WO2018155672A1 - 繊維強化プラスチック用樹脂組成物、その硬化物、及び該硬化物からなる繊維強化プラスチック - Google Patents

繊維強化プラスチック用樹脂組成物、その硬化物、及び該硬化物からなる繊維強化プラスチック Download PDF

Info

Publication number
WO2018155672A1
WO2018155672A1 PCT/JP2018/006883 JP2018006883W WO2018155672A1 WO 2018155672 A1 WO2018155672 A1 WO 2018155672A1 JP 2018006883 W JP2018006883 W JP 2018006883W WO 2018155672 A1 WO2018155672 A1 WO 2018155672A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
group
epoxy resin
cyanate ester
resin composition
Prior art date
Application number
PCT/JP2018/006883
Other languages
English (en)
French (fr)
Inventor
将人 稲留
直博 藤田
一英 森野
Original Assignee
株式会社Adeka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Adeka filed Critical 株式会社Adeka
Priority to JP2019501855A priority Critical patent/JP7121721B2/ja
Priority to CA3050075A priority patent/CA3050075A1/en
Priority to CN201880006802.XA priority patent/CN110177838B/zh
Priority to EP18756930.6A priority patent/EP3587492A4/en
Priority to KR1020197020136A priority patent/KR102573168B1/ko
Priority to US16/477,471 priority patent/US11649319B2/en
Publication of WO2018155672A1 publication Critical patent/WO2018155672A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • C08G59/245Di-epoxy compounds carbocyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/28Di-epoxy compounds containing acyclic nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4014Nitrogen containing compounds
    • C08G59/4028Isocyanates; Thioisocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5033Amines aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/56Amines together with other curing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins

