WO2018155646A1 - 水力発電装置 - Google Patents

水力発電装置 Download PDF

Info

Publication number
WO2018155646A1
WO2018155646A1 PCT/JP2018/006779 JP2018006779W WO2018155646A1 WO 2018155646 A1 WO2018155646 A1 WO 2018155646A1 JP 2018006779 W JP2018006779 W JP 2018006779W WO 2018155646 A1 WO2018155646 A1 WO 2018155646A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydroelectric
gantry
posture
hydroelectric generator
water channel
Prior art date
Application number
PCT/JP2018/006779
Other languages
English (en)
French (fr)
Inventor
智哉 川合
近藤 博光
文彦 松浦
泰成 金村
康司 立石
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017245163A external-priority patent/JP2019112967A/ja
Priority claimed from JP2018017021A external-priority patent/JP7021967B2/ja
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to CN201880013313.7A priority Critical patent/CN110325732B/zh
Priority to KR1020197026141A priority patent/KR102433634B1/ko
Publication of WO2018155646A1 publication Critical patent/WO2018155646A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/10Submerged units incorporating electric generators or motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/06Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B3/00Machines or engines of reaction type; Parts or details peculiar thereto
    • F03B3/04Machines or engines of reaction type; Parts or details peculiar thereto with substantially axial flow throughout rotors, e.g. propeller turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Definitions

