WO2018157736A1 - Dispositif de traitement de signal en temps réel d'imagerie acoustique tridimensionnelle basé sur un processeur intégré - Google Patents

Dispositif de traitement de signal en temps réel d'imagerie acoustique tridimensionnelle basé sur un processeur intégré Download PDF

Info

Publication number
WO2018157736A1
WO2018157736A1 PCT/CN2018/076392 CN2018076392W WO2018157736A1 WO 2018157736 A1 WO2018157736 A1 WO 2018157736A1 CN 2018076392 W CN2018076392 W CN 2018076392W WO 2018157736 A1 WO2018157736 A1 WO 2018157736A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
signal
subsystem
signal processing
embedded
Prior art date
Application number
PCT/CN2018/076392
Other languages
English (en)
Chinese (zh)
Inventor
刘雪松
周凡
赵冬冬
陈耀武
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Priority to US16/308,401 priority Critical patent/US11333759B2/en
Publication of WO2018157736A1 publication Critical patent/WO2018157736A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8993Three dimensional imaging systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8929Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a three-dimensional transducer configuration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/56Display arrangements
    • G01S7/62Cathode-ray tube displays
    • G01S7/6245Stereoscopic displays; Three-dimensional displays; Pseudo-three dimensional displays
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • G06T1/20Processor architectures; Processor configuration, e.g. pipelining