Definitions

  • the present invention relates to a resin composition for fiber reinforced plastics, and more specifically, when the number of cyanate groups of cyanate ester and the number of epoxy groups of epoxy resin are adjusted, and applied to a fiber transition temperature (Tg) and fiber reinforced plastic.
  • Tg fiber transition temperature
  • the present invention relates to a fiber reinforced plastic resin composition having a good balance with the strength of the fiber, and a fiber reinforced plastic comprising a cured product of the composition.
  • a method of making a molded product using a thermosetting epoxy resin, an unsaturated polyester, a polyamide resin, or a phenol resin as a reinforcing material for a fiber material such as carbon fiber or glass fiber is well known.
  • Fiber reinforced plastics using this method are widely used in structural materials such as aircraft and ships, and sporting goods such as tennis rackets and golf clubs.
  • Epoxy resins are not only excellent in adhesiveness, heat resistance, and chemical resistance, but are inexpensive and are often used as reinforcing materials as well-balanced materials.
  • Epoxy resin composition has excellent electrical performance and adhesive strength, but when epoxy resin is further mixed with cyanate ester, a rigid and highly heat-resistant curing is achieved by forming a triazine ring during curing. Since a product can be obtained, it is frequently used for molding a semiconductor sealing material or an electronic circuit board.
  • Patent Document 1 provides a copper-clad laminate having good electrical characteristics and heat resistance by manufacturing a thin film prepreg by adding a polyimide resin to an epoxy resin and cyanate ester, and laminating the prepreg. Is described.
  • a highly heat-resistant resin composition is achieved with a polyimide resin.
  • the polyimide is solid. If not used, there is a problem in that it is difficult to use, and when a solvent is used, there is a problem in workability, for example, a drying process must be performed. Further, when no polyimide resin is used, there are problems in heat resistance and various physical properties.
  • Patent Document 2 describes that a prepreg using a polyfunctional cyanate ester having a biphenyl skeleton and a laminate are provided.
  • the laminated board and printed wiring board described in the cited document 2 have high heat resistance and low dielectric properties.
  • the followability of the cured product with respect to the fiber is poor, and when various physical properties such as tension and bending are measured, the distance between the fiber and the resin composition As a result, there was a problem that a satisfactory fiber reinforced plastic could not be obtained.
  • the cyanate ester reacts with a curing agent having active hydrogen to become an active species, and then the active species react with the epoxy resin to increase the molecular weight. Progresses. When the number of cyanate groups of the cyanate ester or the number of epoxy groups of the epoxy resin is too small, there are few reaction points and it is difficult to increase the molecular weight, and a satisfactory cured product cannot be obtained.
  • cyanate ester and epoxy resin it is necessary to select an appropriate curing agent to be used.
  • highly reactive curing agents such as aliphatic amines such as metaxylylene diamine and isophorone diamine have a short pot life when applied to fiber reinforced plastics, and the resin composition is not suitable before impregnating the fiber. It hardens and a uniform fiber reinforced plastic cannot be obtained.
  • Patent Document 3 when using a latent curing agent that is solid at room temperature, the pot life can be secured, but when the curing agent is solid, when trying to apply to fiber reinforced plastic, There is a problem that the curing agent does not easily penetrate from the surface of the fiber, and the cyanate ester and the epoxy resin are separated from the curing agent, so that the curing reaction does not proceed appropriately.
  • the problem to be solved by the present invention is high heat resistance, and further, when used for producing fiber reinforced plastic, it has excellent followability to fibers, and various physical properties such as tension and bending are good. It is providing the resin composition which can obtain a fiber reinforced plastic.
  • the present inventors diligently studied, and when cyanate ester and epoxy resin were used, the average number of cyanate groups in the system and the average number of epoxy groups were controlled, and the curing agent was 25 ° C.
  • a resin composition capable of obtaining a cured product having a good balance between heat resistance and various physical properties was found, and the present invention was achieved.
  • the present invention includes (A) a cyanate ester, (B) an epoxy resin, and (C) an aromatic amine curing agent that is liquid at 25 ° C., and is represented by the following formula (1):
  • the average cyanate group number of acid ester is 2.1 or more and / or the resin composition for fiber reinforced plastics whose average epoxy group number of (B) epoxy resin represented by the following formula (2) is 2.1 or more. .
  • n (A) represents the number of kinds of cyanate ester component contained in the cyanate ester
  • a i is the i-th cyanate groups of the cyanate ester component contained in (A) the cyanate ester the stands
  • X i represents the proportion of weight of the i-th cyanate ester component in (a) a cyanate ester.
  • n represents the number of types of epoxy resin component contained in (B) the epoxy resin
  • B k represents the number of epoxy groups in the kth epoxy resin component contained in (B) the epoxy resin
  • Y k represents a mass-based content ratio of the k-th epoxy resin component in (B) the epoxy resin.
  • the cyanate ester which is the component (A) used in the present invention is a compound having a cyanate group in the molecule.
  • the cyanate ester as the component (A) may be composed of one kind of cyanate ester or may be a mixture of plural kinds of cyanate esters.
  • the cyanate ester as the component (A) preferably has an average cyanate group number of 2.1 or more as a whole of the component (A) when represented by the following formula (1).
  • n (A) represents the number of kinds of cyanate ester component contained in the cyanate ester
  • a i is the i-th cyanate groups of the cyanate ester component contained in (A) the cyanate ester the stands
  • X i represents the proportion of weight of the i-th cyanate ester component in (a) a cyanate ester.
  • the (A) cyanate ester used in the present invention preferably has a value of the number of cyanate groups obtained by the above formula (1) of 2.1 or more.
  • the average number of cyanate groups is preferably 2.1 to 5.0, more preferably 2.2 to 5.0, from the viewpoint of the balance between the Tg of the cured product and the reliability of the fiber reinforced plastic. More preferably, it is 2.4 to 4.1.
  • the average number of cyanate groups is larger than the above range, the viscosity of the resin composition becomes high, the fiber cannot be impregnated with the entire amount of the resin composition, and molding of fiber reinforced plastic tends to be difficult.
  • the number of cyanate groups of the cyanate ester is preferably within the above-mentioned range.
  • the said average cyanate group number of a mixture is made into the above-mentioned range by adjusting the compounding quantity of the cyanate ester in a mixture. It is preferable.
  • the (A) cyanate ester of the present invention includes, for example, a compound represented by the following general formula (3-1), a prepolymer of a compound represented by the following general formula (3-1), and the following general formula ( It is preferable to use at least one compound and / or prepolymer selected from the group consisting of compounds represented by 3-2).
  • R a represents a single bond, —S— or a divalent hydrocarbon group
  • R b and R c each independently represents an unsubstituted group or 1 to 4 alkyl groups.
  • R b and R c are substituted with 2 to 4 alkyl groups, the alkyl groups may be the same or different.
  • n represents an integer of 1 to 10
  • R d represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • the divalent hydrocarbon group represented by R a includes an alkylene group having 1 to 8 carbon atoms, a cycloalkylene group having 3 to 13 carbon atoms, and 6 to 6 carbon atoms. 12 arylene groups, arylene alkylene groups, arylene alkylene groups, and the like.
  • Examples of the alkylene group having 1 to 8 carbon atoms include methylene, ethylene, propylene, methylethylene, butylene, 1-methylpropylene, 2-methylpropylene, 1,2-dimethylpropylene, 1,3-dimethylpropylene, and 1-methyl.
  • Butylene, 2-methylbutylene, 3-methylbutylene, 4-methylbutylene, 2,4-dimethylbutylene, 1,3-dimethylbutylene, pentylene, hexylene, heptylene, octylene, ethane-1,1-diyl, propane- 2,2-diyl and the like can be mentioned.
  • Examples of the cycloalkylene group having 3 to 13 carbon atoms include 1,2-cyclopropylene group, 1,3-cycloheptylene group, trans-1,4-cyclohexylene group and the like.
  • Examples of the arylene group having 6 to 12 carbon atoms include phenylene, tolylene and naphthylene.
  • Examples of the arylene alkylene group include phenylenemethylene and phenyleneethylene.
  • Examples of the arylene alkylene group include phenylene dimethylene and phenylene diethylene.
  • the alkylene group having 1 to 8 carbon atoms, the arylene alkylene group, and the methylene chain in the arylene alkylene group may be replaced by —O—, —S—, —CO—, or —C ⁇ C—. .
  • An alkylene group having 1 to 8 carbon atoms, an arylene group having 6 to 12 carbon atoms, an arylene alkylene group, and an arylene alkylene group are a cyano group, a carboxyl group, an alkyl group having 1 to 4 carbon atoms, a hydroxyl group, and a carbon atom. In some cases, it may be substituted with an alkoxy group of 1 to 4 or a halogen atom.
  • Examples of the alkyl group having 1 to 4 carbon atoms that may substitute an alkylene group having 1 to 8 carbon atoms include an alkyl group having 1 to 4 carbon atoms, which will be described later.
  • Examples of the alkoxy group include those obtained by interrupting an alkyl group having 1 to 4 carbon atoms described later with an oxygen atom.
  • Examples of the alkyl group represented by R b and R c that may substitute phenylene in formula (3-1) include alkyl groups having 1 to 8 carbon atoms.
  • Examples of the alkyl group having 1 to 8 carbon atoms include methyl, ethyl, propyl, isopropyl, butyl, secondary butyl, tertiary butyl, isobutyl, amyl, isoamyl, secondary amyl, tertiary amyl, hexyl, 1-ethylpentyl, Examples include cyclohexyl, 1-methylcyclohexyl, heptyl, isoheptyl, tertiary heptyl, n-octyl, isooctyl, tertiary octyl, 2-ethylhexyl and the like.
  • Examples of the alkyl group having 1 to 4 carbon atoms represented by R d in the general formula (3-2) include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl and the like.
  • the compound represented by the general formula (3-1) is preferably a compound represented by the following general formula (3-3) from the viewpoint of easy availability.
  • R e represents a single bond, a methylene group, —CH (CH 3 ) —, —C (CH 3 ) 2 —, or the following general formulas (4-1) to (4- 8) represents any functional group represented by R f , R g , R h , and R i each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • Examples of the alkyl group having 1 to 4 carbon atoms represented by R f , R g , R h , and R i in the general formula (3-3) include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t -Butyl and the like.
  • Examples of the compound represented by the general formula (3-3) include bis (4-cyanatophenyl) methane, bis (3,5-dimethyl-4-cyanatophenyl) methane, 1,1-bis ( 4-cyanatophenyl) ethane, 2,2-bis (4-cyanatophenyl) propane and the like.
  • the (A) cyanate ester used in the present invention is a compound represented by the above general formula (3-2), 1,1-bis (4- (4)), from the viewpoint of availability and heat resistance of a cured product. Particularly preferred are cyanatophenyl) ethane and 2,2-bis (4-cyanatophenyl) propane.
  • the content of (A) cyanate ester in the resin composition for fiber-reinforced plastics of the present invention is preferably 10 to 200 parts by mass, and preferably 30 to 150 parts per 100 parts by mass of (B) epoxy resin described later.
  • the amount is more preferably part by mass, and further preferably 50 to 120 parts by mass.
  • the epoxy resin which is the component (B) used in the present invention is a compound having an epoxy group in the molecule.
  • the epoxy resin which is (B) component may consist of one type of epoxy resin, or may be a mixture of multiple types of epoxy resins.
  • the epoxy resin which is (B) component it is preferable that the average number of epoxy groups of the whole (B) component represented by following formula (2) is 2.1 or more.
  • n represents the number of types of epoxy resin component contained in (B) the epoxy resin
  • B k represents the number of epoxy groups in the kth epoxy resin component contained in (B) the epoxy resin
  • Y k represents a mass-based content ratio of the k-th epoxy resin component in (B) the epoxy resin.
  • the (B) epoxy resin used in the present invention preferably has an average number of epoxy groups of 2.2 to 5.0, more preferably 2.5 to 4.0.
  • the average number of epoxy groups is less than the above range, the Tg of the cured product does not improve and the heat resistance tends to decrease.
  • it is larger than the above range it is difficult to obtain the corresponding epoxy resin.
  • the viscosity of the composition also increases and tends to be less practical.
  • the number of epoxy groups of the epoxy resin is preferably in the above range.
  • the (B) epoxy resin of the present invention is a mixture of a plurality of types of epoxy resins, it is preferable that the average number of epoxy groups in the mixture is within the above range by adjusting the amount of the epoxy resin in the mixture. .
  • the epoxy resin (B) of the present invention is, for example, a polyglycidyl ether compound of a mononuclear polyhydric phenol compound such as hydroquinone, resorcin, pyrocatechol, phloroglucinol; dihydroxynaphthalene, biphenol, methylene bisphenol ( Bisphenol F), methylene bis (orthocresol), ethylidene bisphenol, isopropylidene bisphenol (bisphenol A), isopropylidene bis (orthocresol), tetrabromobisphenol A, 1,3-bis (4-hydroxycumylbenzene), 1, 4-bis (4-hydroxycumylbenzene), 1,1,3-tris (4-hydroxyphenyl) butane, 1,1,2,2-tetra (4-hydroxyphenyl) ethane, thiobisphenol, Polyglycidyl ether compounds of polynuclear polyhydric phenol compounds such as hobisphenol, oxybisphenol,