  • This invention relates to a hydroelectric generator installed in a water channel.
  • Hydropower generator is a system that uses the kinetic energy of running water for power generation.
  • a small one is used by being installed in a water channel such as agricultural water (for example, Patent Document 1).
  • a hydroelectric generator installed in such a channel must first be put into the channel for i) installation.
  • ii) for maintenance it is necessary to lift the hydroelectric generator from the water channel when replacing the rotor blades, gears, oil seals, or the like.
  • a crane truck or a large lifting mechanism has been used.
  • Hydropower generators applied to waterways usually generate electricity by submerging their wings in the waterway, but as described above, the hydroelectric generators need to be lifted from the waterway during the above-mentioned ii) and iii) unsteady conditions. In particular, in the case of an emergency of iii), it is necessary to quickly lift the hydroelectric generator from the water channel.
  • a crane vehicle or the like was used to work with three or more people.
  • the waterway has a relatively fast flow velocity
  • the hydroelectric generator when installed into the waterway with a crane truck, the first submerged wing is caused to flow downstream by the flow velocity. It has been difficult for the entire hydroelectric generator to flow downstream, the hydroelectric generator to vibrate due to the flow velocity, or to be installed at a predetermined location. Of course, this work was also handled by more than three people.
  • An object of the present invention is to provide a hydroelectric generator that can be easily pulled up from a waterway by human power and can be reliably installed at a planned location.
  • the hydroelectric generator of the present invention is at least one hydroelectric power generation module, each of which includes at least one hydroelectric power generation module having an impeller for converting hydraulic power into rotational force, and an impeller of the at least one hydroelectric power generation module.
  • Hydroelectric power generator comprising: a generator that generates electric power by rotation; at least one frame that supports each of the hydroelectric modules of the at least one hydroelectric module; and a fixed frame that is fixed to a water channel and supports the at least one frame.
  • the fixed frame includes a fixture for fixing the fixed frame to the water channel, The at least one gantry with respect to the fixed frame;
  • the hydroelectric module supported by the gantry takes a submerged posture in which the lower end of the impeller is positioned below the water surface of the water channel, and
  • the hydroelectric power generation module supported by the gantry is rotatably supported across a standby position where the entire impeller is positioned above the water surface of the water channel.
  • the water surface of the “water channel” is at a predetermined height.
  • each of the mounts is rotatably supported, it can be used as follows.
  • the impeller is transported to the target waterway in the standby position.
  • a hydroelectric power generation module is supported on the mount of the hydroelectric power generation apparatus.
  • a fixed frame is previously installed in the water channel by a fixing tool.
  • the gantry is supported on the fixed frame while maintaining the stand-by posture of the impeller.
  • the gantry is rotated by human power so that the lower end of the impeller is in a submerged posture where it is located below the water surface of the water channel. In this submerged posture, the generator generates electricity by the rotation of the impeller. In this way, the hydroelectric generator can be reliably installed at the planned location.
  • the stand When pulling up this hydroelectric generator from the waterway, the stand is rotated by human power so that the entire impeller is positioned above the water surface of the waterway. Thus, the hydroelectric generator can be easily lifted from the water channel. In the standby posture, the hydroelectric generator can be maintained, and it is possible to prevent an abnormality from occurring in the hydroelectric generator in an emergency such as water increase.
  • the apparatus may be provided with at least one operating means for rotating the at least one gantry with respect to the fixed frame, and the operating means may be detachable from the at least one gantry to be rotated and the fixed frame.
  • the gantry can be rotated by the operating means relative to the fixed frame in a state where the gantry is supported by the fixed frame and the operating means is mounted on the gantry. Therefore, the gantry can be easily rotated by the operating means with respect to the fixed frame.
  • the at least one operating means When the at least one operating means is mounted on the at least one gantry to be rotated and the fixed frame, the at least one operating means includes the hydroelectric power module supported by the gantry. You may hold
  • a weight provided on a side opposite to the at least one hydroelectric power generation module with respect to the rotation axis of the at least one gantry may be provided.
  • the impeller can be maintained in the standby posture by the weight provided on the opposite side of the gantry to the hydroelectric power generation module with respect to the rotation axis of the gantry. . Therefore, transportation etc. of this hydroelectric generator can be performed easily.
  • a rotating shaft that is provided integrally with the at least one mount and rotates the mount with respect to the fixed frame, and a rotary bearing that rotatably supports the rotating shaft and is detachably provided on the fixed frame. It may be a thing.
  • the hydroelectric power generation module and the gantry can be transported with the rotary bearing portion detached from the fixed frame. In a state where the rotary bearing portion is mounted on the fixed frame, the gantry can be rotated about the rotation axis.
  • the rotary bearing portion may include a resin sliding material on a surface that contacts the rotary shaft.
  • the rotating shaft can be smoothly rotated with respect to the rotating bearing portion, and the occurrence of rust on the rotating shaft can be suppressed.
  • the rotation of the rotating shaft does not become awkward due to sticking from rusting.
  • Each of the at least one frame is connected to the fixed frame by a corresponding hinge so as to be rotatable between a position where the at least one hydroelectric power module takes the submersion posture and a position where the standby posture is taken. It may be what was done.
  • the rotating shaft etc. which rotate a mount frame can be omitted, it is possible to reduce the weight and size of the entire hydroelectric generator. This makes it possible to easily carry, install, pull up, etc. the hydroelectric generator. Further, the manufacturing cost can be reduced.
  • a rotating shaft that is fixed to the at least one frame and that extends in a width direction of a water channel that is rotatable with respect to the fixed frame; a rotating mechanism that rotates the rotating shaft with respect to the fixed frame; and An operating tool that can be manually operated from outside the water channel, and the at least one gantry rotates together with the rotating shaft, whereby the one hydroelectric power generation module is positioned between the submerged attitude and the standby attitude. It may be changeable.
  • the gantry rotates together with the rotation shaft, and the gantry, more precisely, the gantry and the hydroelectric power generation module, and the submerged posture in which the impeller is positioned below the water surface.
  • the impeller is switched to a standby posture located above the water surface. Since the operation tool can be manually operated from outside the water channel, the posture of the gantry can be switched without using a machine and without the operator entering the water channel. For this reason, even when the fall prevention fence is installed on the side wall of the water channel, the operator can perform the posture switching operation of the gantry without getting over the fall prevention fence.
  • the gantry posture switching operation is a simple operation that only involves operating the operation tool, it can be performed by a small number of people, for example, one person. For this reason, it is possible to pull up an impeller from a waterway also at the time of emergency, such as water increase.
  • the rotation mechanism may convert the operation of the operation tool into a rotation operation around the axis of the rotation shaft and transmit it to the rotation shaft by any one of a worm gear, a slide screw, and a ball screw.
  • the rotating shaft can be rotated so that the gantry changes its posture between a submerged posture and a standby posture.
  • the rotation mechanism may include a ratchet mechanism that restricts the rotation shaft from rotating in a direction in which the at least one hydroelectric generation module changes its posture from the standby posture to the submerged posture.
  • the ratchet mechanism when changing the posture of the gantry to the standby posture in order to lift the impeller from the water channel, the gantry will not move toward the submerged posture even if the operation of the operation tool is interrupted. Therefore, even one person can easily perform the lifting operation of the impeller. Moreover, it can hold
  • the operation tool is reciprocated in the length direction of the water channel, and may have a notch mechanism that transmits the operation of the operation tool to the rotation mechanism. If it is this structure, when the fall prevention fence is installed in the side wall of a waterway, an operation tool will be operated in parallel with a fall prevention fence. For this reason, it is easy to operate the operation tool from outside the water channel, and the lifting operation of the hydroelectric power generation module is further facilitated.
  • a material having corrosion resistance may be used for the components of the rotating mechanism. Since the hydroelectric generator is used in an environment where water is splashed, it is desirable to use such a material.
  • the at least one hydroelectric module is a plurality of hydroelectric modules arranged in the width direction of the water channel, and the at least one gantry is a plurality of gantrys that respectively support the plurality of hydroelectric modules;
  • Individual rotation support means for supporting the plurality of mounts independently and rotatably with respect to the fixed frame over a position where the plurality of hydroelectric power generation modules assume the submerged posture and a position where the plurality of hydroelectric generation modules take the standby posture. May be.
  • each hydroelectric power generation module when installing this hydroelectric power generation apparatus, a plurality of hydroelectric power generation modules are installed on the erection frame (which agrees with the “fixed frame”), and each hydropower generation module is in a standby position. Can be installed in waterways. In this case, the hydroelectric generator can be easily installed without resisting the flow velocity of the water channel. In addition, it is also possible to install each hydroelectric power generation module separately with respect to the installation frame constructed over the water channel. In this case, each hydropower generation module can be installed by pulling it up separately with a lifting mechanism, etc., so that the time required for installation of the lifting mechanism etc. is reduced compared to the conventional example in which two hydroelectric generators are installed simultaneously. Can be achieved.
  • the generator generates electricity by the rotation of the impeller.
  • the hydroelectric generator can be easily and reliably installed at the planned location. Further, the power generation can be increased as compared with the case where only one hydroelectric power generation module is installed.
  • this hydroelectric generator When this hydroelectric generator is used, it has individual rotation support means for rotatably supporting each hydropower generation module independently in a submerged posture and a standby posture.
  • the power generation modules can be pulled up one by one by the individual rotation support means. For this reason, compared with the case where the two hydroelectric generators are simultaneously pulled up from the water channel, the force required for lifting can be dispersed. Thereby, the hydroelectric generator can be easily lifted from the water channel by human power or the like. Moreover, the time required for simultaneous lifting of the two units can be shortened. Moreover, since it becomes possible to pull up the hydroelectric modules one by one, it is possible to maintain each hydroelectric module separately.
  • each hydropower module can be changed between a submerged posture and a standby posture.
  • the “human power” includes the case where only human power is used and the case where a small lifting mechanism is used together with human power.
  • the at least one operation means is a plurality of operation means, and the plurality of operation means may be provided on each gantry so as to independently rotate the plurality of gantry relative to the fixed frame. .
  • each gantry can be rotated independently by operating each operating means by human power or the like.
  • the individual rotation support means may be the hinge.
  • the whole hydroelectric power generation device can be reduced in weight and size. Thereby, conveyance, installation, raising, etc. of a hydroelectric generator can be facilitated. Further, the manufacturing cost can be reduced.
  • FIG. 1 is a perspective view of a submerged posture of a hydroelectric generator according to a first embodiment of the present invention. It is a front view of the submerged attitude
  • FIG. 2 is a perspective view of a standby posture of the hydroelectric generator of FIG. 1. It is a front view of the stand-by posture of the hydroelectric generator of FIG. It is a side view of the stand-by posture of the hydroelectric generator of FIG. It is a top view of the stand-by posture of the hydroelectric generator of FIG. It is a figure which shows schematically the process in which the hydroelectric generator of FIG. 1 is installed. It is a figure which shows schematically the process of installing the hydroelectric generator of FIG. 1, Comprising: It is a figure which shows the process following FIG. 9A. It is a figure which shows schematically the process in which the hydroelectric generator of FIG. 1 is installed. It is a figure which shows schematically the process of installing the hydroelectric generator of FIG.
  • FIG. 10A It is a figure which shows the process following FIG. 10A. It is a perspective view from the upstream of the submerged attitude
  • FIG. 12 is a perspective view of a standby posture of the hydroelectric generator of FIG. 11.
  • FIG. 12 is a perspective view of a standby posture of a subassembly in the hydroelectric generator of FIG. 11. It is a front view which shows the state which the mount frame of the hydroelectric generator which concerns on 3rd Embodiment of this invention exists in a submerged posture. It is a right view of the hydroelectric generator of FIG.
  • FIG. 2 A hydroelectric generator according to a first embodiment of the present invention will be described with reference to FIGS. ⁇ About the schematic configuration of the entire hydroelectric generator>
  • this hydroelectric power generation apparatus is installed in a water channel 1 with flowing water such as a river or a irrigation channel, and generates power by receiving rotation of an impeller 2.
  • the water channel 1 is composed of, for example, a bottom surface portion 1a made of concrete or the like and side wall surface portions 1b on both sides.
  • This hydroelectric generator includes a hydroelectric generator module 3 and a support device 4 that supports the hydroelectric generator module 3.
  • the hydroelectric power generation module 3 will be described, and hereinafter, the support device 4, the installation and lifting of the hydroelectric power generation device, and the effects will be sequentially described.
  • the hydroelectric power generation module 3 includes an impeller 2 and a generator 6 that generates electric power by the rotation of the impeller 2.
  • the impeller 2 is provided so as to be submerged in the flowing water of the water channel 1 and converts hydraulic power into rotational force.
  • the impeller 2 is a propeller type in which the rotation axis L1 is parallel to the flowing direction of flowing water.
  • the impeller 2 includes a hub 2a provided on the rotational axis L1 and a plurality (for example, five) of blades 2b extending radially outward from the outer peripheral surface of the hub 2a. As shown in FIG. 3, the tip of each blade 2b is inclined toward the upstream side.
  • a blade shaft 2c is coaxially attached to the hub 2a, and the blade shaft 2c is rotatably supported by a bearing (not shown). The rotation of the blade shaft 2c is accelerated by a gear portion (not shown) composed of a pair of bevel gears and the like meshing with each other.
  • the blade shaft 2 c, the bearing, and the gear portion are accommodated in a gear box 7.
  • the gear box 7 is filled with grease.
  • the input shaft (not shown) of the generator 6 extends into the support cylinder 8.
  • the lower end of the input shaft and the upper end of the power transmission shaft 9 are coaxially connected via a rotary connector (not shown).
  • the shaft center of the power transmission shaft 9 and the shaft center of the blade shaft 2c are arranged so as to be orthogonal to each other.
  • the power transmission shaft 9 is rotatably supported by the support cylinder 8 by a bearing (not shown) in the support cylinder 8. Therefore, the generator 6 generates electric power by transmitting the rotation of the blade shaft 2c to the power transmission shaft 9 and the input shaft.
  • the support device 4 includes a fixed frame 10, a gantry 11, a generator base 12, a rotating shaft 13, a rotating bearing portion 14, a weight 15, and an operating means 16.
  • the assembly excluding the fixed frame 10 in the support device 4 is a gantry assembly Sa (FIG. 9A).
  • the gantry assembly Sa and the hydroelectric power generation module 3 constitute a subassembly As (FIG. 9A).
  • the gantry assembly Sa and the subassembly As can be transported independently from the fixed frame 10.
  • the subassembly As (FIG. 9A) is supported by the fixed frame 10 fixed to the water channel.
  • a gantry 11 is rotatably supported by a fixed frame 10 fixed to the water channel 1. That is, the gantry 11 has a submerged posture in which the lower end of the impeller 2 is located below the water surface of the water channel 1 with respect to the fixed frame 10 and a standby posture in which the entire impeller 2 is located above the water surface of the water channel 1 (FIG. 5). To FIG. 8).
  • the hydroelectric power generation module 3 is supported on the gantry 11 via a generator base 12 or the like.
  • the fixed frame 10 includes a pair of beams 17, 17, a connecting member 18, and a plurality (four in this example) of fixtures 19.
  • a plurality of fixtures 19 are fixed from the vicinity of the upper end to the upper end of the side wall surface portion 1b (FIG. 2) on both sides of the water channel 1.
  • each fixture 19 includes a vertical plate fixing portion 19 a along the side surface of the side wall surface portion 1 b, and a horizontal fixing plate portion that is connected to the vertical plate fixing portion 19 a and extends along the upper end surface of the side wall surface portion 1 b. 19b and a cross-sectional L shape (see FIG. 2).
  • a plurality (two in this example) of female screws for fixing the beam 17 are formed on the horizontal fixing plate portion 19b.
  • Two fixing tools 19, 19 are arranged on the side wall surface portion 1 b on one side of the water channel 1 so as to be separated from each other in a direction parallel to the flowing direction A 1 of the flowing water, and the two fixing tools 19 are also arranged on the side wall surface portion 1 b on the other side of the water channel 1. , 19 are spaced apart from each other in a direction parallel to the flowing direction A1 (hereinafter referred to as “flowing direction”).
  • flowing direction a direction parallel to the flowing direction A1
  • the pair of beams 17 and 17 are provided in parallel with the flowing water direction and are connected to each other by a connecting member 18.
  • the connecting member 18 has, for example, a rectangular tube shape and extends parallel to the width direction of the water channel.
  • the connecting member 18 is provided with two rotary bearing portions 14 with a predetermined interval therebetween via a bracket 20.
  • Each beam 17 is formed in an L-shaped cross section (see FIG. 2) by a standing plate portion 17a and a horizontal plate portion 17b connected to the standing plate portion 17a. At both ends in the longitudinal direction of the upper surface of the horizontal plate portion 17b of each beam 17, both longitudinal ends of the connecting member 18 are supported and fixed. As shown in FIG.
  • each beam 17 is fixed to the two fixtures 19 arranged on each side wall surface portion 1b by a plurality of bolts.
  • a bar accommodating portion 22 and a rectangular plate-like spacer 23 (FIG. 5), which will be described later, are joined to the horizontal plate portion 17b of each beam 17.
  • the gantry 11 includes a gantry body 24 and two gantry support portions 25 and 25.
  • the gantry body 24 has a rectangular tube shape and extends in the width direction of the water channel 1.
  • the gantry body 24 is arranged in parallel with the connecting member 18 at a predetermined interval.
  • both longitudinal ends of the gantry main body 24 are placed and supported on spacers 23 (see FIG. 5) joined to the horizontal plate portions 17b of the beams 17.
  • each gantry support portion 25 is joined to the gantry body portion 24.
  • These gantry support portions 25, 25 extend in a direction perpendicular to the longitudinal direction of the gantry body portion 24, and are arranged in parallel with a predetermined interval therebetween.
  • the generator stand 12 is connected to the opposite sides of the gantry support portions 25, 25 via a bracket 26.
  • a generator 6 is supported on the generator stand 12.
  • a rotating shaft 13 that rotates the gantry 11 is fitted and fixed to the gantry support portions 25 and 25 integrally with the other longitudinal ends of the gantry support portions 25 and 25.
  • the rotary shaft 13 extends in a direction orthogonal to the respective gantry support portions 25, and both end portions projecting in the width direction from the gantry support portions 25 and 25 are supported by the rotary bearing portion 14.
  • the rotary bearing portion 14 rotatably supports the rotary shaft 13 and is detachably provided on the fixed frame 10.
