WO2018157859A1 - 一种薄膜电感、电源转换电路和芯片 - Google Patents

一种薄膜电感、电源转换电路和芯片 Download PDF

Info

Publication number
WO2018157859A1
WO2018157859A1 PCT/CN2018/077885 CN2018077885W WO2018157859A1 WO 2018157859 A1 WO2018157859 A1 WO 2018157859A1 CN 2018077885 W CN2018077885 W CN 2018077885W WO 2018157859 A1 WO2018157859 A1 WO 2018157859A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
film
magnetic film
thin film
permeability
Prior art date
Application number
PCT/CN2018/077885
Other languages
English (en)
French (fr)
Inventor
杨仕军
杨和钱
朱勇发
陈为
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18760688.4A priority Critical patent/EP3573081B1/en
Publication of WO2018157859A1 publication Critical patent/WO2018157859A1/zh
Priority to US16/559,231 priority patent/US10790079B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/245Magnetic cores made from sheets, e.g. grain-oriented
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/14Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing iron or nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/16Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing cobalt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F17/06Fixed inductances of the signal type  with magnetic core with core substantially closed in itself, e.g. toroid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/32Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying conductive, insulating or magnetic material on a magnetic film, specially adapted for a thin magnetic film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/10Inductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F2003/106Magnetic circuits using combinations of different magnetic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F2017/0066Printed inductances with a magnetic layer

