サイクル10全体としての小型化を図ることができる。すなわち、本実施形態のエジェクタモジュール20によれば、ノズル部51の通路断面積、および絞り通路20aの通路断面積が変更可能に構成されていても、適用されたエジェクタ式冷凍サイクル10の大型化を招くことがない。
また、本実施形態のエジェクタモジュール20では、ボデー部21の高圧入口21aおよび低圧出口21fが、同一方向に開口している。また、エジェクタ側出口21c、低圧入口21e、冷媒吸引口21b、および絞り側出口21dが、同一方向に開口している。
これによれば、一体化された第1蒸発器17および第2蒸発器18に接続されるエジェクタ側出口21c、低圧入口21e、冷媒吸引口21b、および絞り側出口21dが、同一方向に開口しているので、エジェクタモジュール20を、第1蒸発器17、および第2蒸発器18に接続しやすい。
つまり、本実施形態のエジェクタモジュール20は、蒸発器ユニット200のジョイント部(接続部)としての機能を果たし、エジェクタ式冷凍サイクル10の組み付け性を向上させることができる。これにより、より一層、エジェクタ式冷凍サイクル10全体としての生産性を向上させることができる。
また、本実施形態のエジェクタモジュール20では、可変絞り機構16とエジェクタ15とを一体化させる際に、ノズル部側中心軸CL1および減圧側中心軸CL2のうち一方の中心軸方向から見たとき、一方の中心軸に対応する駆動部と他方の中心軸が重合するように配置している。
このような配置によれば、比較的体格が大きい減圧側駆動機構62とノズル部側駆動機構54とを、いずれかの中心軸CL1、CL2方向にずらして配置することができる。従って、可変絞り機構16の本体部(すなわち、減圧側駆動機構62を除く部位)とエジェクタ15の本体部(すなわち、ノズル部側駆動機構54を除く部位)とを近づけて配置することができる。
さらに、ノズル部側中心軸CL1と減圧側中心軸CL2が、ねじれの位置関係となっているので、減圧側駆動機構62とノズル部側駆動機構54とを互いに干渉させることなく、可変絞り機構16の本体部とエジェクタ15の本体部とを効果的に近づけることができる。従って、より一層、適用されたエジェクタ式冷凍サイクル10の大型化を抑制することができる。
また、本実施形態のエジェクタモジュール20では、ボデー部21に、流出側通路20cが形成されており、ノズル部側駆動機構54のノズル部側感温部54aの一部が流出側通路20cに連通する空間内に配置されている。
これによれば、ノズル部側感温部54aと流出側通路20cとを近づけることができる。従って、エジェクタモジュール20の大型化を招くことなく、流出側通路20cを流通する冷媒の温度および圧力を、ノズル部側感温部54aに精度良く伝達することができる。
また、本実施形態のエジェクタモジュール20では、ボデー部21に、吸引側通路20bが形成されており、減圧側駆動機構62の減圧側感温部62aの一部が吸引側通路20b内に配置されている。
これによれば、減圧側感温部62aと吸引側通路20bとを近づけることができる。従って、エジェクタモジュール20の大型化を招くことなく、吸引側通路20bを流通する冷媒の温度および圧力を、減圧側感温部62aに精度良く伝達することができる。
また、本実施形態のエジェクタモジュール20では、減圧側駆動機構62が、第1蒸発器17出口側冷媒の過熱度が0℃に近づくように、絞り弁61を変位させる。これによれば、第1蒸発器17から流出する冷媒の乾き度が過度に低下して、冷媒吸引口21bから乾き度の低い気液二相冷媒が吸引されてしまうことを抑制することができる。従って、エジェクタ15の昇圧性能の低下を抑制することができる。
さらに、第1蒸発器17出口側の冷媒の過熱度が過度に上昇してしまうことを抑制し、第1蒸発器17にて冷却された送風空気に温度分布が生じてしまうことを抑制することができる。このことは、本実施形態のエジェクタ式冷凍サイクル10のように、第1蒸発器17を第2蒸発器18の空気流れ下流側に配置する構成では、エジェクタ式冷凍サイクル10全体として送風空気の温度分布を抑制しやすいという点で有効である。
また、本実施形態の蒸発器ユニット200では、エジェクタモジュール20のディフューザ部52の少なくとも一部が、集合配管19の第3接続通路19c内に収容されているので、蒸発器ユニット200全体としての小型化を図ることができる。