Definitions

  • the invention belongs to the field of three-dimensional acoustic imaging image processing, and in particular relates to a three-dimensional acoustic imaging real-time signal processing device based on an embedded processor.
  • Phased array three-dimensional acoustic imaging is one of the important innovations in underwater applications in recent years. It has the advantages of high resolution, real-time performance, three-dimensional information of observable targets and moving target recognition. Underwater biology, physics, It plays an increasingly important role in underwater applications such as archaeology, geography and military, and has become a hot topic in current research. Governments, institutions, and academics have conducted research on phased array three-dimensional acoustic acoustic imaging systems. In 2004, the Italian government funded six universities, including the University of Verona, the University of Florence, the University of Genoa, and the University of Milan, to conduct research on low-cost 3D imaging and modeling automation systems. The A3US laboratory led by Professor A.
  • Trucco of the University of Genoa in Italy has conducted in-depth research on sparse array design, real-time beamforming and image processing algorithms for phased array 3D acoustic imaging systems.
  • the British CodaOctopus company has successfully developed phased array three-dimensional acoustic imaging products, and phased array three-dimensional acoustic imaging real-time signal processing related technology has been monopolized by developed countries such as the European Union.
  • the first phased array three-dimensional sonar imaging system developed by China Shipbuilding Industry Corporation No. 715 Research Institute and Zhejiang University Digital Technology and Instrument Research Institute has filled the domestic blank.
  • the system adopts 48 ⁇ 48 road two-dimensional.
  • the planar receiving transducer array has a detection range of 200 meters, an angular resolution of 0.4° and a distance resolution of 2 cm.
  • Professor Sang Fangen from Harbin Institute of Technology based on a 16 ⁇ 8 two-dimensional planar array realized a three-dimensional sonar imaging system for underwater robot vision.
  • Nvidia's new Tegra K1 embedded GPU processor is a 192-core Kepler-based GPU designed to perform complex geometry and numerical calculations with powerful 3D image acceleration and ten times more CPU than CPU Even hundreds of times the floating point calculation performance.
  • Tegra K1 embedded GPU supports the widely used 3D graphics program interfaces OpenGL4.4 and OpenGL ES 3.1, which realizes 3D image processing and display efficiently through hardware acceleration.
  • Tegra K1 is embedded.
  • the GPU has 192 CUDA (Compute Unified Device Architecture) cores with 325GFLOPS super floating-point computing performance, making it ideal for intensive data and massively parallel data computing.
  • the Tegra K1 embedded GPU uses an optimized Kepler architecture to monitor each power supply through a Power Management Unit (PMU) to improve power efficiency and reduce power consumption.
  • PMU Power Management Unit
  • Array sparse sampling means that only the channel of the position of the array element of interest is sampled, which can solve the problem that the full array array of transducers brings high bandwidth, high computational complexity and high power consumption of sampled data. After the array is sparsely sampled, the corresponding weighting factor is multiplied to suppress the sidelobe peak.
  • Field Programmable Gate Array features rich I/O pins, precise timing control, and flexible pin definition.
  • multi-chip FPGA can realize synchronous sampling of large-scale arrays;
  • FPGA pins define pins as multiple sets of LVDS interfaces according to requirements, and realize one main FPGA through multiple sets of LVDS interfaces and interconnect with multiple sub-FPGAs. , complete multi-chip FPGA to the main FPGA high-speed data synchronous transmission.
  • the present invention provides a three-dimensional acoustic imaging real-time signal processing apparatus based on an embedded processor, which effectively solves the problem that the sampling data bandwidth is high, the three-dimensional acoustic imaging algorithm is difficult to realize real-time calculation, and low power consumption and miniaturization conditions are The problem of system development.
  • a three-dimensional acoustic imaging real-time signal processing device based on an embedded processor comprising: a plurality of signal acquisition subsystems, a signal interaction subsystem, an embedded GPU signal processing subsystem, and the signal acquisition system is processed according to an embedded GPU signal
  • the command sent by the subsystem collects and receives signal data of any channel in the acoustic array, and preprocesses the signal data, and then sends the preprocessed data to the embedded GPU signal processing subsystem through the signal interaction subsystem;
  • the embedded GPU signal processing subsystem processes the received pre-processed data to obtain image data.
  • the signal acquisition subsystem includes:
  • a command interface configured to receive a command sent by the embedded GPU signal processing subsystem, and send the command to the FPGA chip
  • the FPGA chip is configured to control the programmable switch to turn on or off any channel in the transducer array according to the received command, and receive the preprocessed data after processing the signal data of the partial channel in the transducer array; and according to the preprocessed data Controlling the program-controlled amplification chip to realize real-time gain control, and transmitting the pre-processed data to the LVDS interface;
  • a programmable switch for controlling whether any channel in the transducer array is turned on or off to achieve thinning of the three-dimensional acoustic imaging transducer array
  • An amplification filter chip for amplifying and filtering the received and collected analog signal data
  • a program-controlled amplification chip for real-time gain according to a control signal sent from the FPGA chip, and amplifying the received analog signal data
