WO2018153338A9 - 一种功率控制方法、装置和系统 - Google Patents

一种功率控制方法、装置和系统 Download PDF

Info

Publication number
WO2018153338A9
WO2018153338A9 PCT/CN2018/076810 CN2018076810W WO2018153338A9 WO 2018153338 A9 WO2018153338 A9 WO 2018153338A9 CN 2018076810 W CN2018076810 W CN 2018076810W WO 2018153338 A9 WO2018153338 A9 WO 2018153338A9
Authority
WO
WIPO (PCT)
Prior art keywords
power
power consumption
adjustable
air conditioner
control
Prior art date
Application number
PCT/CN2018/076810
Other languages
English (en)
French (fr)
Other versions
WO2018153338A1 (zh
Inventor
陈坚波
Original Assignee
海信(广东)空调有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海信(广东)空调有限公司 filed Critical 海信(广东)空调有限公司
Publication of WO2018153338A1 publication Critical patent/WO2018153338A1/zh
Publication of WO2018153338A9 publication Critical patent/WO2018153338A9/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/60Energy consumption

Definitions

  • the present disclosure relates to the field of home appliance control, and more particularly to a power control method, apparatus and system.
  • the peak-to-valley phenomenon that is, the phenomenon of power shortage at the peak and the power surplus at the low point, is caused by the characteristics of the system load and the characteristics of the system power supply, which not only increases the marginal cost of the power supply, but also affects the stability of power consumption. This phenomenon is becoming more and more serious in various countries of electricity use and has led to a series of problems.
  • the method of controlling the power of the inverter air conditioner is to change the operating frequency of the inverter air conditioner or change the set temperature of the inverter air conditioner, but the two methods are not effective.
  • the power of the inverter air conditioner cannot be well controlled by changing the frequency. Because the power of the inverter air conditioner compressor is determined by the difference between the set temperature and the indoor temperature and the change of the indoor temperature. The indoor temperature is affected by the outdoor temperature, the number of people in the room, whether there is a large heater, etc., and the power cannot be constantly controlled within a certain range. Therefore, changing the set temperature of the inverter air conditioner is also the same as not controlling the power of the inverter air conditioner.
  • Embodiments of the present disclosure provide a power control method, apparatus, and system for improving control of power of a home appliance, thereby further reducing power peaks.
  • an embodiment of the present disclosure provides a power control method, where the method includes:
  • control area And if the total power consumption of the control area is greater than the limited power consumption of the control area, transmitting, to the at least one power-adjustable home appliance of the control area, a control parameter of the home appliance, where the control parameter is a quota Electric power or used to obtain limited power.
  • an embodiment of the present disclosure provides a power control method, where the method includes:
  • the power adjustable home appliance receives the control parameter of the power adjustable home appliance sent by the power cloud controller, the control parameter is the limited power, or the control parameter is used to obtain the limited power;
  • an embodiment of the present disclosure provides a power cloud controller, where the controller includes:
  • An obtaining unit configured to acquire a total power consumption of the control area
  • a sending unit configured to: if a total power consumption of the control area is greater than a limited power consumption of the control area, send a control parameter of the home appliance to at least one power-tuned home appliance of the control area,
  • the control parameter is the limit power or the power used to obtain the limit.
  • an embodiment of the present disclosure provides a power adjustable home appliance, where the power adjustable home appliance includes:
  • a receiving unit configured to receive, by the power cloud controller, a control parameter of the power adjustable home appliance, where the control parameter is the limited power, or the control parameter is used to obtain a limited power;
  • a detecting unit for detecting power consumption of the self
  • control unit configured to control, according to the control parameter received by the receiving unit and the self-powered power detected by the detecting unit, the power consumption of the power-adjustable household appliance, so that the power is adjustable
  • the self-use power of the household appliance is not greater than the limit power.
  • an embodiment of the present disclosure provides a power control system, where the system includes: the power cloud controller of the third aspect, and the power adjustable home appliance of the fourth aspect.
  • an embodiment of the present disclosure provides a power cloud controller, where the power cloud controller includes: a processor, a memory, a bus, and a communication interface;
  • the storing is for storing a computer execution instruction
  • the processor is connected to the memory through the bus, and when the power cloud controller is running, the processor executes the computer execution instruction stored by the memory,
  • the power cloud controller is caused to perform the power control method as described in the first aspect.
  • an embodiment of the present disclosure provides a power adjustable home appliance, the power adjustable home appliance comprising: a processor, a memory, a bus, and a communication interface;
  • the memory is configured to store a computer execution instruction
  • the processor is connected to the memory through the bus, and when the power adjustable home appliance is running, the processor executes the computer execution of the memory storage An instruction to cause the power adjustable home appliance to perform the power control method as described in the second aspect.
  • Embodiments of the present disclosure provide a power control method, a power cloud controller, a power adjustable home appliance, and a system.
  • the power cloud controller acquires the total power consumption of the control area. If the total power consumption of the control area is greater than the control area. The use of electric power indicates that the peak of power consumption has been reached at this time, and the power supply is insufficient. It is necessary to control the total power consumption to make it lower than the limited power. Then, the power cloud controller sends the control parameter of the home appliance to at least one power-tunable home appliance in the control area, and the purpose of controlling the total power consumption is achieved.
