WO2018159307A1 - 含フッ素重合体、その硬化物の製造方法および発光装置 - Google Patents

含フッ素重合体、その硬化物の製造方法および発光装置 Download PDF

Info

Publication number
WO2018159307A1
WO2018159307A1 PCT/JP2018/005274 JP2018005274W WO2018159307A1 WO 2018159307 A1 WO2018159307 A1 WO 2018159307A1 JP 2018005274 W JP2018005274 W JP 2018005274W WO 2018159307 A1 WO2018159307 A1 WO 2018159307A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluoropolymer
unit
carbon atoms
fluorine
group
Prior art date
Application number
PCT/JP2018/005274
Other languages
English (en)
French (fr)
Inventor
杉山 徳英
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to JP2019502866A priority Critical patent/JP6927283B2/ja
Publication of WO2018159307A1 publication Critical patent/WO2018159307A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/48Isomerisation; Cyclisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin

Definitions

  • the present invention relates to a fluoropolymer, a method for producing a cured product thereof, and a light emitting device.
  • UV LEDs Light Emitting Diodes, light emitting diodes
  • UV LEDs have also been increased in output and replaced with mercury lamps, and are beginning to be used in various industrial processes.
  • the LED element is sealed (molded) with a light-transmitting resin such as a silicone resin in order to protect the LED element from an external physical and chemical action.
  • the translucent resin is deteriorated by ultraviolet rays and heat emitted from the LED.
  • a curable fluorinated polymer having a carboxylic acid alkyl ester group, for example, a COOCH 3 group is proposed as such a heat-resistant, light- and light-resistant translucent resin for sealing high-power LEDs such as white LEDs and UVLEDs.
  • This curable fluorinated polymer is cured by irradiation with active energy rays to obtain a cured product having excellent stability and ultraviolet light transmittance.
  • the fluorine-containing polymer described in Patent Document 1 requires ultraviolet (UV) irradiation for curing, and therefore a shadow portion where UV is not irradiated in the LED element structure. If there is, there is a problem that insufficient curing occurs in the part.
  • UV ultraviolet
  • An object of the present invention is to provide a fluorinated polymer which can be cured by heat, has good moldability, and provides a cured product having high heat resistance and UV resistance and high transparency, and a method for producing the cured product.
  • the present invention provides a fluoropolymer having the following constitutions [1] to [11], a method for producing a cured product of the fluoropolymer, a light emitting device and a light emitting device.
  • a fluorine-containing polymer containing a unit represented by the following formula (1) and a unit represented by the following formula (2).
  • R f1 is a fluoroalkylene group or a fluoroalkylene group having 2 or more carbon atoms having an etheric oxygen atom between carbon-carbon atoms, and R 1 and R 2 are each independently A hydrogen atom or an alkyl group.
  • X 1 , X 2 and X 3 are each independently a fluorine atom or a hydrogen atom, two Q 2 are each independently a single bond or an etheric oxygen atom, and R f2 is the number of carbon atoms. 1 to 6 fluoroalkylene groups, or C 2 to C 25 fluoroalkylene groups having an etheric oxygen atom between carbon-carbon atoms.
  • the proportion of the unit represented by the formula (1) is 0.1 to 20 mol% with respect to the total of the units contained in the fluoropolymer, and the proportion of the unit represented by the formula (2) is The fluorine-containing polymer according to any one of [1] to [4], which is 0.05 to 3 mol%.
  • the proportion of the unit represented by the formula (1) is 0.1 to 5 mol% with respect to the total of the units contained in the fluoropolymer, and the proportion of the unit represented by the formula (2) is The fluorine-containing polymer according to any one of [1] to [4], which is 0.05 to 3 mol%.
  • a method for producing a cured product of a fluoropolymer comprising heating the fluoropolymer according to any one of [1] to [8] at 150 to 300 ° C.
  • a light emitting device comprising: a light emitting element; and a cured product of the fluoropolymer according to any one of [1] to [8].
  • the manufacturing method of the fluoropolymer which can be thermocured has favorable melt moldability, and gives a cured product with high heat resistance, UV resistance and transparency, and a cured product of the fluoropolymer can be provided. .
  • Translucent sealing means sealing having both a function of transmitting light and a sealing function.
  • the “unit” in the polymer means a portion derived from the monomer formed by polymerization of the monomer.
  • a unit derived from a monomer may be simply referred to as a monomer unit.
  • Fluoroethylene means a compound in which 0 to 3 fluorine atoms of tetrafluoroethylene (CF 2 ⁇ CF 2 ) are substituted with a hydrogen atom or a halogen atom other than fluorine (eg, chlorine, bromine, iodine). To do.
  • a group having a carbon atom chain such as an alkyl group, a fluoroalkyl group, a fluoroalkylene group, a fluoroalkoxy group, or a fluoroalkenyl group may be linear or branched.
  • Fluoroalkyl group refers to a group in which one or more hydrogen atoms of an alkyl group are substituted with fluorine atoms.
  • ratio of fluorine atoms in the fluoroalkyl group is expressed by (number of fluorine atoms in the fluoroalkyl group) / (number of hydrogen atoms in the alkyl group having the same number of carbon atoms as the fluoroalkyl group) ⁇ 100 (%) Is preferably 50% or more, particularly preferably 100%, that is, a perfluoroalkyl group.
  • the fluoropolymer of the present embodiment includes a unit represented by the following formula (1) and a unit represented by the following formula (2).
  • R 1 and R 2 are each independently a hydrogen atom or an alkyl group
  • R f1 is a fluoroalkylene group or a fluoroalkylene group having 2 or more carbon atoms having an etheric oxygen atom between carbon-carbon atoms.
  • X 1 , X 2 and X 3 are each independently a fluorine atom or a hydrogen atom, two Q 2 are each independently a single bond or an etheric oxygen atom, and R f2 is the number of carbon atoms. 1 to 6 fluoroalkylene groups, or C 2 to C 25 fluoroalkylene groups having an etheric oxygen atom between carbon-carbon atoms.
  • the fluorine-containing polymer having the units (1) and the units (2) is crosslinked by the reaction of —CONHNH 2 between molecules by heating. Since the fluoropolymer of this embodiment is crosslinked only with —CONHNH 2 , the fluoropolymer can be cured with a small amount of crosslinking groups. Therefore, the cured product is excellent in transparency and heat resistance, and is excellent in light resistance, particularly UV resistance. Furthermore, since the fluoropolymer of this embodiment can be cured with a small amount of crosslinking groups by containing the unit (1) and the unit (2), the melt fluidity is impaired during LED molding. Foaming can be suppressed without any problem and the melt moldability is excellent.
  • the present inventors previously examined a fluoropolymer having —CONHNH 2 and —COOCH 3 .
  • the crosslinking reaction shown by following formula (11) occurs by heating. -CONHNH 2 + -COOCH 3 ⁇ -CONHNHCO- (11)
  • the cross-linking reaction mechanism of the fluoropolymer of this embodiment is not clear, it is considered as follows.
  • a compound having —CONHNH 2 as in the fluoropolymer of this embodiment for example, phthalic acid dihydrazide is oxidatively coupled with an oxidizing agent in a polar solvent as shown in the following formula (12).
  • poly (diacylhydrazine) can be obtained.
  • the fluoropolymer having the fluoroacyl hydrazide structure in the side chain of the present embodiment can be cured by heating in air.
  • a cured product can be obtained by heating the fluoropolymer of the present invention even in an N 2 atmosphere. For example, by heating to 150 ° C. or higher or irradiating active energy rays, an oxidizing agent is not used. A cured product is obtained.
  • a crosslinking reaction mechanism of this fluoropolymer it is considered that hydrazide is thermally decomposed and diacylhydrazine is formed without accompanying an oxidation reaction as shown by the following formula (13).
  • tetrazine may be formed by a dehydration cyclization reaction as shown by the following formula (14).
  • heating in an N 2 atmosphere is preferable in that the cured product is less colored than heating in air.
  • the unit (1) is a unit represented by the following formula (1).
  • R 1 and R 2 each independently represent a hydrogen atom or an alkyl group
  • R f1 represents a fluoroalkylene group or a carbon number of 2 or more having an etheric oxygen atom between carbon-carbon atoms.
  • fluoroalkylene group Of the fluoroalkylene group.
  • R f1 is a fluoroalkylene group
  • the carbon number thereof is preferably 1 to 6, and particularly preferably 1 to 4.
  • R f1 has 3 or more carbon atoms
  • a linear structure is preferable from the viewpoint of excellent thermal stability.
  • the fluoroalkylene group is preferably a perfluoroalkylene group from the viewpoint of excellent thermal stability. That is, R f1 is preferably a perfluoroalkylene group having 1 to 6 carbon atoms, and particularly preferably a perfluoroalkylene group having 1 to 4 carbon atoms.
  • R f1 when R f1 is a fluoroalkylene group having 2 or more carbon atoms having an etheric oxygen atom between carbon-carbon atoms, R f1 preferably has 2 to 10 carbon atoms. Particularly preferred. When R f1 has 3 or more carbon atoms, a linear structure is preferable from the viewpoint of excellent thermal stability.
  • the fluoroalkylene group is preferably a perfluoroalkylene group from the viewpoint of excellent thermal stability. That is, R f1 is preferably a C 2-10 perfluoroalkylene group having an etheric oxygen atom between carbon-carbon atoms, and a C 2-6 perfluoroalkyl group having an etheric oxygen atom between carbon-carbon atoms. An alkylene group is particularly preferred.
  • R 1 and R 2 are preferably a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, more preferably a hydrogen atom or an alkyl group having 1 or 2 carbon atoms, and particularly preferably a hydrogen atom from the viewpoint of excellent heat curability.
  • unit (1) include the following units. -[CF 2 -CF (O (CF 2 ) 2 CONHNH 2 )]-, -[CF 2 -CF (O (CF 2 ) 2 CON (CH 3 ) NH 2 )]-, -[CF 2 -CF (O (CF 2 ) 2 CONHNHCH 3 )]-, -[CF 2 -CF (O (CF 2 ) 3 CONHNH 2 )]-, -[CF 2 -CF (O (CF 2 ) 3 CON (CH 3 ) NH 2 )]-, -[CF 2 -CF (O (CF 2 ) 3 CONHNHCH 3 )]-, -[CF 2 -CF (O (CF 2 ) 4 CONHNH 2 )]-, — [CF 2 —CF (O (CF 2 ) 4 CON (CH 3 ) NH 2 )] — -[CF 2 -CF (O (CF 2 ) 4 CONHNHCH 3 )]-, — [CF
  • the fluoropolymer may contain one type of unit (1) alone, or may contain two or more types of units (1).
  • the unit (2) is a unit represented by the following formula (2).
  • X 1 , X 2 , and X 3 are each independently a fluorine atom or a hydrogen atom
  • two Q 2 are each independently a single bond or an etheric oxygen atom
  • R f2 has 1 carbon atom Or a fluoroalkylene group having 2 to 25 carbon atoms having an etheric oxygen atom between carbon-carbon atoms.
  • Two X 1 in the unit (2) may be the same or different.
  • the two Q 2 'in the unit (2) may be the same or different.
  • X 1 , X 2 and X 3 are all preferably fluorine atoms, or all are hydrogen atoms.
  • the two Q 2 are all preferably etheric oxygen atoms, and when X 1 , X 2 , and X 3 are all hydrogen atoms
  • the two Q 2 are preferably single bonds.
  • R f2 when R f2 is a fluoroalkylene group having 1 to 6 carbon atoms, the number of carbon atoms is preferably 2 or more. When R f2 has 3 or more carbon atoms, a linear structure is preferable from the viewpoint of excellent thermal stability.
  • the fluoroalkylene group is preferably a perfluoroalkylene group from the viewpoint of excellent thermal stability. That is, R f2 is preferably a perfluoroalkylene group having 1 to 6 carbon atoms, and more preferably a perfluoroalkylene group having 2 or more carbon atoms.
  • R f2 is a fluoroalkylene group having 2 to 25 carbon atoms having an etheric oxygen atom between carbon-carbon atoms
  • the carbon number is preferably 2 to 10, and more preferably 2 to 6.
  • R f2 has 3 or more carbon atoms
  • a linear structure is preferable from the viewpoint of excellent thermal stability.
  • the fluoroalkylene group is preferably a perfluoroalkylene group from the viewpoint of excellent thermal stability. That is, R f2 is preferably a C 2-10 perfluoroalkylene group having an etheric oxygen atom between carbon-carbon atoms, and a C 2-6 perfluoroalkyl group having an etheric oxygen atom between carbon-carbon atoms.
  • An alkylene group is more preferred.
  • a C 2-6 perfluoroalkylene group having an etheric oxygen atom between carbon-carbon atoms is represented by — (CF 2 O) —, — (CF 2 CF 2 O) —, — (CF 2 CF (CF 3 )) It preferably contains one or more perfluoropolyether units represented by O) — and — (CF 2 CF 2 CF 2 O) —.
  • X 1 , X 2 and X 3 are all fluorine atoms, two Q 2 are all etheric oxygen atoms, and R f2 is — (CF 2 ) 2 —. , — (CF 2 ) 3 —, — (CF 2 ) 4 —, — (CF 2 ) 6 —, — (CF 2 ) 4 OCF (CF 3 ) CF 2 —, — (CF 2 ) 2 OCF (CF 3 ) CF 2 —, — (CF 2 CF 2 O) 2 —, —CF 2 O (CF 2 CF 2 O) 2 — or —CF 2 CF (CF 3 ) O (CF 2 ) 2 OCF (CF 3 ) CF
