WO2018155189A1 - 回転機械、回転機械の排気部材 - Google Patents

回転機械、回転機械の排気部材 Download PDF

Info

Publication number
WO2018155189A1
WO2018155189A1 PCT/JP2018/004248 JP2018004248W WO2018155189A1 WO 2018155189 A1 WO2018155189 A1 WO 2018155189A1 JP 2018004248 W JP2018004248 W JP 2018004248W WO 2018155189 A1 WO2018155189 A1 WO 2018155189A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
downstream side
rotor
working fluid
blade
Prior art date
Application number
PCT/JP2018/004248
Other languages
English (en)
French (fr)
Inventor
文人 平谷
健一郎 岩切
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to KR1020197005713A priority Critical patent/KR102223293B1/ko
Priority to CN201880003439.6A priority patent/CN110300839A/zh
Publication of WO2018155189A1 publication Critical patent/WO2018155189A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/30Exhaust heads, chambers, or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/04Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor
    • F02C3/045Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor having compressor and turbine passages in a single rotor-module
    • F02C3/05Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor having compressor and turbine passages in a single rotor-module the compressor and the turbine being of the radial flow type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers

Definitions

  • the present invention relates to a rotary machine and an exhaust member of the rotary machine.
  • Rotating machines such as radial turbines (centrifugal turbines) or axial flow turbines used in turbochargers and axial flow blowers for blast furnaces are provided in a casing, a rotor rotatably provided in the casing, and an outer peripheral portion of the rotor. And wings. Some of these rotating machines rotate a rotor having blades by a working fluid fed from the outside. In addition, there is a type in which a working fluid is sent out by rotating a rotor having blades by power transmitted from the outside.
  • the working fluid flows along the impeller 3 from the outer peripheral side of the casing 2 and changes its direction. It is discharged from the side along the central axis direction.
  • a part of the working fluid flowing out along the central axis direction from the inner peripheral side of the impeller 3 is separated to form a separation vortex.
  • the region S1 where the separation vortex is generated does not substantially function as a flow path through which the working fluid flows. For this reason, the efficiency of pressure recovery may be impaired in the enlarged diameter flow path 4 affected by the region where the separation vortex is generated on the downstream side.
  • the working fluid flowing between the casing 6 and the rotor 7 provided in the casing 6 flows downstream of the moving blade 8A and the stationary blade 8B. May peel.
  • the region S2 where the separation occurs does not substantially function as a flow path through which the working fluid flows. For this reason, the efficiency of pressure recovery may be impaired in the diameter-enlarged flow path 9 affected by the region S2 where separation occurs on the downstream side.
  • the present invention has been made in view of such circumstances, and is a rotary machine capable of reducing an area where separation occurs in the flow path and improving the efficiency of pressure recovery in the enlarged diameter flow path, and exhaust of the rotary machine
  • An object is to provide a member.
  • a rotating machine according to an aspect of the present invention is provided on a rotor provided rotatably around a central axis, a rotor blade fixed to an outer peripheral portion of the rotor, and an outer peripheral side of the rotor and the rotor blade, A casing that forms a flow path for the working fluid inside thereof, and a reduction that is provided downstream of the rotary blade in the flow direction of the working fluid, and the flow passage cross-sectional area of the working fluid gradually decreases toward the downstream side.
  • a flow path section, and an enlarged flow path section that is provided on the downstream side of the reduced flow path section, and in which the cross-sectional area of the working fluid gradually increases toward the downstream side.
  • the flow path of the working fluid is narrowed by providing the reduced flow path portion on the downstream side of the rotating blade in the flow direction of the working fluid.
  • the region where separation can occur on the downstream side of the rotor blade is relatively reduced with respect to the region where the working fluid substantially flows.
  • the pressure recovery efficiency of the working fluid can be increased by gradually expanding the cross-sectional area of the working fluid in the expanded flow path portion.
  • the rotary machine further includes a discharge part that extends toward the downstream side of the rotor and the rotary blades and discharges the working fluid to the downstream side, and the reduction flow path part and the expansion flow path part include the discharge It is more preferable that the portion is formed on the downstream side of the end portion on the downstream side in the flow direction of the rotor.
  • the working fluid is easily separated at the downstream end of the rotor.
  • the reduced flow path portion on the downstream side of the downstream end portion of the rotor, the region where the working fluid is peeled can be effectively reduced.
  • the casing and the rotor extend toward the downstream side in the flow direction with respect to the rotor blades, and the reduced flow path portion is located on the downstream side of the rotor blades with respect to the casing and the rotor. More preferably, it is formed on at least one side.
  • the rotating machine further includes a stationary blade provided downstream of the rotating blade and extending from the casing toward the inner peripheral side, and the reduction flow path section is provided with the stationary blade in the flow direction. More preferably, it is formed in a certain region.
  • the rotary machine further includes a stationary blade provided upstream of the rotary blade and extending from the casing toward the inner peripheral side, and the reduced flow path section has a flow direction of the working fluid relative to the rotary blade More preferably, it is provided on the downstream side.
  • An exhaust member of a rotating machine is provided on a rotor provided rotatably around a central axis, a rotor blade fixed to an outer peripheral portion of the rotor, and an outer peripheral side of the rotor blade,
  • An exhaust member of a rotary machine having a casing that forms a flow path of a working fluid inside, provided to extend downstream from the rotor and the rotor blade, and discharges the working fluid downstream.
  • a tubular exhaust member main body forming an exhaust flow path, and an inner peripheral surface of the exhaust member main body, the flow passage cross-sectional area of the working fluid gradually decreases toward the downstream side in the flow direction of the working fluid.
  • a reduced flow channel portion, and an enlarged flow channel portion formed downstream of the reduced flow channel portion on the inner peripheral surface of the exhaust member main body, and the flow channel cross-sectional area of the working fluid gradually increases toward the downstream side. .
  • the reduced flow path portion is provided on the downstream side of the rotating blade in the flow direction of the working fluid.
  • region where peeling of a working fluid arises in a flow path can be reduced.
  • a radial turbine (rotary machine) 10 ⁇ / b> A used for a turbocharger includes a casing 11, a rotor 12, and rotary blades 13.
  • the casing 11 forms the outer shell of the radial turbine 10A.
  • the casing 11 is provided with a rotor housing 11R that is hollow and accommodates the rotor 12 therein, and an exhaust member (discharge portion, exhaust member main body) 15A provided so as to surround the outer peripheral side of the rotary blade 13.
  • the casing 11 is connected to an intake casing having an intake port (not shown) for taking in a working fluid such as exhaust gas of the internal combustion engine from the outside in the radial direction, and a stationary blade.
  • the rotor 12 includes a rotating shaft 12s rotatably supported around the central axis C via a bearing (not shown) in the casing 11, and a disk portion provided at one end of the rotating shaft 12s in the central axis C direction. 14.
  • the disk portion 14 includes a bore portion 14b formed in a central portion including the central axis C, and a deflection surface 14f formed on the outer peripheral side of the bore portion 14b so as to face one side in the direction of the central axis C. Yes.
  • the deflection surface 14f is formed by a concave curved surface whose outer diameter gradually increases from one side to the other side in the central axis C direction, and is used for the working fluid taken in from the radially outer intake port 11a toward the radially inner side. The flow direction is deflected in the direction of the central axis C.
  • a plurality of rotor blades 13 are provided on the deflecting surface 14f of the disk portion 14 at intervals in the circumferential direction around the central axis C.
  • the casing 11 includes a shroud portion 18 provided so as to cover the plurality of rotor blades 13 from one side in the central axis C direction.
  • the exhaust member 15A is provided on the downstream side of the rotating blade 13 in the flow direction of the working fluid, that is, on one side in the central axis C direction, following the shroud portion 18.