  • the power-adjustable household appliance receives the control parameter of the power-adjustable household appliance sent by the power cloud controller, detects the power consumption of the home appliance, and controls the power by using a closed-loop negative feedback method according to the control parameter and the detected self-power consumption.
  • the electric power of the household appliance itself is such that the power consumption of the household appliance whose power is adjustable is not greater than the power consumption of the limit.
  • the above method improves the control of the power consumption of the household appliances through the macro control of the total power consumption of the control area by the power cloud controller, and the specific control of the power consumption of the household appliances with adjustable power, thereby reducing the power peak. .
  • FIG. 1 is a structural diagram of a power control system according to an embodiment of the present disclosure
  • FIG. 2 is a flowchart of a power control method according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of a power detecting device of an inverter air conditioner according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of an inverter air conditioner according to an embodiment of the present disclosure.
  • FIG. 5 is a second schematic structural diagram of an inverter air conditioner according to an embodiment of the present disclosure.
  • FIG. 6( a ) is a second flowchart of a power control method according to an embodiment of the present disclosure
  • FIG. 6(b) is a third flowchart of a power control method according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of electrical control of a conventional inverter air conditioner according to an embodiment of the present disclosure.
  • FIG. 8 is a graph showing changes in electrical power with time according to an embodiment of the present disclosure.
  • FIG. 9 is a fourth flowchart of a power control method according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of electrical control of an inverter air conditioner according to an embodiment of the present disclosure
  • FIG. 11 is a fifth flowchart of a power control method according to an embodiment of the present disclosure.
  • FIG. 12 is a graph showing changes in electrical power of an inverter air conditioner according to an embodiment of the present disclosure
  • FIG. 13 is a second graph of the electric power of the inverter air conditioner according to an embodiment of the present disclosure.
  • FIG. 14 is a block diagram of a power cloud controller according to an embodiment of the present disclosure.
  • FIG. 15 is a block diagram of a power adjustable home appliance according to an embodiment of the present disclosure.
  • 16 is a block diagram of a power control system according to an embodiment of the present disclosure.
  • FIG. 17 is a logic diagram of conversion of power-on control and stop control for turning on according to an embodiment of the present disclosure
  • FIG. 18 is a schematic diagram of an internal structure of a power cloud controller according to an embodiment of the present disclosure.
  • FIG. 19 is a schematic diagram of an internal structure of a power adjustable home appliance according to an embodiment of the present disclosure.
  • first and second are used for descriptive purposes only, and are not to be construed as indicating or implying relative importance or implicit indication.
  • features defining “first” and “second” may include one or more of the features either explicitly or implicitly.
  • a plurality of means two or more unless otherwise stated.
  • the power cloud controller refers to being capable of communicating with multiple home appliances of its control area, and has determining whether to control at least one power according to the relationship between the total power consumption in the control area and the limited power consumption.
  • a controller or a combination of controllers that adjust the power of the home appliance, etc., may also be referred to as a controller.
  • the power cloud controller may be software installed on a certain type of computer device.
  • the computer device may be, for example, a server; or may be hardware, for example, a system composed of one or more computer devices, which is not limited in the embodiment of the present disclosure.
  • an embodiment of the present disclosure provides a power control system including a power cloud controller, N power adjustable household appliances, N being an integer greater than 1, and each power adjustable home.
  • the appliance can communicate with the power cloud controller in a network.
  • the power cloud controller can determine whether to control the power of at least one power-adjustable household appliance according to the relationship between the total power consumption in the control area and the limited power consumption, that is, whether to send control parameters or send stop control to the power-adjustable home appliance.
  • the power command; the power-adjustable home appliance can transmit the current power of the power-adjustable home appliance to the power cloud controller after the power cloud controller registers.
  • the input electric power under rated working condition also known as Rated input power, the electric power input when the air conditioner is in the cooling operation under rated working conditions and the heating operation under the rated working condition.
  • the input electric power of the input electric power is taken as the rated input power.
  • Minimum power consumption Also known as minimum running input power, the air conditioner can generate the minimum cooling capacity of the input power in the worst environmental conditions allowed and can produce the minimum system under the worst environmental conditions allowed.
  • the input electric power of the hot input electric power is taken as the minimum working input power.
  • the power-adjustable household appliance includes a household appliance with a motor frequency modulation power and a household appliance that is electrically heated and regulated, such as an inverter air conditioner, an inverter refrigerator, a frequency conversion washing machine, and the like.
  • the household appliance may also include other power-adjustable household appliances, which are not limited in the embodiments of the present disclosure. Specifically, power control may be performed on one or more power-adjustable household appliances, and details are not described herein again.
  • the power control is used as an example for the inverter air conditioner.
  • the power control of the inverter air conditioner may be referred to, and the embodiments of the present disclosure are not described herein.
  • the number of power-adjustable and high-powered household appliances may be large in a large area.
  • the amount of data communicated with the power cloud is also large. Therefore, in order to ensure the real-time performance of power control, several residential communities are taken as a regional power cloud or a residential community as a regional power cloud to control the power of the household appliances with adjustable power in the regional power cloud.
  • the regional power cloud is an integral part of the power cloud, that is, the power cloud is made up of many regional power clouds.
  • the regional power cloud is not only the area planned in the software, but also the area with a clear geographical location on the actual map.
  • the regional power cloud can be networked by a power cloud controller with a power-tunable home appliance registered in the area power cloud.