Definitions

  • the present application relates to the field of circuits and, more particularly, to a thin film inductor, a power conversion circuit, and a chip.
  • the thin film magnetic core of the thin film inductor is formed by nesting a plurality of layers of magnetic thin films.
  • the magnetic induction intensity of the inner magnetic film reaches the saturation magnetic induction of the inner magnetic film faster than the outer magnetic film reaches the saturation magnetic induction of the outer magnetic film.
  • the relative magnetic permeability of the inner magnetic film will be close to zero, so that the inductance of the thin film inductance is drastically decreased.
  • the application provides a thin film magnetic core, a thin film inductor and a power conversion circuit, which can effectively reduce the possibility that the magnetic induction strength of the inner magnetic film is easily saturated.
  • the present application provides a thin film inductor including a thin film magnetic core and at least one electrical conductor, the thin film magnetic core having a cylindrical structure with open ends, the thin film magnetic core including multiple layers of magnetic a thin film, each of the magnetic thin films has a cylindrical structure with open ends, the multi-layer magnetic thin film layers are nested, and an insulating layer is interposed between each adjacent two magnetic thin films, and the at least one electric conductor is located at the The innermost cavity of the innermost layer of the multilayer magnetic film;
  • Each adjacent two layers of magnetic film includes an inner magnetic film and an outer magnetic film, and the inner magnetic film is nested in the outer magnetic film, and the relative magnetic permeability of the inner magnetic film is less than or equal to The relative magnetic permeability of the outer magnetic film,
  • the multilayer magnetic film includes at least an adjacent first magnetic film and a second magnetic film, the first magnetic film is nested in the second magnetic film, and a relative magnetic permeability of the first magnetic film Less than a relative magnetic permeability of the second magnetic film, and a difference between a relative magnetic permeability of the first magnetic film and a relative magnetic permeability of the second magnetic film is greater than or equal to a first threshold, wherein And, in a case where the magnetic induction intensity of the second magnetic film reaches the saturation magnetic induction intensity of the second magnetic film, the magnetic induction intensity of the first magnetic film is less than or equal to the saturation magnetic induction intensity of the first magnetic film.
  • the first magnetic thin film is nested inside the second magnetic thin film, by defining the relative magnetic permeability of the first magnetic thin film to be smaller than the relative magnetic permeability of the second magnetic thin film, And defining a difference between a relative magnetic permeability of the first magnetic film and a relative magnetic permeability of the second magnetic film greater than or equal to 50, such that when the magnetic induction of the second magnetic film reaches the saturation magnetic induction of the second magnetic film The magnetic intensity of the first magnetic film is less than or equal to the saturation magnetic induction of the first magnetic film.
  • the magnetic induction intensity of the first magnetic film located in the inner layer reaches the saturation magnetic induction intensity of the first magnetic film
  • the magnetic induction intensity of the second magnetic film located on the outer layer reaches the first The saturation magnetic induction of the two magnetic films. Since the second magnetic film is disposed, the problem of avoiding magnetic saturation of the second magnetic film is considered. Therefore, in the case where the first magnetic film does not reach magnetic saturation before the second magnetic film, the problem that the inductance of the film inductance is drastically lowered due to the magnetic saturation of the first magnetic film in the prior art can be avoided.
  • the relative magnetic permeability of the inner magnetic film and the relative magnetic permeability of the outer magnetic film in each adjacent two magnetic films The difference between the rates is greater than or equal to the first threshold, wherein, in the case where the magnetic induction of the outer magnetic film reaches the saturation magnetic induction of the outer magnetic film, the inner magnetic film The magnetic induction is less than or equal to the saturation magnetic induction of the inner magnetic film.
  • the relationship between the first magnetic film and the second magnetic film is satisfied by defining a relationship between each adjacent two magnetic films located in the thin film inductor, such that each of the thin film inductors except the outermost magnetic film The layer magnetic film does not lead to magnetic saturation of the outermost magnetic film, thereby avoiding the problem that the inductance of the film inductance is drastically lowered due to the magnetic saturation of the magnetic film located in the inner layer of the film inductor.
  • the first threshold value is 50.
  • the first magnetic thin film In conjunction with the first aspect, the first possible implementation of the first aspect, or the second possible implementation of the first aspect, in a third possible implementation of the first aspect, the first magnetic thin film In the case where the material used and the material used in the second magnetic film are different, the thickness of the first magnetic film is equal to the thickness of the second magnetic film.
  • the purpose can be directly achieved by the selection of the material, or by the selection of the material and the thickness setting. purpose.
  • the thickness of the first magnetic film and the thickness of the second magnetic film may be the same or different.
  • the thickness of the first magnetic film is defined to be the same as the thickness of the second magnetic film in order to be simpler in process.
  • the first magnetic thin film Where the material used is the same as the material used for the second magnetic film, the thickness of the first magnetic film is greater than the thickness of the second magnetic film, and the thickness of the first magnetic film The difference from the thickness value of the second magnetic film is greater than or equal to 0 and less than or equal to a second threshold, the second threshold being five times the thickness value of the second magnetic film.
  • the relative magnetic permeability of the first magnetic film is smaller than the relative magnetic permeability of the second magnetic film by 50 or more by adjusting the thickness. the goal of.
  • the advantage is that it is not necessary to pay attention to the shape and manufacturing method of each layer of magnetic film, and the change of relative magnetic permeability can be realized only by adjusting the thickness, thereby making the process realization simpler.
  • the first magnetic film is Ni 45 Fe 55 and the second magnetic film is Ni 80 Fe 20 ; or
  • the first magnetic film is CoZrO, and the second magnetic film is CoZrTa; or
  • the first magnetic film is CoZrO, and the second magnetic film is Ni 80 Fe 20 ; or
  • the first magnetic film is CoZrTa
  • the second magnetic film is Ni 80 Fe 20 .
  • each of the at least one electric conductor is the same as the length direction of the innermost magnetic film, and the length direction of the innermost magnetic film extends along one end opening of the innermost magnetic film a direction to the other end of the innermost magnetic film; wherein each of the at least one electrical conductor is insulated from an inner wall of the innermost magnetic film;
  • the at least one electrical conductor is two or more electrical conductors
  • the two or more electrical conductors are isolated from each other.
  • Each of the magnetic films of the thin film inductor includes a first portion having a first end and a second end, the first end and the second end respectively being different from the different regions of the second portion contact.
  • the first end and the second end are directly in contact with different regions of the second portion, that is, the first portion and the second portion are in physical contact, thereby making the magnetic resistance smaller, and the benefits are brought. It is the inductance that can increase the inductance of the film.
  • the selection of the relative magnetic permeability of the second magnetic film requires consideration of the perimeter of the second magnetic film on the first plane and the saturation magnetic induction of the second magnetic film, wherein the first direction is from the first One end opening of the two magnetic film extends to a direction of opening of the other end of the second magnetic film, the first plane being a plane of a cross section of the second magnetic film in a direction perpendicular to the first direction .
  • the selection of the relative magnetic permeability of the first magnetic film requires consideration of the perimeter of the first magnetic film on the first plane and the saturation magnetic induction of the first magnetic film, wherein the first direction is from the first One end opening of a magnetic film extends to a direction of opening of the other end of the first magnetic film, the first plane being a plane of a section of the first magnetic film in a direction perpendicular to the first direction .
  • the thickness d 1 of the thin film magnetic core satisfies the condition: 0 ⁇ m ⁇ d 1 ⁇ 50 ⁇ m.
  • the thickness d 2 of each of the plurality of magnetic thin films satisfies the condition: 0 micron ⁇ d 2 ⁇ 10 microns.
  • the thickness d 3 of each insulating layer is satisfied. Conditions: 0 ⁇ m ⁇ d 3 ⁇ 2 ⁇ m.
  • the present application provides a power conversion circuit including a first switching transistor, a second switching transistor, a capacitor, and the thin film inductor according to the first aspect or any possible implementation of the first aspect;
  • One end of the first switch tube is connected to one end of the second switch tube
  • One end of the thin film inductor is connected between one end of the first switch tube and one end of the second switch tube, and the other end of the thin film inductor is connected to one end of the capacitor; the other end of the capacitor is The other end of the second switch tube is connected;
  • the thin film inductor can work normally. That is, the inductance of the thin film inductor does not suddenly drop to near zero, so that the device in the power conversion circuit using the thin film inductor does not burn out due to excessive current.
  • the present application provides a chip comprising the power conversion circuit of the second aspect and a load, the power conversion circuit being coupled to the load and for supplying power to the load.
  • the thin film inductor can work normally. That is, the inductance of the thin film inductor does not suddenly drop to near zero, so that the device in the power conversion circuit using the thin film inductor does not burn out due to excessive current. Further, the security performance of the chip is also improved.
  • an embodiment of the present application provides a thin film magnetic core.
  • the thin film magnetic core is formed as a cavity structure, and both ends of the cavity structure are open.
  • the thin film magnetic core comprises a plurality of magnetic thin films, and each layer of the magnetic thin film is separated by an insulating layer.
  • the multilayer magnetic film includes a first magnetic film and a second magnetic film, and the first magnetic film is embedded inside the second magnetic film.
  • the saturation magnetic induction intensity of the first magnetic film is greater than the saturation magnetic induction of the second magnetic film
  • the saturation magnetic induction of the first magnetic film and the saturation magnetic induction of the second magnetic film The difference between the first magnetic layer and the magnetic permeability of the first magnetic film is greater than the first threshold, and in the case where the magnetic permeability of the first magnetic film is greater than the magnetic permeability of the second magnetic film
  • the difference between the magnetic permeability of the second magnetic film is less than a second threshold such that the magnetic induction intensity of the first magnetic film is smaller than the saturation magnetic induction of the first magnetic film;
  • the magnetic permeability of the first magnetic film is smaller than the magnetic permeability of the second magnetic film, and the magnetic permeability of the first magnetic film and the magnetic permeability of the second magnetic film The difference is greater than the third threshold, and in the case where the saturation magnetic induction of the first magnetic film is smaller than the saturation magnetic induction of the second magnetic film, the saturation magnetic induction of the first magnetic film is The difference between the saturation magnetic induction intensities of the second magnetic film is less than a fourth threshold such that the magnetic induction of the first magnetic film is smaller than the saturation magnetic induction of the first magnetic film.
  • the thin film magnetic core provided by the embodiment of the present application is such that the saturation magnetic induction intensity of the first magnetic film (ie, the inner magnetic film) is greater than the saturation magnetic induction of the second magnetic film (ie, the outer magnetic film).
  • the magnetic induction of the first magnetic film can be effectively increased, or the magnetic permeability of the first magnetic film is smaller than the magnetic permeability of the second magnetic film, and the magnetic induction of the first magnetic film can be effectively reduced.
  • the strength, and thus, can effectively reduce the possibility that the magnetic induction intensity of the first magnetic film is easily saturated, and at the same time, only the low magnetic permeability is used in order to reduce the magnetic induction of the first magnetic film.
  • the magnetic thin film of the performance performance has a small amount of inductance, and the embodiment of the present application can effectively ensure the inductance of the thin film inductor.
  • the thickness of the first layer of magnetic film is greater than the thickness of the second layer of magnetic film, so that the magnetic layer of the first layer of magnetic film The conductivity is less than the magnetic permeability of the second magnetic film.
  • a difference between a thickness of the first magnetic film and a thickness of the second magnetic film is less than a fifth threshold, the fifth The threshold is three times the thickness of the second layer of magnetic film.
  • the magnetic permeability of the first magnetic film is according to a circumference of the first magnetic film on the first plane and the Determining the magnetic permeability determined by the saturation magnetic induction of the first magnetic film
  • the magnetic permeability of the second magnetic film is based on the circumference of the second magnetic film on the first plane and the Determining the magnetic permeability determined by the saturation magnetic induction of the second magnetic film
  • the first plane being a plane of the cavity structure in a direction perpendicular to the first direction
  • the first direction being The direction from the opening of one end of the cavity structure extends to the opening of the other end.
  • the multilayer magnetic film further includes a third magnetic film, and the third magnetic film is embedded in the second magnetic film And the third magnetic film is embedded inside the first magnetic film, or the first magnetic film is embedded in the third magnetic film.
  • the saturation magnetic induction intensity of the third magnetic film is the same as the saturation magnetic induction of the first magnetic film, or the magnetic permeability of the third magnetic film and the magnetic of the first magnetic film The same conductivity
  • a perimeter of the third layer of magnetic film on the first plane and a perimeter of the first layer of magnetic film on the first plane are within a first perimeter, the first plane being the cavity a plane of the structure in a section along a direction perpendicular to the first direction, the first direction being a direction extending along an opening of one end of the cavity structure to an opening of the other end;
  • the multilayer magnetic film further includes a fourth magnetic film, the second magnetic film is embedded inside the fourth magnetic film, or the fourth magnetic film is embedded in the second layer Inside the magnetic film, and the third magnetic film and the first magnetic film are embedded inside the fourth magnetic film,
  • the saturation magnetic induction intensity of the fourth magnetic film is the same as the saturation magnetic induction intensity of the second magnetic film, or the magnetic permeability of the fourth magnetic film and the magnetic of the second magnetic film The same conductivity
  • a perimeter of the fourth layer of magnetic film on the first plane and a perimeter of the second layer of magnetic film on the first plane are both within a second perimeter, and the second perimeter ranges
  • the lower limit value is greater than the upper limit of the first perimeter range.
  • the thin film magnetic core provided by the embodiment of the present application is such that the multilayer magnetic film in the thin film magnetic core belongs to at least two magnetic thin film groups, and the magnetic permeability or the saturation magnetic induction intensity in each magnetic thin film group is the same, and The magnetic permeability of the layer magnetic film group is smaller than the magnetic permeability of the outer magnetic film group, or the saturation magnetic induction intensity of the inner magnetic film group is greater than the saturation magnetic induction of the outer magnetic film group, which can not only reduce the magnetic induction of the inner magnetic film.
  • the possibility of strength is easy to saturate, and the complexity of the processing process can be reduced, thereby reducing costs.
  • the thickness d 1 of the thin film magnetic core satisfies the condition: 0 ⁇ m ⁇ d 1 ⁇ 5 ⁇ m.
  • the thickness d 2 of each of the plurality of magnetic thin films satisfies the condition: 0 ⁇ m ⁇ d 2 ⁇ 1 ⁇ m.
  • the thickness d 3 of each of the insulating layers satisfies the condition: 0 ⁇ m ⁇ d 3 ⁇ 20 ⁇ m.
  • the embodiment of the present application provides a thin film inductor, comprising: a thin film magnetic core in any one of the possible implementations of the fourth aspect, wherein the thin film magnetic core is formed into a cavity structure, Both ends of the cavity structure are open;
  • At least one electrical conductor the at least one electrical conductor being located within the cavity structure, and the at least one electrical conductor having a length direction that is the same as the first direction, the first direction being from one end of the cavity structure
  • the opening extends to the direction of the opening at the other end.
  • an embodiment of the present application provides a power conversion circuit, where the power conversion circuit includes:
  • At least one switch unit At least one switch unit
  • At least one inductive unit each of the at least one inductive unit corresponding to one of the at least one switching unit, each of the at least one inductive unit passing through a corresponding switching unit and the direct current A power source is connected, wherein each of the inductance units is a thin film inductor in any one of the second aspects.
  • an embodiment of the present application provides a method for preparing a thin film inductor, the method comprising:
  • a thin film magnetic core is disposed, the thin film magnetic core is formed as a cavity structure, and both ends of the cavity structure are open, and the thin film magnetic core comprises a plurality of magnetic thin films, and each layer of the magnetic thin film is insulated at intervals layer,
  • the multilayer magnetic film includes a first magnetic film and a second magnetic film, and the first magnetic film is embedded inside the second magnetic film.
  • the saturation magnetic induction intensity of the first magnetic film is greater than the saturation magnetic induction of the second magnetic film
  • the saturation magnetic induction of the first magnetic film and the saturation magnetic induction of the second magnetic film The difference between the first magnetic layer and the magnetic permeability of the first magnetic film is greater than the first threshold, and in the case where the magnetic permeability of the first magnetic film is greater than the magnetic permeability of the second magnetic film
  • the difference between the magnetic permeability of the second magnetic film is less than a second threshold such that the magnetic induction intensity of the first magnetic film is smaller than the saturation magnetic induction of the first magnetic film;
  • the magnetic permeability of the first magnetic film is smaller than the magnetic permeability of the second magnetic film, and the magnetic permeability of the first magnetic film and the magnetic permeability of the second magnetic film The difference is greater than the third threshold, and in the case where the saturation magnetic induction of the first magnetic film is smaller than the saturation magnetic induction of the second magnetic film, the saturation magnetic induction of the first magnetic film is The difference between the saturation magnetic induction intensities of the second magnetic film is less than a fourth threshold such that the magnetic induction intensity of the first magnetic film is smaller than the saturation magnetic induction of the first magnetic film;
  • FIG. 1 is a cross-sectional structural view of a prior art thin film inductor
  • FIG. 2 is a distribution diagram of magnetic induction strength of a copper-clad film inductor using Ni 80 Fe 20 material
  • FIG. 3 is a cross-sectional structural view of a thin film inductor provided by the present application.
  • FIG. 4 is a side view of a thin film inductor provided by the present application.
  • FIG. 5 is a schematic diagram of a power conversion circuit provided by the present application.
  • FIG. 6 is a schematic diagram of another power conversion circuit provided by the present application.
  • FIG. 7 is an internal circuit diagram of a chip of the power conversion circuit shown in FIG. 5 provided by the present application.
  • FIG. 8 is a circuit diagram of another power conversion circuit shown in FIG. 5 provided by the present application.
  • FIG. 9 is a schematic structural view of a copper-clad film inductor in the prior art.
  • Fig. 10 is a distribution diagram of magnetic induction of a copper-clad inductor using Ni 80 Fe 20 material.
  • FIG. 11 is a schematic structural view of a thin film magnetic core according to an embodiment of the present application.
  • FIG. 12 is a schematic structural view of a thin film magnetic core according to another embodiment of the present application.
  • FIG. 13 is a schematic structural view of a thin film magnetic core according to another embodiment of the present application.
  • FIG. 14 is a schematic structural view of a thin film magnetic core according to another embodiment of the present application.
  • FIG. 15 is a schematic structural view of a thin film magnetic core according to still another embodiment of the present application.
  • FIG. 16 is a schematic structural view of a thin film inductor according to an embodiment of the present application.
  • FIG. 17 is a schematic structural view of a thin film inductor according to still another embodiment of the present application.
  • FIG. 18 is a schematic diagram of a power conversion system in accordance with an embodiment of the present application.
  • 19 to 24 are schematic views of a method of fabricating a thin film inductor according to an embodiment of the present application.
  • the thin film inductor of the embodiment of the present invention can be applied to a power conversion system, and can also be applied to other circuits, which is not limited by the embodiment of the present application.
  • FIG. 1 is a cross-sectional view of a prior art thin film inductor.
  • the thin film inductor 100 includes a thin film magnetic core 110 and a conductor 120, and the electrical conductor 120 is located in the inner cavity of the thin film magnetic core 110. After the electrical conductor 120 is energized, the magnetic flux path generated by each of the magnetic thin films in the thin film magnetic core 110 is a circular path of the corresponding magnetic thin film in the cross-sectional view shown in FIG.
  • the thin film magnetic core 110 is composed of a plurality of magnetic thin films, and the multilayer magnetic thin film layer is embedded in each layer, and each layer of the magnetic thin film has a cylindrical structure, and each layer of the magnetic thin film is in FIG. The circumference on the plane of the section shown is different.
  • the magnetic films 111 and 112 shown in FIG. 1 as an example, the magnetic film 111 close to the conductor 120 is an inner layer magnetic film, and the magnetic film 112 away from the conductor 120 is an outer layer magnetic film.
  • the circumference of the magnetic film 111 is smaller than the circumference of the magnetic film 112, and correspondingly, the equivalent length of the magnetic flux path of the magnetic film 111 is also shorter than the equivalent length of the magnetic flux path of the magnetic film 112.
  • the magnetic resistance of the magnetic film 111 is smaller than that of the magnetic film 112, and accordingly, the magnetic film 111 has a larger magnetic induction (also understood as a magnetic flux density) with respect to the magnetic film 112.
  • the magnetic induction of the magnetic film 111 is easily first to reach a magnetic saturation state, thereby causing the relative magnetic permeability of the magnetic film 111 to be close to zero, thereby making the film inductance 100
  • the inductance drops sharply.
  • the current in the power conversion circuit using the thin film inductor 100 will surge, and even severely burn out the components in the power conversion circuit.
  • each layer of the magnetic film has a certain thickness, that is, each layer of the magnetic film has an inner surface and an outer surface. It will be appreciated that the length of the flux path of the inner surface is less than the length of the flux path of the outer surface.
  • the length of the magnetic flux path means the length of the magnetic flux path in the plane of the section shown in Fig. 1. Since each layer of the magnetic film has a certain thickness, the length of the magnetic flux path of the magnetic film is not easily determined accurately, so the magnetic field of the magnetic film is described by "the equivalent length of the magnetic flux path of the magnetic film". The length of the path. It is easily understood that the equivalent length of the magnetic flux path of the magnetic film is between the length of the magnetic path of the inner surface of the magnetic film and the length of the magnetic path of the outer surface of the magnetic film.
  • R L/ ⁇ 0 ⁇ r A, where R is the magnetic resistance of a magnetic film of a certain layer, L is the equivalent length of the magnetic flux loop generated by the conductor after energization in the magnetic film of the layer, and ⁇ 0 is vacuum magnetic
  • the conductivity, ⁇ r is the relative magnetic permeability of the magnetic film
  • A is the product of the thickness of the magnetic film of the layer and the length of the magnetic film of the layer.
  • the length of the magnetic film is the cylindrical structure exhibited by the magnetic film. a length at which one end opens to the other end opening;
  • NI/R, where ⁇ is the magnetic flux generated by the conductor after energization in the magnetic film, N is the number of turns of the conductor, and I is the current flowing through the conductor;
  • B ⁇ /A, where B is the magnetic induction intensity produced by the magnetic film of the layer;
  • B NI ⁇ 0 ⁇ r /L, that is, the equivalent length of the magnetic flux B and the magnetic flux path of the magnetic film in the case where the parameters N, I, ⁇ 0 and ⁇ r are the same.
  • L is inversely proportional.
  • the saturation magnetic induction intensity of the inner magnetic film is the same as the saturation magnetic induction of the outer magnetic film, and the parameters of the inner and outer magnetic films are the same as the parameters N, I, ⁇ 0 and ⁇ r , due to the inner layer.
  • the length L of the magnetic film is small, so the inner magnetic film will reach the magnetic saturation state faster than the outer magnetic film.
  • Figure 2 is a graph showing the distribution of magnetic induction of a copper-clad film inductor using Ni 80 Fe 20 material.
  • the horizontal axis in the horizontal direction shown in FIG. 2 is the y-axis direction shown in FIG. 1, and the coordinate range corresponding to the horizontal axis is the region of 40 ⁇ m of the film inductance in the y-axis direction shown in FIG.
  • the vertical axis shown in the vertical direction is used to indicate the magnetic induction of the magnetic film in the film inductance.
  • the maximum magnetic induction B S of Ni 80 Fe 20 is 1T. As can be seen from FIG.
  • the magnetic film in the range of the regions d 1 and d 2 (ie, the magnetic film close to the conductor including the magnetic film 112)
  • the magnetic induction intensity is greater than or equal to the maximum magnetic induction intensity of the material, and reaches a saturated state, so that the relative magnetic permeability of the magnetic film that reaches the magnetic saturation is close to zero, thereby causing the inductance of the thin film inductor to drastically decrease.
  • FIG. 3 is a cross-sectional structural view of a thin film inductor provided by the present application.
  • the thin film inductor 200 includes a thin film magnetic core 210 having a cylindrical structure with open ends, and at least one electric conductor 220 including a plurality of magnetic thin films (211, 212, 213, 214).
  • Each of the magnetic thin films has a cylindrical structure with open ends, the multilayer magnetic thin film layers are nested, and an insulating layer is interposed between each adjacent two magnetic thin films, and the at least one electric conductor 220 is located at the The innermost cavity of the innermost layer of the magnetic film 211 in the multilayer magnetic film.
  • Each adjacent two layers of magnetic film includes an inner magnetic film and an outer magnetic film, and the inner magnetic film is nested in the outer magnetic film, and the relative magnetic permeability of the inner magnetic film is less than or equal to The relative magnetic permeability of the outer magnetic film.
  • the multilayer magnetic film includes at least an adjacent first magnetic film and a second magnetic film, the first magnetic film is nested in the second magnetic film, and a relative magnetic permeability of the first magnetic film Less than a relative magnetic permeability of the second magnetic film, and a difference between a relative magnetic permeability of the first magnetic film and a relative magnetic permeability of the second magnetic film is greater than or equal to a first threshold, wherein And, in a case where the magnetic induction intensity of the second magnetic film reaches the saturation magnetic induction intensity of the second magnetic film, the magnetic induction intensity of the first magnetic film is less than or equal to the saturation magnetic induction intensity of the first magnetic film.
  • the first threshold is 50.
  • FIG. 4 is an external structural diagram of the thin film inductor 300 provided by the present application. It is easy to see that both ends of the thin film inductor 300 are open, and a cylindrical structure is located between the two ends. It should be noted that the direction indicated by the arrow in FIG. 4 is the extending direction from the one end opening of the thin film inductor 300 to the other end opening.
  • the so-called multi-layer magnetic film layer nesting is understood to be the same shape of the multilayer magnetic film, but the size is different. Specifically, in the multilayer magnetic film in which the layers are nested, the size of the magnetic film located on the outer layer is larger than the size of the magnetic film located in the inner layer.
  • the magnetic film 212 is an outer layer magnetic film with respect to the magnetic film 211, and the magnetic film 211 is an inner layer magnetic film.
  • the height of the magnetic film 212 is larger than the height of the magnetic film 211, and the width of the magnetic film 212 is It is larger than the width of the magnetic film 211.
  • the relative magnetic permeability ⁇ r of the magnetic film is the ratio of the magnetic permeability ⁇ of the magnetic film to the vacuum permeability ⁇ 0 :
  • the magnetic permeability ⁇ of the magnetic film is the degree of magnetization of the linear reaction of the magnetic film to an applied magnetic field.
  • the vacuum permeability ⁇ 0 also known as the magnetic field constant, magnetic constant or free space permeability, is a physical constant. In the International System of Units, the values of vacuum permeability are:
  • ⁇ 0 4 ⁇ ⁇ 10 -7 Vs / (Am) ⁇ 1.2566370614 ... ⁇ 10 -6 Hm or NA - 2 or Tm / A or Wb / (Am).
  • the magnetic permeability of the magnetic film is related not only to the material used for the magnetic film, but also to the thickness of the magnetic film or the processing technique.
  • the so-called processing technology includes sputtering voltage, power or temperature and other properties.
  • the relative magnetic permeability of the magnetic film is related not only to the material used for the magnetic film, but also to the thickness of the magnetic film or the processing technique.
  • the magnetic induction also called magnetic flux density or magnetic flux density
  • the saturation magnetic induction which is the saturation flux density.
  • the saturation magnetic induction of the magnetic film is only related to the material used in the magnetic film.
  • the saturation magnetic induction of the magnetic film is also determined in the case where the material used for the magnetic film is determined. If the two magnetic films are made of different materials, the saturation magnetic induction of the two magnetic films is generally different.
  • the material used for the foregoing insulating layer may be silicon dioxide, silicon nitride or other insulating organic material coating.
  • the number of layers of the so-called multilayer magnetic film means two or more layers. However, in practical applications, the number of layers of the multilayer magnetic film is usually ten or more.
  • the multilayer magnetic film includes at least an adjacent first magnetic film and a second magnetic film, the first magnetic film being nested within the second magnetic film.
  • the first magnetic film may be the innermost magnetic film of the multilayer magnetic film (such as the magnetic film 211 in FIG. 3).
  • the second magnetic film may be the outermost magnetic film of the multilayer magnetic film (such as the magnetic film 214 in FIG. 3).
  • the first magnetic film is not the innermost magnetic film of the multilayer magnetic film (such as the magnetic film 212 in FIG. 3), and the second magnetic film is not the plurality The outermost magnetic film of the layer magnetic film (such as the magnetic film 213 in FIG. 3).
  • the first magnetic film is necessarily the innermost magnetic film
  • the second magnetic film is necessarily the outermost magnetic film
  • the relative magnetic permeability of the outermost magnetic film is greater than or It is equal to the relative magnetic permeability of the second magnetic film.
  • the difference between the relative magnetic permeability of the outermost magnetic film and the relative magnetic permeability of the second magnetic film is greater than or equal to the first threshold, and the magnetic induction of the outermost magnetic film When the intensity reaches the saturation magnetic induction of the outermost magnetic film, the magnetic strength of the second magnetic film is less than or equal to the saturation magnetic induction of the second magnetic film.