  • the units that are 2 —, X 1 , X 2 , and X 3 are all hydrogen atoms, two Q 2 are both single bonds, and R f2 is — (CF 2 ) 2 —, — (CF 2 — (CF 2 —
  • units represented by the following formulas (21) and (22) are particularly preferred from the viewpoint of easy availability.
  • the unit (2) can be formed by polymerizing a fluorine-containing monomer having two polymerizable unsaturated bonds represented by the following formula (2a).
  • a fluorine-containing monomer represented by the formula (2a) is also referred to as a monomer (2a).
  • X 1 , X 2 , X 3 , Q 2 , and R f2 are as defined in the formula (2), and examples and preferred ranges are the same.
  • the fluoropolymer of the present embodiment may further have a fluoroethylene unit and a unit (3) described later.
  • a TFE unit, a TrFE unit, and a chlorotrifluoroethylene unit are preferable from the viewpoint of excellent light resistance.
  • the fluoroethylene unit is preferably a TFE unit from the viewpoint of excellent heat resistance.
  • the fluoroethylene unit a highly polar —CONR 1 NR 2 H group is likely to be present at the interface, so that the cured product of the fluoropolymer is excellent in adhesion to a substrate, wettability, and the like. Units are particularly preferred.
  • the fluoroethylene unit is particularly preferably a TrFE unit or a chlorotrifluoroethylene unit from the viewpoint that the fluoropolymer is not as crystalline as the TFE unit, is less likely to cause light scattering, and has high transparency.
  • a TrFE unit is particularly preferable from the viewpoint of excellent solubility in various organic solvents.
  • the wettability means the ease of wetting and spreading on the substrate due to the low surface tension of the fluoropolymer.
  • the fluoropolymer may contain one kind of fluoroethylene unit alone, or may contain two or more kinds of fluoroethylene units.
  • the unit (3) is a unit represented by the following formula (3) (excluding the fluoroethylene unit). -[CX 4 X 5 -CY 1 Y 2 ]-(3)
  • X 4 and X 5 are each independently a hydrogen atom, a fluorine atom or a chlorine atom
  • Y 1 is a hydrogen atom, a fluorine atom or a chlorine atom
  • Y 2 is a hydrogen atom
  • a fluoroalkyl group, a fluoroalkyl group having 2 or more carbon atoms having an etheric oxygen atom between carbon-carbon atoms, a fluoroalkoxy group, or a fluoroalkoxy group having 2 or more carbon atoms having an etheric oxygen atom between carbon-carbon atoms is there.
  • the carbon number of the fluoroalkyl group in Y 2 is preferably 1 to 15, and particularly preferably 1 to 6.
  • the fluoroalkyl group is preferably a perfluoroalkyl group, more preferably a C 1-6 perfluoroalkyl group, and particularly preferably —CF 3 from the viewpoint of excellent thermal stability.
  • the carbon number of the fluoroalkyl group having 2 or more carbon atoms having an etheric oxygen atom between carbon-carbon atoms in Y 2 is preferably 2 to 15, and particularly preferably 2 to 6.
  • a perfluoroalkyl group having 2 or more carbon atoms having an etheric oxygen atom between carbon-carbon atoms is preferable, and perfluorocarbon having an etheric oxygen atom between carbon-carbon atoms is preferred.
  • Alkyl groups are particularly preferred.
  • the carbon number of the fluoroalkoxy group in Y 2 is preferably 1-15, and particularly preferably 1-6.
  • the fluoroalkoxy group is preferably a perfluoroalkoxy group having 1 to 6 carbon atoms from the viewpoint of excellent thermal stability, and —OCF 3 , —OCF 2 CF 3 , —O (CF 2 ) 2 CF 3 , —O (CF 2 3 CF 3 is particularly preferred.
  • the carbon number of the fluoroalkoxy group having 2 or more carbon atoms having an etheric oxygen atom between carbon-carbon atoms in Y 2 is preferably 2 to 15, and particularly preferably 2 to 6.
  • the fluoroalkoxy group is preferably a perfluoroalkoxy group having 2 or more carbon atoms having an etheric oxygen atom between carbon-carbon atoms from the viewpoint of excellent thermal stability, and a carbon having an etheric oxygen atom between carbon-carbon atoms.
  • a perfluoroalkoxy group of 2 to 6 is more preferable, and —OCF 2 CF (CF 3 ) O (CF 2 ) 2 CF 3 is particularly preferable.
  • unit (3) include the following units. -[CH 2 -CH 2 ]-,-[CF 2 -CF (CF 3 )]-,-[CH 2 -CF (CF 3 )]-,-[CF 2 -CF (OCF 3 )]-,- [CF 2 —CF (OCF 2 CF 3 )] —, — [CF 2 —CF (O (CF 2 ) 2 CF 3 )] —, — [CF 2 —CF (O (CF 2 ) 3 CF 3 )] -,-[CF 2 -CF (OCF 2 CF (CF 3 ) O (CF 2 ) 2 CF 3 )]-,-[CF 2 -CF (OCF 2 CF 2 OCF 2 CF 2 OCF 2 CF 3 )]- .
  • (3) is — [CH 2 —CH 2 ] —, — [CF 2 —CF (CF 3 )] —, — [CF 2 —CF (OCF 3 )] —, — [CF 2 —CF (O ( CF 2 ) 2 CF 3 )]-,-[CF 2 -CF (OCF 2 CF (CF 3 ) O (CF 2 ) 2 CF 3 )]-or-[CF 2 -CF (OCF 2 CF 2 OCF 2 CF 2 OCF 2 CF 3)] - it is preferred.
  • the fluoropolymer may contain one type of unit (3) alone or may contain two or more units (3).
  • Unit (3) can be formed by polymerizing compound (3a) as a monomer.
  • CX 4 X 5 CY 1 Y 2 (3a)
  • X 4 , X 5 , Y 1 and Y 2 are as defined in formula (3), and examples and preferred ranges are the same.
  • the fluorine-containing polymer of the present embodiment is not limited to the unit (1), unit (2), and optionally contained fluoroethylene unit and unit (3), for example, —COOR 7 and a group represented by —C (O) NR 8 OR 9 (R 7 is an alkyl group, and R 8 and R 9 are each independently a hydrogen atom or an alkyl group).
  • the fluoropolymer of this embodiment consists only of the unit (1), the unit (2), and the optionally contained fluoroethylene unit and the unit (3).
  • the number of units (1) contained in the fluoropolymer is preferably 3 or more per molecule of the fluoropolymer.
  • the proportion of the unit (1) is preferably 0.1 mol% or more in all units of the fluoropolymer of the present embodiment. Moreover, 20 mol% or less is preferable and the ratio of a unit (1) has more preferable 10 mol% or less.
  • the proportion of unit (1) in all units of the fluoropolymer is adjusted so that the number per molecule of the fluoropolymer is the above preferred number (3 or more) according to the molecular weight of the fluoropolymer. can do. For example, the ratio of the unit (1) is increased when the molecular weight of the fluoropolymer is small, and is decreased when the molecular weight is large.
  • the ratio of the unit (1) can be 1 to 10 mol% in the total units of the fluoropolymer when the molecular weight of the fluoropolymer is about 3,000 to less than 10,000.
  • the proportion of the unit (1) is preferably 0.1 to 5 mol%, more preferably 0.5 to 2 mol%. ⁇ 1.5 mol% is particularly preferred.
  • the proportion of the unit (1) is at least the lower limit of the above range, heat curing is likely to occur even if the fluoropolymer does not contain —COOCH 3, and a cured product insoluble in the solvent tends to be obtained. If the ratio of the unit (1) is not more than the upper limit of the above range, coloring and foaming when the fluoropolymer is thermally cured can be suppressed and a transparent cured product can be obtained.
  • the proportion of the unit (2) in all units of the fluoropolymer of this embodiment is preferably 0.05 to 3 mol%, more preferably 0.1 to 1 mol%. Since the fluoropolymer contains the unit (2), the content of the unit (1) can be reduced. Therefore, since coloring and foaming at the time of thermosetting can be suppressed, the fluoropolymer of this embodiment is particularly suitable as an LED sealing material.
  • the proportion of fluoroethylene units in all units is preferably 50 to 90 mol%, more preferably 60 to 80 mol%.
  • the proportion is preferably 50 to 70 mol%. If it is at least the lower limit, in addition to light resistance, various properties based on fluoroethylene units (for example, when the fluoroethylene unit is a TFE unit, heat resistance, adhesion to a substrate, wettability, etc. are likely to be improved. If it is less than the upper limit, light scattering due to crystallinity is suppressed, and when a fluoropolymer is used for sealing a UV-LED, the UV light transmittance is high and the output of the UV-LED can be secured.
  • the contents of units (1), units (3) and fluoroethylene units in the fluoropolymer can be calculated by 19 F-NMR and 1 H-NMR measurements. Since it is difficult to measure the content of the unit (2), the unit (1) and the unit (2) share the structure CF 2 ⁇ CFO—CF 2 — involved in the polymerization. And the content of the unit (2) is determined from the charging ratio of the monomer (monomer (1a) described later) and the monomer (2a) forming the unit (1). It estimates using content of the unit (1) in a fluoropolymer.
  • the mass average molecular weight of the fluoropolymer of this embodiment is preferably from 3,000 to 100,000, more preferably from 5,000 to 100,000.
  • the weight average molecular weight is more preferably 10,000 to 50,000, and particularly preferably 10,000 to 30,000.
  • the mass average molecular weight of the fluoropolymer is preferably 3,000 to 50,000, more preferably 5,000 to 50,000, and 10,000 to 30. Is particularly preferred. If the weight average molecular weight of the fluoropolymer is at least the lower limit of this range, the cured product tends to be excellent in mechanical strength and heat resistance, and if it is below the upper limit of this range, the flow of the fluoropolymer during molding Tend to be secured. In particular, fluidity is important when sealing SMD type LEDs (LED modules with cup-shaped reflectors).
  • the mass average molecular weight of the fluoropolymer is within this range, the fluoropolymer is suitable for sealing SMD type LEDs.
  • the mass average molecular weight of the fluoropolymer is preferably 10,000 to 100,000, particularly preferably 20,000 to 50,000.
  • heat sealing may be performed using a sheet-shaped sealing resin. is there.
  • the sheet-like fluoropolymer is superimposed on the substrate on which the LED element is mounted, and the LED element is sealed by covering the LED element with the fluoropolymer by heating and flowing at 100 to 150 ° C. and crosslinking. it can.
  • the fluoropolymer sheet while applying pressure.
  • the fluoropolymer is suitable for sealing the COB type LED as described above.
  • the mass average molecular weight can be determined as a PMMA (polymethyl methacrylate) equivalent molecular weight by gel permeation chromatography (GPC).
  • PMMA polymethyl methacrylate
  • the fluoropolymer includes a unit represented by the following formula (1a) and a unit (2), and a hydrazine compound represented by the following formula (5) (hereinafter also referred to as “hydrazine compound”). ).
  • R 3 is an alkyl group
  • R f1 is as defined in Formula (1), and examples and preferred ranges are the same.
  • R 1 and R 2 are as defined in formula (1), and examples and preferred ranges are the same.
  • the fluorine-containing polymer containing the unit (1a) of the present embodiment can be obtained by polymerizing the monomer forming the unit by a known method (for example, a method described in International Publication No. 2015/0987773). .
  • hydrazine compound examples include hydrazine, hydrazine monohydrate, methyl hydrazine, and 1,2-dimethylhydrazine.
  • hydrazine monohydrate is preferable from the viewpoint of safety and heat curing of the obtained fluoropolymer.
  • the form of the hydrazine compound subjected to the reaction may be an aqueous solution or a salt. A commercial item can be used for the hydrazine compound.
  • the amount of the hydrazine compound used is preferably 1 to 20 mol, more preferably 1.2 to 10 mol, relative to 1 mol of the group represented by —COOR 3 of the fluoropolymer containing the unit (1a). .5 to 5 mol is particularly preferred.
  • the reaction between the fluoropolymer having the unit (1a) and the hydrazine compound can be performed in the presence of a solvent.
  • a solvent those capable of dissolving the raw material components (the fluoropolymer containing the unit (1a) and the unit (2) and the hydrazine compound) are preferable.
  • a fluorine-containing solvent that dissolves the fluorine-containing polymer containing at least the unit (1a) and the unit (2) is more preferable.
  • an alcohol may be added to the fluorine-containing solvent in order to disperse the hydrazine compound.
  • the fluorine-containing solvent contains fluorine and carbon, and may contain chlorine, oxygen and hydrogen.
  • fluorinated solvent include fluorinated alkanes, fluorinated aromatic compounds, fluoroalkyl ethers, fluorinated alkylamines, and fluoroalcohols.
  • the fluorinated alkane preferably has 4 to 8 carbon atoms.
  • Commercially available fluorinated alkanes include, for example, CF 3 CH 2 CF 2 H (HFC-245fa), CF 3 CH 2 CF 2 CH 3 (HFC-365mfc), perfluorohexane, 1H-perfluorohexane, perfluorooctane, C 6 F 13 H (Asahi Glass Co., Asahi Clin (registered trademark) AC-2000), C 6 F 13 C 2 H 5 (Asahi Glass Co., Ltd., Asahi Clin (registered trademark) AC-6000), C 2 F 5 CHFCHFCF 3 ( Chemerz, Vertrel (registered trademark) XF) and the like.
  • fluorinated aromatic compound examples include hexafluorobenzene, trifluoromethylbenzene, perfluorotoluene, and bis (trifluoromethyl) benzene.
  • the fluoroalkyl ether preferably has 4 to 12 carbon atoms.
  • Examples of commercially available fluoroalkyl ethers include CF 3 CH 2 OCF 2 CF 2 H (Asahi Glass Co., Ltd., Asahi Clin (registered trademark) AE-3000), C 4 F 9 OCH 3 (3M Co., Novec (registered trademark) 7100), C 4 F 9 OC 2 H 5 (manufactured by 3M, Novec (registered trademark) 7200), C 2 F 5 CF (OCH 3 ) C 3 F 7 (manufactured by 3M, Novec (registered trademark) 7300) Etc.