  • epoxy resins may be those internally crosslinked by terminal isocyanate prepolymers or those having a high molecular weight with polyvalent active hydrogen compounds (polyhydric phenols, polyamines, carbonyl group-containing compounds, polyphosphates, etc.). Good.
  • liquid is preferable from the viewpoint of good impregnation into the fiber, and mononuclear polyhydric phenol compound from the viewpoint of easy availability and easy adjustment of the average number of epoxy groups.
  • the average cyanate group number represented by the said Formula (1) shall be 2.1 or more, and / or the average epoxy group number represented by the said Formula (2) shall be 2.1 or more. It is essential.
  • increasing the average epoxy group number represented by the above formula (2) is more than increasing the average cyanate group number represented by the above formula (1).
  • the average number of epoxy groups is preferably 2.2 to 5.0, and more preferably 2.5 to 4.0.
  • the average cyanate group number may be less than 2.1, but is preferably 1.8 or more, more preferably 1.9 or more, and 2.0 or more. More preferably.
  • (C) Aromatic amine curing agent liquid at 25 ° C. (C)
  • the aromatic amine curing agent that is liquid at 25 ° C. used in the present invention is liquid at 25 ° C. in order to allow easy penetration into the fiber material, and further has an amino group directly on the aromatic ring. It is a built-in compound. Examples of such compounds include diaminodimethyldiphenylmethane, diaminodiethyldiphenylmethane, diaminodiethyltoluene, 1-methyl-3,5-bis (methylthio) -2,4-benzenediamine, 1-methyl-3,5-bis. (Methylthio) -2,6-benzenediamine and the like.
  • diaminodiphenylmethane diaminodimethyldiphenylmethane, and diaminodiethyltoluene are preferable, and diaminodiethyldiphenylmethane is more preferable.
  • the amount of the aromatic amine curing agent that is liquid at (C) 25 ° C. is preferably 20 to 100 parts by mass, and 40 to 90 parts by mass with respect to 100 parts by mass of the (B) epoxy resin. More preferred. When the amount is less than 20 parts by mass or when the amount is more than 100 parts by mass, the resin composition tends not to be completely cured.
  • the resin composition for fiber-reinforced plastics of the present invention may contain (D) a light absorbing component.
  • D When a light absorptive component is contained, the curing time can be further shortened by irradiating active energy rays. By shortening the curing time, the working time is shortened, and it is not only economical because it cures with less energy than in the case of heat curing, but it is also advantageous in terms of the environment.
  • the (D) light-absorbing component contained in the resin composition of the present invention is a component that can absorb the active energy ray and release thermal energy, and cure the resin composition by the released thermal energy. be able to.
  • a light-absorbing component from the viewpoint of infiltrating the resin composition between the fibers, it is a liquid at 25 ° C., or a liquid that becomes compatible when mixed with other materials. Is preferred. Examples of such compounds include aniline black, metal complexes, squaric acid derivatives, immonium dyes, polymethine, phthalocyanine compounds, naphthalocyanine compounds, perylene compounds, quaterylene compounds, nigrosine compounds, and the like. In the present invention, among these compounds, it is more preferable to use a nigrosine compound from the viewpoint that it can be easily obtained.
  • nigrosine compounds examples include BONASORB series, eBIND ACW series, eBIND LTW series, eBIND LAW series, ORIENT NIGROSINE series, NUBIAN BLACK series, etc., manufactured by Orient Chemical Industry Co., Ltd.
  • the NUBIAN BLACK series is preferably used because it is inexpensive and easily available.
  • These nigrosine compounds may be used alone or in combination of two or more.
  • the blending amount of the (D) light absorbing component contained in the resin composition of the present invention may be in the range of 0.001 to 1% by mass with respect to the total amount of the resin composition. Taking into consideration the balance between the curing rate of the resin composition and the heat generation (burning of the composition), it is preferably 0.01 to 0.5% by mass, and preferably 0.05 to 0.2% by mass. Further preferred. If it is less than 0.001%, heat generation is insufficient only by active energy ray irradiation, and it becomes difficult for the resin composition to be completely cured. In addition, when it is more than 1%, the active energy rays are almost absorbed on the surface of the resin composition, and only the surface of the resin composition is carbonized and the active energy does not pass to the inside. It becomes difficult to cure completely.
  • an additive may be used in combination with the resin composition of the present invention.
  • the additive include non-reactive diluents (plasticizers) such as dioctyl phthalate, dibutyl phthalate, benzyl alcohol, and coal tar; pigments; ⁇ -aminopropyltriethoxysilane, N- ⁇ - (aminoethyl) - ⁇ -aminopropyltriethoxysilane, N- ⁇ - (aminoethyl) -N'- ⁇ - (aminoethyl) - ⁇ -aminopropyltriethoxysilane, ⁇ -anilinopropyltriethoxysilane, ⁇ -glycidoxy Propyltriethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltriethoxysilane, vinyltriethoxysilane, N- ⁇ - (N-)
  • plasticizers such
  • additives listed above from the viewpoint of impregnating the fiber, it is preferable that it is liquid at 25 ° C. or is soluble in a cyanate ester, an epoxy resin, or an aromatic amine curing agent. It is more preferable to add a silane coupling agent in terms of improving the adhesion to ⁇ -aminopropyltriethoxysilane and / or ⁇ -glycidoxy in terms of availability and low cost. It is more preferable to add propyltriethoxysilane, and it is particularly preferable to add ⁇ -glycidoxypropyltriethoxysilane.
  • the amount of the silane coupling agent listed above is preferably 0.1 to 50 parts by mass with respect to 100 parts by weight of the (B) epoxy resin, and has good miscibility with the resin. In terms of improving adhesion, it is more preferable to add 7 to 20 parts by mass.
  • the cured product of the present invention is obtained by curing the resin composition for fiber-reinforced plastic of the present invention.
  • the resin composition for fiber-reinforced plastics of this invention can be cured by heating.
  • the resin composition for fiber reinforced plastics of this invention contains (D) light absorptive component, hardening time can be shortened by irradiating an active energy ray. By shortening the curing time, the working time is shortened, and it is not only economical because it cures with less energy than in the case of heat curing, but it is also advantageous in terms of the environment.
  • the active energy ray is not particularly limited and can be appropriately selected according to the purpose.
  • Examples of the active energy ray include electron beam, ultraviolet ray, infrared ray, laser beam, visible ray, ionizing radiation (X ray, ⁇ ray, ⁇ ray, ⁇ ray, etc.), microwave, high frequency and the like.
  • the curing rate can be further improved.
  • a solid laser using ruby, glass, YAG crystal obtained by adding a trace amount of rare earth to yttrium, aluminum, garnet
  • medium obtained by dissolving a dye in a solvent such as water or alcohol Liquid laser
  • gas laser using CO 2, argon, He—Ne mixed gas or the like as a medium
  • semiconductor laser using semiconductor recombination emission it is preferable to use a semiconductor laser that is inexpensive and easy to control the output.
  • the wavelength of the laser beam used in the present invention is not particularly limited.
  • the resin composition can be cured in the range of 1 W to 4 kW.
  • the time for laser irradiation is not particularly limited, but varies depending on the irradiation area and output.
  • the resin composition can be cured in the range of 0.2 W / mm 2 to 10 W / mm 2. .
  • the wavelength of infrared rays for curing the resin composition of the present invention is not particularly limited.
  • the wavelength of any region such as the near infrared region (wavelength is approximately 0.7 to 2.5 ⁇ m), the mid infrared region (wavelength is approximately 2.5 to 4 ⁇ m), and the far infrared region (wavelength is approximately 4 to 1000 ⁇ m).
  • the resin composition can be cured.
  • Examples of the method of irradiating infrared rays for curing the resin composition of the present invention include a method of irradiating with an infrared heater.
  • Examples of the infrared heater include a halogen heater, a quartz heater, a sheathed heater, and a ceramic heater.
  • Halogen heaters can irradiate infrared rays having wavelengths from the near infrared region to the mid infrared region, and quartz heaters, seed heaters, and ceramic heaters emit infrared rays having wavelengths from the mid infrared region to the far infrared region. Irradiation is also possible.
  • it is preferable to use a halogen heater because the time from when the power is turned on until the heat source is heated is short and can be heated quickly.
  • the wavelength of infrared rays for curing the resin composition of the present invention is not particularly limited, but various wavelength regions can be used depending on the absorption region of the light absorbing component to be used.
  • the cured resin of the present invention can be cured in a short time in the near infrared region (wavelength is approximately 0.7 to 2.5 ⁇ m).
  • the fiber reinforced plastic of the present invention can be obtained by curing the fiber reinforced plastic resin composition of the present invention and a fiber reinforced plastic matrix resin (composition) containing the reinforced fibers uniformly.
  • uniformly containing the resin composition for fiber reinforced plastics and the reinforcing fiber means that the resin composition is completely distributed to the inside of the fiber without staying on the surface.
  • the type of the reinforcing fiber is not particularly limited. For example, carbon fiber, glass fiber, aramid fiber, boron fiber, alumina fiber, silicone carbide fiber, or the like may be used alone, or two or more kinds of hybrid fibers may be used. Good.
  • the reinforcing fiber listed above a so-called tow sheet in which high-strength and high-modulus fibers are arranged in one direction, a unidirectional woven fabric in which the fiber yarns are arranged in one direction or two directions, and bidirectional properties Examples thereof include a woven fabric, a triaxial woven fabric arranged in three directions, and a multiaxial woven fabric arranged in multiple directions.
  • the fibers may be arranged so as to ensure an appropriate gap between the strands in order to improve the resin impregnation property to the base material.
  • the resin composition for fiber reinforced plastics of this invention there is no restriction
  • the resin composition for fiber reinforced plastics The volume content of the reinforcing fiber is preferably 45 to 70%, more preferably 50 to 65% with respect to the total volume of the above.
  • the method for curing the fiber reinforced plastic matrix resin is not particularly limited, and for example, it can be cured in the same manner as the above-described curing method for the fiber reinforced plastic resin composition of the present invention.
  • the method for molding the fiber reinforced plastic using the resin composition of the present invention is not particularly limited.
  • extrusion molding blow molding, compression molding, vacuum molding, injection molding, RTM (Resin Transfer Molding) molding, VaRTM (Vaccum Assist Resin Transfer Molding) molding, laminate molding, hand lay-up molding, filament winding molding method and the like.
  • the fiber reinforced plastic obtained using the resin composition of the present invention can be used for various applications.
  • general industrial applications such as structural materials for moving bodies such as automobiles, ships and railway vehicles, drive shafts, leaf springs, windmill blades, pressure vessels, flywheels, paper rollers, roofing materials, cables, and repair and reinforcement materials; Aerospace applications such as fuselage, main wing, tail wing, moving wing, fairing, cowl, door, seat, interior material, motor case, antenna, etc .; golf shaft, fishing rod, tennis or badminton racket application, hockey stick application, etc. Examples include sports applications such as ski pole applications.
  • Example 1 In a 500 mL disposable cup, 100 g of (A) LECy (1,1-bis (4-cyanatophenyl) ethane; Lonza, average cyanate group number: 2) as cyanate ester, (B) Adeka resin as epoxy resin EP-4901E (bisphenol F type epoxy resin, manufactured by ADEKA Corporation, epoxy equivalent: 170 g / eq., Average number of epoxy groups: 2), 75 g, MY-0510 (N, N-bis (2,3-epoxypropyl) -4- (2,3-epoxypropoxy) -2-methylaniline, manufactured by Huntsman, epoxy equivalent: 101 g / eq., Average number of epoxy groups: 3) 12.5 g, (C) aromatic liquid at 25 ° C.
  • A LECy (1,1-bis (4-cyanatophenyl) ethane; Lonza, average cyanate group number: 2) as cyanate ester
  • Adeka resin as epoxy resin EP
  • ⁇ Tg measurement> 5 mg of the above composition was weighed into a pan for differential scanning calorimetry, heated at 80 ° C. for 5 hours, then further heated at 150 ° C. for 2 hours to be cured, and then differential scanning calorimeter (DSC 6220ASD-2, Seiko) Tg was measured by heating at a temperature rising condition of 10 ° C./min and reading the inflection point of the differential scanning calorific value. The results are shown in Table 1.
  • Examples 2 to 8, Comparative Example 1 Except for changing the formulation as shown in Table 1, the same operations as in Example 1 were performed to obtain the formulations of Examples 2 to 3 and Comparative Example 1. About the obtained compound, Tg and the bending test were evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • the resin composition of the present invention had a good Tg value, and the fiber reinforced plastic after impregnating and curing the fiber was also excellent in the bending test.
  • the fiber reinforced plastic that does not use the resin composition of the present invention was evaluated to some extent with respect to the physical properties when made into a fiber reinforced plastic, but satisfactory results were not obtained in Tg.
  • the fiber reinforced plastic produced using the resin composition for fiber reinforced plastic and the reinforced fiber of the present invention has excellent heat resistance and excellent tensile and bending properties, so that it can be used for ships, automobiles, aircraft, etc. It can be applied to a wide range of fields, such as transport equipment, sports equipment, washstands, building materials such as window frames, industrial equipment such as high pressure gas tanks and blades for wind power generation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Reinforced Plastic Materials (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