これに加えて、ノズル部51および絞り通路20aが、第1蒸発器17および第2蒸発器18の外部、かつ、集合配管19の外部に配置されている。従って、ノズル部51および絞り通路20aにて冷媒を減圧させる際の振動が、第1蒸発器17および第2蒸発器18に伝播しにくくなる。
その結果、ユーザにとって耳障りとなる冷媒通過音が大きくなってしまうことを抑制することができる。すなわち、本実施形態の蒸発器ユニット200によれば、エジェクタ式冷凍サイクル10のCOPの低下を招くことなく、冷媒通過音を抑制させることができる。
さらに、本実施形態のエジェクタモジュール20では、ディフューザ部52とボデー部21が別部材で形成されている。従って、ディフューザ部52とボデー部21が同一の部材で形成されている場合に対して、ノズル部51および絞り通路20aにて冷媒を減圧させる際の振動が、より一層第1蒸発器17および第2蒸発器18に伝播しにくくなる。
また、本実施形態の蒸発器ユニット200では、集合配管19が湾曲した形状に形成されている。エジェクタモジュール20、第1蒸発器17、第2蒸発器18等を、蒸発器ユニット200として一体化する際に、第1蒸発器17および第2蒸発器18に対するエジェクタモジュール20の配置の自由度を向上させることができる。
(第2実施形態)
本実施形態では、第1実施形態に対して、図9、図10に示すように、エジェクタ15のニードル弁53、およびノズル部側駆動機構54を廃止した例を説明する。
本実施形態では、第1実施形態に対して、図9、図10に示すように、エジェクタ15のニードル弁53、およびノズル部側駆動機構54を廃止した例を説明する。
つまり、本実施形態のエジェクタ15のノズル部51は、通路断面積が変化しない固定ノズル部である。なお、図9、図10は、それぞれ第1実施形態で説明した図2、図5に対応する図面である。図9、図10では、第1実施形態と同一もしくは均等部分には同一の符号を付している。このことは、以下の図面でも同様である。
図9、図10から明らかなように、本実施形態のエジェクタモジュール20では、エジェクタ15および可変絞り機構16の位置関係が、実質的に第1実施形態と同様となっている。つまり、ノズル部51の中心軸CLと減圧側中心軸CL2がねじれの位置関係となっており、減圧側中心軸CL2方向から見たときに、図10の点ハッチングで示す領域を占める減圧側駆動機構62とノズル部51の中心軸CLが重合するように配置されている。
その他のエジェクタモジュール20およびエジェクタ式冷凍サイクル10の構成および作動は、第1実施形態と同様である。従って、本実施形態のエジェクタ式冷凍サイクル10においても第1実施形態と同様の効果を得ることができる。
より詳細には、可変絞り機構16は、分岐部14の他方の冷媒出口側に接続されているので、可変絞り機構16の絞り開度を調整することによって、絞り通路20aへ流入する冷媒流量、およびノズル部51へ流入する冷媒流量の双方を調整することができる。その結果、負荷変動によらずエジェクタ式冷凍サイクル10に高いCOPを発揮させることができる。
さらに、本実施形態のエジェクタモジュール20および蒸発器ユニット200によれば、ディフューザ部52の少なくとも一部を、集合配管19の内部に収容することができ、第1実施形態と同様に、エジェクタ式冷凍サイクル10全体としての小型化を図ることができる。
ここで、本実施形態のエジェクタモジュール20では、ニードル弁53、およびノズル部側駆動機構54を廃止しているので、予めノズル部51の喉部の通路断面積を調整しておくことだけでは、第1蒸発器17出口側冷媒の過熱度を適切に調整しにくい。
そこで、本実施形態のエジェクタ式冷凍サイクル10では、エジェクタモジュール20の低圧出口21fと圧縮機11の吸入口との間に、低圧冷媒の気液を分離して分離された気相冷媒を圧縮機11の吸入口へ流出させるアキュムレータを配置してもよい。
(第3実施形態)
第1実施形態では、ディフューザ部52のうち、ボデー部21から突出した部位を集合配管19の第3接続通路19c内に収容した例を説明したが、本実施形態では、図11、図12に示すように、集合分配用タンク181内に収容している。なお、図11は、送風空気の流れ方向下流側から見た一部分解斜視図であり、図12は、送風空気流れ方向上流側からみた側面図である。