  • fluorinated alkylamine examples include perfluorotripropylamine and perfluorotributylamine.
  • fluoroalcohol examples include 2,2,3,3-tetrafluoropropanol, 2,2,2-trifluoroethanol, hexafluoroisopropanol and the like.
  • fluorine-containing solvent examples include dichloropentafluoropropane (HCFC-225) and perfluoro (2-butyltetrahydrofuran).
  • HCFC-225 dichloropentafluoropropane
  • perfluoro (2-butyltetrahydrofuran examples of the fluorine-containing solvent
  • AK-225cb As a commercial product of dichloropentafluoropropane, AK-225cb (Asahi Glass Co., Ltd.) can be mentioned.
  • the reaction is preferably performed, for example, by dissolving the fluorinated polymer containing the units (1a) and (2) in the above fluorinated solvent and adding a hydrazine compound at 0 to 30 ° C. This is further heated to 30 to 100 ° C. and reacted for 1 minute to 10 hours to obtain the desired fluoropolymer.
  • the cured product of the fluoropolymer of this embodiment can be produced using only the fluoropolymer. Moreover, it can manufacture from the curable composition (however, a solvent is not included) containing the said fluoropolymer, and the coating composition containing the said curable composition and a solvent.
  • components other than the fluoropolymer in the curable composition include inorganic particles, silane coupling agents, fluoropolyether compounds, and the like, and these components do not significantly affect the transparency of the cured product. Can be added.
  • examples of the silane coupling agent and the fluoropolyether compound include those described in International Publication No. 2015/0987773.
  • the inorganic particles metal oxides such as silica, titania, zirconia, and alumina, and various phosphor particles are preferable.
  • the diameter of the inorganic particles is preferably 1 nm to 10 ⁇ m, and particularly preferably 1 nm to 1 ⁇ m from the viewpoint of suppressing light scattering and ensuring the transparency of the composition.
  • the content of the inorganic particles is preferably 20 to 200 parts by mass, particularly preferably 50 to 100 parts by mass with respect to 100 parts by mass of the fluoropolymer, from the viewpoint of increasing the refractive index of the cured product. If the content of the inorganic particles is not less than the lower limit of the above range, the refractive index of the cured product is higher, and if it is not more than the upper limit of the above range, the moldability is excellent.
  • Examples of the solvent in the coating composition include the above-mentioned fluorine-containing solvents.
  • the coating composition may contain alcohol as long as the fluoropolymer does not precipitate.
  • the solid content in the coating composition is preferably 1 to 99% by mass.
  • the content of the fluoropolymer in the coating composition is preferably 1 to 99% by mass.
  • the cured product formed from the fluorinated polymer having a hydrazide group in this embodiment is produced by heating the fluorinated polymer or irradiating the fluorinated polymer with active energy rays. Heating and active energy ray irradiation may be used in combination. In particular, it is preferable to cure the fluoropolymer by heating.
  • the heating temperature is preferably 150 to 300 ° C, more preferably 200 to 250 ° C.
  • the heating time depends on the temperature, it is preferably 1 minute to 10 hours, more preferably 1 to 5 hours, even more preferably 2 to 4 hours.
  • a molded object can be manufactured using the curable composition containing a fluoropolymer, or the coating composition containing a curable composition and a solvent.
  • a method for producing a molded body a method of flowing a curable composition by heating and pouring it into a mold to form a predetermined shape, and casting the curable composition onto the surface of the mold and a sheet-shaped or film-shaped molded body, For example, a method for forming a curable composition into a predetermined shape by extrusion molding, transfer molding, or the like, a method for secondary processing such as cutting or bending the formed sheet or film into a predetermined shape, or the like.
  • a coating composition When producing a thin film-shaped molded body or a thin film-shaped molded body integrated with a substrate, it is preferable to use a coating composition.
  • the coating composition can be applied by spin coating, wipe coating, spray coating, squeegee coating, dip coating, die coating, ink jet, flow coating, roll coating, casting, Langmuir / Blodget Method, gravure coating method and the like.
  • a cured product of the fluoropolymer is useful as a sealing material or a lens for a high-power LED because it is free from foaming, has a high visible light transmittance of 400 nm or more, and has no light deterioration.
  • the molecular structure has essentially no absorption at a wavelength of 300 to 400 nm, so that it is useful as a translucent sealing material or lens for ultraviolet LEDs having emission wavelengths of 365, 380, and 405 nm.
  • Example 1 is an example and Examples 2 and 3 are comparative examples. Each example was evaluated according to the method described below.
  • ⁇ UV-LED lighting test> Using a constant current power supply (manufactured by Sanhayato), 300 mA of electricity was applied at room temperature without installing a heat sink, and the output of the LED was measured using a small integrating sphere-fiber multichannel spectrometer USB2000 (manufactured by Ocean Optics). .
  • the ratio of the unit (b1) is estimated to be a molar ratio of 0.3 from the charging ratio with the unit (a1).
  • the mass average molecular weight of the fluoropolymer P2 is the same as that of the fluoropolymer P1, and is the same as that of the fluoropolymer P1.
  • Example 1 Cured product of fluoropolymer P2
  • 0.7 g of fluoropolymer P2 was placed on a 5 cm square glass plate and heated and degassed at 150 ° C. in a vacuum oven. After returning to normal pressure, a spacer frame having a thickness of 0.5 mm is placed around P2, a fluororesin release film and a glass plate are successively placed thereon, and a 150 g weight is further placed thereon. Left to stand. After that, it was taken out from the oven and naturally cooled to obtain an elliptical film having a thickness of 0.5 mm. The release film was peeled from the elliptical film together with the glass plate placed thereon, and then heated to 200 ° C.
  • the elliptical film was peeled from the glass plate on which it was placed to obtain a colorless, transparent and elliptical cured film.
  • the light transmittance was measured, it was 90% at a wavelength of 400 nm and 87% at a wavelength of 365 nm.
  • a small piece of uncured fluoropolymer P2 film is placed on a cup-shaped aluminum package on which a 1W type UV-LED manufactured by Nitride Semiconductor (emission wavelength: 365 nm) is wire-bonded, and heated to 170 ° C. in a vacuum oven. Then, it was made to flow by its own weight while degassing to mold the recess of the package. After taking out from the vacuum oven, the UV-LED was sealed by heating at 200 ° C. for 30 minutes in an N 2 atmosphere and further heating and curing at 250 ° C. for 2 hours.
  • the output at the start of 365 nm UV was about the same as the unsealed package, but the output increased by 15% in about 50 hours. The output level was maintained for 1000 hours.
  • the fluoropolymer Q1 was soluble in AK-225cb and AC-2000, and insoluble in methanol, acetone and THF.
  • the fluoropolymer Q1 and hydrazine monohydrate are reacted in the same manner as in Production Example 1 for a total reaction time of 3 hours, and from 1/2 of the unit (a1) of the fluoropolymer Q1 to the unit (a2 ) Was obtained to obtain a fluoropolymer Q2.
  • the mass average molecular weight of the fluoropolymer Q2 is the same as that of the fluoropolymer Q1.
  • Example 2 Cured product of fluoropolymer Q2
  • 0.7 g of the fluoropolymer Q2 was placed on a 5 cm square glass plate and heated and degassed at 130 ° C. in a vacuum oven. After returning to normal pressure, a spacer frame with a thickness of 0.5 mm is placed around the fluoropolymer Q2, a release film made of fluororesin and a glass plate are sequentially placed thereon, and a weight of 150 g is further placed thereon. And left to stand for 10 minutes. After that, it was taken out from the oven and naturally cooled to obtain an elliptical film having a thickness of 0.5 mm.
  • the release film placed on the fluoropolymer was peeled off together with the glass plate placed thereon, and then heated to 200 ° C. in an N 2 atmosphere, and then foamed vigorously.
  • the fluoropolymer Q2 was heated and degassed at 130 ° C. and then allowed to stand to produce an uncured elliptical film.
  • the resulting uncured elliptical film was heated at 150 ° C. for 1 hour.
  • the mixture was further heated to 250 ° C. and heated for 2 hours. After cooling, the elliptical film was peeled from the glass plate on which it was placed to obtain a transparent cured film having surface wrinkles and haze.
  • the unit (a1) was converted to the unit (a2).
  • methanol was added to the remaining reaction solution, a polymer precipitated.
  • the precipitated polymer was vacuum dried at 60 ° C. to obtain 3.8 g of a fluoropolymer R2.
  • Example 3 Cured product of fluoropolymer R2
  • 0.7 g of the fluoropolymer R2 was placed on a 5 cm square glass plate and heated and deaerated at 150 ° C. in a vacuum oven. After returning the inside of the vacuum oven to normal pressure, a spacer frame with a thickness of 0.5 mm is placed around the fluorine-containing polymerization R2, and a fluororesin release film and a glass plate are sequentially placed thereon, and further from above A 150 g weight was placed and allowed to stand for 10 minutes.
  • the fluorine-containing polymerization R2 was taken out of the oven and naturally cooled to obtain an elliptical film having a thickness of 0.5 mm as a cured product of the fluorine-containing polymerization R2.
  • the release film was peeled off from the elliptical film together with the glass plate placed on the top, it was heated to 200 ° C. in an N 2 atmosphere, held for 30 minutes, further heated to 250 ° C. and heated for 3 hours. .
  • the elliptical film was peeled from the glass plate on which it was placed to obtain a colorless, transparent and elliptical cured film.
  • the light transmittance was measured, it was 88% at a wavelength of 400 nm and 80% at 365 nm, and the UV transmittance was slightly lower than the cured product of Example 1.
  • the UV-LED was sealed by heating at 200 ° C. for 30 minutes in an N 2 atmosphere and further curing at 250 ° C. for 2 hours.
  • the output of 365 nm UV was 10% lower than that of the unsealed one, and foaming occurred when the energization was performed for 300 hours, and the output was halved.
  • Example 1 since the fluoropolymer of this embodiment contains the unit (2) as a branched structure that contributes to the formation of a crosslinking group in addition to the unit (1) that is a crosslinking group, the melt fluidity It can be seen that the LED can be sealed without foaming and the melt moldability is excellent. Furthermore, it can be seen that the cured product obtained from the fluoropolymer of this embodiment is excellent in heat and light resistance as a result of a 1000 hour continuous lighting test. On the other hand, in Example 2 in which the content ratio of the unit (1) is high and the unit (2) is not contained, curing occurs at a temperature lower than that in Example 1, but curing proceeds when being heated and flow-molded into the LED. It was difficult to suppress foaming. In addition, the fluoropolymer of Example 3 having the same unit (1) content as Example 1 and no unit (2) was moldable without foaming, but foaming occurred during continuous lighting. This shows that heat resistance is inferior due to insufficient crosslinking.
  • a fluorine-containing polymer that can be cured by heat and has both melt moldability and heat resistance and UV resistance.
  • the fluorine-containing polymer of this embodiment is useful as an optical material, an element sealing material, an inorganic EL phosphor dispersion material, an optical waveguide material, a heat- and chemical-resistant sealing material, an adhesive, and a coating material.
  • the coating composition of this embodiment is useful as a mold release agent, antifouling coating material, chemical-resistant protective coating material, and the like. Since the fluoropolymer of the present invention can be UV-cured, it can be coated on a substrate having low heat resistance such as a plastic material.
  • the cured product of the fluoropolymer of this embodiment is useful as a translucent sealing material for UV-LED. It is also used as an underfill material for flip chip type elements.
  • the molded article made of a cured product of the fluoropolymer of this embodiment is useful as an optical fiber core material or cladding material, an optical waveguide core material or cladding material, or a lens material.
  • the substrate provided with the cured product of the fluoropolymer of the present embodiment is useful as a light emitting device, a semiconductor device, a solar cell device, a short wavelength light emitting device, etc., and in particular, curing of the light emitting device and the fluoropolymer. It is useful as a light-emitting device having an object.