  • the AD chip is configured to convert the processed analog signal data into digital signal data, obtain preprocessed data, and send the preprocessed data to the FPGA chip;
  • LVDS for forwarding pre-processed data from the received FPGA chip to the signal interaction subsystem.
  • the above signal acquisition subsystem completes simultaneous sampling, amplification, filtering, real-time gain control (TVG), pre-processing and data transmission of multi-channel acoustic signals.
  • TVG real-time gain control
  • the signal interaction subsystem includes:
  • a command interface for receiving commands sent by the signal acquisition subsystem and the embedded GPU signal processing subsystem, and transmitting the commands to the FPGA chip;
  • the FPGA chip and the FPGA chip control multiple sets of LVDS interfaces to receive pre-processed data according to commands sent by the signal acquisition subsystem, and synchronously cache, sort and package the pre-processed data, and then execute commands according to the embedded GPU signal processing subsystem. Transfer the preprocessed data to the PCIe bus;
  • the PCIe bus is used by the FPGA chip to send the received pre-processed data to the embedded GPU signal processing subsystem.
  • the above signal interaction subsystem implements high-bandwidth data exchange and command control by multiple sets of signal acquisition subsystems and signal processing subsystems, and completes the signal processing subsystem to synchronously receive pre-processed data of multiple sets of signal acquisition subsystems.
  • the embedded GPU signal processing subsystem includes:
  • the PCIe bus is configured to receive pre-processed data sent by the signal interaction subsystem and forward the data to the Tegra K1 embedded GPU processor; the PCIe bus implements a data transmission rate of up to 20 Gbps to satisfy a three-dimensional sonar preprocessed data transmission bandwidth. ;
  • Tegra K1 embedded GPU processor is used to control the PCIe bus to receive data, calculate the received pre-processed data, obtain image data, and control the long-distance transmission of image data by Gigabit Ethernet chip and fiber transceiver chip, DSI display Interface display of image data;
  • a transmitting interface for controlling sound waves to be transmitted at a certain timing
  • Gigabit Ethernet chip Gigabit Ethernet interface, used to achieve long-distance transmission of image data
  • Optical fiber transceiver chip Gigabit optical port, used to realize long-distance transmission of image data through optical fiber;
  • DSI display interface for transmitting image data to the display screen to implement display of three-dimensional data
  • a debug interface for receiving commands sent externally to debug the embedded GPU signal processing subsystem.
  • the above embedded GPU signal processing subsystem completes pre-processing data reception, real-time calculation of three-dimensional sonar image algorithm, image data transmission and command control.
  • the Tegra K1 embedded GPU processor has features such as OpenGL4.4, OpenGL ES 3.1 and CUDA, high-performance image parallel processing capability, real-time processing of 3D sonar image algorithm, and rich high-speed data interconnection interface. Achieve large data throughput for large-scale acoustic signals; optimized Kepler-based GPUs enable low power consumption, and ultimately, enable Tegra K1 embedded GPU processors to achieve high-speed data transmission and imaging of 3D acoustic imaging at low power consumption The algorithm is efficient.
  • the invention designs the embedded platform with the Tegra K1 embedded GPU processor as the core, and exerts the strong performance of the Tegra K1 embedded GPU 3D image processing, high parallel computing capability, rich high-speed interconnect interface, low power consumption, combined with the FPGA pin. Rich and precise timing control, the embedded GPU signal processing subsystem is constructed. At the same time, through the signal interaction subsystem, high-speed data interaction between the embedded GPU signal processing subsystem and multiple signal acquisition subsystems can be realized, and the signal processing is completed. The system synchronously receives pre-processed data of multiple sets of signal acquisition subsystems, and the whole device has powerful data interaction capability and real-time parallel processing capability of signals.
  • FIG. 1 is a schematic structural diagram of a three-dimensional acoustic imaging real-time signal processing apparatus according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of an embedded GPU signal processing subsystem according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a signal interaction subsystem according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a signal acquisition subsystem according to an embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of a three-dimensional acoustic imaging real-time signal processing apparatus based on an embedded processor according to the embodiment, and the apparatus specifically includes: an embedded GPU signal processing subsystem 100, a signal interaction subsystem 200, and a signal acquisition subsystem. 300.
  • the embedded GPU signal processing subsystem 100 includes: a Gigabit Ethernet interface 101 and a Gigabit optical port 102.
  • remote transmission of image data may be performed by any interface; and the debugging interface 103 is configured to receive Externally sent debug commands to the embedded GPU signal processing subsystem 100; the embedded GPU signal processing subsystem 100 and the signal interaction subsystem 200 are interconnected by a PCIe bus, and the signal interaction subsystem 200 passes through multiple LVDSs 201 and multiple The signal acquisition subsystems 300 are interconnected, and the pre-processed data of the plurality of signal acquisition subsystems 300 is synchronously transmitted to the embedded GPU signal processing subsystem 100 via the signal interaction subsystem 200.
  • the embedded GPU signal processing subsystem 100 performs command interaction with the signal interaction subsystem 200 and the signal acquisition subsystem 300 through the command interface 104 to implement simultaneous sampling of multiple signal acquisition subsystems 300, real-time gain control, array sparse sampling control, and code. Update.