第1実施形態では、ディフューザ部52のうち、ボデー部21から突出した部位を集合配管19の第3接続通路19c内に収容した例を説明したが、本実施形態では、図11、図12に示すように、集合分配用タンク181内に収容している。なお、図11は、送風空気の流れ方向下流側から見た一部分解斜視図であり、図12は、送風空気流れ方向上流側からみた側面図である。
つまり、本実施形態では、集合配管19を廃止して、ディフューザ部52のうち、ボデー部21から突出した部位を第1蒸発器17および第2蒸発器18の構成部品の内部に収容している。その他のエジェクタモジュール20およびエジェクタ式冷凍サイクル10の構成および作動は、第1実施形態と同様である。従って、本実施形態のエジェクタ式冷凍サイクル10においても第1実施形態と同様の効果を得ることができる。
より詳細には、エジェクタ式冷凍サイクル10における、第1蒸発器17および第2蒸発器18に対するエジェクタモジュール20の相対位置関係に応じて、適切な形状の集合配管19の内部にディフューザ部52を収容すること、あるいは、第1蒸発器17および第2蒸発器18の構成部品の内部にディフューザ部52を収容することによって、エジェクタ式冷凍サイクル10全体としての小型化を図ることができる。
本開示は上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。
上述の各実施形態では、本開示に係るエジェクタモジュール20を車両に搭載されるエジェクタ式冷凍サイクル10に適用した例を説明したが、エジェクタモジュール20の適用はこれに限定されない。例えば、定置型の空調装置、冷温保存庫等に用いられるエジェクタ式冷凍サイクルに適用してもよい。
上述の第1実施形態では、可変絞り機構16、および可変ノズル部を有するエジェクタ15を備えるエジェクタモジュール20について説明したが、エジェクタ式冷凍サイクル10の負荷変動に応じて、可変絞り機構16およびノズル部51へ流入する冷媒流量を適切な流量に近づけるためには、可変絞り機構16およびノズル部51のうち、少なくとも一方の通路断面積が変更可能に構成されていればよい。
従って、第2実施形態で説明したように、可変絞り機構16を採用するとともに、固定ノズル部を有するエジェクタ15を採用してもよい。さらに、第1実施形態に対して、絞り弁61、減圧側駆動機構62を廃止してもよい。つまり、可変絞り機構16に代えて固定絞りを採用するとともに、可変ノズル部を有するエジェクタ15を採用してもよい。
また、上述の実施形態では、ノズル部側駆動機構54および減圧側駆動機構62として、機械的機構で構成されたものを採用した例を説明したが、ノズル部側駆動機構54および減圧側駆動機構62として、ステッピングモータ等で構成されたアクチュエータを有する電動式の駆動機構を採用してもよい。
また、上述の実施形態では、ノズル部側中心軸CL1(あるいはノズル部51の中心軸CL)と減圧側中心軸CL2とをねじれの位置関係とした例を説明したが、これに限定されない。ディフューザ部52の少なくとも一部を集合配管19あるいは第2蒸発器18内に収容することの小型化効果は、ノズル部側中心軸CL1と減圧側中心軸CL2が平行に配置されていても得ることができる。
また、第1実施形態では、ノズル部側感温部54aを流出側通路20cに連通する空間に配置した例を説明したが、ノズル部側感温部54aの少なくとも一部を流出側通路20cに配置してもよい。さらに、減圧側駆動機構62の一部を吸引側通路20bに配置した例を説明したが、減圧側駆動機構62を吸引側通路20bに連通する空間に配置してもよい。
エジェクタ式冷凍サイクル10を構成する各構成機器は、上述の実施形態に開示されたものに限定されない。
例えば、上述の実施形態では、圧縮機11として、電動圧縮機を採用した例を説明したが、圧縮機11として、プーリ、ベルト等を介して車両走行用エンジンから伝達される回転駆動力によって駆動されるエンジン駆動式の圧縮機を採用してもよい。さらに、エンジン駆動式の圧縮機としては、吐出容量の変化により冷媒吐出能力を調整可能な可変容量型圧縮機、あるいは電磁クラッチの断続により圧縮機の稼働率を変化させて冷媒吐出能力を調整可能な固定容量型圧縮機を採用することができる。