Abstract

熱硬化が可能で溶融モールド性と耐熱耐UV性を兼ね備えた含フッ素重合体、含フッ素重合体の硬化物の製造方法およびこれを用いた発光装置を提供する。該含フッ素重合体は、下記式(1)で表される単位および下記式(2)で表される単位を含む。 (式(1)中、Rf1は、フルオロアルキレン基、または炭素-炭素原子間にエーテル性酸素原子を有する炭素数2以上のフルオロアルキレン基であり、R1、R2は、それぞれ独立に、水素原子またはアルキル基である。式(2)中、X1、X2、X3はそれぞれ独立にフッ素原子または水素原子であり、2つのQ2はそれぞれ独立に単結合またはエーテル性酸素原子であり、Rf2は炭素数1~6のフルオロアルキレン基、または炭素-炭素原子間にエーテル性酸素原子を有する炭素数2~25のフルオロアルキレン基である。)

Description

含フッ素重合体、その硬化物の製造方法および発光装置
 本発明は、含フッ素重合体、その硬化物の製造方法および発光装置に関する。
 近年、高効率照明用光源として白色LED(Light Emitting Diode、発光ダイオード)が白熱電球や蛍光灯に置き換わり実用化されている。また、紫外(UV)LEDも高出力化して、水銀ランプに換わり、種々の工業プロセスにおいて利用され始めている。白色LEDやUVLEDを用いたLEDランプでは、LED素子を外部からの物理的および化学的作用から保護するために、LED素子がシリコーン樹脂等の透光性樹脂により封止(モールド)されている。しかし、UVLEDにおいては、LEDが発する紫外線および熱により透光性樹脂が劣化する。また白色LEDにおいても、例えば、自動車のヘッドランプや屋外照明などの高出力を必要とするLEDランプでは、LED素子を封止する透光性樹脂が劣化する。このために樹脂を用いずに、ガラスのキャップや蓋を用いてLED素子を保護しており、LEDランプの構造が複雑になり、高コストになるという問題がある。
 このような、白色LEDやUVLEDなどの高出力LEDの封止のための耐熱耐光性の高い透光性樹脂として、カルボン酸アルキルエステル基、例えばCOOCH基を有する硬化性含フッ素重合体が提案されている(例えば、特許文献1参照。)。この硬化性含フッ素重合体は、活性エネルギー線の照射により硬化して、安定性、紫外光透過性に優れた硬化物が得られる。
国際公開第2015/098773号
 しかしながら、本発明者の検討によれば、特許文献1に記載の含フッ素重合体は、硬化のために紫外線(UV)照射を必要とするため、LED素子構造中にUVが照射されない影の部分がある場合には、当該部分で硬化不足が生じる不具合がある。
 本発明は、熱硬化が可能で溶融モールド性が良好であり、耐熱耐UV性と透明性の高い硬化物を与える含フッ素重合体およびその硬化物の製造方法の提供を目的とする。
 本発明は、以下[1]~[11]の構成を有する含フッ素重合体、含フッ素重合体の硬化物の製造方法、発光素子および発光装置を提供する。
 [1]下記式(1)で表わされる単位および下記式(2)で表される単位を含む含フッ素重合体。
Figure JPOXMLDOC01-appb-C000003
(式(1)中、Rf1は、フルオロアルキレン基、または炭素-炭素原子間にエーテル性酸素原子を有する炭素数2以上のフルオロアルキレン基であり、R、Rは、それぞれ独立に、水素原子またはアルキル基である。)
Figure JPOXMLDOC01-appb-C000004
 (式(2)中、X、X、Xはそれぞれ独立にフッ素原子または水素原子であり、2つのQはそれぞれ独立に単結合またはエーテル性酸素原子であり、Rf2は炭素数1~6のフルオロアルキレン基、または炭素-炭素原子間にエーテル性酸素原子を有する炭素数2~25のフルオロアルキレン基である。)
 [2]式(1)で表される単位の少なくとも一部が、-[CF-CF(O(CFCONHNH)]-である、[1]に記載の含フッ素重合体。
 [3]さらに、フルオロエチレン由来の単位を含む、[1]または[2]に記載の含フッ素重合体。
 [4]さらに、下記式(3)で表される単位(ただし、フルオロエチレン由来の単位を除く。)を含む、[1]~[3]のいずれかに記載の含フッ素重合体。
 -[CX-CY]-・・・(3)
(式(3)中、XおよびXは、それぞれ独立に、水素原子、フッ素原子または塩素原子であり、
 Yは、水素原子、フッ素原子または塩素原子であり、
 Yは、水素原子、フルオロアルキル基、炭素-炭素原子間にエーテル性酸素原子を有する炭素数2以上のフルオロアルキル基、フルオロアルコキシ基、または炭素-炭素原子間にエーテル性酸素原子を有する炭素数2以上のフルオロアルコキシ基である。)
 [5]含フッ素重合体中に含まれる単位の合計に対し、式(1)で表される単位の割合が0.1~20mol%であり、式(2)で表される単位の割合が0.05~3mol%である、[1]~[4]のいずれかに記載の含フッ素重合体。
 [6]含フッ素重合体中に含まれる単位の合計に対し、式(1)で表される単位の割合が0.1~5mol%であり、式(2)で表される単位の割合が0.05~3mol%である、[1]~[4]のいずれかに記載の含フッ素重合体。
 [7]質量平均分子量が3,000~100,000である[1]~[6]のいずれかに記載の含フッ素重合体。
 [8]質量平均分子量が5,000~100,000である[1]~[6]のいずれかに記載の含フッ素重合体。
 [9][1]~[8]のいずれかに記載の含フッ素重合体を、150~300℃で加熱することを特徴とする含フッ素重合体の硬化物の製造方法。
 [10]発光素子と、[1]~[8]のいずれかに記載の含フッ素重合体の硬化物とを備えることを特徴とする発光装置。
 [11]前記発光素子は、白色LEDまたは紫外LEDである[10]に記載の発光装置。
 本発明によれば、熱硬化が可能で溶融モールド性が良好であり、耐熱耐UV性と透明性の高い硬化物を与える含フッ素重合体および含フッ素重合体の硬化物の製造方法が提供できる。
 以下に、本発明の実施の形態を説明する。なお、本発明は下記説明に限定して解釈されない。
[本明細書における用語の意味]
 式(a)で表される化合物を化合物(a)と記す場合がある。他の式で表される化合物も同様に記す。式(b)で表される単位を単位(b)と記す場合がある。他の式で表される単位も同様に記す。
 「透光封止」とは、光を透過させる機能と封止機能とを併有する封止を意味する。
 重合体における「単位」とは、単量体が重合することによって形成する該単量体に由来する部分を意味する。単量体に由来する単位を、単に、単量体単位と記す場合がある。
 「フルオロエチレン」とは、テトラフルオロエチレン(CF=CF)の0~3個のフッ素原子が水素原子またはフッ素以外のハロゲン原子(例えば、塩素、臭素、ヨウ素)に置換された化合物を意味する。
 アルキル基、フルオロアルキル基、フルオロアルキレン基、フルオロアルコキシ基、フルオロアルケニル基等の炭素原子鎖を有する基は、直鎖状でもよく、分岐状でもよい。
 「フルオロアルキル基」は、アルキル基の水素原子の1個以上がフッ素原子に置換された基をいう。フルオロアルキル基中のフッ素原子の割合は、(フルオロアルキル基中のフッ素原子数)/(フルオロアルキル基と同一の炭素原子数のアルキル基中の水素原子数)×100(%)で表現した場合に50%以上であるのが好ましく、100%すなわちペルフルオロアルキル基が特に好ましい。フルオロアルキレン基、フルオロアルコキシ基についても同様であり、ペルフルオロアルキレン基、ペルフルオロアルコキシ基が好ましい。
 「硬化」とは、特に言及しない限り、架橋により硬化させることを意味する。
[含フッ素重合体]
 本実施形態の含フッ素重合体は、下記式(1)で表される単位および下記式(2)で表される単位を含む。
Figure JPOXMLDOC01-appb-C000005
(式(1)中、RおよびRは、それぞれ独立に、水素原子またはアルキル基であり、
 Rf1は、フルオロアルキレン基、または炭素-炭素原子間にエーテル性酸素原子を有する炭素数2以上のフルオロアルキレン基である。)
Figure JPOXMLDOC01-appb-C000006
 (式(2)中、X、X、Xはそれぞれ独立にフッ素原子または水素原子であり、2つのQはそれぞれ独立に単結合またはエーテル性酸素原子であり、Rf2は炭素数1~6のフルオロアルキレン基、または炭素-炭素原子間にエーテル性酸素原子を有する炭素数2~25のフルオロアルキレン基である。)
 本発明者らは単位(1)および単位(2)を有する含フッ素重合体は、加熱により分子間で-CONHNH同士が反応して架橋することを新規に見出した。本実施形態の含フッ素重合体は、-CONHNHのみで架橋するため、少ない架橋基の量で含フッ素重合体を硬化させることができる。そのため、硬化物は、透明性および耐熱性に優れ、耐光性、特に耐UV性に優れる。さらに、本実施形態の含フッ素重合体は、単位(1)および単位(2)を含有することにより、少ない架橋基の量で硬化させることができるので、LEDモールドの際に溶融流動性を損なうことなく発泡を抑えることができ、溶融モールド性にも優れる。
 本発明者らは、先に-CONHNHと-COOCHを有する含フッ素重合体を検討した。当該含フッ素重合体においては、加熱により下記式(11)で示される架橋反応が起こると考えられる。
 -CONHNH + -COOCH → -CONHNHCO-  (11)
 本実施形態の含フッ素重合体の架橋反応機構は明らかでないが、次のように考えられる。例えば、本実施形態の含フッ素重合体と同様に-CONHNHを有する化合物、例えば、フタル酸ジヒドラジドは、下記式(12)で示されるように、極性溶媒中で酸化剤により酸化カップリングすることで、ポリ(ジアシルヒドラジン)が得られることが知られている。
Figure JPOXMLDOC01-appb-C000007
 これに対し、本実施形態のフルオロアシルヒドラジド構造を側鎖に有する含フッ素重合体は、空気中で加熱することで硬化物が得られる。また、N雰囲気中においても本発明の含フッ素重合体を加熱することで硬化物が得られ、例えば150℃以上に加熱するか活性エネルギー線を照射することで、酸化剤を使用せずに硬化物が得られる。この含フッ素重合体の架橋反応機構としては、下記式(13)で示すように、酸化反応を伴うことなくヒドラジドが熱分解カップリングしてジアシルヒドラジンが形成されると考えられる。また、下記式(14)で示すように脱水環化反応によりテトラジンが形成される可能性がある。本実施形態の含フッ素重合体から硬化物を得る場合には、N雰囲気中で加熱するのが空気中で加熱するより硬化物の着色が少ない点で好ましい。
 2-CONHNH → -CONHNHCO-   (13)
Figure JPOXMLDOC01-appb-C000008
 以下、本実施形態の含フッ素重合体に含まれる各単位について説明する。
<単位(1)>
 単位(1)は、下記式(1)で表わされる単位である。
Figure JPOXMLDOC01-appb-C000009
 単位(1)において、RおよびRは、それぞれ独立に、水素原子またはアルキル基であり、Rf1は、フルオロアルキレン基、または炭素-炭素原子間にエーテル性酸素原子を有する炭素数2以上のフルオロアルキレン基である。
 単位(1)中、Rf1がフルオロアルキレン基である場合、その炭素数は1~6が好ましく、1~4が特に好ましい。Rf1は、その炭素数が3以上の場合には、熱安定性に優れる点から直鎖構造が好ましい。フルオロアルキレン基は、熱安定性に優れる点からペルフルオロアルキレン基が好ましい。すなわち、Rf1としては、炭素数1~6のペルフルオロアルキレン基が好ましく、炭素数1~4のペルフルオロアルキレン基が特に好ましい。
 単位(1)中、Rf1が、炭素-炭素原子間にエーテル性酸素原子を有する炭素数2以上のフルオロアルキレン基である場合、Rf1の炭素数は2~10が好ましく、2~6が特に好ましい。Rf1は、その炭素数が3以上の場合には、熱安定性に優れる点から直鎖構造が好ましい。フルオロアルキレン基は、熱安定性に優れる点からペルフルオロアルキレン基が好ましい。すなわち、Rf1としては、炭素-炭素原子間にエーテル性酸素原子を有する炭素数2~10のペルフルオロアルキレン基が好ましく、炭素-炭素原子間にエーテル性酸素原子を有する炭素数2~6のペルフルオロアルキレン基が特に好ましい。
 RおよびRは、加熱硬化性に優れる点から、水素原子または炭素数1~6のアルキル基が好ましく、水素原子または炭素数1もしくは2のアルキル基がより好ましく、水素原子が特に好ましい。
 単位(1)の具体例としては、以下の単位が挙げられる。
-[CF-CF(O(CFCONHNH)]-、
-[CF-CF(O(CFCON(CH)NH)]-、
-[CF-CF(O(CFCONHNHCH)]-、