  • the power cloud controller can send a control parameter or a command to stop power control to a registered power-tuned home appliance.
  • Each registered power-adjustable household appliance feeds back the current power to the power cloud controller in real time.
  • the regional power cloud collects the total power consumption of the area through the power consumption detection device powered by the area, such as the power total power measurer, and controls the power of the power cloud in the area according to the relevant power consumption parameter. Therefore, in the embodiment of the present disclosure, the power cloud controller refers to the above-mentioned control module of the regional power cloud.
  • the registration of household appliances in the regional power cloud can be implemented in a variety of ways:
  • the home appliance inputs location information, and the home appliance transmits the basic information stored by the home appliance and the location information input by the user to the power cloud controller through the network communication module, and the basic information of the home appliance includes a unique electronic identity code, a MAC code of the communication circuit, and a household One or more information in the information of the appliance model, household appliance manufacturer, rated power, minimum power, power controllable/selectable time working household appliance identification, regional power cloud website and port, etc.
  • the home appliance location information stores the basic information of the home appliance into the geographically corresponding regional power cloud, and activates the communication and power control functions of the home appliance and the corresponding regional power cloud controller.
  • the two-dimensional code of the household appliance is provided on the outer casing of the household appliance and in the specification, and the two-dimensional code includes the unique electronic identification code of the household appliance, the MAC code of the communication circuit, the model of the household appliance, the manufacturer of the household appliance, One or more of rated power, minimum power, power controllable/selectable time work home appliance identification, regional power cloud address and port.
  • the home appliance is installed in the user's home, the user agrees and signs the legal contract that the home appliance allows the power cloud to perform power control, and then scans the corresponding two-dimensional code on the housing of the home appliance or in the manual with a smartphone linked to the network.
  • the smart phone can communicate with the regional power cloud controller, and the smart phone transmits the information in the two-dimensional code of the scanned home appliance to the power cloud controller, and the home appliance also uses the network communication module to The information stored in the two-dimensional code is sent to the power cloud controller, and the power cloud controller compares the home appliance information sent by the smart phone with the home appliance information sent by the home appliance. If they are consistent, the power cloud controller confirms that the home is The appliance is registered, and the power cloud sends a command to the smartphone to obtain the location information of the smartphone.
  • the smart phone After the smart phone gives a location information query to the power cloud controller, after the smart phone obtains an instruction to confirm the location information to the power cloud controller, the smart phone sends its location information to the power cloud controller, thereby The power cloud controller determines the geographic information of the home appliance.
  • the power cloud controller stores the two-dimensional code information of the home appliance into the geographically corresponding regional power cloud according to the acquired geographic information of the home appliance, and activates communication and power control of the home appliance and the corresponding regional power cloud controller.
  • Embodiments of the present disclosure provide a power control method, wherein the power-adjustable household appliances include: an inverter air conditioner, an inverter refrigerator, a frequency conversion washing machine, a power adjustable electric water heater, a power adjustable electric wok, a power controllable electric furnace, and a power One or more of the electric pressure cooker, the power controllable electric fryer and the power controllable electric cooker can be adjusted, and other ones can be used.
  • the specific disclosure of the present disclosure is exemplified by an inverter air conditioner. Referring to Figure 2, the method includes:
  • the power cloud controller acquires the total power consumption of the control area.
  • the power cloud controller acquires the total power consumption of the control region through the power consumption detecting device of the control region, wherein the power consumption detecting device of the control region detects the total power consumption of the control region in real time.
  • the electrical power detecting device can be a power total power measurer.
  • the power cloud controller collects the total power consumption of the control area through the power total power measurer that is controlled by the control area, and can also collect the total power consumption of the control area.
  • the power cloud controller determines whether the total power consumption of the control area is greater than the limited power consumption of the control area.
  • the limited power consumption of the control area may be pre-existing in the power cloud controller, or may be obtained by the power cloud controller being integrated by the quota power of the area in the power cloud.
  • the power cloud controller determines whether the total power consumption of the control area is greater than the limited power consumption of the control area. If the total power consumption of the control area is greater than the limited power consumption of the control area, it may be determined that the power consumption of the control area reaches the power consumption peak, that is, At this time, the power supply is insufficient, and step S103 and step S104 are performed.
  • the power consumption of the control area may be determined that the power consumption of the control area does not reach the power consumption peak, that is, the power supply is sufficient at this time, and the power cloud controller does not need power for the control area. Adjusted household appliances for power control.
  • the power cloud controller obtains the total number of power-adjustable household appliances in the control area and the total power consumption of the power-adjustable home appliance. According to the total power consumption of the control area, the limited power consumption of the control area, and the power of the control area. The total number of household appliances and the total power consumption of the household appliances with adjustable power are used to obtain the limited power consumption of each power-adjustable household appliance.
  • the power cloud controller can obtain the limited power consumption of at least one power-adjustable household appliance according to the currently registered home appliance with adjustable power.
  • the specific limit power of the power-adjustable household appliance is determined by the power cloud controller.
  • the power-adjustable household appliance is provided with a power detecting device, such as a power metering device or a circuit, for detecting the current self-power consumption of the power-adjustable household appliance.
  • a power detecting device such as a power metering device or a circuit
  • the household appliance with adjustable power is an example of an inverter air conditioner.
