WO2018157826A1 - P型perc双面太阳能电池及其组件、系统和制备方法 - Google Patents

P型perc双面太阳能电池及其组件、系统和制备方法 Download PDF

Info

Publication number
WO2018157826A1
WO2018157826A1 PCT/CN2018/077593 CN2018077593W WO2018157826A1 WO 2018157826 A1 WO2018157826 A1 WO 2018157826A1 CN 2018077593 W CN2018077593 W CN 2018077593W WO 2018157826 A1 WO2018157826 A1 WO 2018157826A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser grooving
laser
aluminum
silicon wafer
solar cell
Prior art date
Application number
PCT/CN2018/077593
Other languages
English (en)
French (fr)
Inventor
林纲正
方结彬
陈刚
Original Assignee
广东爱旭科技股份有限公司
浙江爱旭太阳能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东爱旭科技股份有限公司, 浙江爱旭太阳能科技有限公司 filed Critical 广东爱旭科技股份有限公司
Priority to JP2019548014A priority Critical patent/JP7023976B2/ja
Priority to US16/489,663 priority patent/US10763377B2/en
Priority to EP18761456.5A priority patent/EP3591715B1/en
Priority to KR1020197029116A priority patent/KR102323458B1/ko
Publication of WO2018157826A1 publication Critical patent/WO2018157826A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0684Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells double emitter cells, e.g. bifacial solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/047PV cell arrays including PV cells having multiple vertical junctions or multiple V-groove junctions formed in a semiconductor substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to the field of solar cells, and more particularly to a P-type PERC double-sided solar cell, and a method for preparing the P-type PERC double-sided solar cell.
  • the solar cell module using the P-type PERC double-sided solar cell adopts the above-mentioned P-type Solar system for PERC double-sided solar cells.
  • a crystalline silicon solar cell is a device that effectively absorbs solar radiation energy and converts light energy into electrical energy by using a photovoltaic effect.
  • a new hole-electron pair is formed, and the electric field at the PN junction Under the action, the holes flow from the N zone to the P zone, and the electrons flow from the P zone to the N zone, and a current is formed after the circuit is turned on.
  • Conventional crystalline silicon solar cells basically use only front passivation technology, depositing a layer of silicon nitride on the front side of the silicon wafer by PECVD to reduce the recombination rate of the minority on the front surface, which can greatly increase the open circuit voltage and short circuit of the crystalline silicon battery. Current, thereby increasing the photoelectric conversion efficiency of the crystalline silicon solar cell. However, since the back side of the silicon wafer is not passivated, the improvement in photoelectric conversion efficiency is still limited.
  • the substrate adopts an N-type silicon wafer.
  • the carriers generated in the N-type silicon wafer pass through the silicon wafer having a thickness of about 200 ⁇ m, due to the N-type.
  • the silicon wafer has a low lifetime and low carrier recombination rate, and some carriers can reach the front pn junction; the front side of the solar cell is the main light-receiving surface, and its conversion efficiency accounts for a high proportion of the entire battery conversion efficiency; The effect is to greatly improve the conversion efficiency of the battery.
  • the price of N-type silicon wafer is high, and the process of N-type double-sided battery is complicated; therefore, how to develop high-efficiency and low-cost double-sided solar cells has become a hot spot for enterprises and researchers.
  • the industry has been studying the PERC back passivation solar cell technology.
  • the mainstream manufacturers in the industry mainly develop single-sided PERC solar cells.
  • the present invention combines PERC high-efficiency batteries and double-sided batteries to develop a PERC double-sided solar cell with higher integrated photoelectric conversion efficiency.
  • the present invention aims to propose a P-type PERC double-sided solar cell with simple process, low cost, easy promotion, and high photoelectric conversion efficiency.
  • the technical problem to be solved by the present invention is to provide a P-type PERC double-sided solar cell with simple structure, low cost, easy promotion, and high photoelectric conversion efficiency.
  • the technical problem to be solved by the present invention is also to provide a preparation method of a P-type PERC double-sided solar cell, which has the advantages of simple process, low cost, easy promotion, and high photoelectric conversion efficiency.
  • the technical problem to be solved by the present invention is also to provide a P-type PERC double-sided solar cell module, which has a simple structure, low cost, easy promotion, and high photoelectric conversion efficiency.
  • the technical problem to be solved by the present invention is also to provide a P-type PERC double-sided solar energy system with simple structure, low cost, easy promotion, and high photoelectric conversion efficiency.
  • the present invention provides a P-type PERC double-sided solar cell, which in turn comprises a back silver electrode, a back aluminum gate line, a back passivation layer, a P-type silicon, an N-type emitter, a front silicon nitride film. And the positive silver electrode, the back silver electrode and the back aluminum grid line intersect at a first predetermined angle, 10° ⁇ the first preset angle ⁇ 90°;
  • first laser grooving zone Forming a first laser grooving zone by laser grooving on the back passivation layer, the first laser grooving zone is disposed under the back aluminum gate line, and the back aluminum gate line passes through the first laser grooving zone and the P-type Silicon is connected, and an aluminum grid outer frame is arranged around the back aluminum grid line, and the aluminum grid outer frame is connected with the back aluminum grid line and the back silver electrode;
  • the back aluminum grid line may also be curved, curved, wavy, or the like.
  • the first laser grooving zone includes a plurality of sets of first laser grooving units, each set of first laser grooving units includes one or more first laser grooving bodies, and the back aluminum grid lines are opened with the first laser The troughs intersect at a second predetermined angle, 10° ⁇ second predetermined angle ⁇ 90°.
  • a second laser grooving zone is disposed under the aluminum grid outer frame, and the second laser grooving zone includes a plurality of sets of second laser grooving units, each set of second laser grooving The unit includes one or more second laser grooving bodies, and the aluminum grid outer frame intersects the second laser grooving body at a third predetermined angle, 10° ⁇ the third predetermined angle ⁇ 90°.
  • the back silver electrode and the back aluminum grid line intersect at a first predetermined angle, 30° ⁇ the first preset angle ⁇ 90°;
  • the back aluminum grid line intersects the first laser slotted body at a second predetermined angle, and the second predetermined angle is 90°;
  • the aluminum grid outer frame and the second laser cavity are intersected at a third predetermined angle, and the third predetermined angle is 90°.
  • the first laser grooving units are arranged in parallel;
  • the first laser grooving bodies are juxtaposed, and the first laser grooving bodies are on the same horizontal plane or are staggered up and down;
  • the spacing between the first laser grooving units is 0.5-50 mm;
  • the spacing between the first laser grooving bodies is 0.5-50 mm;
  • the first laser grooving body has a length of 50-5000 microns and a width of 10-500 microns;
  • the number of the back aluminum grid lines is 30-500;
  • the width of the back aluminum grid line is 30-500 microns, and the width of the back aluminum grid line is smaller than the length of the first laser slotted body.
  • the back passivation layer comprises an aluminum oxide layer and a silicon nitride layer, the aluminum oxide layer is connected to the P-type silicon, and the silicon nitride layer is connected to the aluminum oxide layer;
  • the thickness of the silicon nitride layer is 20-500 nm
  • the aluminum oxide layer has a thickness of 2 to 50 nm.
  • the present invention also discloses a method for preparing a P-type PERC double-sided solar cell, comprising:
  • first laser grooving area comprising a plurality of sets of first laser grooving units, each set of first laser grooving units comprising one or more First laser slotted bodies;
  • the method further includes:
  • the step (7) further includes:
  • the second laser grooving zone comprising a plurality of sets of second laser grooving units, each set of second laser grooving units comprising one or more second Laser slotted body;
  • the aluminum grid outer frame and the second laser slotted body intersect at a third predetermined angle, and 10° ⁇ the third predetermined angle ⁇ 90°.
  • the present invention also discloses a PERC solar cell module comprising a PERC solar cell and a packaging material, and the PERC solar cell is any of the P-type PERC double-sided solar cells described above.
  • the present invention also discloses a PERC solar energy system comprising a PERC solar cell, which is any of the P-type PERC double-sided solar cells described above.
  • the first laser grooving region is formed by laser grooving on the back passivation layer, and then the aluminum paste is printed in an angle at an angle or perpendicular to the direction of the laser scribing.
  • the aluminum paste is connected to the P-type silicon through the slotted region to obtain a back aluminum grid line.
  • the back silver electrode and the back aluminum grid line intersect at a first predetermined angle, and 10° ⁇ the first preset angle ⁇ 90° can improve the ability of the back silver electrode and the back aluminum grid to collect electrons, thereby improving the photoelectric conversion efficiency.