本発明は、(A)シアン酸エステル、(B)エポキシ樹脂、及び(C)25℃で液状の芳香族アミン系硬化剤を含み、(A)シアン酸エステルの平均シアネート基数が2.1以上、及び/又は(B)エポキシ樹脂の平均エポキシ基数が2.1以上である、繊維強化プラスチック用樹脂組成物であり、この組成物と強化繊維を用いて製造した繊維強化プラスチックは、耐熱性が良好であることに加えて、引張や曲げ物性にも優れることから、船舶、自動車、航空機などの輸送機、スポーツ用品、洗面台、窓枠などの建築材料、高圧ガスタンク、風力発電用ブレードなどの産業機材など、幅広い分野に応用することができる。

Description

繊維強化プラスチック用樹脂組成物、その硬化物、及び該硬化物からなる繊維強化プラスチック
 本発明は、繊維強化プラスチック用樹脂組成物に関し、より詳しくは、シアン酸エステルのシアネート基数とエポキシ樹脂のエポキシ基数を調整して、ガラス転移点温度(Tg)と、繊維強化プラスチックに適用した時の強度とのバランスが良好な、繊維強化プラスチック用樹脂組成物、及び該組成物の硬化物を含有してなる繊維強化プラスチックに関する。
 炭素繊維やガラス繊維等の繊維材料に対し、補強材として熱硬化性のエポキシ樹脂や、不飽和ポリエステル、ポリアミド樹脂、又はフェノール樹脂を用いて成型物を作る方法は周知である。この方法を用いた繊維強化プラスチックは、航空機、船舶などの構造体の材料や、テニスラケット、ゴルフクラブ等のスポーツ用品に広く使われている。エポキシ樹脂は、接着性、耐熱性、耐薬品性に優れているだけでなく安価であることから、バランスの良い材料として補強材に使用されることが多い。
 エポキシ樹脂組成物は優れた電気的性能と接着力を有するが、エポキシ樹脂に、さらにシアン酸エステルを混合した場合には、硬化の際にトリアジン環を形成することにより剛直で高耐熱性の硬化物を得ることができることから、半導体の封止材料、あるいは電子回路基板等の成形用途に多用されている。
 特許文献1には、エポキシ樹脂、シアン酸エステルにポリイミド樹脂を添加して、薄膜のプリプレグを製造し、そのプリプレグを積層することにより電気特性や耐熱性の良好な銅張積層板を提供することが記載されている。引用文献1に記載の発明では、ポリイミド樹脂により高耐熱性の樹脂組成物を達成しているが、この発明を繊維強化プラスチック用に適用した場合には、ポリイミドが固形であることから、溶剤を用いないと使用が困難であること、及び溶剤を用いた場合には乾燥工程なども経由しなければならないなど、作業性に問題が生じてしまうこという問題があった。また、ポリイミド樹脂を用いない場合においては、耐熱性や諸物性において課題があった。
 特許文献2には、ビフェニル骨格を有する多官能シアン酸エステルを使用したプリプレグ、及び積層板が提供することが記載されている。引用文献2に記載の積層板やプリント配線基板は、高耐熱、低誘電特性を有している。しかしながら、引用文献2に記載の発明を繊維強化プラスチックを製造するために利用した場合、硬化物の繊維に対する追従性が悪く、引張りや曲げなどの諸物性を測定した場合、繊維と樹脂組成物間の剥離などが見られ、結果的に満足のいく繊維強化プラスチックを得ることができないという問題があった。
 通常、シアン酸エステルとエポキシ樹脂を用いた硬化系では、シアン酸エステルが活性水素を持つ硬化剤と作用して、活性種となった後、その活性種がエポキシ樹脂と反応し、高分子量化が進行する。シアン酸エステルのシアネート基数、又はエポキシ樹脂のエポキシ基数が少なすぎる場合には、反応点が少なく高分子量化が進行しづらく、満足のいく硬化物が得られない。
 更には、シアン酸エステルとエポキシ樹脂を用いた硬化系では、使用する硬化剤においても適切なものを選択する必要がある。例えば、メタキシリレンジアミンやイソホロンジアミンなどの脂肪族アミンのような反応性の高い硬化剤では、繊維強化プラスチック用に適用した場合に可使時間が短く、繊維に含浸する前に樹脂組成物が硬化してしまい、均一な繊維強化プラスチックが得られない。また、特許文献3のように、常温で固形の潜在性硬化剤を用いた場合には、可使時間は確保できるものの、硬化剤が固形であるので繊維強化プラスチックに適用しようとする場合に、繊維の表面から硬化剤が浸透しづらく、シアン酸エステル、及びエポキシ樹脂と、硬化剤とが分離してしまって、硬化反応が適切に進行しないという問題があった。
特開2001-294689号公報 特開2010-174242号公報 米国特許8911586号公報
 従って、本発明が解決しようとする課題は、高耐熱性であり、さらに、繊維強化プラスチックを製造するために使用した場合、繊維への追従性に優れ、引張や曲げなどの諸物性が良好な繊維強化プラスチックを得ることができる樹脂組成物を提供することである。
 そこで、上記課題を解決するため、本発明者等は鋭意検討し、シアン酸エステル、エポキシ樹脂を使用した場合において、系内の平均シアネート基数、及び平均エポキシ基数をコントロールし、硬化剤として25℃で液状の芳香族アミンを使用することにより、耐熱性と諸物性のバランスが良好な硬化物をえることができる樹脂組成物を見出し、本発明に至った。即ち、本発明は、(A)シアン酸エステル、(B)エポキシ樹脂、及び(C)25℃で液状の芳香族アミン系硬化剤を含み、下記式(1)で表される(A)シアン酸エステルの平均シアネート基数が2.1以上、及び/又は下記式(2)で表される(B)エポキシ樹脂の平均エポキシ基数が2.1以上である、繊維強化プラスチック用樹脂組成物である。