  • the relative magnetic permeability of the first magnetic film is greater than or It is equal to the relative magnetic permeability of the innermost magnetic film.
  • a difference between a relative magnetic permeability of the first magnetic film and a relative magnetic permeability of the innermost magnetic film is greater than or equal to the first threshold, and a magnetic induction intensity of the first magnetic film When the saturation magnetic induction intensity of the first magnetic film is reached, the magnetic induction intensity of the innermost magnetic film is less than or equal to the saturation magnetic induction of the innermost magnetic film.
  • the first magnetic film is the innermost magnetic film of the multilayer magnetic film (see FIG. 3)
  • the magnetic film 211) is located opposite to the magnetic film (such as the magnetic film 213 in FIG. 3) outside the second magnetic film (such as the magnetic film 212 in FIG. 3) and adjacent to the second magnetic film.
  • the conductance is greater than or equal to the relative magnetic permeability of the second magnetic film, and, in each of the adjacent two magnetic films located outside the second magnetic film, the outer magnetic film (such as the magnetic film 214 in FIG. 3)
  • the relative magnetic permeability is greater than or equal to the relative magnetic permeability of the inner magnetic film (such as the magnetic film 213 in FIG. 3), wherein in each adjacent two magnetic films, the inner magnetic film is nested in the outer magnetic layer.
  • a difference between a relative magnetic permeability of the magnetic film adjacent to the second magnetic film and adjacent to the second magnetic film and a relative magnetic permeability of the second magnetic film is greater than or equal to the first a threshold value, and a magnetic thin film of the magnetic film located outside the second magnetic film and adjacent to the second magnetic film reaches a saturation magnetic induction of the magnetic film located outside the second magnetic film and adjacent to the second magnetic film
  • the intensity of the second magnetic film is less than or equal to the saturation magnetic induction of the second magnetic film.
  • a difference between a relative magnetic permeability of the outer magnetic film and a relative magnetic permeability of the inner magnetic film is greater than or equal to the first The threshold value, and when the magnetic induction intensity of the outer layer magnetic film reaches the saturation magnetic induction intensity of the outer layer magnetic film, the magnetic induction intensity of the inner layer magnetic film is less than or equal to the saturation magnetic induction intensity of the inner layer magnetic film.
  • the relative magnetic permeability of the first magnetic film (such as the magnetic film 213 in FIG. 3) is greater than or equal to the magnetic film located inside the first magnetic film and adjacent to the first magnetic film.
  • the relative magnetic permeability (such as the magnetic film 212 in FIG. 3), and in each adjacent two magnetic films located inside the first magnetic film, the outer magnetic film (such as the magnetic film 212 in FIG. 3)
  • the relative magnetic permeability is greater than or equal to the relative magnetic permeability of the inner magnetic film (such as the magnetic film 211 in FIG. 3), wherein in each adjacent two magnetic films, the inner magnetic film is nested in the outer magnetic layer.
  • a difference between a relative magnetic permeability of the first magnetic film and a relative magnetic permeability of the magnetic film adjacent to the first magnetic film and adjacent to the first magnetic film is greater than or equal to the first a threshold value, and when the magnetic induction intensity of the first magnetic film reaches the saturation magnetic induction intensity of the first magnetic film, the magnetic induction of the magnetic film located inside the first magnetic film and adjacent to the first magnetic film is less than or equal to a saturation magnetic induction of the magnetic film located inside the first magnetic film and adjacent to the first magnetic film.
  • a difference between a relative magnetic permeability of the outer magnetic film and a relative magnetic permeability of the inner magnetic film is greater than or equal to the first The threshold value, and when the magnetic induction intensity of the outer layer magnetic film reaches the saturation magnetic induction intensity of the outer layer magnetic film, the magnetic induction intensity of the inner layer magnetic film is less than or equal to the saturation magnetic induction intensity of the inner layer magnetic film.
  • the material used for the first magnetic film and the material used for the second magnetic film are the same, in order to achieve the relative magnetic permeability of the first magnetic film and the relative magnetic property of the second magnetic film.
  • the purpose of the conductivity being less than the first threshold.
  • the thickness value of the first magnetic film is greater than the thickness value of the second magnetic film, and the difference between the thickness value of the first magnetic film and the thickness value of the second magnetic film is less than or equal to a second threshold, wherein The second threshold is five times the thickness of the second magnetic film.
  • the circumference of the so-called magnetic film refers to the circumference of the cross section of the magnetic film on the first plane, and the first plane is perpendicular to the direction from one open end to the other open end of the magnetic film.
  • the saturation magnetic induction of the first magnetic film and the saturation magnetic induction of the second magnetic film are the same.
  • the relative magnetic permeability of the first magnetic film is smaller than that of the second magnetic film.
  • the first magnetic film and the second magnetic film are respectively prepared by using different processing processes (such as sputtering voltage, power, temperature, etc.).
  • the thickness of the first magnetic film is equal to the first The thickness value of the two magnetic films.
  • the factors affecting the relative magnetic permeability of the magnetic film include the material used for the magnetic film, the thickness of the magnetic film, the circumference of the magnetic film, and the preparation process of the magnetic film. Because the material used in the first magnetic film and the material used in the second magnetic film are different, the relative magnetic permeability of the first magnetic film is higher than the relative magnetic permeability of the second magnetic film. For the purpose of smaller than the first threshold value, the thickness value of the first magnetic film may be equal to the thickness value of the second magnetic film while the other factors are the same. This makes the process simpler and easier to implement.
  • the thickness value of the first magnetic film and the second magnetic film are The thickness values are different.
  • it is necessary to realize the first by defining the materials used for the first magnetic film and the second magnetic film, or by defining the circumference or processing process of the first magnetic film and the second magnetic film.
  • the relative magnetic permeability of a magnetic film is smaller than the relative magnetic permeability of the second magnetic film by the first threshold or more.
  • the selection of the relative magnetic permeability of the second magnetic film needs to consider the perimeter of the second magnetic film on the first plane and the saturation magnetic induction of the second magnetic film, wherein the first direction a direction extending from one end opening of the second magnetic film to an opening of the other end of the second magnetic film, the first plane being the second magnetic film in a direction perpendicular to the first direction The plane in which the section is located.
  • the selection of the relative magnetic permeability of the first magnetic film needs to consider the perimeter of the first magnetic film on the first plane and the saturation magnetic induction of the first magnetic film, wherein the first direction a direction extending from an opening of the first magnetic film to an opening of the other end of the first magnetic film, the first plane being the first magnetic film in a direction perpendicular to the first direction The plane in which the section is located.
  • the first magnetic film and the second magnetic film may be made of different materials.
  • the first magnetic film is made of Ni 45 Fe 55
  • the second magnetic film is made of Ni 80 Fe 20 .
  • the material of the first magnetic film is CoZrO
  • the material of the second magnetic film is CoZrTa or Ni 80 Fe 20 .
  • the material of the first magnetic film is CoZrTa
  • the material of the second magnetic film is Ni 80 Fe 20 .
  • the so-called "the at least one electrical conductor is located in the inner cavity of the innermost magnetic film of the multilayer magnetic film", specifically, each of the at least one electrical conductor
  • the length direction of the conductor is the same as the length direction of the innermost magnetic thin film.
  • the longitudinal direction of the innermost magnetic thin film refers to a direction extending along one end opening of the innermost magnetic thin film to the other end of the innermost magnetic thin film.
  • each of the at least one electrical conductor is insulated from the inner wall of the innermost magnetic film. That is, if the conductor is disposed on the inner wall of the innermost magnetic film, an insulating layer is interposed between the conductor and the inner wall of the innermost magnetic film.
  • the number of the at least one electrical conductor is two or more, the two or more electrical conductors are isolated from each other.
  • the two or more electrical conductors are the same.
  • the number of the at least one electrical conductor is one or two.
  • the inductance generated by energizing each of the two electrical conductors is the same.
  • each of the magnetic films includes a first portion and a second portion, as shown in FIG. 3, the second portion is generally a planar structure.
  • the first portion may be trapezoidal or curved (such as the thin film inductor of the prior art shown in Fig. 1).
  • the first portion has a first end surface and a second end surface, the first end surface is in contact with the first region of the second portion, and the second end surface is in contact with the second region of the second portion, wherein The first region of the second portion and the second region of the second portion are isolated.
  • an insulating layer may be provided between the first end face and the first region of the second portion.
  • an insulating layer may or may not be disposed between the second end surface and the second portion of the second portion.
  • the advantage of not providing an insulating layer is also to reduce the magnetic resistance and increase the inductance of the thin film inductor.
  • the thickness d 1 of the thin film magnetic core satisfies the condition: 0 micrometers ⁇ d 1 ⁇ 50 micrometers.
  • the thickness of the magnetic property of the film refers to the thickness of the magnetic sidewall of the film, and the thickness of the magnetic sidewall of the film includes the thickness of each of the plurality of magnetic films, and the magnetic properties of each adjacent layer The thickness of the insulating layer between the films.
  • the thickness d 2 of each of the magnetic films in the multilayer magnetic film satisfies the condition: 0 ⁇ m ⁇ d 2 ⁇ 10 ⁇ m.
  • the thickness d 3 of the insulating layer between each adjacent two magnetic films satisfies the condition: 0 ⁇ m ⁇ d 3 ⁇ 2 ⁇ m. In this way, the thin film inductor has a small volume, thereby achieving miniaturization of the device.
  • the magnetic induction intensity of the second magnetic film is repeatedly mentioned above to reach the saturation magnetic induction of the second magnetic film, or the magnetic induction of the outer magnetic film reaches the saturation magnetic induction of the outer magnetic film.
  • a certain margin is set between the maximum magnetic induction intensity of the second magnetic film and the saturation magnetic induction intensity of the second magnetic film, that is, it will not be allowed.
  • the second magnetic film is magnetically saturated as easily. Because the magnetic saturation of the second magnetic film also causes the inductance of the thin film inductor to drop sharply, even close to zero.
  • the maximum magnetic induction of the second magnetic film refers to the maximum magnetic induction that the second magnetic film can achieve under the normal working state of the thin film inductor.
  • the outer magnetic film is disposed with reference to the arrangement of the second magnetic film, and the description thereof will not be repeated.
  • FIG. 5 is a circuit diagram of a power conversion circuit 920 provided by the present application.
  • the power conversion circuit 920 includes a first light-emitting tube 922, a second switch tube 924, a capacitor 928, and a thin film inductor 926 as described in any of the preceding embodiments.
  • One end of the first light-emitting tube 922 is connected to one end of the second switch tube 924.
  • One end of the thin film inductor 926 is connected between one end of the first light-emitting tube 922 and one end of the second switch tube 924, and the other end of the thin film inductor 926 is connected to one end of the capacitor 928.
  • the other end of the capacitor 928 and the second switch tube 924 are connected. The other end is connected.
  • the first switch 922 When the first switch 922 is turned on and the second switch 924 is turned off, the current from the external power source and flowing through the thin film inductor 926 will become larger; the first switch 922 is turned off and the second switch 924 is turned on. In the case of the pass, the voltage across the capacitor 928 is reversely applied to the thin film inductor 926, and the current flowing through the thin film inductor 926 will become smaller.
  • the first switch 922 when the first switch 922 is turned on and the second switch 924 is turned off, the current from the external power source and flowing through the thin film inductor 926 rises and is filtered by the capacitor 928 and supplied to the load.
  • the first switch 922 is turned off and the second switch 924 is turned on, the voltage across the capacitor 928 is reversely applied to the thin film inductor 926, and the current flowing through the thin film inductor 926 starts to drop, completing the BUCK conversion circuit.
  • the freewheeling part when the first switch 922 is turned on and the second switch 924 is turned off, the current from the external power source and flowing through the thin film inductor 926 rises and is filtered by the capacitor 928 and supplied to the load.
  • the thin film inductor can work normally. That is, the inductance of the thin film inductor does not suddenly drop to near zero, so that the device in the power conversion circuit using the thin film inductor does not burn out due to excessive current.
  • the other end of the capacitor 928 and the other end of the second switch tube 924 are grounded.
  • the thin film inductor 926 used in the power conversion circuit 920 of Figure 5 is a single phase thin film inductor, i.e., includes only one electrical conductor. If the thin film inductor 926 used in the power conversion circuit 920 is two-phase, the power conversion circuit should also include another pair of series switching transistors, such as a third switching transistor and a fourth switching transistor, and the other pair of switching transistors is For the control of the magnitude of the current flowing through another conductor, please refer to FIG.
  • the thin film inductor 1005 used in the power conversion circuit 1000 shown in FIG. 6 is a two-phase thin film inductor, that is, the thin film inductor 1005 includes two electric conductors. Further, the thin film inductor 1005 is also the thin film inductor described in the embodiment of the present invention regarding the thin film inductor.
  • each phase power conversion circuit comprises a conductor and a pair of switch tubes.
  • one end of the first switch 1001 is connected to one end of the second switch 1002, and the first end of one phase of the thin film inductor 1005 is connected between the first switch 1001 and the second switch 1002.
  • the second end of one phase of the inductor 1005 is connected to one end of the capacitor 1006; one end of the third switch tube 1003 is connected to one end of the fourth switch tube 1004, and the first end of the other phase of the thin film inductor 1005 is connected to the third switch tube.
  • the second end of the other phase of the thin film inductor 1005 is connected to one end of the capacitor 1006, the second end of the capacitor 1006, the other end of the second switch 1002, and the fourth switch 1004. The other end is grounded.
  • the first phase power conversion circuit includes a first switching transistor 1001, a second switching transistor 1002, and a phase of the thin film inductor 1005.
  • the first switching transistor 10011 starts to be turned on and the second switching transistor 1002 is turned off
  • the direct current flows through a phase of the thin film inductor 1005 connected to the first switching transistor 1001, and the current of the thin film inductor 1005 starts to rise and is filtered by the capacitor 1006.
  • the load R is supplied with power.
  • the first switch 1001 is turned off and the second switch 1002 is turned on
  • the voltage on the capacitor 1006 is reversely applied to the thin film inductor 1005, and the current of the thin film inductor 1005 starts to decrease, completing the freewheeling portion of the BUCK conversion circuit. .
  • the second phase power conversion circuit includes the third switching transistor 1003, the fourth switching transistor 1004, and another phase of the thin film inductor 1005.
  • the third switch 1003 starts to conduct and the fourth switch 1004 is turned off
  • the direct current flows through a phase of the thin film inductor 1005 connected to the third switch 1003, and the current of the thin film inductor 1005 starts to rise and is filtered by the capacitor 1006.
  • the load R is supplied with power.
  • the third switch 1003 is turned off and the fourth switch 1004 starts to conduct, the voltage on the capacitor 1006 is reversely applied to the thin film inductor 1005, and the current of the thin film inductor 1005 starts to decrease, completing the freewheeling portion of the BUCK conversion circuit. .
  • the power conversion circuit includes switching transistors Q1, Q2, Q3, and Q4 and a thin film inductor unit L1. Specifically, according to the load current requirement, one or more power conversion circuits as described in this embodiment may be used to supply power to the load in parallel.
  • FIG. 7 is a circuit diagram of a chip.
  • the circuitry within the chip includes a power conversion circuit 920 and a load 930 as shown in FIG.
  • a power conversion circuit 920 is configured to receive a current from an external power source and convert the current to the load 930.
  • the circuit diagram shown in FIG. 8 further includes a DC power source 910 with respect to the circuit diagram shown in FIG.
  • a DC power source 910 with respect to the circuit diagram shown in FIG.
  • the other end of the first switch tube 922 is connected to the positive pole of the DC power source 910, and the other end of the second switch tube 924 is connected to the DC line.
  • the negative terminal of the power supply 910 is connected.
  • the power conversion circuit 920 is configured to receive the current from the DC power source 910 and convert the current to the load 930.
  • the thin film magnetic core in order to reduce the eddy current loss of the thin film magnetic core, is generally composed of a plurality of magnetic thin films, that is, the thin film magnetic core includes at least two magnetic thin films, and each layer of the magnetic thin film uses the same material ( It can be understood that the properties of each layer of magnetic film are the same). Taking any two magnetic thin films (magnetic thin film 111 and magnetic thin film 112) of the copper clad film inductor shown in Fig. 10 as an example, the prior art will be briefly described in conjunction with the background art.
  • R L / ⁇ 0 ⁇ r A, where R is the magnetic resistance of the magnetic film, and L is the equivalent length of the magnetic flux loop generated by the magnetic film and the conductive winding after energization in the cross section shown in Fig. 9, ⁇ 0
  • the magnetic permeability of the magnetic film in vacuum ⁇ r is the magnetic permeability of the magnetic film in the non-magnetic medium, and A is the cross-sectional area of the magnetic film in the direction perpendicular to the flow direction of the magnetic flux;
  • NI/R, where ⁇ is the magnetic flux generated by the magnetic film and the conductive winding after energization, N is the number of turns of the conductive winding, and I is the current flowing through the conductive winding;
  • B ⁇ /A, where B is the magnetic induction intensity generated by the conductive winding and the magnetic film;
  • FIG. 9 is a schematic view showing the structure of a copper-clad film inductor in the prior art.
  • the magnetic film 411 is an inner layer magnetic film in the film inductor in the background art
  • the magnetic film 412 is an outer layer magnetic film in the film inductor in the background art.
  • Figure 10 is a graph showing the distribution of magnetic induction of a copper-clad film inductor using a Ni 80 Fe 20 material.
  • the horizontal axis in the horizontal direction shown in FIG. 10 is the y-axis direction shown in FIG. 9, and the coordinate range corresponding to the horizontal axis is the region of 40 ⁇ m of the film inductance in the y-axis direction shown in FIG.
  • the vertical axis shown in the vertical direction is used to indicate the magnetic induction of the magnetic film in the film inductance.
  • the maximum magnetic induction B S of the Ni 80 Fe 20 is 1T, and as can be seen from FIG.
  • the magnetic thin film in the range of the regions d 1 and d 2 (ie, the magnetic thin film including the magnetic thin film 412 close to the conductive winding)
  • the magnetic induction is greater than or equal to the maximum magnetic induction of the material, reaching a saturated state, resulting in a magnetic permeability close to zero, causing a sharp drop in inductance, a surge in current in the circuit conversion circuit, and even burning the device in severe cases.
  • the thin film magnetic core provided by the embodiment of the present application can be applied to the thin film inductor, thereby solving the problem that the inner magnetic thin film is easily saturated.
  • FIGS. 11 to 13 is a schematic structural view of a thin film magnetic core of an embodiment of the present application.
  • the thin film magnetic core 500 is formed as a cavity structure, and both ends of the cavity structure are open.
  • the thin film magnetic core 500 includes a plurality of magnetic thin films, and each layer of the magnetic thin film is insulated at intervals. layer,
  • the multilayer magnetic film includes a first magnetic film 510 and a second magnetic film 520.
  • the first magnetic film 510 is embedded in the second magnetic film 520.
  • the saturation magnetic induction intensity of the first magnetic film 510 is greater than the saturation magnetic induction of the second magnetic film 520, and the saturation magnetic induction of the first magnetic film 510 and the saturation magnetic induction of the second magnetic film 520.
  • the difference between the first layer of the magnetic film 510 and the magnetic permeability of the second layer of the magnetic film 520 is greater than the first threshold, and the magnetic permeability of the first layer of the magnetic film 510 is The difference between the magnetic permeability of the second magnetic film 520 is less than the second threshold, so that the magnetic induction intensity of the first magnetic film 510 is smaller than the saturation magnetic induction of the first magnetic film 510; or
  • the magnetic permeability of the first magnetic thin film 510 is smaller than the magnetic permeability of the second magnetic thin film 520, and the magnetic permeability of the first magnetic thin film 510 and the magnetic permeability of the second magnetic thin film 520 The difference is greater than the third threshold, and in the case where the saturation magnetic induction of the first magnetic film 510 is smaller than the saturation magnetic induction of the second magnetic film 520, the saturation magnetic induction of the first magnetic film 510 and the first The difference between the saturation magnetic induction intensities of the two-layer magnetic film 520 is less than a fourth threshold such that the magnetic induction of the first magnetic film 510 is smaller than the saturation magnetic induction of the first magnetic film 510.
  • the thin film magnetic core 500 has a cavity structure having two end portions, and both end portions are open.
  • the cavity structure has only a side wall, and the side wall is the thin film magnetic core 500, and the thickness of the side wall is also That is, the thickness of the thin film magnetic core 500.
  • the thin film magnetic core 500 includes the first magnetic thin film 510 and the second magnetic thin film 520, and an insulating layer is deposited between each magnetic thin film, and the material may be silicon dioxide. Silicon nitride or other insulating organic material coating to achieve isolation between each layer of magnetic film.
  • the first magnetic film 510 and the second magnetic film 520 may be any two magnetic films of the multilayer magnetic film in the thin film magnetic core 500 (ie, all magnetic thin films are
  • the first magnetic film 510 and the second magnetic film 520 may also be a specific two magnetic films (ie, at least two magnetic films) of the multilayer magnetic film included in the thin film magnetic core 500. If the above conditions are satisfied, the magnetic film may be separated from the two magnetic films as shown in FIG. 11, or the magnetic film may be separated from each other by another magnetic film as shown in FIG. .
  • the positional relationship between the first magnetic film and the second magnetic film in FIG. 11 and FIG. 12 is only a schematic description, and the invention should not be limited as long as the first magnetic film is embedded in the first layer.
  • the inside of the second magnetic film that is, the first magnetic film is located inside the second magnetic film
  • the saturation magnetic induction or magnetic permeability of the first magnetic film satisfies the above condition.
  • the thin film magnetic core according to an embodiment of the present application will be described in detail by taking two magnetic films (ie, the first magnetic film 510 and the second magnetic film 520) in the thin film magnetic core shown in FIG. 11 as an example. Description.
  • the thin film magnetic core 500 of the embodiment of the present application in order to reduce the problem that the magnetic induction strength of the inner magnetic film is easily saturated, two parameters (i.e., saturation magnetic induction and magnetic permeability of the magnetic film) are changed.
  • the saturation magnetic induction intensity of the magnetic film is only related to the properties of the magnetic material, and is an intrinsic property of the magnetic material. Therefore, when the saturation magnetic induction intensity of the magnetic film is different, the magnetic film The material is inevitably different; the magnetic permeability of the magnetic film is not only related to the properties of the magnetic material, but also related to external factors such as the processing technology of the magnetic material. Therefore, when the magnetic permeability of the magnetic film is different, the magnetic film The materials can be the same or different.
  • the saturation magnetic induction intensity of the first magnetic film 510 is greater than the saturation magnetic induction of the second magnetic film 520, and the saturation magnetic induction of the first magnetic film 510 and the saturation magnetic induction of the second magnetic film 520.
  • the difference is greater than the first threshold, and in the case where the magnetic permeability of the first magnetic film 510 is greater than the magnetic permeability of the second magnetic film 520, the magnetic permeability of the first magnetic film 510 and the first
  • the difference between the magnetic permeability of the two-layer magnetic film 520 is smaller than the second threshold such that the magnetic induction intensity of the first magnetic film 510 is smaller than the saturation magnetic induction of the first magnetic film 510.
  • each layer of the magnetic thin film is on a plane in which the cross section of the cavity structure in a direction perpendicular to the first direction (for convenience of understanding and distinction, recorded as a first plane)
  • the circumference is determined by the direction from the opening of one end of the cavity structure to the opening of the other end, that is, the first plane is the plane in which the section is as shown in FIG.
  • the first magnetic film 510 is located on the inner side of the second magnetic film 520. Then, the circumference of the first magnetic film 510 on the first plane is smaller than the second magnetic film 520 on the first plane. The circumference of the circumference, then, when the magnetic material is selected, the magnetic material having a large saturation magnetic induction intensity is selected for the first magnetic film 510 by the selection criterion of the saturation magnetic induction intensity. A magnetic material having a small saturation magnetic induction is selected for the second magnetic film 520.
  • the inductance, the circumference of the magnetic film, and the saturation magnetic induction of the magnetic material are determined, a suitable data range can be obtained by a correlation experiment, so that the saturation magnetic induction intensity of the first magnetic film 510 and the second layer The difference in saturation magnetic induction of the magnetic film 520 is less than the first threshold.
  • the magnetic permeability of the first magnetic film 510 is greater than the magnetic permeability of the second magnetic film 520.
  • the magnetic permeability of the first magnetic film 510 and the magnetic film 520 of the second magnetic film 520 are required.
  • the difference between the magnetic permeability is less than the second threshold, so that the magnetic induction of the first magnetic film 510 can be made smaller than the saturation magnetic induction of the first magnetic film 510.
  • the second threshold can be determined by a correlation experiment to obtain a suitable difference range.
  • the magnetic permeability of the first magnetic film is smaller than the magnetic permeability of the second magnetic film, and the difference between the magnetic permeability of the first magnetic film and the magnetic permeability of the second magnetic film is greater than a three-threshold value, and a saturation magnetic induction of the first magnetic film and a saturation magnetic induction of the second magnetic film, in a case where the saturation magnetic induction of the first magnetic film is smaller than the saturation magnetic induction of the second magnetic film.
  • the difference between the intensities is less than a fourth threshold such that the magnetic induction of the first layer of magnetic film is less than the saturation magnetic induction of the first layer of magnetic film.
  • the magnetic permeability of the first magnetic film 510 is smaller than the magnetic permeability of the second magnetic film 520, so that the magnetic permeability of the first magnetic film 510 is smaller than the magnetic induction of the second magnetic film 520. Since the magnetic permeability of the magnetic material is related not only to the material properties but also to the actual process, the material of the first magnetic film 510 and the material of the second magnetic film 520 may be the same (ie, case A). It can also be different (ie, case B), and the following two cases will be separately described.
  • the first magnetic film 510 is the same material as the second magnetic film 520: that is, the saturation magnetic induction of the first magnetic film 510 is the same as the saturation magnetic induction of the second magnetic film 520, the first layer
  • the difference between the magnetic permeability of the magnetic film 510 and the magnetic permeability of the second magnetic film 520 can be obtained by correlation calculation.
  • the magnetic permeability of each magnetic film can be calculated by a specific formula (specifically The determination of the magnetic permeability is described in detail later, and the test is performed by experiments. Under the condition that the magnetic induction intensity of the first magnetic film 510 is less than the saturation magnetic induction intensity and the inductance is appropriate, multiple sets of data are acquired to determine the third threshold. .
  • the material of the first magnetic film 510 is different from the material of the second magnetic film 520: the saturation magnetic induction of the first magnetic film 510 is different from the saturation magnetic induction of the second magnetic film 520, that is, the first layer The saturation magnetic induction of the magnetic film 510 is greater or smaller than the saturation magnetic induction of the second magnetic film 520.
  • the saturation magnetic induction of the first magnetic film 510 is greater than the saturation magnetic induction of the second magnetic film 520, the third threshold can be obtained by calculation and experimentally.
  • the saturation magnetic induction intensity of the first magnetic thin film 510 is smaller than the saturation magnetic induction intensity of the second magnetic thin film 520, not only the third threshold needs to be determined, but also the saturation magnetic induction intensity of the first magnetic thin film 510 needs to be determined.
  • the range of the difference between the saturation magnetic induction intensities of the second magnetic film 520 that is, the fourth threshold. Since the magnetic permeability of the magnetic film is proportional to the magnetic induction intensity of the magnetic film, the first layer of magnetic properties is obtained when the saturation magnetic induction of the first magnetic film 510 is smaller than the saturation magnetic induction of the second magnetic film 520.
  • the magnetic induction intensity generated by the film 510 is smaller than the magnetic induction intensity of the second magnetic film 520.
  • the difference between the saturation magnetic induction of the first magnetic film 510 and the saturation magnetic induction of the second magnetic film 520 is required. Less than the fourth threshold, the magnetic induction intensity of the first magnetic film 510 can be made smaller than the saturation magnetic induction of the first magnetic film 510.
  • the first magnetic film 510 is It may be an inner magnetic film 510, which may be a magnetic film closest to at least one electrical conductor (ie, a conductive winding) placed in the cavity structure, or may not be the magnetic film closest to the conductive winding.
  • the first magnetic film 510 is embedded in the second magnetic film 520 (ie, the first magnetic film 510 is located inside the second magnetic film 520), and the saturation of the first magnetic film 510
  • the magnetic induction or magnetic permeability satisfies the above conditions, and the problem that the magnetic induction strength of the inner magnetic film in the prior art is easily saturated can be effectively solved as compared with the prior art.
  • the thin film magnetic core may not only have the shape shown in FIG. 11 and FIG. 12, but also other shapes, as long as the thin film magnetic core can form a cavity structure as described above, thereby making the film
  • the magnetic core has a cavity capable of placing at least one electrical conductor.
  • the shape of the thin film magnetic core may also be as shown in FIG. 13.
  • the upper portion of the thin film magnetic core in the thin film magnetic core 500 is similar to a trapezoid, and the lower partial thin film magnetic core is connected to the upper partial thin film magnetic core to form a closed magnetic core. Copper-clad film core.