-[CF-CF(O(CFCONHNH)]-、
-[CF-CF(O(CFCON(CH)NH)]-、
-[CF-CF(O(CFCONHNHCH)]-、
-[CF-CF(O(CFCONHNH)]-、
-[CF-CF(O(CFCON(CH)NH)]-
-[CF-CF(O(CFCONHNHCH)]-、
-[CF-CF(OCFCF(CF)O(CFCONHNH)]-、
-[CF-CF(OCFCF(CF)O(CFCON(CH)NH)]-、
-[CF-CF(OCFCF(CF)O(CFCONHNHCH)]-、
-[CF-CF(OCFCF(CF)O(CFCONHNH)]-、
-[CF-CF(OCFCF(CF)O(CFCON(CH)NH)]-、
-[CF-CF(OCFCF(CF)O(CFCONHNHCH)]-
-[CF-CF(O(CFO(CFCONHNH)]-、
-[CF-CF(O(CFO(CFCON(CH)NH)]-、
-[CF-CF(O(CFO(CFCONHNHCH)]-、
-[CF-CF(O(CFO(CFCONHNH)]-、
-[CF-CF(O(CFO(CFCON(CH)NH)]-、
-[CF-CF(O(CFO(CFCONHNHCH)]-。
 入手容易の点から、単位(1)は、-[CF-CF(O(CFCONHNH)]-が特に好ましい。
 含フッ素重合体は、単位(1)の1種を単独で含んでもよく、2種以上の単位(1)を含んでもよい。
<単位(2)>
 単位(2)は、下記式(2)で表わされる単位である。
Figure JPOXMLDOC01-appb-C000010
 単位(2)において、X、X、Xはそれぞれ独立にフッ素原子または水素原子であり、2つのQはそれぞれ独立に単結合またはエーテル性酸素原子であり、Rf2は炭素数1~6のフルオロアルキレン基、または炭素-炭素原子間にエーテル性酸素原子を有する炭素数2~25のフルオロアルキレン基である。単位(2)中の2つのXは同じでも異なってもよい。2つのX、2つのXについても同様である。また、単位(2)中の2つのQは同じでも異なってもよい。
 単位(2)において、X、X、Xはいずれもフッ素原子、またはいずれも水素原子が好ましい。X、X、Xがいずれもフッ素原子である場合には、2つのQはいずれもエーテル性酸素原子が好ましく、X、X、Xがいずれも水素原子である場合には、2つのQはいずれも単結合が好ましい。
 単位(2)において、Rf2が炭素数1~6のフルオロアルキレン基である場合、その炭素数は2以上が好ましい。Rf2は、その炭素数が3以上の場合には、熱安定性に優れる点から直鎖構造が好ましい。フルオロアルキレン基は、熱安定性に優れる点からペルフルオロアルキレン基が好ましい。すなわち、Rf2としては、炭素数1~6のペルフルオロアルキレン基が好ましく、炭素数2以上のペルフルオロアルキレン基がより好ましい。
 Rf2が、炭素-炭素原子間にエーテル性酸素原子を有する炭素数2~25のフルオロアルキレン基である場合、炭素数は2~10が好ましく、2~6が特に好ましい。Rf2は、その炭素数が3以上の場合には、熱安定性に優れる点から直鎖構造が好ましい。フルオロアルキレン基は、熱安定性に優れる点からペルフルオロアルキレン基が好ましい。すなわち、Rf2としては、炭素-炭素原子間にエーテル性酸素原子を有する炭素数2~10のペルフルオロアルキレン基が好ましく、炭素-炭素原子間にエーテル性酸素原子を有する炭素数2~6のペルフルオロアルキレン基がより好ましい。炭素-炭素原子間にエーテル性酸素原子を有する炭素数2~6のペルフルオロアルキレン基は、-(CFO)-、-(CFCFO)-、-(CFCF(CF)O)-、および-(CFCFCFO)-で表わされるペルフルオロポリエーテル単位の1種以上を含むことが好ましい。
 単位(2)の具体例としては、X、X、Xがいずれもフッ素原子であり、2つのQはいずれもエーテル性酸素原子であり、Rf2が-(CF-、-(CF-、-(CF-、-(CF-、-(CFOCF(CF)CF-、-(CFOCF(CF)CF-、-(CFCFO)-、-CFO(CFCFO)-または-CFCF(CF)O(CFOCF(CF)CF-である単位、X、X、Xがいずれも水素原子であり、2つのQはいずれも単結合であり、Rf2が-(CF-、-(CF-または-(CF-である単位が挙げられる。
 単位(2)としては、入手しやすい点から、下記式(21)、(22)で表わされる単位が特に好ましい。
Figure JPOXMLDOC01-appb-C000011
 単位(2)は、下記式(2a)で表わされる、重合性不飽和結合を2個有する含フッ素単量体を重合することにより形成できる。以下、式(2a)で表わされる含フッ素単量体を単量体(2a)ともいう。
 XC=CX-Q-Rf2-Q―CX=CX      (2a)
 式(2a)中、X、X、X、Q、Rf2は、式(2)で定義されたとおりであり、例示も好ましい範囲も同様である。
 単量体(2a)の具体例としては、以下の単量体が挙げられる。
CF=CFO(CFOCF=CF
CF=CFO(CFOCF=CF
CF=CFO(CFOCF=CF
CF=CFO(CFOCF=CF
CF=CFO(CFOCF(CF)CFOCF=CF
CF=CFO(CFOCF(CF)CFOCF=CF
CF=CFO(CFCFO)OCF=CF
CF=CFOCFO(CFCFO)OCF=CF
CF=CFOCFCF(CF)O(CFOCF(CF)CFOCF=CF
CH=CH-(CF-CH=CH
CH=CH-(CF-CH=CH
CH=CH-(CF-CH=CH
<さらなる単位>
 本実施形態の含フッ素重合体は、さらに、フルオロエチレン単位および後述する単位(3)を有してもよい。
(フルオロエチレン単位)
 フルオロエチレン単位の具体例としては、テトラフルオロエチレン(CF=CF)(TFE)、トリフルオロエチレン(CF=CHF)(TrFE)、クロロトリフルオロエチレン(CFCl=CF)、ビニリデンフルオリド(CF=CH)等に由来する単位が挙げられる。フルオロエチレン単位としては、耐光性に優れる点から、TFE単位、TrFE単位、およびクロロトリフルオロエチレン単位が好ましい。フルオロエチレン単位としては、耐熱性に優れる点からTFE単位が好ましい。フルオロエチレン単位としては、極性の高い-CONRNRH基が界面に存在しやすくなることで、含フッ素重合体の硬化物の、基材に対する接着性やぬれ性などに優れる点から、TFE単位が特に好ましい。フルオロエチレン単位としては、TFE単位ほど含フッ素重合体の結晶性が高くなく、光散乱が生じにくく、透明性が高い点から、TrFE単位、またはクロロトリフルオロエチレン単位が特に好ましい。フルオロエチレン単位としては、各種の有機溶剤に対する溶解性に優れる点から、TrFE単位が特に好ましい。上記ぬれ性とは、含フッ素重合体の表面張力が低いことにより、基材上への濡れ広がり易さを意味する。
 含フッ素重合体は、フルオロエチレン単位の1種を単独で含んでいてもよく、2種以上のフルオロエチレン単位を含んでもよい。
(単位(3))
 単位(3)は下記式(3)で表される単位(ただし、フルオロエチレン単位を除く。)である。
 -[CX-CY]-・・・(3)
 式(3)中、XおよびXは、それぞれ独立に、水素原子、フッ素原子または塩素原子であり、Yは、水素原子、フッ素原子または塩素原子であり、Yは、水素原子、フルオロアルキル基、炭素-炭素原子間にエーテル性酸素原子を有する炭素数2以上のフルオロアルキル基、フルオロアルコキシ基、炭素-炭素原子間にエーテル性酸素原子を有する炭素数2以上のフルオロアルコキシ基である。
 Yにおける、フルオロアルキル基の炭素数は、1~15が好ましく、1~6が特に好ましい。フルオロアルキル基は、熱安定性に優れる点から、ペルフルオロアルキル基が好ましく、炭素数1~6のペルフルオロアルキル基がより好ましく、-CFが特に好ましい。Yにおける、炭素-炭素原子間にエーテル性酸素原子を有する炭素数2以上のフルオロアルキル基の炭素数は2~15が好ましく、2~6が特に好ましい。熱安定性に優れる点から、炭素-炭素原子間にエーテル性酸素原子を有する炭素数2以上のペルフルオロアルキル基が好ましく、炭素-炭素原子間にエーテル性酸素原子を有する炭素数2~6のペルフルオロアルキル基が特に好ましい。
 Yにおける、フルオロアルコキシ基の炭素数は、1~15が好ましく、1~6が特に好ましい。フルオロアルコキシ基は、熱安定性に優れる点から、炭素数1~6のペルフルオロアルコキシ基が好ましく、-OCF、-OCFCF、-O(CFCF、-O(CFCFが特に好ましい。Yにおける、炭素-炭素原子間にエーテル性酸素原子を有する炭素数2以上のフルオロアルコキシ基の炭素数は2~15が好ましく、2~6が特に好ましい。フルオロアルコキシ基としては、熱安定性に優れる点から、炭素-炭素原子間にエーテル性酸素原子を有する炭素数2以上のペルフルオロアルコキシ基が好ましく、炭素-炭素原子間にエーテル性酸素原子を有する炭素数2~6のペルフルオロアルコキシ基がより好ましく、-OCFCF(CF)O(CFCFが特に好ましい。
 単位(3)の具体例としては、下記単位が挙げられる。
 -[CH-CH]-、-[CF-CF(CF)]-、-[CH-CF(CF)]-、-[CF-CF(OCF)]-、-[CF-CF(OCFCF)]-、-[CF-CF(O(CFCF)]-、-[CF-CF(O(CFCF)]-、-[CF-CF(OCFCF(CF)O(CFCF)]-、-[CF-CF(OCFCFOCFCFOCFCF)]-。
 含フッ素重合体のガラス転移温度が低く、流動性に優れ、成形性に優れる点、および含フッ素重合体を硬化させる際に、運動性が高く分子間の架橋反応が進行しやすい点から、単位(3)は、-[CH-CH]-、-[CF-CF(CF)]-、-[CF-CF(OCF)]-、-[CF-CF(O(CFCF)]-、-[CF-CF(OCFCF(CF)O(CFCF)]-または-[CF-CF(OCFCFOCFCFOCFCF)]-が好ましい。
 含フッ素重合体は、単位(3)の1種を単独で含んでもよく、2種以上の単位(3)を含んでもよい。
 単位(3)は、化合物(3a)を単量体として重合することにより形成できる。
 CX=CY・・・(3a)
 式(3a)中、X、X、YおよびYは、式(3)で定義されたとおりであり、例示も好ましい範囲も同様である。
<好ましい含フッ素重合体の態様>
 本実施形態の含フッ素重合体は、本発明の効果を損なわない限り、単位(1)、単位(2)および任意に含有されるフルオロエチレン単位と単位(3)以外にも、例えば、-COOR、-C(O)NRORで表わされる基(Rはアルキル基であり、R、Rはそれぞれ独立に水素原子またはアルキル基である。)等を有する単位を含んでもよい。本実施形態の含フッ素重合体は、単位(1)、単位(2)および任意に含有されるフルオロエチレン単位と単位(3)のみからなることが好ましい。硬化性を向上させる点で、含フッ素重合体に含まれる単位(1)の数は、含フッ素重合体1分子あたり3個以上が好ましい。
 本実施形態の含フッ素重合体の全単位中、単位(1)の割合は0.1mol%以上が好ましい。また、単位(1)の割合は、20mol%以下が好ましく、10mol%以下がより好ましい。含フッ素重合体の全単位中、単位(1)の割合は、含フッ素重合体の分子量に応じて、含フッ素重合体1分子あたりの個数が上記好ましい数(3個以上)となるように調節することができる。例えば、単位(1)の割合は、含フッ素重合体の分子量が小さい場合には、多くして、分子量が大きい場合は少なくする。具体的には、単位(1)の割合は、含フッ素重合体の分子量が3,000~10,000未満程度では、含フッ素重合体の全単位中1~10mol%にすることができる。また、含フッ素重合体の分子量が比較的大きく、10,000~10,0000程度では、単位(1)の割合は0.1~5mol%が好ましく、0.5~2mol%がより好ましく、1~1.5mol%が特に好ましい。
 単位(1)の割合が前記範囲の下限値以上であれば、含フッ素重合体が-COOCHを含有しなくても加熱硬化が起こりやすく、溶剤に不溶な硬化物が得られる傾向がある。単位(1)の割合が前記範囲の上限値以下であれば、含フッ素重合体が熱硬化する際の着色や発泡が抑えられて透明な硬化物が得られる。
 本実施形態の含フッ素重合体の全単位中、単位(2)の割合は0.05~3mol%が好ましく、0.1~1mol%がより好ましい。含フッ素重合体は、単位(2)を含むため、単位(1)の含有割合を減らすことが可能である。そのため、熱硬化の際の着色や発泡を抑えられるので、本実施形態の含フッ素重合体は、特にLED封止材として好適である。