  • the exhaust member 15A has a cylindrical shape, and an exhaust flow of working fluid flowing from the inner peripheral side of the disk portion 14 (the outer peripheral side of the bore portion 14b) toward one side (downstream side) in the central axis C direction.
  • a path 102 is formed.
  • the exhaust member 15 ⁇ / b> A includes a reduced flow path portion 16 and an expanded flow path portion 17 provided on the downstream side of the reduced flow path portion 16 on the inner peripheral surface 15 f.
  • the reduced flow path portion 16 and the expanded flow path portion 17 are formed on the downstream side of the end face (end portion) 14g of the bore portion 14b located on the downstream side in the flow direction of the rotor 12 in the exhaust member 15A.
  • the reduced flow path portion 16 is formed so that the flow path cross-sectional area of the working fluid gradually decreases as the inner diameter gradually decreases toward the downstream side.
  • the expanded flow path portion 17 is formed continuously on the downstream side of the reduced flow path portion 16, and is formed so that the flow path cross-sectional area of the working fluid gradually expands as the inner diameter gradually increases toward the downstream side. ing.
  • the working fluid taken from the intake port 11a flows into the flow path 101 between the deflection surface 14f of the disk portion 14 and the shroud portion 18 from the radially outer side to the inner side.
  • the rotor 12 rotates around the central axis and drives a compressor (not shown) connected to the other end of the rotor 12.
  • the working fluid flows out from the inner peripheral side of the disk portion 14 (the outer peripheral side of the bore portion 14b) toward one side (downstream side) in the central axis C direction, and passes through the exhaust passage 102 inside the exhaust member 15A. It is discharged outside.
  • the exhaust member 15A a part of the working fluid that has flowed along the deflection surface 14f of the disk part 14 is separated on the downstream side of the end face 14g of the bore part 14b of the disk part 14 to generate a vortex. .
  • a region S21 where a separation vortex is generated is formed on the downstream side of the end face 14g of the bore portion 14b.
  • the working fluid flowing downstream along the direction of the central axis C is deflected radially inward along the reduced flow path portion 16 formed on the inner peripheral surface 15f.
  • the working fluid that has passed through the reduced flow path portion 16 gradually expands in the flow path cross-sectional area in the enlarged flow path portion 17, so that the flow velocity decreases and is released from the outlet of the exhaust member 15A to the outside, for example, atmospheric pressure.
  • the region S21 formed in the central portion of the exhaust flow path 102 in the exhaust member 15A where the separation vortex is generated has a smaller radial dimension.
  • the cross-sectional area (hereinafter referred to as the effective flow path area) of the region S22 where the working fluid flows downstream on the outer peripheral side of the region S21 is relatively large.
  • FIG. 2 shows a case where the flow passage area M1 of the exhaust member 15A, the effective flow passage area M2 of the region S22 in which the working fluid flows excluding the region S21 where the separation vortex is generated, and the reduced flow passage portion 16 are not provided.
  • 11 shows the effective flow path area M0 of the region where the working fluid flows except for the region S21 where the separation vortex is generated.
  • the provision of the reduced flow path portion 16 increases the effective flow path area M2 of the region S22 through which the working fluid flows.
  • the reduced flow path portion 16 is provided on the downstream side of the rotating blade 13 in the flow direction of the working fluid, thereby narrowing the flow path 102 of the working fluid.
  • the region S21 where the separation can occur on the downstream side of the rotary blade 13 is relatively reduced with respect to the region S22 where the working fluid substantially flows. In this way, it is possible to reduce the region S21 where the working fluid is separated in the flow path.
  • the flow path cross-sectional area of the working fluid is gradually expanded in the expanded flow path portion 17, whereby the pressure recovery efficiency of the working fluid can be increased.
  • the region S21 where the working fluid is peeled off can be effectively reduced.
  • the exhaust member (discharge unit, exhaust member main body) 15 ⁇ / b> B of the radial turbine (rotary machine) 10 ⁇ / b> B used in the turbocharger is continuous with the shroud part 18 of the casing 11 and operates more than the rotary blades 13. It is provided on the downstream side in the fluid flow direction, that is, on one side in the central axis C direction.
  • the exhaust member 15B has a cylindrical shape and forms an exhaust passage 102 for working fluid that flows inside from the inner peripheral side of the disk portion 14 (the outer peripheral side of the bore portion 14b) toward the downstream side.
  • the exhaust member 15B has, on its inner peripheral surface 15f, from the upstream side toward the downstream side, the straight flow path part 20, the first enlarged flow path part 21, the reduced flow path part 22, and the reduced flow path part 22 And a second enlarged flow path portion 23 provided on the downstream side.
  • the first expanded flow path portion 21, the reduced flow path portion 22, and the second expanded flow path portion 23 are formed on the downstream side of the end surface 14g of the bore portion 14b located on the downstream side in the flow direction of the rotor 12 in the exhaust member 15B. Has been.
  • the straight flow path portion 20 has a constant inner diameter in the central axis C direction.
  • the first enlarged flow channel portion 21 is formed such that the flow channel cross-sectional area of the working fluid gradually expands as the inner diameter gradually expands toward the downstream side.
  • the reduced flow path portion 22 is formed so that the cross-sectional area of the working fluid gradually decreases as the inner diameter gradually decreases toward the downstream side.
  • the second enlarged flow path portion 23 is continuously formed on the downstream side of the reduced flow path portion 22, and its inner diameter gradually increases toward the downstream side so that the flow path cross-sectional area of the working fluid gradually increases. Is formed.
  • FIG. 4 shows a case where the flow path area M11 of the exhaust member 15B, the effective flow area M12 of the region S22 where the working fluid flows excluding the region S21 where the separation vortex is generated, and the reduced flow path portion 22 are not provided (FIG. 4).
  • 11 shows the effective flow path area M0 of the region where the working fluid flows except for the region S21 where the separation vortex is generated.
  • the provision of the reduced flow path portion 22 increases the effective flow path area M12 of the region S22 through which the working fluid flows.
  • the reduced flow path portion 22 is provided, thereby reducing the region S21 where separation can occur on the downstream side of the rotor blade 13 and operating. It is possible to increase the cross-sectional area of the alternating current path in the region S22 where the fluid substantially flows. After passing through such a reduced flow path portion 22, the pressure recovery efficiency of the working fluid can be increased by gradually expanding the cross-sectional area of the working fluid in the second expanded flow path portion.
  • the axial flow blower (rotary machine) 10 ⁇ / b> C includes a casing 31 ⁇ / b> C, a rotary shaft (rotor) 32, a moving blade (rotating blade) 33, and a stationary blade 34.
  • the casing 31C has a cylindrical shape extending along the direction of the central axis C.
  • the rotating shaft 32 is rotatably supported around the central axis C by a bearing (not shown) inside the casing 31C.
  • the rotary shaft 32 is rotationally driven around the central axis C by a turbine or the like (not shown).
  • a working fluid flow path 103 is formed in an annular region between the inner peripheral surface of the casing 31 ⁇ / b> C and the outer peripheral surface of the rotary shaft 32.
  • a plurality of moving blades 33 are provided on the outer peripheral portion of the rotating shaft 32 at intervals in the circumferential direction around the central axis C.
  • Each rotor blade 33 is formed so as to extend radially outward from the outer peripheral surface of the rotating shaft 32.
  • the stationary blade 34 is disposed on the downstream side of the moving blade 33 in the central axis C direction.
  • a plurality of the stationary blades 34 are provided inside the casing 31 ⁇ / b> C at intervals in the circumferential direction around the central axis C.
  • Each stationary blade 34 is formed to extend from the casing 31C toward the inner peripheral side.
  • the casing 31 ⁇ / b> C and the rotating shaft 32 extend toward the downstream side in the flow direction with respect to the moving blades 33 and the stationary blades 34.
  • a reduced flow path portion 36 ⁇ / b> C and an enlarged flow path portion 37 are formed on the downstream side of the moving blade 33 and the stationary blade 34.
  • the reduced flow path portion 36C and the expanded flow path portion 37 are formed on the inner peripheral surface 31f of the casing 31C.