  • a bracket plate 20a joined to the rotary bearing portion 14 of the bracket 20 provided on the connecting member 18 is detachable by a plurality of bolts.
  • the rotary bearing portion 14 includes a resin sliding material 27 on a surface that slides with the rotary shaft 13.
  • this resin sliding material 27 for example, if NTN Corporation's BEAREE FL3700 having excellent friction and wear characteristics in water is attached to the rotating bearing portion 14, the rotating shaft 13 can rotate smoothly and rust is generated. Therefore, the rotation of the rotary shaft 13 does not become awkward due to adhesion from rusting.
  • a weight (balance weight) 15 is provided at the other longitudinal ends of the gantry support portions 25 and 25.
  • the weight 15 is provided on the opposite side to the hydroelectric power generation module 3 of the gantry 11 with respect to the rotation axis of the rotation shaft 13, and the horizontal state (FIG. 5, FIG. 9A) during the movement of the hydroelectric power generation device is easy To maintain.
  • the weight 15 is formed in a rectangular parallelepiped shape, for example. However, it is not limited to this shape.
  • the operating means 16 is a rod-like member that manually rotates the gantry 11 with respect to the fixed frame 10, and a gripping portion 16 a is provided at one end in the longitudinal direction of the operating means 16.
  • the gripping part 16a may be provided so that it can be easily attached and detached by a screw mechanism or the like.
  • the operating means 16 is detachable from the gantry 11 and the fixed frame 10.
  • the gantry 11 can be rotated by the operation means 16 over the submerged posture shown in FIG. 1 and the standby posture shown in FIG.
  • FIG. 1 when the operation means 16 is attached to the gantry 11 and the fixed frame 10, the operation means 16 holds the gantry 11 in a submerged posture.
  • FIG. 5 when the operation means 16 is attached to the gantry 11 and the fixed frame 10, the operation means 16 holds the gantry 11 in a standby posture.
  • first rod insertion members 28, 28 are fixed to both ends in the longitudinal direction of the gantry main body 24.
  • Each first rod insertion member 28 has a hollow rectangular tube shape and is open at both ends in the longitudinal direction.
  • Each first rod insertion member 28 extends a predetermined length perpendicular to the longitudinal direction of the gantry main body 24 and parallel to the longitudinal direction of the gantry support 25.
  • the operation means 16 can be inserted (mounted) into each first rod insertion member 28.
  • 2nd rod insertion members 29 and 29 are being fixed to the longitudinal direction both ends of connecting member 18 in fixed frame 10, respectively.
  • Each second rod insertion member 29 has a hollow rectangular tube shape and is open at both ends in the longitudinal direction.
  • Each second rod insertion member 29 extends a predetermined length perpendicular to the longitudinal direction of the connecting member 18 and parallel to the longitudinal direction of the beam 17.
  • the operation means 16 can be inserted (attached) into each second rod-shaped member 29.
  • the rod accommodating portion 22 joined to the horizontal plate portion 17b of each beam 17 has a hollow rectangular tube shape, and is provided in the vicinity of both ends in the longitudinal direction of the connecting member 18.
  • Each bar accommodating portion 22 extends a predetermined length in a direction orthogonal to the longitudinal direction of the beam 17 and the longitudinal direction of the connecting member 18.
  • Each rod accommodating portion 22 is configured to accommodate the lower end of the operating means 16.
  • the subassembly As As comprising the gantry assembly Sa and the hydroelectric generation module 3 arrives at the destination, the subassembly As (this subassembly As is referred to as “hydropower generation module etc.”). Is removed from the loading platform.
  • the detached hydroelectric power generation module or the like is lifted by a slinger 30 with a crane or the like, and moved to a fixed frame previously installed in the water channel while maintaining each blade 2b in a substantially horizontal state.
  • the lower end of the operating means 16 inserted into the first rod insertion member 28 of the gantry 11 is provided on the beam 17 after the hydroelectric power module or the like is moved above the fixed frame 10 of the water channel. Align with the rod housing part 22. As a result, the axis of rotation of the gantry 11 matches the fixed frame 10.
  • the operating means 16 serves as a mark for setting, and the operator can easily confirm it visually.
  • the hydroelectric power generation module or the like is lowered to fix the rotary bearing portion 14 and the bracket plate 20a with a plurality of bolts.
  • the lower end of the operation means 16 is pulled out from the rod accommodating portion 22, and the gantry 11 is rotated by the operation means 16.
  • the impeller 2 is submerged in a water channel.
  • the operation means 16 is pulled out from the first rod insertion member 28 of the gantry 11.
  • each blade 2b of the impeller 2 and the beam 17 are in a right angle state (submerged posture).
  • the final form is shown in FIGS.
  • the operating means 16 is pulled out from the first and second rod insertion members 28 and 29.
  • the operating means 16 is inserted into only the first rod insertion member 28 of the gantry 11 from the opposite side, and the gantry 2 is pulled up from the water channel by rotating the gantry 11 in the direction opposite to that described above. After each blade 2b is in a horizontal state, the lower end of the operating means 16 is inserted into the rod accommodating portion 22. Thereby, desired maintenance can be performed without being obstructed by the flow velocity of the water channel.
  • the impeller 2 may be lifted in the same manner as in the maintenance described above, but when the gripping portion 16a is detachable from the operation means 16, it may be lifted as follows. That is, after the gripping portion 16a is removed from the operation means 16, the operation means 16 is pushed into the first and second rod insertion members 28 and 29, and the second rod insertion member 29 is pushed through, so that the first It is locked only with the rod insertion member 28. Then, the gantry 11 is rotated by the operating means 16 to pull up the impeller 2 from the water channel.
  • the gantry 11 since the gantry 11 is supported so as to be vertically rotatable with respect to the fixed frame 10 in a submerged posture and a standby posture, it can be used as follows.
  • the impeller 2 is transported to the waterway 1 that is the destination in a standby posture.
  • the hydroelectric power generation module 3 is supported on the gantry 11 of the hydroelectric power generation device.
  • a fixed frame 10 is previously installed in the water channel 1 by a fixing tool 19.
  • the gantry 11 is supported on the fixed frame 10 in a state where the impeller 2 is kept in the standby posture.
  • the gantry 11 is rotated by human power so that the lower end of the impeller 2 is in a submerged posture where it is located below the water surface of the water channel 1.
  • the generator 6 generates power by the rotation of the impeller 2. In this way, the hydroelectric generator can be reliably installed at the planned location.
  • the gantry 11 When pulling up the hydroelectric generator from the water channel 1, the gantry 11 is rotated by human power so that the entire impeller 2 is positioned above the water surface of the water channel 1. In this way, the hydroelectric generator can be easily pulled up from the water channel 1. In the standby posture, the hydroelectric generator can be maintained, and it is possible to prevent an abnormality from occurring in the hydroelectric generator in an emergency such as water increase.
  • the gantry 11 on which the hydroelectric power generation module 3 is installed is pulled up with respect to the fixed frame 10 by rotating it through the rotating bearing portion 14. It is only necessary to be able to rotate 90 degrees. For this reason, as shown in FIG. 11, it can replace with the rotary bearing part 14 (FIG. 1), and the hinge 31 can be used. That is, the gantry 11 is connected to the fixed frame 10 by a hinge 31 so as to be rotatable up and down over the submerged posture shown in FIGS. 11 and 12 and the standby posture shown in FIGS. 13 and 14.
  • one hinge piece 31 a of the hinge 31 is connected to the connecting member 18 of the fixed frame 10, and the other hinge piece 31 b of the hinge 31 is connected to each support section 25 of the mount 11. Yes. Therefore, the gantry 11 is configured to be vertically rotatable with respect to the fixed frame 10 over the submerged posture and the standby posture with the axis of the hinge 31 as the rotation axis. According to the configuration using the hinge 31, the rotating shaft 13 (FIG. 1) and the like can be omitted, so that the weight and the size can be reduced. Further, in the hydroelectric generator of FIGS. 11 to 14, the operating means 16 is detachably provided on each gantry support portion 25.
  • the operation means 16 is inserted into the first and second rod insertion members 28 and 29 to maintain the submerged posture, and the operation means 16 is used for the first time during maintenance or the like. And after pulling out from the 2nd rod insertion members 28 and 29 and rotating the mount frame 11, the lower end of the operation means 16 is inserted in the rod accommodating part 22 grade
  • a punching structure including first and second punching parts 32 and 33 for holding the gantry 11 in a submerged posture or a standby posture is provided.
  • the first punching part 32 is fixed to the gantry support part 25, and the second punching part 33 is installed on the connecting member 18. Fitting holes 32 a and 32 b are formed at the tip of the first punching part 32.
  • the second punching part 33 includes a punching part main body 33a and a bar 33b supported by the punching part main body 33a so as to be slidable.
  • the submerged posture is maintained by fitting this rod 33b into one fitting hole 32b of the first punching part 32 (FIG. 12). Further, the standby posture is maintained by fitting the rod 33b into the other fitting hole 32a of the second punching part 32 (FIG. 13).
  • the rod housing portion 22 (FIG. 1), and the first and second rod insertion members 28 and 29 ( 1) becomes unnecessary, and the structure can be simplified as compared with the first embodiment.
  • the subassembly As comprising the gantry assembly Sa and the hydroelectric power generation module 3 is detached from the cargo bed.
  • the detached hydroelectric power generation module or the like is lifted by a slinger (not shown) by a crane or the like, and is moved to a fixed frame previously installed in the water channel while maintaining each blade 2b in a substantially horizontal state.
  • the impeller 2 is submerged in the waterway as shown in FIG.
  • the rod 33b of the second punching part 33 is slid by sliding the rod 33b of the second punching part 33 as shown in FIG. 12 while supporting the operating means 16 so that the impeller 2 maintains a right angle state.
  • the submerged posture is maintained by fitting into the fitting hole 32b of the component 32.
  • the rotating shaft 13 (FIG. 1) and the like can be omitted by the configuration using the hinge 31, and thus the weight and size can be reduced.
  • the punching structure including the first and second punching parts 32 and 33 for holding the gantry 11 in the submerged posture or the standby posture is provided, the rod housing portion 22 and the first and second rod insertion members 28 and 29 are provided. (FIG. 1) becomes unnecessary, and the structure can be further simplified as compared with the first embodiment. This makes it possible to reduce costs.
  • the operation means 16 is detachably provided on each gantry support portion 25, the appearance aesthetic appearance is not impaired by detaching the operation means 16 from the gantry support portion 25 when used in the submerged posture. In addition, it is possible to prevent a third party other than the operator who has determined the hydroelectric power generation apparatus from operating the operation means 16 in advance.
  • the weight 15 may be provided at the other ends in the longitudinal direction of the gantry support portions 25 and 25.
  • FIGS. 16 and 17 are a front view, a right side view, and a plan view of a hydroelectric generator according to a third embodiment of the present invention.
  • This hydroelectric power generation device is installed in a waterway 1 with flowing water, such as a river or an irrigation channel, and generates power with the power of flowing water. Water flows in the water channel 1 in the direction of the arrow in FIGS. 16 and 17.
  • the water channel 1 has a U-shaped cross section including a bottom surface portion 1 a and side wall surface portions 1 b on both sides.
  • the bottom surface portion 1a and the side wall surface portion 1b are integrally formed of, for example, concrete.
  • a fall prevention fence 1c may be installed on the side wall surface portion 1b to ensure safety.
  • the hydroelectric generator includes a hydroelectric module 3 and a support device 110 that supports the hydroelectric module 3.
  • the hydroelectric power generation module 3 (more precisely, the gantry 130 that supports the hydroelectric power generation module 3) can be changed between a submersion attitude and a standby attitude.
  • the posture of the hydroelectric power generation module 3 is not specified, it is assumed that the hydroelectric power generation module 3 is in a submerged posture, which is a state in use.
  • the hydroelectric power generation module 3 includes an impeller 2 that is provided so as to be immersed in running water during use, and a generator 6 that is provided above the running water. In response to the water flow, the impeller 2 converts hydraulic power into rotational force, and the generator 6 generates power by the rotation of the impeller 2.
  • the impeller 2 in the illustrated example is a propeller type in which the rotation axis L (FIG. 16) is parallel to the water channel length direction.
  • the impeller 2 includes a hub 2a provided on the rotation axis L and a plurality of (for example, five) blades 2b extending radially outward from the outer peripheral surface of the hub 2a.
  • the hub 2a of the impeller 2 is attached to a blade shaft (not shown) extending from the gear box 7 along the water channel length direction.
  • the blade shaft is rotatably supported by a bearing (not shown) in the gear box 7.
  • the gear box 7 is supported by a lower end of a support cylinder 8 that extends downward from a bottom surface of a gantry 130 described later.
  • a power transmission shaft 109 is provided in the support cylinder 8.
  • the power transmission shaft 109 passes through the gantry 130 and its upper end is connected to the input shaft 106 a of the generator 6.
  • the blade shaft and the power transmission shaft 109 are connected to each other through a gear mechanism (not shown) in the gear box 7 so that power can be transmitted.
  • the gear mechanism is composed of a combination of bevel gears, for example, and accelerates and transmits rotational power from the blade shaft to the power transmission shaft 109.
  • the rotation of the impeller 2 is transmitted to the generator 6 through the blade shaft, the gear mechanism, and the power transmission shaft 109.
  • the support device 110 includes a fixed portion 110a fixed to the water channel 1, and a rotating unit 110b that can rotate around the axial center of the water channel 1 along with the hydroelectric power generation module 3 with respect to the fixed portion 110a. And have.
  • a rotation mechanism 111A that rotates the rotation unit 110b with respect to the fixing unit 110a and an operation tool 112A that operates the rotation mechanism 111A are provided.
  • the fixing part 110a is composed of a fixing frame 114 fixed to the side wall surface parts 1b on both sides of the water channel 1 in the example of the drawing, but may include members other than the fixing frame 114.
  • the fixing frame 114 includes a first fixing member 115, a second fixing member 116, and a rotary shaft support member 117 disposed on each side wall surface portion 1b, and a connecting member 118 (see FIG. 15).
  • the first fixture 115 has an L-shaped angle or the like, and is fixed to a corner inside the upper end of the side wall surface portion 1b by a fixing means 120 (FIG. 17) such as a concrete nail.
  • a plurality of elastic members 121 are provided between the upper surface and the inner side surface of the side wall surface portion 1 b and the first fixture 115.
  • the second fixture 116 also has an L-shaped angle or the like, and the second fixture 116 is formed on the inner surface of the first fixture 115 in the water channel width direction and on the upper surface of the first fixture 115. It arrange
  • the length of the second fixture 116 in the water channel length direction is shorter than the length of the first fixture 115 in the water channel length direction.
  • a plurality of bolt fastening long holes 116 a that are long in the water channel width direction are provided on the upper surface of the second fixture 116.
  • the second fixing tool 116 is screwed into a screw hole (not shown) provided in the upper surface portion of the first fixing tool 115 by screwing the fixing bolt 122 inserted through the long hole 116a, so that the second fixing tool 116 is inserted into the first fixing tool 115. Secure to.
  • the interval between the second fixing tools 116 on both sides of the water channel can be adjusted according to the width of the water channel 1.
  • the positioning bolt 123 is screwed to the side surface portion of the second fixing tool 116 and the tip thereof is brought into contact with the side surface portion of the first fixing device 115, whereby the first fixing device 115 and the second fixing device 116 are fixed.
  • the spacing in the width direction of the tool 116 is kept constant.
  • the rotating shaft support member 117 includes two plate members 117a arranged in the water channel width direction fixed to the upper surface portion of the second fixture 116, and a cylindrical bearing supported by these plate members 117a. Part 117b. Both ends of a rotary shaft 135 (described later) are inserted into each bearing portion 117b of the rotary shaft support member 117 on both sides of the water channel so that the rotary shaft 135 is rotatably supported.
  • the connecting member 118 is bridged between the second fixtures 116 on both sides of the water channel, and both ends thereof are fixed to the respective second fixtures 116 by the fixture bolts 124.
  • the connecting member 118 may be formed integrally with the second fixture 116 on both sides of the water channel in advance.
  • the rotating part 110b has a gantry 130 that supports the hydroelectric power generation module 3.
  • the gantry 130 is provided with a generator base 131 at the top, and a generator fixing frame 132 rises upward from the top surface of the generator base 131.
  • the generator 6 is fixed to the generator fixing frame 132.
  • the upper end of the power transmission shaft 109 is rotatably supported by a bearing portion 133 provided on the generator stand 131.
  • a rotary shaft 135 is fixed to the upstream end of the gantry 130.
  • the rotation shaft 135 is a columnar or cylindrical shaft extending in the width direction of the water channel, and both ends thereof are rotatably supported by the bearing portions 117b of the rotation shaft support member 117 on both sides of the water channel.
  • the axis of the rotation shaft 135 is the rotation axis of the rotation unit 110b.
  • the rotating mechanism 111A is provided on either side of the side wall surface portion 1b (for example, the right bank, the right side in FIG. 15), and rotates the rotating shaft 135 to rotate the rotating portion 110b relative to the fixed portion 110a.
  • a worm gear 140 is used as means for converting the rotation operation of the operation tool 112A into a rotation operation around the axis of the rotation shaft 135 and transmitting the rotation operation to the rotation shaft 135.
  • the worm 142 is attached to the lower end of the operation shaft 141 extending in the vertical direction, and the worm wheel 143 is attached to one end (the right end of the paper surface) of the rotating shaft 135.
  • the worm 142 and the worm wheel 143 are connected to each other. I'm engaged.
  • the lower end of the operation shaft 141 is rotatably supported by a pair of upper and lower operation shaft support members 144 fixed to the rotation shaft support member 117.
  • the configuration may be such that the worm wheel 143 is attached to the operation shaft 141 and the worm 142 is attached to the rotary shaft 135.
  • the hydroelectric generator is used in an environment where water is splashed, it is desirable that the worm 142 and the worm wheel 143 constituting the rotating mechanism 111A are made of materials having corrosion resistance. It is desirable that the components of the rotation mechanisms 111B and 111C used in the other embodiments below are similarly made of a material having corrosion resistance.
  • the operation tool 112A is detachably attached to the upper end of the operation shaft 141.
  • the operation tool 112A of this embodiment has a shape in which a plurality of (four) handles 112b extend radially from the hub 112a, but may have other shapes.
  • the hydroelectric power generation module 3 rotates integrally with the rotating unit 110b.
  • the gantry 130 that supports the hydroelectric power generation module 3 includes a submerged posture in which the lower end of the impeller 2 is positioned below the water surface of the water channel 1 (see FIG. 15), and the entire impeller 2 is above the water surface of the water channel 1. The posture is changed to the standby posture (see FIG. 18).
  • the posture of the posture changeable unit 101 including the hydroelectric power generation module 3 and the rotating unit 110b of the support device 110 may be referred to as a “water immersion posture” and a “standby posture”.
  • this rotating mechanism 111A by increasing the gear ratio of the worm gear 140, it is possible to maintain the posture of the gantry 130 with the frictional force. Further, the gear ratio may be increased in order to increase the pulling speed of the posture changeable unit 101. In that case, if the ratchet mechanism 145 (FIG. 15) that restricts the rotation in the direction opposite to the rotation direction when the posture changeable portion 101 is pulled up is arranged on the operation shaft 141, the posture of the gantry 130 is reliably maintained, and the reverse rotation is prevented. Can be prevented.