 本実施形態の含フッ素重合体がフルオロエチレン単位を有する場合、全単位中、フルオロエチレン単位の割合は、50~90mol%が好ましく、60~80mol%がより好ましい。特に、フルオロエチレン単位がTFE単位の場合、その割合は50~70mol%が好ましい。下限値以上であれば、耐光性に加えて、フルオロエチレン単位に基づく各種特性(例えば、フルオロエチレン単位がTFE単位の場合には耐熱性や基材に対する接着性やぬれ性などを向上させやすい。上限値以下であれば結晶性による光散乱が抑えられ、含フッ素重合体をUV-LEDの封止に用いる場合にUV光の透過性が高く、UV-LEDの出力を確保できる。
 含フッ素重合体中の単位(1)、単位(3)およびフルオロエチレン単位の含有量は、19F-NMR、H-NMR測定により算出できる。単位(2)の含有量の測定は困難であるため、単位(1)と単位(2)とで重合に関与する構造CF=CFO-CF-が共通であるため、これらの重合反応性が同程度とみなして、単位(2)の含有量を、単位(1)を形成する単量体(後述する単量体(1a))と単量体(2a)との仕込み割合から、含フッ素重合体中の単位(1)の含有量を用いて推算する。
(分子量)
 本実施形態の含フッ素重合体の質量平均分子量は、3,000~100,000が好ましく、5,000~100,000がより好ましい。質量平均分子量は、10,000~50,000がさらに好ましく、10,000~30,000が特に好ましい。
 注型等で含フッ素重合体を成形する場合には、含フッ素重合体の質量平均分子量は3,000~50,000が好ましく、5,000~50,000がより好ましく、10,000~30,000が特に好ましい。含フッ素重合体の質量平均分子量がこの範囲の下限値以上であれば硬化物は機械的強度や耐熱性に優れる傾向があり、この範囲の上限値以下であれば成形時に含フッ素重合体の流動性が確保される傾向がある。特に、SMDタイプLED(カップ状リフレクタ付きのLEDモジュール)の封止の際には、流動性が重要となる。質量平均分子量が大きすぎるとSMDタイプLEDをモールドする際の溶融温度が高くなり、硬化反応速度が速まるため、溶融流動性が継時的に低下し、脱泡が困難になる。含フッ素重合体の質量平均分子量が、この範囲にあると、含フッ素重合体はSMDタイプLEDの封止に適する。
 含フッ素重合体をシート等の成形体として使用する場合には、含フッ素重合体の質量平均分子量は10,000~100,000が好ましく、20,000~50,000が特に好ましい。例えば、COBタイプLED(リフレクタが無く、複数の素子を封止樹脂で一括封止されるLED。)の封止の際には、シート状の封止樹脂を用いて加熱封止を行う場合がある。この場合、LED素子が実装された基板にシート状の含フッ素重合体を重ね合わせ、100~150℃に加熱流動させてLED素子に含フッ素重合体を被せ、架橋させることによりLED素子を封止できる。この際に隙間や泡を残さずに封止するためには含フッ素重合体のシートを加圧しながら被せることが好ましい。含フッ素重合体の質量平均分子量が、この範囲にあると、含フッ素重合体は上記したようなCOBタイプLEDの封止に適する。
 質量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)により、PMMA(ポリメチルメタクリレート)換算分子量として求めることができる。
[含フッ素重合体の製造方法]
 含フッ素重合体は、下記式(1a)で表される単位および単位(2)を含む含フッ素重合体と、下記式(5)で表されるヒドラジン化合物(以下、「ヒドラジン化合物」とも記す。)と反応させる方法により得られる。
Figure JPOXMLDOC01-appb-C000012
 HRN-NRH      (5)
 式(1a)中、Rはアルキル基であり、Rf1は、式(1)で定義されたとおりであり、例示も好ましい範囲も同様である。式(5)中、RおよびRは、式(1)で定義されたとおりであり、例示も好ましい範囲も同様である。
 単位(1a)を有する含フッ素重合体とヒドラジン化合物との反応により単位(1)に転換する反応の完結は、-COOR基の赤外(IR)吸収が消失することで確認できる。
(単位(1a)を含む含フッ素重合体)
 本実施形態の単位(1a)を含む含フッ素重合体は、前記した単位を形成する単量体を公知の方法(例えば国際公開第2015/098773号に記載の方法)で重合させることにより得られる。
(ヒドラジン化合物)
 ヒドラジン化合物としては、ヒドラジン、ヒドラジン・1水和物、メチルヒドラジン、1,2-ジメチルヒドラジンが挙げられる。ヒドラジン化合物としては、安全性および得られる含フッ素重合体の加熱硬化性がより優れる点から、ヒドラジン・1水和物が好ましい。反応に供されるヒドラジン化合物の形態は、水溶液でもよく塩でもよい。ヒドラジン化合物は、市販品を用いることができる。
(反応条件)
 ヒドラジン化合物の使用量は、単位(1a)を含む含フッ素重合体の-COORで表される基1モルに対して、1~20モルが好ましく、1.2~10モルがより好ましく、1.5~5モルが特に好ましい。
 単位(1a)を有する含フッ素重合体とヒドラジン化合物との反応は、溶媒の存在下で行うことができる。溶媒としては、原料成分(単位(1a)および単位(2)を含む含フッ素重合体、ヒドラジン化合物)を溶解するものが好ましい。少なくとも単位(1a)および単位(2)を含む含フッ素重合体を溶解する含フッ素溶媒がより好ましい。さらに、ヒドラジン化合物を分散させるために含フッ素溶媒にアルコールを添加してもよい。
 含フッ素溶媒は、フッ素および炭素を含み、塩素、酸素および水素を含んでもよい。含フッ素溶媒として、例えば、フッ素化アルカン、フッ素化芳香族化合物、フルオロアルキルエーテル、フッ素化アルキルアミン、フルオロアルコール等が挙げられる。
 フッ素化アルカンの炭素数は4~8個が好ましい。フッ素化アルカンの市販品としては、例えばCFCHCFH(HFC-245fa)、CFCHCFCH(HFC-365mfc)、ペルフルオロヘキサン、1H-ペルフルオロヘキサン、ペルフルオロオクタン、C13H(旭硝子社製、アサヒクリン(登録商標)AC-2000)、C13(旭硝子社製、アサヒクリン(登録商標)AC-6000)、CCHFCHFCF(ケマーズ社製、バートレル(登録商標)XF)等が挙げられる。
 フッ素化芳香族化合物としては、例えばヘキサフルオロベンゼン、トリフルオロメチルベンゼン、ペルフルオロトルエン、ビス(トリフルオロメチル)ベンゼン等が挙げられる。
 フルオロアルキルエーテルの炭素数は4~12個が好ましい。フルオロアルキルエーテルの市販品としては、例えばCFCHOCFCFH(旭硝子社製、アサヒクリン(登録商標)AE-3000)、COCH(3M社製、ノベック(登録商標)7100)、COC(3M社製、ノベック(登録商標)7200)、CCF(OCH)C(3M社製、ノベック(登録商標)7300)等が挙げられる。
 フッ素化アルキルアミンとしては、例えばペルフルオロトリプロピルアミン、ペルフルオロトリブチルアミン等が挙げられる。
 フルオロアルコールとしては、例えば2,2,3,3-テトラフルオロプロパノール、2,2,2-トリフルオロエタノール、ヘキサフルオロイソプロパノール等が挙げられる。
 含フッ素溶媒として、その他に、ジクロロペンタフルオロプロパン(HCFC-225)、ペルフルオロ(2-ブチルテトラヒドロフラン)等が挙げられる。ジクロロペンタフルオロプロパンの市販品としてAK-225cb(旭硝子社製)が挙げられる。
 反応は、例えば上記含フッ素溶媒に、単位(1a)および単位(2)を含む含フッ素重合体を溶解させ、0~30℃で、ヒドラジン化合物を添加して行うことが好ましい。これをさらに、30~100℃に加熱して、1分~10時間反応させることによって、目的の含フッ素重合体が得られる。
[硬化性組成物、コーティング組成物]
 本実施形態の含フッ素重合体の硬化物は、前記含フッ素重合体のみを使用して製造できる。また、前記含フッ素重合体を含む硬化性組成物(ただし、溶媒は含まない。)や、前記硬化性組成物および溶媒を含むコーティング組成物から製造できる。
 硬化性組成物中の含フッ素重合体以外の成分としては、無機粒子、シランカップリング剤、フルオロポリエーテル化合物等が挙げられ、これらの成分は硬化物の透明性に著しい影響を与えない範囲で添加できる。ここで、シランカップリング剤およびフルオロポリエーテル化合物は、例えば、国際公開第2015/098773号に記載されるものが挙げられる。
 無機粒子としては、シリカ、チタニア、ジルコニア、アルミナ等の金属酸化物や各種蛍光体粒子が好ましい。無機粒子の直径は、1nm~10μmが好ましく、光散乱を抑えて組成物の透明性を確保する点から1nm~1μmが特に好ましい。無機粒子の含有量は、硬化物の屈折率が高まる点から、含フッ素重合体の100質量部に対して20~200質量部が好ましく、50~100質量部が特に好ましい。無機粒子の含有量が前記範囲の下限値以上であれば、硬化物の屈折率がより高く、前記範囲の上限値以下であれば、成形性に優れる。
 コーティング組成物中の溶媒としては、前記含フッ素溶媒が挙げられる。コーティング組成物は、含フッ素重合体が析出しない範囲でアルコールを含んでもよい。
 コーティング組成物中の固形分の含有量は1~99質量%が好ましい。コーティング組成物中の含フッ素重合体の含有量は1~99質量%が好ましい。
[含フッ素重合体から形成される硬化物の製造方法]
 本実施形態におけるヒドラジド基を有する含フッ素重合体から形成される硬化物は、該含フッ素重合体を加熱するか、該含フッ素重合体に活性エネルギー線を照射する方法で製造される。加熱および活性エネルギー線照射は、併用してもよい。とくに、含フッ素重合体を加熱して硬化させることが好ましい。含フッ素重合体を加熱して硬化させる場合、加熱温度は、150~300℃が好ましく、200~250℃がより好ましい。加熱時間は温度に依存するが、1分~10時間が好ましく、1~5時間がより好まく、2~4時間がさらに好ましい。
[成形体の製造方法]
 成形体は、含フッ素重合体を含む硬化性組成物、または硬化性組成物および溶媒を含むコーティング組成物を使用して製造できる。成形体の製造方法としては、硬化性組成物を加熱により流動させて、型に流し込み所定の形状とする方法、硬化性組成物を型の表面にキャストしてシート状やフィルム状の成形体とする方法、押出成形、トランスファー成形等により硬化性組成物を所定の形状に成形する方法、成形されたシートやフィルムを所定の形状に切断する、折り曲げる等の二次加工する方法等が挙げられる。
 薄膜状の成形体や基材と一体化した薄膜状成形体を製造する際にはコーティング組成物を使用することが好ましい。
 コーティング組成物の塗布方法としては、スピンコート法、ワイプコート法、スプレーコート法、スキージーコート法、ディップコート法、ダイコート法、インクジェット法、フローコート法、ロールコート法、キャスト法、ラングミュア・ブロジェット法、グラビアコート法等が挙げられる。
[含フッ素重合体の硬化物]
 含フッ素重合体の硬化物は、発泡がなく、400nm以上の可視光の透過性が高くかつ光劣化が無いため、高出力LEDの、封止材やレンズとして有用である。また、波長300~400nmにおいて本質的に吸収がない分子構造のため、発光波長365、380、405nmの紫外LEDの、透光封止材やレンズとしても有用である。
 以下、実施例および比較例を示して本発明を詳細に説明する。ただし、本発明は以下の記載によって限定されない。例1が実施例、例2および3が比較例である。各例の評価は、以下に記載の方法にしたがった。
[評価方法]
<質量平均分子量>
 含フッ素重合体P1、Q1、R1の質量平均分子量は、CFClCFCHClF(旭硝子社製、商品名:AK-225cb)を溶媒として用いて、ゲルパーミエーションクロマトグラフィ(GPC)によりPMMA(ポリメチルメタクリレート)換算分子量として算出した。
<含フッ素重合体中の-COOCH基含量>
 含フッ素重合体中の-COOCH基含量は、19F-NMRから求めた。
<弾性率>
 各例で製造したフィルムを用い、日立ハイテク社製TMA/EXSTAR SS7100の粘弾性解析モードにより測定した。測定温度範囲:-40℃~200℃、昇温速度:5℃/分、周波数:0.05Hz。
<UV-LED点灯試験>
 定電流電源装置(サンハヤト社製)を用いてヒートシンクを設置せずに室温で300mA通電して、LEDの出力を小型積分球-ファイバーマルチチャンネル分光器USB2000(オーシャンオプティクス社製)を用いて測定した。
[単位]
 以下の製造例で言及する単位は以下の通りである。
Figure JPOXMLDOC01-appb-C000013
[製造例1:(a2)単位および(b1)単位を有する含フッ素重合体P2の製造]