  • the back aluminum grid line intersects the first laser slotted body at a second predetermined angle, 10[the second predetermined angle ⁇ 90°.
  • the method is different from the conventional printing aluminum paste. Since the width of the aluminum grid is much smaller than the length of the laser grooved area, the aluminum paste and the laser grooved area can be eliminated. Alignment simplifies the laser process and printing process, reduces the difficulty of debugging of printing equipment, and is easy to industrialize and produce. In addition, the laser grooved area outside the aluminum paste coverage area can increase the absorption of sunlight by the back surface of the battery and improve the photoelectric conversion efficiency of the battery.
  • the present invention is provided with an aluminum grid outer frame around the back aluminum grid line, the aluminum grid outer frame is connected with the back aluminum grid line and the back silver electrode, and the aluminum grid outer frame provides a transmission path for the electron to prevent The EL gate is broken by the aluminum gate and the photoelectric conversion efficiency is low.
  • a second laser grooving zone may be disposed under the aluminum grid outer frame, or a second laser grooving zone may not be provided.
  • the aluminum paste and the second laser may not be needed.
  • the precise alignment of the slotted area simplifies the laser process and printing process, reducing the difficulty of debugging the printing equipment.
  • the second laser grooved area outside the aluminum paste coverage area can increase the absorption of sunlight by the back surface of the battery and improve the photoelectric conversion efficiency of the battery.
  • the invention has the advantages of simple structure, simple process, low cost, easy promotion, and high photoelectric conversion efficiency.
  • Figure 1 is a cross-sectional view showing a P-type PERC double-sided solar cell of the present invention
  • FIG. 2 is a schematic view showing a first embodiment of a back structure of a P-type PERC double-sided solar cell of the present invention
  • Figure 3 is a schematic view showing a second embodiment of the back structure of the P-type PERC double-sided solar cell of the present invention.
  • FIG. 4 is a schematic view showing an embodiment of a first laser grooving zone of a P-type PERC double-sided solar cell of the present invention
  • Figure 5 is a schematic view showing another embodiment of the first laser grooving zone of the P-type PERC double-sided solar cell of the present invention.
  • Figure 6 is a schematic illustration of a second laser grooving zone of a P-type PERC double-sided solar cell of the present invention.
  • the existing single-sided solar cell has an all-aluminum back electric field on the back surface of the battery covering the entire back surface of the silicon wafer.
  • the function of the all-aluminum back electric field is to increase the open circuit voltage Voc and the short-circuit current Jsc, forcing the minority carriers away from the surface. The minority carrier recombination rate is reduced, thereby improving battery efficiency as a whole.
  • the all-aluminum back electric field is opaque, the back side of the solar cell having an all-aluminum back electric field cannot absorb light energy, and only the front side can absorb light energy, and the integrated photoelectric conversion efficiency of the battery is difficult to be greatly improved.
  • the present invention provides a P-type PERC double-sided solar cell, which in turn includes a back silver electrode 1, a back aluminum gate line 2, a back passivation layer 3, a P-type silicon 4, and an N-type emitter. 5.
  • Type silicon 4 is connected.
  • the positive silver electrode 7 includes a positive silver electrode main gate 7A and a positive silver electrode sub-gate 7B.
  • the back passivation layer 3 includes an aluminum oxide layer 31 and a silicon nitride layer 32.
  • the invention improves the existing single-sided PERC solar cell, no longer has an all-aluminum back electric field, but turns it into a plurality of back aluminum grid lines 2, which are opened on the back passivation layer 3 by laser grooving technology.
  • the laser grooving area 8 is printed on the parallel-arranged laser grooving area 8 so as to be in local contact with the P-type silicon 4, and the densely-arranged back aluminum grid line 2 can not only serve Increasing the open circuit voltage Voc and the short circuit current Jsc, reducing the minority carrier recombination rate, improving the photoelectric conversion efficiency of the battery, can replace the all-aluminum back electric field of the existing single-sided battery structure, and the back aluminum grid line 2 does not completely cover the silicon On the back side of the film, sunlight can be projected from the back aluminum grid line 2 into the silicon wafer, thereby realizing absorption of light energy on the back side of the silicon wafer and greatly improving the photoelectric conversion efficiency of the battery.
  • the back silver electrode 1 and the back aluminum grid line 2 intersect at a first predetermined angle, and 10° ⁇ the first preset angle ⁇ 90° can improve the back silver electrode and the back aluminum grid.
  • Line 2 collects electrons and improves photoelectric conversion efficiency.
  • the first laser grooving area 8 includes a plurality of sets of first laser grooving units 81, each set of first laser grooving units 81 including one or more first laser grooving bodies 82, the back aluminum grid lines 2 Intersecting with the first laser slotted body 81 at a second predetermined angle, 10° ⁇ second predetermined angle ⁇ 90°.
  • the back aluminum grid line 2 intersects perpendicularly with the first laser slotted body 81, and the second predetermined angle is 90°.
  • FIGS. 2 and 3 the schematic diagram of the back electrode structure shown in FIGS. 2 and 3 can be participated.
  • the back silver electrode 1 and the back aluminum gate line 2 are obliquely intersected, and the back aluminum grid line 2 and the first laser slotted body 82 are also inclined.
  • Figure 3 is a more preferred embodiment.
  • an aluminum grid outer frame 9 is provided around the back aluminum grid line, and the aluminum grid outer frame 9 is connected to the back aluminum grid line 2 and the back silver electrode 1.
  • the aluminum grid frame 9 provides a transmission path for the electrons to prevent the EL test grid and the photoelectric conversion efficiency caused by the aluminum gate grid.
  • the dashed frame shown in FIGS. 4 and 5 is the first laser grooving unit 81, and each set of the first laser
  • the slotting unit 81 includes one or more first laser slotted bodies 82.
  • the first laser grooving unit 81 has various embodiments, including:
  • Each of the first laser grooving units 81 includes a first laser grooving body 82. At this time, the first laser grooving unit 81 is a continuous linear grooving area, as shown in FIG.
  • Each of the first laser grooving units 81 includes a plurality of first laser grooving bodies 82.
  • the first laser grooving unit 81 is a line-type non-continuous linear grooving area, as shown in FIG. Show.
  • the plurality of first laser grooving bodies 82 may be two, three, four or more, but are not limited thereto.
  • each set of the first laser grooving unit 81 includes a plurality of first laser grooving bodies 82, it is divided into the following cases:
  • the width, length and shape of the plurality of first laser grooving bodies 82 are the same, and the size thereof is in the order of micrometers, and the length may be 50-5000 micrometers, but is not limited thereto; it should be noted that the A laser grooving body 82 may be on the same horizontal surface or may be staggered up and down (i.e., not in the same horizontal plane), and the staggered profile may be determined according to production needs.
  • the width, length and shape of the plurality of first laser grooving bodies 82 are the same, and the dimensions are in the order of millimeters, and the length may be 5-600 mm, but is not limited thereto; it should be noted that the A laser slotted body may be on the same horizontal plane, or may be staggered up and down (ie, not in the same horizontal plane), and the staggered distribution of the topography depends on the production needs.
  • the width, length and/or shape of the plurality of first laser grooving bodies 82 are different, and the combined design can be performed according to production needs. It should be noted that the first laser grooving bodies may be on the same horizontal plane, or may be staggered up and down (ie, not in the same horizontal plane), and the staggered distribution of the topography depends on production needs.
  • the first laser grooving body is linear, which facilitates processing, simplifies the process, and reduces production costs.
  • the first laser grooving body may also be provided in other shapes, such as a curved shape, an arc shape, a wave shape, etc., and embodiments thereof are not limited to the embodiment of the present invention.
  • the first laser grooving units 81 are arranged in parallel. In each of the first laser grooving units 81, the first laser grooving bodies 82 are arranged side by side, which simplifies the production process and is suitable for large-scale popularization and application.
  • the spacing between the first laser grooving units 81 is 0.5-50 mm. In each of the first laser grooving units 81, the distance between the first laser grooving bodies 82 is 0.5-50 mm.
  • the first laser grooving body 82 has a length of 50-5000 microns and a width of 10-500 microns. Preferably, the first laser grooving body 82 has a length of 250-1200 microns and a width of 30-80 microns.