  • the hydroelectric generator is transported to the place where the waterway 1 is installed in the standby posture shown in FIG. During this transportation, the hydroelectric generator may be mounted as it is so that the first fixing tool 115 of the fixed frame 114 contacts the loading platform of the transportation vehicle. For this reason, a stand on which the hydroelectric generator is placed is unnecessary. During transportation, the posture changeable portion 101 is maintained in the standby posture by the frictional force of the rotation mechanism 111A.
  • the fixing bolt 122 and the positioning bolt 123 are pulled out or loosened, and the first fixing tool 115 and the second fixing tool 116 of the fixing frame 114 are separated. And parts other than the 1st fixing tool 115 in a hydroelectric generator are lifted with a slinger (not shown) with a crane etc.
  • the separated first fixing tool 115 is fixed to a predetermined portion of the side wall surface portion 1 b of the water channel 1 by the fixing means 120.
  • the lifting portion of the hydroelectric generator is moved to above the first fixing device 115 fixed to the side wall surface portion 1b of the water channel 1 and gradually lowered while the screw hole and the second fixing device 115 are moved downward.
  • the horizontal position of the fixing tool 116 is aligned with the bolt fastening elongated hole 116a.
  • the lifting portion of the hydroelectric generator is lowered until the second fixing tool 116 comes into contact with the first fixing tool 115, and the fixing bolt 122 inserted into the elongated hole 116 a of the second fixing tool 116 is inserted into the first fixing tool 115.
  • the second fixing device 116 is fixed to the first fixing device 115 by being screwed into the screw holes 115.
  • the positioning bolt 123 is screwed onto the side surface portion of the second fixing tool 116 and tightened until the tip presses the side surface portion of the first fixing device 115, whereby the first fixing device 115 and the second fixing device 115.
  • the fixing tool 116 is positioned in the water channel width direction. When the slinger is removed, the state shown in FIG. 18 is obtained.
  • the operating tool 112A is operated to rotate the rotary shaft 135 in a predetermined direction, so that the posture changeable portion 101 is in a submerged posture as shown in FIG. Thereby, installation of the hydroelectric generator 1 is completed. After the installation is completed, the operation tool 112A is removed from the operation shaft 141 in order to prevent erroneous operation.
  • the installation work may be performed by temporarily removing the fall prevention fence 1c. However, the installation work is performed with the fall prevention fence 1c as it is. Can also be done. Even if the fall prevention fence 1 c is provided, the operation tool 112 ⁇ / b> A can be easily operated from the outside of the water channel 1.
  • the posture changeable portion 101 is held in a submerged posture by the frictional force of the rotating mechanism 111A. If a ratchet mechanism (not shown) that restricts rotation in the pulling direction is arranged on the operation shaft 141, the submersion posture is reliably maintained, and the lift of the impeller 2 caused by running water in the water channel 1 can be suppressed, and the posture is stable. Can be held.
  • the operation tool 112A is attached to the operation shaft 141, and the operation tool 112A is operated in the direction opposite to that at the time of installation.
  • a ratchet mechanism that restricts rotation in the pulling direction is arranged on the operation shaft 141, the operation tool 112A is operated after the function of the ratchet mechanism is canceled. Accordingly, the posture changeable portion 101 is pulled up from the water channel 1 to be in the standby posture shown in FIG.
  • the operation tool 112A can be operated from outside the water channel 1 through the fall prevention fence 1c. If the rotation shaft 135 is provided with a stopper (not shown) for preventing excessive rotation, the posture changeable portion 101 can be reliably held in the standby posture.
  • the gantry 130 rotates together with the rotating shaft 135, and the gantry 130 (posture changeable portion 101) is in the submersion posture. Switch to standby position. Since the operation tool 112 ⁇ / b> A can be manually operated from outside the water channel 1, the posture switching of the posture changeable unit 101 can be performed without using a machine and without an operator entering the water channel 1. . For this reason, even when the fall prevention fence 1c is installed on the side wall surface portion 1b of the water channel 1, the posture change work of the posture changeable portion 101 can be performed without the operator getting over the fall prevention fence 1c.
  • the posture change work of the posture changeable unit 101 is a simple work that only involves operating the operation tool 112A, it can be performed by a small number of people, for example, one person. For this reason, it is possible to pull up the posture changeable portion 101 from the water channel 1 even in an emergency such as water increase.
  • [Fourth Embodiment] 19 to 22 are a front view, a right side view, a left side view, and a plan view of a hydroelectric generator according to a fourth embodiment of the present invention.
  • the fourth embodiment is different from the third embodiment in the configuration of the rotation mechanism 111B and the operation tool 112B. That is, the rotation mechanism 111B of this embodiment uses the slide screw 150 as means for converting the rotation operation of the operation tool 112B into the rotation operation of the rotation shaft 135 and transmitting the rotation operation to the rotation shaft 135.
  • the operation tool 112B has a shape in which a plurality of (four) handles 112b extend radially from the hub 112a.
  • the operation tool 112B extends in the water channel length direction. It is designed to rotate around the axis. Unlike the third embodiment, the rotation mechanism 111B and the operation tool 112B are provided on the left bank of the water channel 1 (on the left side in FIG. 19). Others are the same as the first embodiment.
  • the rotation mechanism 111B includes a screw shaft 151 that extends in the water channel length direction to which the operation tool 112B is attached, and a nut 152 that is screwed onto the screw shaft 151.
  • a screw shaft support member 153 having a lower end fixed to the second fixture 116 extends upward, and the screw shaft 151 is rotatably supported on the upper end of the screw shaft support member 153.
  • an operation arm 154 is provided so as to rotate integrally with the rotary shaft 135, and a sliding part 155 fixed to the nut 152 is fitted into a long hole 154 a (FIG. 21) of the operation arm 154.
  • this rotating mechanism 111B by reducing the lead of the slide screw 150, the posture of the posture changeable portion 101 can be held by the frictional force. Further, the lead may be enlarged in order to increase the pulling speed of the posture changeable portion 101. In that case, if a ratchet mechanism (not shown) that restricts rotation in the direction opposite to the rotation direction when pulling up the posture changeable portion 101 is arranged in the hub 112a portion of the operation tool 112B, the posture changeable portion 101 of the operation tool 112B is arranged. The posture can be maintained reliably and reverse rotation can be prevented.
  • a handle is attached to a part of the fall prevention fence 1c so that the handle 112b of the operation tool 112B does not interfere with the fall prevention fence 1c. It is necessary to provide a notch or opening / closing part through which 112b can pass. The notch or the opening / closing part may be closed when the operation tool 112B is removed from the operation shaft 141.
  • the sliding component 155 slides along the long hole 154a of the operation arm 154.
  • a bearing in which the inner ring is fixed to the nut 152 is used. It may be used. In that case, the bearing moves along the long hole 154a while the outer ring rotates, and the operation of the rotating mechanism 111B becomes smoother.
  • the means for transmitting the operation of the operation tool 112B to the rotary shaft 135 may be a ball screw instead of the slide screw 150. Since the external appearance of the slide screw 150 and the ball screw is the same, the illustration of the hydroelectric generator using the ball screw is omitted.
  • [Fifth Embodiment] 23 to 26 are a front view, a right side view, a left side view, and a plan view of a hydroelectric generator according to a fifth embodiment of the present invention.
  • the fifth embodiment is different from the fourth embodiment in the operation tool 112C.
  • the operation tool 112B of the fourth embodiment rotates, whereas the operation tool 112C of the fifth embodiment reciprocates in the water channel length direction.
  • a connecting portion between the operation tool 112C and the screw shaft 151 is provided with a notch mechanism 160 that converts the reciprocating motion of the operation tool 112C into a rotational motion and transmits it to the screw shaft 151.
  • the operation tool 112C is configured to reciprocate in the length direction of the water channel, as shown in FIG. 23, when the fall prevention fence 1c is installed on the side wall surface 1b of the water channel 1, the operation tool 112C is moved to the fall prevention fence 1c. Will be operated in parallel. For this reason, it is easy to operate the operation tool 112C even from outside the water channel 1, and the lifting operation of the posture changeable portion 101 is further facilitated.
  • Other components are the same as those described in the fourth embodiment, including the rotation mechanism 111C.
  • this hydroelectric power generation device is installed in a water channel 1 with flowing water such as a river or an irrigation channel, and generates power by receiving the rotation of the impeller 2.
  • the water channel 1 is composed of, for example, a bottom surface portion 1a made of concrete or the like and side wall surface portions 1b on both sides.
  • this hydroelectric generator includes a plurality of (in this example, two) hydroelectric modules 3 and 3 and a support device 4A that supports these hydroelectric modules 3 and 3.
  • the hydroelectric power generation module 3 will be described, and hereinafter, the support device 4A, the installation and lifting of the hydroelectric power generation device, and the effects will be sequentially described.
  • the two hydroelectric power generation modules 3 and 3 are installed frames 205 in a support device 4A described later (corresponding to the fixed frame 10 of the first and second embodiments and the fixed frame 114 of the third to fifth embodiments). Are supported in parallel with a predetermined interval in the width direction of the water channel. Since these hydroelectric power generation modules 3 and 3 have the same structure, only one hydroelectric power generation module 3 will be described with reference numerals, and the other hydroelectric power generation module 3 will be denoted by the same reference numerals as one hydroelectric power generation module 3. A description thereof will be omitted. Further, the description of the hydroelectric power generation module 3 may be omitted in relation to the first embodiment.
  • the hydroelectric power generation module 3 has an impeller 2 and a generator 6 that generates electric power by the rotation of the impeller 2.
  • the support device 4 ⁇ / b> A includes an installation frame 205, a plurality of (two in this example) gantry 210, individual rotation support means 211, a generator base 12, and a plurality (two in this example). Operating means 213 and 213 and a pinch structure 214.
  • the erection frame 205 includes a pair of beams 215 and 215, a frame body 216, and a plurality of fixtures 217.
  • each frame 210 is rotatably supported via an individual rotation support means 211 with respect to a frame main body 216 that is installed over the water channel 1.
  • Hydroelectric power generation modules 3 and 3 are supported on each base 210 via generator bases 12 and 12, respectively. Accordingly, each hydroelectric power generation module 3 has a submerged posture in which the lower end of the impeller 2 is positioned below the water surface of the water channel 1 and a standby state in which the entire impeller 2 is positioned above the water surface of the water channel 1 with respect to the installation frame 205. It is supported so as to be rotatable over the posture (FIGS. 35 to 38, etc.).
  • a plurality of (two in this example) fasteners 217 and 217 are fixed from the vicinity of the upper end to the upper end portion of the side wall surface portion 1b on both sides of the water channel 1.
  • Each fixture 217 is formed in a cross-sectional L shape by a standing plate fixing portion along the side surface of the side wall surface portion 1b and a horizontal fixing plate portion connected to the standing plate fixing portion and along the upper end surface of the side wall surface portion 1b.
  • the two fixtures 217 and 217 are provided in parallel with the flowing direction A1 (hereinafter referred to as “flowing direction A1”).
  • Each fixture 217 and each beam 215 to be described later are formed from, for example, an angle having an L-shaped cross section.
  • each beam 215 is formed in a cross-sectional L shape by a standing plate portion and a horizontal plate portion connected to the standing plate portion. As shown in FIGS. 27 and 30, the pair of beams 215 and 215 are provided in parallel with the flowing water direction A1, and are connected to each other by a frame body 216.
  • the frame main body 216 has, for example, a rectangular tube shape and extends parallel to the width direction of the water channel. At both ends in the longitudinal direction of the frame main body 216, suspension bolts 218 and 218 are provided for lifting the hydroelectric generator with a slinger (not shown) by a crane or the like which will be described later.
  • each beam 215 is formed in a cross-sectional L shape by a standing plate portion and a horizontal plate portion connected to the standing plate portion. As shown in FIGS.
  • both longitudinal ends of the frame body 216 are supported at the intermediate portion in the longitudinal direction on the upper surface of the horizontal plate portion of each beam 215, and are fixed by brackets or the like.
  • the horizontal plate portion of each beam 215 is fixed to the fixture 217 arranged on each side wall surface portion 1b by a plurality of bolts.
  • the gantry 210 includes a gantry base end portion 210a and two gantry support portions 210b and 210b.
  • the gantry base end portion 210a has a rectangular tube shape and extends parallel to the width direction of the water channel 1 (FIG. 28).
  • One end in the longitudinal direction of each gantry support portion 210b is connected to the gantry base end portion 210a.
  • These gantry support portions 210b and 210b extend in a direction orthogonal to the longitudinal direction of the gantry base end portion 210a, and are arranged in parallel at a predetermined interval.
  • the generator bases 12 and 12 are fixed to the two base support portions 210b and 210b in a supported state.
  • a generator 6 is supported on the generator stand 12.
  • the individual rotation support means 211 of this example is a hinge, one hinge piece 211a of the hinge is connected to the frame body 216, and the hinge base 211a is connected to the hinge.
  • the other hinge piece 211b is connected. Therefore, with respect to the frame body 216, the hinge 210 and the hydroelectric power generation module 3 are configured to be rotatable about the rotation axis over the submerged posture and the standby posture with respect to the frame main body 216, with the hinge shaft as a rotation axis. .
  • Each operation means 213 is a rod-like member that rotates the gantry 210 manually with respect to the erection frame 205.
  • the operation means 213 is detachably fixed to one side surface portion of the gantry base end portion 210a.
  • the operation means 213 includes a rotation shaft portion 213a extending from one side surface of the gantry base end portion 210a in parallel to the rotation axis, and an operation portion extending in a direction orthogonal to the rotation axis connected to the distal end of the rotation shaft portion 213a. 213b.
  • the operation unit 213b can be operated by holding it.
  • a mounting flange is attached to the base end of the rotating shaft portion 213a, and this mounting flange is detachable from one side surface portion of the gantry base end portion 210a.
  • the punching structure 214 includes first and second punching parts 219 and 220 for holding each gantry 210 in a submerged posture or a standby posture.
  • the first punching parts 219 and 219 are fixed in parallel to the gantry support portions 210b, respectively, and the second punching part 220 is provided on the frame body 216.
  • Fitting holes 219a and 219b are formed at both ends of each first punching part 219, respectively.
  • the second punching part 220 includes a punching part main body 220a and a bar 220b slidably supported by the punching part main body 220a.
  • the hydroelectric generator is transported to the water channel as the destination in a standby posture.
  • the hydroelectric power generation module is set in a standby posture, and the standby posture is maintained by fitting the rod 220b of the second punching part 220 into the fitting hole 219a of the first punching part 219.
  • the subassembly from which the fixture 217 is detached from the hydroelectric generator is lifted by a slinger (not shown) with a crane or the like not shown, and each blade 2b is in a substantially horizontal state. While moving to above, it moves above the fixture 217 previously installed in the water channel.
  • the subassembly is lowered and the fixture 217 and the beam 215 are fixed by a plurality of bolts.
  • the rod 220b of the second punching part 220 is slid while holding the operating portion 213b of one operating means 213.
  • the first hydroelectric module 3 and the gantry 210 are extracted from the fitting hole 219a of the first punching part 219 and rotated by the operating means 213 fixed to the gantry 210. Thereby, the impeller 2 on the left side of FIG. 32 is submerged in the water channel.
  • the operating means 213 is supported so that the impeller 2 on the left side of FIG. 32 maintains a submerged posture, and the rod 220b of the second punching part 220 is slid as shown in FIG.
  • the submerged posture is maintained by being inserted into the fitting hole 219a.
  • the second hydroelectric power generation module 3 is also changed from the standby posture to the submerged posture in the same manner as the first hydroelectric power generation module 3, and this submerged posture is maintained.
  • the generator 6 generates electricity by the rotation of the impeller 2.
  • the hydroelectric modules 3 are pulled up one by one. Specifically, for the hydroelectric module 3 to be lifted, the rod 220b of the second punching part 220 is slid while supporting the operation means 213 connected to the gantry 210 of the hydroelectric generation module 3, and the first punching part 219 is moved. The impeller 2 is pulled out of the water channel by removing the fitting hole 219b and rotating the gantry 210 in the opposite direction to the above by the operating means 213. Next, while supporting the operation means 213, the rod 220b of the second punching part 220 is slid and inserted into the fitting hole 219b of the first punching part 219. Thereby, desired maintenance etc. can be performed without being obstructed by the flow velocity of the water channel.
  • the plurality of hydroelectric generation modules 3 and 3 are installed on the installation frame 205, and each hydroelectric generation module 3 is in a standby posture. It can be installed in the waterway 1.
  • the hydroelectric generator can be easily installed without resisting the flow velocity of the water channel 1. Therefore, the hydroelectric generator can be easily and reliably installed at the planned location. Further, the power generation can be increased as compared with the case where only one hydroelectric power generation module is installed.
  • the hydroelectric generator 3 When this hydroelectric generator is used, the hydroelectric generator 3 is pulled up from the water channel 1 because the hydroelectric generator 3 has the individual rotation support means 211 that supports the hydroelectric generator 3 so as to be independently rotatable in the submerged posture and the standby posture. In this case, the hydroelectric power generation modules 3 and 3 can be pulled up one by one by the individual rotation support means 211. For this reason, compared with the case where the two hydroelectric generators are simultaneously pulled up from the water channel, the force required for lifting can be dispersed. As a result, the hydroelectric generator can be easily pulled up from the water channel 1 by human power or the like. Moreover, the time required for simultaneous lifting of the two units can be shortened. Moreover, since it becomes possible to pull up the hydroelectric modules 3 and 3 one by one, it is also possible to maintain each hydroelectric module 3 separately.
  • each hydropower generation module can be installed by pulling it up separately with a lifting mechanism, etc., so that the time required for installation of the lifting mechanism etc. is reduced compared to the conventional example in which two hydroelectric generators are installed simultaneously. Can be achieved.
  • An impeller that spans a water channel and a plurality of hydroelectric modules that are arranged in the width direction of the water channel of the erection frame, and each hydroelectric module converts hydropower into rotational force, and rotation of the impeller
  • a hydroelectric generator having a generator for generating electricity
  • Each hydroelectric power generation module has a submerged posture in which the lower end of the impeller is located below the water surface of the water channel and a standby posture in which the entire impeller is located above the water surface of the water channel with respect to the installation frame.
  • a hydroelectric generator having individual rotation support means for supporting each rotation independently.
  • the hydroelectric generator has a plurality of supports that respectively support the hydroelectric power modules, and the supports are rotatably supported on the installation frame via the individual rotation support means.
  • Hydroelectric generator [Aspect 3] The hydroelectric generator according to aspect 2, wherein each gantry includes a plurality of operation means for independently rotating the hydroelectric modules with respect to the installation frame.
  • each gantry includes a plurality of operation means for independently rotating the hydroelectric modules with respect to the installation frame.
  • the individual rotation support means is a hinge.
  • the installation frame includes a fixture that fixes the installation frame to the water channel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Hydraulic Turbines (AREA)