  • it may be a rectangle, an ellipse or the like (not shown), and the embodiment of the present application is not limited thereto.
  • the thin film magnetic core provided by the embodiment of the present application is such that the saturation magnetic induction intensity of the first magnetic film (ie, the inner magnetic film) is greater than the saturation magnetic induction of the second magnetic film (ie, the outer magnetic film).
  • the magnetic induction strength that can be accommodated by the first magnetic core can be effectively increased, or the magnetic permeability of the first magnetic thin film is smaller than the magnetic permeability of the second magnetic thin film, and the first magnetic thin film can be effectively reduced.
  • the magnetic induction and thus, can effectively reduce the possibility that the magnetic induction of the first magnetic film is easily saturated, and at the same time, only low magnetic is used in order to reduce the magnetic induction of the first magnetic film compared to the prior art.
  • the magnetic thin film with conductivity performance has a small inductance, and the embodiment of the present application can effectively ensure the inductance of the thin film inductor.
  • the material of the first magnetic film 510 is different from the material of the second magnetic film 520. That is, the first magnetic film 510 and the second magnetic film 520 are made of different materials.
  • the thickness of the first magnetic film 510 is greater than the thickness of the second magnetic film 520.
  • the magnetic permeability of the first magnetic core film 510 and the second magnetic film 520 can be processed by a process.
  • the rate is different, that is, the magnetic permeability of the first magnetic film 510 is smaller than the magnetic permeability of the second magnetic film 520.
  • changes in permeability can be achieved by sputtering pressure, power, temperature, etc.
  • the change in magnetic permeability is achieved by changing the thickness of each layer of the magnetic film.
  • the thickness of the magnetic film is inversely proportional to the magnetic permeability.
  • the magnetic permeability of the first magnetic thin film 510 is made smaller than the magnetic permeability of the second magnetic thin film 510 by making the thickness of the first magnetic thin film 510 larger than the thickness of the second magnetic thin film 520.
  • the first magnetic film 510 and the second magnetic film 520 are any two of the plurality of magnetic films in the thin film magnetic core, and the entire thickness of the thin film core can be changed (ie, In the case of the total thickness of the plurality of magnetic thin films, the thickness of the first magnetic thin film 510 is increased as compared with the prior art, and the thickness of the second magnetic thin film 520 is reduced.
  • the change of the magnetic permeability by changing the thickness of the first magnetic film 510 and the second magnetic film 520 is not only applicable to the case of the same material of different magnetic films, but also to materials of different magnetic films. In the case of a difference, the embodiment of the present application is not limited thereto.
  • the difference between the thickness of the first magnetic film 510 and the thickness of the second magnetic film 520 is less than a fifth threshold, and the fifth threshold is three times the thickness of the second magnetic film 520.
  • the fifth threshold is a relationship between the thickness of the magnetic film having the largest circumference and the thickness of the magnetic film having the smallest circumference, and the specific value of the fifth threshold may be according to the structural size of the thin film core, including The inductance required for the thin film inductor of the thin film magnetic core is determined.
  • the magnetic permeability of the first magnetic film 510 is determined according to the magnetic permeability determined by the circumferential length of the first magnetic film 510 on the first plane and the saturation magnetic induction of the first magnetic thin film 510.
  • the magnetic permeability of the second magnetic film 520 is determined according to the magnetic permeability determined by the circumferential length of the second magnetic film 520 on the first plane and the saturation magnetic induction of the second magnetic film 520.
  • the first plane is a plane of the cavity structure in a section perpendicular to the first direction, the first direction being a direction extending from an opening of one end of the cavity structure to an opening of the other end.
  • the magnetic permeability of each magnetic thin film can be obtained by correlation calculation.
  • the saturation magnetic induction intensity of the first magnetic film 510 and the saturation magnetic induction of the second magnetic film 520 are based on the circumference of the first magnetic film 510 on the first plane and the magnetic properties of the second layer.
  • the relationship between the circumference of the film 520 on the second plane is determined, or
  • the magnetic permeability of the first magnetic film 510 and the magnetic permeability of the second magnetic film 520 are based on the circumference of the first magnetic film 510 on the first plane and the second magnetic film 520.
  • the circumference of the second plane is determined
  • the problem that the inner magnetic film is liable to cause saturation of magnetic induction under the condition that other conditions are constant is because the circumference of the inner magnetic film on the first plane is larger than that of the outer magnetic film.
  • the circumference of the first plane is shorter, and thus, when determining the saturation magnetic induction intensity of the first magnetic thin film 510 and the saturation magnetic induction intensity of the second magnetic thin film 520, or determining the first layer
  • the magnetic permeability of the magnetic film 510 and the magnetic permeability of the second magnetic film 520 can be determined according to the relationship between the circumferences of the two magnetic films.
  • a magnetic film having a large difference in saturation magnetic induction may be selected as the first magnetic film 510 and the second magnetic film 520, or A magnetic film having a large difference in magnetic permeability may be selected as the first magnetic film 510 and the second magnetic film 520.
  • a magnetic film having a small difference in saturation magnetic induction can be selected as the first magnetic film 510 and the second magnetic film 520.
  • a magnetic film having a small difference in magnetic permeability may be selected as the first magnetic film 510 and the second magnetic film 520.
  • the method of magnetic permeability of the two-layer magnetic film 520 can be determined not only by the relationship between the circumferences of the two magnetic films on the plane in which the magnetic flux loop is located, but also by other parameters, for example, including the thin film magnetic core.
  • the embodiment of the present application is not limited thereto, and the present invention is not limited to the embodiment of the present application.
  • the amount of the inductance required for the thin film inductor, the average magnetic induction required for the thin film inductor, and the like are not limited thereto.
  • the first magnetic film 510 and the second magnetic film 520 may be any two layers of the multilayer magnetic film in the thin film magnetic core.
  • the film is equivalent to the film.
  • the saturation magnetic induction or magnetic permeability of all magnetic thin films in the magnetic core is gradually changed from the inside to the outside along the thickness direction, that is, the saturation magnetic induction intensity of the multilayer magnetic film is gradually decreased from the inside to the outside, or The magnetic permeability of the multilayer magnetic film is gradually increased from the inside to the outside.
  • the first magnetic film 510 and the second magnetic core film 520 may be specific two magnetic films in the multilayer magnetic film, when the two magnetic films are separated by another magnetic film (for ease of understanding and Note that, as the fifth magnetic film, in order to reduce the complexity of the process and reduce the cost, the magnetic permeability of the fifth magnetic film may be the same as the magnetic permeability of any one of the two magnetic films.
  • the multilayer magnetic film further includes a third magnetic film, the third magnetic film is embedded in the second magnetic film, and the third magnetic film is embedded in the first magnetic layer.
  • the third magnetic film is embedded in the first magnetic layer.
  • the saturation magnetic induction intensity of the third magnetic film is the same as the saturation magnetic induction intensity of the first magnetic film, or the magnetic permeability of the third magnetic film is the same as the magnetic permeability of the first magnetic film.
  • the perimeter of the third layer of magnetic film on the first plane and the perimeter of the first layer of magnetic film on the first plane are both within a first perimeter, the first plane being perpendicular to the cavity structure a plane in which the section in the direction of the first direction is located, the first direction being a direction extending along an opening of one end of the cavity structure to an opening of the other end;
  • the multilayer magnetic film further includes a fourth magnetic film, the second magnetic film is embedded inside the fourth magnetic film, or the fourth magnetic film is embedded inside the second magnetic film, and The third magnetic film and the first magnetic film are embedded inside the fourth magnetic film.
  • the saturation magnetic induction intensity of the fourth magnetic film is the same as the saturation magnetic induction intensity of the second magnetic film, or the magnetic permeability of the fourth magnetic film is the same as the magnetic permeability of the second magnetic film.
  • a perimeter of the fourth layer of magnetic film on the first plane and a perimeter of the second layer of magnetic film on the first plane are both within a second perimeter, and a lower limit of the second perimeter range is greater than The upper limit of the range of the first perimeter.
  • the multilayer magnetic film in the thin film magnetic core 500 can divide the multilayer magnetic film into a plurality of groups according to the circumference of each magnetic film on the first plane, and the magnetic film in the same group
  • the saturation magnetic induction is the same or the magnetic permeability is the same
  • the saturation magnetic induction of the magnetic film between different groups is different or the magnetic permeability is different
  • the division of the group is determined based on the perimeter range.
  • the thin film magnetic core of the embodiment of the present application is such that the multilayer magnetic film in the thin film magnetic core belongs to at least two magnetic thin film groups, and the magnetic permeability or the saturation magnetic induction intensity in each magnetic thin film group is the same, and the inner layer
  • the magnetic permeability of the magnetic film group is smaller than the magnetic permeability of the outer magnetic film group, or the saturation magnetic induction intensity of the inner magnetic film group is greater than the saturation magnetic induction of the outer magnetic film group, which can not only reduce the magnetic induction strength of the inner magnetic film.
  • the thickness d 1 of the thin film magnetic core satisfies the condition: 0 ⁇ m ⁇ d 1 ⁇ 5 ⁇ m.
  • the thickness d 2 of each of the magnetic films in the multilayer magnetic film satisfies the condition: 0 ⁇ m ⁇ d 2 ⁇ 1 ⁇ m.
  • each insulating layer satisfies the condition: 0 ⁇ m ⁇ d 3 ⁇ 20 ⁇ m.
  • the thin film magnetic core has a small volume and can be better applied to a battery chip.
  • the first layer magnetic film 510, the second magnetic film 520, the third magnetic film 530, and the fourth magnetic film 540 are taken as an example, and an embodiment of the present application will be described with reference to FIG.
  • the perimeter of the third layer of magnetic film 530 on the first plane and the circumference of the first layer of magnetic film 510 on the first plane are within a first perimeter, ie, the first
  • the layer magnetic film 510 and the third layer magnetic film 530 are located in a group (referred to as a first magnetic film group for ease of understanding and explanation), and have the same saturation magnetic induction or magnetic permeability; from the positional relationship, the position
  • the first magnetic film 510 and the third magnetic film 530 are both located inside the second magnetic film 520 (ie, the first magnetic film 510 is embedded in the second magnetic film 520, the third layer The magnetic film 530 is embedded in the second magnetic film 520), and the first magnetic film 510 may be located inside the third magnetic film 530 (ie, the first magnetic film 510 is embedded in the third magnetic layer).
  • the film 530 may be located inside the first magnetic film 510 (ie, the third magnetic film 530 is embedded in the first magnetic film 510).
  • the perimeter of the fourth layer of magnetic film 540 on the first plane and the circumference of the second layer of magnetic film 520 on the first plane are outside the range of the first perimeter.
  • the lower limit of the second perimeter range is greater than the upper limit of the first perimeter range, that is, the fourth layer of magnetic film 540 and the second layer of magnetic film 520 are located in another group (for convenience)
  • the second magnetic film group having the same saturation magnetic induction strength or magnetic permeability, for example, the first circumference ranges from 20 um to 30 um, then the second circumference may range from 35 um to 45 um.
  • the upper limit of the first perimeter range is 30 um
  • the lower limit of the second perimeter range is 35 um;
  • the first magnetic film 510 and the third magnetic film 530 are both located inside the fourth magnetic film 540 (ie, the third magnetic film 530 and the first magnetic film 510).
  • the second magnetic film 520 is disposed inside the fourth magnetic film 540 (ie, the second magnetic film 520 is embedded in the fourth magnetic film). 540 internally), or the fourth magnetic film 540 may be located inside the second magnetic film 520 (ie, the fourth magnetic film 540 is embedded inside the second magnetic film 520).
  • the above-described first perimeter range and second perimeter range in the thin film magnetic core 500 are only illustrative, and the thin film core may have a plurality of perimeter ranges without any intersection, ie
  • the thin film magnetic core includes not only the first magnetic thin film group and the second magnetic thin film group but also a plurality of magnetic thin film groups, which is not limited in the embodiment of the present application.
  • the thin film magnetic core includes a plurality of magnetic thin film groups
  • the first magnetic thin film and the second magnetic thin film may be any two magnetic thin film groups of the plurality of magnetic thin film groups, that is, a plurality of magnetic films. Any two magnetic film groups in the film group satisfy the above technical features, and then a plurality of magnetic core film groups satisfy the above technical features.
  • each magnetic film group may include at least two magnetic films, and is not limited to including two magnetic films in each group, which are included in the first magnetic film group or the second magnetic film group described in the embodiments of the present application.
  • the two magnetic films are only illustrative, and the first magnetic film and the third magnetic film in the first magnetic film group may be any two of the multilayer magnetic films in the first magnetic film group.
  • the second magnetic film and the fourth magnetic film in the second magnetic film group may be any two of the multilayer magnetic films in the second magnetic film group.
  • the black line in the figure shows the first magnetic film group
  • the gray line shows the second magnetic film group.
  • the first magnetic film group may include three magnetic films
  • the first magnetic film 510 and the third magnetic film 530 may be magnetic films with parentheses in the figure, or may be unmarked in the figure.
  • the magnetic film, the second magnetic film 520 and the fourth magnetic film 540 may be a magnetic film with a parenthesis in the figure, or may be a magnetic film without a parenthesis in the figure.
  • the embodiment of the present application is not limited thereto. As long as it is any two of a group of magnetic films.
  • part of the magnetic thin film in the multilayer magnetic film may be divided into a plurality of magnetic thin film groups, each group including at least two layers.
  • the magnetic film, the remaining part of the magnetic film can be as described above, the magnetic magnetic film of each layer is gradually reduced from the inside to the outside, or the magnetic permeability is gradually increased.
  • each magnetic film group includes at least two magnetic films.
  • each of the at least two magnetic films uses the same material, and the magnetic properties of the magnetic film need to be changed by changing the thickness of the magnetic film.
  • the thickness of each layer of the magnetic film is inevitable. different.
  • the thin film magnetic core made the saturation magnetic induction intensity of the first magnetic film (ie, the inner magnetic film) greater than the saturation of the second magnetic film (ie, the outer magnetic film).
  • the magnetic induction intensity can effectively increase the magnetic induction strength that the first magnetic core can accommodate, or make the magnetic permeability of the first magnetic film smaller than the magnetic permeability of the second magnetic film, and can effectively reduce the magnetic property of the first layer.
  • the magnetic induction strength of the film can thereby effectively reduce the possibility that the magnetic induction intensity of the first magnetic film is easily saturated, and at the same time, only adopting the magnetic induction intensity of the first magnetic film in the prior art.
  • the magnetic permeability of the magnetic film with low magnetic permeability performance is less, and the embodiment of the present application can effectively ensure the inductance of the thin film inductor;
  • the magnetic permeability or the saturation magnetic induction intensity in each magnetic thin film group is the same, and the magnetic permeability of the inner magnetic thin film group It is smaller than the magnetic permeability of the outer magnetic film group, or the saturation magnetic induction intensity of the inner magnetic film group is larger than the saturation magnetic induction of the outer magnetic film group, which can not only reduce the possibility that the magnetic induction of the inner magnetic film is easy to be saturated, and It can reduce the complexity of the process and reduce costs.
  • FIG. 16 is a schematic structural view of a thin film inductor according to an embodiment of the present application. As shown in FIG. 16, the thin film inductor 600 includes:
  • the thin film magnetic core 610 of any one of the above possible implementation manners, the thin film magnetic core 610 is formed as a cavity structure, and both ends of the cavity structure are open;
  • At least one electrical conductor 620 the at least one electrical conductor 620 is located in the cavity structure, and the at least one electrical conductor 620 has the same length direction as the first direction, and the first direction is an opening extending from one end of the cavity structure The direction to the opening at the other end.
  • the at least one electrical conductor 620 (ie, a conductive winding) is disposed inside the cavity structure, and the length direction of the electrical conductor 620 is the same as the first direction, and the first direction is an opening from one end of the cavity structure. Extending to the direction of the opening of the other end, after the at least one electrical conductor 620 is energized, the plane of the magnetic flux loop generated by the at least one electrical conductor 620 and any one of the magnetic films is parallel or approximately parallel to the thickness direction of the magnetic film. That is, the plane in which the magnetic flux loop is located is as shown in the cross section of FIG.
  • an insulating layer is deposited between the at least one electric conductor 620 and the innermost magnetic film (for example, the first magnetic film 611 shown in FIG. 16) to realize the conductive winding and the magnetic film (also It is understood that the insulation between the thin film magnetic cores is the same as the prior art and will not be described here.
  • the multilayer magnetic film constitutes a thin film magnetic core, that is, the thin film inductor 610 in FIG. 16, and the first magnetic thin film 611 and the second magnetic thin film 612 may be any two magnetic thin films in the thin film magnetic core 610 (ie, All of the magnetic thin films satisfy the above characteristics, and the first magnetic thin film 611 and the second magnetic thin film 612 may also be specific two magnetic thin films of the multilayer magnetic thin films included in the thin film magnetic core 600 (ie, At least two magnetic films satisfy the above conditions).
  • the thin film magnetic core 610 can correspond to the thin film magnetic core 500.
  • the first magnetic thin film 611 and the second magnetic thin film 612 of the thin film magnetic core 610 correspond to the first magnetic thin film 510 of the thin film magnetic core 500 and
  • the first magnetic film 611 may be an inner magnetic layer.
  • the first magnetic film 612 may be the magnetic film closest to the conductive winding or may not be the magnetic film closest to the conductive winding, as long as the first magnetic film 611 is embedded in the second magnetic film 612 ( That is, the first magnetic film 611 is located inside the second magnetic film 612, and the saturation magnetic induction or magnetic permeability of the first magnetic film 611 satisfies the above conditions, compared to the prior art.
  • the problem that the inner magnetic film is easily saturated in the prior art can be effectively solved.
  • the thin film inductor in the embodiment of the present application may be single-phase or two-phase coupled inductor.
  • the thin film inductor is a single phase, and when the at least one electrical conductor includes two In the case of an electrical conductor, the thin film inductance is a two-phase coupled inductor.
  • the thin film inductor made the saturation magnetic induction intensity of the first magnetic film (ie, the inner magnetic film) in the thin film inductor larger than that of the second magnetic film (ie, the outer magnetic film)
  • the saturation magnetic induction intensity can effectively increase the magnetic induction strength that the first magnetic core can accommodate, or make the magnetic permeability of the first magnetic film smaller than the magnetic permeability of the second magnetic film, and can effectively reduce the first
  • the magnetic induction strength of the layer magnetic film can thereby effectively reduce the possibility that the magnetic induction strength of the first magnetic film is easily saturated, and at the same time, in order to reduce the magnetic induction strength of the first magnetic film, compared with the prior art.
  • the magnetic thin film with low magnetic permeability performance has less inductance, and the embodiment of the present application can effectively ensure the inductance of the thin film inductor;
  • the magnetic permeability or the saturation magnetic induction intensity in each magnetic film group is the same, and the magnetic permeability of the inner magnetic film group is smaller than The magnetic permeability of the outer magnetic film group, or the saturation magnetic induction intensity of the inner magnetic film group is greater than the saturation magnetic induction intensity of the outer magnetic film group, which can not only reduce the possibility of magnetic saturation of the inner magnetic film, but also Reduce the complexity of the process and reduce costs.
  • the thin film inductor according to the embodiment of the present application is described in detail above with reference to FIG. 16 and FIG. 17.
  • the thin film inductor may be a single phase or a two-phase coupled inductor, and different thin film inductors are applied to the corresponding power source. Conversion system.
  • the operation principle of the two-phase coupled thin film inductor in the power conversion system according to the embodiment of the present application will be described in detail with reference to FIG.
  • the power conversion system 700 includes a direct current (DC) power supply 710, at least one switching unit 720, at least one inductive unit 730, a filter capacitor 740, and a load 750.
  • the circuit operation principle of the power conversion system is a multi-phase interleaved parallel buck (BUCK) circuit.
  • the two-phase inductors are coupled in pairs to form an inductor unit, and one or more inductor units are connected in parallel to provide energy to the load.
  • Two series-connected switching tubes (for example, switching tubes Q1 and Q2) form a switching unit. Each switch tube is connected to the control IC through a drive (DRV) to control the opening and closing of the switch tube.
  • DDRV drive
  • the at least one switching unit is in one-to-one correspondence with the at least one inductive unit, and each of the inductive units is connected to the DC power source through the corresponding switching unit.
  • the inductance unit may comprise the two-phase coupled thin film inductor described in the above.
  • an inductor unit ie, a two-phase inductor, such as L1 shown in FIG. 18
  • L1 shown in FIG. 18
  • the first phase power conversion circuit is composed of one of a first switching unit (for example, a switching unit composed of switching transistors Q1 and Q2) and a first inductance unit (for example, an inductor L1).
  • a first switching unit for example, a switching unit composed of switching transistors Q1 and Q2
  • a first inductance unit for example, an inductor L1
  • the switch Q1 When the switch Q1 is turned on, the DC current passes through a phase of the inductor unit connected to the switch Q1, the inductor current starts to rise, and is filtered by the capacitor C to supply the load R; when Q1 is turned off, Q2 starts to conduct, and the filter
  • the voltage on the capacitor is reversely applied to the inductor, and the current of the inductor begins to drop, completing the freewheeling portion of the BUCK converter circuit.
  • the second phase power conversion circuit is composed of the switching transistors Q3, Q4 and another phase of the inductance unit L1.
  • the switch Q3 When the switch Q3 is turned on, the DC current passes through another phase of the inductor unit connected to the switch Q4, the inductor current starts to rise, and is filtered by the capacitor C to supply power to the load R; when Q3 is turned off, Q4 starts to conduct.
  • the voltage on the filter capacitor is reversely applied to the inductor, and the current of the inductor begins to drop, completing the freewheeling portion of the BUCK converter circuit.
  • the above two-phase BUCK power conversion sections Q1, Q2, Q3, Q4 and the inductance unit L1 constitute a power conversion unit, and the current requirement according to the output load can be realized by using a single or multiple power conversion units in parallel.
  • multi-phase interleaved parallel buck (BUCK) circuit is merely illustrative, and should not be limited in any way.
  • the two-phase coupled thin film inductor of the embodiment of the present application can also be applied to multi-phase interleaved parallel.
  • the boost circuit is not particularly limited in this application.
  • the thin film inductor according to the embodiment of the present application has been described in detail above with reference to FIGS. 9 to 18.
  • a method for preparing a thin film inductor according to an embodiment of the present application will be described in detail with reference to FIGS. 19 to 16 by taking a first magnetic thin film 611, a second magnetic thin film 312, and a single conductor as examples.
  • FIG. 19 is a schematic flow chart of a method of fabricating a thin film inductor according to an embodiment of the present application. As shown in FIG. 19, the preparation method 800 includes:
  • a thin film magnetic core 610 is disposed.
  • the thin film magnetic core 610 is formed as a cavity structure, and both ends of the cavity structure are open.
  • the thin film magnetic core 610 includes a plurality of magnetic thin films, and each of the magnetic thin films is spaced apart. With insulation,
  • the multilayer magnetic film includes a first magnetic film 611 and a second magnetic film 612, and the first magnetic film 611 is embedded in the second magnetic film 612.
  • the saturation magnetic induction intensity of the first magnetic film 611 is greater than the saturation magnetic induction of the second magnetic film 612, and the saturation magnetic induction of the first magnetic film 611 and the saturation magnetic induction of the second magnetic film 612.
  • the difference between the first magnetic film 611 and the magnetic permeability of the first magnetic film 611 is greater than the first threshold, and in the case where the magnetic permeability of the first magnetic film 611 is greater than the magnetic permeability of the second magnetic film 612, The difference between the magnetic permeability of the second magnetic film 612 is smaller than the second threshold, so that the magnetic induction intensity of the first magnetic film 611 is smaller than the saturation magnetic induction of the first magnetic film 611; or
  • the magnetic permeability of the first magnetic thin film 611 is smaller than the magnetic permeability of the second magnetic thin film 612, and the magnetic permeability of the first magnetic thin film 611 is between the magnetic permeability of the second magnetic thin film 612 and the magnetic permeability of the second magnetic thin film 612.
  • the difference is greater than the third threshold, and in the case where the saturation magnetic induction of the first magnetic thin film 611 is smaller than the saturation magnetic induction of the second magnetic thin film 612, the saturation magnetic induction of the first magnetic thin film 611 and the first
  • the difference between the saturation magnetic induction tens of the two-layer magnetic film 612 is less than a fourth threshold, so that the magnetic induction intensity of the first magnetic film 611 is smaller than the saturation magnetic induction of the first magnetic film 611;
  • the at least one electrical conductor is placed in the cavity structure, and the at least one electrical conductor has a length direction that is the same as the first direction, and the first direction is an opening extending from the opening of one end of the cavity structure to the other end. The direction.
  • the magnetic film 612-1 having a planar structure in the second magnetic film 612 may be first formed, and then the magnetic film 611-1 having a planar structure in the first magnetic film 611 is formed. Then, a conductor 620 is formed, and then a magnetic film 611-2 having a curved structure in the first magnetic film 611 is formed, and finally a magnetic film 612-2 having a curved structure is formed in the second magnetic film 612, and finally the film inductor is formed. 600.
  • a magnetic thin film 612-1 having a planar structure in the second magnetic thin film 612 is first formed on the silicon substrate 601.
  • a passivation layer is deposited on the silicon substrate of the silicon substrate 601.
  • the passivation layer may be a coating of silicon dioxide, silicon nitride or other insulating organic material, and the passivation layer completely covers the surface of the silicon substrate.
  • the magnetic film 612-1 is formed on the silicon substrate 601, and the design shape of the magnetic film 612-1 is generally made by a mask.
  • the formation of the magnetic film 612-1 may be an implementation of chemical vapor deposition (CVD), physical vapor deposition (PVD), or atomic layer deposition (ALD).
  • the magnetic thin film 611-1 is produced.
  • the design shape of the magnetic film 611-1 is generally made by a mask, the shape is the same as the magnetic film 612-1, the processing process of the magnetic film 611-1 and the processing process of the magnetic film 612-1. Basically the same, will not be described here.
  • an insulating layer is deposited between the magnetic film 612-1 and the magnetic film 612-1.
  • the material of the insulating layer may be silicon dioxide, silicon nitride or other insulating organic material coating to realize magnetic properties of each layer. Isolation between films.
  • the thickness of the magnetic film can be controlled to be less than 1 ⁇ m.
  • the conductor 620 is produced.
  • a passivation layer is deposited on the magnetic thin film layer of the silicon substrate 601 (ie, the magnetic thin film layer where the magnetic thin film 611-1 is located), and the passivation layer may be silicon dioxide or silicon nitride. Or other insulating organic material coating, and the passivation layer completely covers the surface of the silicon substrate 603.
  • a conductive seed layer is deposited on the entire silicon wafer by a vapor deposition process. A layer of photoresist material is then deposited and etched to form a photoresist layer that covers portions of the seed layer.
  • Electrical conductors 620 are then electroplated onto the seed layer using standard electroplating techniques to form portions of the conductive windings in the thin film inductor. After the plating is completed, the photoresist mask is removed and the residual seed layer is removed by reactive ion etching (RIE) or other suitable etching method.
  • RIE reactive ion etching
  • an insulating layer needs to be deposited to cover the conductive body 620, and the insulating layer may have the same shape as the magnetic film 611-2.
  • a magnetic thin film 611-2 having a curved structure in the second magnetic thin film 612 is formed on the silicon substrate 601.
  • the magnetic film 611-2 is overlaid on the insulating layer having the curved structure described above, and the design shape of the magnetic film 611-2 is generally made by a mask, and has the same shape as the magnetic film 611-1.
  • the processing process of the magnetic film 611-2 is substantially the same as the processing process of the magnetic film 611-1, and details are not described herein again.
  • the magnetic film 612-2 was produced. As shown in FIG. 24, the design shape of the magnetic film 612-2 is generally made by a mask, the shape is the same as the magnetic film 612-1, the processing process of the magnetic film 612-2, and the processing process of the magnetic film 612-1. Basically the same, will not be described here.
  • an insulating layer is deposited between the magnetic film 611-2 and the magnetic film 612-2, and the material of the insulating layer may be a coating of silicon dioxide, silicon nitride or other insulating organic material to achieve a magnetic film between each layer. Isolation. In order to reduce the eddy current loss of the magnetic film, the thickness of the magnetic film can be controlled to be less than 1 ⁇ m.
  • the preparation process of the above three layers of the magnetic film including the first magnetic film, the second magnetic film and one electrical conductor is only a schematic description, and the thin film inductor includes a plurality of electrical conductors and at least two magnetic layers.
  • the processing of each winding and each layer of the magnetic film is similar to the above method, and is within the protection scope of the embodiment of the present application.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • This functionality if implemented as a software functional unit and sold or used as a standalone product, can be stored on a computer readable storage medium.
  • the technical solution of the embodiments of the present application may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the method of various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Thin Magnetic Films (AREA)