  • the length, width and spacing of the first laser grooving unit 81 and the number and width of the aluminum grid are optimized on the basis of comprehensively considering the contact area of the aluminum grid and the P-type silicon, the light-shielding area of the aluminum grid, and the sufficient collection of electrons.
  • the purpose is to reduce the shading area of the back aluminum grid as much as possible while ensuring a good current output, thereby improving the overall photoelectric conversion efficiency of the battery.
  • a second laser grooving zone 90 may be provided below the aluminum grid outer frame 9, see the first embodiment of the backside structure shown in FIG.
  • the second laser grooving zone 90 may not be provided below the aluminum grid outer frame 9, see the second embodiment of the backside structure shown in FIG.
  • the second laser grooving zone 90 comprises a plurality of sets of second laser grooving units 91, each set of second laser grooving units 91 comprising one or more second The laser grooving body 92, the aluminum grid outer frame 9 and the second laser grooving body 92 intersect at a third predetermined angle, 10[the third predetermined angle ⁇ 90°.
  • the aluminum grid frame 9 and the second laser slotted body 92 intersect perpendicularly, and the third predetermined angle is 90°.
  • the second laser grooving zone 90 includes two second laser grooving units 91A disposed in a vertical direction and two second laser grooving units 91B, and a second laser grooving disposed in a vertical direction.
  • the unit 91A includes a plurality of second laser grooving bodies 92
  • the second laser grooving unit 91B includes a plurality of second laser grooving bodies 92 disposed in a vertical direction.
  • the second laser grooving zone 90 When the second laser grooving zone 90 is provided, precise alignment of the aluminum paste and the second laser grooving zone is not required, which simplifies the laser process and the printing process, and reduces the difficulty in debugging the printing equipment.
  • the second laser grooved area outside the aluminum paste coverage area can increase the absorption of sunlight by the back surface of the battery and improve the photoelectric conversion efficiency of the battery.
  • the number of the back aluminum gate lines 2 is 30-500, the width of the back aluminum gate lines 2 is 30-500 microns, and the width of the back aluminum gate lines 2 is much smaller than the first laser slotted body.
  • the length of 82 Preferably, the number of the back aluminum gate lines 2 is 80-220, and the width of the back aluminum gate lines 2 is 50-300 microns.
  • the width of the back aluminum grid line is much smaller than the length of the first laser slotted body. In the case where the aluminum grid is perpendicular to the first laser slotted body, the printing problem of the back aluminum grid line can be greatly facilitated. Without precise alignment, the aluminum grid can be placed in the first laser grooving zone, which simplifies the laser process and printing process, reduces the difficulty of debugging the printing equipment, and is easy to industrialize and produce.
  • the invention forms a laser grooving zone by laser grooving the back passivation layer, and then printing the aluminum paste in an angle perpendicular to the direction of the laser scribing, so that the aluminum paste is connected to the P-type silicon through the slotted region, Back aluminum grid line.
  • the PERC double-sided solar cell can prepare a battery grid structure on the front and back sides of the silicon wafer, and adopts a method different from the conventional printing aluminum paste, so that precise alignment of the aluminum paste and the first laser grooved area is not required, and the process is simple. Easy to industrialize large production.
  • the aluminum grid is parallel to the first laser slotted body, and the aluminum paste and the first laser slotted area need to be accurately aligned, which requires high precision and repeatability of the printing equipment, and the yield is difficult to control, and the defective products are more, resulting in The average photoelectric conversion efficiency decreases.
  • the yield can be increased to 99.5%.
  • the back passivation layer 3 includes an aluminum oxide layer 31 and a silicon nitride layer 32, the aluminum oxide layer 31 is connected to the P-type silicon 4, and the silicon nitride layer 32 is connected to the aluminum oxide layer 31;
  • the silicon nitride layer 32 has a thickness of 20-500 nm
  • the aluminum oxide layer 31 has a thickness of 2 to 50 nm.
  • the silicon nitride layer 32 has a thickness of 100-200 nm;
  • the aluminum oxide layer 31 has a thickness of 5 to 30 nm.
  • the present invention also discloses a method for preparing a P-type PERC double-sided solar cell, comprising:
  • the laser is grooved on the back side of the silicon wafer to form a first laser grooving area.
  • the first laser grooving area includes a plurality of sets of first laser grooving units, and each set of the first laser grooving unit includes one or more First laser slotted body;
  • the silicon wafer is sintered at a high temperature to form a back silver electrode and a positive silver electrode.
  • S106 and S104, S105 can be interchanged, and S106 can be before S104 and S105.
  • S109 and S110 can be combined into one step, and the back aluminum grid line and the aluminum grid frame are completed at one time.
  • the method further comprises: polishing the back surface of the silicon wafer.
  • the present invention may be provided with a backside polishing step or no backside polishing step.
  • a second laser grooving zone may be disposed under the aluminum grid outer frame, or a second laser grooving zone may not be provided.
  • the step (7) further includes:
  • Second laser grooving zone comprising a plurality of sets of second laser grooving units, each set of second laser grooving units comprising one or more second
  • the laser slotted body; the aluminum grid outer frame and the second laser slotted body intersect at a third predetermined angle, 10° ⁇ the third predetermined angle ⁇ 90°.
  • the present invention also discloses a PERC solar cell module comprising a PERC solar cell and a packaging material, and the PERC solar cell is any of the P-type PERC double-sided solar cells described above.
  • the PERC solar cell module the high-permeability tempered glass, the ethylene-vinyl acetate copolymer EVA, the PERC solar cell, the ethylene-vinyl acetate copolymer EVA, and the highly permeable tempered glass are sequentially connected from top to bottom. composition.
  • the present invention also discloses a PERC solar energy system comprising a PERC solar cell, which is any of the P-type PERC double-sided solar cells described above.
  • a PERC solar cell As a preferred embodiment of the PERC solar system, a PERC solar cell, a battery pack, a charge and discharge controller inverter, an AC power distribution cabinet, and a solar tracking control system are included.
  • the PERC solar system may be provided with a battery pack, a charge and discharge controller inverter, or a battery pack or a charge and discharge controller inverter, and those skilled in the art may set according to actual needs.
  • first laser grooving area comprising a plurality of sets of first laser grooving units, each set of first laser grooving units comprising one or more a first laser grooving body, the first laser grooving body having a length of 1000 microns and a width of 40 microns;
  • the silicon wafer is sintered at a high temperature to form a back silver electrode and a positive silver electrode.
  • the slotting unit includes one or more first laser slotted bodies, the first laser slotted body having a length of 500 microns and a width of 50 microns;
  • the second laser grooving zone comprises two vertically disposed second laser grooving units and two horizontally disposed second laser grooving units, each set of second laser grooving units comprising one or more second a laser grooving body; the second laser grooving body has a length of 500 microns and a width of 50 microns;
  • the silicon wafer is sintered at a high temperature to form a back silver electrode and a positive silver electrode.
  • first laser grooving area comprising a plurality of sets of first laser grooving units, each set of first laser grooving units comprising one or more a first laser grooving body, the first laser grooving body having a length of 300 microns and a width of 30 microns;
  • the silicon wafer is sintered at a high temperature to form a back silver electrode and a positive silver electrode.
  • first laser grooving area comprising a plurality of sets of first laser grooving units, each set of first laser grooving units comprising one or more a first laser grooving body, the first laser grooving body having a length of 1200 microns and a width of 200 microns;
  • the second laser grooving zone comprises two vertically disposed second laser grooving units and two horizontally disposed second laser grooving units, each set of second laser grooving units comprising one or more second a laser grooving body, the second laser grooving body is perpendicular to the aluminum grid outer frame; the second laser grooving body has a length of 1200 micrometers and a width of 200 micrometers;
  • the silicon wafer is sintered at a high temperature to form a back silver electrode and a positive silver electrode.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种P型PERC双面太阳能电池,依次包括背银电极、背铝栅线、背面钝化层、P型硅、N型发射极、正面氮化硅膜和正银电极,所述背银电极、背铝栅线以第一预设夹角相交,10°<第一预设夹角<90°;对背面钝化层通过激光开槽形成第一激光开槽区,所述第一激光开槽区设于背铝栅线的下方,所述背铝栅线通过第一激光开槽区与P型硅相连,所述背铝栅线的四周设有铝栅外框,所述铝栅外框与背铝栅线、背银电极相连接。采用本发明,结构简单,成本较低、易于推广、光电转换效率高。