Abstract

人力により水力発電装置を水路から容易に引き上げ可能にすると共に、計画した場所に確実に設置することができる水力発電装置を提供する。この水力発電装置は、少なくとも1つの水力発電モジュール(3)であって、それぞれ、水力を回転力に変換する翼車(2)を有する少なくとも1つの水力発電モジュール(3)と、少なくとも1つの水力発電モジュール(3)の翼車(2)の回転により発電する発電機(6)と、少なくとも1つの水力発電モジュール(3) の各水力発電モジュール(3)をそれぞれ支持する少なくとも1つの架台(11)と、水路に固定されて少なくとも1つの架台(11)を支持する固定フレーム(10)とを備える。少なくとも1つの架台(11)は、固定フレーム(10)に対し、その架台(11)が支持する水力発電モジュール(3)が、その翼車(2)の下端が水路の水面よりも下に位置する水没姿勢をとる位置と、その架台(11)が支持する水力発電モジュール(3)が、その翼車(2)の全体が水路の水面よりも上に位置する待機姿勢をとる位置と、に渡って回転可能に支持されている。

Description

水力発電装置 関連出願
 本出願は、2017年2月27日出願の特願2017-034801、2017年12月21日出願の特願2017-245163および2018年2月2日出願の特願2018-017021の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。
 この発明は、水路に設置される水力発電装置に関する。
 水力発電装置は、流水が持つ運動エネルギーを、発電に利用するシステムである。この水力発電装置の中で小型ものは、農業用水等の水路に設置して利用されている(例えば、特許文献1)。このような水路に設置される水力発電装置は、先ずi)設置のために、水路に投入しなければならない。また、ii)メンテナンスのため、回転翼またはギヤ、オイルシール等の交換の際、水力発電装置を水路から引き上げる必要がある。さらに、iii)増水等の緊急時にも、溢水や水力発電装置の損傷を防止するために、水路から引き上げる必要がある。従来は水力発電装置を水路から引き上げる際、クレーン車、または、大掛かりな引き上げ機構を使用していた。
特開2015-014219号公報
 水路に適用される水力発電装置は、通常、水路に翼を水没させ発電しているが、上述の如く、上記ii)、iii)の非定常時には、水力発電装置を水路から引き上げる必要がある。特に、上記iii)の緊急時には、迅速に水力発電装置を水路から引き上げる必要がある。しかしながら、従来は、クレーン車等を使用し、3人以上で作業し対応していた。
 また、上記i)の水力発電装置の設置の際も、水路は比較的速い流速があり、クレーン車で水力発電装置を水路に投入すると、最初に水没する翼が流速により下流側に流されて水力発電装置全体が下流側に流されたり、流速により水力発電装置が振動したり、所定の場所に設置することが難しかった。もちろん、この作業も3人以上で対応していた。
 この発明の目的は、人力により水力発電装置を水路から容易に引き上げ可能にすると共に、計画した場所に確実に設置することができる水力発電装置を提供することである。
 この発明の水力発電装置は、少なくとも1つの水力発電モジュールであって、それぞれ、水力を回転力に変換する翼車を有する少なくとも1つの水力発電モジュールと、前記少なくとも1つの水力発電モジュールの翼車の回転により発電する発電機と、前記少なくとも1つの水力発電モジュールの各水力発電モジュールをそれぞれ支持する少なくとも1つの架台と、水路に固定されて前記少なくとも1つの架台を支持する固定フレームとを備えた水力発電装置であって、
 前記固定フレームは、この固定フレームを前記水路に固定する固定具を含み、
 前記少なくとも1つの架台は、前記固定フレームに対し、
  その架台が支持する水力発電モジュールが、その翼車の下端が前記水路の水面よりも下に位置する水没姿勢をとる位置と、
  その架台が支持する水力発電モジュールが、その翼車の全体が前記水路の水面よりも上に位置する待機姿勢をとる位置と、に渡って回転可能に支持されている。
 前記「水路」の水面は、定められた高さにあるとする。
 この構成によると、固定フレームに対し、翼車の下端が水路の水面より下に位置する水没姿勢と、翼車の全体が水路の水面より上に位置する待機姿勢とに渡って、少なくとも1つの架台のそれぞれが回転可能に支持されているため、次のように使用することができる。
 この水力発電装置の設置時には、翼車を待機姿勢のまま目的地である水路まで運搬する。この水力発電装置の架台には水力発電モジュールが支持されている。前記水路には、予め、固定具により固定フレームが設置されている。水力発電モジュールおよび架台を目的地に到着させた後、翼車の待機姿勢を維持した状態で、固定フレームに架台を支持する。その後、架台を人力により回転させて翼車の下端が前記水路の水面より下に位置する水没姿勢にする。この水没姿勢において、翼車の回転により発電機は発電する。このように水力発電装置を、計画した場所に確実に設置することができる。
 この水力発電装置を水路から引き上げる場合、架台を人力により回転させて翼車の全体が水路の水面より上に位置する待機姿勢にする。このように水力発電装置を水路から容易に引き上げることができる。前記待機姿勢において、水力発電装置をメンテナンスすることができ、また増水等の緊急時に、水力発電装置に異常が発生することを未然に防止することができる。
 前記固定フレームに対し前記少なくとも1つの架台を回転させる少なくとも1つの操作手段を備え、この操作手段は、回転させられる前記少なくとも1つの架台および前記固定フレームに着脱自在であってもよい。この場合、固定フレームに架台が支持され、且つ、架台に操作手段が装着された状態で、固定フレームに対し架台を操作手段により回転させることができる。したがって、固定フレームに対し、架台を操作手段により容易に回転させることができる。
 前記少なくとも1つの操作手段が、回転させられる前記少なくとも1つの架台および前記固定フレームに装着されたとき、前記少なくとも1つの操作手段は、前記少なくとも1つの架台を、この架台が支持する水力発電モジュールが前記水没姿勢および前記待機姿勢のいずれか一方の姿勢をとるように保持するものであってもよい。この場合、架台を操作手段により回転させ水没姿勢および待機姿勢のいずれか一方の姿勢において、架台および固定フレームに操作手段を装着することで、前記一方の姿勢を簡単且つ確実に保持することができる。
 前記少なくとも1つの架台の回転軸心に対して、前記少なくとも1つの水力発電モジュールとは反対側に設けられた重錘を備えたものであってもよい。この場合、この水力発電装置を運搬等する際、架台の回転軸心に対して、架台の水力発電モジュールと反対側に設けられた重錘により、翼車を待機姿勢のまま維持することができる。したがって、この水力発電装置の運搬等を容易に行うことができる。
 前記少なくとも1つの架台に一体に設けられ前記固定フレームに対し前記架台を回転させる回転軸と、この回転軸を回転自在に支持し、前記固定フレームに着脱自在に設けられる回転軸受部とを備えたものであってもよい。この場合、回転軸受部が固定フレームから離脱した状態で、水力発電モジュールおよび架台を運搬し得る。回転軸受部が固定フレームに装着された状態で、回転軸を回転中心として架台を回転させることができる。
 前記回転軸受部は、前記回転軸と接触する面に樹脂製摺動材を備えていてもよい。この場合、回転軸を回転軸受部に対しスムーズに回転させ得ると共に回転軸等の錆の発生を抑制することができる。発錆からの固着によって回転軸の回転が渋くなることもない。
 前記少なくとも1つの架台は、それぞれ、前記固定フレームに対して、対応する蝶番により、前記少なくとも1つの水力発電モジュールが前記水没姿勢をとる位置と前記待機姿勢をとる位置とに渡って回転可能に連結されたものであってもよい。この場合、架台を回転させる回転軸等を省けるため、水力発電装置全体の軽量化およびコンパクト化を図ることができる。これにより、この水力発電装置の搬送、設置、引き上げ等を容易に行うことが可能となる。また製造コストの低減を図ることができる。
 さらに、前記少なくとも1つの架台に固定され、かつ前記固定フレームに対し回転自在な水路の幅方向に延びる回転軸と、この回転軸を前記固定フレームに対して回転させる回転機構と、この回転機構を前記水路の外から手動で操作可能な操作具とを備え、前記少なくとも1つの架台が前記回転軸と共に回転することにより、前記1つの水力発電モジュールが前記水没姿勢と前記待機姿勢との間で姿勢変更可能であってもよい。
 この構成によると、操作具により回転機構を操作することで、回転軸と共に架台が回転して、架台が、正確には架台および水力発電モジュールが、翼車が水面より下に位置する水没姿勢と翼車が水面より上に位置する待機姿勢とに切り替わる。操作具は水路の外から手動で操作可能であるため、上記架台の姿勢切り替えを、機械を使用せずに、かつ作業者が水路内に入らずに行うことができる。このため、水路の側壁に落下防止柵が設置されている場合でも、作業者が落下防止柵を乗り越えることなく、架台の姿勢切り替え作業を行うことができる。また、架台の姿勢切り替え作業は、操作具を操作するだけの簡単な作業であるため、少人数、例えば一人でも行うことができる。このため、増水等の緊急時にも、翼車を水路から引き上げることが可能である。
 前記回転機構は、ウォームギヤ、滑りねじ、およびボールねじのいずれか1つにより、前記操作具の動作を前記回転軸の軸心回りの回転動作に変換して前記回転軸に伝達してもよい。ウォームギヤ、滑りねじ、およびボールねじのいずれであっても、架台が水没姿勢と待機姿勢とに姿勢変更するように回転軸を回転させることができる。
 前記回転機構は、前記少なくとも1つの水力発電モジュールが前記待機姿勢から前記水没姿勢へ姿勢変更する方向に前記回転軸が回転することを規制するラチェット機構を有してもよい。ラチェット機構を有すると、翼車を水路から引き上げるために架台を待機姿勢に姿勢変更させる際に、途中で操作具の操作を中断しても、架台が水没姿勢に向かって動くことがない。そのため、翼車の引き上げ作業を、一人でも容易に行うことができる。また、引き上げ後も、引き上げ状態のままに保持することができる。
 前記操作具は水路の長さ方向に往復操作されるものであり、この操作具の動作を前記回転機構に伝達するノッチ機構を有していてもよい。この構成であると、水路の側壁に落下防止柵が設置されている場合、操作具を落下防止柵と平行に操作することとなる。このため、水路の外からでも操作具を操作しやすく、水力発電モジュールの引き上げ作業がより一層容易である。
 前記回転機構の構成部品に耐食性を有する材料が用いられていてもよい。水力発電装置は水が掛かる環境で使用されるため、このような材料の使用が望ましい。
 前記少なくとも1つの水力発電モジュールは前記水路の幅方向に並ぶ複数の水力発電モジュールであり、前記少なくとも1つの架台は前記複数の水力発電モジュールをそれぞれ支持する複数の架台であり、さらに、
 前記複数の水力発電モジュールが前記水没姿勢をとる位置と前記待機姿勢をとる位置とに渡って前記複数の架台を前記固定フレームに対しそれぞれ独立して回転可能に支持する個別回転支持手段を有してもよい。
 この構成によると、この水力発電装置の設置作業時には、複数の水力発電モジュールを架設フレーム(「固定フレーム」と同意である)に設置した状態で、各水力発電モジュールをそれぞれ待機姿勢にした状態で水路に設置することができる。この場合、水路の流速に抗うことなく水力発電装置を容易に設置することができる。なお水路に渡って架設された架設フレームに対し、各水力発電モジュールをそれぞれ別々に設置することも可能である。この場合、各水力発電モジュールを引き上げ機構等で別々に引き上げて設置することができるため、水力発電装置を二台同時に設置する従来例よりも、引き上げ機構等の小型化を図り設置する時間の短縮を図ることができる。その後、水没姿勢において、翼車の回転により発電機は発電する。これらのように水力発電装置を、計画した場所に容易に且つ確実に設置することができる。また一台のみの水力発電モジュールを設置する場合よりも発電力を増加させることができる。
 この水力発電装置の使用時には、各水力発電モジュールを水没姿勢と待機姿勢とに渡ってそれぞれ独立して回転可能に支持する個別回転支持手段を有するため、この水力発電装置を水路から引き上げる場合、水力発電モジュールを個別回転支持手段により一個毎に引き上げることが可能となる。このため、二台の水力発電装置を水路から同時に引き上げる場合に比べて、引き上げに要する力を分散化することができる。これにより、人力等により水力発電装置を水路から容易に引き上げることができる。また二台同時引き上げに要する時間を短縮することができる。また水力発電モジュールを一個毎に引き上げることが可能となるため、各水力発電モジュールを別々にメンテナンスすることも可能である。
 また、各架台を回転することで、各水力発電モジュールを水没姿勢と待機姿勢とに渡って変化することができる。
 前記「人力等」とは、人力のみ使用する場合、および人力と共に小型の引き上げ機構等も使用する場合を含む。
 前記少なくとも1つの操作手段は複数の操作手段であり、これら複数の操作手段は、それぞれ、前記固定フレームに対し前記複数の架台をそれぞれ独立して回転させるように、各架台に設けられてもよい。この場合、各操作手段を人力等により操作することで、各架台を独立して回転することができる。
 前記個別回転支持手段が前記蝶番であってもよい。この場合、水力発電モジュールを回転させる回転軸等を省けるため、水力発電装置全体の軽量化およびコンパクト化を図ることができる。これにより、水力発電装置の搬送、設置、引き上げ等の容易化を図れる。また製造コストの低減を図ることができる。
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
この発明の第1の実施形態に係る水力発電装置の水没姿勢の斜視図である。 図1の水力発電装置の水没姿勢の正面図である。 図1の水力発電装置の水没姿勢の側面図である。 図1の水力発電装置の水没姿勢の平面図である。 図1の水力発電装置の待機姿勢の斜視図である。 図1の水力発電装置の待機姿勢の正面図である。 図1の水力発電装置の待機姿勢の側面図である。 図1の水力発電装置の待機姿勢の平面図である。 図1の水力発電装置を設置する過程を概略示す図である。 図1の水力発電装置を設置する過程を概略示す図であって、図9Aに続く過程を示す図である。 図1の水力発電装置を設置する過程を概略示す図である。 図1の水力発電装置を設置する過程を概略示す図であって、図10Aに続く過程を示す図である。 この発明の第2の実施形態に係る水力発電装置の水没姿勢の上流側からの斜視図である。 図11の水力発電装置の水没姿勢の下流側からの斜視図である。 図11の水力発電装置の待機姿勢の斜視図である。 図11の水力発電装置における準組立体の待機姿勢の斜視図である。 この発明の第3の実施形態に係る水力発電装置の架台が水没姿勢にある状態を示す正面図である。 図15の水力発電装置の右側面図である。 図15の水力発電装置の平面図である。 図15の水力発電装置の架台が待機姿勢にある状態を示す右側面図である。 この発明の第4の実施形態に係る水力発電装置の架台が水没姿勢にある状態を示す正面図である。 図19の水力発電装置の右側面図である。 図19の水力発電装置の左側面図である。 図19の水力発電装置の平面図である。 この発明の第5の実施形態に係る水力発電装置の架台が水没姿勢にある状態を示す正面図である。 図23の水力発電装置の右側面図である。 図23の水力発電装置の左側面図である。 図23の水力発電装置の平面図である。 この発明の第6の実施形態に係る水力発電装置の水没姿勢の斜視図である。 図27の水力発電装置の水没姿勢の正面図である。 図27の水力発電装置の水没姿勢の側面図である。 図27の水力発電装置の水没姿勢の平面図である。 図27の水力発電装置の第2の水力発電モジュールを待機姿勢にした斜視図である。 図27の水力発電装置の第2の水力発電モジュールを待機姿勢にした正面図である。 図27の水力発電装置の第2の水力発電モジュールを待機姿勢にした側面図である。 図27の水力発電装置の第2の水力発電モジュールを待機姿勢にした平面図である。 図27の水力発電装置の待機姿勢の斜視図である。 図27の水力発電装置の待機姿勢の正面図である。 図27の水力発電装置の待機姿勢の側面図である。 図27の水力発電装置の待機姿勢の平面図である。
[第1の実施形態]
 この発明の第1の実施形態に係る水力発電装置を図1ないし図10と共に説明する。
 <水力発電装置全体の概略構成について>
 図2に示すように、この水力発電装置は、例えば、河川、用水路等の流水のある水路1に設置され、翼車2の回転を受けて発電を行う。水路1は、例えば、それぞれコンクリート等から成る底面部1aおよび両側の側壁面部1bで構成される。この水力発電装置は、水力発電モジュール3と、この水力発電モジュール3を支持する支持装置4とを備える。先ず、水力発電モジュール3について説明し、以下、支持装置4、水力発電装置の設置および引き上げ、作用効果について順次説明する。
 <水力発電モジュール3について>
 図1に示すように、水力発電モジュール3は、翼車2、およびこの翼車2の回転により発電する発電機6を有する。
 図2に示すように、翼車2は、水路1の流水中に没する状態で設けられ水力を回転力に変換する。翼車2は、回転軸心L1が流水の流れる方向と平行なプロペラ型である。翼車2は、前記回転軸心L1に設けられるハブ2aと、このハブ2aの外周面から半径方向外方に放射状に延びる複数(例えば5枚)のブレード2bとを有する。図3に示すように、各ブレード2bの先端部は、上流側に向けて傾斜している。
 前記ハブ2aに同軸に翼軸2cが取り付けられ、この翼軸2cは、図示外の軸受により回転自在に支持される。翼軸2cの回転は、互いに噛み合う一対の傘歯車等から成るギヤ部(図示せず)により増速される。翼軸2c、前記軸受、および前記ギヤ部は、ギヤボックス7に収容されている。なおギヤボックス7内には、グリースが封入されている。
 一方、発電機6の入力軸(図示せず)が支持筒8内に延びている。支持筒8内において、前記入力軸の下端と動力伝達軸9の上端とが、図示外の回転連結具を介して同軸に連結されている。動力伝達軸9の軸心と翼軸2cの軸心とが互いに直交するように配置されている。また動力伝達軸9は、支持筒8内の軸受(図示せず)により、この支持筒8に回転自在に支持されている。したがって、翼軸2cの回転が動力伝達軸9および前記入力軸に伝達されることで、発電機6が発電する。
 <支持装置4について>
 図1に示すように、支持装置4は、固定フレーム10、架台11、発電機台12、回転軸13、回転軸受部14、重錘15、および操作手段16を備える。なお、支持装置4のうち固定フレーム10を除く組立体は架台組立体Sa(図9A)である。この架台組立体Saと、水力発電モジュール3とから準組立体As(図9A)が構成される。これら架台組立体Saおよび準組立体Asは固定フレーム10から独立して運搬可能である。準組立体As(図9A)は、水路に固定された固定フレーム10に支持される。
 図2および図3に示すように、水路1に固定された固定フレーム10に、架台11が回転可能に支持されている。すなわち架台11は、固定フレーム10に対し、翼車2の下端が水路1の水面より下に位置する水没姿勢と、翼車2の全体が水路1の水面より上に位置する待機姿勢(図5~図8)とに渡って回転可能に支持されている。この架台11に、発電機台12等を介して水力発電モジュール3が支持されている。
 図1に示すように、固定フレーム10は、一対の梁17,17と、連結部材18と、複数(この例では四つ)の固定具19とを有する。水路1の両側の側壁面部1b(図2)における上端付近から上端部に渡り複数の固定具19が固定されている。
 図2および図3に示すように、各固定具19は、側壁面部1bの側面に沿う立板固定部19aと、この立板固定部19aに繋がり側壁面部1bの上端面に沿う水平固定板部19bとで断面L形状(図2参照)に形成されている。水平固定板部19bには、梁17を固定するための複数(この例では二つ)の雌ねじが形成されている。水路1の一方側の側壁面部1bに二つの固定具19,19が流水の流れる方向A1と平行な方向に離間して配置され、水路1の他方側の側壁面部1bにも二つの固定具19,19が流水の流れる方向A1に平行な方向(以下、「流水方向」と言う)に離間して配置されている。各固定具19および後述する各梁17は、例えば、断面L形のアングル等から形成される。
 図1に示すように、一対の梁17,17は、前記流水方向にそれぞれ平行に設けられ、連結部材18により互いに連結されている。連結部材18は、例えば、角筒形状で水路の幅方向に平行に延びる。この連結部材18には、ブラケット20を介して回転軸受部14が、所定間隔を空けて二つ設けられている。各梁17は、立板部17aと、この立板部17aに繋がる水平板部17bとで断面L形状(図2参照)に形成されている。各梁17の水平板部17bの上面における長手方向途中部に、連結部材18の長手方向両端部が支持され固定されている。図2に示すように、各側壁面部1bに並ぶ二つの固定具19に対して、各梁17の水平板部17bが複数のボルトにより固定される。図3に示すように、各梁17の水平板部17bには、後述する、棒収容部22と矩形板状のスペーサ23(図5)とが接合されている。
 図4に示すように、架台11は、架台本体部24と、二つの架台支持部25,25とを有する。架台本体部24は、角筒形状で水路1の幅方向に延びる。架台本体部24は、前記連結部材18に対し、所定間隔を隔てて平行に配置されている。
 図1に示すように、前記水没姿勢において、架台本体部24の長手方向両端部が、各梁17の水平板部17bに接合されたスペーサ23(図5参照)上に載置されて支持される。
 架台本体部24には、各架台支持部25の長手方向一端部がそれぞれ接合されている。