また、上述の実施形態では、放熱器12として、レシーバ一体型の凝縮器を採用した例を説明したが、さらに、レシーバ部12bから流出した液相冷媒を過冷却する過冷却部を有して構成される、いわゆるサブクール型の凝縮器を採用してもよい。この他にも、凝縮部12aのみからなる放熱器12、および放熱器12から流出した冷媒の気液を分離して、分離された液相冷媒を下流側へ流出させる受液器(レシーバ)を採用してもよい。
また、上述の実施形態では、第1蒸発器17および第2蒸発器18を一体的に構成した例を説明したが、第1蒸発器17および第2蒸発器18を別体で構成してもよい。そして、第1蒸発器17および第2蒸発器18にて、異なる冷媒対象流体を異なる温度帯で冷却するようにしてもよい。
また、上述の実施形態では、冷媒としてR134aを採用した例を説明したが、冷媒はこれに限定されない。例えば、R1234yf、R600a、R410A、R404A、R32、R407C、等を採用してもよい。または、これらの冷媒のうち複数種を混合させた混合冷媒等を採用してもよい。さらに、冷媒として二酸化炭素を採用して、高圧側冷媒圧力が冷媒の臨界圧力以上となる超臨界冷凍サイクルを構成してもよい。
本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態が本開示に示されているが、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
Claims (8)
- 冷媒を圧縮して吐出する圧縮機(11)、前記圧縮機から吐出された冷媒を放熱させる放熱器(12)、冷媒を蒸発させる第1蒸発器(17)、および冷媒を蒸発させて前記圧縮機の吸入口側へ流出させる第2蒸発器(18)を有するエジェクタ式冷凍サイクル(10)に適用されるエジェクタモジュールであって、
前記放熱器から流出した冷媒のうち一部の冷媒を減圧させて噴射するノズル部(51)と、
前記放熱器から流出した冷媒のうち別の一部の冷媒を減圧させる減圧部(20a)と、
前記ノズル部から噴射された噴射冷媒の吸引作用によって外部から冷媒を吸引する冷媒吸引口(21b)が形成されたボデー部(21)と、
前記噴射冷媒と前記冷媒吸引口から吸引された吸引冷媒との混合冷媒を昇圧させる昇圧部(52)と、を備え、
前記減圧部から冷媒を流出させる絞り側出口(21d)には、前記第1蒸発器の冷媒入口側が接続され、
前記冷媒吸引口には、前記第1蒸発器の冷媒出口側が接続され、
前記昇圧部から冷媒を流出させるエジェクタ側出口(21c)には、前記第2蒸発器の冷媒入口側が接続され、
前記ノズル部および前記減圧部の少なくとも一方は、通路断面積を変更可能に構成されており、
前記昇圧部の少なくとも一部は、前記第1蒸発器および前記第2蒸発器の少なくとも一方の内部、あるいは前記第1蒸発器および前記第2蒸発器の少なくとも一方に接続された配管(19)の内部に収容可能に、前記ボデー部から突出して配置されているエジェクタモジュール。 - 前記ノズル部の通路断面積を変化させるノズル部側弁体部(53)と、
前記ノズル部側弁体部を変位させるノズル部側駆動部(54)と、を備え、
前記ボデー部には、前記第2蒸発器から流出した冷媒を流通させる流出側通路(20c)が形成されており、
前記ノズル部側駆動部は、前記第2蒸発器から流出した冷媒の温度および圧力に応じて変形するノズル部側変形部材(54b)を有するノズル部側感温部(54a)を備えており、
前記ノズル部側感温部の少なくとも一部は、前記流出側通路内あるいは前記流出側通路に連通する空間内に配置されている請求項1に記載のエジェクタモジュール。 - 前記減圧部の通路断面積を変化させる減圧側弁体部(61)と、
前記減圧側弁体部を変位させる減圧側駆動部(62)と、を備え、
前記ボデー部には、前記第1蒸発器から流出した冷媒を流通させる吸引側通路(20b)が形成されており、
前記減圧側駆動部は、前記第1蒸発器から流出した冷媒の温度および圧力に応じて変形する減圧側変形部材(62b)を有する減圧側感温部(62a)を備えており、
前記減圧側感温部の少なくとも一部は、前記吸引側通路内あるいは前記吸引側通路に連通する空間内に配置されている請求項1または2に記載のエジェクタモジュール。 - 前記減圧側駆動部は、前記第1蒸発器出口側冷媒の過熱度が0℃に近づくように、前記減圧側弁体部を変位させるものである請求項3に記載のエジェクタモジュール。