  • the flow path cross-sectional area of the working fluid is gradually reduced by reducing the inner diameter of the casing 31C toward the downstream side.
  • the reduced flow path portion 36 ⁇ / b> C may be formed in a region where the stationary blade 34 is provided in the flow direction.
  • the expanded flow path portion 37 is provided on the downstream side of the reduced flow path portion 36C, and the flow path cross-sectional area of the working fluid is gradually expanded as the inner diameter of the casing 31C gradually increases toward the downstream side.
  • the working fluid that has passed through the moving blade 33 and the stationary blade 34 is provided with the reduced flow path portion 36C on the downstream side in the flow direction, thereby narrowing the working fluid flow path. .
  • the cross-sectional area of the region S22 in which the working fluid substantially flows in the flow path 103 between the casing 31C and the rotating shaft 32 becomes relatively large.
  • the region S ⁇ b> 21 where separation can occur on the downstream side of the moving blade 33 is relatively reduced.
  • the flow path cross-sectional area of the working fluid is gradually expanded in the expanded flow path portion 37, whereby the pressure recovery efficiency of the working fluid can be increased.
  • the axial blower (rotary machine) 10 ⁇ / b> D includes a casing 31 ⁇ / b> D, a rotary shaft (rotor) 32 ⁇ / b> D, a moving blade 33, and a stationary blade 34.
  • the casing 31D has a cylindrical shape extending along the direction of the central axis C.
  • the rotation shaft 32D is supported inside the casing 31D so as to be rotatable around the central axis C by a bearing (not shown).
  • the rotary shaft 32D is rotationally driven around the central axis C by a turbine or the like (not shown).
  • a working fluid flow path 103 is formed in an annular region between the inner peripheral surface of the casing 31D and the outer peripheral surface of the rotary shaft 32D.
  • a plurality of moving blades 33 are provided on the outer peripheral portion of the rotating shaft 32 ⁇ / b> D at intervals in the circumferential direction around the central axis C.
  • Each rotor blade 33 is formed so as to extend radially outward from the outer peripheral surface of the rotation shaft 32D.
  • the stationary blade 34 is disposed on the downstream side of the moving blade 33 in the central axis C direction.
  • a plurality of the stationary blades 34 are provided on the inner side of the casing 31D at intervals in the circumferential direction around the central axis C. Each stationary blade 34 is formed so as to extend from the casing 31D toward the inner peripheral side.
  • the casing 31D and the rotating shaft 32D extend further toward the downstream side in the flow direction than the rotor blades 33 and the stationary blades 34.
  • a reduced flow path portion 36D is formed on the outer peripheral surface of the rotating shaft 32D on the downstream side of the moving blade 33 and the stationary blade 34.
  • an enlarged flow path portion 37 is formed on the inner peripheral surface of the casing 31D on the downstream side of the reduced flow path portion 36D.
  • the flow path cross-sectional area of the working fluid is gradually reduced as the outer diameter of the rotation shaft 32D increases toward the downstream side.
  • the reduced flow path portion 36 ⁇ / b> D is formed in a region where the stationary blade 34 is provided in the flow direction.
  • the enlarged flow path portion 37 is provided on the downstream side of the reduced flow path portion 36D, and the flow path cross-sectional area of the working fluid is gradually expanded as the inner diameter of the casing 31D gradually increases toward the downstream side.
  • the working fluid that has passed through the moving blade 33 and the stationary blade 34 is provided with the reduced flow path portion 36D on the downstream side in the flow direction, thereby narrowing the working fluid flow path. .
  • the cross-sectional area of the region S32 in which the working fluid substantially flows is relatively large in the flow path 103 between the casing 31D and the rotating shaft 32D.
  • the region S31 where separation can occur on the downstream side of the moving blade 33 is relatively reduced.
  • the flow path cross-sectional area of the working fluid is gradually expanded in the expanded flow path portion 37, whereby the pressure recovery efficiency of the working fluid can be increased.
  • the reduced flow path portion 36D is provided in the region where the stationary blades 34 are provided in the flow direction, but the present invention is not limited to this.
  • a reduced flow path portion 36 ⁇ / b> E formed in the rotation shaft (rotor) 32 ⁇ / b> E of the axial flow blower (rotary machine) 10 ⁇ / b> E may be provided on the downstream side of the stationary blade 34.
  • the axial turbine (rotary machine) 10F includes a turbine housing 41, a rotor 42, a stationary blade 43, a moving blade (rotary blade) 44, and an exhaust casing (casing) 45. ing.
  • the turbine housing 41 has a cylindrical shape extending along the direction of the central axis C.
  • a plurality of stationary blades 43 are provided inside the turbine housing 41 at intervals in the circumferential direction around the central axis C.
  • Each stationary blade 43 is formed to extend from the turbine housing 41 toward the inner peripheral side.
  • the rotor 42 is supported so as to be rotatable around the central axis C by a bearing (not shown).
  • a plurality of moving blades 44 are provided on the outer peripheral portion of the rotor 42 at intervals in the circumferential direction around the central axis C.
  • Each rotor blade 44 is formed to extend radially outward from the outer peripheral surface of the rotor 42.
  • the moving blade 44 is disposed on the downstream side of the stationary blade 43 in the central axis C direction.
  • the exhaust casing 45 is connected to the downstream side of the turbine housing 41.
  • the exhaust casing 45 includes an outer peripheral casing portion 45a located on the outer side in the radial direction of the rotor blade 44, and an inner peripheral casing portion 45b provided at an interval on the inner side in the radial direction with respect to the outer peripheral casing portion 45a.
  • the inner peripheral casing portion 45 b has a cylindrical shape extending along the direction of the central axis C, and is provided on the outer peripheral side of the rotation shaft 42 s of the rotor 42.
  • a working fluid exhaust passage 104 is formed in an annular region between the inner peripheral surface of the outer peripheral casing portion of the exhaust casing 45 and the outer peripheral surface of the inner peripheral casing portion 45b.
  • the exhaust casing 45 extends toward the downstream side in the flow direction from the stationary blades 43 and the moving blades 44.
  • a reduced flow path portion 46 is formed on the outer peripheral surface of the inner peripheral casing portion 45 b on the downstream side of the stationary blade 43 and the moving blade 44.
  • An enlarged flow path portion 47 is formed on the inner peripheral surface of the turbine housing 41 on the downstream side of the reduced flow path portion 46.
  • the flow passage cross-sectional area of the working fluid is gradually reduced as the outer diameter of the inner peripheral casing portion 45b increases toward the downstream side.
  • the enlarged flow channel portion 47 is provided on the downstream side of the reduced flow channel portion 46, and the inner diameter of the outer peripheral casing portion 45a and the outer diameter of the inner peripheral casing portion 45b gradually increase toward the downstream side.
  • the road cross-sectional area gradually increases.
  • the working fluid that has passed through the stationary blades 43 and the moving blades 44 is provided with the reduced flow path portion 46 on the downstream side in the flow direction, thereby narrowing the flow path of the working fluid. .
  • a region where separation can occur on the downstream side of the moving blade 44 is relatively reduced.
  • the flow path cross-sectional area of the working fluid is gradually expanded in the expanded flow path section 47, whereby the pressure recovery efficiency of the working fluid can be increased.
  • the radial turbines 10A and 10B, the axial flow blowers 10C and 10D, and the axial flow turbine 10F are exemplified.
  • the present invention is applicable to rotating machines other than those described above, such as a mixed flow turbine. It is.
  • the radial turbines 10A and 10B, the axial flow blowers 10C and 10D, and the axial flow turbine 10F may have different configurations from the configurations shown in the above embodiment and the modifications thereof.
  • the convex shape forming the reduced flow path portion may be provided on either the casing side or the rotor side.
  • a convex shape may be provided on both the casing side and the rotor side.
  • the casing may be constituted by a single part or may be constituted by combining a plurality of parts.
  • an L-shaped exhaust member was used.
  • the exhaust member includes a reduced flow path portion on the upstream side of the enlarged flow path portion whose inner diameter gradually increases toward the downstream side.
  • an exhaust member that does not have a reduced flow path portion whose inner diameter gradually decreases toward the downstream side is used on the upstream side of the enlarged flow path portion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Supercharger (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