Description

P型PERC双面太阳能电池及其组件、系统和制备方法 技术领域
本发明涉及太阳能电池领域,尤其涉及一种P型PERC双面太阳能电池、以及上述P型PERC双面太阳能电池的制备方法,采用上述P型PERC双面太阳能电池的太阳能电池组件,采用上述P型PERC双面太阳能电池的太阳能系统。
背景技术
晶硅太阳能电池是一种有效吸收太阳辐射能,利用光生伏打效应把光能转换成电能的器件,当太阳光照在半导体P-N结上,形成新的空穴-电子对,在P-N结电场的作用下,空穴由N区流向P区,电子由P区流向N区,接通电路后就形成电流。
传统晶硅太阳能电池基本上只采用正面钝化技术,在硅片正面用PECVD的方式沉积一层氮化硅,降低少子在前表面的复合速率,可以大幅度提升晶硅电池的开路电压和短路电流,从而提升晶硅太阳电池的光电转换效率。但是由于硅片的背面没有钝化,光电转换效率的提升仍然受到限制。
现有技术的双面太阳能电池结构:基底采用N型硅片,当太阳光子照射电池背面时,在N型硅片中产生的载流子穿过厚度约为200微米的硅片,由于N型硅片少子寿命高,载流子复合速率低,部分载流子可以到达正面的p-n结;太阳能电池的正面为主要受光面,其转换效率占整个电池转换效率的比例很高;正背面的综合作用,从而大大提高电池的转换效率。但是,N型硅片价格高,N型双面电池工艺复杂;因此,如何开发高效低成本的双面太阳能电池成为企业和研究者关注的热点。
另一方面,随着对晶硅电池的光电转换效率的要求越来越高,业界一直在研究PERC背钝化太阳电池技术。业界主流厂家主要在开发单面PERC太阳能电池,本发明将PERC高效电池和双面电池结合起来,旨在开发综合光电转换效率更高的PERC双面太阳能电池。
对于PERC双面太阳能电池,由于光电转换效率高,同时双面吸收太阳光,发电量更高,在实际应用中具有更大的使用价值。因此,本发明旨在提出一种工艺简单、成本较低、易于推广、光电转换效率高的P型PERC双面太阳能电池。
发明内容
本发明所要解决的技术问题在于,提供一种P型PERC双面太阳能电池,结构简单,成本较低、易于推广、光电转换效率高。
本发明所要解决的技术问题还在于,提供一种P型PERC双面太阳能电池的制备方法,工艺简单,成本较低、易于推广、光电转换效率高。
本发明所要解决的技术问题还在于,提供一种P型PERC双面太阳能电池组件,结构简单,成本较低、易于推广、光电转换效率高。
本发明所要解决的技术问题还在于,提供一种P型PERC双面太阳能系统,结构简单,成本较低、易于推广、光电转换效率高。
为了解决上述技术问题,本发明提供了一种P型PERC双面太阳能电池,依次包括背银电极、背铝栅线、背面钝化层、P型硅、N型发射极、正面氮化硅膜和正银电极,所述背银电极、背铝栅线以第一预设夹角相交,10°<第一预设夹角<90°;
对背面钝化层通过激光开槽形成第一激光开槽区,所述第一激光开槽区设于背铝栅线的下方,所述背铝栅线通过第一激光开槽区与P型硅相连,所述背铝栅线的四周设有铝栅外框,所述铝栅外框与背铝栅线、背银电极相连接;
所述背铝栅线也可以是曲线形、弧形、波浪形等。
所述第一激光开槽区包括多组第一激光开槽单元,每一组第一激光开槽单元包括一个或多个第一激光开槽体,所述背铝栅线与第一激光开槽体以第二预设夹角相交,10°<第二预设夹角≤90°。
作为上述方案的优选方式,所述铝栅外框的下方设有第二激光开槽区,所述第二激光开槽区包括多组第二激光开槽单元,每一组第二激光开槽单元包括一个或多个第二激光开槽体,所述铝栅外框与第二激光开槽体以第三预设夹角相交,10°<第三预设夹角≤90°。
作为上述方案的优选方式,所述背银电极、背铝栅线以第一预设夹角相交, 30°<第一预设夹角<90°;
所述背铝栅线与第一激光开槽体以第二预设夹角相交,第二预设夹角=90°;
所述铝栅外框与第二激光开槽体以第三预设夹角相交,第三预设夹角=90°。
作为上述方案的优选方式,所述第一激光开槽单元之间为平行设置;
每一第一激光开槽单元中,所述第一激光开槽体为并列设置,所述第一激光开槽体处于同一水平面上或上下错开;
所述第一激光开槽单元之间的间距为0.5-50mm;
每一第一激光开槽单元中,所述第一激光开槽体之间的间距为0.5-50mm;
所述第一激光开槽体的长度为50-5000微米,宽度为10-500微米;
所述背铝栅线的根数为30-500条;
所述背铝栅线的宽度为30-500微米,所述背铝栅线的宽度小于所述第一激光开槽体的长度。
作为上述方案的优选方式,所述背面钝化层包括氧化铝层和氮化硅层,所述氧化铝层与P型硅连接,所述氮化硅层与氧化铝层连接;
所述氮化硅层的厚度为20-500nm;
所述氧化铝层的厚度为2-50nm。
相应的,本发明还公开一种P型PERC双面太阳能电池的制备方法,包括:
(1)在硅片正面和背面形成绒面,所述硅片为P型硅;
(2)对硅片进行扩散,形成N型发射极;
(3)去除扩散过程形成的正面磷硅玻璃和周边PN结;
(4)在硅片背面沉积三氧化二铝膜;
(5)在硅片背面沉积氮化硅膜;
(6)在硅片正面沉积氮化硅膜;
(7)对硅片背面激光开槽,形成第一激光开槽区,所述第一激光开槽区包括多组第一激光开槽单元,每一组第一激光开槽单元包括一个或多个第一激光开槽体;
(8)在所述硅片背面印刷背银主栅电极;
(9)在所述硅片背面印刷铝浆,得到背铝栅线,所述背银电极、背铝栅线 以第一预设夹角相交,所述背铝栅线与第一激光开槽体以第二预设夹角相交,其中,10°<第一预设夹角<90°,10°<第二预设夹角≤90°;
(10)在所述硅片背面沿着背铝栅线的四周印刷铝浆,得到铝栅外框;
(11)在所述硅片正面印刷正电极浆料;
(12)对硅片进行高温烧结,形成背银电极和正银电极;
(13)对硅片进行抗LID退火。
作为上述方案的优选方式,步骤(3)和(4)之间,还包括:
对硅片背面进行抛光。
作为上述方案的优选方式,步骤(7)还包括:
对硅片背面激光开槽,形成第二激光开槽区,所述第二激光开槽区包括多组第二激光开槽单元,每一组第二激光开槽单元包括一个或多个第二激光开槽体;
所述铝栅外框与第二激光开槽体以第三预设夹角相交,10°<第三预设夹角≤90°。
相应的,本发明还公开一种PERC太阳能电池组件,包括PERC太阳能电池和封装材料,所述PERC太阳能电池是上述任一的P型PERC双面太阳能电池。
相应的,本发明还公开一种PERC太阳能系统,包括PERC太阳能电池,所述PERC太阳能电池是上述任一的P型PERC双面太阳能电池。
实施本发明,具有如下有益效果:
本发明通过在硅片背面形成背面钝化层后,对背面钝化层通过激光开槽形成第一激光开槽区,然后以与激光划线方向呈夹角或垂直的方向印刷铝浆,使铝浆通过开槽区与P型硅相连,得到背铝栅线。背银电极、背铝栅线以第一预设夹角相交,10°<第一预设夹角<90°,可以提高背银电极、背铝栅线收集电子的能力,提高光电转换效率。
所述背铝栅线与第一激光开槽体以第二预设夹角相交,10°<第二预设夹角≤90°。该PERC双面太阳能电池制备电池栅线结构时,采用不同于常规印刷铝浆的方式,由于铝栅的宽度远小于激光开槽区的长度,可以不需要对铝浆和激光开槽区实施精确对准,简化了激光工艺和印刷工艺,降低了印刷设备调试的难度,易于产业化大生产。另外,铝浆覆盖区以外的激光开槽区可以增加 电池背表面对太阳光的吸收,提高电池的光电转换效率。
此外,在印刷过程中,由于铝浆的粘度较大,网版的线宽又比较窄,会偶尔出现铝栅断栅的情况。铝栅断栅会导致EL测试的图像出现黑色断栅。同时,铝栅断栅又会影响电池的光电转换效率。因此,本发明在背铝栅线的四周设有铝栅外框,所述铝栅外框与背铝栅线、背银电极相连接,铝栅外框给电子多提供了一条传输路径,防止铝栅断栅造成的EL测试断栅和光电转换效率低的问题。
铝栅外框的下方可以设有第二激光开槽区,也可以不设有第二激光开槽区,当其设有第二激光开槽区时,可以不需要对铝浆和第二激光开槽区实施精确对准,简化了激光工艺和印刷工艺,降低了印刷设备调试的难度。另外,铝浆覆盖区以外的第二激光开槽区可以增加电池背表面对太阳光的吸收,提高电池的光电转换效率。
因此,本发明结构简单、工艺简单,成本较低、易于推广、光电转换效率高。
附图说明
图1是本发明P型PERC双面太阳能电池的剖视图;
图2是本发明P型PERC双面太阳能电池的背面结构第一实施例的示意图;