Abstract

一种薄膜电感(200),包括多层磁性薄膜(211,212,213,214),该多层磁性薄膜至少包括相邻的第一磁性薄膜和第二磁性薄膜,第一磁性薄膜嵌套在第二磁性薄膜内,第一磁性薄膜的相对磁导率小于第二磁性薄膜的相对磁导率,且第一磁性薄膜的相对磁导率和第二磁性薄膜的相对磁导率之间的差值大于或等于第一阈值,其中,在第二磁性薄膜的磁感应强度达到第二磁性薄膜的饱和磁感应强度的情况下,第一磁性薄膜的磁感应强度小于或等于第一磁性薄膜的饱和磁感应强度。采用该电感,能够避免第一磁性薄膜由于易于达到磁饱和而导致的该薄膜电感的电感量急剧下降的问题。另外,还提供了相应的电源转换电路(920)和芯片。

Description

一种薄膜电感、电源转换电路和芯片
本申请要求于2017年3月3日提交中国专利局、申请号为201710124036.4、申请名称为“一种薄膜磁芯、薄膜电感和电源转换电路”的中国专利申请以及于2017年5月26日提交中国专利局、申请号为201710386290.1、申请名称为“一种薄膜电感、电源转换电路和芯片”的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电路领域,并且更具体地,涉及一种薄膜电感、电源转换电路和芯片。
背景技术
现有技术中,薄膜电感的薄膜磁芯是有多层磁性薄膜层层嵌套而成的。在该多层磁性薄膜中,通常,内层磁性薄膜的磁感应强度达到该内层磁性薄膜的饱和磁感应强度要比外层磁性薄膜达到该外层磁性薄膜的饱和磁感应强度更快一些。在内层磁性薄膜的磁感应强度达到该内层磁性薄膜的饱和磁感应强度的情况下,该内层磁性薄膜的相对磁导率将接近于零,从而使得该薄膜电感的电感量急剧下降。在该薄膜电感位于电源转换电路中时,该电源转换电路中的电流将会激增,严重时会烧毁负载。
因此,如何降低上述薄膜电感中内层磁性薄膜的磁感应强度易饱和的可能性,已成为亟需解决的问题。
发明内容
本申请提供一种薄膜磁芯、薄膜电感和电源转换电路,能够有效地降低内层磁性薄膜的磁感应强度容易饱和的可能性。
第一方面,本申请提供了一种薄膜电感,所述薄膜电感包括薄膜磁芯和至少一个导电体,所述薄膜磁芯呈两端开口的筒状结构,所述薄膜磁芯包括多层磁性薄膜,每层磁性薄膜均呈两端开口的筒状结构,所述多层磁性薄膜层层嵌套,每相邻两层磁性薄膜之间间隔有绝缘层,所述至少一个导电体位于所述多层磁性薄膜中最内层薄膜磁性的内腔中;
每相邻两层磁性薄膜包括内层磁性薄膜和外层磁性薄膜,所述内层磁性薄膜嵌套在所述外层磁性薄膜内,所述内层磁性薄膜的相对磁导率小于或等于所述外层磁性薄膜的相对磁导率,
所述多层磁性薄膜至少包括相邻的第一磁性薄膜和第二磁性薄膜,所述第一磁性薄膜嵌套在所述第二磁性薄膜内,且所述第一磁性薄膜的相对磁导率小于所述第二磁性薄膜的相对磁导率,且所述第一磁性薄膜的相对磁导率和所述第二磁性薄膜的相对磁导率之间的差值大于或等于第一阈值,其中,在所述第二磁性薄膜的磁感应强度达到所述第二磁性薄膜的饱和磁感应强度的情况下,所述第一磁性薄膜的磁感应强度小于或等于所述第一磁性薄膜的饱和磁感应强度。
因此,在本申请提供的薄膜电感中,虽然第一磁性薄膜被嵌套在第二磁性薄膜的内部, 但是通过限定第一磁性薄膜的相对磁导率小于第二磁性薄膜的相对磁导率,以及限定第一磁性薄膜的相对磁导率和第二磁性薄膜的相对磁导率之间的差值大于或等于50,使得在第二磁性薄膜的磁感应强度达到第二磁性薄膜的饱和磁感应强度时,第一磁性薄膜的磁感应强度小于或等于第一磁性薄膜的饱和磁感应强度。也即,在本申请提供的薄膜电感中,由于位于内层的第一磁性薄膜的磁感应强度达到该第一磁性薄膜的饱和磁感应强度要比位于外层的第二磁性薄膜的磁感应强度达到该第二磁性薄膜的饱和磁感应强度更晚一些。由于在设置该第二磁性薄膜时,会考虑到避免该第二磁性薄膜达到磁饱和的问题。因此,在第一磁性薄膜不会先于第二磁性薄膜达到磁饱和的情况下,能够避免现有技术中由于第一磁性薄膜易于达到磁饱和而导致的薄膜电感的电感量急剧下降的问题。
结合第一方面,在第一方面的第一种可能的实现方式中,每相邻两层磁性薄膜中,所述内层磁性薄膜的相对磁导率和所述外层磁性薄膜的相对磁导率之间的差值均大于或等于所述第一阈值,其中,在所述外层磁性薄膜的磁感应强度达到所述外层磁性薄膜的饱和磁感应强度的情况下,所述内层磁性薄膜的磁感应强度小于或等于所述内层磁性薄膜的饱和磁感应强度。
通过限定位于薄膜电感内的每相邻两层磁性薄膜之间的关系均满足第一磁性薄膜和第二磁性薄膜之间的关系,使得该薄膜电感中除了最外层磁性薄膜之外的每一层磁性薄膜均不会领先于该最外层磁性薄膜达到磁饱和,从而避免了由于位于该薄膜电感内层的磁性薄膜易于达到磁饱和而导致该薄膜电感的电感量急剧下降的问题。
结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述第一阈值的取值为50。
结合第一方面、第一方面的第一种可能的实现方式或第一方面的第二种可能的实现方式,在第一方面的第三种可能的实现方式中,在所述第一磁性薄膜所采用的材料和所述第二磁性薄膜所采用的材料不相同的情况下,所述第一磁性薄膜的厚度值等于所述第二磁性薄膜的厚度值。
为了实现第一磁性薄膜的相对磁导率比第二磁性薄膜的相对磁导率小50以上的目的,可以通过材料的选取直接达到这个目的,也可以通过材料的选取和厚度的设置共同达到这个目的。换句话说,在第一磁性薄膜和第二磁性薄膜分别采用不用的材料制成的情况下,该第一磁性薄膜的厚度和该第二磁性薄膜的厚度可以是相同的,也可以是不同的。限定第一磁性薄膜的厚度和该第二磁性薄膜的厚度相同,是为了在工艺上更简单。
结合第一方面、第一方面的第一种可能的实现方式或第一方面的第二种可能的实现方式,在第一方面的第四种可能的实现方式中,在所述第一磁性薄膜所采用的材料和所述第二磁性薄膜所采用的材料相同的情况下,所述第一磁性薄膜的厚度值大于所述第二磁性薄膜的厚度值,且所述第一磁性薄膜的厚度值与所述第二磁性薄膜的厚度值之间的差值大于或等于0且小于或等于第二阈值,所述第二阈值为所述第二磁性薄膜的厚度值的五倍。
本实施例中,在第一磁性薄膜和第二磁性薄膜采用相同的材料制成时,通过调节厚度来实现第一磁性薄膜的相对磁导率比第二磁性薄膜的相对磁导率小50以上的目的。好处在于不必关注每层磁性薄膜的形状以及制成方式,仅通过调节厚度就能实现对相对磁导率的改变,从而使工艺实现上更加简单。
结合第一方面或第一方面的第一种可能的实现方式至第一方面的第三种可能的实现 方式中任一种实现方式,在第一方面的第五种可能的实现方式中,
所述第一磁性薄膜为Ni 45Fe 55,所述第二磁性薄膜为Ni 80Fe 20;或,
所述第一磁性薄膜为CoZrO,所述第二磁性薄膜为CoZrTa;或,
所述第一磁性薄膜为CoZrO,所述第二磁性薄膜为Ni 80Fe 20;或,
所述第一磁性薄膜为CoZrTa,所述第二磁性薄膜为Ni 80Fe 20
结合第一方面或第一方面的第一种可能的实现方式至第一方面的第五种可能的实现方式中任一种实现方式,在第一方面的第六种可能的实现方式中,
所述至少一个导电体中每一导电体的长度方向与所述最内层磁性薄膜的长度方向相同,所述最内层磁性薄膜的长度方向为沿所述最内层磁性薄膜的一端开口延伸到所述最内层磁性薄膜的另一端开口的方向;所述至少一个导电体中每一导电体均与所述最内层磁性薄膜的内壁之间是绝缘的;
在所述至少一个导电体为两个以上导电体的情况下,所述两个以上导电体是相互隔离的。
结合第一方面或第一方面的第一种可能的实现方式至第一方面的第六种可能的实现方式中任一种实现方式,在第一方面的第七种可能的实现方式中,所述薄膜电感的每层磁性薄膜均包括第一部分和第二部分,所述第一部分具有第一端和第二端,所述第一端和第二端分别和所述第二部分的不同区域相接触。
在本实施例中,第一端和第二端均是直接和第二部分的不同区域接触的,也即第一部分和第二部分是物理接触的,从而使得磁阻较小,带来的好处是能够提升该薄膜电感的电感量。
结合第一方面或第一方面的第一种可能的实现方式至第一方面的第七种可能的实现方式中任一种实现方式,在第一方面的第八种可能的实现方式中,所述第二磁性薄膜的相对磁导率的选择需要考虑所述第二磁性薄膜在第一平面上的周长和所述第二磁性薄膜的饱和磁感应强度,其中,第一方向为从所述第二磁性薄膜的一端开口延伸至所述第二磁性薄膜的另一端开口的方向,所述第一平面是所述第二磁性薄膜在沿垂直于所述第一方向的方向上的截面所在的平面。
结合第一方面或第一方面的第一种可能的实现方式至第一方面的第七种可能的实现方式中任一种实现方式,在第一方面的第九种可能的实现方式中,所述第一磁性薄膜的相对磁导率的选择需要考虑所述第一磁性薄膜在第一平面上的周长和所述第一磁性薄膜的饱和磁感应强度,其中,第一方向为从所述第一磁性薄膜的一端开口延伸至所述第一磁性薄膜的另一端开口的方向,所述第一平面是所述第一磁性薄膜在沿垂直于所述第一方向的方向上的截面所在的平面。
结合第一方面或第一方面的第一种可能的实现方式至第一方面的第九种可能的实现方式中任一种实现方式,在第一方面的第十种可能的实现方式中,
所述薄膜磁芯的厚度d 1满足条件:0微米<d 1≤50微米。
结合第一方面的第十种可能的实现方式,在第一方面的第十一种可能的实现方式中,所述多层磁性薄膜中每层磁性薄膜的厚度d 2满足条件:0微米<d 2≤10微米。
结合第一方面的第十种可能的实现方式或第一方面的第十一种可能的实现方式,在第一方面的第十二种可能的实现方式中,每层绝缘层的厚度d 3满足条件:0微米<d 3≤2微米。
第二方面,本申请提供了一种电源转换电路,包括第一开关管、第二开关管、电容和如第一方面或第一方面任一种可能的实现方式所述的薄膜电感;
所述第一开关管的一端与所述第二开关管的一端相连,
所述薄膜电感的一端连接在所述第一开关管的一端和所述第二开关管的一端之间,所述薄膜电感的另一端与所述电容的一端相连;所述电容的另一端与所述第二开关管的另一端相连;
在所述第一开关管导通且所述第二开关管关断的情况下,流经所述薄膜电感的电流变大;
在所述第一开关管关断且所述第二开关管导通的情况下,所述电容两端的电压反向的加载在所述薄膜电感上,流经所述薄膜电感的电流变小。
在本申请提供的电源转换电路中,由于所采用的薄膜电感的内层磁性薄膜先于外层磁性薄膜达到磁饱和,所以该薄膜电感能够正常工作。也即,该薄膜电感的电感量不会骤然下降到接近于零,从而使得采用了该薄膜电感的电源转换电路中的器件不会由于电流过大而烧毁。
第三方面,本申请提供了一种芯片,包括如第二方面所述的电源转换电路和负载,所述电源转换电路与所述负载连接且用于向所述负载供电。
在本申请提供的芯片中,由于所采用的薄膜电感的内层磁性薄膜先于外层磁性薄膜达到磁饱和,所以该薄膜电感能够正常工作。也即,该薄膜电感的电感量不会骤然下降到接近于零,从而使得采用了该薄膜电感的电源转换电路中的器件不会由于电流过大而烧毁。进一步地,也提高了该芯片的安全性能。
第四方面,本申请实施例提供了一种薄膜磁芯,
所述薄膜磁芯形成为一个腔体结构,所述腔体结构的两端均呈开口状,所述薄膜磁芯包括多层磁性薄膜,每层磁性薄膜之间间隔有绝缘层,
所述多层磁性薄膜包括第一层磁性薄膜和第二层磁性薄膜,所述第一层磁性薄膜套嵌在所述第二层磁性薄膜内部,
其中,所述第一层磁性薄膜的饱和磁感应强度大于所述第二层磁性薄膜的饱和磁感应强度,所述第一层磁性薄膜的饱和磁感应强度与所述第二层磁性薄膜的饱和磁感应强度之间的差值大于第一阈值,且在所述第一层磁性薄膜的磁导率大于所述第二层磁性薄膜的磁导率的情况下,所述第一层磁性薄膜的磁导率与所述第二层磁性薄膜的磁导率之间的差值小于第二阈值,以使得所述第一层磁性薄膜的磁感应强度小于所述第一层磁性薄膜的饱和磁感应强度;或,
所述第一层磁性薄膜的磁导率小于所述第二层磁性薄膜的磁导率,所述第一层磁性薄膜的磁导率与所述第二层磁性薄膜的磁导率之间的差值大于第三阈值,且在所述第一层磁性薄膜的饱和磁感应强度小于所述第二层磁性薄膜的饱和磁感应强度的情况下,所述第一层磁性薄膜的饱和磁感应强度与所述第二层磁性薄膜的饱和磁感应强度之间的差值小于第四阈值,以使得所述第一层磁性薄膜的磁感应强度小于所述第一层磁性薄膜的饱和磁感应强度。
因此,本申请实施例提供的薄膜磁芯,通过使得第一层磁性薄膜(即,内层磁性薄膜)的饱和磁感应强度大于第二层磁性薄膜(即,外层磁性薄膜)的饱和磁感应强度,能够有 效地增加该第一层磁性薄膜能够容纳的磁感应强度,或者使得第一层磁性薄膜的磁导率小于第二层磁性薄膜的磁导率,能够有效地减少该第一层磁性薄膜的磁感应强度,从而,都可以有效地降低该第一层磁性薄膜的磁感应强度容易饱和的可能性,同时,相比于现有技术中为了减少该第一层磁性薄膜的磁感应强度而仅仅采用低磁导率性能的磁性薄膜带来的电感量较少的问题,本申请实施例也能够有效地保证薄膜电感的电感量。
结合第四方面,在第四方面的第一种可能的实现方式中,所述第一层磁性薄膜的厚度大于所述第二层磁性薄膜的厚度,以使得所述第一层磁性薄膜的磁导率小于所述第二层磁性薄膜的磁导率。
结合第四方面,在第四方面的第二种可能的实现方式中,所述第一层磁性薄膜的厚度与所述第二层磁性薄膜的厚度的差值小于第五阈值,所述第五阈值为所述第二层磁性薄膜的厚度的三倍。
结合第四方面,在第四方面的第三种可能的实现方式中,所述第一层磁性薄膜的磁导率是根据所述第一层磁性薄膜在第一平面上的周长和所述第一层磁性薄膜的饱和磁感应强度确定的磁导率确定的,所述第二层磁性薄膜的磁导率是根据所述第二层磁性薄膜在所述第一平面上的周长和所述第二层磁性薄膜的饱和磁感应强度确定的磁导率确定的,所述第一平面是所述腔体结构在沿垂直于第一方向的方向上的截面所在的平面,所述第一方向为自所述腔体结构的一端的开口延伸至另一端的开口的方向。
结合第四方面,在第四方面的第四种可能的实现方式中,所述多层磁性薄膜还包括第三层磁性薄膜,所述第三层磁性薄膜套嵌在所述第二层磁性薄膜内,且,所述第三层磁性薄膜套嵌在所述第一层磁性薄膜内部,或,所述第一层磁性薄膜套嵌在所述第三层磁性薄膜内部,
其中,所述第三层磁性薄膜的饱和磁感应强度与所述第一层磁性薄膜的饱和磁感应强度相同,或,所述第三层磁性薄膜的磁导率与所述第一层磁性薄膜的磁导率相同,
所述第三层磁性薄膜在第一平面上的周长与所述第一层磁性薄膜在所述第一平面上的周长均处于第一周长范围内,所述第一平面是所述腔体结构在沿垂直于第一方向的方向上的截面所在的平面,所述第一方向为沿着所述腔体结构的一端的开口延伸至另一端的开口的方向;
所述多层磁性薄膜还包括第四层磁性薄膜,所述第二层磁性薄膜套嵌在所述第四层磁性薄膜内部,或,所述第四层磁性薄膜套嵌在所述第二层磁性薄膜内部,且所述第三层磁性薄膜和所述第一层磁性薄膜都套嵌在所述第四层磁性薄膜内部,
其中,所述第四层磁性薄膜的饱和磁感应强度与所述第二层磁性薄膜的饱和磁感应强度相同,或,所述第四层磁性薄膜的磁导率与所述第二层磁性薄膜的磁导率相同,
所述第四层磁性薄膜在所述第一平面上的周长与所述第二层磁性薄膜在所述第一平面上的周长均处于第二周长范围内,且所述第二周长范围的下限值大于所述第一周长范围的上限值。
因而,本申请实施例提供的薄膜磁芯,通过使得该薄膜磁芯中的多层磁性薄膜属于至少两个磁性薄膜组,每个磁性薄膜组中的磁导率或饱和磁感应强度相同,且内层磁性薄膜组的磁导率小于外层磁性薄膜组的磁导率,或者,内层磁性薄膜组的饱和磁感应强度大于外层磁性薄膜组的饱和磁感应强度,不仅能够降低内层磁性薄膜的磁感应强度易饱和的可 能性,且能够减少加工过程的复杂性,进而减少成本。
结合第四方面,在第四方面的第五种可能的实现方式中,所述薄膜磁芯的厚度d 1满足条件:0微米≤d 1≤5微米。
结合第四方面,在第四方面的第六种可能的实现方式中,所述多层磁性薄膜中每层磁性薄膜的厚度d 2满足条件:0微米≤d 2≤1微米。
结合第四方面,在第四方面的第七种可能的实现方式中,每层绝缘层的厚度d 3满足条件:0微米≤d 3≤20微米。
第五方面,本申请实施例提供了一种薄膜电感,该薄膜电感包括:第四方面中任意一种可能的实现方式中的薄膜磁芯,所述薄膜磁芯形成为一个腔体结构,所述腔体结构的两端均呈开口状;
至少一个导电体,所述至少一个导电体位于所述腔体结构内,且所述至少一个导电体的长度方向与第一方向相同,所述第一方向为自所述腔体结构的一端的开口延伸至另一端的开口的方向。
第六方面,本申请实施例提供了一种电源转换电路,所述电源转化电路包括:
直流电源;
至少一个开关单元;
至少一个电感单元,所述至少一个电感单元中每个电感单元对应所述至少一个开关单元中的一个开关单元,所述至少一个电感单元中的每个电感单元通过对应的开关单元与所述直流电源相连,其中,所述每个电感单元所述第二方面中任一种实现方式中的薄膜电感。
第七方面,本申请实施例提供了一种薄膜电感的制备方法,该制备方法包括:
配置薄膜磁芯,所述薄膜磁芯形成为一个腔体结构,所述腔体结构的两端均呈开口状,所述薄膜磁芯包括多层磁性薄膜,每层磁性薄膜之间间隔有绝缘层,
所述多层磁性薄膜包括第一层磁性薄膜和第二层磁性薄膜,所述第一层磁性薄膜套嵌在所述第二层磁性薄膜内部,
其中,所述第一层磁性薄膜的饱和磁感应强度大于所述第二层磁性薄膜的饱和磁感应强度,所述第一层磁性薄膜的饱和磁感应强度与所述第二层磁性薄膜的饱和磁感应强度之间的差值大于第一阈值,且在所述第一层磁性薄膜的磁导率大于所述第二层磁性薄膜的磁导率的情况下,所述第一层磁性薄膜的磁导率与所述第二层磁性薄膜的磁导率之间的差值小于第二阈值,以使得所述第一层磁性薄膜的磁感应强度小于所述第一层磁性薄膜的饱和磁感应强度;或,
所述第一层磁性薄膜的磁导率小于所述第二层磁性薄膜的磁导率,所述第一层磁性薄膜的磁导率与所述第二层磁性薄膜的磁导率之间的差值大于第三阈值,且在所述第一层磁性薄膜的饱和磁感应强度小于所述第二层磁性薄膜的饱和磁感应强度的情况下,所述第一层磁性薄膜的饱和磁感应强度与所述第二层磁性薄膜的饱和磁感应强度之间的差值小于第四阈值,以使得所述第一层磁性薄膜的磁感应强度小于所述第一层磁性薄膜的饱和磁感应强度;
将至少一个导电体放置于所述腔体结构内,且所述至少一个导电体的长度方向与第一方向相同,所述第一方向为自所述腔体结构的一端的开口延伸至另一端的开口的方向。
附图说明
图1是现有技术中薄膜电感的截面结构图;
图2是使用Ni 80Fe 20材料的磁包铜薄膜电感的磁感应强度的分布图;
图3是本申请提供的一种薄膜电感的截面结构图;
图4是本申请提供的一种薄膜电感的侧视图;
图5是本申请提供的一种电源转换电路的示意图;
图6是本申请提供的另一种电源转换电路的示意图;
图7是本申请提供的应用图5所示电源转换电路的芯片的内部电路图;
图8是本申请提供的另一种应用图5所示电源转换电路的电路图。
图9是现有技术中的磁包铜薄膜电感的结构示意图。
图10是使用Ni 80Fe 20材料的磁包铜电感的磁感应强度的分布图。
图11是根据本申请一实施例的薄膜磁芯的结构示意图。
图12是根据本申请另一实施例的薄膜磁芯的结构示意图。
图13是根据本申请另一实施例的薄膜磁芯的结构示意图。
图14是根据本申请另一实施例的薄膜磁芯的结构示意图。
图15是根据本申请再一实施例的薄膜磁芯的结构示意图。
图16是根据本申请一实施例的薄膜电感的结构示意图。
图17是根据本申请再一实施例的薄膜电感的结构示意图。
图18是根据本申请一实施例的电源转换系统的示意图。
图19至图24是根据本申请一实施例的薄膜电感的制备方法的示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
应理解,本申请实施例的薄膜电感可以应用于电源转换系统中,也可以应用于其他的电路中,本申请实施例对此不作限定。
首先对于现有技术中的薄膜电感做简单的介绍。参见附图1,图1为现有技术中薄膜电感的截面图。该薄膜电感100包括薄膜磁芯110和导电体120,导电体120位于该薄膜磁芯110的内腔。该导电体120通电后,该薄膜磁芯110中每层磁性薄膜产生的磁通路径为对应的磁性薄膜在如图1所示的截面图中的环形路径。为了减少薄膜磁芯110上的涡流损耗,薄膜磁芯110都是由多层磁性薄膜构成,多层磁性薄膜层层套嵌,每层磁性薄膜均呈筒状结构,每层磁性薄膜在图1所示截面所在平面上的周长都是不一样的。以图1所示的磁性薄膜111和112为例,靠近该导电体120的磁性薄膜111为内层磁性薄膜,相对的,远离该导电体120的磁性薄膜112为外层磁性薄膜。磁性薄膜111的周长小于磁性薄膜112的周长,对应地,磁性薄膜111的磁通路径的等效长度也短于磁性薄膜112的磁通路径的等效长度。这意味着磁性薄膜111的磁阻小于磁性薄膜112的磁阻,相应的,磁性薄膜111相对于磁性薄膜112来说,具有更大的磁感应强度(也可以理解为磁通密度)。那么,在相同条件下,相较于磁性薄膜112而言,磁性薄膜111的磁感应强度很容易率先达到磁饱和状态,从而导致磁性薄膜111的相对磁导率接近为零,进而使得薄膜电感100的 电感量急剧下降。相应的,采用薄膜电感100的电源转换电路中的电流将会激增,严重时甚至烧毁该电源转换电路中的元器件。
需要说明的是,每层磁性薄膜均是有一定厚度的,也即每层磁性薄膜均存在内表面和外表面。应当知道的是,内表面的磁通路径的长度小于外表面的磁通路径的长度。其中,参见附图1,所谓磁通路径的长度是指磁通路径在图1所示截面所在平面中的长度。由于每层磁性薄膜均具有一定的厚度,因此磁性薄膜的磁通路径的长度是不容易准确地确定的,所以上文中用“磁性薄膜的磁通路径的等效长度”来描述磁性薄膜的磁通路径的长度。容易理解的是,磁性薄膜的磁通路径的等效长度是位于该磁性薄膜的内表面的磁性路径的长度和该磁性薄膜的外表面的磁性路径的长度之间的。
其次,结合图1,通过下述公式描述各个参数之间的关系:
R=L/μ 0μ rA,其中,R为某层磁性薄膜的磁阻,L为通电后的导电体在该层磁性薄膜中产生的磁通回路的等效长度,μ 0为真空磁导率,μ r为磁性薄膜的相对磁导率,A该层磁性薄膜的厚度与该层磁性薄膜的长度的乘积,所谓该层磁性薄膜的长度是自该层磁性薄膜所呈现的筒状结构的一端开口向另一端开口延伸的长度;
φ=NI/R,其中,φ为通电后的导电体在该磁性薄膜中产生的磁通,N为导电体的线圈匝数,I为流经于导电体的电流;
B=φ/A,其中,B为该层磁性薄膜所产生的磁感应强度;
由上述三个公式可以得到:B=NIμ 0μ r/L,即,在参数N、I、μ 0和μ r均相同的情况下,磁感应强度B与磁性薄膜的磁通路径的等效长度L成反比。
这进一步验证了,在内层磁性薄膜的饱和磁感应强度和外层磁性薄膜的饱和磁感应强度相同,且内外层磁性薄膜的参数N、I、μ 0和μ r也相同的情况下,由于内层磁性薄膜的长度L较小,所以内层磁性薄膜将会比外层磁性薄膜更快达到磁饱和状态。
图2所示为使用Ni 80Fe 20材料的磁包铜薄膜电感的磁感应强度的分布图。图2所示的水平方向的横轴即为图1中所示的y轴方向,且横轴对应的坐标范围为该薄膜电感在图1所示的y轴方向的40um的区域,图2所示的竖直方向的纵轴用于表示该薄膜电感中的磁性薄膜的磁感应强度。Ni 80Fe 20的最大磁感应强度B S为1T,从图2中可以看出,在区域d 1和d 2范围内的磁性薄膜(即包括磁性薄膜112在内的靠近导电体的磁性薄膜)的磁感应强度大于或等于材料的最大磁感应强度,达到饱和状态,从而导致达到磁饱和的磁性薄膜的相对磁导率接近为零,进而使得该薄膜电感的电感量急剧下降。
针对现有技术存在的问题,本申请提供一种薄膜电感。参见附图3,图3为本申请提供的薄膜电感的截面结构图。如图3所示,该薄膜电感200包括薄膜磁芯210和至少一个导电体220,所述薄膜磁芯200呈两端开口的筒状结构,所述薄膜磁芯200包括多层磁性薄膜(211,212,213,214),每层磁性薄膜均呈两端开口的筒状结构,所述多层磁性薄膜层层嵌套,每相邻两层磁性薄膜之间间隔有绝缘层,所述至少一个导电体220位于所述多层磁性薄膜中最内层薄膜磁性211的内腔中。
每相邻两层磁性薄膜包括内层磁性薄膜和外层磁性薄膜,所述内层磁性薄膜嵌套在所述外层磁性薄膜内,所述内层磁性薄膜的相对磁导率小于或等于所述外层磁性薄膜的相对磁导率。所述多层磁性薄膜至少包括相邻的第一磁性薄膜和第二磁性薄膜,所述第一磁性 薄膜嵌套在所述第二磁性薄膜内,且所述第一磁性薄膜的相对磁导率小于所述第二磁性薄膜的相对磁导率,且所述第一磁性薄膜的相对磁导率和所述第二磁性薄膜的相对磁导率之间的差值大于或等于第一阈值,其中,在所述第二磁性薄膜的磁感应强度达到所述第二磁性薄膜的饱和磁感应强度的情况下,所述第一磁性薄膜的磁感应强度小于或等于所述第一磁性薄膜的饱和磁感应强度。
作为本申请的一个实施例,所述第一阈值为50。
值得注意的是,对于“所述薄膜磁芯100呈两端开口的筒状结构”,可以参见附图4所示的薄膜电感。图4是本申请提供的薄膜电感300的外部结构图,容易看出,该薄膜电感300的两端均呈开口状,且位于该两端之间的是一筒状结构。还需要说明的是,图4中箭头所指的方向即为从薄膜电感300的一端开口向另一端开口的延伸方向。
需要说明的是,所谓的多层磁性薄膜层层嵌套,可以理解为该多层磁性薄膜的形状是相同的,不过尺寸不同而已。具体的,在层层嵌套的多层磁性薄膜中,位于外层的磁性薄膜的尺寸要大于位于内层的磁性薄膜的尺寸。以附图3所述的薄膜电感为例进行说明,参见附图3,磁性薄膜212相对于磁性薄膜211来说,磁性薄膜212是外层磁性薄膜,磁性薄膜211是内层磁性薄膜。在Y轴用于表示磁性薄膜的高度所在的方向,且X轴用于表示磁性薄膜的宽度所在的方向的情况下,则磁性薄膜212的高度大于磁性薄膜211的高度,且磁性薄膜212的宽度大于磁性薄膜211的宽度。
值得注意的是,磁性薄膜的相对磁导率μ r,是磁性薄膜的磁导率μ和真空磁导率μ 0的比值:
Figure PCTCN2018077885-appb-000001
磁性薄膜的磁导率μ是磁性薄膜对一个外加磁场线性反应的磁化程度。真空磁导率μ 0,也被称为磁场常数、磁常数或自由空间磁导率,是一物理常数。在国际单位制中,真空磁导率的数值为:
μ 0=4π×10 -7V.s/(A.m)≈1.2566370614...×10 -6H.m或N.A -2或T.m/A或Wb/(A.m)。
应当知道的是,磁性薄膜的磁导率不仅与该磁性薄膜所采用的材料有关,也与该磁性薄膜的厚度或加工工艺等因素有关。其中,所谓加工工艺包括溅射电压、功率或温度等性能。相应的,磁性薄膜的相对磁导率也不仅与该磁性薄膜所采用的材料有关,也与该磁性薄膜的厚度或加工工艺等因素有关。
磁感应强度也被称为磁通量密度或磁通密度,是一个表示贯穿一个标准面积的磁通量的物理量,其符号是B,国际单位制导出单位是T。饱和磁感应强度,也就是饱和磁通密度。当给一个磁体施加一个磁场以后,随着磁场强度的增大,磁通密度也随之增大。但是磁通密度有一个极限值,到了这个极限值以后,磁场强度再增大,磁通密度也无法随之增大了,此即为饱和磁通密度。
磁性薄膜的饱和磁感应强度仅仅和磁性薄膜所采用的材料有关。在磁性薄膜所采用的材料确定的情况下,该磁性薄膜的饱和磁感应强度也是确定的。若两个磁性薄膜分别采用不同的材料,则通常来说,这两个磁性薄膜的饱和磁感应强度是不同的。
需要说明的是,前述绝缘层所采用的材料可以是二氧化硅、氮化硅或者其他绝缘的有机材料涂层。
值得注意的是,所谓的多层磁性薄膜的层数是指两层或两层以上。不过,实际应用中,多层磁性薄膜的层数通常是十层以上。