  • the power-adjustable inverter air conditioner is composed of an indoor unit, an outdoor unit, a pipeline connecting the indoor and outdoor units, and a power line.
  • the power detecting device is installed at the incoming line of the inverter air conditioner power supply.
  • the power detecting device needs to determine whether the indoor unit or the outdoor unit installed in the air conditioner is installed according to the incoming position of the air conditioner power supply, that is, the air conditioner power supply line is connected to the indoor unit, and the power metering device is installed in the indoor unit, and the air conditioner power supply is The line is connected to the outdoor unit, and the power metering device is installed in the outdoor unit.
  • the electrical connection between the specific power detecting device and the inverter air conditioner indoor unit control board or the electrical connection between the power detecting device and the inverter air conditioner outdoor unit control board is as shown in FIG.
  • the grid power supply is three-phase or single-phase power
  • the power detection device is also divided into a three-phase power detection device and a single-phase power detection device.
  • the power detecting device may be a separate device, or may be a circuit embedded in the indoor unit or the outdoor unit control board, and form a complete control board with the indoor unit control board or the outdoor unit control board.
  • the inverter air conditioner is also provided with a network communication module for realizing the link establishment and registration of the inverter air conditioner and the power cloud, so that the inverter air conditioner and the power cloud can perform network communication and information transmission.
  • a network communication module is added to the inverter air conditioner indoor unit.
  • the network communication module may be a wireless communication module, or a wired communication module, or another communication module that can be connected to the power cloud controller.
  • the network communication module may be a separate module or a circuit embedded in the indoor unit control board. , and the main control panel of the indoor unit constitutes a complete control panel.
  • the structure diagram of the inverter air conditioner is shown in FIG. 4.
  • the structure diagram of the inverter air conditioner is shown in FIG. 5, and the inverter air conditioner includes the power detecting device 01, Indoor unit main control board 02, outdoor unit main control board 03, indoor unit 04, outdoor unit 05, condenser 06, outdoor fan 07, compressor 08, four-way valve 09, electronic expansion valve or capillary 10, indoor and outdoor power supply
  • the power cloud controller obtains the total number of power-adjustable household appliances and the total power consumption of the power-adjustable household appliances through a network communication module on the power-adjustable home appliance in the control area.
  • the power cloud controller sends the first control signaling to the power adjustable home appliance in the control area, where the first control signaling is used to obtain The current self-powered power of the power-adjustable household appliance.
  • the power cloud controller can send the first control signaling to all power adjustable home appliances in its control area.
  • a home appliance that is currently in a working state and has normal communication power can receive the control signaling and respond to the control signaling.
  • the power adjustable home appliance receives the control signaling sent by the power cloud controller.
  • the power-adjustable home appliance that is currently in the working state responds to the control signaling and transmits the current self-powered power to the power cloud controller.
  • the power-adjustable household appliance sends the current self-power consumption of the power-adjustable household appliance to the power cloud controller.
  • the power cloud controller receives the self-powered power sent by the household appliances with adjustable power.
  • the power cloud controller collects the number of power-receiving household appliances that have received the response and calculates the total power consumption of the household appliance that has received the adjusted power.
  • the above S103 can also be implemented by the following steps S103f-S103h:
  • the S103f and the power-adjustable household appliance periodically transmit their current power consumption to the power cloud controller according to a preset period.
  • the power-adjustable home appliance herein refers to a power-adjustable home appliance that is in a working state and has normal communication.
  • the power cloud controller can dynamically adjust the power according to the communication congestion between the data transmitted by the power-adjustable home appliance and the network.
  • the adjusted household appliance reports the preset period of its own power to the power cloud controller.
  • the power cloud controller receives the current self-power consumption of each power-adjustable household appliance, and stores it.
  • the power cloud controller determines that the total power consumption of the control area is greater than the limited power consumption of the control area, the power cloud controller collects the total number of power-adjustable household appliances that are in the working state at this time and calculates the power. The current total power consumption of the household appliances.
  • the limited power consumption of each power-adjustable household appliance is obtained according to the total power consumption of the control area, the limited power consumption, the total number of power-adjustable household appliances, and the total power consumption of the power-adjustable household appliance.
  • the power cloud controller calculates a difference between the total power consumption of the control area and the limited power consumption of the control area, and the absolute value of the difference is the total power requirement of the power-adjustable household appliance (including the inverter air conditioner). Down-regulated power value Pe.
  • the power cloud controller processing system subtracts the total power value of the power-adjustable household appliances (including the inverter air conditioner) from the power consumption value of the household appliance (including the inverter air conditioner) whose power needs to be adjusted, and the power consumption is adjusted.
  • the limited power consumption of each air conditioner is obtained by dividing the power consumption value of the power-adjustable household appliance (including the inverter air conditioner) by the total number of household appliances (including inverter air conditioners) whose power is adjustable in the control area.
  • the power cloud controller detects that the total power consumption of the control area is 22 KW, wherein the limited power consumption of the control area is 20 KW, the total number of power-adjustable household appliances is 10, and the total of the power-adjustable household appliances When the electric power is 10KW, it can be judged that the electric power of the control area exceeds the limited electric power by 2KW.
  • the total electric power of the household appliance with adjustable power should be made from 10KW drops to 8KW, because the total number of power-adjustable household appliances is 10, so the average power of each household with adjustable power should be limited to 800W, so the limit power of households with adjustable power should be 800W. .