流路内で剥離が生じる領域を低減し、拡径流路における圧力回復の効率を高めることを目的とする。ラジアルタービン(10A)は、中心軸(C)回りに回転可能に設けられたロータ(12)と、ロータ(12)の外周部に固定された回転翼(13)と、ロータ(12)および回転翼(13)の外周側に設けられ、その内側に作動流体の流路を形成するケーシング(11)と、回転翼(13)よりも作動流体の流れ方向の下流側に設けられ、下流側に向かって作動流体の流路断面積が漸次縮小する縮小流路部(16)と、縮小流路部(16)の下流側に設けられ、下流側に向かって作動流体の流路断面積が漸次拡大する拡大流路部(17)と、を備える。

Description

回転機械、回転機械の排気部材
 本発明は、回転機械、回転機械の排気部材に関するものである。
 ターボチャージャに用いられるラジアルタービン(遠心タービン)または軸流タービン、高炉用の軸流ブロワ等の回転機械は、ケーシングと、ケーシング内に回転可能に設けられたロータと、ロータの外周部に設けられた翼と、を備えている。このような回転機械には、外部から送り込まれた作動流体によって、翼を有したロータが回転するものがある。また、翼を有したロータを外部から伝達される動力によって回転させることで、作動流体を送り出すものもある。
 ところで、このような回転機械においては、性能の観点で、翼を経た作動流体の流速を効率良く圧力に変換することが望まれる。
 そこで、例えば特許文献1に開示されているように、作動流体の排気流路に、流路断面積が漸次拡大する拡径流路(ディフューザ)を備える構成が多用されている。このような拡径流路を設けることで、圧縮された作動流体の圧力を漸次低下させ、例えば大気圧中に排気することができる。
特許第5040156号公報
 ところで、例えば、図11に示すように、ターボチャージャに用いられるラジアルタービン1の場合、作動流体は、ケーシング2の外周側から羽根車3に沿って流れて向きを変え、羽根車3の内周側から中心軸方向に沿って排出される。この場合、羽根車3の中央部3cの下流側においては、羽根車3の内周側から中心軸方向に沿って流れ出る作動流体の一部が剥離し、剥離渦を形成する。この剥離渦を生成する領域S1は、実質的に作動流体が流れる流路として機能しない。このため、その下流側で剥離渦が生成される領域の影響を受ける拡径流路4では、圧力回復の効率が損なわれる場合がある。
 また、図12に示すように、軸流ブロワ5等の場合、ケーシング6と、ケーシング6内に設けられたロータ7との間を流れる作動流体が、動翼8Aや静翼8Bの下流側で剥離する場合がある。例えば、静翼8Bの下流側で、ロータ7の表面に沿って流れる作動流体に剥離が生じた場合、剥離が生じた領域S2は、実質的に作動流体が流れる流路として機能しない。このため、その下流側で剥離が生じる領域S2の影響を受ける拡径流路9では、圧力回復の効率が損なわれる場合がある。
 本発明は、このような事情に鑑みてなされたものであって、流路内で剥離が生じる領域を低減し、拡径流路における圧力回復の効率を高めることができる回転機械、回転機械の排気部材を提供することを目的とする。
 上記課題を解決するために、本発明の回転機械、回転機械の排気部材は以下の手段を採用する。
 本発明の一態様に係る回転機械は、中心軸回りに回転可能に設けられたロータと、前記ロータの外周部に固定された回転翼と、前記ロータおよび前記回転翼の外周側に設けられ、その内側に作動流体の流路を形成するケーシングと、前記回転翼よりも前記作動流体の流れ方向の下流側に設けられ、下流側に向かって前記作動流体の流路断面積が漸次縮小する縮小流路部と、前記縮小流路部の下流側に設けられ、下流側に向かって前記作動流体の流路断面積が漸次拡大する拡大流路部と、を備える。
 本態様に係る回転機械によれば、回転翼よりも作動流体の流れ方向の下流側に縮小流路部が設けられることで、作動流体の流路が狭まる。これによって、流路が狭まった部分においては、作動流体が実質的に流れる領域に対し、回転翼の下流側で剥離が生じ得る領域が相対的に減少する。このようにして流路内で作動流体の剥離が生じる領域を低減することができる。このような縮小流路部を経た後に、拡大流路部にて作動流体の流路断面積を漸次拡大させることで、作動流体の圧力回復の効率を高めることができる。
 上記回転機械において、前記ロータ及び前記回転翼よりも下流側に向かって延び、前記作動流体を下流側に排出する排出部をさらに備え、前記縮小流路部および前記拡大流路部は、前記排出部において前記ロータの前記流れ方向下流側の端部よりも下流側に形成されているとさらに好適である。
 このような回転機械によれば、ロータの下流側の端部では、その下流側で作動流体の剥離が生じやすい。このような構成において、ロータの下流側の端部よりも下流側に縮小流路部を設けることで、作動流体の剥離が生じる領域を、効果的に低減することができる。
 上記回転機械において、前記ケーシングおよび前記ロータは、前記回転翼よりも前記流れ方向の下流側に向かって延び、前記縮小流路部は、前記回転翼よりも下流側で、前記ケーシングおよび前記ロータの少なくとも一方に形成されているとさらに好適である。
 このような回転機械によれば、ケーシングおよびロータが、回転翼よりも下流側に連続して延びている構成において、作動流体の剥離が生じる領域を、効果的に低減することができる。
 上記回転機械において、前記回転翼よりも下流側に設けられ、前記ケーシングから内周側に向かって延びる静翼をさらに備え、前記縮小流路部は、前記流れ方向において前記静翼が設けられている領域に形成されているとさらに好適である。
 このような回転機械によれば、回転翼の下流側に設けられた静翼の部分において、作動流体の剥離が生じる領域を低減することができる。
 上記回転機械において、前記回転翼よりも上流側に設けられ、前記ケーシングから内周側に向かって延びる静翼をさらに備え、前記縮小流路部は、前記回転翼よりも前記作動流体の流れ方向の下流側に設けられているとさらに好適である。
 このような回転機械によれば、回転翼の下流側に設けられた部分において、作動流体の剥離が生じる領域を低減することができる。
 本発明の一態様に係る回転機械の排気部材は、中心軸回りに回転可能に設けられたロータ、前記ロータの外周部に固定された回転翼、および前記回転翼の外周側に設けられ、その内側に作動流体の流路を形成するケーシングを備えた回転機械の排気部材であって、前記ロータ及び前記回転翼よりも下流側に向かって延びるよう設けられ、前記作動流体を下流側に排出する排気流路を形成する筒状の排気部材本体と、前記排気部材本体の内周面に形成され、前記作動流体の流れ方向の下流側に向かって前記作動流体の流路断面積が漸次縮小する縮小流路部と、前記排気部材本体の内周面の前記縮小流路部よりも下流側に形成され、下流側に向かって前記作動流体の流路断面積が漸次拡大する拡大流路部と、を備える。