图3是本发明P型PERC双面太阳能电池的背面结构第二实施例的示意图;
图4是本发明P型PERC双面太阳能电池的第一激光开槽区一实施例的示意图;
图5是本发明P型PERC双面太阳能电池的第一激光开槽区另一实施例的示意图;
图6是本发明P型PERC双面太阳能电池的第二激光开槽区的示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述。
现有的单面太阳能电池在电池的背面设有全铝背电场覆盖在硅片的整个背面,全铝背电场的作用是提高了开路电压Voc和短路电流Jsc,迫使少数载流子 远离表面,少数载流子复合率降低,从而整体上提高电池效率。然而,由于全铝背电场不透光,因此,具有全铝背电场的太阳能电池背面无法吸收光能,只能正面吸收光能,电池的综合光电转换效率难以大幅度的提高。
针对上述技术问题,结合图1,本发明提供一种P型PERC双面太阳能电池,依次包括背银电极1、背铝栅线2、背面钝化层3、P型硅4、N型发射极5、正面氮化硅膜6、正银电极7;对背面钝化层3通过激光开槽形成第一激光开槽区8,所述背铝栅线2通过第一激光开槽区8与P型硅4相连。正银电极7包括正银电极主栅7A和正银电极副栅7B。所述背面钝化层3包括氧化铝层31和氮化硅层32。
本发明对现有的单面PERC太阳能电池进行改进,不再设有全铝背电场,而是将其变成许多的背铝栅线2,采用激光开槽技术在背面钝化层3上开设激光开槽区8,而背铝栅线2印刷在这些平行设置的激光开槽区8上,从而能与P型硅4形成局部接触,密集平行排布的背铝栅线2不仅能起到提高开路电压Voc和短路电流Jsc,降低少数载流子复合率,提高电池光电转换效率的作用,可替代现有单面电池结构的全铝背电场,而且背铝栅线2并未全面遮盖硅片的背面,太阳光可从背铝栅线2之间投射至硅片内,从而实现硅片背面吸收光能,大幅提高电池的光电转换效率。
如图2、3所示,背银电极1、背铝栅线2以第一预设夹角相交,10°<第一预设夹角<90°,可以提高背银电极1、背铝栅线2收集电子的能力,提高光电转换效率。优选的,30°<第一预设夹角<90°。
所述第一激光开槽区8包括多组第一激光开槽单元81,每一组第一激光开槽单元81包括一个或多个第一激光开槽体82,所述背铝栅线2与第一激光开槽体81以第二预设夹角相交,10°<第二预设夹角≤90°。优选的,所述背铝栅线2与第一激光开槽体81垂直相交,第二预设夹角=90°。
具体可以参加图2、3所示的背面电极结构的示意图,如图2所示,背银电极1、背铝栅线2倾斜相交,背铝栅线2与第一激光开槽体82也是倾斜相交;如图3所示,背银电极1、背铝栅线2倾斜相交,背铝栅线2与第一激光开槽体82垂直相交。图3为更优的实施方式。
此外,在印刷过程中,由于铝浆的粘度较大,网版的线宽又比较窄,会偶尔出现铝栅断栅的情况。铝栅断栅会导致EL测试的图像出现黑色断栅。同时, 铝栅断栅又会影响电池的光电转换效率。因此,本发明在背铝栅线的四周设有铝栅外框9,所述铝栅外框9与背铝栅线2、背银电极1相连接。铝栅外框9给电子多提供了一条传输路径,防止铝栅断栅造成的EL测试断栅和光电转换效率低的问题。
进一步,下面以水平方向设置的激光开槽单元为例,结合图4、5来进一步阐述本发明,图4、5所示的虚线框为第一激光开槽单元81,每一组第一激光开槽单元81包括一个或多个第一激光开槽体82。第一激光开槽单元81有多种实施方式,包括:
(1)每一组第一激光开槽单元81包括一个第一激光开槽体82,此时,第一激光开槽单元81为连续的直线开槽区,具体如图5所示。
(2)每一组第一激光开槽单元81包括多个第一激光开槽体82,此时,第一激光开槽单元81为线段式非连续的直线开槽区,具体如图4所示。该多个第一激光开槽体82可以是两个、三个、四个或以上,但不限于此。
当每一组第一激光开槽单元81包括多个第一激光开槽体82时,其分为以下几种情况:
A、多个第一激光开槽体82的宽度、长度和形状都是一样的,其尺寸单位为微米级别,长度可以为50-5000微米,但不限于此;需要说明的是,所述第一激光开槽体82可以处于同一水平面上,也可以上下错开(即不在同一水平面)上,其错开分布的形貌根据生产需要而定。
B、多个第一激光开槽体82的宽度、长度和形状都是一样的,其尺寸单位为毫米级别,长度可以为5-600毫米,但不限于此;需要说明的是,所述第一激光开槽体可以处于同一水平面上,也可以上下错开(即不在同一水平面)上,其错开分布的形貌根据生产需要而定。
C、多个第一激光开槽体82的宽度、长度和/或形状不一样的,其可以根据生产需要进行组合设计。需要说明的是,所述第一激光开槽体可以处于同一水平面上,也可以上下错开(即不在同一水平面)上,其错开分布的形貌根据生产需要而定。
作为本发明优选的实施方式,所述第一激光开槽体为直线型,方便加工,简化工艺,降低生产成本。所述第一激光开槽体也可以设置为其他形状,例如曲线形、弧形、波浪形等,其实施方式并不局限于本发明所举实施例。
所述第一激光开槽单元81之间为平行设置,每一第一激光开槽单元81中,所述第一激光开槽体82为并列设置,可以简化生产工艺,适合大规模推广应用。
所述第一激光开槽单元81之间的间距为0.5-50mm。每一第一激光开槽单元81中,所述第一激光开槽体82之间的间距为0.5-50mm。
所述第一激光开槽体82的长度为50-5000微米,宽度为10-500微米。优选的,所述第一激光开槽体82的长度为250-1200微米,宽度为30-80微米。
第一激光开槽单元81的长度、宽度和间距和铝栅的根数和宽度是在综合考虑铝栅与P型硅的接触面积、铝栅的遮光面积和充分搜集电子的的基础上优化而来,目的是尽可能降低背面铝栅的遮光面积,同时保证好的电流输出,进而提升电池的整体光电转换效率。
铝栅外框9的下方可以设有第二激光开槽区90,参见图3所示的背面结构的第一实施例。铝栅外框9的下方也可以不设有第二激光开槽区90,参见图2所示的背面结构的第二实施例。
当其设有第二激光开槽区90时,所述第二激光开槽区90包括多组第二激光开槽单元91,每一组第二激光开槽单元91包括一个或多个第二激光开槽体92,所述铝栅外框9与第二激光开槽体92以第三预设夹角相交,10°<第三预设夹角≤90°。优选的,所述铝栅外框9与第二激光开槽体92垂直相交,第三预设夹角=90°。具体结合图6,所述第二激光开槽区90包括两个竖直方向设置的第二激光开槽单元91A以及两个第二激光开槽单元91B,竖直方向设置的第二激光开槽单元91A包括多个第二激光开槽体92,第二激光开槽单元91B包括多个竖直方向设置的第二激光开槽体92。
当其设有第二激光开槽区90时,可以不需要对铝浆和第二激光开槽区实施精确对准,简化了激光工艺和印刷工艺,降低了印刷设备调试的难度。另外,铝浆覆盖区以外的第二激光开槽区可以增加电池背表面对太阳光的吸收,提高电池的光电转换效率。
所述背铝栅线2的根数为30-500条,所述背铝栅线2的宽度为30-500微米,所述背铝栅线2的宽度远小于所述第一激光开槽体82的长度。优选的,所述背铝栅线2的根数为80-220条,所述背铝栅线2的宽度为50-300微米。
所述背铝栅线的宽度远小于所述第一激光开槽体的长度,在铝栅与第一激光开槽体垂直的情况下,可以极大的方便背铝栅线的印刷问题。不需要精确对 准,铝栅都可以落在第一激光开槽区内,简化了激光工艺和印刷工艺,降低了印刷设备调试的难度,易于产业化大生产。
本发明通过对背面钝化层通过激光开槽形成激光开槽区,然后以与激光划线方向呈夹角或垂直的方向印刷铝浆,使铝浆通过开槽区与P型硅相连,得到背铝栅线。该PERC双面太阳能电池通过在硅片正面和背面制备电池栅线结构,采用不同于常规印刷铝浆的方式,可以不需要对铝浆和第一激光开槽区实施精确对准,工艺简单,易于产业化大生产。铝栅与第一激光开槽体平行,铝浆和第一激光开槽区需要实施精确对准,对印刷设备的精度和重复性要求很高,成品率难以得到控制,次品较多,造成平均光电转换效率的下降。采用本发明,可以将成品率提高至99.5%。
进一步,所述背面钝化层3包括氧化铝层31和氮化硅层32,所述氧化铝层31与P型硅4连接,所述氮化硅层32与氧化铝层31连接;
所述氮化硅层32的厚度为20-500nm;
所述氧化铝层31的厚度为2-50nm。
优选的,所述氮化硅层32的厚度为100-200nm;
所述氧化铝层31的厚度为5-30nm。