  • the above method only represents a method for theoretically obtaining the limited power consumption of each power-adjustable household appliance by the power cloud controller. In practice, the following method can be referred to.
  • the power cloud controller may divide the rated power consumption of the home appliance from 0 to the power-division into a plurality of power intervals, and preset a limit for each power interval.
  • the electrical power is stored in a storage unit of the power cloud controller.
  • the preset power is calculated from the storage unit of the power cloud according to the power interval to which the current power consumption value of the home appliance is adjusted. Limit electricity consumption.
  • the power cloud controller first determines whether there is a power-adjustable household appliance capable of power control, and the power-adjustable household appliance capable of power control must satisfy the following three conditions: no shutdown, normal communication, and current The power used is greater than the minimum power. For example, according to the foregoing step 103d or 103g, if the power cloud controller can receive the current self-power consumption sent by a power-tuned home appliance, the power cloud controller can determine that the power-adjustable home appliance is not down.
  • a power-adjustable household appliance with normal communication if the current self-power consumption of the power-adjustable household appliance received by the power cloud controller is greater than the minimum power consumption, the power cloud controller can determine that the power-adjustable household appliance can perform Power Control.
  • the alarm is directly used to indicate that the current "no power can be down-regulated" power-adjustable household appliance; 2) when the power cloud controller When judging that there is a power-adjustable household appliance capable of power control, first calculate the maximum total power Pds that can be adjusted by all power-adjustable household appliances capable of power control (by calculating the current power-adjustable household appliances currently used) The difference between the electric power and the minimum power consumption is used to calculate the maximum power consumption Pd that can be lowered by each power-adjustable household appliance, and then summed to obtain the maximum total power (Pds) that can be lowered by all power-adjustable household appliances, and then compare Pds with Pe relationship, if the Pds is less than Pe, the power of the power-adjustable household appliance capable of power control is directly set to the respective minimum power consumption, and an alarm is used, which is used to indicate "the power that
  • the power cloud controller identifies the power-adjustable home appliance that cannot communicate due to the shutdown or the occurrence of a communication failure, and is not considered in the power adjustment control calculation. That is to say, the power cloud controller performs power adjustment control calculation only for the power-adjustable home appliance that can normally communicate.
  • the power cloud controller calculates the sum of the current operating power of the household appliance with adjustable power Pq
  • Pai is the current power consumption of a power-adjustable household appliance.
  • the power cloud controller calculates the power Pdi that can be lowered by each household appliance with adjustable power
  • Pmini is the minimum power consumption of a power-adjustable household appliance
  • Pai is the current running power of the power-adjustable household appliance.
  • the power cloud controller calculates the maximum total power Pds that can be adjusted down.
  • step S204a The power cloud controller compares whether Pds is less than or equal to zero. If so, step S205a is performed, and if not, step S206a is performed.
  • the alarm is used to indicate the current power-adjustable household appliances with no power can be adjusted down. The calculations of equations (4), (5), (6), and (7) are not performed.
  • step S206a the power cloud controller compares whether Pds is smaller than Pe. If so, step S207a is performed, and if not, steps S208a-S212a are performed.
  • the calculations of equations (4) and (5) below are not performed. However, the calculation of formula (6) and formula (7) can be performed, so that it can be known how much power needs to be adjusted after adjustment, and provides an auxiliary reference for manual decision making.
  • the power cloud controller calculates the power of each household appliance with adjustable power, Podi
  • power cloud controller calculates the limit power consumption Pseti after each household appliance with adjustable power
  • the power cloud controller calculates the sum of the limited power consumption of all power-adjustable household appliances after the down-regulation Pfq
  • step S212a is performed, otherwise, it returns to S201a for recalculation.
  • the power cloud respectively records the power-adjustable household appliances with the adjusted power, and the records include power adjustable.
  • the limited power consumption is 15kW, and the total power is 16.5kW.
  • Only five inverter air conditioners can communicate with the power cloud normally.
  • the rated power and minimum power of each communication air conditioner can be The calculation steps and results of the current power consumption and the power cloud controller according to the above formulas (1) to (7) are shown in Table 1.
  • the maximum total power consumption Pds that can be currently down-regulated is greater than the total power Pe that needs to be adjusted, and the current power consumption of each air conditioner that can communicate is greater than the minimum power consumption, so that the power can be adjusted downward.
  • the limited power consumption is 15 kW, and the total power consumption is 16.5 kW. Only five inverter air conditioners can normally communicate with the power cloud. The calculation steps and results of the power cloud controller are shown in Table 2. Show.
  • the limited power consumption is 20 kW
  • the total power consumption is 22.2 kW
  • 10 inverter air conditioners can normally communicate with the power cloud
  • the rated power and minimum power of each communication air conditioner can be used.
  • the limited power consumption is 20 kW
  • the total power consumption is 22.5 kW
  • 10 inverter air conditioners can normally communicate with the power cloud
  • the rated power and minimum power of each communication air conditioner can be The calculation steps and results of the current power consumption and power cloud controller according to the above formulas (1) to (7) are shown in Table 4.
  • power cloud controller calculates the power Pdi that can be adjusted by each inverter air conditioner
  • Pmini is the minimum power consumption of an inverter air conditioner
  • Pai is the current running power of the inverter air conditioner.