 本態様に係る回転機械の排気部材によれば、このような排気部材を設けることで、回転翼よりも作動流体の流れ方向の下流側に縮小流路部が設けられることになる。これにより、流路内で作動流体の剥離が生じる領域を低減することができる。
 本発明に係る回転機械、回転機械の排気部材によれば、流路内で剥離が生じる領域を低減し、拡径流路における圧力回復の効率を高めることができる。
本発明の第1実施形態に係るターボチャージャに用いられるラジアルタービンの構成を示す断面図である。 本発明の第1実施形態に係るターボチャージャに用いられるラジアルタービンにおける流路面積を示す図である。 本発明の第1実施形態の変形例に係るターボチャージャに用いられるラジアルタービンの構成を示す断面図である。 本発明の第1実施形態の変形例に係るターボチャージャに用いられるラジアルタービンにおける流路面積を示す図である。 本発明の第2実施形態に係る軸流ブロワの構成を示す断面図である。 本発明の第3実施形態に係る軸流ブロワの構成を示す断面図である。 本発明の第3実施形態の変形例に係る軸流ブロワの構成を示す断面図である。 本発明の第4実施形態のに係る軸流タービンの構成を示す断面図である。 本発明の実施例における流速分布を示す図である。 本発明の比較例における流速分布を示す図である。 従来のターボチャージャに用いられるラジアルタービンの構成を示す断面図である。 従来の軸流ブロワの構成を示す断面図である。
 以下に、本発明に係る回転機械、回転機械の排気部材の一実施形態について、図面を参照して説明する。
〔第1実施形態〕
 以下、本発明の第1実施形態について、図1を用いて説明する。
 図1に示すように、ターボチャージャに用いられるラジアルタービン(回転機械)10Aは、ケーシング11と、ロータ12と、回転翼13と、を備えている。
 ケーシング11は、ラジアルタービン10Aの外殻を形成する。ケーシング11は、中空でその内部にロータ12を収容するロータハウジング11Rと、回転翼13の外周側を囲うように設けられた排気部材(排出部、排気部材本体)15Aなどを備えている。
 また、ケーシング11には、内燃機関の排気ガス等の作動流体を径方向外側から取り入れる図示しない吸気口を有する吸気ケーシングや、静止翼が接続される。
 ロータ12は、ケーシング11内に、図示しない軸受を介して中心軸C回りに回転自在に支持された回転軸12sと、回転軸12sの中心軸C方向の一方の端部に設けられたディスク部14とを備えている。
 ディスク部14は、中心軸Cを含む中央部に形成されたボア部14bと、ボア部14bの外周側に、中心軸C方向の一方側を向いて形成された偏向面14fと、を備えている。偏向面14fは、中心軸C方向の一方側から他方側に向かって外径が漸次拡大する凹状湾曲面によって形成され、径方向外側の吸気口11aから径方向内側に向かって取り入れた作動流体の流れ方向を中心軸C方向に偏向させる。
 回転翼13は、ディスク部14の偏向面14fに、中心軸C回りの周方向に間隔を空けて複数が設けられている。
 上記ケーシング11は、複数の回転翼13を、中心軸C方向の一方側から覆うように設けられたシュラウド部18を備えている。
 排気部材15Aは、シュラウド部18に連続して、回転翼13よりも作動流体の流れ方向の下流側、すなわち中心軸C方向一方の側に設けられている。この排気部材15Aは、筒状で、その内側に、ディスク部14の内周側(ボア部14bの外周側)から中心軸C方向一方の側(下流側)に向かって流れる作動流体の排気流路102を形成する。
 この排気部材15Aは、その内周面15fに、縮小流路部16と、縮小流路部16の下流側に設けられた拡大流路部17と、を備えている。これら縮小流路部16および拡大流路部17は、排気部材15Aにおいてロータ12の流れ方向下流側に位置するボア部14bの端面(端部)14gよりも下流側に形成されている。
 縮小流路部16は、下流側に向かってその内径が漸次縮小することで、作動流体の流路断面積が漸次縮小するよう形成されている。拡大流路部17は、縮小流路部16の下流側に連続して形成され、下流側に向かってその内径が漸次拡大することで、作動流体の流路断面積が漸次拡大するよう形成されている。
 上記したようなラジアルタービン10Aにおいては、吸気口11aから取り入れた作動流体は、ディスク部14の偏向面14fとシュラウド部18との間の流路101に径方向外側から内側に向かって流れ込む。この流路101に流れ込んだ作動流体が回転翼13に衝突することによって、ロータ12が中心軸回りに回転し、ロータ12の他方の端部に連結された圧縮機(図示無し)等を駆動する。作動流体は、ディスク部14の内周側(ボア部14bの外周側)から中心軸C方向一方の側(下流側)に向かって流出し、排気部材15Aの内側の排気流路102を通って外部に排出される。
 ここで、排気部材15A内において、ディスク部14の偏向面14fに沿って流れてきた作動流体の一部は、ディスク部14のボア部14bの端面14gの下流側で剥離して渦を生成する。これにより、ボア部14bの端面14gの下流側には、剥離渦が生成される領域S21が形成される。一方、排気部材15A内において、中心軸C方向に沿って下流側に流れる作動流体は、内周面15fに形成された縮小流路部16に沿うことで、径方向内側に偏向される。縮小流路部16を経た作動流体は、拡大流路部17において、その流路断面積が漸次拡大することで、流速が低下し、排気部材15Aの出口から、外部の例えば大気圧に解放される。
 このようにして、縮小流路部16を備えることで、排気部材15A内の排気流路102の中央部に形成された、剥離渦が生成される領域S21は、径方向寸法が小さくなり、この領域S21の外周側で作動流体が下流側に流れる領域S22の断面積(以下、これを有効流路面積と称する)が相対的に大きくなる。
 図2は、排気部材15Aの流路面積M1と、剥離渦が生成される領域S21を除いた作動流体が流れる領域S22の有効流路面積M2と、縮小流路部16を備えない場合(図11に示した構成)において剥離渦が生成される領域S21を除いた作動流体が流れる領域の有効流路面積M0と、を示すものである。この図2に示すように、縮小流路部16を備えることで、作動流体が流れる領域S22の有効流路面積M2が大きくなる。
 上述したようなラジアルタービン10Aおよび排気部材15Aによれば、回転翼13よりも作動流体の流れ方向の下流側に縮小流路部16が設けられることで、作動流体の流路102が狭まる。これによって、流路が狭まった部分においては、作動流体が実質的に流れる領域S22に対し、回転翼13の下流側で剥離が生じ得る領域S21が相対的に減少することとなる。このようにして流路内で作動流体の剥離が生じる領域S21を低減することができる。このような縮小流路部16を経た後に、拡大流路部17にて作動流体の流路断面積を漸次拡大させることで、作動流体の圧力回復の効率を高めることができる。