 内容積が1Lの撹拌機付きステンレス鋼製オートクレーブを真空脱気したのち、重合開始剤としてパーブチルPV(50質量%AK-225cb溶液:日油社製)の11.2g、CF=CFOCFCFCFCOOCHの18.7g、CF=CFOCFCFCFOCF=CFの4.2g、CF=CFOCFCFCF(以下、「PPVE」とも記す。)の412.7gおよびAC-2000の517.2gを仕込んだ。撹拌しながらTFEの48.7gを圧入した後、内温を60℃まで昇温して重合を開始した。オートクレーブ内の圧力を0.47MPaで維持した状態で、オートクレーブ内にTFEを追加しながら3時間重合を行った。TFEの全仕込み量は104.9gであった。
 オートクレーブ内を冷却した後、内容物を5Lのガラスビーカに移して、撹拌しながらAE-3000の2200gを添加し、これにより含フッ素重合体を析出させた。上澄み液を除去した後、乾燥することにより含フッ素重合体P1の125.0gを得た。含フッ素重合体P1はAK-225cb、AC-2000に可溶であり、メタノール、アセトン、テトラヒドロフラン(以下、「THF」とも記す。)には不溶であった。含フッ素重合体P1の単位組成は単位(a1):単位(c1):単位(d1)=1.3:68.8:29.9(モル比)であり、質量平均分子量は32,700であった。単位(b1)の割合は単位(a1)との仕込み比率からモル比0.3と推定される。
 含フッ素重合体P1の4gをAC-2000の22.8gに溶解した後、ヒドラジン・1水和物(純度79%、東京化成社製)をメタノールで5倍に希釈した溶液の0.17gを添加して激しく撹拌した。その後、40℃で2時間撹拌した後、メタノールの0.2gを添加して、さらに40℃で5時間加熱した。反応液の一部をガラス板上に流延して60℃加熱により溶媒を揮発させて、厚さが50μmのフィルムを製造した。赤外吸収(IR)を測定したところ単位(a1)中の-COOCH基のC=Oに基づく1,794cm-1の吸収が消失し、-CONHNH基のC=Oに基づく1,718cm-1の吸収が新たに生成したことから、単位(a1)が単位(a2)に変換されたことを確認した。反応液にメタノールを添加したところ沈殿が生成した。沈殿物を60℃で真空乾燥したところ、含フッ素重合体P2の3.8gを得た。-COOCH基と-CONHNH基は分子量が同じため、含フッ素重合体P2の質量平均分子量は含フッ素重合体P1と変わらず、含フッ素重合体P1と同じである。
[例1:含フッ素重合体P2の硬化物]
 含フッ素重合体P2の0.7gを5cm角ガラス板上に載せ、真空オーブン中、150℃で加熱脱気した。常圧に戻したのち、厚み0.5mmのスペーサー枠をP2の周囲に設置し、その上にフッ素樹脂製離形フィルムおよびガラス板を順次載せて、さらにその上から150gのおもりを載せて10分静置した。そののちオーブンから取り出して自然冷却して厚さ0.5mmの楕円状フィルムを得た。この楕円状フィルムから離形フィルムをその上に載せたガラス板ごと剥離したのち、N雰囲気中、200℃まで昇温加熱し、30分間保持した。さらに250℃まで昇温して2時間加熱した。冷却したのち、楕円状フィルムを、これを載せたガラス板から剥離して、無色透明で楕円形の硬化したフィルムを得た。光透過率を測定したところ、波長400nmにおいて90%、365nmにおいて87%であった。
 硬化フィルムの粘弾性を測定したところ、5℃付近にガラス転移温度(Tg)に相当する弾性率の低下が観測され、かつTg以上の温度では少なくとも200℃までほぼ一定となるゴム状平たん部が現れることから、250℃の加熱により架橋反応が起こったことを確認した。
 ナイトライドセミコンダクター社製1WタイプUV-LED(発光波長365nm)をワイヤーボンド実装したカップ状アルミパッケージに未硬化の含フッ素重合体P2のフィルムの小片を載せて、真空オーブン中で170℃に加熱溶融して脱気しながら自重により流動させてパッケージの凹部をモールドした。真空オーブンより取り出したのち、N雰囲気中で200℃、30分加熱し、さらに250℃で2時間加熱硬化することによりUV-LEDの封止を行った。該UV-LEDパッケージをアルミ配線基板にハンダ付けして300mAで連続点灯したところ、365nmUVの開始時の出力が未封止のパッケージと同程度であったが、50時間程度で15%出力が上昇して、その出力レベルを1000時間維持した。
[製造例2:含フッ素重合体Q2の製造]
 内容積が200mLの撹拌機付きステンレス鋼製オートクレーブに、重合開始剤としてV601(和光純薬社製)の0.1gを仕込み減圧脱気した後、CF=CFOCFCFCFCOOCHの20g、PPVEの40g、AC-2000の103gを仕込んだ。オートクレーブの内容物を撹拌しながら、TFEの12gを圧入した後、内温を80℃まで昇温して重合を開始した。オートクレーブ内の圧力を0.72MPaで維持しつつTFEを追加しながら6時間重合を行った。TFEの全仕込み量は28.3gであった。
 オートクレーブ内を冷却した後、内容物を500mLのガラスビーカに移して、撹拌しながらメタノールの200gを添加して含フッ素重合体を析出させた。上澄み液を除去した後、乾燥することにより含フッ素重合体Q1の20.6gを得た。含フッ素重合体Q1はAK-225cb、AC-2000に可溶であり、メタノール、アセトン、THFには不溶であった。含フッ素重合体Q1の組成は、単位(a1):単位(c1):単位(d1)=8.0:75.7:16.3(モル比)であり、質量平均分子量は21,700であった。含フッ素重合体Q1とヒドラジン・1水和物を、製造例1と同様な方法で反応時間を合計3時間として反応させ、含フッ素重合体Q1の単位(a1)の1/2から単位(a2)を生成させて含フッ素重合体Q2を得た。含フッ素重合体Q2の質量平均分子量は含フッ素重合体Q1と同じである。
[例2:含フッ素重合体Q2の硬化物]
 含フッ素重合体Q2の0.7gを5cm角ガラス板上に載せ、真空オーブン中、130℃で加熱脱気した。常圧に戻したのち、厚み0.5mmのスペーサー枠を含フッ素重合体Q2の周囲に設置し、その上にフッ素樹脂製離形フィルムおよびガラス板を順次載せて、さらにその上から150gのおもりを載せて10分静置した。そののちオーブンから取り出して自然冷却して厚さ0.5mmの楕円状フィルムを得た。含フッ素重合体の上に乗せた離形フィルムをその上に載せたガラス板ごと剥離したのち、N雰囲気中、200℃まで昇温加熱したところ激しく発泡した。再度、上記同様に含フッ素重合体Q2を130℃で加熱脱気した後静置して、未硬化の楕円状フィルムを作成し、得られた未硬化の楕円状フィルムを150℃、1時間加熱し、さらに250℃まで昇温して2時間加熱した。冷却したのち、楕円状フィルムを、これを載せたガラス板から剥離して、表面のしわとヘイズのある透明な硬化フィルムを得た。
 また、含フッ素重合体Q2を用いて例1と同様なUV-LEDを用いて封止を試みたが、150℃加熱溶融でモールドする際に発泡のため減圧脱気できず、泡が残ったまま硬化したため365nmUVの出力が半分程度となった。
[製造例3:含フッ素重合体R2の製造]
 内容積が1Lの撹拌機付きステンレス鋼製オートクレーブ真空脱気したのち、重合開始剤としてパーブチルPVの4.5g、CF=CFOCFCFCFCOOCHの25.0g、PPVEの407.9gおよびAC-2000の514.2gを仕込んだ。撹拌しながらTFEの48.4gを圧入した後、内温を60℃まで昇温して重合を開始した。オートクレーブ内の圧力を0.49MPaで維持しつつTFEを追加しながら4時間重合を行った。TFEの全仕込み量は97.2gであった。
 オートクレーブを冷却した後、内容物を5Lのガラスビーカに移して、撹拌しながらAE-3000の2200gを添加して含フッ素重合体を析出させた。上澄み液を除去した後、乾燥することにより含フッ素重合体R1の107.1gを得た。含フッ素重合体R1はAK-225cb、AC-2000に可溶であり、メタノール、アセトン、THFには不溶であった。含フッ素重合体R1の単位組成は単位(a1):単位(c1):単位(d1)=1.7:67.6:30.7(モル比)であり、質量平均分子量は39,400であった。
 含フッ素重合体R1の4gをAC-2000の22.8gに溶解した後、ヒドラジン・1水和物(純度79%、東京化成社製)をメタノールで5倍に希釈した溶液の0.27gを添加して激しく撹拌した。40℃で2時間撹拌した後、メタノールの0.3gを添加して、さらに40℃で6時間加熱した。反応液の一部をガラス板上に流延して60℃で加熱することにより溶媒を揮発させて、厚さが50μmのフィルムを製造し、その赤外吸収(IR)を測定した。その結果、単位(a1)中の-COOCH基のC=Oに基づく1,794cm-1の吸収が消失し、-CONHNH基のC=Oに基づく1,718cm-1の吸収が新たに生成したことから、単位(a1)が単位(a2)に変換されたこと確認した。残る反応液にメタノールを添加したところ重合体が沈殿した。沈殿した重合体を60℃で真空乾燥し、含フッ素重合体R2の3.8gを得た。
[例3:含フッ素重合体R2の硬化物]
 含フッ素重合体R2の0.7gを5cm角ガラス板上に載せ、真空オーブン中、150℃で加熱脱気した。真空オーブン内を常圧に戻したのち、厚み0.5mmのスペーサー枠を含フッ素重合R2の周囲に設置し、その上にフッ素樹脂製離形フィルムおよびガラス板を順次載せて、さらにその上から150gのおもりを載せて10分静置した。その後、含フッ素重合R2をオーブンから取り出して自然冷却し、含フッ素重合R2の硬化物として厚さ0.5mmの楕円状フィルムを得た。楕円状フィルムから離形フィルムをその上部に載せたガラス板ごと剥離したのち、N雰囲気中、200℃まで昇温加熱し、30分間保持し、さらに250℃まで昇温して3時間加熱した。冷却したのち、楕円状フィルムを、これを載せたガラス板から剥離して、無色透明で楕円形の硬化したフィルムを得た。光透過率を測定したところ、波長400nmにおいて88%、365nmにおいて80%であり、例1の硬化物よりUV透過率がやや低かった。
 また、得られた硬化フィルムの粘弾性を測定したところ、5℃付近にガラス転移温度(Tg)に相当する弾性率の低下が観測され、Tg以上の温度ではゴム状平たん部が現れたが、例1の硬化物より弾性率がやや低いことから、架橋密度がやや低かったことが分かる。
 含フッ素重合体R2を用いて例1と同様に、N雰囲気中で200℃、30分加熱し、さらに250℃で2時間加熱硬化することによりUV-LEDを封止した。300mAで通電を行ったところ、365nmUVの出力が未封止のものより10%低く、連続通電300時間行ったところで発泡が生じ、出力が半分となった。
 製造例1~3の含フッ素重合体および例1~3の硬化物について、-CONHNH基の含有量、硬化フィルムの光透過性、硬化温度、LED封止時の発泡の有無およびUV-LED点灯試験の結果を表1に示した。
Figure JPOXMLDOC01-appb-T000014
 例1の結果から、本実施形態の含フッ素重合体は、架橋基である単位(1)に加えて、架橋基形成に寄与する分岐構造としての単位(2)を含有するため、溶融流動性を損なうことなく、発泡のないLED封止が可能であり溶融モールド性に優れたことが分かる。さらに、本実施形態の含フッ素重合体から得られる硬化物は、1000時間連続点灯試験の結果、耐熱耐光性に優れていることがわかる。一方、単位(1)の含有割合が高く、単位(2)を含有しない例2では、例1よりも低い温度で硬化するが、加熱流動してLEDにモールドする際に硬化が進行してしまい発泡を抑えることが困難であった。また、例1と同程度の単位(1)の含量で単位(2)を含有しない例3の含フッ素重合体は、発泡なくモールドが可能であったが、連続点灯の途中で発泡が生じたことから、架橋不足により耐熱性が劣ることがわかる。
 本発明によれば、熱硬化が可能で溶融モールド性と耐熱耐UV性を兼ね備えた含フッ素重合体の提供が可能である。
 本実施形態の含フッ素重合体は、光学材料、素子用封止材、無機EL蛍光体分散材、光導波路用材料、耐熱・耐薬品性のシーリング材、接着剤、コーティング材として有用である。
 本実施形態のコーティング組成物は、離型剤、防汚コート用材料、耐薬品保護コート用材料等に有用である。本発明の含フッ素重合体は、UV硬化することも可能であるため、プラスチック材などの耐熱性が低い基材にもコート可能である。
 本実施形態の含フッ素重合体の硬化物は、UV-LED用の透光封止材として有用である。また、フリップチップタイプ素子のアンダーフィル材としても用いられる。
 本実施形態の含フッ素重合体の硬化物からなる成形品は、光ファイバのコア材料やクラッド材料、光導波路のコア材料やクラッド材料、レンズ用材料として有用である。
 本実施形態の含フッ素重合体の硬化物を備える基材は、発光素子、半導体素子、太陽電池素子、短波長光発光素子等として有用であり、特に、発光素子と、含フッ素重合体の硬化物とを有する、発光装置として有用である。