これら架台支持部25,25は、架台本体部24の長手方向に直交する方向に延び、互いに一定間隔を隔てて平行に配置されている。架台支持部25,25の互いに対向する側面に、ブラケット26を介して発電機台12が連結されている。この発電機台12に発電機6が支持されている。架台支持部25,25の長手方向他端部には、架台11を回転させる回転軸13が、これら架台支持部25,25に一体に嵌合固定されている。この回転軸13は、各架台支持部25に直交する方向に延び、両架台支持部25,25よりも幅方向に突出する両端部分が回転軸受部14に支持されている。
 回転軸受部14は、回転軸13を回転自在に支持し、固定フレーム10に着脱自在に設けられている。前記連結部材18に設けられたブラケット20の回転軸受部14と接合するブラケットプレート20aが、複数のボルトにより着脱自在である。また、図4に示すように、回転軸受部14は、前記回転軸13と摺動する面に樹脂製摺動材27を備えている。この樹脂製摺動材27として、例えば、水中での摩擦、摩耗特性に優れるNTN株式会社製ベアリーFL3700を回転軸受部14に貼付しておけば、回転軸13がスムーズに回転できると共に錆の発生を抑制するため、発錆からの固着によって回転軸13の回転が渋くなることもない。
 図1に示すように、架台支持部25,25の長手方向他端部には、重錘(バランスウェート)15が設けられている。この重錘15は、回転軸13の回転軸心に対して、架台11の水力発電モジュール3と反対側に設けられ、この水力発電装置の移動中の水平状態(図5、図9A)を容易に維持する。この重錘15は、例えば、直方体形状に形成される。但し、この形状に限定されるものではない。
 操作手段16は、固定フレーム10に対し架台11を人力で回転する棒状部材であり、この操作手段16の長手方向一端部に把持部16aが設けられている。把持部16aは、ねじ機構等により容易に着脱できるように設けられていてもよい。操作手段16は、架台11および固定フレーム10に着脱自在である。操作手段16により、架台11が図1に示す水没姿勢と、図5に示す待機姿勢とに渡って回転可能である。また、図1に示すように、操作手段16が架台11および固定フレーム10に装着されたとき、操作手段16は架台11を水没姿勢に保持する。図5に示すように、操作手段16が架台11および固定フレーム10に装着されたとき、操作手段16は架台11を待機姿勢に保持する。
 図1および図5に示すように、架台本体部24の長手方向両端部には、第1の棒挿入部材28,28がそれぞれ固定されている。各第1の棒挿入部材28は中空の角筒形状で長手方向両端が開口する。各第1の棒挿入部材28は、架台本体部24の長手方向に直交し且つ架台支持部25の長手方向に平行に所定長さ延びる。各第1の棒挿入部材28内にそれぞれ操作手段16が挿入(装着)可能に構成される。
 固定フレーム10における連結部材18の長手方向両端部には、第2の棒挿入部材29,29がそれぞれ固定されている。各第2の棒挿入部材29は中空の角筒形状で長手方向両端が開口する。各第2の棒挿入部材29は、連結部材18の長手方向に直交し且つ梁17の長手方向に平行に所定長さ延びる。各第2の棒状部材29内にそれぞれ操作手段16が挿入(装着)可能に構成される。
 各梁17の水平板部17bに接合された棒収容部22は、中空の角筒形状であり、連結部材18の長手方向両端部付近に設けられている。各棒収容部22は、梁17の長手方向および連結部材18の長手方向にそれぞれ直交する方向に所定長さ延びる。各棒収容部22にそれぞれ操作手段16の下端が収容可能に構成されている。
 <水力発電装置の設置過程>
 水路に設置される水力発電装置を、図5に示す待機姿勢の荷姿で目的地である水路まで運搬する。この運搬時に、水路に設置する固定フレーム10と同じものを荷台として利用できる。運搬時には、各操作手段16を、棒収容部22に収容すると共に第1の棒挿入部材28に挿入する。この操作手段16により翼車2の各ブレード2bは水平状態(待機姿勢)を維持される。
 図9Aに示すように、架台組立体Saと水力発電モジュール3とからなる準組立体Asを目的地まで到着させた後、この準組立体As(この準組立体Asを「水力発電モジュール等」と称す場合がある)を、前記荷台から離脱する。この離脱させた水力発電モジュール等を、クレーン等によりスリンガ30で吊り上げ、各ブレード2bを略水平状態に維持しながら、予め水路に設置してある固定フレームに移動する。
 図9Bに示すように、水力発電モジュール等を水路の固定フレーム10の上方に移動した後、架台11の第1の棒挿入部材28に挿入された操作手段16の下端を、梁17に設けた棒収容部22に合わせる。これにより、固定フレーム10に対し架台11の回転軸心が合致する。操作手段16がセッティングの目印となり、作業者は目視で確認し易い。
 図10Aに示すように、その後、水力発電モジュール等を降下させて回転軸受部14とブラケットプレート20aとを複数のボルトにより固定する。次に、水力発電モジュール等から前記スリンガを取り外した後、操作手段16の下端を棒収容部22から抜き、架台11を操作手段16により回転させる。これにより、図10(b)に示すように、翼車2を水路に水没させる。翼車2の水没が完了した後、操作手段16を、架台11の第1の棒挿入部材28から引き抜く。
 次に、この引き抜いた操作手段16を、逆方向から第2の棒挿入部材29、第1の棒挿入部材28の順に挿入し、翼車2の各ブレード2bと梁17の直角状態(水没姿勢)を保持する。最終姿は、図1~図4となる。操作手段16により各ブレード2bと梁17の直角状態を保持することで、水路の流速による翼車2の浮き上がりを抑制でき、安定した姿勢を維持し得る。
 <引き上げ(メンテナンス時)>
 操作手段16を第1および第2の棒挿入部材28,29から引き抜く。この操作手段16を反対側から架台11の第1の棒挿入部材28のみに差し込み、操作手段16により架台11を前記と逆向きに回転させて翼車2を水路から引き上げる。各ブレード2bを水平状態にした後、操作手段16の下端を棒収容部22に差し込む。これにより、水路の流速に阻害されることなく、所望のメンテナンスを行うことができる。
 <引き上げ(緊急時)>
 緊急時は、前述のメンテナンス時と同様に翼車2を引き上げてもよいが、把持部16aが操作手段16に対し着脱可能である場合、次のように引き上げてもよい。すなわち、把持部16aを操作手段16から外した後、操作手段16を第1および第2の棒挿入部材28,29の側に押し込み、第2の棒挿入部材29を突き抜けさせて、第1の棒挿入部材28のみで係止させる。そして、この操作手段16により架台11を回転させて翼車2を水路から引き上げる。この場合、第1および第2の棒挿入部材28,29の各挿入穴に前述の樹脂製摺動材等をそれぞれ貼付してあると、操作手段16との摺動抵抗が低減し、操作手段16をスムーズに動かすことができる。この引き上げ方法は、緊急時では、迅速な対応が求められるため有効である。
 <作用効果について>
 以上説明した水力発電装置によれば、固定フレーム10に対し、水没姿勢と待機姿勢とに渡って、架台11が上下に回転可能に支持されているため、次のように使用することができる。
 この水力発電装置の設置時には、翼車2を待機姿勢のまま目的地である水路1まで運搬する。この水力発電装置の架台11には水力発電モジュール3が支持されている。水路1には、予め、固定具19により固定フレーム10が設置されている。水力発電モジュール等を目的地に到着させた後、翼車2の待機姿勢を維持した状態で、固定フレーム10に架台11を支持する。その後、架台11を人力により回転させて翼車2の下端が水路1の水面より下に位置する水没姿勢にする。水没姿勢において、翼車2の回転により発電機6は発電する。このようにして、水力発電装置を、計画した場所に確実に設置することができる。
 この水力発電装置を水路1から引き上げる場合、架台11を人力により回転させて翼車2の全体が前記水路1の水面より上に位置する待機姿勢にする。このようにして、水力発電装置を水路1から容易に引き上げることができる。前記待機姿勢において、水力発電装置をメンテナンスすることができ、また増水等の緊急時に、水力発電装置に異常が発生することを未然に防止することができる。
[第2の実施形態]
 以下の説明においては、各実施の形態で先行して説明している事項に対応している部分には同一の参照符号を付し、重複する説明を略する。構成の一部のみを説明している場合、構成の他の部分は、特に記載のない限り先行して説明している形態と同様とする。同一の構成から同一の作用効果を奏する。実施の各形態で具体的に説明している部分の組合せばかりではなく、特に組合せに支障が生じなければ、実施の形態同士を部分的に組合せることも可能である。
 第1の実施形態(図1等)では、固定フレーム10に対し、水力発電モジュール3が設置された架台11は回転軸受部14を介して回転させることにより引き上げるが、回転姿勢として水没姿勢と待機姿勢の二姿勢であり、90度回転できればよい。このため、図11に示すように、回転軸受部14(図1)に替えて、蝶番31を用いることができる。すなわち架台11は、固定フレーム10に対し、蝶番31により、図11および図12に示す水没姿勢と、図13および図14に示す待機姿勢とに渡って、上下に回転可能に連結されている。
 図11に示すように、固定フレーム10の連結部材18に、蝶番31の一方の蝶番片31aが連結され、架台11の各架台支持部25に、蝶番31の他方の蝶番片31bが連結されている。したがって、この蝶番31の軸を回転軸心として、固定フレーム10に対し、架台11が前記水没姿勢と前記待機姿勢とに渡って、上下に回転可能に構成される。この蝶番31を用いた構成によると、回転軸13(図1)等を省けるため、軽量化およびコンパクト化が図られる。また、この図11~図14の水力発電装置において、操作手段16は、各架台支持部25に着脱自在に設けられている。
 第1の実施形態では、図1に示すように第1および第2の棒挿入部材28,29に操作手段16を挿入することで水没姿勢を保持し、メンテナンス時等において操作手段16を第1および第2の棒挿入部材28,29から引き抜き、架台11を回転させた後、操作手段16の下端を棒収容部22等に差し込んで待機姿勢を保持する。
 これに対して、この図11~図14の水力発電装置では、架台11を水没姿勢または待機姿勢で保持する第1および第2のかんぬき部品32,33を含むかんぬき構造が設けられている。架台支持部25に第1のかんぬき部品32が固定され、連結部材18に第2のかんぬき部品33が設置されている。第1のかんぬき部品32の先端部に嵌合穴32a,32bが形成されている。第2のかんぬき部品33は、かんぬき部品本体33aと、このかんぬき部品本体33aにスライド可能に支持された棒33bとを有する。
 この棒33bを第1のかんぬき部品32の一方の嵌合穴32bに嵌合することにより水没姿勢を維持する(図12)。また棒33bを第2のかんぬき部品32の他方の嵌合穴32aに嵌合することにより待機姿勢を維持する(図13)。このようなかんぬき構造を備えた構成によれば、架台11を水没姿勢または待機姿勢で保持できるため、前記棒収容部22(図1)、ならびに第1および第2の棒挿入部材28,29(図1)が不要となり、第1の実施形態に比べてより構造を簡単化できる。
 <水力発電装置の設置過程>
 以下、図11~図14を用いて説明する。
 水路に設置される水力発電装置を、図14に示す待機姿勢の荷姿で目的地である水路まで運搬する。この運搬時に、図13に示す水路に設置する固定フレーム10と同じものを荷台として利用できる。運搬時には、操作手段16を用い翼車2の各ブレード2bを水平状態(待機姿勢)にし、第2のかんぬき部品33の棒33bをスライドさせ第1のかんぬき部品32の嵌合穴32aに嵌合することにより待機姿勢を維持する。なお水路に設置すべき固定フレーム10そのものを備えた水力発電装置を運搬してもよい。
 図14に示すように、架台組立体Saと水力発電モジュール3とを備えた準組立体Asを、前記荷台から離脱する。この離脱させた水力発電モジュール等をクレーン等により図示外のスリンガで吊り上げ、各ブレード2bを略水平状態に維持しながら、予め水路に設置してある固定フレームに移動する。
 図13に示すように、水力発電モジュール等を水路の固定フレーム10の上方に移動した後、固定具19の水平固定板部19bのボルト固定穴19baと、梁17の固定穴(図示せず)とを合わせ、複数のボルトにより固定する。次に、水力発電モジュール等から前記スリンガを取り外した後、操作手段16を支持しながら第2のかんぬき部品33の棒33bをスライドさせ第1のかんぬき部品32の嵌合穴32aから抜き、架台支持部25を操作手段16により回転させる。
 これにより、図11に示すように、翼車2を水路に水没させる。翼車2の水没が完了した後、操作手段16を翼車2が直角状態を保つように支持しながら図12に示すように、第2のかんぬき部品33の棒33bをスライドさせ第1のかんぬき部品32の嵌合穴32bに嵌合することにより水没姿勢を維持する。第1および第2のかんぬき部品32,33により各ブレード2bと梁17の直角状態を保持することで、水路の流速による翼車2の浮き上がりを抑制でき、安定した姿勢を維持し得る。
 <引き上げ>
 操作手段16を支持しながら第2のかんぬき部品33の棒33bをスライドさせ、第1のかんぬき部品32の嵌合穴32bから抜き、操作手段16により架台支持部25を前記と逆向きに回転させて翼車2を水路から引き上げる。各ブレード2bを水平状態にした後、操作手段16を支持しつつ、第2のかんぬき部品33の棒33bをスライドさせ、第1のかんぬき部品32の嵌合穴32aに嵌合する(図12参照)。これにより、水路の流速に阻害されることなく所望のメンテナンスを行うことができる。なお、この形態は例示であって制限的なものではない。
 <作用効果>
 第2の実施形態の水力発電装置によれば、蝶番31を用いた構成により回転軸13(図1)等を省けるため、軽量化およびコンパクト化が図られる。また架台11を水没姿勢または待機姿勢で保持する第1および第2のかんぬき部品32,33を含むかんぬき構造が設けられたため、棒収容部22、ならびに第1および第2の棒挿入部材28,29(図1)が不要となり、第1の実施形態に比べてより構造を簡単化できる。これによりコスト低減を図ることが可能となる。
 操作手段16が各架台支持部25に着脱自在に設けられるため、前記水没姿勢での使用時に操作手段16を架台支持部25から離脱しておくことで、外観上の美観を損なうこともないうえ、水力発電装置の決められた操作者以外の第三者が操作手段16を操作してしまうことを未然に防止し得る。
 なお、この実施形態においても、架台支持部25,25の長手方向他端部に重錘15(図1)を備えてもよい。
[第3の実施形態]
 以下に、翼車を水路から引き上げる作業を、機械を使用せずに、かつ作業者が水路内に入らずに行うことができる水力発電装置について説明する。
 図15~図17はこの発明の第3の実施形態に係る水力発電装置の正面図、右側面図、および平面図である。この水力発電装置は、例えば河川、用水路等の流水のある水路1に設置され、流水の力で発電を行う。水は、水路1内を図16および図17の矢印の方向に流れる。図15に示すように、水路1は、底面部1aと両側の側壁面部1bとからなる断面U字状である。底面部1aおよび側壁面部1bは、例えばコンクリートにより一体に形成されている。側壁面部1bの上に、安全確保のために落下防止柵1cが設置される場合がある。
 水力発電装置は、水力発電モジュール3と、この水力発電モジュール3を支持する支持装置110とを備える。後述するように、水力発電モジュール3(正確には水力発電モジュール3を支持する架台130)が、水没姿勢と待機姿勢とに姿勢変更可能である。以下の説明では、水力発電モジュール3の姿勢を特定しない場合、水力発電モジュール3が使用時の状態である水没姿勢であるとする。
 <水力発電モジュール3>
 水力発電モジュール3は、使用時に流水中に没する状態で設けられる翼車2と、流水の上方に設けられる発電機6とを有する。水流を受けて翼車2が水力を回転力に変換し、その翼車2の回転により発電機6が発電する。図の例の翼車2は、回転軸心L(図16)が水路長さ方向と平行なプロペラ型である。翼車2は、前記回転軸心Lに設けられるハブ2aと、このハブ2aの外周面から半径方向外側に放射状に延びる複数枚(例えば5枚)のブレード2bとを有する。
 図16において、翼車2のハブ2aは、ギヤボックス7から水路長さ方向に沿って延びる翼軸(図示せず)に取り付けられている。翼軸は、ギヤボックス7内の軸受(図示せず)によって回転自在に支持されている。ギヤボックス7は、後述する架台130の底面から下向きに延びる支持筒8の下端に支持されている。支持筒8内には動力伝達軸109が設けられている。動力伝達軸109は架台130を貫通して、その上端が発電機6の入力軸106aに連結されている。前記翼軸と動力伝達軸109とが、ギヤボックス7内のギヤ機構(図示せず)を介して動力伝達可能に連結されている。ギヤ機構は例えば傘歯車の組み合せからなり、翼軸から動力伝達軸109へ回転動力を増速して伝達する。これら翼軸、ギヤ機構、および動力伝達軸109を介して、翼車2の回転が発電機6に伝達される。
 <支持装置110>
 図15~図17において、支持装置110は、水路1に固定の固定部110aと、この固定部110aに対して水力発電モジュール3と共に水路1の幅方向の軸心回りに回転可能な回転部110bとを有する。他に、固定部110aに対して回転部110bを回転させる回転機構111A、およびこの回転機構111Aを操作する操作具112Aを有する。
 固定部110aは、図の例では水路1の両側の側壁面部1bに固定される固定フレーム114からなるが、固定フレーム114以外の部材を含んでいてもよい。固定フレーム114は、各側壁面部1bにそれぞれ配置された第1の固定具115、第2の固定具116、および回転軸支持部材117と、各側壁面部1b間に設けられた連結部材118(図15)とからなる。
 第1の固定具115は断面L形のアングル等からなり、側壁面部1bの上端内側の角部に、コンクリート釘等の固定手段120(図17)により固定される。側壁面部1bの上面および内側面と第1の固定具115との間には、複数の弾性材121が設けられる。
 第2の固定具116も、断面L形のアングル等からなり、第1の固定具115の水路幅方向の内側に、第1の固定具115の上面部の上に第2の固定具116の上面部が重なるように配置される。なお、第2の固定具116の水路長さ方向の長さは、第1の固定具115の水路長さ方向の長さよりも短い。第2の固定具116の上面部には、水路幅方向に長いボルト締結用の長孔116aが複数設けられている。この長孔116aに挿通した固定ボルト122を、第1の固定具115の上面部に設けられたねじ孔(図示せず)にねじ込むことにより、第2の固定具116を第1の固定具115に固定する。長孔116aに挿通される固定ボルト122の位置を変えることで、水路両側の第2の固定具116の間隔を水路1の幅に合わせて調整することができる。また、第2の固定具116の側面部に位置決めボルト123が螺着され、その先端を第1の固定具115の側面部に当接させることで、第1の固定具115と第2の固定具116の水路幅方向の間隔を一定に保持する。
 図15に示すように、回転軸支持部材117は、第2の固定具116の上面部に固定された水路幅方向に並ぶ2枚の板材117aと、これら板材117aに支持された筒状の軸受部117bとからなる。水路両側の回転軸支持部材117の各軸受部117bに後述する回転軸135の両端が挿通されて、回転軸135が回転自在に支持される。
 連結部材118は、水路両側の第2の固定具116間に架け渡され、両端が固定具ボルト124により各第2の固定具116にそれぞれ固定される。連結部材118は、水路両側の第2の固定具116と予め一体に形成されていてもよい。
 図15~図17において、回転部110bは、水力発電モジュール3を支持する架台130を有する。架台130は、上部に発電機台131が設けられ、さらに発電機台131の上面から発電機固定枠132が上方に立ち上がっている。そして、発電機固定枠132に、発電機6が固定されている。また、発電機台131に設けられた軸受部133により、前記動力伝達軸109の上端が回転自在に支持されている。
 架台130の上流側端には、回転軸135が固定されている。回転軸135は、水路幅方向に延びる円柱状または円筒状の軸で、その両端が水路両側の回転軸支持部材117の各軸受部117bに回転自在に支持される。回転軸135の軸心が、回転部110bの回転軸心となる。
[回転機構および操作具]
 回転機構111Aは、どちらか一方の側壁面部1bの側(例えば右岸、図15の紙面右側)に設けられ、回転軸135を回転させることで、固定部110aに対して回転部110bを回転させる。この実施形態の回転機構111Aは、操作具112Aの回転動作を回転軸135の軸心回りの回転動作に変換して回転軸135に伝達する手段としてウォームギヤ140が用いられている。
 具体的には、鉛直方向に延びる操作軸141の下端にウォーム142が取り付けられ、かつ回転軸135の一方の端(紙面右端)にウォームホイール143が取り付けられ、これらウォーム142およびウォームホイール143が互いに噛み合っている。なお、操作軸141は、その下端が、回転軸支持部材117に固定の上下一対の操作軸支持部材144により回転自在に支持されている。この実施形態とは逆に、操作軸141にウォームホイール143を取り付け、回転軸135にウォーム142を取り付けた構成としてもよい。
 水力発電装置は水が掛かる環境で使用されるため、回転機構111Aを構成するウォーム142およびウォームホイール143は耐食性を有する材料が用いられているのが望ましい。以下の他の実施形態に用いられる回転機構111B,111Cの構成部品も、同様に耐食性を有する材料が用いられているのが望ましい。
 操作具112Aは、操作軸141の上端に着脱自在に取り付けられる。この実施形態の操作具112Aは、ハブ112aから複数本(4本)の取っ手112bが放射状に延びる形状であるが、他の形状であってもよい。上下に延びる操作軸141の上端に操作具112Aを取り付けることにより、図15のように水路1の側壁面部1bに落下防止柵1cが設置されている場合でも、操作具112Aを水路1の外から操作可能である。