 また、ディスク部14のボア部14bの下流側の端面14gの下流側に縮小流路部16を設けることで、作動流体の剥離が生じる領域S21を、効果的に低減することができる。
〔第1実施形態の変形例〕
 図3に示すように、ターボチャージャに用いられるラジアルタービン(回転機械)10Bの排気部材(排出部、排気部材本体)15Bは、ケーシング11のシュラウド部18に連続して、回転翼13よりも作動流体の流れ方向の下流側、すなわち中心軸C方向一方の側に設けられている。この排気部材15Bは、筒状で、その内側を、ディスク部14の内周側(ボア部14bの外周側)から下流側に向かって流れる作動流体の排気流路102を形成する。
 この排気部材15Bは、その内周面15fに、上流側から下流側に向かって、ストレート流路部20と、第一拡大流路部21と、縮小流路部22と、縮小流路部22の下流側に設けられた第二拡大流路部23と、を備えている。これら第一拡大流路部21、縮小流路部22および第二拡大流路部23は、排気部材15Bにおいてロータ12の流れ方向下流側に位置するボア部14bの端面14gよりも下流側に形成されている。
 ストレート流路部20は、中心軸C方向において、一定の内径を有している。
 第一拡大流路部21は、下流側に向かってその内径が漸次拡大することで、作動流体の流路断面積が漸次拡大するよう形成されている。
 縮小流路部22は、下流側に向かってその内径が漸次縮小することで、作動流体の流路断面積が漸次縮小するよう形成されている。第二拡大流路部23は、縮小流路部22の下流側に連続して形成され、下流側に向かってその内径が漸次拡大することで、作動流体の流路断面積が漸次拡大するよう形成されている。
 図4は、排気部材15Bの流路面積M11と、剥離渦が生成される領域S21を除いた作動流体が流れる領域S22の有効流路面積M12と、縮小流路部22を備えない場合(図11に示した構成)において剥離渦が生成される領域S21を除いた作動流体が流れる領域の有効流路面積M0と、を示すものである。この図4に示すように、縮小流路部22を備えることで、作動流体が流れる領域S22の有効流路面積M12が大きくなる。
 このような排気部材15Bにおいても、上記第1実施形態の排気部材15Aと同様、縮小流路部22が設けられることで、回転翼13の下流側で剥離が生じ得る領域S21を低減し、作動流体が実質的に流れる領域S22の有交流路断面積を増加させることができる。このような縮小流路部22を経た後に、第二拡大流路部23にて作動流体の流路断面積を漸次拡大させることで、作動流体の圧力回復の効率を高めることができる。
〔第2実施形態〕
 次に、本発明に係る回転機械、回転機械の排気部材の第2実施形態について説明する。なお、以下の説明において、上記第1実施形態と共通する構成については同符号を付してその説明を省略する。
 図5に示すように、軸流ブロワ(回転機械)10Cは、ケーシング31Cと、回転軸(ロータ)32と、動翼(回転翼)33と、静翼34と、を備えている。
 ケーシング31Cは、中心軸C方向に沿って延びる筒状をなしている。
 回転軸32は、ケーシング31Cの内側で、図示しない軸受によって中心軸C回りに回転可能に支持されている。この回転軸32は、図示しないタービン等によって中心軸C回りに回転駆動される。
 これらケーシング31Cの内周面と回転軸32の外周面との間の断面環状の領域に、作動流体の流路103が形成される。
 動翼33は、回転軸32の外周部に、中心軸C回りの周方向に間隔を空けて複数が設けられている。各動翼33は、回転軸32の外周面から径方向外側に延びるように形成されている。
 静翼34は、中心軸C方向において、動翼33の下流側に配置されている。静翼34は、ケーシング31Cの内側に、中心軸C回りの周方向に間隔を空けて複数が設けられている。各静翼34は、ケーシング31Cから内周側に向かって延びるように形成されている。
 上記ケーシング31Cおよび回転軸32は、これらの動翼33および静翼34よりも流れ方向の下流側に向かって延びている。ケーシング31Cにおいて、動翼33および静翼34よりも下流側には、縮小流路部36Cと、拡大流路部37とが形成されている。
 これら縮小流路部36C、拡大流路部37は、ケーシング31Cの内周面31fに形成されている。縮小流路部36Cは、下流側に向かってケーシング31Cの内径が縮小することで、作動流体の流路断面積が漸次縮小している。ここで、図5に示すように、縮小流路部36Cは、流れ方向において静翼34が設けられている領域に形成されていてもよい。
 拡大流路部37は、縮小流路部36Cの下流側に設けられ、下流側に向かってケーシング31Cの内径が漸次拡大することで、作動流体の流路断面積が漸次拡大している。
 上述したような軸流ブロワ10Cによれば、動翼33、静翼34を経た作動流体は、その流れ方向の下流側に縮小流路部36Cが設けられることで、作動流体の流路が狭まる。これによって、流路が狭まった部分においては、ケーシング31Cと回転軸32との間の流路103において、作動流体が実質的に流れる領域S22の断面積が、相対的に大きくなる。これによって、動翼33の下流側で剥離が生じ得る領域S21が相対的に減少する。このような縮小流路部36Cを経た後に、拡大流路部37にて作動流体の流路断面積を漸次拡大させることで、作動流体の圧力回復の効率を高めることができる。
〔第3実施形態〕
 次に、本発明に係る回転機械、回転機械の排気部材の第3実施形態について説明する。なお、以下の説明において、上記第2実施形態と共通する構成については同符号を付してその説明を省略する。
 図6に示すように、軸流ブロワ(回転機械)10Dは、ケーシング31Dと、回転軸(ロータ)32Dと、動翼33と、静翼34と、を備えている。
 ケーシング31Dは、中心軸C方向に沿って延びる筒状をなしている。
 回転軸32Dは、ケーシング31Dの内側で、図示しない軸受によって中心軸C回りに回転可能に支持されている。この回転軸32Dは、図示しないタービン等によって中心軸C回りに回転駆動される。
 これらケーシング31Dの内周面と回転軸32Dの外周面との間の断面環状の領域に、作動流体の流路103が形成される。
 動翼33は、回転軸32Dの外周部に、中心軸C回りの周方向に間隔を空けて複数が設けられている。各動翼33は、回転軸32Dの外周面から径方向外側に延びるように形成されている。
 静翼34は、中心軸C方向において、動翼33の下流側に配置されている。静翼34は、ケーシング31Dの内側に、中心軸C回りの周方向に間隔を空けて複数が設けられている。各静翼34は、ケーシング31Dから内周側に向かって延びるように形成されている。