Claims (11)

  1.  下記式(1)で表わされる単位および下記式(2)で表される単位を含む含フッ素重合体。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Rf1は、フルオロアルキレン基、または炭素-炭素原子間にエーテル性酸素原子を有する炭素数2以上のフルオロアルキレン基であり、R、Rは、それぞれ独立に、水素原子またはアルキル基である。)
    Figure JPOXMLDOC01-appb-C000002
     (式(2)中、X、X、Xはそれぞれ独立にフッ素原子または水素原子であり、2つのQはそれぞれ独立に単結合またはエーテル性酸素原子であり、Rf2は炭素数1~6のフルオロアルキレン基、または炭素-炭素原子間にエーテル性酸素原子を有する炭素数2~25のフルオロアルキレン基である。)
  2.  前記式(1)で表される単位の少なくとも一部が、-[CF-CF(O(CFCONHNH)]-である、請求項1に記載の含フッ素重合体。
  3.  さらに、フルオロエチレン由来の単位を含む、請求項1または2に記載の含フッ素重合体。
  4.  さらに、下記式(3)で表される単位(ただし、フルオロエチレン由来の単位を除く。)を含む、請求項1~3のいずれか一項に記載の含フッ素重合体。
     -[CX-CY]-・・・(3)
    (式(3)中、XおよびXは、それぞれ独立に、水素原子、フッ素原子または塩素原子であり、
     Yは、水素原子、フッ素原子または塩素原子であり、
     Yは、水素原子、フルオロアルキル基、炭素-炭素原子間にエーテル性酸素原子を有する炭素数2以上のフルオロアルキル基、フルオロアルコキシ基、または炭素-炭素原子間にエーテル性酸素原子を有する炭素数2以上のフルオロアルコキシ基である。)
  5.  含フッ素重合体中に含まれる単位の合計に対し、前記式(1)で表される単位の割合が0.1~20mol%であり、前記式(2)で表される単位の割合が0.05~3mol%である、請求項1~4のいずれか一項に記載の含フッ素重合体。
  6.  含フッ素重合体中に含まれる単位の合計に対し、前記式(1)で表される単位の割合が0.1~5mol%であり、前記式(2)で表される単位の割合が0.05~3mol%である、請求項1~4のいずれか一項に記載の含フッ素重合体。
  7.  質量平均分子量が3,000~100,000である請求項1~6のいずれか一項に記載の含フッ素重合体。
  8.  質量平均分子量が5,000~100,000である請求項1~6のいずれか一項に記載の含フッ素重合体。
  9.  請求項1~8のいずれか一項に記載の含フッ素重合体を、150~300℃で加熱することを特徴とする含フッ素重合体の硬化物の製造方法。
  10.  発光素子と、請求項1~8のいずれか一項に記載の含フッ素重合体の硬化物とを備えることを特徴とする発光装置。
  11.  前記発光素子は、白色LEDまたは紫外LEDである請求項10の発光装置。
PCT/JP2018/005274 2017-03-01 2018-02-15 含フッ素重合体、その硬化物の製造方法および発光装置 WO2018159307A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019502866A JP6927283B2 (ja) 2017-03-01 2018-02-15 含フッ素重合体、その硬化物の製造方法および発光装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-038283 2017-03-01
JP2017038283 2017-03-01

Publications (1)

Publication Number Publication Date
WO2018159307A1 true WO2018159307A1 (ja) 2018-09-07

Family

ID=63370867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005274 WO2018159307A1 (ja) 2017-03-01 2018-02-15 含フッ素重合体、その硬化物の製造方法および発光装置

Country Status (3)

Country Link
JP (1) JP6927283B2 (ja)
TW (1) TW201835120A (ja)
WO (1) WO2018159307A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019073934A1 (ja) * 2017-10-12 2019-04-18 Agc株式会社 含フッ素弾性共重合体組成物、塗料、および塗装物品
US10759887B2 (en) 2017-03-02 2020-09-01 AGC Inc. Electric wire, coil and method for producing electric wire
WO2020184432A1 (ja) * 2019-03-08 2020-09-17 Agc株式会社 架橋ゴム
US10858466B2 (en) 2017-03-06 2020-12-08 AGC Inc. Curable composition, coating material, electric wire, and resin article
US10875940B2 (en) 2016-08-29 2020-12-29 AGC Inc. Fluorinated polymer, method for producing it, and article having cured product of fluorinated polymer

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11302394A (ja) * 1998-04-16 1999-11-02 Asahi Glass Co Ltd 架橋含フッ素重合体の成形体及びその製造方法
JP2002179871A (ja) * 2000-12-14 2002-06-26 Asahi Glass Co Ltd 含フッ素共重合体の水性分散体
WO2009096342A1 (ja) * 2008-01-28 2009-08-06 Asahi Glass Company, Limited 硬化性組成物、含フッ素硬化物、それらを用いた光学材料および発光素子
JP2012530800A (ja) * 2009-06-17 2012-12-06 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 硬化性フルオロエラストマー組成物
WO2015098773A1 (ja) * 2013-12-26 2015-07-02 旭硝子株式会社 含フッ素架橋体の製造方法およびその使用
WO2017038718A1 (ja) * 2015-09-01 2017-03-09 旭硝子株式会社 含フッ素重合体、その製造方法、および含フッ素重合体の硬化物
WO2018043165A1 (ja) * 2016-08-29 2018-03-08 旭硝子株式会社 含フッ素重合体、その製造方法、および含フッ素重合体の硬化物を備える物品

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11302394A (ja) * 1998-04-16 1999-11-02 Asahi Glass Co Ltd 架橋含フッ素重合体の成形体及びその製造方法
JP2002179871A (ja) * 2000-12-14 2002-06-26 Asahi Glass Co Ltd 含フッ素共重合体の水性分散体
WO2009096342A1 (ja) * 2008-01-28 2009-08-06 Asahi Glass Company, Limited 硬化性組成物、含フッ素硬化物、それらを用いた光学材料および発光素子
JP2012530800A (ja) * 2009-06-17 2012-12-06 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 硬化性フルオロエラストマー組成物
WO2015098773A1 (ja) * 2013-12-26 2015-07-02 旭硝子株式会社 含フッ素架橋体の製造方法およびその使用
WO2017038718A1 (ja) * 2015-09-01 2017-03-09 旭硝子株式会社 含フッ素重合体、その製造方法、および含フッ素重合体の硬化物
WO2018043165A1 (ja) * 2016-08-29 2018-03-08 旭硝子株式会社 含フッ素重合体、その製造方法、および含フッ素重合体の硬化物を備える物品

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10875940B2 (en) 2016-08-29 2020-12-29 AGC Inc. Fluorinated polymer, method for producing it, and article having cured product of fluorinated polymer
US10759887B2 (en) 2017-03-02 2020-09-01 AGC Inc. Electric wire, coil and method for producing electric wire
US10858466B2 (en) 2017-03-06 2020-12-08 AGC Inc. Curable composition, coating material, electric wire, and resin article
WO2019073934A1 (ja) * 2017-10-12 2019-04-18 Agc株式会社 含フッ素弾性共重合体組成物、塗料、および塗装物品
CN111225950A (zh) * 2017-10-12 2020-06-02 Agc株式会社 含氟弹性共聚物组合物、涂料、及涂装物品
US11332561B2 (en) 2017-10-12 2022-05-17 AGC Inc. Fluorinated elastic copolymer composition, coating material, and coated article
WO2020184432A1 (ja) * 2019-03-08 2020-09-17 Agc株式会社 架橋ゴム

Also Published As

Publication number Publication date
TW201835120A (zh) 2018-10-01
JP6927283B2 (ja) 2021-08-25
JPWO2018159307A1 (ja) 2020-01-16

Similar Documents

Publication Publication Date Title
JP6927283B2 (ja) 含フッ素重合体、その硬化物の製造方法および発光装置
US10196467B2 (en) Fluorinated polymer, method for its production, and cured product of the fluorinated polymer
TW200533683A (en) Curable composition and process for producing cured fluorochemical
JP5327057B2 (ja) 硬化性組成物、含フッ素硬化物
EP3088447B1 (en) Method for manufacturing fluorine-containing cross-linked product and use thereof
US20090118429A1 (en) Curable composition and fluorinated cured product
TW201134838A (en) Curable fluorinated resin composition
US10875940B2 (en) Fluorinated polymer, method for producing it, and article having cured product of fluorinated polymer
JP5765237B2 (ja) フルオロポリマーおよび含フッ素硬化性樹脂組成物
WO2019159900A1 (ja) 硬化性組成物、硬化性組成物の硬化物の製造方法および該硬化物で封止された発光素子を備えた発光装置
TW201510038A (zh) 含氟芳香族化合物、其製造方法、硬化性材料、其硬化物、及光學構件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18761426

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019502866

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18761426

Country of ref document: EP

Kind code of ref document: A1