  • the device of the present invention can configure different numbers of signal acquisition subsystems 300 according to the requirements of the system algorithm calculation and the needs of the calculation model; meanwhile, the embedded GPU signal processing subsystem 100 can control any sampling channel in the signal acquisition subsystem 300 through the command interface. It is turned on or off, featuring flexible system construction and dynamic configurability of sampling channels.
  • FIG. 2 is a schematic structural diagram of the embedded GPU signal processing subsystem 100 of the present embodiment.
  • the subsystem includes: a Tegra K1 embedded GPU processor 108, a transmitting interface 107, a PCIe bus interface 106, and a DSI display interface 105.
  • a Gigabit Ethernet 109 is connected between the Gigabit Ethernet interface 101 and the Tegra K1 embedded GPU processor 108, and a fiber transceiver chip 110 is connected between the Gigabit optical port 102 and the Tegra K1 embedded GPU processor 108.
  • the transmit interface 107 controls the sound waves to be transmitted at a certain timing; the START signal in the command interface 104 controls the signal acquisition subsystem 300 to simultaneously sample.
  • the Tegra K1 embedded GPU processor 108 receives pre-processed data through the PCIe bus 106, implements real-time calculation of the three-dimensional sonar image algorithm, performs real-time display of image data through the DSI display interface 105, or passes the image data through the optical transceiver chip 110 and the gigabit.
  • the optical port 102 performs long-distance transmission, and the image data is transmitted to the upper computer for display.
  • FIG. 3 is a schematic structural diagram of a signal interaction subsystem 200.
  • the subsystem includes an FPGA chip 204, a PCle bus 203, a command interface 202, and a plurality of groups of LVDS interfaces 201.
  • the plurality of sets of LVDS interfaces 201 synchronously receive the pre-processed data of the plurality of sets of signal acquisition subsystems 300.
  • the FPGA chip 204 synchronously buffers, organizes, and packs the pre-processed data of each frame, and transmits the signals to the embedded GPU through the PCIe bus 203.
  • the processing subsystem 100 implements high-speed data interaction and data synchronous transmission between the multiple sets of signal acquisition subsystems 300 and the embedded GPU signal processing subsystem 100.
  • FIG. 4 is a schematic structural diagram of the signal acquisition subsystem 300 of the embodiment.
  • the system includes: an FPGA chip 307, a highly integrated AD chip 306, a programmable amplifier 305, a filter 304, an amplifier 303, and a programmable switch 302.
  • the FPGA chip 307 performs command interaction with the embedded GPU signal processing subsystem 100 through the command interface 309, and controls the programmable switch 302 to turn on or off any channel in the pre-connector 301 to implement array sparse sampling; meanwhile, the FPGA chip 307
  • the control program-controlled amplifier 305 implements signal real-time gain control; the filter 304 and the amplifier 303 complete signal amplification and filtering, and the highly integrated AD chip 306 performs analog-to-digital conversion of the multi-channel signal.
  • the LVDS interface 308 sends the processed data to the signal interaction subsystem 200.
  • the embedded GPU signal processing subsystem 100 configures array sparse sampling parameters and TVG parameters to the FPGA chip 307 in the signal acquisition subsystem 300 through the command interface 104; then, the FPGA chip 307 controls The programmable switch 302 implements array sparse sampling, and the FPGA chip 307 controls the programmable amplifier 306 to implement TVG control.
  • the embedded GPU signal processing subsystem 100 controls the transmitting interface 107 to emit sound waves at a certain timing, and waits for the echo to arrive at the system, and then sends a synchronous sampling to the plurality of signal collecting subsystems 300 through the START signal in the command interface 104. Command to achieve simultaneous sampling control.
  • the signal acquisition subsystem 300 controls the programmable switch 302, and the amplifier 303, the filter 304, the programmable amplifier 305, and the AD chip 306 start to work, and the collected acoustic echoes are acquired.
  • the signal is amplified, filtered, and AD converted.
  • the programmable switch 302 and the programmable amplifier 305 respectively implement array sparse sampling and TVG functions, and the FPGA chip 307 performs preprocessing on the sampled data, such as weight coefficient multiplication, Fourier transform, etc., and then passes LVDS.
  • Interface 308 transmits the pre-processed data to signal interaction subsystem 200.
  • the signal interaction subsystem 200 synchronously receives the pre-processed data of the plurality of sets of signal acquisition subsystems 300, and the FPGA chip 204 synchronously buffers, organizes, and packs the multiple sets of pre-processed data for each frame through the PCIe bus 203.
  • the method is transmitted to the embedded GPU signal processing subsystem 100 to implement high-speed data interaction and data synchronous transmission between the multiple sets of signal acquisition subsystems 300 and the embedded GPU signal processing subsystem 100.
  • the embedded GPU signal processing subsystem 100 receives the preprocessed data transmitted by the signal interaction subsystem 200 through the PCIe bus 106, and the Tegra K1 embedded GPU processor 108 The real-time calculation of the three-dimensional sonar image algorithm is realized, the image data is displayed in real time through the DSI display interface 105, or the image data is transmitted remotely through the optical transceiver chip 110 and the gigabit optical port 102, and the image data is transmitted to the upper computer for display.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Theoretical Computer Science (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Image Processing (AREA)