     
               
 
            
       
Figure JPOXMLDOC01-appb-M000007
(式(1)において、nは(A)シアン酸エステルに含まれるシアン酸エステル成分の種類数を表し、Aは(A)シアン酸エステルに含まれるi番目のシアン酸エステル成分のシアネート基数を表し、Xは(A)シアン酸エステルにおけるi番目のシアン酸エステル成分の質量基準の含有割合を表す。)
Figure JPOXMLDOC01-appb-M000008
(式(2)において、nは(B)エポキシ樹脂に含まれるエポキシ樹脂成分の種類数を表し、Bは(B)エポキシ樹脂に含まれるk番目のエポキシ樹脂成分のエポキシ基数を表し、Yは(B)エポキシ樹脂におけるk番目のエポキシ樹脂成分の質量基準の含有割合を表す。)
 以下、本発明の繊維強化プラスチック用樹脂組成物の実施形態について説明する。
[(A)シアン酸エステル]
 本発明で使用する(A)成分であるシアン酸エステルは、分子中にシアネート基を有する化合物である。(A)成分であるシアン酸エステルは1種類のシアン酸エステルからなる場合があり、又は複数種類のシアン酸エステルの混合物である場合もある。(A)成分であるシアン酸エステルは、下記式(1)で表した時の(A)成分全体の平均シアネート基数が、2.1以上であることが好ましい。
Figure JPOXMLDOC01-appb-M000009
(式(1)において、nは(A)シアン酸エステルに含まれるシアン酸エステル成分の種類数を表し、Aは(A)シアン酸エステルに含まれるi番目のシアン酸エステル成分のシアネート基数を表し、Xは(A)シアン酸エステルにおけるi番目のシアン酸エステル成分の質量基準の含有割合を表す。)
 上記式(1)については、例えば、(A)シアン酸エステルが3種類のシアン酸エステルを含有する混合物である場合、nは3となる。この時、3種類のシアン酸エステルはそれぞれ成分1、成分2、成分3と表され、各成分のシアネート基数はA、A、Aで表される。また、成分A1、2、の質量基準の含有割合は、それぞれX、X、Xで表され、この時の平均シアネート基数は、{(A×X)+(A×X)+(A×X)}/100で計算される。そして、本発明で使用される(A)シアン酸エステルは、上記式(1)によって得られたシアネート基数の値が、2.1以上となることが好ましい。
 上記平均シアネート基数は、硬化物のTgと繊維強化プラスチックの信頼性とのバランスの観点から、2.1~5.0であることが好ましく、2.2~5.0であることがより好ましく、2.4~4.1であることが更に好ましい。平均シアネート基数が前記の範囲より多い場合、樹脂組成物の粘度が高くなり、繊維へ樹脂組成物全量を含浸させることができず、繊維強化プラスチックの成形が困難になる傾向にある。
 本発明で使用される(A)シアン酸エステルが1種類のシアン酸エステルからなる場合、上記の該シアン酸エステルのシアネート基数が上述の範囲であることが好ましい。また、本発明の(A)シアン酸エステルが複数種類のシアン酸エステルの混合物である場合、混合物におけるシアン酸エステルの配合量を調整することによって、混合物の上記平均シアネート基数を上述の範囲とすることが好ましい。
 本発明の(A)シアン酸エステルとしては、例えば、下記一般式(3-1)で表される化合物、下記一般式(3-1)で表される化合物のプレポリマー、及び下記一般式(3-2)で表される化合物からなる群から選択される少なくとも1種の化合物及び/又はプレポリマーを用いることが好ましい。
Figure JPOXMLDOC01-appb-C000010
(一般式(3-1)において、Rは単結合、-S-又は2価の炭化水素基を表し、R及びRは、それぞれ独立に、非置換、又は1~4個のアルキル基で置換されているフェニレン基を表し、
 R及びRが2~4個のアルキル基で置換されている場合、該アルキル基は同一の場合があり、異なる場合がある。)
Figure JPOXMLDOC01-appb-C000011
(一般式(3-2)において、nは1~10の整数を表し、Rは水素原子、又は炭素数が1~4のアルキル基を表す。)
 一般式(3-1)中のRで表される2価の炭化水素基としては、炭素原子数1~8のアルキレン基、炭素原子数3~13のシクロアルキレン基、炭素原子数6~12のアリーレン基、アリーレンアルキレン基、アリーレンジアルキレン基等が挙げられる。
 炭素原子数1~8のアルキレン基としては、メチレン、エチレン、プロピレン、メチルエチレン、ブチレン、1-メチルプロピレン、2-メチルプロピレン、1,2-ジメチルプロピレン、1,3-ジメチルプロピレン、1-メチルブチレン、2-メチルブチレン、3-メチルブチレン、4-メチルブチレン、2,4-ジメチルブチレン、1,3-ジメチルブチレン、ペンチレン、へキシレン、ヘプチレン、オクチレン、エタン-1,1-ジイル、プロパン-2,2-ジイル等が挙げられる。
 炭素原子数3~13のシクロアルキレン基としては、1,2-シクロプロピレン基、1,3-シクロヘプチレン基、トランス-1,4-シクロヘキシレン基等が挙げられる。
 炭素原子数6~12のアリーレン基としてはフェニレン、トリレン、ナフチレン等が挙げられる。
 アリーレンアルキレン基としてはフェニレンメチレン、フェニレンエチレン等が挙げられる。
 アリーレンジアルキレン基としてはフェニレンジメチレン、フェニレンジエチレン等が挙げられる。
 上記炭素原子数1~8のアルキレン基及びアリーレンアルキレン基並びにアリーレンジアルキレン基中のメチレン鎖は、-O-、-S-、-CO-又は-C=C-に置き換えられている場合もある。
 炭素原子数1~8のアルキレン基、炭素原子数6~12のアリーレン基、アリーレンアルキレン基及びアリーレンジアルキレン基は、シアノ基、カルボキシル基、炭素原子数1~4のアルキル基、水酸基、炭素原子数1~4のアルコキシ基又はハロゲン原子で置換されている場合がある。炭素原子数1~8のアルキレン基等を置換する場合がある炭素原子数1~4のアルキル基としては、後述する炭素数が1~4のアルキル基が挙げられ、炭素原子数1~4のアルコキシ基としては、後述する炭素数が1~4のアルキル基を酸素原子で中断したものが挙げられる。
 一般式(3-1)中のフェニレンを置換する場合があるR及びRで表されるアルキル基としては、炭素数1~8のアルキル基が挙げられる。炭素数1~8のアルキル基としては、メチル、エチル、プロピル、イソプロピル、ブチル、第2ブチル、第3ブチル、イソブチル、アミル、イソアミル、第2アミル、第3アミル、ヘキシル、1-エチルペンチル、シクロヘキシル、1-メチルシクロヘキシル、ヘプチル、イソヘプチル、第3ヘプチル、n-オクチル、イソオクチル、第3オクチル、2-エチルヘキシル等が挙げられる。
 一般式(3-2)中のRで表される炭素数が1~4のアルキル基としては、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、t-ブチル等が挙げられる。
 上記一般式(3-1)で表される化合物は、入手の容易性などの観点から、下記一般式(3-3)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000012
(一般式(3-3)において、Rは、単結合、メチレン基、-CH(CH)-、-C(CH-、又は下記一般式(4-1)~(4-8)で表される何れかの官能基を表し、
 R、R、R、及びRは、それぞれ独立に、水素原子、又は炭素数が1~4のアルキル基を表す。)
Figure JPOXMLDOC01-appb-C000013
(一般式(4-3)において、mは4~12の整数を表し、
 一般式(4-1)~(4-8)中の*は結合手を表す。)
 一般式(3-3)中のR、R、R、及びRで表される炭素数が1~4のアルキル基としては、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、t-ブチル等が挙げられる。
 上記一般式(3-3)で表される化合物としては、例えば、ビス(4-シアナトフェニル)メタン、ビス(3,5-ジメチル-4-シアナトフェニル)メタン、1,1-ビス(4-シアナトフェニル)エタン、2,2-ビス(4-シアナトフェニル)プロパンなどが挙げられる。
 本発明で使用される(A)シアン酸エステルは、入手の容易性と硬化物の耐熱性の観点から、上記一般式(3-2)で表される化合物、1,1-ビス(4-シアナトフェニル)エタン、2,2-ビス(4-シアナトフェニル)プロパンであることが特に好ましい。
 本発明の繊維強化プラスチック用樹脂組成物における(A)シアン酸エステルの含有量は、後述する(B)エポキシ樹脂100質量部に対して、10~200質量部であることが好ましく、30~150質量部であることがより好ましく、50~120質量部であることが更に好ましい。(A)シアン酸エステルの含有量が10質量部よりも少ない場合、樹脂組成物の強度が向上しない傾向にあり、200質量部よりも多い場合は、樹脂組成物の基材に対する密着性が著しく低下する傾向にある。
[(B)エポキシ樹脂]
 本発明で使用する(B)成分であるエポキシ樹脂は、分子中にエポキシ基を有する化合物である。(B)成分であるエポキシ樹脂は、1種類のエポキシ樹脂からなる場合があり、又は、複数種のエポキシ樹脂の混合物である場合がある。(B)成分であるエポキシ樹脂は、下記式(2)で表される(B)成分全体の平均エポキシ基数が2.1以上であることが好ましい。
Figure JPOXMLDOC01-appb-M000014
(式(2)において、nは(B)エポキシ樹脂に含まれるエポキシ樹脂成分の種類数を表し、Bは(B)エポキシ樹脂に含まれるk番目のエポキシ樹脂成分のエポキシ基数を表し、Yは(B)エポキシ樹脂におけるk番目のエポキシ樹脂成分の質量基準の含有割合を表す。)
 上記式(2)について、例えば、(B)エポキシ樹脂が3種類のエポキシ樹脂成分の混合物である場合、nは3となる。この時、3種類のエポキシ樹脂はそれぞれ成分1、成分2,成分3と表され、各成分のエポキシ基数はB、B、Bで表される。また、(B)エポキシ樹脂における成分B1、2、の質量基準の含有割合は、それぞれY、Y、Yで表される。この時の平均シアネート基数は、{(B×Y)+(B×Y)+(B+Y)}/100で計算される。本発明で使用される(B)エポキシ樹脂は、上記平均エポキシ基数の値が2.2~5.0であることが好ましく、2.5~4.0であることがより好ましい。平均エポキシ基数が前記の範囲より少ない場合は、硬化物のTgが向上せず耐熱性が低下する傾向にあり、前記の範囲より大きい場合は、対応するエポキシ樹脂の入手が困難である他、樹脂組成物の粘度も高くなり、実用性に劣る傾向にある。
 本発明で使用される(B)エポキシ樹脂が1種類のエポキシ樹脂からなる場合、該エポキシ樹脂のエポキシ基数が上述の範囲であることが好ましい。また、本発明の(B)エポキシ樹脂が複数種類のエポキシ樹脂の混合物である場合、混合物におけるエポキシ樹脂の配合量を調整することによって、混合物の上記平均エポキシ基数を上述の範囲とすることが好ましい。
 本発明の(B)エポキシ樹脂は、具体的には、例えば、ハイドロキノン、レゾルシン、ピロカテコール、フロログルクシノールなどの単核多価フェノール化合物のポリグリシジルエーテル化合物;ジヒドロキシナフタレン、ビフェノール、メチレンビスフェノール(ビスフェノールF)、メチレンビス(オルトクレゾール)、エチリデンビスフェノール、イソプロピリデンビスフェノール(ビスフェノールA)、イソプロピリデンビス(オルトクレゾール)、テトラブロモビスフェノールA、1,3-ビス(4-ヒドロキシクミルベンゼン)、1,4-ビス(4-ヒドロキシクミルベンゼン)、1,1,3-トリス(4-ヒドロキシフェニル)ブタン、1,1,2,2-テトラ(4-ヒドロキシフェニル)エタン、チオビスフェノール、スルホビスフェノール、オキシビスフェノール、フェノールノボラック、オルソクレゾールノボラック、エチルフェノールノボラック、ブチルフェノールノボラック、オクチルフェノールノボラック、レゾルシンノボラック、テルペンフェノール等の多核多価フェノール化合物のポリグリシジルエーテル化合物;α-ナフトール、β-ナフトール、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン等のナフタレン骨格含有ジオール、並びにこれらのジオールとアルデヒドを酸性触媒下で縮合させた化合物のポリグリシジルエーテルであるナフタレン型エポキシ樹脂;9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン、9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレンなどのフルオレン骨格を有するジオールのジグリシジルエーテルであるフルオレン型エポキシ樹脂;エチレングリコール、プロピレングリコール、ブチレングリコール、ヘキサンジオール、ポリグリコール、チオジグリコール、ジシクロペンタジエンジメタノール、2,2-ビス(4-ヒドロキシシクロヘキシルプロパン(水素化ビスフェノールA)、グリセリン、トリメチロールプロパン、ペンタエリスリトール、ソルビトール、ビスフェノールA-エチレンオキシド付加物などの多価アルコール類のポリグリシジルエーテル;マレイン酸、フマル酸、イタコン酸、コハク酸、グルタル酸、スベリン酸、アジピン酸、アゼライン酸、セバシン酸、ダイマー酸、トリマー酸、フタル酸、イソフタル酸、テレフタル酸、トリメリット酸、トリメシン酸、ピロメリット酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、エンドメチレンテトラヒドロフタル酸等の脂肪族、芳香族又は脂環族多塩基酸のグリシジルエステル類及びグリシジルメタクリレートの単独重合体又は共重合体;N,N-ジグリシジルアニリン、ビス(4-(N-メチル-N-グリシジルアミノ)フェニル)メタン、ジグリシジルオルトトルイジン、N,N-ビス(2,3-エポキシプロピル)-4-(2,3-エポキシプロポキシ)-2-メチルアニリン、N,N-ビス(2,3-エポキシプロピル)-4-(2,3-エポキシプロポキシ)アニリン、N,N,N’,N’-テトラ(2,3-エポキシプロピル)-4,4’-ジアミノジフェニルメタン等のグリシジルアミノ基を有するエポキシ化合物;ビニルシクロヘキセンジエポキシド、ジシクロペンタンジエンジエポキサイド、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、3,4-エポキシ-6-メチルシクロヘキシルメチル-6-メチルシクロヘキサンカルボキシレート、ビス(3,4-エポキシ-6-メチルシクロヘキシルメチル)アジペート等の環状オレフィン化合物のエポキシ化物;エポキシ化ポリブタジエン、エポキシ化スチレン-ブタジエン共重合物等のエポキシ化共役ジエン重合体、トリグリシジルイソシアヌレート等の複素環化合物があげられる。また、これらのエポキシ樹脂は末端イソシアネートのプレポリマーによって内部架橋されたもの、あるいは多価の活性水素化合物(多価フェノール、ポリアミン、カルボニル基含有化合物、ポリリン酸エステル等)で高分子量化したものでもよい。
 上記に挙げたエポキシ樹脂の中では、繊維への含浸性が良好という観点から、液状のものが好ましく、入手容易性と平均エポキシ基数の調整が容易であるという観点から、単核多価フェノール化合物のポリグリシジルエーテル化合物、多核多価フェノール化合物のポリグリシジルエーテル化合物、フルオレン型エポキシ樹脂、多価アルコール類のポリグリシジルエーテル、グリシジルアミノ基を有するエポキシ化合物であることがより好ましく、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、N,N-ビス(2,3-エポキシプロピル)-4-(2,3-エポキシプロポキシ)-2-メチルアニリン、N,N-ビス(2,3-エポキシプロピル)-4-(2,3-エポキシプロポキシ)アニリン、及びN,N,N’,N’-テトラ(2,3-エポキシプロピル)-4,4’-ジアミノジフェニルメタンであることが特に好ましい。
 シアン酸エステルとエポキシ樹脂とを用いた硬化系では、架橋密度を上げすぎた場合には、硬化物が強靭になりすぎて繊維強化プラスチックに適用した時の応力緩和性が低くなり、満足な繊維強化プラスチックが得られない傾向にある。逆に架橋密度が低すぎる場合には、高分子量化がしづらく、硬化物の強度において問題がある場合がある。そのため、(A)シアン酸エステルと(B)エポキシ樹脂の反応する官能基(シアネート基、エポキシ基)の基数を調整する必要がある。すなわち、本発明においては、上記式(1)で表される平均シアネート基数を2.1以上とするか、及び/又は上記式(2)で表される平均エポキシ基数を2.1以上とすることを必須とする。本発明においては、平均シアネート基数と平均エポキシ基数について検討する場合、上記式(2)で表される平均エポキシ基数を増やす方が、上記式(1)で表される平均シアネート基数を増やすよりも、硬化物のTgをより向上させることができるという点で好ましい。その場合の平均エポキシ基数は、2.2~5.0であることが好ましく、2.5~4.0であることがより好ましい。
 平均エポキシ基数を2.1以上とした場合、平均シアネート基数は2.1未満でも構わないが、1.8以上であることが好ましく、1.9以上であることがより好ましく、2.0以上であることが更に好ましい。
[(C)25℃で液状の芳香族アミン系硬化剤]
 本発明で使用する、(C)25℃で液状の芳香族アミン系硬化剤は、繊維材料に容易に浸透が可能にするために、25℃で液状であり、さらに芳香環に直接アミノ基が備わっている化合物である。そのような化合物としては、例えば、ジアミノジメチルジフェニルメタン、ジアミノジエチルジフェニルメタン、ジアミノジエチルトルエン、1-メチル-3、5-ビス(メチルチオ)-2、4-ベンゼンジアミン、1-メチル-3、5-ビス(メチルチオ)-2、6-ベンゼンジアミンなどが挙げられる。
 これらの中では、硬化物の耐熱性が向上するという観点から、ジアミノジフェニルメタン、ジアミノジメチルジフェニルメタン、及びジアミノジエチルトルエンが好ましく、ジアミノジエチルジフェニルメタンがより好ましい。
 本発明において(C)25℃で液状の芳香族アミン系硬化剤の使用量は、(B)エポキシ樹脂100質量部に対し、20~100質量部であることが好ましく、40~90質量部がより好ましい。20質量部より少ない場合、又は100質量部よりも多い場合は、樹脂組成物が完全に硬化しない傾向にある。