- 前記ボデー部には、前記放熱器から流出した冷媒を流入させる高圧入口(21a)、前記第2蒸発器から流出した冷媒を前記圧縮機の吸入口側へ導く流出側通路(20c)、前記流出側通路へ冷媒を流入させる低圧入口(21e)、および前記流出側通路から冷媒を流出させる低圧出口(21f)が形成されており、
前記高圧入口、および前記低圧出口は、同一方向に開口しており、
前記エジェクタ側出口、前記低圧入口、前記冷媒吸引口、および前記絞り側出口は、同一方向に開口している請求項1ないし4のいずれか1つに記載のエジェクタモジュール。 - エジェクタ式冷凍サイクル(10)に適用される蒸発器ユニットであって、
冷媒の流れを分岐する分岐部(14)と、
前記分岐部にて分岐された一方の冷媒を減圧させるノズル部(51)、前記ノズル部から噴射された噴射冷媒の吸引作用によって外部から冷媒を吸引する冷媒吸引口(21b)が形成されたボデー部(21)、および前記噴射冷媒と前記冷媒吸引口から吸引された吸引冷媒との混合冷媒を昇圧させる昇圧部(52)を有するエジェクタ(15)と、
前記分岐部にて分岐された他方の冷媒を減圧させる減圧部(20a)と、
前記減圧部から流出した冷媒を蒸発させて前記冷媒吸引口側へ流出させる第1蒸発器(17)と、
前記昇圧部(52)から流出した冷媒を蒸発させる第2蒸発器(18)と、を備え、
前記ノズル部および前記減圧部の少なくとも一方は、通路断面積を変更可能に構成されており、
前記分岐部および前記減圧部は、前記ボデー部に一体的に形成されており、
前記昇圧部の少なくとも一部は、前記第1蒸発器および前記第2蒸発器の少なくとも一方の内部、あるいは前記第1蒸発器および前記第2蒸発器の少なくとも一方に接続された配管(19)の内部に収容されており、
前記ノズル部および前記減圧部は、前記第1蒸発器、前記第2蒸発器、および前記配管の外部に配置されている蒸発器ユニット。 - 前記昇圧部の少なくとも一部は、前記配管(19)の内部に収容されており、
前記配管(19)は、湾曲した形状に形成されている請求項6に記載の蒸発器ユニット。 - 前記ボデー部と前記昇圧部は別部材で形成されている請求項6または7に記載の蒸発器ユニット。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017039255 | 2017-03-02 | ||
JP2017-039255 | 2017-03-02 | ||
JP2017-185919 | 2017-09-27 | ||
JP2017185919A JP6717276B2 (ja) | 2017-03-02 | 2017-09-27 | エジェクタモジュール |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018159323A1 true WO2018159323A1 (ja) | 2018-09-07 |
Family
ID=63370858
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/005442 WO2018159323A1 (ja) | 2017-03-02 | 2018-02-16 | エジェクタモジュール、および蒸発器ユニット |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018159323A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11480197B2 (en) | 2017-03-02 | 2022-10-25 | Denso Corporation | Ejector module |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008303851A (ja) * | 2007-06-11 | 2008-12-18 | Denso Corp | 二段減圧式エジェクタおよびエジェクタ式冷凍サイクル |
JP2010019133A (ja) * | 2008-07-09 | 2010-01-28 | Denso Corp | エジェクタおよびヒートポンプサイクル装置 |