针对“所述多层磁性薄膜至少包括相邻的第一磁性薄膜和第二磁性薄膜,所述第一磁性薄膜嵌套在所述第二磁性薄膜内”的限定。作为本申请的一个实施例,该第一磁性薄膜可以为所述多层磁性薄膜中最内层的磁性薄膜(如图3中的磁性薄膜211)。作为本申请的另一个实施例,该第二磁性薄膜可以为所述多层磁性薄膜中最外层的磁性薄膜(如图3中的磁性薄膜214)。作为本申请的再一个实施例,则该第一磁性薄膜不是所述多层磁性薄膜中最内层的磁性薄膜(如图3中的磁性薄膜212),且该第二磁性薄膜不是所述多层磁性薄膜中最外层的磁性薄膜(如图3中的磁性薄膜213)。
若所述多层磁性薄膜的层数为两层,则该第一磁性薄膜必然为最内层的磁性薄膜,且该第二磁性薄膜必然为最外层的磁性薄膜。
在所述多层磁性薄膜的层数为三层的时候,如果该第一磁性薄膜为所述多层磁性薄膜中最内层的磁性薄膜,则最外层磁性薄膜的相对磁导率大于或等于该第二磁性薄膜的相对磁导率。
可选的,该最外层磁性薄膜的相对磁导率和该第二磁性薄膜的相对磁导率之间的差值大于或等于所述第一阈值,且在该最外层磁性薄膜的磁感应强度达到该最外层磁性薄膜的饱和磁感应强度时,该第二磁性薄膜的磁感应强度小于或等于该第二磁性薄膜的饱和磁感应强度。
在所述多层磁性薄膜的层数为三层的时候,如果该第二磁性薄膜为所述多层磁性薄膜中最外层的磁性薄膜,则该第一磁性薄膜的相对磁导率大于或等于该最内层磁性薄膜的相对磁导率。
可选的,该第一磁性薄膜的相对磁导率和该最内层磁性薄膜的相对磁导率之间的差值大于或等于所述第一阈值,且在该第一磁性薄膜的磁感应强度达到该第一磁性薄膜的饱和磁感应强度时,该最内层磁性薄膜的磁感应强度小于或等于该最内层磁性薄膜的饱和磁感应强度。
在所述多层磁性薄膜的层数为四层或四层以上的时候(参见附图3),如果该第一磁性薄膜为所述多层磁性薄膜中最内层的磁性薄膜(如图3中的磁性薄膜211),则位于该第二磁性薄膜(如图3中的磁性薄膜212)外侧且与该第二磁性薄膜相邻的磁性薄膜(如图3中的磁性薄膜213)的相对磁导率大于或等于该第二磁性薄膜的相对磁导率,并且,在位于该第二磁性薄膜外侧的每相邻两层磁性薄膜中,外层磁性薄膜(如图3中的磁性薄膜214)的相对磁导率大于或等于内层磁性薄膜(如图3中的磁性薄膜213)的相对磁导率,其中在每相邻两层磁性薄膜中,内层磁性薄膜是被嵌套在外层磁性薄膜内的。
可选的,位于该第二磁性薄膜外侧且与该第二磁性薄膜相邻的磁性薄膜的相对磁导率与该第二磁性薄膜的相对磁导率之间的差值大于或等于所述第一阈值,且在位于该第二磁性薄膜外侧且与该第二磁性薄膜相邻的磁性薄膜的磁感应强度达到位于该第二磁性薄膜外侧且与该第二磁性薄膜相邻的磁性薄膜的饱和磁感应强度时,该第二磁性薄膜的磁感应强度小于或等于该第二磁性薄膜的饱和磁感应强度。并且在位于该第二磁性薄膜外侧的每相邻两层磁性薄膜中,外层磁性薄膜的相对磁导率和内层磁性薄膜的相对磁导率之间的差值大于或等于所述第一阈值,且在外层磁性薄膜的磁感应强度达到该外层磁性薄膜的饱和磁感应强度时,内层磁性薄膜的磁感应强度小于或等于该内层磁性薄膜的饱和磁感应强度。
在所述多层磁性薄膜的层数为四层或四层以上的时候(参见附图3),如果该第二磁性薄膜为所述多层磁性薄膜中最外层的磁性薄膜(如图3中的磁性薄膜214),则该第一磁性薄膜(如图3中的磁性薄膜213)的相对磁导率大于或等于位于该第一磁性薄膜内侧且与该第一磁性薄膜相邻的磁性薄膜(如图3中的磁性薄膜212)的相对磁导率,并且,在位于该第一磁性薄膜内侧的每相邻两层磁性薄膜中,外层磁性薄膜(如图3中的磁性薄膜212)的相对磁导率大于或等于内层磁性薄膜(如图3中的磁性薄膜211)的相对磁导率,其中在每相邻两层磁性薄膜中,内层磁性薄膜是被嵌套在外层磁性薄膜内的。
可选的,该第一磁性薄膜的相对磁导率与位于该第一磁性薄膜内侧且与该第一磁性薄膜相邻的磁性薄膜的相对磁导率之间的差值大于或等于所述第一阈值,且在该第一磁性薄膜的磁感应强度达到该第一磁性薄膜的饱和磁感应强度时,位于该第一磁性薄膜内侧且与该第一磁性薄膜相邻的磁性薄膜的磁感应强度小于或等于位于该第一磁性薄膜内侧且与该第一磁性薄膜相邻的磁性薄膜的饱和磁感应强度。并且在位于该第一磁性薄膜内侧的每相邻两层磁性薄膜中,外层磁性薄膜的相对磁导率和内层磁性薄膜的相对磁导率之间的差值大于或等于所述第一阈值,且在外层磁性薄膜的磁感应强度达到该外层磁性薄膜的饱和磁感应强度时,内层磁性薄膜的磁感应强度小于或等于该内层磁性薄膜的饱和磁感应强度。
由上可知,因为在该多层磁性薄膜的每相邻两层磁性薄膜中,内层磁性薄膜均不会先于外层磁性薄膜达到磁饱和,从而解决了现有技术中,由于内层磁性薄膜先于外层磁性薄膜达到磁饱和而导致的该薄膜电感的电感量急剧下降的问题。
作为本申请的一个实施例,在第一磁性薄膜所采用的材料和第二磁性薄膜所采用的材料相同的情况下,为了实现第一磁性薄膜的相对磁导率比第二磁性薄膜的相对磁导率小所述第一阈值以上的目的。可选的,第一磁性薄膜的厚度值大于第二磁性薄膜的厚度值,且第一磁性薄膜的厚度值与第二磁性薄膜的厚度值之间的差值小于或等于第二阈值,其中该第二阈值为该第二磁性薄膜的厚度值的五倍。
参见前述所述,应当知道的是,除了磁性薄膜所选用的材料和磁性薄膜的厚度以外,影响磁性薄膜的相对磁导率的还有其他因素,比如该磁性薄膜的周长和该磁性薄膜的加工工艺等。所以在具体限定第一磁性薄膜的厚度和第二磁性薄膜的厚度时,作为本领域的技术人员应当知道,还需要参考磁性薄膜的周长和该磁性薄膜的加工工艺等其他影响因素。需要说明的是,所谓的磁性薄膜的周长是指该磁性薄膜在第一平面上的截面的周长,该第一平面垂直于自该磁性薄膜的一个开口端向另一个开口端延伸的方向。另外,在第一磁性薄膜和第二磁性薄膜采用相同的材料制成的情况下,第一磁性薄膜的饱和磁感应强度和第二磁性薄膜的饱和磁感应强度是相同的。
应当知道的是,在第一磁性薄膜所采用的材料和第二磁性薄膜所采用的材料相同的情况下,为了实现第一磁性薄膜的相对磁导率比第二磁性薄膜的相对磁导率小所述第一阈值以上的目的。可选的,该第一磁性薄膜和该第二磁性薄膜分别采用不同的加工工艺(如溅射电压、功率和温度等)制备而成。
作为本申请的另一个实施例,在该第一磁性薄膜所采用的材料和该第二磁性薄膜所采用的材料不相同的情况下,可选的,该第一磁性薄膜的厚度值等于该第二磁性薄膜的厚度值。由于影响磁性薄膜的相对磁导率的因素包括磁性薄膜所采用的材料、磁性薄膜的厚度、 磁性薄膜的周长以及磁性薄膜的制备工艺等。因为在该第一磁性薄膜所采用的材料和该第二磁性薄膜所采用的材料不相同的情况下,为了实现该第一磁性薄膜的相对磁导率比该第二磁性薄膜的相对磁导率小所述第一阈值以上的目的,可以在限定其他因素相同的情况下,使得该第一磁性薄膜的厚度值等于该第二磁性薄膜的厚度值。从而使得工艺上更加简单且容易实现。
应当知道的是,在该第一磁性薄膜所采用的材料和该第二磁性薄膜所采用的材料不相同的情况下,可选的,该第一磁性薄膜的厚度值和该第二磁性薄膜的厚度值是不同的。这种情况下,就需要通过限定该第一磁性薄膜和该第二磁性薄膜所采用的材料,或者通过限定该第一磁性薄膜和该第二磁性薄膜的周长或加工工艺等,实现该第一磁性薄膜的相对磁导率比该第二磁性薄膜的相对磁导率小所述第一阈值以上的目的。
可选的,所述第二磁性薄膜的相对磁导率的选择需要考虑所述第二磁性薄膜在第一平面上的周长和所述第二磁性薄膜的饱和磁感应强度,其中,第一方向为从所述第二磁性薄膜的一端开口延伸至所述第二磁性薄膜的另一端开口的方向,所述第一平面是所述第二磁性薄膜在沿垂直于所述第一方向的方向上的截面所在的平面。
可选的,所述第一磁性薄膜的相对磁导率的选择需要考虑所述第一磁性薄膜在第一平面上的周长和所述第一磁性薄膜的饱和磁感应强度,其中,第一方向为从所述第一磁性薄膜的一端开口延伸至所述第一磁性薄膜的另一端开口的方向,所述第一平面是所述第一磁性薄膜在沿垂直于所述第一方向的方向上的截面所在的平面。
正如前文所说的,该第一磁性薄膜和该第二磁性薄膜可以采用不同的材料。可选的,该第一磁性薄膜所采用的材料为Ni 45Fe 55,则该第二磁性薄膜所采用的材料为Ni 80Fe 20。可选的,该第一磁性薄膜所采用的材料为CoZrO,则该第二磁性薄膜所采用的材料为CoZrTa或Ni 80Fe 20。可选的,该第一磁性薄膜所采用的材料为CoZrTa,则该第二磁性薄膜所采用的材料为Ni 80Fe 20
需要说明的是,在本申请中,所谓的“所述至少一个导电体位于所述多层磁性薄膜中最内层磁性薄膜的内腔中”,具体的,所述至少一个导电体中每一导电体的长度方向均与所述最内层磁性薄膜的长度方向相同。其中,所述最内层磁性薄膜的长度方向是指沿所述最内层磁性薄膜的一端开口延伸到所述最内层磁性薄膜的另一端开口的方向。
应当知道的是,所述至少一个导电体中每一导电体均与所述最内层磁性薄膜的内壁绝缘。也即若导电体是设置在所述最内层磁性薄膜的内壁的,则该导电体和该最内层磁性薄膜的内壁之间间隔有绝缘层。在该所述至少一个导电体的数量为两个以上时,该两个以上导电体之间是相互隔离的。
可选的,在所述至少一个导电体的数量为两个以上时,该两个以上导电体是相同的。
通常,所述至少一个导电体的数量为一个或两个。在该至少一个导电体的数量为两个时,该两个导电体中每一导电体通电后产生的电感量是相同的。
值得注意的是,对于所述多层磁性薄膜中的每层磁性薄膜来说,每层磁性薄膜均包括第一部分和第二部分,如图3所示,所述第二部分通常为平面结构,所述第一部分可以是梯形的,也可以是弧形的(如图1所示的现有技术中的薄膜电感)等。其中,所述第一部分具有第一端面和第二端面,所述第一端面和所述第二部分的第一区域接触,所述第二端面与所述第二部分的第二区域接触,其中,所述第二部分的第一区域和所述第二部分的第 二区域是相隔离的。
应当知道的是,所述第一端面和所述第二部分的第一区域之间可以设有绝缘层。当然,所述第一端面和所述第二部分的第一区域之间也可以不设绝缘层,也即,所述第一端面和所述第二部分的第一区域之间直接物理接触,这样设计的好处是降低磁阻,提高该薄膜电感的电感量。
类似的,所述第二端面和所述第二部分的第二区域之间可以设有绝缘层,也可以不设绝缘层。不设绝缘层的好处也是为了降低磁阻,提高该薄膜电感的电感量。
在本申请中,可选的,所述薄膜磁芯的厚度d 1满足条件:0微米<d 1≤50微米。所述薄膜磁性的厚度是指所述薄膜磁性的侧壁的厚度,所述薄膜磁性的侧壁的厚度包括所述多层磁性薄膜中每层磁性薄膜的厚度,以及位于每相邻两层磁性薄膜之间的绝缘层的厚度。相应的,所述多层磁性薄膜中每层磁性薄膜的厚度d 2满足条件:0微米<d 2≤10微米。进一步地,位于每相邻两层磁性薄膜之间的绝缘层的厚度d 3满足条件:0微米<d 3≤2微米。如此,使得该薄膜电感具有较小的体积,从而实现器件的小型化。
值得注意的是,结合前述公式B=NIμ 0μ r/L,容易知道,在位于该薄膜电感内的某一层磁性薄膜的饱和磁感应强度确定,且参数N、I、μ 0和L也都确定的情况下,能够确定出对应该饱和磁感应强度的最大磁导率。则通过控制该层磁性薄膜的实际磁导率小于其最大磁导率,既可以实现该层磁性薄膜的实际磁感应强度小于其饱和磁感应强度的目的。
前文多次提及第二磁性薄膜的磁感应强度达到该第二磁性薄膜的饱和磁感应强度,或者,外层磁性薄膜的磁感应强度达到该外层磁性薄膜的饱和磁感应强度。作为本领域技术人员,应当知道的是,在实际设置的时候,会在第二磁性薄膜的最大磁感应强度和该第二磁性薄膜的饱和磁感应强度之间设置一定的余量,也即不会让该第二磁性薄膜那么容易就实现磁饱和的。因为,第二磁性薄膜达到磁饱和也会造成该薄膜电感的感量急剧下降,甚至接近于零的。需要解释的是,所谓的该第二磁性薄膜的最大磁感应强度是指在薄膜电感的正常工作状态下,该第二磁性薄膜能够达到的最大磁感应强度。外层磁性薄膜设置参照第二磁性薄膜的设置,不再重复描述。
参见附图5,图5是本申请提供的电源转换电路920的电路图。该电源转换电路920包括第一开光管922、第二开关管924、电容928和如前述任一实施例所述的薄膜电感926.第一开光管922的一端与第二开关管924的一端相连,薄膜电感926的一端连接在第一开光管922的一端和第二开关管924的一端之间,薄膜电感926的另一端与电容928的一端相连,电容928的另一端与第二开关管924的另一端相连。
在第一开关管922导通且第二开关管924关断的情况下,来自外部电源且流经薄膜电感926的电流将变大;在第一开关管922关断且第二开关管924导通的情况下,电容928两端的电压反向的加载在薄膜电感926上,流经薄膜电感926的电流将变小。
具体的,在第一开关管922导通且第二开关管924关断的情况下,来自外部电源且流经薄膜电感926的电流上升,并经电容928滤波后供应给负载。在第一开关管922关断且第二开关管924导通的情况下,电容928两端的电压反向的加载在薄膜电感926上,流经薄膜电感926的电流开始下降,完成BUCK转换电路中的续流部分。
在本申请提供的电源转换电路中,由于所采用的薄膜电感的内层磁性薄膜先于外层磁性薄膜达到磁饱和,所以该薄膜电感能够正常工作。也即,该薄膜电感的电感量不会骤然 下降到接近于零,从而使得采用了该薄膜电感的电源转换电路中的器件不会由于电流过大而烧毁。
可选的,电容928的另一端与第二开关管924的另一端均接地。
容易知道,用在图5所示电源转换电路920中的薄膜电感926是单相薄膜电感,也即只包括一个导电体。如果电源转换电路920中用到的薄膜电感926是两相的,则该电源转换电路还应该包括另一对串联开关管,比如第三开关管和第四开关管,该另一对开关管是用于控制流经另一导电体的电流的大小的,具体请参见附图6。图6所示电源转换电路1000中采用的薄膜电感1005为两相薄膜电感,也即该薄膜电感1005包括两个导电体。进一步的,该薄膜电感1005也为本申请中任一关于薄膜电感的实施例描述的薄膜电感。其中,每一相电源转换电路包括一个导电体和一对开关管。
如图6所示,第一开关管1001的一端和第二开关管1002的一端连接,薄膜电感1005的一相的第一端连接在第一开关管1001和第二开关管1002之间,薄膜电感1005的一相的第二端与电容1006的一端连接;第三开关管1003的一端和第四开关管1004的一端连接,薄膜电感1005的另一相的第一端连接在第三开关管1003和第四开关管1004之间,薄膜电感1005的另一相的第二端与电容1006的一端连接,电容1006的第二端、第二开关管1002的另一端以及第四开关管1004的另一端均接地。
具体的,第一相电源转换电路包括第一开关管1001、第二开关管1002以及薄膜电感1005的一相。在第一开关管10011开始导通且第二开关管1002关断时,直流电流通过薄膜电感1005中与第一开关管1001连接的一相,薄膜电感1005的电流开始上升,并经电容1006滤波后给负载R供电。在第一开关管1001关断且第二开关管1002开始导通时,电容1006上的电压反向加在薄膜电感1005上,薄膜电感1005的电流开始下降,完成BUCK转换电路中的续流部分。
同理,第二相电源转换电路包括第三开关管1003、第四开关管1004以及薄膜电感1005的另一相。在第三开关管1003开始导通且第四开关管1004关断时,直流电流通过薄膜电感1005中与第三开关管1003连接的一相,薄膜电感1005的电流开始上升,并经电容1006滤波后给负载R供电。在第三开关管1003关断且第四开关管1004开始导通时,电容1006上的电压反向加在薄膜电感1005上,薄膜电感1005的电流开始下降,完成BUCK转换电路中的续流部分。
在本实施例中,电源转换电路包括开关管Q1 Q2、Q3、Q4和薄膜电感单元L1。具体的,根据负载对电流的要求,可以采用一个或多个如本实施例所述的电源转换电路通过并联的方式实现对负载供电。
进一步地,参见附图7,图7所示为一种芯片内的电路图。该芯片内的电路包括如图5所示电源转换电路920和负载930。沿用前述对图5所示电源转换电路920的描述,在图7所示的芯片的内部电路中,负载930的一端与薄膜电感926的另一端连接,另一端与电容928的另一端连接。电源转换电路920用于接收来自外部电源的电流并对该电流进行转换处理后提供给负载930。
再进一步地,参见附图8,图8所示的电路图相对于图7所示的电路图来说还包括直流电源910。沿用前述对图5所示电源转换电路的描述,在图8所示的电路图中,第一开关管922的另一端与直流电源910的正极连接,所述第二开关管924的另一端与直流电源 910的负极连接。具体的,该电源转换电路920用于接收来自直流电源910的电流并对该电流进行转换处理后,供应给该负载930。
现有技术中,一般而言,为了减少薄膜磁芯的涡流损耗,薄膜磁芯一般由多层磁性薄膜构成,即,薄膜磁芯包括至少两层磁性薄膜,每层磁性薄膜使用的材料相同(可以理解为每层磁性薄膜的属性相同)。以图10所示的磁包铜薄膜电感中的任意两个磁性薄膜(磁性薄膜111和磁性薄膜112)为例,结合背景技术简单说明现有技术。
首先,结合图9,通过下述公式描述各个参数之间的关系:
R=L/μ 0μ rA,其中,R为磁性薄膜的磁阻,L为磁性薄膜与通电后的导电绕组产生的磁通回路在图9所示的截面上的等效长度,μ 0为磁性薄膜在真空中的磁导率,μ r为磁性薄膜的在非导磁介质中的磁导率,A为磁性薄膜沿垂直于磁通流通方向上的方向上的截面积;
φ=NI/R,其中,φ为磁性薄膜与通电后的导电绕组产生的磁通,N为导电绕组的线圈匝数,I为流经于导电绕组的电流;
B=φ/A,其中,B为导电绕组与磁性薄膜产生的磁感应强度;
由上述三个公式可以得到:B=NIμ 0μ r/L,即,在参数N、I、μ 0、μ r不变的情况下,磁感应强度B与磁性薄膜的长度L成反比。
图9所示为现有技术中磁包铜薄膜电感的结构示意图。如图9所示,磁性薄膜411为背景技术中的该薄膜电感中的内层磁性薄膜,磁性薄膜412为背景技术中的该薄膜电感中的外层磁性薄膜。在图示截面(即,磁通回路所在的平面)上,相较于磁性薄膜412,磁性薄膜411的周长较短,相应地,磁性薄膜411内的等效路径较短,由公式B=NIμ 0μ r/L可得,磁性薄膜111的磁感应强度较大,很容易达到饱和状态。
图10所示为使用Ni 80Fe 20材料的磁包铜薄膜电感的磁感应强度的分布图。图10所示的水平方向的横轴即为图9中所示的y轴方向,且横轴对应的坐标范围为该薄膜电感在图9所示的y轴方向的40um的区域,图10所示的竖直方向的纵轴用于表示该薄膜电感中的磁性薄膜的磁感应强度。Ni 80Fe 20的最大磁感应强度B S为1T,从图10中可以看出,在区域d 1和d 2范围内的磁性薄膜(即包括磁性薄膜412在内的靠近导电绕组的磁性薄膜)的磁感应强度大于或等于材料的最大磁感应强度,达到饱和状态,从而导致磁导率接近为零,使得电感量急剧下降,电路转化电路中的电流激增,严重时甚至烧毁器件。
因而,针对现有技术存在的问题,本申请实施例提供的薄膜磁芯能够应用于薄膜电感中,从而解决内层磁性薄膜容易饱和的问题。
图11至图13中的每个附图均是是本申请实施例的薄膜磁芯的结构示意图。
下面,结合图11至图13,对根据本申请一实施例提供的薄膜磁芯的结构进行详细说明。
如图11所示,该薄膜磁芯500形成为一个腔体结构,该腔体结构的两端均呈开口状,该薄膜磁芯500包括多层磁性薄膜,每层磁性薄膜之间间隔有绝缘层,
该多层磁性薄膜包括第一层磁性薄膜510和第二层磁性薄膜520,该第一层磁性薄膜510套嵌在该第二层磁性薄膜520内部,
其中,该第一层磁性薄膜510的饱和磁感应强度大于该第二层磁性薄膜520的饱和磁感应强度,该第一层磁性薄膜510的饱和磁感应强度与该第二层磁性薄膜520的饱和磁感 应强度之间的差值大于第一阈值,且在该第一层磁性薄膜510的磁导率大于该第二层磁性薄膜520的磁导率的情况下,该第一层磁性薄膜510的磁导率与该第二层磁性薄膜520的磁导率之间的差值小于第二阈值,以使得该第一层磁性薄膜510的磁感应强度小于该第一层磁性薄膜510的饱和磁感应强度;或,
该第一层磁性薄膜510的磁导率小于该第二层磁性薄膜520的磁导率,该第一层磁性薄膜510的磁导率与该第二层磁性薄膜520的磁导率之间的差值大于第三阈值,且在该第一层磁性薄膜510的饱和磁感应强度小于该第二层磁性薄膜520的饱和磁感应强度的情况下,该第一层磁性薄膜510的饱和磁感应强度与该第二层磁性薄膜520的饱和磁感应强度之间的差值小于第四阈值,以使得该第一层磁性薄膜510的磁感应强度小于该第一层磁性薄膜510的饱和磁感应强度。
该薄膜磁芯500形成的腔体结构具有两个端部,两个端部都呈开口状,该腔体结构仅仅只有侧壁,该侧壁就是该薄膜磁芯500,该侧壁的厚度也即该薄膜磁芯500的厚度。
应理解,该薄膜磁芯500包括该第一层磁性薄膜510和该第二层磁性薄膜520在内的多层磁性薄膜,每层磁性薄膜之间沉积有绝缘层,材料可以是是二氧化硅、氮化硅或者其他绝缘的有机材料涂层,实现每层磁性薄膜间的隔离。
在本申请实施例中,该第一层磁性薄膜510和该第二层磁性薄膜520可以为该薄膜磁芯500中的多层磁性薄膜中的任意两层磁性薄膜(即,所有的磁性薄膜都满足上述特征),该第一层磁性薄膜510和该第二层磁性薄膜520也可以为该薄膜磁芯500中包括的多层磁性薄膜中的特定两层磁性薄膜(即,至少两层磁性薄膜满足上述条件),可以如图11所示的该两层磁性薄膜中间隔有别的磁性薄膜,也可以如图12该两层磁性薄膜之间未间隔有别的磁性薄膜,仅仅间隔有绝缘层。
还需要说明的是,图11与图12中第一层磁性薄膜与第二层磁性薄膜的位置关系仅为示意性说明,不应对发明实施例构成限定,只要该第一层磁性薄膜套嵌于该第二层磁性薄膜内部(即,该第一层磁性薄膜位于该第二层磁性薄膜的内侧),且该第一层磁性薄膜的饱和磁感应强度或磁导率满足上述条件即可。
下面,以图11所示的薄膜磁芯中的两层磁性薄膜(即,第一层磁性薄膜510和第二层磁性薄膜520)为例,对根据本申请一实施例的薄膜磁芯进行详细说明。
在本申请实施例的薄膜磁芯500中,为了减少内层磁性薄膜的磁感应强度容易饱和的问题,改变了两种参数(即,磁性薄膜的饱和磁感应强度和磁导率)。
首先,对于本申请实施例中的两个参数进行说明:磁性薄膜的饱和磁感应强度仅仅和磁性材料的属性有关,是磁性材料的固有属性,因而,当磁性薄膜的饱和磁感应强度不同时,磁性薄膜的材料必然是相异的;磁性薄膜的磁导率不仅仅和磁性材料的属性有关,也和磁性材料的加工工艺等外界因素有关,因而,当磁性薄膜的磁导率不同时,磁性薄膜的材料可以相同,也可以相异。
下面,针对该第一层磁性薄膜510和该第二层磁性薄膜520对于上述参数需要满足的条件进行详细说明。
参数1(饱和磁感应强度)
该第一层磁性薄膜510的饱和磁感应强度大于该第二层磁性薄膜520的饱和磁感应强度,该第一层磁性薄膜510的饱和磁感应强度与该第二层磁性薄膜520的饱和磁感应强度 之间的差值大于第一阈值,且在该第一层磁性薄膜510的磁导率大于该第二层磁性薄膜520的磁导率的情况下,该第一层磁性薄膜510的磁导率与该第二层磁性薄膜520的磁导率之间的差值小于第二阈值,以使得该第一层磁性薄膜510的磁感应强度小于该第一层磁性薄膜510的饱和磁感应强度。
如上所述,当上述两层磁性薄膜的饱和磁感应强度不同时,该上述两层磁性薄膜的材料必然是相异的。同时,当该薄膜磁芯500的结构确定后,每层磁性薄膜在该腔体结构沿垂直于第一方向的方向上的截面所在的平面(为了便于理解与区分,记为第一平面)上的周长是确定的,该第一方向是自该腔体结构的一端的开口延伸至另一端的开口的方向,也即,该第一平面为如图11所示的截面所在的平面。
该第一层磁性薄膜510位于该第二层磁性薄膜520的内侧,那么,该第一层磁性薄膜510在该第一平面上的周长小于该第二层磁性薄膜520在该第一平面上的周长,那么,在选取磁性材料的时候,以饱和磁感应强度最为选取标准,为该第一层磁性薄膜510选用饱和磁感应强度较大的磁性材料。为该第二层磁性薄膜520选用饱和磁感应强度较小的磁性材料。同时,在电感量、磁性薄膜的周长、以及磁性材料的饱和磁感应强度确定时,可以通过相关实验,获得合适的数据范围,使得该第一层磁性薄膜510的饱和磁感应强度和该第二层磁性薄膜520的饱和磁感应强度的差值小于第一阈值。
在该第一阈值的条件下,由于磁性薄膜的磁导率与磁性薄膜的磁感应强度成正比关系,对于该第一层磁性薄膜510的磁导率大于该第二层磁性薄膜520的磁导率的情况下,该第一层磁性薄膜510产生的磁感应强度大于该第二层磁性薄膜520的磁感应强度,这样,需要使得该第一层磁性薄膜510的磁导率与该第二层磁性薄膜520的磁导率之间的差值小于第二阈值,这样,能够使得该第一层磁性薄膜510的磁感应强度小于该第一层磁性薄膜510的饱和磁感应强度。同理,在薄膜磁芯的电感量、磁性薄膜的周长、以及磁性材料的饱和磁感应强度确定时,可以通过相关实验进行第二阈值的确定,获得一个合适的差值范围。
参数2(磁导率)
该第一层磁性薄膜的磁导率小于该第二层磁性薄膜的磁导率,该第一层磁性薄膜的磁导率与该第二层磁性薄膜的磁导率之间的差值大于第三阈值,且在该第一层磁性薄膜的饱和磁感应强度小于该第二层磁性薄膜的饱和磁感应强度的情况下,该第一层磁性薄膜的饱和磁感应强度与该第二层磁性薄膜的饱和磁感应强度之间的差值小于第四阈值,以使得该第一层磁性薄膜的磁感应强度小于该第一层磁性薄膜的饱和磁感应强度。
这样,该第一层磁性薄膜510的磁导率小于该第二层磁性薄膜520的磁导率,使得该第一层磁性薄膜510产生的磁感应强度小于该第二层磁性薄膜520的磁感应强度。由于磁性材料的磁导率不仅与材料属性有关,也是与具体地实际工艺有关,因而,该第一层磁性薄膜510的材料与该第二层磁性薄膜520的材料可以相同(即,情况A),也可以相异(即,情况B),下面,针对上述两种情况分别进行说明。
情况A
该第一层磁性薄膜510与该第二层磁性薄膜520的材料相同:即,该第一层磁性薄膜510的饱和磁感应强度和该第二层磁性薄膜520的饱和磁感应强度相同,该第一层磁性薄膜510的磁导率与该第二层磁性薄膜520的磁导率之间的差值可以通过相关计算得到,简 单说来,可以通过具体公式计算出每层磁性薄膜的磁导率(具体磁导率的确定后续进行详细说明),通过实验进行测试,在该第一层磁性薄膜510磁感应强度小于饱和磁感应强度,且电感量合适的条件下,获取多组数据,从而确定该第三阈值。
情况B
该第一层磁性薄膜510与该第二层磁性薄膜520的材料相异:该第一层磁性薄膜510的饱和磁感应强度和该第二层磁性薄膜520的饱和磁感应强度相异,即第一层磁性薄膜510的饱和磁感应强度大于或小于该第二层磁性薄膜520的饱和磁感应强度。
在该第一层磁性薄膜510的饱和磁感应强度大于该第二层磁性薄膜520的饱和磁感应强度时,同理,可以通过计算以及实验方式获得该第三阈值。
在该第一层磁性薄膜510的饱和磁感应强度小于该第二层磁性薄膜520的饱和磁感应强度时,不仅需要确定该第三阈值,还需要确定该第一层磁性薄膜510的饱和磁感应强度与该第二层磁性薄膜520的饱和磁感应强度之间的差值范围,即第四阈值。由于磁性薄膜的磁导率与磁性薄膜的磁感应强度成正比关系,对于该第一层磁性薄膜510的饱和磁感应强度小于该第二层磁性薄膜520的饱和磁感应强度的情况下,该第一层磁性薄膜510产生的磁感应强度小于该第二层磁性薄膜520的磁感应强度,这样,需要使得该第一层磁性薄膜510饱和磁感应强度与该第二层磁芯薄膜520的饱和磁感应强度之间的差值小于第四阈值,进而能够使得该第一层磁性薄膜510的磁感应强度小于该第一层磁性薄膜510的饱和磁感应强度。
需要说明的是,图11与图12中第一层磁性薄膜510与第二层磁性薄膜520的位置关系仅为示意性说明,不应对发明实施例构成限定,同时,该第一层磁性薄膜510可以是内层磁性薄膜,该第一层磁性薄膜510可以是最靠近放置于该腔体结构的至少一个导电体(即,导电绕组)的磁性薄膜,也可以不是最靠近导电绕组的磁性薄膜,只要该第一层磁性薄膜510套嵌于该第二层磁性薄膜520(即,该第一层磁性薄膜510位于该第二层磁性薄膜520的内侧),且该第一层磁性薄膜510的饱和磁感应强度或磁导率满足上述条件即可,相比于现有技术,就能有效地解决现有技术中内层磁性薄膜的磁感应强度容易饱和的问题。