 上記ケーシング31Dおよび回転軸32Dは、これらの動翼33および静翼34よりも流れ方向の下流側に向かって延びている。回転軸32Dの外周面には、動翼33および静翼34よりも下流側に、縮小流路部36Dが形成されている。また、ケーシング31Dの内周面には、縮小流路部36Dよりも下流側に、拡大流路部37が形成されている。
 縮小流路部36Dは、下流側に向かって回転軸32Dの外径が拡大することで、作動流体の流路断面積が漸次縮小している。ここで、図6に示すように、縮小流路部36Dは、流れ方向において静翼34が設けられている領域に形成されている。
 拡大流路部37は、縮小流路部36Dの下流側に設けられ、下流側に向かってケーシング31Dの内径が漸次拡大することで、作動流体の流路断面積が漸次拡大している。
 上述したような軸流ブロワ10Dによれば、動翼33、静翼34を経た作動流体は、その流れ方向の下流側に縮小流路部36Dが設けられることで、作動流体の流路が狭まる。これによって、流路が狭まった部分においては、ケーシング31Dと回転軸32Dとの間の流路103において、作動流体が実質的に流れる領域S32の断面積が、相対的に大きくなる。これによって、動翼33の下流側で剥離が生じ得る領域S31が相対的に減少する。このような縮小流路部36Dを経た後に、拡大流路部37にて作動流体の流路断面積を漸次拡大させることで、作動流体の圧力回復の効率を高めることができる。
〔第3実施形態の変形例〕
 なお、上記第3実施形態において、縮小流路部36Dを、流れ方向において静翼34が設けられている領域に設けるようにしたが、これに限らない。
 例えば、図7に示すように、軸流ブロワ(回転機械)10Eの回転軸(ロータ)32Eに形成された縮小流路部36Eを、静翼34よりも下流側に設けても良い。
〔第4実施形態〕
 次に、本発明に係る回転機械、回転機械の排気部材の第4実施形態について説明する。
 図8に示すように、軸流タービン(回転機械)10Fは、タービンハウジング41と、ロータ42と、静翼43と、動翼(回転翼)44と、排気ケーシング(ケーシング)45と、を備えている。
 タービンハウジング41は、中心軸C方向に沿って延びる筒状をなしている。
 静翼43は、タービンハウジング41の内側に、中心軸C回りの周方向に間隔を空けて複数が設けられている。各静翼43は、タービンハウジング41から内周側に向かって延びるように形成されている。
 ロータ42は、図示しない軸受によって中心軸C回りに回転可能に支持されている。
 動翼44は、ロータ42の外周部に、中心軸C回りの周方向に間隔を空けて複数が設けられている。各動翼44は、ロータ42の外周面から径方向外側に延びるように形成されている。動翼44は、中心軸C方向において、静翼43の下流側に配置されている。
 排気ケーシング45は、タービンハウジング41の下流側に接続されている。排気ケーシング45は、動翼44の径方向外側に位置する外周ケーシング部45aと、外周ケーシング部45aに対して径方向内側に間隔をあけて設けられた内周ケーシング部45bと、を備えている。内周ケーシング部45bは、中心軸C方向に沿って延びる筒状をなし、ロータ42の回転軸42sの外周側に設けられている。これら排気ケーシング45の外周ケーシング部の内周面と内周ケーシング部45bの外周面との間の断面環状の領域に、作動流体の排気流路104が形成される。
 上記排気ケーシング45は、これらの静翼43および動翼44よりも流れ方向の下流側に向かって延びている。内周ケーシング部45bの外周面には、静翼43および動翼44よりも下流側に、縮小流路部46が形成されている。また、タービンハウジング41の内周面には、縮小流路部46よりも下流側に、拡大流路部47が形成されている。
 縮小流路部46は、下流側に向かって内周ケーシング部45bの外径が拡大することで、作動流体の流路断面積が漸次縮小している。
 拡大流路部47は、縮小流路部46の下流側に設けられ、下流側に向かって外周ケーシング部45aの内径および内周ケーシング部45bの外径が漸次拡大することで、作動流体の流路断面積が漸次拡大している。
 上述したような軸流タービン10Fによれば、静翼43、動翼44を経た作動流体は、その流れ方向の下流側に縮小流路部46が設けられることで、作動流体の流路が狭まる。これによって、動翼44の下流側で剥離が生じ得る領域が相対的に減少する。このような縮小流路部46を経た後に、拡大流路部47にて作動流体の流路断面積を漸次拡大させることで、作動流体の圧力回復の効率を高めることができる。
 なお、上記実施形態において、ラジアルタービン10A、10Bと、軸流ブロワ10C、10D、軸流タービン10Fを例示したが、本発明は、例えば斜流式タービン等、上記した以外の回転機械に適用可能である。また、ラジアルタービン10A、10B、軸流ブロワ10C、10D、軸流タービン10Fは、各部の構成を、上記実施形態およびその変形例で示した構成と異ならせても良い。
 また、縮小流路部は、回転翼よりも作動流体の流れ方向の下流側に設けられるのであれば、縮小流路部を形成する凸形状はケーシング側、ロータ側のどちら側に設けてもよく、ケーシング側とロータ側の双方に凸形状を設けてもよい。
 さらに、ケーシングは、単一部品で構成しても良いし、複数部品を組み合わせることで構成しても良い。
 上記第1実施形態で示したような構成について、効果を確認したので、以下に、その結果を示す。
 実施例としては、L字状の排気部材を用いた。この排気部材は、下流側に向かってその内径が漸次拡大する拡大流路部の上流側に、縮小流路部を備えている。
 比較例として、拡径流路部の上流側に、下流側に向かってその内径が漸次縮小する縮小流路部を備えていない排気部材を用いた。
 上記の実施例および比較例について、コンピュータ解析により、排気部材の内部における流速分布を求めた。
 その結果を、図9および図10に示す。
 図9に示すように、縮小流路部を有した実施例においては、図10に示す比較例と比較すると、縮小流路部において、流路中央部の流速が低い部分が縮小している。したがって、流路内で剥離が生じる領域を低減し、その下流側の拡大流路部において圧力回復の効率が高まる。
10A、10B ラジアルタービン(回転機械)
10C、10D、10E 軸流ブロワ(回転機械)
10F 軸流タービン(回転機械)
11 ケーシング
12 ロータ
13 回転翼
14g 端面(端部)
15A、15B 排気部材(排出部、排気部材本体)
15f 内周面
16、22、36C、36D、36E 縮小流路部
17、37 拡大流路部
23 第二拡大流路部(拡大流路部)
31C、31D ケーシング
31f 内周面
32、32D、32E 回転軸(ロータ)
33 動翼(回転翼)
34 静翼
42 ロータ
43 静翼
44 動翼(回転翼)
45 排気ケーシング(ケーシング)
C 中心軸