  • the power cloud controller calculates the maximum total power Pds that can be lowered
  • step S203b the power cloud controller compares whether Pds is greater than zero. If so, step S205b is executed, and if not, step S204b is executed.
  • step S205b the power cloud controller compares whether Pds is smaller than Pe. If so, step S206b is executed, and if not, steps S207b-209b are executed.
  • the calculations of the following formula (3) and formula (4) are not performed. However, the calculations of equations (5) and (6) can be performed, so that it is possible to know how much power needs to be adjusted after adjustment, and provide an auxiliary reference for manual decision making.
  • power cloud controller calculates the power of each inverter air conditioner should be lowered Podi
  • power cloud controller calculates the limit power consumption Pseti after each inverter air conditioner is adjusted down
  • power cloud controller calculates the sum of the power of all inverter air conditioners down-regulated Podq
  • the power cloud controller checks whether the calculated data P? is 0.
  • step S211b is performed, otherwise, it returns to S201b for recalculation.
  • the power cloud controller sends the control parameter of the home appliance to at least one power-tuned home appliance in the control area.
  • the control parameter is the limit power or the power used to obtain the limit. If the control parameter is used to obtain the limit power, the control parameter may be an adjustment factor or a power value that the home appliance needs to be down-regulated.
  • the power cloud controller sends an adjustment coefficient of the home appliance to at least one power-tunable home appliance in the control area, and the home appliance determines the limit power according to the adjustment coefficient and the power consumption of the home appliance.
  • the control parameter may also be a power value that the home appliance needs to be down-regulated.
  • the power cloud controller sends the power value that the home appliance needs to be down-regulated to at least one power-tunable home appliance in the control area, and the home appliance determines the limit power according to the power value that needs to be adjusted and the power consumption of the home appliance.
  • the control parameter may also be other parameters that can be used to obtain the power for the limit, which is not limited in the embodiment of the present disclosure.
  • control parameter is the capped electric power
  • the capped electric power can be obtained according to the method of S103 above, or other methods; if the control parameter is not the capped electric power, the capped electric power can be obtained according to the method of S103 above, and then calculated.
  • the control parameter may also be other methods, which are not limited in the embodiment of the present disclosure. The following embodiments of the present disclosure will be described in detail by taking the control parameter as the limit power.
  • the power cloud controller sends the limited power consumption of the power adjustable home appliance to each power adjustable home appliance in the control area.
  • the power cloud controller sends the limited power consumption of the inverter air conditioner to each of the inverter air conditioners in the control area.
  • the power cloud controller sends a power control command to each of the inverter air conditioners in the control area, where the power control command is used to indicate the limited power consumption of the inverter air conditioner. That is, the power cloud controller requires the inverter air conditioner to control its own power consumption not exceeding the limit power consumption.
  • the power control method of the inverter air conditioner provided by the embodiment of the present disclosure includes: the power cloud controller acquires the total power consumption of the control area and determines whether the total power consumption is greater than the limited power consumption; and determines whether the total power consumption is greater than the limited power consumption.
  • the total power consumption of the air conditioner obtains the control parameters of each power-adjustable household appliance (including the inverter air conditioner) (the control parameter is the limit power or can be used to obtain the limit power), and the method for obtaining the control parameter may be the above-mentioned a way.
  • the power of the inverter air conditioner can be limited, and the power consumption of any inverter air conditioner is controlled to be less than or equal to the limit power consumption.
  • the power cloud controller sends the obtained control parameters to the power-adjustable household appliances (including Inverter air conditioner), after the power consumption adjustable household appliance (including the inverter air conditioner) receives the control parameter, according to the control parameter, its own power consumption is controlled to be less than or equal to the limit power consumption.
  • the power consumption of the inverter air conditioner is greater than the limit power consumption, it means that the power consumption of the inverter air conditioner exceeds the limit power consumption, and the power consumption of the inverter air conditioner needs to be adjusted.
  • the processing system of the power cloud controller uses the calculated limit of the inverter air conditioner.
  • the electric power is sent to the electric controller of the inverter air conditioner by the electric power value, and the microprocessor in the electric controller of the inverter air conditioner adjusts the power of the inverter air conditioner by using the electric power of the limit, so that the electric power of the inverter air conditioner is used. Less than or equal to the limit power.
  • the microprocessor in the electronic controller of the inverter air conditioner limits the power of the inverter air conditioner by the limit power, so that the power consumption of the inverter air conditioner is not greater than the limit power consumption. run.
  • the power adjustable home appliance receives the control parameter of the power adjustable home appliance sent by the power cloud controller.
  • the control parameter is the limit power, or the control parameter is used to obtain the limit power.
  • the control parameter is the limit power, or the control parameter is used to obtain the limit power.
  • the inverter air conditioner receives the limited power consumption of the inverter air conditioner sent by the power cloud controller.
  • the inverter air conditioner receives a power control command sent by the power cloud controller, and the power control command is used to indicate the limited power consumption of the inverter air conditioner.
  • the inverter air conditioner controls its own power consumption to be less than or equal to the limit power consumption.
  • the power-adjustable household appliance detects its own power consumption.
  • an inverter air conditioner detects its own power.
  • the inverter air conditioner detects its own electric power through the power detecting device provided thereon.
  • the power-adjustable household appliance controls the self-power consumption of the power-adjustable household appliance according to the control parameter and the self-power consumption, so that the power consumption of the power-adjustable household appliance is less than or equal to the limited power consumption.