相应的,本发明还公开一种P型PERC双面太阳能电池的制备方法,包括:
S101、在硅片正面和背面形成绒面,所述硅片为P型硅;
S102、对硅片进行扩散,形成N型发射极;
S103、去除扩散过程形成的正面磷硅玻璃和周边PN结;
S104、在硅片背面沉积三氧化二铝膜;
S105、在硅片背面沉积氮化硅膜;
S106、在硅片正面沉积氮化硅膜;
S107、对硅片背面激光开槽,形成第一激光开槽区,所述第一激光开槽区包括多组第一激光开槽单元,每一组第一激光开槽单元包括一个或多个第一激光开槽体;
S108、在所述硅片背面印刷背银主栅电极;
S109、在所述硅片背面印刷铝浆,得到背铝栅线,所述背银电极、背铝栅线以第一预设夹角相交,所述背铝栅线与激光开槽体以第二预设夹角相交,其中,10°<第一预设夹角<90°,10°<第二预设夹角≤90°;
S110、在所述硅片背面沿着背铝栅线的四周印刷铝浆,得到铝栅外框;
S111、在所述硅片正面印刷正电极浆料;
S112、对硅片进行高温烧结,形成背银电极和正银电极。
S113、对硅片进行抗LID退火。
需要说明的是,S106与S104、S105的顺序可以互换,S106可以在S104、S105之前。S109、S110可以合并为一个步骤,一次印刷完成背铝栅线和铝栅外框。
S103和S104之间,还包括:对硅片背面进行抛光。本发明可以设有背面抛光步骤,也可以不设有背面抛光步骤。
铝栅外框的下方可以设有第二激光开槽区,也可以不设有第二激光开槽区,当其设有第二激光开槽区时,步骤(7)还包括:
对硅片背面激光开槽,形成第二激光开槽区,所述第二激光开槽区包括多组第二激光开槽单元,每一组第二激光开槽单元包括一个或多个第二激光开槽体;所述铝栅外框与第二激光开槽体以第三预设夹角相交,10°<第三预设夹角≤90°。
还需要说明的是,制备方法中的第一激光开槽区、第二激光开槽区和背铝栅线、铝栅外框的具体参数设定,同上所述,在此不再赘述。
相应的,本发明还公开一种PERC太阳能电池组件,包括PERC太阳能电池和封装材料,所述PERC太阳能电池是上述任一的P型PERC双面太阳能电池。具体的,作为PERC太阳能电池组件的一实施例,其由上至下依次连接的高透钢化玻璃、乙烯-醋酸乙烯共聚物EVA、PERC太阳能电池、乙烯-醋酸乙烯共聚物EVA和高透钢化玻璃组成。
相应的,本发明还公开一种PERC太阳能系统,包括PERC太阳能电池,所述PERC太阳能电池是上述任一的P型PERC双面太阳能电池。作为PERC太阳能系统的一优选实施例,包括PERC太阳能电池、蓄电池组,充放电控制器逆变器,交流配电柜和太阳跟踪控制系统。其中,PERC太阳能系统可以设有蓄电池组、充放电控制器逆变器,也可以不设蓄电池组、充放电控制器逆变器,本领域技术人员可以根据实际需要进行设置。
需要说明的是,PERC太阳能电池组件、PERC太阳能系统中,除了P型PERC双面太阳能电池之外的部件,参照现有技术设计即可。
下面以具体实施例进一步阐述本发明
实施例1
(1)在硅片正面和背面形成绒面,所述硅片为P型硅;
(2)对硅片进行扩散,形成N型发射极;
(3)去除扩散过程形成的正面磷硅玻璃和周边PN结;
(4)在硅片背面沉积三氧化二铝膜;
(5)在硅片背面沉积氮化硅膜;
(6)在硅片正面沉积氮化硅膜;
(7)对硅片背面激光开槽,形成第一激光开槽区,所述第一激光开槽区包括多组第一激光开槽单元,每一组第一激光开槽单元包括一个或多个第一激光开槽体,所述第一激光开槽体的长度为1000微米,宽度为40微米;
(8)在所述硅片背面印刷背银主栅电极;
(9)在所述硅片背面印刷铝浆,得到背铝栅线,所述背银电极、背铝栅线以第一预设夹角相交,所述背铝栅线与第一激光开槽体以第二预设夹角相交,其中,第一预设夹角为10°,第二预设夹角为30°,背铝栅线的根数为150条,所述背铝栅线的宽度为150微米;
(10)在所述硅片背面沿着背铝栅线的四周印刷铝浆,得到铝栅外框;
(11)在所述硅片正面印刷正电极浆料;
(12)对硅片进行高温烧结,形成背银电极和正银电极。
(13)对硅片进行抗LID退火。
实施例2
(1)在硅片正面和背面形成绒面,所述硅片为P型硅;
(2)对硅片进行扩散,形成N型发射极;
(3)去除扩散过程形成的正面磷硅玻璃和周边PN结,并对硅片背面进行抛光;
(4)在硅片背面沉积三氧化二铝膜;
(5)在硅片背面沉积氮化硅膜;
(6)在硅片正面沉积氮化硅膜;
(7)对硅片背面激光开槽,形成第一激光开槽区和第二激光开槽区,所述第一激光开槽区包括多组第一激光开槽单元,每一组第一激光开槽单元包括一 个或多个第一激光开槽体,所述第一激光开槽体的长度为500微米,宽度为50微米;
所述第二激光开槽区包括两个竖直设置的第二激光开槽单元和两个水平设置的第二激光开槽单元,每一组第二激光开槽单元包括一个或多个第二激光开槽体;所述第二激光开槽体的长度为500微米,宽度为50微米;
(8)在所述硅片背面印刷背银主栅电极;
(9)在所述硅片背面印刷铝浆,得到背铝栅线,所述背银电极、背铝栅线以第一预设夹角相交,所述背铝栅线与激光开槽体以第二预设夹角相交,其中,第一预设夹角为30°,第二预设夹角为90°,背铝栅线的根数为200条,所述背铝栅线的宽度为200微米;
(10)在所述硅片背面沿着背铝栅线的四周印刷铝浆,得到铝栅外框,所述铝栅外框与第二激光开槽体的夹角为90°;
(11)在所述硅片正面印刷正电极浆料;
(12)对硅片进行高温烧结,形成背银电极和正银电极。
(13)对硅片进行抗LID退火。
实施例3
(1)在硅片正面和背面形成绒面,所述硅片为P型硅;
(2)对硅片进行扩散,形成N型发射极;
(3)去除扩散过程形成的正面磷硅玻璃和周边PN结;
(4)在硅片背面沉积三氧化二铝膜;
(5)在硅片背面沉积氮化硅膜;
(6)在硅片正面沉积氮化硅膜;
(7)对硅片背面激光开槽,形成第一激光开槽区,所述第一激光开槽区包括多组第一激光开槽单元,每一组第一激光开槽单元包括一个或多个第一激光开槽体,所述第一激光开槽体的长度为300微米,宽度为30微米;
(8)在所述硅片背面印刷背银主栅电极;
(9)在所述硅片背面印刷铝浆,得到背铝栅线,所述背银电极、背铝栅线以第一预设夹角相交,所述背铝栅线与第一激光开槽体以第二预设夹角相交,其中,第一预设夹角为45°,第二预设夹角为60°,背铝栅线的根数为250条,所述背铝栅线的宽度为250微米;
(10)在所述硅片背面沿着背铝栅线的四周印刷铝浆,得到铝栅外框;
(11)在所述硅片正面印刷正电极浆料;
(12)对硅片进行高温烧结,形成背银电极和正银电极。
(13)对硅片进行抗LID退火。
实施例4
(1)在硅片正面和背面形成绒面,所述硅片为P型硅;
(2)对硅片进行扩散,形成N型发射极;
(3)去除扩散过程形成的正面磷硅玻璃和周边PN结,并对硅片背面进行抛光;
(4)在硅片背面沉积三氧化二铝膜;
(5)在硅片背面沉积氮化硅膜;
(6)在硅片正面沉积氮化硅膜;
(7)对硅片背面激光开槽,形成第一激光开槽区,所述第一激光开槽区包括多组第一激光开槽单元,每一组第一激光开槽单元包括一个或多个第一激光开槽体,所述第一激光开槽体的长度为1200微米,宽度为200微米;
所述第二激光开槽区包括两个竖直设置的第二激光开槽单元和两个水平设置的第二激光开槽单元,每一组第二激光开槽单元包括一个或多个第二激光开槽体,所述第二激光开槽体与铝栅外框垂直;所述第二激光开槽体的长度为1200微米,宽度为200微米;
(8)在所述硅片背面印刷背银主栅电极;
(9)在所述硅片背面印刷铝浆,得到背铝栅线,所述背银电极、背铝栅线以第一预设夹角相交,所述背铝栅线与激光开槽体以第二预设夹角相交,其中,第一预设夹角为15°,第二预设夹角为90°,背铝栅线的根数为300条,所述背铝栅线的宽度为300微米;
(10)在所述硅片背面沿着背铝栅线的四周印刷铝浆,得到铝栅外框,所述铝栅外框与第二激光开槽体的夹角为90°;
(11)在所述硅片正面印刷正电极浆料;
(12)对硅片进行高温烧结,形成背银电极和正银电极。
(13)对硅片进行抗LID退火。
最后所应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本 发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (10)