Abstract

L'invention concerne un dispositif de traitement de signal en temps réel d'imagerie acoustique tridimensionnelle basé sur un processeur intégré. Le système est d'une conception modulaire et comprend un sous-système de traitement de signal d'unité de traitement graphique (GPU) intégré (100), un sous-système d'interaction de signal (200) et des sous-systèmes d'acquisition de signal (300). Le sous-système de traitement de signal GPU intégré (100) utilise un processeur GPU intégré Tegra K1 (108) en tant que cœur. Le processeur GPU intégré Tegra K1 (108) a les caractéristiques d'OpenGL4.4, OpenGL ES 3.1 et CUDA, a une capacité de traitement parallèle d'image haute performance et un grand nombre d'interfaces d'interconnexion de données à grande vitesse, et convient à la transmission de données à grande vitesse d'un dispositif de traitement de signal en temps réel d'imagerie acoustique tridimensionnelle et au calcul efficace d'un algorithme d'image. Par ailleurs, au moyen du sous-système d'interaction de signal (200), une interaction de données à grande vitesse peut être mise en œuvre entre le sous-système de traitement de signal de GPU intégré (100) et la pluralité de sous-systèmes d'acquisition de signal (300), et l'ensemble du dispositif a des capacités d'interaction de données puissantes et des capacités de traitement de signal parallèle en temps réel.
PCT/CN2018/076392 2017-03-01 2018-02-12 Dispositif de traitement de signal en temps réel d'imagerie acoustique tridimensionnelle basé sur un processeur intégré WO2018157736A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/308,401 US11333759B2 (en) 2017-03-01 2018-02-12 Embedded processor-based three-dimensional acoustic imaging real-time signal processing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710118201.5 2017-03-01
CN201710118201.5A CN106990406B (zh) 2017-03-01 2017-03-01 一种基于嵌入式处理器的三维声学成像实时信号处理装置

Publications (1)

Publication Number Publication Date
WO2018157736A1 true WO2018157736A1 (fr) 2018-09-07

Family

ID=59412120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/076392 WO2018157736A1 (fr) 2017-03-01 2018-02-12 Dispositif de traitement de signal en temps réel d'imagerie acoustique tridimensionnelle basé sur un processeur intégré

Country Status (3)

Country Link
US (1) US11333759B2 (fr)
CN (1) CN106990406B (fr)
WO (1) WO2018157736A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114896194A (zh) * 2022-04-29 2022-08-12 南京熊猫通信科技有限公司 基于fpga和dsp的多路信号采集处理板

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106990406B (zh) * 2017-03-01 2019-06-25 浙江大学 一种基于嵌入式处理器的三维声学成像实时信号处理装置
CN108650470A (zh) * 2018-06-27 2018-10-12 宁波舜宇智能科技有限公司 图像处理系统及图像处理方法
CN111084617A (zh) * 2019-12-25 2020-05-01 杭州航弈生物科技有限责任公司 生物电信号处理系统
CN111722232B (zh) * 2020-05-12 2023-07-11 浙江大学 一种具备三维定位能力的多波束成像声纳实时信号处理装置
CN112416844B (zh) * 2020-11-27 2022-06-21 浙江大学 基于FPGA与GPU的Spike信号检测与分类装置
CN113126069B (zh) * 2021-03-23 2022-07-26 浙江工业大学 一种基于zynq的前视声呐信号处理硬件系统
CN113607346A (zh) * 2021-07-14 2021-11-05 东莞市鑫泰仪器仪表有限公司 一种基于嵌入式处理器的三维声学成像实时信号处理装置
CN114500649A (zh) * 2022-01-25 2022-05-13 许昌许继软件技术有限公司 一种集中计量数据采集方法、装置及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101996146A (zh) * 2009-08-26 2011-03-30 戴尔产品有限公司 多模式处理模块及其使用方法
CN102096069A (zh) * 2010-12-17 2011-06-15 浙江大学 一种相控阵三维声学摄像声纳实时处理系统和方法
CN102918466A (zh) * 2010-04-01 2013-02-06 视瑞尔技术公司 用于在全息系统中编码包含透明物体的三维场景的方法和装置
JP2016209512A (ja) * 2015-07-23 2016-12-15 株式会社三共 遊技機
CN106990406A (zh) * 2017-03-01 2017-07-28 浙江大学 一种基于嵌入式处理器的三维声学成像实时信号处理装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6852081B2 (en) * 2003-03-13 2005-02-08 Siemens Medical Solutions Usa, Inc. Volume rendering in the acoustic grid methods and systems for ultrasound diagnostic imaging
CN101625412A (zh) * 2009-08-03 2010-01-13 浙江大学 基于多fpga并行处理的海底三维声纳图像成像系统
TWI378255B (en) * 2009-09-30 2012-12-01 Pai Chi Li Ultrasonic image processing system and ultrasonic image processing method thereof
CN102389321B (zh) * 2011-06-23 2013-04-03 深圳市开立科技有限公司 一种快速光声三维成像装置
CL2013000947A1 (es) * 2013-04-08 2014-01-10 Univ De Chile 35 Un dispositivo de ecografia portatil y manual, con control y procesamiento centralizado en el hardware y con salidas de visualizacion y que opera en tiempo real con una alta tasa de refresco en sus imagenes
CN103592650B (zh) * 2013-11-22 2016-04-06 中国船舶重工集团公司第七二六研究所 基于图形处理器的三维声纳成像系统及其三维成像方法
CN105974399B (zh) * 2016-05-09 2018-03-09 浙江大学 一种相控阵三维声学摄像声呐系统的故障检测方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101996146A (zh) * 2009-08-26 2011-03-30 戴尔产品有限公司 多模式处理模块及其使用方法
CN102918466A (zh) * 2010-04-01 2013-02-06 视瑞尔技术公司 用于在全息系统中编码包含透明物体的三维场景的方法和装置
CN102096069A (zh) * 2010-12-17 2011-06-15 浙江大学 一种相控阵三维声学摄像声纳实时处理系统和方法
JP2016209512A (ja) * 2015-07-23 2016-12-15 株式会社三共 遊技機
CN106990406A (zh) * 2017-03-01 2017-07-28 浙江大学 一种基于嵌入式处理器的三维声学成像实时信号处理装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YIN, MINGMING ET AL.: "Study on 3D image sonar based on GPU", TECHNICAL ACOUSTICS, vol. 33, no. 5, pages 54 - 56 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114896194A (zh) * 2022-04-29 2022-08-12 南京熊猫通信科技有限公司 基于fpga和dsp的多路信号采集处理板