  • the power consumption of the power-adjustable household appliance can be adjusted to a certain extent, but the power cannot be strictly controlled.
  • the power-adjustable household appliance controls the self-power consumption of the power-adjustable household appliance according to the control parameter and the self-utilization power, so that the power consumption of the power-adjustable household appliance is less than or equal to Limit electricity consumption.
  • the inverter air conditioner uses the closed-loop negative feedback method to control the self-power consumption of the inverter air conditioner according to the limited power consumption and the detected self-power consumption, so that the self-power consumption of the inverter air conditioner is not greater than the limit power consumption.
  • the power control method of the inverter air conditioner controls the power consumption of any inverter air conditioner to be less than or equal to the limit power consumption, including: any inverter air conditioner controls the power consumption of the inverter by the closed loop negative feedback to be less than or equal to the limit power consumption.
  • Feedback control refers to the process of returning the output information of the system to the input, comparing it with the input information, and using the deviation of the two to control. Feedback control is actually using the past situation to guide the present and the future.
  • negative feedback negative feedback can make the system tend to be stable; if its role is to enhance the input information, it is called positive feedback, positive feedback can make the signal get strengthen.
  • feedback control is a closed-loop control method in which a signal is closed-circuited along a forward channel (or forward path) and a feedback channel.
  • the feedback signal is divided into two types: “positive feedback” and “negative feedback”.
  • the feedback signal In order to be compared to a given signal, the feedback signal must be converted to a signal of the same magnitude and of the same magnitude as the given signal.
  • the controller obtains the deviation signal obtained by comparing the feedback signal with the given signal, and outputs the control action to eliminate the deviation after the operation, so that the controlled quantity (the output of the system) is equal to the given value.
  • Closed loop control systems are all negative feedback control systems.
  • the power regulating device in the inverter air conditioner includes a microprocessor in the inverter air conditioner electric controller, and the microprocessor in the inverter air conditioner electric controller adjusts the internal power and various parameters of the inverter air conditioner.
  • the following specific control method using the inverter air conditioner as an example is also applicable to household appliances whose frequency modulation and power adjustment such as inverter refrigerators and inverter washing machines.
  • the specific control process of the following inverter air conditioner those skilled in the art can easily think of a power controllable electric water heater, a power controllable electric frying pan, a power controllable electric furnace, a power controllable electric pressure cooker, a power controllable electric fryer and a power can be The specific process of controlling the closed-loop negative feedback control method of the household appliance that regulates the electric cooker, such as the electric cooker, is not described in detail.
  • the electrical control principle of a conventional inverter air conditioner in the prior art utilizes closed loop feedback.
  • Tset The temperature set value or temperature setting is set by the inverter air conditioner user through the buttons on the remote control or air conditioner.
  • Troom indoor temperature value or indoor temperature.
  • Ts Digital sampling time of the electronic controller.
  • Pa The power of the power source used by the air conditioner is similar to the power value of the actual working of the compressor.
  • G3(S) Control algorithm of inverter air conditioner electric controller. In this algorithm, it is first necessary to perform a numerical sign operation on the temperature difference Te.
  • Fig. 7 The control principle and process of Fig. 7:
  • the microchip of the controller collects the indoor temperature Troom, and according to the temperature set value Tset, the temperature set value Tset and the indoor temperature Troom are obtained.
  • the temperature difference Te Tset-Troom.
  • the microprocessor chip of the controller calculates the digital output value according to the temperature difference Te and the control algorithm G3(S), and generates the air conditioner active power Pa by integrating the transfer function G4(S).
  • the power of the inverter air conditioner is less than or equal to the rated power Prate.
  • the active power generated by the compressor compresses the refrigerant, exchanges heat with the condenser and the evaporator, and blows out the required cold energy (cooling) or heat (when heating) through the air conditioner fan and the air duct, and then performs air with the indoor air. Thermal inertia is transmitted to create a new indoor temperature.
  • the indoor temperature Troom approaches the set temperature Tset, the temperature difference Te becomes smaller.
  • the power Pa becomes smaller, and the output cold energy or heat energy becomes smaller, and the room temperature Troom The change will be smaller.
  • the room temperature Troom is equal to the set temperature Tset, the compressor power is the smallest, so that the air conditioner can minimize the cold energy or heat energy output to the room, so that the cold energy or heat energy of the air conditioner to the indoor output and the cold energy or heat absorbed by the human body and the room are externally distributed.
  • the cold energy or heat energy is consistent, and the temperature stability of the inverter air conditioner is reached.
  • the power versus time of this process is shown in Figure 8.
  • the closed-loop negative feedback method adopted by the inverter air conditioner provided by the embodiment of the present disclosure is mainly embodied in two aspects, one is the negative feedback control of the power inner loop, and the other is the negative feedback control of the temperature outer loop.
  • the specific steps include the following steps:
  • the power-adjustable household appliance obtains a temperature difference between the set temperature and the indoor temperature.
  • the inverter air conditioner obtains the temperature difference between the set temperature and the indoor temperature.
  • the controller of the inverter air conditioner obtains the temperature difference between the two according to the collected indoor temperature Troom and the temperature set value Tset.
  • the temperature difference Te of Troom and Tset may be Tset-Troom, then Te is positive when Tset is greater than Troom, Te is negative when Tset is smaller than Troom, and Te is also negative for temperature difference of Troom and Tset It can be the absolute value of Tset-Troom, then Te is always positive, and the specific one is not limited.