 本発明の繊維強化プラスチック用樹脂組成物は(D)光吸収性成分を含有する場合がある。(D)光吸収性成分を含有する場合には、活性エネルギー線を照射することにより硬化時間をより短くすることができる。硬化時間が短くなることにより、作業時間が短くなり、また、加熱硬化する場合と比べて少ないエネルギーで硬化するため経済的であるだけでなく、環境の面でも有利である。
 本発明の樹脂組成物に含まれる(D)光吸収性成分は、前記活性エネルギー線を吸収し、熱エネルギーを放出することができる成分であり、放出された熱エネルギーにより樹脂組成物を硬化させることができる。このような光吸収性成分としては、繊維と繊維の間に樹脂組成物を浸透させるという観点から、25℃で液状のもの、若しくは、他の材料と混合した時に相溶化して液状となるものが好ましい。そのような化合物としては、アニリンブラック、金属錯体、スクエア酸誘導体、インモニウム染料、ポリメチン、フタロシアニン系化合物、ナフタロシアニン系化合物、ペリレン系化合物、クオテリレン系化合物、ニグロシン系化合物等が挙げられる。本発明においては、これらの化合物の中でも、容易に入手が可能であるという点から、ニグロシン系化合物を使用することがより好ましい。
市販されているニグロシン系化合物としては、オリエント化学工業(株)製の、BONASORBシリーズ、eBIND ACWシリーズ、eBIND LTWシリーズ、eBIND LAWシリーズ、ORIENT NIGROSINEシリーズ、NUBIAN BLACKシリーズ等が挙げられる。本発明においては、これらのニグロシン系化合物の中でも、安価で入手が容易であるという点で、NUBIAN BLACKシリーズを使用することが好ましい。これらのニグロシン系化合物は1種類を単独で使用しても、2種以上を併用してもよい。
 本発明の樹脂組成物に含有させる(D)光吸収性成分の配合量は、樹脂組成物の総量に対し、0.001~1質量%の範囲であればよい。樹脂組成物の硬化速度と発熱(組成物の焦げ付き)のバランスの観点を加味すると、0.01~0.5質量%であることが好ましく、0.05~0.2質量%であることが更に好ましい。0.001%より少ないと、活性エネルギー線照射だけでは発熱不足となり、樹脂組成物が完全に硬化することが困難になる。また、1%よりも多い場合には、樹脂組成物の表面で活性エネルギー線が殆ど吸収され、樹脂組成物の表面のみが炭化して内部まで活性エネルギーが通らないので、樹脂組成物の内部まで完全に硬化させることが困難となる。
[添加剤]
 本発明の樹脂組成物には、必要に応じて、添加剤を併用してもよい。
 上記添加剤としては、例えば、ジオクチルフタレート、ジブチルフタレート、ベンジルアルコール、コールタール等の非反応性の希釈剤(可塑剤);顔料;γ-アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-N’-β-(アミノエチル)-γ-アミノプロピルトリエトキシシラン、γ-アニリノプロピルトリエトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、ビニルトリエトキシシラン、N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリエトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-クロロプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-イソシアネートプロピルトリエトキシシラン等のシランカップリング剤;イソプロピルトリイソステアロイルチタネート、イソプロピルトリ-n-ドデシルベンゼンスルホニルチタネート、イソプロピルトリス(ジオクチルピロホスフェート)チタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2-ジアリルオキシメチル-1-ブチル)ビス(ジ-トリデシル)ホスファイトチタネート、ビス(ジオクチルピロホスフェート)オキシアセテートチタネート、ビス(ジオクチルピロホスフェート)エチレンチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルジメタクリロイルイソステアロイルチタネート、イソプロピルイソステアロイルジアクリルチタネート、イソプロピルトリ(ジオクチルホスフェート)チタネート、イソプロピルトリクミルフェニルチタネート、イソプロピルトリ(N-アミノエチル-アミノエチル)チタネート、テトライソプロピルチタネート、テトラノルマルブチルチタネート、ブチルチタネートダイマー、テトラキス(2-エチルヘキシル)チタネート、テトラステアリルチタネート、テトラメチルチタネート、ジエトキシビス(アセチルアセトナト)チタン、ジイソプロピルビス(アセチルアセトナト)チタン、ジイソプロポキシビス(エチルアセトアセテート)チタン、イソプロポキシ(2-エチル-1,3-ヘキサンジオラト)チタン、ジ(2-エチルヘキソキシ)ビス(2-エチル-1,3-ヘキサンジオラト)チタン、ジ-n-ブトキシビス(トリエタノールアミナト)チタン、テトラアセチルアセトネートチタン、ヒドロキシビス(ラクタト)チタン、ジクミルフェニルオキシアセテートチタネート、ジイソステアロイルエチレンチタネート等のチタンカップリング剤;ネオアルコキシトリスネオデカノイルジルコネート、ネオアルコキシトリス(ドデシル)ベンゼンスルホニルジルコネート、ネオアルコキシトリス(ジオクチル)ホスフェートジルコネート、ネオアルコキシトリス(ジオクチル)ピロホスフェートジルコネート、ネオアルコキシトリス(エチレンジアミノ)エチルジルコネート、ネオアルコキシトリス(m-アミノ)フェニルジルコネート、テトラ(2,2-ジアリルオキシメチル)ブチル,ジ(ジトリデシル)ホスフィトジルコネート、ネオペンチル(ジアリル)オキシ,トリネオデカノイルジルコネート、ネオペンチル(ジアリル)オキシ,トリ(ドデシル)ベンゼン-スルホニルジルコネート、ネオペンチル(ジアリル)オキシ,トリ(ジオクチル)ホスファトジルコネート、ネオペンチル(ジアリル)オキシ,トリ(ジオクチル)ピロ-ホスファトジルコネート、ネオペンチル(ジアリル)オキシ,トリ(N-エチレンジアミノ)エチルジルコネート、ネオペンチル(ジアリル)オキシ,トリ(m-アミノ)フェニルジルコネート、ネオペンチル(ジアリル)オキシ,トリメタクリルジルコネート、ネオペンチル(ジアリル)オキシ,トリアクリルジルコネート、ジネオペンチル(ジアリル)オキシ,ジパラアミノベンゾイルジルコネート、ジネオペンチル(ジアリル)オキシ,ジ(3-メルカプト)プロピオニックジルコネート、ジルコニウム(IV)2,2-ビス(2-プロペノラトメチル)ブタノラト,シクロジ[2,2-(ビス2-プロペノラトメチル)ブタノラト]ピロホスファト-O,O、ネオアルコキシトリスネオデカノイルジルコネート、ネオアルコキシトリス(ドデシル)ベンゼンスルホニルジルコネート、ネオアルコキシトリス(ジオクチル)ホスフェートジルコネート、ネオアルコキシトリス(ジオクチル)ピロホスフェートジルコネート、ネオアルコキシトリス(エチレンジアミノ)エチルジルコネート、ネオアルコキシトリス(m-アミノ)フェニルジルコネート、また、ジルコニウム系カップリング剤としては、テトラノルマルプロポキシジルコニウム、テトラノルマルブトキシジルコニウム、ジルコニウムテトラアセチルアセトネート、ジルコニウムトリブトキシアセチルアセトネート、ジルコニウムトリブトキシステアレート、ジルコニウムジブトキシビス(アセチルアセトネート)、ジルコニウムジブトキシビス(アセチルアセトネート)、ジルコニウムトリブトキシエチルアセトアセテート、ジルコニウムモノブトキシアセチルアセトネートビス(エチルアセトアセテート)等のジルコニウム系カップリング剤;キャンデリラワックス、カルナウバワックス、木ろう、イボタロウ、みつろう、ラノリン、鯨ろう、モンタンワックス、石油ワックス、脂肪酸ワックス、脂肪酸エステル、脂肪酸エーテル、芳香族エステル、芳香族エーテル等の潤滑剤;増粘剤;チキソトロピック剤;酸化防止剤;光安定剤;紫外線吸収剤;難燃剤;消泡剤;防錆剤等の常用の添加剤を挙げることができる。
 上記に挙げた添加剤の中では、繊維へ含浸させるという観点から、25℃で液状のもの、若しくはシアン酸エステル、エポキシ樹脂、芳香族アミン系硬化剤に溶解するものであることが好ましく、繊維への密着性が向上するという点で、シランカップリング剤を添加することがより好ましく、入手が容易で安価であるという点で、γ-アミノプロピルトリエトキシシラン、及び/又はγ-グリシドキシプロピルトリエトキシシランを添加することがさらに好ましく、γ-グリシドキシプロピルトリエトキシシランを添加することが特に好ましい。
 上記に挙げたシランカップリング剤の配合量は、(B)エポキシ樹脂100重量部に対し、0.1~50質量部配合させることが好ましく、樹脂との混和性が良好であり、繊維との密着性が向上するという点において、7~20質量部配合させることがより好ましい。
 本発明の硬化物は、本発明の繊維強化プラスチック用樹脂組成物を硬化させてなる。本発明の繊維強化プラスチック用樹脂組成物を硬化させる方法には特に制限はなく、公知の方法で硬化させることができる。具体的には、本発明の繊維強化プラスチック用樹脂組成物は、加熱により硬化させることもできる。また、本発明の繊維強化プラスチック用樹脂組成物が(D)光吸収性成分を含有する場合には、活性エネルギー線を照射することにより硬化時間をより短くすることができる。硬化時間が短くなることにより、作業時間が短くなり、また、加熱硬化する場合と比べて少ないエネルギーで硬化するため経済的であるだけでなく、環境の面でも有利である。
 上記活性エネルギー線には特に制限はなく、目的に応じて適宜選択することができる。この活性エネルギー線としては、例えば、電子線、紫外線、赤外線、レーザー光線、可視光線、電離放射線(X線、α線、β線、γ線等)、マイクロ波、高周波等が挙げられる。
 本発明では、これらの活性エネルギー線の中でも、より硬化速度を向上させられるという観点から、レーザー光線及び/又は赤外線を使用することが好ましく、赤外線を使用することがより好ましい。
 上記レーザー光線としては、ルビー、ガラス、YAG(イットリウム、アルミニウム、ガーネットに微量のレアアースが添加された結晶体)を媒体とした固体レーザー;色素を、水やアルコールなどの溶媒に溶解させたものを媒体とした液体レーザー;CO2、アルゴン、又は、He-Ne混合気体などを媒体とした気体レーザー;半導体の再結合発光を利用した半導体レーザーが挙げられる。本発明においては、安価である上、出力のコントロールが容易な半導体レーザーを使用することが好ましい。
 本発明で使用するレーザー光線の波長には特に制限はなく、例えば、近赤外線領域(波長がおよそ0.7~2.5μm)であれば、樹脂組成物を硬化させることができる。レーザー光線の出力も特に制限されず、例えば、1W~4kWの範囲で、樹脂組成物を硬化させることができる。
 レーザーを照射させる時間も特に制限されることはないが、照射面積や出力によりさまざまな範囲となり、例えば、0.2W/mm~10W/mm の範囲で樹脂組成物を硬化させることができる。本発明の樹脂組成物を硬化させる赤外線の波長も、特に制限されることはない。例えば、近赤外線領域(波長がおよそ0.7~2.5μm)、中赤外線領域(波長がおよそ2.5~4μm)、及び遠赤外線領域(波長がおよそ4~1000μm)など、どの領域の波長でも、樹脂組成物を硬化させることができる。
 本発明の樹脂組成物を硬化させる赤外線を照射する方法としては、赤外線ヒーターを用いて照射する方法が挙げられる。赤外線ヒーターとしては、例えば、ハロゲンヒーター、石英ヒーター、シーズヒーター、及びセラミックヒーターなどが挙げられる。ハロゲンヒーターは、近赤外線領域から中赤外線領域までの波長をもつ赤外線を照射することができ、石英ヒーター、シーズヒーター、及びセラミックヒーターは、中赤外領域から遠赤外領域の波長をもつ赤外線を照射することもできる。これらの中では、電源を入れてから熱源が加熱されるまでの時間が短く、迅速に加熱できるという理由で、ハロゲンヒーターを使用することが好ましい。
 本発明の樹脂組成物を硬化させる赤外線の波長は、特に制限されるものではないが、使用する光吸収性成分の吸収領域により、様々な波長領域を使用することができる。例えば、ニグロシン系化合物を使用した場合には、近赤外線領域(波長がおよそ0.7~2.5μm)において、短時間で本発明の樹脂硬化物を硬化させることができる。
 本発明の繊維強化プラスチックは、本発明の繊維強化プラスチック用樹脂組成物及び強化繊維を均一に含有する繊維強化プラスチックのマトリックス樹脂(組成物)を硬化させることにより得ることができる。本発明において繊維強化プラスチック用樹脂組成物及び強化繊維を均一に含有するとは、樹脂組成物が表面に留まることなく、繊維内部まで完全に行き渡っていることを意味する。強化繊維の種類は、特に限定されず、例えば炭素繊維、ガラス繊維、アラミド繊維、ボロン繊維、アルミナ繊維、シリコーンカーバイド繊維等を単独で用いてもよいし、2種類以上のハイブリッド繊維として用いてもよい。
 上記に挙げた強化繊維の形態としては、高強度・高弾性率繊維を一方向に配列させたいわゆるトウシートや、前記繊維糸状を一方向又は二方向に配列させた一方向性織物や二方向性織物、三方向に配列させた三軸織物、多方向に配列させた多軸織物などが挙げられる。トウシートにおいては、基材への樹脂含浸性を向上させるためにストランド間に適度の隙間を確保するように前記繊維を配列するとよい。
 本発明の繊維強化プラスチック用樹脂組成物に対する強化繊維の使用量には特に制限はなく、得られる繊維強化プラスチックの用途に応じて適宜決定することができるが、例えば、繊維強化プラスチック用樹脂組成物の全体の体積に対し、強化繊維の体積含有率が、好ましくは45~70%であり、より好ましくは50~65%である。また、繊維強化プラスチックのマトリックス樹脂を硬化させる方法にも特に制限はなく、例えば、上述した本発明の繊維強化プラスチック用樹脂組成物の硬化方法と同様にして硬化することができる。
 本発明の樹脂組成物を使用した繊維強化プラスチックを成形するための方法については、特に限定はされないが、例えば、押し出し成形法、ブロー成形法、圧縮成形法、真空成形法、射出成形法、RTM(Resin Transfer Molding)成形、VaRTM(Vaccum assist Resin Transfer Molding)成形、積層成形、ハンドレイアップ成形、フィラメントワインディング成形法等が挙げられる。
 本発明の樹脂組成物を用いて得られる繊維強化プラスチックは、各種の用途に利用することができる。例えば、自動車、船舶及び鉄道車両等の移動体の構造材、ドライブシャフト、板バネ、風車ブレード、圧力容器、フライホイール、製紙用ローラー、屋根材、ケーブル、及び補修補強材料等の一般産業用途;胴体、主翼、尾翼、動翼、フェアリング、カウル、ドア、座席、内装材、モーターケース、アンテナ等の航空宇宙用途;ゴルフシャフト、釣り竿、テニスやバドミントンのラケット用途、ホッケー等のスティック用途、及びスキーポール用途等のスポーツ用途が挙げられる。
 以下本発明を実施例により、具体的に説明する。尚、以下の実施例等において%は特に記載が無い限り質量基準である。
[実施例1]
 500mLディスポカップに、(A)シアン酸エステルとして、LECy(1,1-ビス(4-シアナトフェニル)エタン;ロンザ社製、平均シアネート基数:2)を100g、(B)エポキシ樹脂として、アデカレジンEP-4901E(ビスフェノールF型エポキシ樹脂、(株)ADEKA製、エポキシ当量:170g/eq.、平均エポキシ基数:2)を75g、MY-0510(N,N-ビス(2,3-エポキシプロピル)-4-(2,3-エポキシプロポキシ)-2-メチルアニリン、ハンツマン社製、エポキシ当量:101g/eq.、平均エポキシ基数:3)を12.5g、(C)25℃で液状の芳香族アミン系硬化物として、カヤハードAA(ジアミノジエチルジフェニルメタン、日本化薬(株)製)を70g加え、25℃にて5分間スパチュラで撹拌した。その後、遊星式攪拌機を使用して更に撹拌し、配合物を得た。得られた配合物について、以下の方法によりガラス転移点温度(Tg)、曲げ試験の評価を行った。
<Tg測定>
 示差走査熱量測定用のパンに、上記配合物を5mg測量し、80℃で5時間加熱し、その後更に150℃で2時間加熱して硬化させた後、示差走査熱量計(DSC6220ASD-2、セイコーインスツル(株)製)により、10℃/分の昇温条件で加熱させ、示差走査熱量の変曲点を読み取ることにより、Tgを測定した。結果を表1に示す。
<曲げ試験>
 ガラス繊維(UDR S14EU970-01190-00100-100000、SAERTEX社製)100gに対し、得られた配合物33gを、ローラーを用いて含浸させた。その後、樹脂を含浸させたガラス繊維を150℃の恒温槽に入れ、3時間かけて樹脂を硬化させた。得られた樹脂硬化後の樹脂繊維複合物(繊維強化プラスチック)について、JIS K 7057に準拠した方法で上降伏点応力、最大点応力、弾性率、層間せん断を測定した。結果を表1に示す。
[実施例2~実施例8、比較例1]
 表1の通りに配合を変えたこと以外は、実施例1と同様の操作を行い、実施例2~3及び比較例1の配合物を得た。得られた配合物について、実施例1と同様にTgと曲げ試験の評価を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000015
 表1の結果の通り、本発明の樹脂組成物は、Tgの値が良好であり、繊維に含浸させ硬化させた後の繊維強化プラスチックにおいても、曲げ試験で優れた結果となった。本発明の樹脂組成物を用いない繊維強化プラスチックは、繊維強化プラスチックにした時の物性については、ある程度良い評価となったものの、Tgにおいて満足のいく結果が得られなかった。
 本発明の繊維強化プラスチック用樹脂組成物と強化繊維を用いて製造した繊維強化プラスチックは、耐熱性が良好であることに加えて、引張や曲げ物性にも優れることから、船舶、自動車、航空機などの輸送機、スポーツ用品、洗面台、窓枠などの建築材料、高圧ガスタンク、風力発電用ブレードなどの産業機材など、幅広い分野に応用することができる。
 