 操作具112Aを手動で回転操作することで、その回転が回転機構111Aを介して回転軸135に減速して伝達される。それにより、支持装置110の固定部110aである固定フレーム114に対して、支持装置110の回転部110bが回転軸135を中心に回転する。水力発電モジュール3は、回転部110bと一体に回転する。水力発電モジュール3を支持する架台130は、翼車2の下端が水路1の水面よりも下に位置する水没姿勢(図15参照)と、翼車2の全体が水路1の水面よりも上に位置する待機姿勢(図18参照)とに姿勢変更する。以下の説明では、水力発電モジュール3および支持装置110の回転部110bからなる姿勢変更可能部101の姿勢を「水没姿勢」、「待機姿勢」と呼ぶ場合がある。
 この回転機構111Aの場合、ウォームギヤ140のギヤ比を大きくすることにより、その摩擦力で架台130の姿勢を保持することが可能である。また、姿勢変更可能部101の引き上げ速度を速めるためにギヤ比を大きくしてもよい。その場合、姿勢変更可能部101を引き上げる場合の回転方向と逆回りの回転を規制するラチェット機構145(図15)を操作軸141に配置すれば、架台130の姿勢保持が確実となり、逆回転を防止することができる。
 <水力発電装置の設置>
 水力発電装置は、図18に示す待機姿勢の荷姿で水路1の設置場所まで運搬される。この運搬時、固定フレーム114の第1の固定具115が運搬車両の荷台に接触するように、そのまま水力発電装置を載せればよい。このため、水力発電装置を載せる台が不要である。運搬時、回転機構111Aの摩擦力により、姿勢変更可能部101が待機姿勢に維持される。
 設置場所に到着後、固定ボルト122および位置決めボルト123を抜くか緩めて、固定フレーム114の第1の固定具115と第2の固定具116とを切り離す。そして、水力発電装置における第1の固定具115以外の部分を、クレーン等によりスリンガ(図示せず)で吊り上げる。分離された第1の固定具115を、固定手段120により水路1の側壁面部1bの所定箇所に固定する。
 その後、水力発電装置の吊り上げ部分を、水路1の側壁面部1bに固定された第1の固定具115の上方まで移動させ、徐々に下降させながら、第1の固定具115のねじ孔と第2の固定具116のボルト締結用の長孔116aとの水平位置を合わせる。そして、第1の固定具115に第2の固定具116が当たるまで水力発電装置の吊り上げ部分を下降させ、第2の固定具116の長孔116aに挿入した固定ボルト122を第1の固定具115のねじ孔に螺着することで、第1の固定具115に第2の固定具116を固定する。また、第2の固定具116の側面部に位置決めボルト123を螺着し、その先端が第1の固定具115の側面部を押し付けるまで締め込むことで、第1の固定具115および第2の固定具116を水路幅方向に位置決めする。スリンガを外すと、図18の状態となる。
 次に、操作具112Aを操作して回転軸135を所定の方向に回転させて、図15に示すように、姿勢変更可能部101を水没姿勢にする。これにより、水力発電装置1の設置が完了する。設置完了後は、誤操作を防止するために、操作軸141から操作具112Aを外しておく。
 落下防止柵1cが設置されている水路1に水力発電装置を設置する場合、落下防止柵1cを一時的に取り外して上記設置作業を行ってもよいが、落下防止柵1cはそのままで上記設置作業を行うこともできる。落下防止柵1cが有っても、操作具112Aの操作を水路1の外から容易に行うことができる。
 このように設置された水力発電装置は、回転機構111Aの摩擦力により、姿勢変更可能部101が水没姿勢に保持される。操作軸141に引上げ方向の回転を規制するラチェット機構(図示せず)が配置されていると、水没姿勢の保持が確実となり、水路1の流水による翼車2の浮き上がりを抑制でき、安定した姿勢を保持できる。
 <水力発電モジュールの引き上げ>
 メンテナンス時や緊急時には、操作軸141に操作具112Aを取り付け、その操作具112Aを設置時とは逆向きに操作する。操作軸141に引上げ方向の回転を規制するラチェット機構が配置されている場合は、そのラチェット機構の機能を解除してから操作具112Aを操作する。それにより、姿勢変更可能部101が水路1から引き上げられて、図18に示す待機姿勢となる。操作具112Aの操作は、落下防止柵1c越しに水路1の外から行うことができる。回転軸135に、過回転防止のストッパ(図示せず)を設けておけば、姿勢変更可能部101を待機姿勢に確実に保持できる。
 <作用効果>
 第3の実施形態に係る水力発電装置によると、操作具112Aにより回転機構111Aを操作することで、回転軸135と共に架台130が回転して、架台130(姿勢変更可能部101)が水没姿勢と待機姿勢とに切り替わる。操作具112Aは水路1の外から手動で操作可能であるため、上記姿勢変更可能部101の姿勢切り替えを、機械を使用せずに、かつ作業者が水路1内に入らずに行うことができる。このため、水路1の側壁面部1bに落下防止柵1cが設置されている場合でも、作業者が落下防止柵1cを乗り越えることなく、姿勢変更可能部101の姿勢切り替え作業を行うことができる。また、姿勢変更可能部101の姿勢切り替え作業は、操作具112Aを操作するだけの簡単な作業であるため、少人数、例えば一人でも行うことができる。このため、増水等の緊急時にも、姿勢変更可能部101を水路1から引き上げることが可能である。
[第4の実施形態]
 図19~図22はこの発明の第4の実施形態に係る水力発電装置の正面図、右側面図、左側面図、および平面図である。この第4の実施形態は、第3の実施形態と比べて回転機構111Bおよび操作具112Bの構成が異なる。つまり、この実施形態の回転機構111Bは、操作具112Bの回転動作を回転軸135の回転動作に変換して回転軸135に伝達する手段として滑りねじ150が用いられている。また、操作具112Bは、操作具112A(図15)と同様に、ハブ112aから複数本(4本)の取っ手112bが放射状に延びる形状であるが、操作具112Aと異なり、水路長さ方向の軸心回りに回転操作するようになっている。これら回転機構111Bおよび操作具112Bは、第3の実施形態と異なり、この図示では、水路1の左岸(図19の紙面左側)に設けられている。
 他は、第1の実施形態と同じである。
 具体的には、回転機構111Bは、操作具112Bが取り付けられる水路長さ方向に延びるねじ軸151と、このねじ軸151に螺合するナット152とを有する。第2の固定具116に下端が固定されたねじ軸支持部材153が上方に延びており、このねじ軸支持部材153の上端に前記ねじ軸151が回転自在に支持されている。また、回転軸135と一体に回転するように操作アーム154が設けられ、この操作アーム154の長孔154a(図21)に前記ナット152に固定の摺動部品155に嵌まり込んでいる。操作具112Bによりねじ軸151を回転させると、操作アーム154によってねじ軸151回りの回転が拘束されたナット152がねじ軸151に沿って移動する。それに伴い、摺動部品155が長孔154aに沿って摺動しながら移動することで、操作アーム154が回転させられ、回転軸135が回転する。
 この回転機構111Bの場合、滑りねじ150のリードを小さくすることにより、その摩擦力で姿勢変更可能部101の姿勢を保持することが可能である。また、姿勢変更可能部101の引き上げ速度を速めるためにリードを大きくしてもよい。その場合、操作具112Bのハブ112aの部分に、姿勢変更可能部101を引き上げる場合の回転方向と逆回りの回転を規制するラチェット機構(図示せず)を配置すれば、姿勢変更可能部101の姿勢保持が確実となり、逆回転を防止することができる。
 この実施形態の水力発電装置を落下防止柵1cが設置してある水路1に設置する場合、操作具112Bの取っ手112bが落下防止柵1cと干渉しないように、落下防止柵1cの一部に取っ手112bが通過可能な切欠き部または開閉部を設ける必要がある。この切欠き部または開閉部は、操作軸141から操作具112Bを取り外しているときには、閉じられるようにしておくとよい。
 図19~図22の例では、操作アーム154の長孔154aに沿って摺動部品155が摺動する構成であるが、摺動部品155の代わりに、内輪がナット152に固定された軸受を用いてもよい。その場合、その外輪が回転しながら軸受が長孔154aに沿って移動することとなり、回転機構111Bの動作がより円滑になる。
 操作具112Bの動作を回転軸135に伝達する手段は、滑りねじ150の代わりにボールねじとしてもよい。滑りねじ150もボールねじも外観は同じであるので、ボールねじを用いた水力発電装置の図示は省略する。
[第5の実施形態]
 図23~図26はこの発明の第5の実施形態に係る水力発電装置の正面図、右側面図、左側面図、および平面図である。この第5の実施形態は、第4の実施形態と比べて操作具112Cが異なる。つまり、第4の実施形態の操作具112Bが回転操作するのに対し、第5の実施形態の操作具112Cは、水路長さ方向に往復操作するようになっている。操作具112Cとねじ軸151の連結部には、操作具112Cの往復運動を回転運動に変換してねじ軸151に伝達するノッチ機構160が設けられている。
 操作具112Cが水路長さ方向に往復操作する構成であると、図23に示すように、水路1の側壁面部1bに落下防止柵1cが設置されている場合、操作具112Cを落下防止柵1cと平行に操作することとなる。このため、水路1の外からでも操作具112Cを操作しやすく、姿勢変更可能部101の引き上げ作業がより一層容易である。他の構成要素については、回転機構111Cを含め、第4の実施形態に関して説明したものと同じである。
 この発明の第6の実施形態に係る水力発電装置を図27ないし図38と共に説明する。
 <水力発電装置全体の概略構成について>
 図28に示すように、この水力発電装置は、例えば、河川、用水路等の流水のある水路1に設置され、翼車2の回転を受けて発電を行う。水路1は、例えば、それぞれコンクリート等から成る底面部1aおよび両側の側壁面部1bで構成される。
 図27に示すように、この水力発電装置は、複数(この例では二台)の水力発電モジュール3,3と、これらの水力発電モジュール3,3を支持する支持装置4Aとを備える。先ず、水力発電モジュール3について説明し、以下、支持装置4A、水力発電装置の設置および引き上げ、作用効果について順次説明する。
 <水力発電モジュール3について>
 二台の水力発電モジュール3,3は、後述する支持装置4Aにおける架設フレーム205(第1および第2の実施形態の固定フレーム10、ならびに第3から第5の実施形態の固定フレーム114に相当)の水路幅方向に所定間隔を空けて平行に並ぶように支持されている。これら水力発電モジュール3,3は同一構造であるため、一方の水力発電モジュール3についてのみ符号を付して説明し、他方の水力発電モジュール3については、一方の水力発電モジュール3と同一の符号を付して説明を省略する。また、第1の実施形態に関連して水力発電モジュール3についても説明を省略する場合がある。
 水力発電モジュール3は、翼車2、およびこの翼車2の回転により発電する発電機6を有する。
 <支持装置4Aについて>
 図27および図30に示すように、支持装置4Aは、架設フレーム205、複数(この例では二つ)の架台210、個別回転支持手段211、発電機台12、複数(この例では二つ)の操作手段213,213およびかんぬき構造214を有する。架設フレーム205は、一対の梁215,215と、フレーム本体216と、複数の固定具217とを有する。
 図28および図29に示すように、水路1に渡って架設されたフレーム本体216に対し、個別回転支持手段211を介して各架台210が回転可能に支持されている。各架台210に、発電機台12,12を介して水力発電モジュール3,3がそれぞれ支持されている。したがって、各水力発電モジュール3は、架設フレーム205に対し、翼車2の下端が水路1の水面より下に位置する水没姿勢と、翼車2の全体が水路1の水面より上に位置する待機姿勢(図35~図38等)とに渡って回転可能に支持されている。
 図27および図28に示すように、水路1の両側の側壁面部1bにおける上端付近から上端部に渡り複数(この例では二つ)の固定具217,217が固定されている。各固定具217は、側壁面部1bの側面に沿う立板固定部と、この立板固定部に繋がり側壁面部1bの上端面に沿う水平固定板部とで断面L形状に形成されている。二つの固定具217,217は、流水の流れる方向A1(以下、「流水方向A1」と言う)に平行に設けられている。各固定具217および後述する各梁215は、例えば、断面L形のアングル等から形成される。
 図27および図30に示すように、一対の梁215,215は、前記流水方向A1にそれぞれ平行に設けられ、フレーム本体216により互いに連結されている。フレーム本体216は、例えば、角筒形状で水路の幅方向に平行に延びる。このフレーム本体216の長手方向両端部には、この水力発電装置を後述するクレーン等によりスリンガ(図示せず)で吊り上げるための吊りボルト218,218が設けられている。図27および図28に示すように、各梁215は、立板部と、この立板部に繋がる水平板部とで断面L形状に形成されている。図27および図30に示すように、各梁215の水平板部の上面における長手方向中間部に、フレーム本体216の長手方向両端部が支持され、ブラケット等により固定されている。各側壁面部1bに並ぶ固定具217に対して、各梁215の水平板部が複数のボルトにより固定されている。
 架台210は、架台基端部210aと、二つの架台支持部210b,210bとを有する。架台基端部210aは、角筒形状で水路1(図28)の幅方向に平行に延びる。架台基端部210aには、各架台支持部210bの長手方向一端部がそれぞれ連結されている。これら架台支持部210b,210bは、架台基端部210aの長手方向に直交する方向に延び、互いに一定間隔を隔てて平行に配置されている。二つの架台支持部210b,210bに発電機台12,12が支持された状態で固定されている。この発電機台12に発電機6が支持されている。
 図27および図28に示すように、この例の個別回転支持手段211は蝶番であり、フレーム本体216に、前記蝶番の一方の蝶番片211aが連結され、架台基端部210aに、前記蝶番の他方の蝶番片211bが連結されている。したがって、この蝶番の軸を回転軸心として、フレーム本体216に対し、架台210および水力発電モジュール3が前記水没姿勢と前記待機姿勢とに渡って、前記回転軸心回りに回転可能に構成される。
 各操作手段213は、架設フレーム205に対し、架台210を人力で回転する棒状部材である。この操作手段213は、架台基端部210aの一側面部に着脱自在に固定されている。操作手段213は、架台基端部210aの一側面部から前記回転軸心に平行に延びる回転軸部213aと、この回転軸部213aの先端に繋がり前記回転軸心に直交する方向に延びる操作部213bとを有する。操作部213bは把持する等して操作可能である。回転軸部213aの基端には取付フランジが付設され、この取付フランジが架台基端部210aの一側面部に着脱自在である。
 図31および図34に示すように、かんぬき構造214は、各架台210を水没姿勢または待機姿勢で保持する第1および第2のかんぬき部品219,220を含む。各架台支持部210bに第1のかんぬき部品219,219がそれぞれ平行に固定され、フレーム本体216に第2のかんぬき部品220が設けられている。各第1のかんぬき部品219の両端部に嵌合穴219a,219bがそれぞれ形成されている。第2のかんぬき部品220は、かんぬき部品本体220aと、このかんぬき部品本体220aにスライド可能に支持された棒220bとを有する。この棒220bを第1のかんぬき部品219の一方の嵌合穴219bに嵌合することにより水没姿勢を維持する。また棒220bを第1のかんぬき部品19の他方の嵌合穴19aに嵌合することにより待機姿勢を維持する。
 <水力発電装置の設置過程>
 図35~図38に示すように、水力発電装置を待機姿勢の荷姿で目的地である水路まで運搬する。運搬時には、水力発電モジュールを待機姿勢にし、第2のかんぬき部品220の棒220bを第1のかんぬき部品219の嵌合穴219aに嵌合することにより待機姿勢を維持する。水力発電装置を目的地まで到着させた後、この水力発電装置から固定具217を離脱した準組立体を、図示外のクレーン等によりスリンガ(図示せず)で吊り上げ、各ブレード2bを略水平状態に維持しながら、予め水路に設置してある固定具217の上方に移動する。
 その後、前記準組立体を降下させて固定具217と梁215とを複数のボルトにより固定する。次に、図31~図34に示すように、水力発電装置から前記スリンガを取り外した後、一方の操作手段213の操作部213bを把持しつつ第2のかんぬき部品220の棒220bをスライドさせ第1のかんぬき部品219の嵌合穴219aから抜き、第1(この例では図32の紙面左側)の水力発電モジュール3および架台210をこの架台210に固定された操作手段213により回転させる。これにより図32の紙面左側の翼車2を水路に水没させる。
 その後、図32の紙面左側の翼車2が水没姿勢を保つように操作手段213を支持し、図34に示すように、第2のかんぬき部品220の棒220bをスライドさせ第1のかんぬき部品219の嵌合穴219aに差し込むことにより水没姿勢を維持する。次に、図27に示すように、第2の水力発電モジュール3についても第1の水力発電モジュール3と同様に待機姿勢から水没姿勢に変化させ、この水没姿勢を維持する。この水没姿勢において、翼車2の回転により発電機6は発電する。
 <引き上げ時>
 図31~図34に示すように、緊急時またはメンテナンス時においてこの水力発電装置を水路から引き上げる場合、水力発電モジュール3を一個毎に引き上げる。具体的に、引き上げ対象の水力発電モジュール3につき、この水力発電モジュール3の架台210に繋がる操作手段213を支持しながら第2のかんぬき部品220の棒220bをスライドさせ、第1のかんぬき部品219の嵌合穴219bから抜き、前記操作手段213により架台210を前記と逆向きに回転させて翼車2を水路から引き上げる。次に前記操作手段213を支持しながら第2のかんぬき部品220の棒220bをスライドさせ、第1のかんぬき部品219の嵌合穴219bに差し込む。これにより、水路の流速に阻害されることなく所望のメンテナンス等を行うことができる。
 <作用効果>
 以上説明した水力発電装置によれば、この水力発電装置の設置作業時には、複数の水力発電モジュール3,3を架設フレーム205に設置した状態で、各水力発電モジュール3をそれぞれ待機姿勢にした状態で水路1に設置することができる。この場合、水路1の流速に抗うことなく水力発電装置を容易に設置することができる。したがって、水力発電装置を、計画した場所に容易に且つ確実に設置することができる。また一台のみの水力発電モジュールを設置する場合よりも発電力を増加させることができる。
 この水力発電装置の使用時には、各水力発電モジュール3を水没姿勢と待機姿勢とに渡ってそれぞれ独立して回転可能に支持する個別回転支持手段211を有するため、この水力発電装置を水路1から引き上げる場合、水力発電モジュール3,3を個別回転支持手段211により一個毎に引き上げることが可能となる。このため、二台の水力発電装置を水路から同時に引き上げる場合に比べて、引き上げに要する力を分散化することができる。これにより、人力等により水力発電装置を水路1から容易に引き上げることができる。また二台同時引き上げに要する時間を短縮することができる。また水力発電モジュール3,3を一個毎に引き上げることが可能となるため、各水力発電モジュール3を別々にメンテナンスすることも可能である。
 <その他の実施形態>
 架設フレームに三台以上の水力発電モジュールを設置することも可能である。
 水路に渡って架設された架設フレームに対し、各水力発電モジュール二台を別々に設置することも可能である。この場合、各水力発電モジュールを引き上げ機構等で別々に引き上げて設置することができるため、水力発電装置を二台同時に設置する従来例よりも、引き上げ機構等の小型化を図り設置する時間の短縮を図ることができる。
 以上のとおり、図面を参照しながら好適な実施形態を説明したが、本発明の趣旨を逸脱しない範囲内で、種々の追加、変更または削除が可能である。したがって、そのようなものも本発明の範囲内に含まれる。また、各実施形態を任意に組み合わせてもよい。例えば、水力発電モジュールが複数設けられた構成は、第1から第5のいずれの実施形態に適用されてもよい。
 以下の態様も、本発明の範囲に含まれる。
〔態様1〕
 水路に渡って架設された架設フレームと、この架設フレームの水路幅方向に並ぶ複数の水力発電モジュールとを備え、各水力発電モジュールが水力を回転力に変換する翼車およびこの翼車の回転により発電する発電機を有する水力発電装置において、
 前記各水力発電モジュールを前記架設フレームに対し、前記翼車の下端が前記水路の水面より下に位置する水没姿勢と、前記翼車の全体が前記水路の水面より上に位置する待機姿勢とに渡ってそれぞれ独立して回転可能に支持する個別回転支持手段を有する水力発電装置。
〔態様2〕
 態様1に記載の水力発電装置において、前記各水力発電モジュールをそれぞれ支持する複数の架台を有し、前記架設フレームに対し、前記個別回転支持手段を介して各架台が回転可能に支持されている水力発電装置。
〔態様3〕
 態様2に記載の水力発電装置において、前記前記架設フレームに対し、前記各水力発電モジュールをそれぞれ独立して回転させる複数の操作手段を各架台に備えた水力発電装置。
〔態様4〕
 態様1ないし態様3のいずれか1態様に記載の水力発電装置において、前記個別回転支持手段が蝶番である水力発電装置。
〔態様5〕
 態様1ないし態様4のいずれか1態様に記載の水力発電装置において、前記架設フレームは、この架設フレームを前記水路に固定する固定具を含む水力発電装置。
1…水路
2…翼車
3…水力発電モジュール
6…発電機
10,114…固定フレーム
11,130…架台
19…固定具