JP2011089491A (ja) * | 2009-10-23 | 2011-05-06 | Honda Motor Co Ltd | 燃料電池のガス導入構造 |
-
2018
- 2018-02-16 WO PCT/JP2018/005442 patent/WO2018159323A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008303851A (ja) * | 2007-06-11 | 2008-12-18 | Denso Corp | 二段減圧式エジェクタおよびエジェクタ式冷凍サイクル |
JP2010019133A (ja) * | 2008-07-09 | 2010-01-28 | Denso Corp | エジェクタおよびヒートポンプサイクル装置 |
JP2011089491A (ja) * | 2009-10-23 | 2011-05-06 | Honda Motor Co Ltd | 燃料電池のガス導入構造 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11480197B2 (en) | 2017-03-02 | 2022-10-25 | Denso Corporation | Ejector module |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10465957B2 (en) | Ejector-type refrigeration cycle, and ejector | |
US10378795B2 (en) | Ejector and ejector refrigeration cycle | |
US10132526B2 (en) | Ejector refrigeration cycle | |
WO2015015752A1 (ja) | エジェクタ | |
US20180058738A1 (en) | Ejector and ejector-type refrigeration cycle | |
CN110382880B (zh) | 喷射器组件 | |
JP6610313B2 (ja) | エジェクタ、エジェクタの製造方法、およびエジェクタ式冷凍サイクル | |
WO2018159320A1 (ja) | エジェクタモジュール | |
WO2018159323A1 (ja) | エジェクタモジュール、および蒸発器ユニット | |
JP2019020063A (ja) | エジェクタ式冷凍サイクル | |
JP2017089964A (ja) | エジェクタ式冷凍サイクル | |
JP6720934B2 (ja) | エジェクタモジュール | |
WO2018016219A1 (ja) | エジェクタ式冷凍サイクル | |
WO2018159321A1 (ja) | エジェクタモジュール | |
JP6717276B2 (ja) | エジェクタモジュール | |
JP6511873B2 (ja) | エジェクタ、およびエジェクタ式冷凍サイクル | |
JP7031482B2 (ja) | エジェクタ式冷凍サイクル、および流量調整弁 | |
WO2019155805A1 (ja) | エジェクタ式冷凍サイクル、および流量調整弁 | |
JP6380122B2 (ja) | エジェクタ | |
JP6327088B2 (ja) | エジェクタ式冷凍サイクル | |
JP7119785B2 (ja) | エジェクタ式冷凍サイクル、およびエジェクタモジュール | |
JP6572745B2 (ja) | エジェクタ式冷凍サイクル | |
JP2017089963A (ja) | エジェクタ式冷凍サイクル | |
WO2019155806A1 (ja) | エジェクタ式冷凍サイクル、およびエジェクタモジュール | |
JP2017015346A (ja) | エジェクタ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18761887 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18761887 Country of ref document: EP Kind code of ref document: A1 |