Claims (7)

  1.  (A)シアン酸エステル、(B)エポキシ樹脂、及び(C)25℃で液状の芳香族アミン系硬化剤を含み、
     下記式(1)で表される(A)シアン酸エステルの平均シアネート基数が2.1以上、及び/又は下記式(2)で表される(B)エポキシ樹脂の平均エポキシ基数が2.1以上である、繊維強化プラスチック用樹脂組成物。
    Figure JPOXMLDOC01-appb-M000001
    (式(1)において、nは(A)シアン酸エステルに含まれるシアン酸エステル成分の種類数を表し、Aは(A)シアン酸エステルに含まれるi番目のシアン酸エステル成分のシアネート基数を表し、Xは(A)シアン酸エステルにおけるi番目のシアン酸エステル成分の質量基準の含有割合を表す。)
    Figure JPOXMLDOC01-appb-M000002
    (式(2)において、nは(B)エポキシ樹脂に含まれるエポキシ樹脂成分の種類数を表し、Bは(B)エポキシ樹脂に含まれるk番目のエポキシ樹脂成分のエポキシ基数を表し、Yは(B)エポキシ樹脂におけるk番目のエポキシ樹脂成分の質量基準の含有割合を表す。)
  2.  (A)シアン酸エステルが、下記一般式(3-1)で表される化合物、下記一般式(3-1)で表される化合物のプレポリマー、及び下記一般式(3-2)で表される化合物からなる群から選択される少なくとも1種の化合物及び/又はプレポリマーを含有する、請求項1に記載の繊維強化プラスチック用樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003
    (一般式(3-1)において、Rは単結合、-S-又は2価の炭化水素基を表し、R及びRは、それぞれ独立に、非置換、又は1~4個のアルキル基で置換されているフェニレン基を表し、
     R及びRが2~4個のアルキル基で置換されている場合、該アルキル基は同一の場合があり、異なる場合がある。)
    Figure JPOXMLDOC01-appb-C000004
    (一般式(3-2)において、nは1~10の整数を表し、Rは水素原子、又は炭素数が1~4のアルキル基を表す。)
  3.  上記一般式(3-1)で表される化合物が、下記一般式(3-3)で表される化合物である、請求項2に記載の繊維強化プラスチック用樹脂組成物。
    Figure JPOXMLDOC01-appb-C000005
    (一般式(3-3)において、Rは、単結合、メチレン基、-CH(CH)-、-C(CH-、又は下記一般式(4-1)~(4-8)で表される何れかの官能基を表し、
     R、R、R、及びRは、それぞれ独立に、水素原子、又は炭素数が1~4のアルキル基を表す。)
    Figure JPOXMLDOC01-appb-C000006
    (一般式(4-3)において、mは4~12の整数を表し、
     一般式(4-1)~(4-8)中の*は結合手を表す。)
  4.  (B)エポキシ樹脂が、N,N-ビス(2,3-エポキシプロピル)-4-(2,3-エポキシプロポキシ)-2-メチルアニリン、N,N-ビス(2,3-エポキシプロピル)-4-(2,3-エポキシプロポキシ)アニリン、及びN,N,N’,N’-テトラ(2,3-エポキシプロピル)-4,4’-ジアミノジフェニルメタンからなる群より選択される少なくとも1種の多官能エポキシ樹脂を含有する、請求項1~3の何れか1項に記載の繊維強化プラスチック用樹脂組成物。
  5.  (C)25℃で液状の芳香族アミン系硬化剤が、ジアミノジフェニルメタン、ジアミノジエチルジフェニルメタン、及びジアミノジエチルトルエンからなる群より選択される少なくとも1つの化合物である、請求項1~4の何れか1項に記載の繊維強化プラスチック用樹脂組成物。
  6.  請求項1~5の何れか1項に記載の繊維強化プラスチック用樹脂組成物を硬化させてなる硬化物。
  7.  請求項1~5の何れか1項に記載の樹脂組成物及び強化繊維を含有する組成物を硬化させてなる、繊維強化プラスチック。
     