Claims (15)

  1.  少なくとも1つの水力発電モジュールであって、それぞれ、水力を回転力に変換する翼車を有する、少なくとも1つの水力発電モジュールと、
     前記少なくとも1つの水力発電モジュールの翼車の回転により発電する発電機と、
     前記少なくとも1つの水力発電モジュールの各水力発電モジュールをそれぞれ支持する少なくとも1つの架台と、
     水路に固定されて前記少なくとも1つの架台を支持する固定フレームとを備えた水力発電装置であって、
     前記固定フレームは、この固定フレームを前記水路に固定する固定具を含み、
     前記少なくとも1つの架台は、前記固定フレームに対し、
      その架台が支持する水力発電モジュールが、その翼車の下端が前記水路の水面よりも下に位置する水没姿勢をとる位置と、
      その架台が支持する水力発電モジュールが、その翼車の全体が前記水路の水面よりも上に位置する待機姿勢をとる位置と、に渡って回転可能に支持されている水力発電装置。
  2.  請求項1に記載の水力発電装置において、前記固定フレームに対し前記少なくとも1つの架台を回転させる少なくとも1つの操作手段を備え、この操作手段は、回転させられる前記少なくとも1つの架台および前記固定フレームに着脱自在である水力発電装置。
  3.  請求項2に記載の水力発電装置において、前記少なくとも1つの操作手段が、回転させられる前記少なくとも1つの架台および前記固定フレームに装着されたとき、前記少なくとも1つの操作手段は、前記少なくとも1つの架台を、この架台が支持する水力発電モジュールが前記水没姿勢および前記待機姿勢のいずれか一方の姿勢をとるように保持する水力発電装置。
  4.  請求項1ないし請求項3のいずれか1項に記載の水力発電装置において、前記少なくとも1つの架台の回転軸心に対して、前記少なくとも1つの水力発電モジュールとは反対側に設けられた重錘を備えた水力発電装置。
  5.  請求項1ないし請求項4のいずれか1項に記載の水力発電装置において、
     さらに、
     前記少なくとも1つの架台に一体に設けられ前記固定フレームに対し前記架台を回転させる回転軸と、
     この回転軸を回転自在に支持し、前記固定フレームに着脱自在に設けられる回転軸受部とを備えた水力発電装置。
  6.  請求項5に記載の水力発電装置において、前記回転軸受部は、前記回転軸と接触する面に樹脂製摺動材を備えている水力発電装置。
  7.  請求項1ないし請求項4のいずれか1項に記載の水力発電装置において、前記少なくとも1つの架台は、それぞれ、前記固定フレームに対して、対応する蝶番により、前記少なくとも1つの水力発電モジュールが前記水没姿勢をとる位置と前記待機姿勢をとる位置とに渡って回転可能に連結された水力発電装置。
  8.  請求項1に記載の水力発電装置において、さらに、
     前記少なくとも1つの架台に固定され、かつ前記固定フレームに対し回転自在な水路の幅方向に延びる回転軸と、
     この回転軸を前記固定フレームに対して回転させる回転機構と、
     この回転機構を前記水路の外から手動で操作可能な操作具とを備え、
     前記少なくとも1つの架台が前記回転軸と共に回転することにより、前記1つの水力発電モジュールが前記水没姿勢と前記待機姿勢との間で姿勢変更可能である水力発電装置。
  9.  請求項8に記載の水力発電装置において、前記回転機構は、ウォームギヤ、滑りねじ、およびボールねじのいずれか1つにより、前記操作具の動作を前記回転軸の軸心回りの回転動作に変換して前記回転軸に伝達する水力発電装置。
  10.  請求項8または請求項9に記載の水力発電装置において、前記回転機構は、前記少なくとも1つの水力発電モジュールが前記待機姿勢から前記水没姿勢へ姿勢変更する方向に前記回転軸が回転することを規制するラチェット機構を有する水力発電装置。
  11.  請求項8ないし請求項10のいずれか1項に記載の水力発電装置において、前記操作具は前記水路の長さ方向に往復操作されるものであり、この操作具の動作を前記回転機構に伝達するノッチ機構を有する水力発電装置。
  12.  請求項8ないし請求項11のいずれか1項に記載の水力発電装置において、前記回転機構の構成部品に耐食性を有する材料が用いられている水力発電装置。
  13.  請求項1ないし請求項12に記載の水力発電装置において、前記少なくとも1つの水力発電モジュールは前記水路の幅方向に並ぶ複数の水力発電モジュールであり、前記少なくとも1つの架台は前記複数の水力発電モジュールをそれぞれ支持する複数の架台であり、さらに、
     前記複数の水力発電モジュールが前記水没姿勢をとる位置と前記待機姿勢をとる位置とに渡って前記複数の架台を前記固定フレームに対しそれぞれ独立して回転可能に支持する個別回転支持手段を有する水力発電装置。
  14.  請求項2または3に従属する請求項13に記載の水力発電装置において、前記少なくとも1つの操作手段は複数の操作手段であり、これら複数の操作手段は、それぞれ、前記固定フレームに対し前記複数の架台をそれぞれ独立して回転させるように、各架台に設けられた水力発電装置。
  15.  請求項7に従属する請求項13または請求項14に記載の水力発電装置において、前記個別回転支持手段が前記蝶番である水力発電装置。
PCT/JP2018/006779 2017-02-27 2018-02-23 水力発電装置 WO2018155646A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880013313.7A CN110325732B (zh) 2017-02-27 2018-02-23 水力发电设备
KR1020197026141A KR102433634B1 (ko) 2017-02-27 2018-02-23 수력 발전 장치

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2017034801 2017-02-27
JP2017-034801 2017-02-27
JP2017-245163 2017-12-21
JP2017245163A JP2019112967A (ja) 2017-12-21 2017-12-21 水力発電装置
JP2018017021A JP7021967B2 (ja) 2017-02-27 2018-02-02 水力発電装置
JP2018-017021 2018-02-02

Publications (1)

Publication Number Publication Date
WO2018155646A1 true WO2018155646A1 (ja) 2018-08-30

Family

ID=63252927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006779 WO2018155646A1 (ja) 2017-02-27 2018-02-23 水力発電装置

Country Status (1)

Country Link
WO (1) WO2018155646A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024060665A1 (zh) * 2022-09-22 2024-03-28 赵汝峰 一种水下动力发生装置、动力系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10021649A1 (de) * 2000-05-04 2001-11-15 Paul Kramer Flußregulierungs- u. Wasserkraftwerksanlage
JP3147950U (ja) * 2008-11-07 2009-01-29 豊実 野原 水力発電装置
JP2013241841A (ja) * 2012-05-17 2013-12-05 Kosumosu Enterp:Kk 水力発電装置及びその設置方法
JP2015083786A (ja) * 2013-10-25 2015-04-30 矢内 誠 水力発電装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10021649A1 (de) * 2000-05-04 2001-11-15 Paul Kramer Flußregulierungs- u. Wasserkraftwerksanlage
JP3147950U (ja) * 2008-11-07 2009-01-29 豊実 野原 水力発電装置
JP2013241841A (ja) * 2012-05-17 2013-12-05 Kosumosu Enterp:Kk 水力発電装置及びその設置方法
JP2015083786A (ja) * 2013-10-25 2015-04-30 矢内 誠 水力発電装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024060665A1 (zh) * 2022-09-22 2024-03-28 赵汝峰 一种水下动力发生装置、动力系统

Similar Documents

Publication Publication Date Title
KR101038641B1 (ko) 풍력터빈설비의 유지 보수 시스템
US20120228881A1 (en) Wind Turbine Having a Lifting Device
CN101309001B (zh) 一种线缆除冰机器人
US20080245756A1 (en) Wind Turbine Nacelle With Integral Service Crane for Accessing Turbine Components
JP2017537834A (ja) 歯車結合方式の操舵装置及びそれを用いた操舵方法
CN103663131A (zh) 用于维护风力涡轮齿轮箱的固定装置、维护组件和方法
CN102312796A (zh) 带有结合的操纵机构附接孔的风力涡轮机叶片
JP2009002274A (ja) 風力発電装置および風力発電装置の建設方法
EP3421778B1 (en) Hydropower generation device
EP1677007A3 (en) Wind turbine with detachable crane and auxiliary boom and crane assembly procedure
NZ591279A (en) Wind turbine with rail-system within the nachelle
JP2018141459A (ja) 水力発電装置
WO2018155646A1 (ja) 水力発電装置
JP2020101114A (ja) 水力発電装置
ES2534901T3 (es) Soporte de máquina de un aerogenerador con cableado y procedimiento para tender un haz de cables en un soporte de máquina de un aerogenerador
KR20150045114A (ko) 블레이드 설치용 리프팅 지그
KR102433634B1 (ko) 수력 발전 장치
KR20210031307A (ko) 송전 철탑 작업용 이동식 윈치 장치
JP2019112967A (ja) 水力発電装置
EP2617988B1 (en) Manual lifting tool for wind turbines
US20210299820A1 (en) Clamping of components, particularly wind turbine blade tips
GB2482707A (en) Apparatus For And Method Of Transporting And Handling Wind Turbine Blades
CN201414051Y (zh) 发电机转子翻身吊具
WO2008110915A3 (en) System for generating electric power
US20140255190A1 (en) Wind Turbine System Constructive Arrangement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18758069

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197026141

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18758069

Country of ref document: EP

Kind code of ref document: A1