作为示例而非限定,该薄膜磁芯不仅可以如图11和图12所示的形状,也可以是别的形状,只要该薄膜磁芯能够形成如前所述的腔体结构,从而使得该薄膜磁芯具有能够放置至少一个导电体的腔体即可。
例如,该薄膜磁芯的形状也可以如图13所示,该薄膜磁芯500中的上部分薄膜磁芯类似于梯形,下部分薄膜磁芯与该上部分薄膜磁芯连接,构成闭合的磁包铜薄膜磁芯。
再例如,也可以是矩形、椭圆形等(图中并未示出),本申请实施例并不限于此。
因此,本申请实施例提供的薄膜磁芯,通过使得第一层磁性薄膜(即,内层磁性薄膜)的饱和磁感应强度大于第二层磁性薄膜(即,外层磁性薄膜)的饱和磁感应强度,能够有效地增加该第一层磁性磁芯能够容纳的磁感应强度,或者使得第一层磁性薄膜的磁导率小于第二层磁性薄膜的磁导率,能够有效地减少该第一层磁性薄膜的磁感应强度,从而,都可以有效地降低该第一层磁性薄膜的磁感应强度容易饱和的可能性,同时,相比于现有技术中为了减少该第一层磁性薄膜的磁感应强度而仅仅采用低磁导率性能的磁性薄膜带来的电感量较少的问题,本申请实施例也能够有效地保证薄膜电感的电感量。
可选地,该第一层磁性薄膜510的材料与该第二层磁性薄膜520的材料相异。即,该第一层磁性薄膜510与该第二层磁性薄膜520使用不同的材料。
可选地,该第一层磁性薄膜510的厚度大于该第二层磁性薄膜520的厚度。
具体而言,当该第一层磁性薄膜510的材料与该第二层磁性薄膜520的材料相同时,可以通过工艺加工使得该第一磁芯薄膜510与该第二层磁性薄膜520的磁导率不同,即该第一层磁性薄膜510的磁导率小于该第二层磁性薄膜520的磁导率。
例如,通过溅射气压、功率、温度等性能实现磁导率的变化
再例如,通过改变每层磁性薄膜的厚度来实现磁导率的变化。
再具体地,磁性薄膜的厚度与磁导率呈反比关系,磁性薄膜的厚度越厚,磁性薄膜的磁导率越小,磁性薄膜的厚度越薄,磁性薄膜的磁导率越大,因而,通过使得该第一层磁性薄膜510的厚度大于该第二层磁性薄膜520的厚度,从而使得该第一层磁性薄膜510的磁导率小于该第二层磁性薄膜的磁导率。
正如上述,该第一层磁性薄膜510和该第二层磁性薄膜520是该薄膜磁芯中多个磁性薄膜中的任意两个磁性薄膜,可以在不改变该薄膜磁芯的整体厚度(即,该多个磁性薄膜的总厚度)的情况下,相比于现有技术,将该第一层磁性薄膜510的厚度增加,将该第二层磁性薄膜520的厚度减少。
应理解,通过改变该第一层磁性薄膜510和该第二层磁性薄膜520的厚度来实现磁导率的变化,不仅适用于不同磁性薄膜的材料相同的情况,也适用于不同磁性薄膜的材料相异的情况,本申请实施例并不限于此。
可选地,该第一层磁性薄膜510的厚度与该第二层磁性薄膜520的厚度的差值小于第五阈值,该第五阈值为该第二层磁性薄膜520的厚度的三倍。
可以这么理解,该第五阈值是周长最大的磁性薄膜的厚度与周长最小的磁性薄膜的厚度之间的关系,该第五阈值的具体取值可以根据该薄膜磁芯的结构尺寸、包括该薄膜磁芯的薄膜电感所需要的电感量等确定。
可选地,该第一层磁性薄膜510的磁导率是根据该第一层磁性薄膜510在第一平面上的周长和该第一层磁性薄膜510的饱和磁感应强度确定的磁导率确定的,该第二层磁性薄膜520的磁导率是根据该第二层磁性薄膜520在该第一平面上的周长和该第二层磁性薄膜520的饱和磁感应强度确定的磁导率确定的,该第一平面是该腔体结构在沿垂直于第一方向的方向上的截面所在的平面,该第一方向为自该腔体结构的一端的开口延伸至另一端的开口的方向。
在薄膜磁芯的电感量、磁性薄膜的周长、以及磁性材料的饱和磁感应强度确定时,可以通过相关计算得到每层磁性薄膜的磁导率。
具体而言,如前公式B=NIμ 0μ r/L所述,即,在参数N、I、μ 0、B(B的取值为磁性材料的饱和磁感应强度)确定时,通过计算获得磁性薄膜的饱和磁感应强度对应的μ r,即最大磁导率,从而通过工艺方式,使得磁性薄膜的实际磁导率小于最大磁导率。这样,使得每层磁性薄膜都不会出现磁感应强度易饱和的问题。
可选地,该第一层磁性薄膜510的饱和磁感应强度与该第二层磁性薄膜520的饱和磁感应强度是根据该第一层磁性薄膜510在第一平面上的周长与该第二层磁性薄膜520在第二平面上的周长之间的关系确定的,或
该第一层磁性薄膜510的磁导率与该第二层磁性薄膜520的磁导率是根据该第一层磁性薄膜510在第一平面上的周长与该第二层磁性薄膜520在第二平面上的周长确定的,
进一步地,如前所述,在其他条件不变的情况下,内层磁性薄膜容易产生磁感应强度饱和的问题是由于内层磁性薄膜在该第一平面上的周长相较于外层磁性薄膜在该第一平面上的周长较短引起的,因而,在确定该第一层磁性薄膜510的饱和磁感应强度与该第二层磁性薄膜520的饱和磁感应强度时,或者,在确定该第一层磁性薄膜510的磁导率与该第二层磁性薄膜520的磁导率时,可以根据该两层磁性薄膜之间的周长关系确定。
例如,若该两层磁性薄膜该第一平面上的周长相差较大,可以选择饱和磁感应强度相差较大的磁性薄膜作为该第一层磁性薄膜510和该第二层磁性薄膜520,或者,可以选择磁导率相差较大的磁性薄膜作为该第一层磁性薄膜510和该第二层磁性薄膜520。
再例如,若该两层磁性薄膜在该第一平面上的周长相差较小,可以选择饱和磁感应强度相差较小的磁性薄膜作为该第一层磁性薄膜510和该第二层磁性薄膜520,或者,可以选择磁导率相差较小的磁性薄膜作为该第一层磁性薄膜510和该第二层磁性薄膜520。
作为示例而非限定,上述确定该第一层磁性薄膜510的饱和磁感应强度和该第二层磁性薄膜520的饱和磁感应强度的方法,以及确定该第一层磁性薄膜510的磁导率和该第二层磁性薄膜520的磁导率的方法,不仅可以由该两层磁性薄膜在磁通回路所在的平面上的周长之间的关系确定,也可以由其他参数共同确定,例如,包括该薄膜磁芯的薄膜电感所需要的电感量、该薄膜电感所需要的平均磁感应强度等,本申请实施例并不限于此,不应对本申请实施例构成限定。
如前所示,该第一层磁性薄膜510与该第二层磁性薄膜520可以是该薄膜磁芯中多层磁性薄膜中的任意两层,当所有磁性薄膜满足上述条件时,相当于该薄膜磁芯中所有磁性薄膜的饱和磁感应强度或磁导率沿着厚度方向从内到外,都是渐渐变化的,即多层磁性薄膜的饱和磁感应强度从内到外是渐渐变小的,或者,多层磁性薄膜的磁导率从内到外是渐渐变大的。
该第一层磁性薄膜510与该第二磁芯薄膜520可以是该多层磁性薄膜中的特定两层磁性薄膜,当该两层磁性薄膜之间间隔有别的磁性薄膜时(为了便于理解与说明,记为第五磁性薄膜),为了减少工艺的复杂性以及减少成本,该第五磁性薄膜的磁导率可以与该两层磁性薄膜中的任一个磁性薄膜的磁导率相同。
可选地,该多层磁性薄膜还包括第三层磁性薄膜,该第三层磁性薄膜套嵌在该第二层磁性薄膜内,且,该第三层磁性薄膜套嵌在该第一层磁性薄膜内部,或,该第一层磁性薄膜套嵌在该第三层磁性薄膜内部,
其中,该第三层磁性薄膜的饱和磁感应强度与该第一层磁性薄膜的饱和磁感应强度相同,或,该第三层磁性薄膜的磁导率与该第一层磁性薄膜的磁导率相同,
该第三层磁性薄膜在第一平面上的周长与该第一层磁性薄膜在该第一平面上的周长均处于第一周长范围内,该第一平面是该腔体结构在沿垂直于第一方向的方向上的截面所在的平面,该第一方向为沿着该腔体结构的一端的开口延伸至另一端的开口的方向;
该多层磁性薄膜还包括第四层磁性薄膜,该第二层磁性薄膜套嵌在该第四层磁性薄膜内部,或,该第四层磁性薄膜套嵌在该第二层磁性薄膜内部,且该第三层磁性薄膜和该第一层磁性薄膜都套嵌在该第四层磁性薄膜内部,
其中,该第四层磁性薄膜的饱和磁感应强度与该第二层磁性薄膜的饱和磁感应强度相同,或,该第四层磁性薄膜的磁导率与该第二层磁性薄膜的磁导率相同,
该第四层磁性薄膜在该第一平面上的周长与该第二层磁性薄膜在该第一平面上的周长均处于第二周长范围内,且该第二周长范围的下限值大于该第一周长范围的上限值。
具体而言,该薄膜磁芯500中的多层磁性薄膜可以根据每层磁性薄膜在该第一平面上的周长将该多层磁性薄膜划分为多个组,同一个组内的磁性薄膜的饱和磁感应强度相同或磁导率相同,不同组之间的磁性薄膜的饱和磁感应强度不同或磁导率不同,组的划分基于周长范围确定。
因而,本申请实施例的薄膜磁芯,通过使得该薄膜磁芯中的多层磁性薄膜属于至少两个磁性薄膜组,每个磁性薄膜组中的磁导率或饱和磁感应强度相同,且内层磁性薄膜组的磁导率小于外层磁性薄膜组的磁导率,或者,内层磁性薄膜组的饱和磁感应强度大于外层磁性薄膜组的饱和磁感应强度,不仅能够降低内层磁性薄膜的磁感应强度易饱和的可能性,且能够减少加工过程的复杂性,进而减少成本。
可选地,所述薄膜磁芯的厚度d 1满足条件:0微米≤d 1≤5微米。
可选地,所述多层磁性薄膜中每层磁性薄膜的厚度d 2满足条件:0微米≤d 2≤1微米。
可选地,每层绝缘层的厚度d 3满足条件:0微米≤d 3≤20微米。
这样,使得该薄膜磁芯具有较小的体积,可以更好地应用于电池芯片中。
下面,以第一层磁性薄膜510、第二层磁性薄膜520、第三层磁性薄膜530和第四层磁性薄膜540为例,结合图14对本申请实施例进行说明。
如上所述,该第三层磁性薄膜530在该第一平面上的周长与该第一层磁性薄膜510在该第一平面上的周长处于第一周长范围内,即,该第一层磁性薄膜510与该第三层磁性薄膜530位于一组(为了便于理解和说明,记为第一磁性薄膜组)内,具有相同的饱和磁感应强度或磁导率;从位置关系上说,该第一层磁性薄膜510和该第三层磁性薄膜530都位于该第二层磁性薄膜520的内侧(即,该第一层磁性薄膜510套嵌在该第二层磁性薄膜520,该第三层磁性薄膜530套嵌在第二层磁性薄膜520),该第一层磁性薄膜510可以位于该第三层磁性薄膜530的内侧(即,该第一层磁性薄膜510套嵌在该第三层磁性薄膜530内),或者,该第三层磁性薄膜530可以位于该第一层磁性薄膜510的内侧(即,该第三层磁性薄膜530套嵌在该第一层磁性薄膜510内)。
同理,该第四层磁性薄膜540在该第一平面上的周长与该第二层磁性薄膜520在该第一平面上的周长处于该第一周长范围之外的第二周长范围内,且该第二周长范围的下限值大于该第一周长范围的上限值,即,该第四层磁性薄膜540与该第二层磁性薄膜520位于另一组(为了便于理解和说明,记为第二磁性薄膜组)内,具有相同的饱和磁感强度或磁导率,例如,第一周长范围为20um~30um,那么该第二周长范围可以为35um~45um,该第一周长范围的上限值为30um,该第二周长范围的下限值为35um;
从位置关系上说,该第一层磁性薄膜510和该第三层磁性薄膜530都位于该第四层磁性薄膜540的内侧(即,该第三层磁性薄膜530和该第一层磁性薄膜510套嵌在该第四层磁性薄膜540内部),该第二层磁性薄膜520可以位于该第四层磁性薄膜540的内侧(即,该第二层磁性薄膜520套嵌在该第四层磁性薄膜540内部),或者,该第四层磁性薄膜540可以位于该第二层磁性薄膜520的内侧(即,该第四层磁性薄膜540套嵌在该第二层 磁性薄膜520内部)。
作为示例而非限定,该薄膜磁芯500中具有的上述第一周长范围和第二周长范围仅为示意性说明,该薄膜磁芯中可以具有没有任何交集的多个周长范围,即,该薄膜磁芯中不仅包括上述第一磁性薄膜组和第二磁性薄膜组,也可以包括多个磁性薄膜组,本申请实施例并不限定。
换句话说,该薄膜磁芯中包括多个磁性薄膜组,该第一层磁性薄膜和该第二层磁性薄膜可以为多个磁性薄膜组中的任意两个磁性薄膜组,即,多个磁性薄膜组中的任意两个磁性薄膜组都满足上述技术特征,那么,多个磁芯薄膜组都满足上述技术特征。
应理解,每个磁性薄膜组中可以包括至少两层磁性薄膜,不仅仅局限于每组内包括两层磁性薄膜,本申请实施例描述的第一磁性薄膜组或第二磁性薄膜组中包括的两层磁性薄膜仅为示意性说明,该第一磁性薄膜组中的第一层磁性薄膜和第三层磁性薄膜可以为该第一磁性薄膜组中的多层磁性薄膜中的任意两层,该第二磁性薄膜组中的第二层磁性薄膜和第四层磁性薄膜可以为该第二磁性薄膜组中的多层磁性薄膜中的任意两层。
例如,如图15所示的薄膜磁芯的结构示意图,图中黑线所示的为第一磁性薄膜组,灰线所示的为第二磁性薄膜组。该第一磁性薄膜组中可以包括三层磁性薄膜,该第一层磁性薄膜510和该第三层磁性薄膜530可以为图中带括号标注的磁性薄膜,也可以为图中未带括号标注的磁性薄膜,该第二层磁性薄膜520和该第四层磁性薄膜540可以为图中带括号标注的磁性薄膜,也可以为图中未带括号标注的磁性薄膜,本申请实施例并不限于此,只要是一组磁性薄膜中的任意两个磁性薄膜即可。
结合上述描述,在本申请实施例中,对于该薄膜磁芯中的多层磁性薄膜,可以将该多层磁性薄膜中的部分磁性薄膜划分为多个磁性薄膜组,每组中包括至少两层磁性薄膜,其余部分磁性薄膜可以如前所述,每层磁性薄膜从内到外,饱和磁感应强度渐渐变小,或者,磁导率渐渐变大。
需要说明的一点是,每个磁性薄膜组中包括至少两层磁性薄膜,当该至少两层磁性薄膜中每个磁性薄膜使用相同材料时,且需要通过改变磁性薄膜的厚度来改变磁性薄膜的磁导率时,由于不同层磁性薄膜在该第一平面上的周长是不相同的,为了使得同一个磁性薄膜组内的每层磁性薄膜具有相同的磁导率,每层磁性薄膜的厚度必然不同。
因而,本申请实施例提供的薄膜磁芯,一方面,通过使得第一层磁性薄膜(即,内层磁性薄膜)的饱和磁感应强度大于第二层磁性薄膜(即,外层磁性薄膜)的饱和磁感应强度,能够有效地增加该第一磁性磁芯能够容纳的磁感应强度,或者使得第一层磁性薄膜的磁导率小于第二层磁性薄膜的磁导率,能够有效地减少该第一层磁性薄膜的磁感应强度,从而,都可以有效地降低该第一层磁性薄膜的磁感应强度容易饱和的可能性,同时,相比于现有技术中为了减少该第一层磁性薄膜的磁感应强度而仅仅采用低磁导率性能的磁性薄膜带来的电感量较少的问题,本申请实施例也能够有效地保证薄膜电感的电感量;
另一方面,通过使得该薄膜磁芯中的多层磁性薄膜属于至少两个磁性薄膜组,每个磁性薄膜组中的磁导率或饱和磁感应强度相同,且内层磁性薄膜组的磁导率小于外层磁性薄膜组的磁导率,或者,内层磁性薄膜组的饱和磁感应强度大于外层磁性薄膜组的饱和磁感应强度,不仅能够降低内层磁性薄膜的磁感应强度易饱和的可能性,且能够减少加工过程的复杂性,进而减少成本。
以上,结合图9至图15描述了根据本申请实施例的薄膜磁芯,下面,结合图16和图17描述根据本申请实施例的薄膜电感。
图16所示为根据本申请一实施例的薄膜电感的结构性示意图,如图16所示,该薄膜电感600包括:
上述任意一种可能的实现方式中的薄膜磁芯610,该薄膜磁芯610形成为一个腔体结构,该腔体结构的两端均呈开口状;
至少一个导电体620,该至少一个导电体620位于该腔体结构内,且该至少一个导电体620的长度方向与第一方向相同,该第一方向为自该腔体结构的一端的开口延伸至另一端的开口的方向。
具体而言,该腔体结构内部放置有该至少一个导电体620(即导电绕组),该导电体620的长度方向与第一方向相同,该第一方向为自该腔体结构的一端的开口延伸至另一端的开口的方向,使得该至少一个导电体620通电后,该至少一个导电体620与任意一层磁性薄膜所产生的磁通回路所在的平面与磁性薄膜的厚度方向平行或近似平行,即磁通回路所在的平面如图16所示的截面。
需要说明的是,该至少一个导电体620与最内层磁性薄膜(例如,可以为图16所示的第一层磁性薄膜611)之间沉积有绝缘层,实现导电绕组与磁性薄膜(也可以理解为薄膜磁芯)之间的绝缘,具体实现方式同现有技术,此处不再赘述。
多层磁性薄膜组成薄膜磁芯,即,图16中的薄膜电感610,该第一层磁性薄膜611和第二层磁性薄膜612可以为该薄膜磁芯610中的任意两层磁性薄膜(即,所有的磁性薄膜都满足上述特征),该第一层磁性薄膜611和该第二层磁性薄膜612也可以为该薄膜磁芯600中包括的多层磁性薄膜中的特定两层磁性薄膜(即,至少两层磁性薄膜满足上述条件)。
该薄膜磁芯610可以对应上述薄膜磁芯500,对应地,该薄膜磁芯610中的第一层磁性薄膜611和第二层磁性薄膜612对应薄膜磁芯500中的第一层磁性薄膜510和第二层磁性薄膜520,该薄膜磁芯610的具体特征描述参见上述对于薄膜磁芯500的描述,此处不再赘述。
应理解,图16中第一层磁性薄膜611与第二层磁性薄膜612的位置关系仅为示意性说明,不应对发明实施例构成限定,同时,该第一层磁性薄膜611可以是内层磁性薄膜,该第一层磁性薄膜612可以是最靠近导电绕组的磁性薄膜,也可以不是最靠近导电绕组的磁性薄膜,只要该第一层磁性薄膜611套嵌于该第二层磁性薄膜612内部(即,该第一层磁性薄膜611位于该第二层磁性薄膜612的内侧),且该第一层磁性薄膜611的饱和磁感应强度或磁导率满足上述条件即可,相比于现有技术,就能有效地解决现有技术中内层磁性薄膜容易饱和的问题。
本申请实施例中的薄膜电感,可以是单相的,也可以是两相耦合电感,当该至少一个导电体包括一个导电体时,该薄膜电感为单相,当该至少一个导电体包括两个导电体时,该薄膜电感为两相耦合电感。
本申请实施例提供的薄膜电感,一方面,通过使得该薄膜电感中的第一层磁性薄膜(即,内层磁性薄膜)的饱和磁感应强度大于第二层磁性薄膜(即,外层磁性薄膜)的饱和磁感应强度,能够有效地增加该第一磁性磁芯能够容纳的磁感应强度,或者使得第一层 磁性薄膜的磁导率小于第二层磁性薄膜的磁导率,能够有效地减少该第一层磁性薄膜的磁感应强度,从而,都可以有效地降低该第一层磁性薄膜的磁感应强度容易饱和的可能性,同时,相比于现有技术中为了减少该第一层磁性薄膜的磁感应强度而仅仅采用低磁导率性能的磁性薄膜带来的电感量较少的问题,本申请实施例也能够有效地保证薄膜电感的电感量;
另一方面,通过使得该薄膜电感中的多层磁性薄膜属于至少两个磁性薄膜组,每个磁性薄膜组中的磁导率或饱和磁感应强度相同,且内层磁性薄膜组的磁导率小于外层磁性薄膜组的磁导率,或者,内层磁性薄膜组的饱和磁感应强度大于外层磁性薄膜组的饱和磁感应强度,不仅能够降低内层磁性薄膜的磁感应强度易饱和的可能性,且能够减少加工过程的复杂性,进而减少成本。
需要说明的是,以上所说的“平行”可以理解为“近似平行”,即,对于本领域的技术人员而言,是基于磁性薄膜加工过程中的公差范围和误差范围内的平行。因此,均落入本申请的保护范围内。
以上,结合图16和图17详细说明了根据本申请实施例的薄膜电感,如前所述,该薄膜电感可以是单相,也可以是两相耦合电感,不同的薄膜电感适用于对应的电源转换系统。下面,结合图18详细说明根据本申请实施例的两相耦合薄膜电感在电源转换系统中的工作原理。
如图18所示,该电源转换系统700包括:直流(Direct Current,DC)电源710、至少一个开关单元720、至少一个电感单元730、滤波电容740和负载750。该电源转换系统的电路工作原理为多相交错并联降压(BUCK)电路。其中,两相电感两两耦合,形成一个电感单元,一个或多个电感单元并联输出给负载提供能量。两个串联的开关管(例如,开关管Q1和Q2)构成一个开关单元。各开关管通过驱动(Drive,DRV)与控制IC连接,以控制开关管的开通与关断。至少一个开关单元与至少一个电感单元一一对应,每个电感单元通过所对应的开关单元与直流电源相连。其中,该电感单元可以包括上文中所描述中的两相耦合薄膜电感。
以下,为方便理解和说明,以一个电感单元(即,两相电感,例如图18中所示L1)为例,详细说明电感单元的工作原理。
第一相电源转换电路由第一开关单元(例如,开关管Q1、Q2组成的开关单元)以及第一电感单元(例如,电感L1)中的一相组成。开关管Q1导通时,直流电流通过电感单元中与开关管Q1连接的一相,电感电流开始上升,并经电容C滤波后给负载R供电;当Q1关断后,Q2开始导通,滤波电容上的电压反向加在电感上,电感的电流开始下降,完成BUCK转换电路中的续流部分。同理,第二相电源转换电路由开关管Q3、Q4以及电感单元L1中的另外一相组成。开关管Q3导通时,直流电流通过电感单元中与开关管Q4连接的另外一相,电感电流开始上升,并经电容C滤波后给负载R供电;当Q3关断后,Q4开始导通,滤波电容上的电压反向加在电感上,电感的电流开始下降,完成BUCK转换电路中的续流部分。上述的两相BUCK电源转换部分Q1、Q2、Q3、Q4以及电感单元L1组成一个电源转换单元,根据输出负载对电流的要求可以采用单个或者多个电源转换单元并联的方式来实现。
应理解,以上列举的多相交错并联降压(BUCK)电路仅为示例性说明,不应对本申 请构成任何限定,例如,本申请实施例的两相耦合薄膜电感还可以应用于多相交错并联升压(Boost)电路,本申请对此并未特别限定。
以上,结合图9至图18详细说明了根据本申请实施例的薄膜电感。以下,以薄膜电感中包括第一层磁性薄膜611、第二层磁性薄膜312、一个导电体为例,结合图19至图16详细说明本申请实施例的薄膜电感的制备方法。
图19是根据本申请一实施例的薄膜电感的制备方法的示意性流程图。如图19所示,该制备方法800包括:
S810,配置薄膜磁芯610,该薄膜磁芯610形成为一个腔体结构,该腔体结构的两端均呈开口状,该薄膜磁芯610包括多层磁性薄膜,每层磁性薄膜之间间隔有绝缘层,
该多层磁性薄膜包括第一层磁性薄膜611和第二层磁性薄膜612,该第一层磁性薄膜611套嵌在该第二层磁性薄膜612内部,
其中,该第一层磁性薄膜611的饱和磁感应强度大于该第二层磁性薄膜612的饱和磁感应强度,该第一层磁性薄膜611的饱和磁感应强度与该第二层磁性薄膜612的饱和磁感应强度之间的差值大于第一阈值,且在该第一层磁性薄膜611的磁导率大于该第二层磁性薄膜612的磁导率的情况下,该第一层磁性薄膜611的磁导率与该第二层磁性薄膜612的磁导率之间的差值小于第二阈值,以使得该第一层磁性薄膜611的磁感应强度小于该第一层磁性薄膜611的饱和磁感应强度;或,
该第一层磁性薄膜611的磁导率小于该第二层磁性薄膜612的磁导率,该第一层磁性薄膜611的磁导率与该第二层磁性薄膜612的磁导率之间的差值大于第三阈值,且在该第一层磁性薄膜611的饱和磁感应强度小于该第二层磁性薄膜612的饱和磁感应强度的情况下,该第一层磁性薄膜611的饱和磁感应强度与该第二层磁性薄膜612的饱和磁感应强度之间的差值小于第四阈值,以使得该第一层磁性薄膜611的磁感应强度小于该第一层磁性薄膜611的饱和磁感应强度;
S820,将至少一个导电体放置于该腔体结构内,且该至少一个导电体的长度方向与第一方向相同,该第一方向为自该腔体结构的一端的开口延伸至另一端的开口的方向。
具体地,实际工艺实现过程中,可以首先形成该第二层磁性薄膜612中具有平面结构的磁性薄膜612-1,接着形成该第一层磁性薄膜611中具有平面结构的磁性薄膜611-1,接着形成导电体620,接着形成该第一层磁性薄膜611中具有弯曲结构的磁性薄膜611-2,最后形成该第二层磁性薄膜612具有弯曲结构的磁性薄膜612-2,最终形成该薄膜电感600。
以下,结合图20至图24详细说明根据本申请一实施例的薄膜电感600的制备方法。
如图20所示,首先在硅基板601上形成该第二层磁性薄膜612中具有平面结构的磁性薄膜612-1。在硅基板601的硅基体上沉积一层钝化层,该钝化层可以为二氧化硅、氮化硅或者其他绝缘的有机材料涂层,且钝化层完全覆盖硅基体的表面。接着,在该硅基板601上形成该磁性薄膜612-1,该磁性薄膜612-1的设计形状一般通过掩膜版制作。该磁性薄膜612-1的形成可以是化学气相沉积(Chemical Vapor Deposition,CVD)、物理气相沉积(Physical Vapor Deposition,PVD)、原子层沉积(Atomic Layer Deposition,ALD)等实现方式。
在完成该磁性薄膜612-1的制作后,进行该磁性薄膜611-1的制作。如图21所示,该 磁性薄膜611-1的设计形状一般通过掩膜版制作,形状同该磁性薄膜612-1,该磁性薄膜611-1的加工工艺与该磁性薄膜612-1的加工工艺基本相同,此处不再赘述。
需要说明的是,磁性薄膜612-1与磁性薄膜612-1之间沉积有绝缘层,该绝缘层的材料可以是二氧化硅、氮化硅或者其他绝缘的有机材料涂层,实现每层磁性薄膜间的隔离。为了减小磁性薄膜的涡流损耗,磁性薄膜的厚度可以控制在1微米以下。
接着,在完成该磁性薄膜611-1的制作后,进行该导电体620的制作。如图22所示,在硅基板601的磁性薄膜层(即,该磁性薄膜611-1所在的磁性薄膜层)上沉积一层钝化层,该钝化层可以为二氧化硅、氮化硅或者其它绝缘的有机材料涂层,且钝化层完全覆盖硅基体603的表面。在钝化层上,通过气相沉积工艺在整个硅晶片上沉积导电种子层。接下来光致抗刻蚀材料层被沉积和刻蚀,以形成覆盖种子层的部分的光致抗刻蚀掩膜。接下来采用标准的电镀工艺技术,将导电体620电镀在种子层上,形成该薄膜电感中的导电绕组部分。在完成电镀之后,需去除光致抗蚀掩膜,并通过反应离子刻蚀(Reactive Ion Etching,RIE)或其它合适的刻蚀方法来去除残留的种子层。
在制作完该导电体620之后,需要再沉积一层绝缘层,覆盖该导电体620,该绝缘层的形状可以与该磁性薄膜611-2的形状相同。
接着,如图23所示,在硅基板601上形成该第二层磁性薄膜612中具有弯曲结构的磁性薄膜611-2。该磁性薄膜611-2覆盖在上述具有弯曲结构的绝缘层上,该磁性薄膜611-2的设计形状一般通过掩膜版制作,形状同该磁性薄膜611-1。该磁性薄膜611-2的加工工艺与该磁性薄膜611-1的加工工艺基本相同,此处不再赘述。
进而,进行该磁性薄膜612-2的制作。如图24所示,该磁性薄膜612-2的设计形状一般通过掩膜版制作,形状同该磁性薄膜612-1,该磁性薄膜612-2的加工工艺与该磁性薄膜612-1的加工工艺基本相同,此处不再赘述。
同理,磁性薄膜611-2与磁性薄膜612-2之间沉积有绝缘层,该绝缘层的材料可以是二氧化硅、氮化硅或者其他绝缘的有机材料涂层,实现每层磁性薄膜间的隔离。为了减小磁性薄膜的涡流损耗,磁性薄膜的厚度可以控制在1微米以下。
应注意,在磁性薄膜溅射或电镀沉积过程中,需要外加磁场来控制磁性薄膜材料的各向异性,外加磁场方向需沿着易磁化轴方向。
应理解,上述薄膜电感的制备过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
需要说明的是,以上薄膜电感中包括第一层磁性薄膜、第二层磁性薄膜和一个导电体三个部件的制备过程仅为示意性说明,薄膜电感中包括多个导电体和至少两层磁性薄膜时,每个绕组和每层磁性薄膜的加工过程都与上述方法相似,都在本申请实施例的保护范围内。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,该单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
该作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
该功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例该方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上,仅为本申请的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应该以权利要求的保护范围为准。