PCT/JP2018/006883 2017-02-27 2018-02-26 繊維強化プラスチック用樹脂組成物、その硬化物、及び該硬化物からなる繊維強化プラスチック WO2018155672A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2019501855A JP7121721B2 (ja) 2017-02-27 2018-02-26 繊維強化プラスチック用樹脂組成物、その硬化物、及び該硬化物からなる繊維強化プラスチック
CA3050075A CA3050075A1 (en) 2017-02-27 2018-02-26 Resin composition for fiber-reinforced plastic, cured product of same, and fiber-reinforced plastic comprising said cured product
CN201880006802.XA CN110177838B (zh) 2017-02-27 2018-02-26 纤维增强塑料用树脂组合物、其固化物、及包含该固化物的纤维增强塑料
EP18756930.6A EP3587492A4 (en) 2017-02-27 2018-02-26 COMPOSITION OF RESIN FOR FIBER REINFORCED PLASTIC, CURED PRODUCT OF SUCH COMPOSITION, AND FIBER REINFORCED PLASTIC CONTAINING SUCH CURED PRODUCT
KR1020197020136A KR102573168B1 (ko) 2017-02-27 2018-02-26 섬유 강화 플라스틱용 수지 조성물, 그 경화물, 및 상기 경화물로 이루어지는 섬유 강화 플라스틱
US16/477,471 US11649319B2 (en) 2017-02-27 2018-02-26 Resin composition for fiber-reinforced plastic, cured product of same, and fiber-reinforced plastic comprising said cured product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017035565 2017-02-27
JP2017-035565 2017-02-27

Publications (1)

Publication Number Publication Date
WO2018155672A1 true WO2018155672A1 (ja) 2018-08-30

Family

ID=63253845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006883 WO2018155672A1 (ja) 2017-02-27 2018-02-26 繊維強化プラスチック用樹脂組成物、その硬化物、及び該硬化物からなる繊維強化プラスチック

Country Status (8)

Country Link
US (1) US11649319B2 (ja)
EP (1) EP3587492A4 (ja)
JP (1) JP7121721B2 (ja)
KR (1) KR102573168B1 (ja)
CN (1) CN110177838B (ja)
CA (1) CA3050075A1 (ja)
TW (1) TWI820016B (ja)
WO (1) WO2018155672A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019111416A1 (ja) * 2017-12-08 2020-12-10 昭和電工マテリアルズ株式会社 プリプレグ、積層板、及びそれらの製造方法、並びにプリント配線板及び半導体パッケージ
KR20200125579A (ko) * 2018-02-27 2020-11-04 도레이 카부시키가이샤 열경화성 수지 조성물, 프리프레그 및 섬유 강화 복합재료

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08225667A (ja) * 1994-12-02 1996-09-03 Toray Ind Inc プリプレグおよび繊維強化複合材料
JP2001294689A (ja) 2000-04-14 2001-10-23 Mitsubishi Gas Chem Co Inc プリプレグ及び積層板
JP2009013205A (ja) * 2007-06-29 2009-01-22 Adeka Corp 一液型シアネート−エポキシ複合樹脂組成物
JP2010174242A (ja) 2009-12-28 2010-08-12 Sumitomo Bakelite Co Ltd ビフェニルアラルキル型シアン酸エステル樹脂、並びにビフェニルアラルキル型シアン酸エステル樹脂を含む樹脂組成物、及び、当該樹脂組成物を用いてなるプリプレグ、積層板、樹脂シート、多層プリント配線板、並びに半導体装置
JP2011162710A (ja) * 2010-02-12 2011-08-25 Adeka Corp 無溶剤一液型シアン酸エステル−エポキシ複合樹脂組成物
JP2014019815A (ja) * 2012-07-20 2014-02-03 Mitsubishi Gas Chemical Co Inc 硬化性樹脂組成物、およびその硬化物
US8911586B2 (en) 2008-06-27 2014-12-16 Adeka Corporation One liquid type cyanate-epoxy composite resin composition
JP2016210922A (ja) * 2015-05-12 2016-12-15 株式会社Adeka エポキシ樹脂組成物、及び、それを用いた繊維強化プラスチック
JP2017008236A (ja) * 2015-06-24 2017-01-12 三菱瓦斯化学株式会社 シアン酸エステル化合物を含む樹脂組成物及びその硬化物
WO2017038603A1 (ja) * 2015-09-04 2017-03-09 株式会社Adeka 繊維強化プラスチック用樹脂組成物、その硬化物、該硬化物を含有する繊維強化プラスチック、及び該繊維強化プラスチックの製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4142034A (en) * 1978-04-10 1979-02-27 Cincinnati Milacron Inc. Epoxy resin compositions containing an amine-cyanic acid ester combination curing agent
JPS62246924A (ja) * 1986-04-18 1987-10-28 Toray Ind Inc 硬化性樹脂組成物
JP6559133B2 (ja) 2013-12-04 2019-08-14 ロンザ リミテッドLonza Limited シアン酸エステル/エポキシブレンドに基づく繊維強化部品を製造するための方法
DE102014019207A1 (de) * 2014-12-19 2016-06-23 Airbus Defence and Space GmbH Hochtemperaturbeständige Duromere auf der Grundlage von Naphthalin-basierten Epoxidharzen und Cyanatestern sowie Verbesserung der Schlagzähigkeit

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08225667A (ja) * 1994-12-02 1996-09-03 Toray Ind Inc プリプレグおよび繊維強化複合材料
JP2001294689A (ja) 2000-04-14 2001-10-23 Mitsubishi Gas Chem Co Inc プリプレグ及び積層板
JP2009013205A (ja) * 2007-06-29 2009-01-22 Adeka Corp 一液型シアネート−エポキシ複合樹脂組成物
US8911586B2 (en) 2008-06-27 2014-12-16 Adeka Corporation One liquid type cyanate-epoxy composite resin composition
JP2010174242A (ja) 2009-12-28 2010-08-12 Sumitomo Bakelite Co Ltd ビフェニルアラルキル型シアン酸エステル樹脂、並びにビフェニルアラルキル型シアン酸エステル樹脂を含む樹脂組成物、及び、当該樹脂組成物を用いてなるプリプレグ、積層板、樹脂シート、多層プリント配線板、並びに半導体装置
JP2011162710A (ja) * 2010-02-12 2011-08-25 Adeka Corp 無溶剤一液型シアン酸エステル−エポキシ複合樹脂組成物
JP2014019815A (ja) * 2012-07-20 2014-02-03 Mitsubishi Gas Chemical Co Inc 硬化性樹脂組成物、およびその硬化物
JP2016210922A (ja) * 2015-05-12 2016-12-15 株式会社Adeka エポキシ樹脂組成物、及び、それを用いた繊維強化プラスチック
JP2017008236A (ja) * 2015-06-24 2017-01-12 三菱瓦斯化学株式会社 シアン酸エステル化合物を含む樹脂組成物及びその硬化物
WO2017038603A1 (ja) * 2015-09-04 2017-03-09 株式会社Adeka 繊維強化プラスチック用樹脂組成物、その硬化物、該硬化物を含有する繊維強化プラスチック、及び該繊維強化プラスチックの製造方法

Also Published As

Publication number Publication date
CA3050075A1 (en) 2018-08-30
JP7121721B2 (ja) 2022-08-18
TWI820016B (zh) 2023-11-01
KR102573168B1 (ko) 2023-09-06
KR20190120173A (ko) 2019-10-23
TW201842027A (zh) 2018-12-01
EP3587492A4 (en) 2020-11-25
CN110177838B (zh) 2023-08-11
US20210130538A1 (en) 2021-05-06
EP3587492A1 (en) 2020-01-01
CN110177838A (zh) 2019-08-27
US11649319B2 (en) 2023-05-16
JPWO2018155672A1 (ja) 2019-12-19

Similar Documents

Publication Publication Date Title
US10538637B2 (en) Epoxy resin composition, fiber-reinforced composite material, and method for producing the same
KR102564741B1 (ko) 섬유강화 플라스틱용 수지 조성물, 그 경화물, 그 경화물을 함유하는 섬유강화 플라스틱, 및 그 섬유강화 플라스틱의 제조 방법
US9777135B2 (en) Epoxy-amine adduct, resin composition, sizing agent, carbon fiber coated with sizing agent, and fiber-reinforced composite material
JP5922582B2 (ja) コンポジット組成物
US20150098833A1 (en) Fibre reinforced composites
US10988589B2 (en) Thermosetting resin composition, prepreg, and fiber-reinforced composite material and production method therefor
JPS60155223A (ja) 熱可塑性変性エポキシ組成物
JP2011528399A (ja) 改善された靭性を有する構造用複合材料
EP2851380A1 (en) Curable resin composition, cured product thereof, prepreg, and fiber-reinforced composite material
JP7121721B2 (ja) 繊維強化プラスチック用樹脂組成物、その硬化物、及び該硬化物からなる繊維強化プラスチック
JP5247368B2 (ja) エポキシ樹脂の製造方法
JP7082496B2 (ja) 繊維強化プラスチック用樹脂組成物、その硬化物、及び該硬化物を含有する繊維強化プラスチック
CA1243445A (en) Preimpregnated reinforcements and high strength composites therefrom

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18756930

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019501855

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197020136

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3050075

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018756930

Country of ref document: EP