  1. 一种P型PERC双面太阳能电池,其特征在于,依次包括背银电极、背铝栅线、背面钝化层、P型硅、N型发射极、正面氮化硅膜和正银电极,所述背银电极、背铝栅线以第一预设夹角相交,10°<第一预设夹角<90°;
    对背面钝化层通过激光开槽形成第一激光开槽区,所述第一激光开槽区设于背铝栅线的下方,所述背铝栅线通过第一激光开槽区与P型硅相连,所述背铝栅线的四周设有铝栅外框,所述铝栅外框与背铝栅线、背银电极相连接;
    所述第一激光开槽区包括多组第一激光开槽单元,每一组第一激光开槽单元包括一个或多个第一激光开槽体,所述背铝栅线与第一激光开槽体以第二预设夹角相交,10°<第二预设夹角≤90°。
  2. 如权利要求1所述P型PERC双面太阳能电池,其特征在于,所述铝栅外框的下方设有第二激光开槽区,所述第二激光开槽区包括多组第二激光开槽单元,每一组第二激光开槽单元包括一个或多个第二激光开槽体,所述铝栅外框与第二激光开槽体以第三预设夹角相交,10°<第三预设夹角≤90°。
  3. 如权利要求2所述P型PERC双面太阳能电池,其特征在于,所述背银电极、背铝栅线以第一预设夹角相交,30°<第一预设夹角<90°;
    所述背铝栅线与第一激光开槽体以第二预设夹角相交,第二预设夹角=90°;
    所述铝栅外框与第二激光开槽体以第三预设夹角相交,第三预设夹角=90°。
  4. 如权利要求1所述P型PERC双面太阳能电池,其特征在于,所述第一激光开槽单元之间为平行设置;
    每一第一激光开槽单元中,所述第一激光开槽体为并列设置,所述第一激光开槽体处于同一水平面上或上下错开;
    所述第一激光开槽单元之间的间距为0.5-50mm;
    每一第一激光开槽单元中,所述第一激光开槽体之间的间距为0.5-50mm;
    所述第一激光开槽体的长度为50-5000微米,宽度为10-500微米;
    所述背铝栅线的根数为30-500条;
    所述背铝栅线的宽度为30-500微米,所述背铝栅线的宽度小于所述第一激光开槽体的长度。
  5. 如权利要求1所述P型PERC双面太阳能电池,其特征在于,所述背面钝化层包括氧化铝层和氮化硅层,所述氧化铝层与P型硅连接,所述氮化硅层与氧化铝层连接;
    所述氮化硅层的厚度为20-500nm;
    所述氧化铝层的厚度为2-50nm。
  6. 一种P型PERC双面太阳能电池的制备方法,其特征在于,包括:
    (1)在硅片正面和背面形成绒面,所述硅片为P型硅;
    (2)对硅片进行扩散,形成N型发射极;
    (3)去除扩散过程形成的正面磷硅玻璃和周边PN结;
    (4)在硅片背面沉积三氧化二铝膜;
    (5)在硅片背面沉积氮化硅膜;
    (6)在硅片正面沉积氮化硅膜;
    (7)对硅片背面激光开槽,形成第一激光开槽区,所述第一激光开槽区包括多组第一激光开槽单元,每一组第一激光开槽单元包括一个或多个第一激光开槽体;
    (8)在所述硅片背面印刷背银主栅电极;
    (9)在所述硅片背面印刷铝浆,得到背铝栅线,所述背银电极、背铝栅线以第一预设夹角相交,所述背铝栅线与第一激光开槽体以第二预设夹角相交,其中,10°<第一预设夹角<90°,10°<第二预设夹角≤90°;
    (10)在所述硅片背面沿着背铝栅线的四周印刷铝浆,得到铝栅外框;
    (11)在所述硅片正面印刷正电极浆料;
    (12)对硅片进行高温烧结,形成背银电极和正银电极;
    (13)对硅片进行抗LID退火。
  7. 如权利要求6所述P型PERC双面太阳能电池的制备方法,其特征在于,步骤(3)和(4)之间,还包括:
    对硅片背面进行抛光。
  8. 如权利要求7所述P型PERC双面太阳能电池的制备方法,其特征在于,步骤(7)还包括:
    对硅片背面激光开槽,形成第二激光开槽区,所述第二激光开槽区包括多组第二激光开槽单元,每一组第二激光开槽单元包括一个或多个第二激光开槽体;
    所述铝栅外框与第二激光开槽体以第三预设夹角相交,10°<第三预设夹角≤90°。
  9. 一种PERC太阳能电池组件,其特征在于,包括PERC太阳能电池和封装材料,其特征在于,所述PERC太阳能电池是权利要求1-5任一项所述的P型PERC双面太阳能电池。
  10. 一种PERC太阳能系统,包括PERC太阳能电池,其特征在于,所述PERC太阳能电池是权利要求1-5任一项所述的P型PERC双面太阳能电池。
PCT/CN2018/077593 2017-03-03 2018-02-28 P型perc双面太阳能电池及其组件、系统和制备方法 WO2018157826A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019548014A JP7023976B2 (ja) 2017-03-03 2018-02-28 P型perc両面太陽電池の製造方法
US16/489,663 US10763377B2 (en) 2017-03-03 2018-02-28 Bifacial P-type PERC solar cell and module, system, and preparation method thereof
EP18761456.5A EP3591715B1 (en) 2017-03-03 2018-02-28 Method of preparing a bifacial p-type perc solar cell
KR1020197029116A KR102323458B1 (ko) 2017-03-03 2018-02-28 P형 perc 양면 태양 전지 및 그 모듈, 시스템과 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710122960.9A CN106876496B (zh) 2017-03-03 2017-03-03 P型perc双面太阳能电池及其组件、系统和制备方法
CN201710122960.9 2017-03-03