Also Published As

Publication number Publication date
US20190196014A1 (en) 2019-06-27
CN106990406B (zh) 2019-06-25
CN106990406A (zh) 2017-07-28
US11333759B2 (en) 2022-05-17

Similar Documents

Publication Publication Date Title
WO2018157736A1 (fr) Dispositif de traitement de signal en temps réel d'imagerie acoustique tridimensionnelle basé sur un processeur intégré
WO2019109824A1 (fr) Système de radar de vérification de sécurité d'imagerie à ondes millimétriques sur la base de puces d'extrémité avant de radar général
WO2012079465A1 (fr) Système et procédé de traitement en temps réel destinés à un sonar de prise d'image acoustique tridimensionnel à balayage électronique
CN101625412A (zh) 基于多fpga并行处理的海底三维声纳图像成像系统
CN110477956A (zh) 一种基于超声图像引导的机器人诊断系统的智能扫查方法
CN109946666A (zh) 基于MPSoC的毫米波雷达信号处理系统
CN107071324A (zh) 一种视觉图像处理系统及其设计方法
CN107942284B (zh) 基于二维正交非均匀线阵的水下波达方向估计方法与装置
CN109714586A (zh) 基于zynq的实时双目立体视觉软硬件协同设计方法
CN107766812A (zh) 一种基于MiZ702N的实时人脸检测识别系统
CN205486304U (zh) 低功耗便携式实时图像目标检测与跟踪装置
CN105843166B (zh) 一种特型多自由度自动对接装置及其工作方法
CN202095037U (zh) 一种实时三维声源图像监控系统
CN102697524A (zh) 全聚焦超声成像方法及其在血流成像中的运用
CN111722232B (zh) 一种具备三维定位能力的多波束成像声纳实时信号处理装置
CN104013424A (zh) 一种基于深度信息的超声宽景成像方法
CN110275163B (zh) 一种基于神经网络的毫米波雷达探测目标成像方法
CN103217120A (zh) 一种激光测厚方法及装置
CN105068066A (zh) 一种嵌入式定浮点多波束测深声纳信号采集与处理平台
CN103092219A (zh) 一种fsm远程实时控制时间补偿系统及方法
CN109144092A (zh) 无人机飞行辅助方法、装置及无人机
CN209765035U (zh) 一种阵列雷达数字化实验系统
WO2021135629A1 (fr) Procédé et appareil de traitement de formation de faisceau, dispositif informatique et support de stockage
CN207135259U (zh) 一种基于虚拟化阵元技术的超声波收发一体换能器
CN205028112U (zh) 一种基于硬件复位的机器人数据采集系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18761342

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18761342

Country of ref document: EP

Kind code of ref document: A1