Claims (11)

  1. 一种薄膜电感,其特征在于,所述薄膜电感包括薄膜磁芯和至少一个导电体,所述薄膜磁芯呈两端开口的筒状结构,所述薄膜磁芯包括多层磁性薄膜,每层磁性薄膜均呈两端开口的筒状结构,所述多层磁性薄膜层层嵌套,每相邻两层磁性薄膜之间间隔有绝缘层,所述至少一个导电体位于所述多层磁性薄膜中最内层薄膜磁性的内腔中;
    每相邻两层磁性薄膜包括内层磁性薄膜和外层磁性薄膜,所述内层磁性薄膜嵌套在所述外层磁性薄膜内,所述内层磁性薄膜的相对磁导率小于或等于所述外层磁性薄膜的相对磁导率,
    所述多层磁性薄膜至少包括相邻的第一磁性薄膜和第二磁性薄膜,所述第一磁性薄膜嵌套在所述第二磁性薄膜内,且所述第一磁性薄膜的相对磁导率小于所述第二磁性薄膜的相对磁导率,且所述第一磁性薄膜的相对磁导率和所述第二磁性薄膜的相对磁导率之间的差值大于或等于第一阈值,其中,在所述第二磁性薄膜的磁感应强度达到所述第二磁性薄膜的饱和磁感应强度的情况下,所述第一磁性薄膜的磁感应强度小于或等于所述第一磁性薄膜的饱和磁感应强度。
  2. 根据权利要求1所述的薄膜电感,其特征在于,每相邻两层磁性薄膜中,所述内层磁性薄膜的相对磁导率和所述外层磁性薄膜的相对磁导率之间的差值均大于或等于所述第一阈值,其中,在所述外层磁性薄膜的磁感应强度达到所述外层磁性薄膜的饱和磁感应强度的情况下,所述内层磁性薄膜的磁感应强度小于或等于所述内层磁性薄膜的饱和磁感应强度。
  3. 根据权利要求1或2所述的薄膜电感,其特征在于,所述第一阈值为50。
  4. 根据权利要求1至3中任一项所述的薄膜电感,其特征在于,在所述第一磁性薄膜所采用的材料和所述第二磁性薄膜所采用的材料不相同的情况下,所述第一磁性薄膜的厚度值等于所述第二磁性薄膜的厚度值。
  5. 根据权利要求1至3中任一项所述的薄膜电感,其特征在于,在所述第一磁性薄膜所采用的材料和所述第二磁性薄膜所采用的材料相同的情况下,所述第一磁性薄膜的厚度值大于所述第二磁性薄膜的厚度值,且所述第一磁性薄膜的厚度值与所述第二磁性薄膜的厚度值之间的差值大于或等于0且小于或等于第二阈值,所述第二阈值为所述第二磁性薄膜的厚度值的五倍。
  6. 根据权利要求1至4中任一项所述的薄膜电感,其特征在于,
    所述第一磁性薄膜为Ni 45Fe 55,所述第二磁性薄膜为Ni 80Fe 20;或,
    所述第一磁性薄膜为CoZrO,所述第二磁性薄膜为CoZrTa;或,
    所述第一磁性薄膜为CoZrO,所述第二磁性薄膜为Ni 80Fe 20;或,
    所述第一磁性薄膜为CoZrTa,所述第二磁性薄膜为Ni 80Fe 20
  7. 根据权利要求1至6中任一项所述的薄膜电感,其特征在于,所述至少一个导电体中每一导电体的长度方向与所述最内层磁性薄膜的长度方向相同,所述最内层磁性薄膜的长度方向为沿所述最内层磁性薄膜的一端开口延伸到所述最内层磁性薄膜的另一端开口的方向;所述至少一个导电体中每一导电体均与所述最内层磁性薄膜的内壁之间是绝缘 的;
    在所述至少一个导电体为两个以上导电体的情况下,所述两个以上导电体是相互隔离的。
  8. 根据权利要求1至7中任一项所述的薄膜电感,其特征在于,所述薄膜电感的每层磁性薄膜均包括第一部分和第二部分,所述第一部分具有第一端和第二端,所述第一端和第二端分别和所述第二部分的不同区域相接触。
  9. 根据权利要求1至8中任一项所述的薄膜电感,其特征在于,所述第二磁性薄膜的相对磁导率的选择需要考虑所述第二磁性薄膜在第一平面上的周长和所述第二磁性薄膜的饱和磁感应强度,其中,第一方向为从所述第二磁性薄膜的一端开口延伸至所述第二磁性薄膜的另一端开口的方向,所述第一平面是所述第二磁性薄膜在沿垂直于所述第一方向的方向上的截面所在的平面。
  10. 一种电源转换电路,其特征在于,所述电源转换电路包括第一开关管、第二开关管、电容和如权利要求1至9中任一项所述的薄膜电感;
    所述第一开关管的一端与所述第二开关管的一端相连,
    所述薄膜电感的一端连接在所述第一开关管的一端和所述第二开关管的一端之间,所述薄膜电感的另一端与所述电容的一端相连;所述电容的另一端与所述第二开光管的另一端相连;
    在所述第一开关管导通且所述第二开关管关断的情况下,来自外部电源且流经所述薄膜电感的电流将变大;
    在所述第一开关管关断且所述第二开关管导通的情况下,所述电容两端的电压反向的加载在所述薄膜电感上,流经所述薄膜电感的电流将变小。
  11. 一种芯片,包括如权利要求10所述的电源转换电路和负载,所述电源转换电路与所述负载连接,所述电源转换电路用于接收来自外部电源的电流并对所述电流进行转换处理后供应给所述负载。
PCT/CN2018/077885 2017-03-03 2018-03-02 一种薄膜电感、电源转换电路和芯片 WO2018157859A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18760688.4A EP3573081B1 (en) 2017-03-03 2018-03-02 Thin-film inductor, power supply changeover circuit, and chip
US16/559,231 US10790079B2 (en) 2017-03-03 2019-09-03 Thin film inductor, power conversion circuit, and chip

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710124036 2017-03-03
CN201710124036.4 2017-03-03
CN201710386290.1A CN107146690B (zh) 2017-03-03 2017-05-26 一种薄膜电感、电源转换电路和芯片
CN201710386290.1 2017-05-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/559,231 Continuation US10790079B2 (en) 2017-03-03 2019-09-03 Thin film inductor, power conversion circuit, and chip

Publications (1)

Publication Number Publication Date
WO2018157859A1 true WO2018157859A1 (zh) 2018-09-07

Family

ID=59779160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/077885 WO2018157859A1 (zh) 2017-03-03 2018-03-02 一种薄膜电感、电源转换电路和芯片

Country Status (4)

Country Link
US (1) US10790079B2 (zh)
EP (1) EP3573081B1 (zh)
CN (1) CN107146690B (zh)
WO (1) WO2018157859A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107146690B (zh) * 2017-03-03 2019-11-05 华为机器有限公司 一种薄膜电感、电源转换电路和芯片
EP3886126A4 (en) * 2018-12-17 2021-12-22 Huawei Technologies Co., Ltd. THIN FILM COIL AND MANUFACTURING PROCESS FOR IT, INTEGRATED CIRCUIT AND TERMINAL DEVICE
CN114302558A (zh) * 2021-12-30 2022-04-08 Oppo广东移动通信有限公司 集成电感、其制备方法、电感、电源管理芯片及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6278352B1 (en) * 1999-07-26 2001-08-21 Taiwan Semiconductor Manufacturing Company High efficiency thin film inductor
CN101017727A (zh) * 2005-12-29 2007-08-15 Lg电子株式会社 芯片型电感器
CN204375745U (zh) * 2015-02-05 2015-06-03 中国科学院金属研究所 一种基于铁镍多元合金磁芯的微型薄膜电感
CN105761880A (zh) * 2016-04-20 2016-07-13 华为技术有限公司 一种薄膜电感和电源转换电路
CN107146690A (zh) * 2017-03-03 2017-09-08 华为机器有限公司 一种薄膜电感、电源转换电路和芯片

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5355301A (en) * 1992-02-28 1994-10-11 Fuji Electric Co., Ltd. One-chip type switching power supply device
JP3776281B2 (ja) * 1999-04-13 2006-05-17 アルプス電気株式会社 インダクティブ素子
JP3679730B2 (ja) * 2000-06-01 2005-08-03 アルプス電気株式会社 軟磁性膜と、この軟磁性膜を用いた薄膜磁気ヘッド、ならびに前記軟磁性膜の製造方法と、前記薄膜磁気ヘッドの製造方法
JP2002309353A (ja) 2001-04-13 2002-10-23 Fujitsu Ltd 軟磁性膜及びこれを用いる記録用の磁気ヘッド
EP1399929B1 (en) 2001-06-29 2011-03-16 Prysmian S.p.A. Method for shielding the magnetic field generated by an electrical power transmission line, and magnetically shielded electrical power transmission line
US6700472B2 (en) 2001-12-11 2004-03-02 Intersil Americas Inc. Magnetic thin film inductors
JP4773254B2 (ja) 2006-03-15 2011-09-14 太陽誘電株式会社 高周波磁性薄膜及び高周波電子デバイス
JP4867698B2 (ja) * 2007-02-20 2012-02-01 Tdk株式会社 薄膜磁気デバイス及びこれを有する電子部品モジュール
US8102236B1 (en) * 2010-12-14 2012-01-24 International Business Machines Corporation Thin film inductor with integrated gaps
US8717136B2 (en) 2012-01-10 2014-05-06 International Business Machines Corporation Inductor with laminated yoke
US9064628B2 (en) 2012-05-22 2015-06-23 International Business Machines Corporation Inductor with stacked conductors
WO2015006660A2 (en) * 2013-07-12 2015-01-15 The University Of Florida Reearch Foundation, Inc. Low ohmic loss radial superlattice conductors
CN103580502A (zh) * 2013-11-15 2014-02-12 华为技术有限公司 电源转换电路及控制直流-交流电路的方法
US9384879B2 (en) * 2014-01-15 2016-07-05 International Business Machines Corporation Magnetic multilayer structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6278352B1 (en) * 1999-07-26 2001-08-21 Taiwan Semiconductor Manufacturing Company High efficiency thin film inductor
CN101017727A (zh) * 2005-12-29 2007-08-15 Lg电子株式会社 芯片型电感器
CN204375745U (zh) * 2015-02-05 2015-06-03 中国科学院金属研究所 一种基于铁镍多元合金磁芯的微型薄膜电感
CN105761880A (zh) * 2016-04-20 2016-07-13 华为技术有限公司 一种薄膜电感和电源转换电路
CN107146690A (zh) * 2017-03-03 2017-09-08 华为机器有限公司 一种薄膜电感、电源转换电路和芯片

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3573081A4

Also Published As

Publication number Publication date
EP3573081A1 (en) 2019-11-27
CN107146690B (zh) 2019-11-05
US10790079B2 (en) 2020-09-29
US20200005985A1 (en) 2020-01-02
EP3573081B1 (en) 2021-06-23
CN107146690A (zh) 2017-09-08
EP3573081A4 (en) 2020-03-04

Similar Documents

Publication Publication Date Title
US9679958B2 (en) Methods for manufacturing integrated multi-layer magnetic films
US11532420B2 (en) Thin film inductor and power conversion circuit
US8717136B2 (en) Inductor with laminated yoke
TWI596625B (zh) 具積體間隙的薄膜電感
JP2006286931A (ja) 薄膜デバイス
US9047890B1 (en) Inductor with non-uniform lamination thicknesses
US11361889B2 (en) Magnetic inductor with multiple magnetic layer thicknesses
WO2018157859A1 (zh) 一种薄膜电感、电源转换电路和芯片
JP2013098554A (ja) 積層型パワーインダクタ及びその製造方法
US10347709B2 (en) Methods of manufacturing integrated magnetic core inductors with vertical laminations
US9064628B2 (en) Inductor with stacked conductors
US20180294094A1 (en) Laminated magnetic inductor stack with high frequency peak quality factor
US8754500B2 (en) Plated lamination structures for integrated magnetic devices
KR20130031581A (ko) 적층형 인덕터
US20210383958A1 (en) Patterned magnetic cores
US9607748B2 (en) Micro-fabricated integrated coil and magnetic circuit and method of manufacturing thereof
US20130069757A1 (en) Multilayered inductor and method of manufacturing the same
JP2008187166A (ja) らせん形の閉じた磁気コア、及び前記閉じた磁気コアを備えた集積マイクロインダクタ
Shirakawa et al. Thin film inductor with multilayer magnetic core
US10210986B2 (en) Integrated magnetic core inductor with vertical laminations

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18760688

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018760688

Country of ref document: EP

Effective date: 20190823

NENP Non-entry into the national phase

Ref country code: DE