Claims (6)

  1.  中心軸回りに回転可能に設けられたロータと、
     前記ロータの外周部に固定された回転翼と、
     前記ロータおよび前記回転翼の外周側に設けられ、その内側に作動流体の流路を形成するケーシングと、
     前記回転翼よりも前記作動流体の流れ方向の下流側に設けられ、下流側に向かって前記作動流体の流路断面積が漸次縮小する縮小流路部と、
     前記縮小流路部の下流側に設けられ、下流側に向かって前記作動流体の流路断面積が漸次拡大する拡大流路部と、
    を備えることを特徴とする回転機械。
  2.  前記ロータ及び前記回転翼よりも下流側に向かって延び、前記作動流体を下流側に排出する排出部をさらに備え、
     前記縮小流路部および前記拡大流路部は、前記排出部において前記ロータの前記流れ方向下流側の端部よりも下流側に形成されていることを特徴とする請求項1に記載の回転機械。
  3.  前記ケーシングおよび前記ロータは、前記回転翼よりも前記流れ方向の下流側に向かって延び、
     前記縮小流路部は、前記回転翼よりも下流側で、前記ケーシングおよび前記ロータの少なくとも一方に形成されていることを特徴とする請求項1に記載の回転機械。
  4.  前記回転翼よりも下流側に設けられ、前記ケーシングから内周側に向かって延びる静翼をさらに備え、
     前記縮小流路部は、前記流れ方向において前記静翼が設けられている領域に形成されていることを特徴とする請求項3に記載の回転機械。
  5.  前記回転翼よりも上流側に設けられ、前記ケーシングから内周側に向かって延びる静翼をさらに備え、
     前記縮小流路部は、前記回転翼よりも前記作動流体の流れ方向の下流側に設けられていることを特徴とする請求項3に記載の回転機械。
  6.  中心軸回りに回転可能に設けられたロータ、前記ロータの外周部に固定された回転翼、および前記回転翼の外周側に設けられ、その内側に作動流体の流路を形成するケーシングを備えた回転機械の排気部材であって、
     前記ロータ及び前記回転翼よりも下流側に向かって延びるよう設けられ、前記作動流体を下流側に排出する排気流路を形成する筒状の排気部材本体と、
     前記排気部材本体の内周面に形成され、前記作動流体の流れ方向の下流側に向かって前記作動流体の流路断面積が漸次縮小する縮小流路部と、
     前記排気部材本体の内周面の前記縮小流路部よりも下流側に形成され、下流側に向かって前記作動流体の流路断面積が漸次拡大する拡大流路部と、
    を備えることを特徴とする回転機械の排気部材。
PCT/JP2018/004248 2017-02-27 2018-02-07 回転機械、回転機械の排気部材 WO2018155189A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020197005713A KR102223293B1 (ko) 2017-02-27 2018-02-07 회전 기계, 회전 기계의 배기 부재
CN201880003439.6A CN110300839A (zh) 2017-02-27 2018-02-07 旋转机械、旋转机械的排气部件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-035465 2017-02-27
JP2017035465A JP6776154B2 (ja) 2017-02-27 2017-02-27 ラジアルタービン、ラジアルタービンの排気部材

Publications (1)

Publication Number Publication Date
WO2018155189A1 true WO2018155189A1 (ja) 2018-08-30

Family

ID=63254191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004248 WO2018155189A1 (ja) 2017-02-27 2018-02-07 回転機械、回転機械の排気部材

Country Status (4)

Country Link
JP (1) JP6776154B2 (ja)
KR (1) KR102223293B1 (ja)
CN (1) CN110300839A (ja)
WO (1) WO2018155189A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11808174B2 (en) 2020-04-23 2023-11-07 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Turbine and turbocharger including the turbine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3625630A (en) * 1970-03-27 1971-12-07 Caterpillar Tractor Co Axial flow diffuser
JPH07247996A (ja) * 1994-03-11 1995-09-26 Ishikawajima Harima Heavy Ind Co Ltd 圧縮機の通路形状
JP2011137463A (ja) * 2009-12-31 2011-07-14 General Electric Co <Ge> タービンエンジンの圧縮機静翼およびディフューザに関するシステムおよび装置
JP2015137607A (ja) * 2014-01-23 2015-07-30 三菱重工業株式会社 動翼、及び軸流回転機械

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5040156B1 (ja) 1971-05-06 1975-12-22
CN101092978A (zh) * 2007-07-30 2007-12-26 北京航空航天大学 多级轴流压气机静子内引气增效防喘扩稳装置
FR2940413B1 (fr) * 2008-12-19 2013-01-11 Air Liquide Procede de capture du co2 par cryo-condensation
EP2407638A1 (de) * 2010-07-15 2012-01-18 Siemens Aktiengesellschaft Abgasdiffusor für eine Gasturbine und Verfahren zum Betreiben einer Gasturbine mit einem solchen Abgasdiffusor
US9759230B2 (en) * 2014-01-24 2017-09-12 Pratt & Whitney Canada Corp. Multistage axial flow compressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3625630A (en) * 1970-03-27 1971-12-07 Caterpillar Tractor Co Axial flow diffuser
JPH07247996A (ja) * 1994-03-11 1995-09-26 Ishikawajima Harima Heavy Ind Co Ltd 圧縮機の通路形状
JP2011137463A (ja) * 2009-12-31 2011-07-14 General Electric Co <Ge> タービンエンジンの圧縮機静翼およびディフューザに関するシステムおよび装置
JP2015137607A (ja) * 2014-01-23 2015-07-30 三菱重工業株式会社 動翼、及び軸流回転機械

Also Published As

Publication number Publication date
KR20190032554A (ko) 2019-03-27
KR102223293B1 (ko) 2021-03-04
JP6776154B2 (ja) 2020-10-28
CN110300839A (zh) 2019-10-01
JP2018141399A (ja) 2018-09-13

Similar Documents

Publication Publication Date Title
US7665964B2 (en) Turbine
JP6323454B2 (ja) 遠心圧縮機及び過給機
US20120272663A1 (en) Centrifugal compressor assembly with stator vane row
RU2591750C2 (ru) Сверхзвуковая компрессорная установка (варианты) и способ ее сборки
EP2886875B1 (en) Centrifugal compressor
WO2011077801A1 (ja) 多段ラジアルタービン
JP2016539276A (ja) 遠心圧縮機の湾曲した拡散流路部
US9938848B2 (en) Rotor assembly with wear member
JP2018173020A (ja) 遠心圧縮機
US20160312618A1 (en) Rotor assembly with scoop
WO2015019909A1 (ja) 遠心圧縮機及び過給機
WO2018155546A1 (ja) 遠心圧縮機
US11060405B2 (en) Turbine engine with a swirler
WO2018155189A1 (ja) 回転機械、回転機械の排気部材
JP2013224627A (ja) 軸流ファン
JP6429764B2 (ja) ガスタービン
WO2019107488A1 (ja) 多段遠心圧縮機、ケーシング及びリターンベーン
JP6449218B2 (ja) トランジションダクト、タービン、及びガスタービンエンジン
JP3034519B1 (ja) タ―ビンロ―タの冷却構造を改善したガスタ―ビン
JP7294528B2 (ja) 静翼及び航空機用ガスタービンエンジン
US2628767A (en) Collector structure for axial flow rotary gas compressors
JP3380897B2 (ja) 圧縮機
JP6768172B1 (ja) 遠心圧縮機
JPH07279887A (ja) 軸流空気圧縮機
JP2023007748A (ja) 遠心式回転装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18758041

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197005713

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18758041

Country of ref document: EP

Kind code of ref document: A1