Publications (1)

Publication Number Publication Date
WO2018157826A1 true WO2018157826A1 (zh) 2018-09-07

Family

ID=59169881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/077593 WO2018157826A1 (zh) 2017-03-03 2018-02-28 P型perc双面太阳能电池及其组件、系统和制备方法

Country Status (6)

Country Link
US (1) US10763377B2 (zh)
EP (1) EP3591715B1 (zh)
JP (1) JP7023976B2 (zh)
KR (1) KR102323458B1 (zh)
CN (1) CN106876496B (zh)
WO (1) WO2018157826A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106876496B (zh) * 2017-03-03 2019-07-05 广东爱旭科技股份有限公司 P型perc双面太阳能电池及其组件、系统和制备方法
CN109968799A (zh) * 2019-04-29 2019-07-05 苏州腾晖光伏技术有限公司 用于晶硅电池背电极的网版及晶硅电池背电极制备方法
CN112736147A (zh) * 2019-10-15 2021-04-30 浙江爱旭太阳能科技有限公司 太阳能电池及其生产方法
CN113903818A (zh) * 2021-11-05 2022-01-07 通威太阳能(成都)有限公司 一种perc电池的se激光掺杂图形和perc电池制备方法
CN114242810B (zh) * 2022-02-24 2022-04-29 广东爱旭科技有限公司 背接触电池的电极结构、电池、组件以及电池系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203983300U (zh) * 2014-06-04 2014-12-03 浙江尖山光电股份有限公司 一种环形细栅多晶电池片
CN104201214A (zh) * 2014-08-21 2014-12-10 广东爱康太阳能科技有限公司 一种背面钝化太阳能电池及其制备方法
CN104576773A (zh) * 2013-10-15 2015-04-29 太阳世界工业美国有限公司 太阳能电池接触结构
CN106449877A (zh) * 2016-10-17 2017-02-22 浙江晶科能源有限公司 一种perc电池的制备方法
CN106876496A (zh) * 2017-03-03 2017-06-20 广东爱康太阳能科技有限公司 P型perc双面太阳能电池及其组件、系统和制备方法
CN206628482U (zh) * 2017-03-03 2017-11-10 广东爱康太阳能科技有限公司 P型perc双面太阳能电池及其组件、系统

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5495777B2 (ja) 2009-12-25 2014-05-21 京セラ株式会社 太陽電池モジュール
DE102011000753A1 (de) * 2011-02-15 2012-08-16 Solarworld Innovations Gmbh Solarzelle, Solarmodul und Verfahren zum Herstellen einer Solarzelle
JP2013123009A (ja) 2011-12-12 2013-06-20 Dexerials Corp 太陽電池セル、太陽電池セルの出力測定方法、太陽電池セルの製造方法及び太陽電池モジュールの製造方法
JP2015506108A (ja) * 2011-12-13 2015-02-26 ダウ コーニング コーポレーションDow Corning Corporation 光起電力電池及びその形成方法
CN104115277A (zh) * 2011-12-13 2014-10-22 道康宁公司 光伏电池及其形成方法
KR101860919B1 (ko) 2011-12-16 2018-06-29 엘지전자 주식회사 태양 전지 및 이의 제조 방법
JP2013211341A (ja) * 2012-03-30 2013-10-10 Sharp Corp 太陽電池セルおよび太陽電池モジュール
CN202633327U (zh) * 2012-07-05 2012-12-26 宁波尤利卡太阳能科技发展有限公司 晶体硅太阳电池正面栅线电极
FR2995728B1 (fr) 2012-09-14 2014-10-24 Commissariat Energie Atomique Dispositif et procede de restauration des cellules solaires a base de silicium avec transducteur ultrason
KR20140126819A (ko) 2013-04-22 2014-11-03 엘지전자 주식회사 태양 전지
CN203277404U (zh) * 2013-05-21 2013-11-06 江苏爱多光伏科技有限公司 一种设有六边形边框的太阳能电池片
JP6096054B2 (ja) 2013-05-28 2017-03-15 株式会社カネカ 太陽電池の製造方法
CN203491270U (zh) * 2013-08-31 2014-03-19 山东力诺太阳能电力股份有限公司 一种晶体硅太阳电池背面电极结构
CN103489934B (zh) 2013-09-25 2016-03-02 晶澳(扬州)太阳能科技有限公司 一种双面透光的局部铝背场太阳能电池及其制备方法
DE102014105358A1 (de) * 2014-04-15 2015-10-15 Solarworld Innovations Gmbh Solarzelle und Verfahren zum Herstellen einer Solarzelle
JP6648986B2 (ja) 2014-05-28 2020-02-19 京セラ株式会社 太陽電池素子および太陽電池モジュール
US20160005915A1 (en) 2014-07-03 2016-01-07 Sino-American Silicon Products Inc. Method and apparatus for inhibiting light-induced degradation of photovoltaic device
TWI518932B (zh) * 2014-07-24 2016-01-21 茂迪股份有限公司 太陽能電池及其模組
WO2016025773A1 (en) * 2014-08-13 2016-02-18 Solexel, Inc. Rear wide band gap passivated perc solar cells
TWI513028B (zh) 2014-08-15 2015-12-11 Motech Ind Inc 處理裝置
JPWO2016068237A1 (ja) 2014-10-29 2017-08-03 京セラ株式会社 太陽電池モジュール
DE102015104236B4 (de) * 2015-03-20 2021-11-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Photovoltaische Solarzelle
TWI543391B (zh) * 2015-04-09 2016-07-21 新日光能源科技股份有限公司 太陽能電池及其製作方法
DE202015004065U1 (de) * 2015-06-09 2015-07-30 Solarworld Innovations Gmbh Solarzellenanordnung
CN108475706B (zh) * 2016-03-10 2021-11-02 株式会社钟化 太阳能电池模块
CN106098839B (zh) * 2016-06-15 2018-03-23 浙江正泰太阳能科技有限公司 一种高效晶硅perc电池的制备方法
JP6152200B2 (ja) 2016-06-28 2017-06-21 デクセリアルズ株式会社 太陽電池セル、太陽電池セルの出力測定方法、太陽電池セルの製造方法及び太陽電池モジュールの製造方法
CN106252445B (zh) * 2016-10-08 2019-04-23 苏州阿特斯阳光电力科技有限公司 一种双面perc太阳能电池片背面的栅线结构
CN106449834B (zh) * 2016-10-08 2018-01-23 苏州阿特斯阳光电力科技有限公司 一种双面perc太阳能电池片背面栅线结构
CN106449876B (zh) * 2016-10-17 2017-11-10 无锡尚德太阳能电力有限公司 选择性发射极双面perc晶体硅太阳能电池的制作方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104576773A (zh) * 2013-10-15 2015-04-29 太阳世界工业美国有限公司 太阳能电池接触结构
CN203983300U (zh) * 2014-06-04 2014-12-03 浙江尖山光电股份有限公司 一种环形细栅多晶电池片
CN104201214A (zh) * 2014-08-21 2014-12-10 广东爱康太阳能科技有限公司 一种背面钝化太阳能电池及其制备方法
CN106449877A (zh) * 2016-10-17 2017-02-22 浙江晶科能源有限公司 一种perc电池的制备方法
CN106876496A (zh) * 2017-03-03 2017-06-20 广东爱康太阳能科技有限公司 P型perc双面太阳能电池及其组件、系统和制备方法
CN206628482U (zh) * 2017-03-03 2017-11-10 广东爱康太阳能科技有限公司 P型perc双面太阳能电池及其组件、系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3591715A4 *

Also Published As

Publication number Publication date
CN106876496A (zh) 2017-06-20
JP2020509602A (ja) 2020-03-26
EP3591715A4 (en) 2021-01-13
US20200013909A1 (en) 2020-01-09
KR102323458B1 (ko) 2021-11-08
CN106876496B (zh) 2019-07-05
EP3591715B1 (en) 2023-01-18
EP3591715A1 (en) 2020-01-08
JP7023976B2 (ja) 2022-02-22
KR20200005537A (ko) 2020-01-15
US10763377B2 (en) 2020-09-01

Similar Documents

Publication Publication Date Title
WO2018157498A1 (zh) P型perc双面太阳能电池及其组件、系统和制备方法
WO2018157821A1 (zh) P型perc双面太阳能电池及其组件、系统和制备方法
WO2018157826A1 (zh) P型perc双面太阳能电池及其组件、系统和制备方法
WO2018157824A1 (zh) P型perc双面太阳能电池及其组件、系统和制备方法
WO2018157822A1 (zh) P型perc双面太阳能电池及其组件、系统和制备方法
WO2018157825A1 (zh) P型perc双面太阳能电池及其组件、系统
WO2018157495A1 (zh) 打孔perc双面太阳能电池及其组件、系统和制备方法
WO2018157823A1 (zh) P型perc双面太阳能电池及其组件、系统和制备方法
NL2033481B1 (en) Photovoltaic module
CN106409953B (zh) 一种太阳能电池镀膜铜线栅电流收集极结构及制备方法
WO2018157493A1 (zh) P型perc双面太阳能电池及其制备方法、组件和系统
TW201413999A (zh) 太陽能電池模組及其製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18761456

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019548014

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197029116

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018761456

Country of ref document: EP

Effective date: 20191004