  • the power-adjustable household appliance acquires the attenuation coefficient according to the relationship between the set temperature and the indoor temperature, and the relationship between the limited power consumption and the detected self-power consumption.
  • the inverter air conditioner obtains the attenuation coefficient according to the relationship between the set temperature and the indoor temperature and the relationship between the limited power consumption and the detected self-power consumption.
  • the attenuation coefficient is a number greater than 0 and less than or equal to 1. Obtaining the attenuation coefficient is specifically: if the indoor temperature is over-adjusted, the attenuation coefficient is increased, and preferably, the attenuation coefficient is 1. The indoor temperature is over-adjusted. When the working mode of the household appliance (inverter air conditioner) with adjustable power is heating, the indoor temperature is greater than the set temperature.
  • the indoor temperature is less than Set the temperature; if the indoor temperature is not over-adjusted, when the limit power consumption is less than the detected self-power consumption, reduce the attenuation coefficient, and increase the attenuation coefficient when the limit power consumption is greater than the detected self-power consumption.
  • the set temperature and the indoor temperature can be directly compared, and the inverter air conditioner working mode is combined with heating or cooling, and the inverter air conditioner is operated in an over-adjusted state, if the working is in an over-adjusted state. It means that the power consumption is too large at this time, and the power consumption should be lowered in time to increase the attenuation coefficient.
  • the attenuation coefficient can be set to 1, and the electric power is rapidly decreased. If it is not working in the over-adjusted state, compare the limit power consumption with the detected self-power consumption.
  • the limit power consumption When the limit power consumption is less than the detected self-power consumption, reduce the attenuation coefficient and make the attenuation coefficient close to the minimum attenuation coefficient. Under the premise of ensuring that the power consumption of the power does not exceed the limit power consumption, reduce the power consumption of the power; when the power consumption of the limit is greater than the power consumption of the detected power, increase the attenuation coefficient, and make the attenuation coefficient close to 1 to ensure the power consumption of the power. Under the premise of not exceeding the limit power consumption, the power consumption of the self is increased.
  • the attenuation coefficient can be set to 1, and the electric power is rapidly decreased.
  • the power consumption is less than the detected self-power consumption.
  • the attenuation coefficient needs to be reduced to make the attenuation coefficient close to the minimum attenuation coefficient.
  • the power consumption is reduced.
  • Pe is positive
  • the attenuation coefficient needs to be increased to make the attenuation coefficient close to 1.
  • the power consumption of the power is increased under the premise that the power consumption of the power does not exceed the power consumption of the limit.
  • the power-adjustable household appliance attenuates the temperature difference according to the attenuation coefficient.
  • the inverter air conditioner attenuates the temperature difference according to the attenuation coefficient.
  • the attenuation step S301 obtains the temperature difference value to obtain the attenuated temperature difference value, and the attenuated temperature difference value is equal to the product of the attenuation coefficient and the temperature difference value.
  • the power-adjustable household appliance controls the self-power consumption of the inverter air conditioner according to the temperature difference after the attenuation.
  • the inverter air conditioner controls the self-power consumption of the inverter air conditioner according to the temperature difference after the attenuation.
  • This step can refer to the control of the prior art inverter air conditioner, and details are not described herein again.
  • the inverter air conditioner provided by the embodiment of the present disclosure has a power control principle block diagram as shown in FIG. 10 on the premise that the power detecting device and the network communication module connected to the power cloud are added.
  • the microprocessor chip determines which direction the electronic potentiometer is adjusted according to the positive and negative of Pe2, and determines the speed of adjusting the electronic potentiometer Rw according to the size of Pe2. 9) In Fig. 10, G3(S) does not have the numerical sign operation function of G3(S) versus temperature difference Te in Fig. 7. 10) In Figure 10, G1(S), G2(S), Rw, and G3(S) are performed by the same microprocessor chip in the electrical controller.
  • the power-adjustable household appliance acquires a first temperature difference, and acquires a second temperature difference according to the first temperature difference.
  • the inverter air conditioner obtains a first temperature difference, and acquires a second temperature difference according to the first temperature difference.
  • the first temperature difference is a difference between the set temperature and the indoor temperature, and when the working mode of the household appliance (inverter air conditioner) with adjustable power is heating, the first temperature difference and the second temperature difference are both positive numbers or the same negative numbers.
  • the first temperature difference is positively correlated with the second temperature difference; when the power mode of the household appliance (inverter air conditioner) is adjustable, if the first temperature difference is a positive number, the second temperature difference is a negative number, and if the first temperature difference is a negative number, then The second temperature difference is a positive number, and the absolute value of the first temperature difference is positively correlated with the absolute value of the second temperature difference.
  • the expression of G1(S) can clarify that the result of the control method is: when the air conditioning working mode is heating, the first temperature difference Te and The second temperature difference Te2 is positive or negative, and the first temperature difference Te is positively correlated with the second temperature difference Te2.
  • the air conditioning working mode is heating, if the first temperature difference Te is positive, the second temperature difference Te2 is negative. If the first temperature difference Te is a negative number, the second temperature difference Te2 is a positive number, and the absolute value of the first temperature difference Te is positively correlated with the absolute value of the second temperature difference Te2.
  • k12 of different types of inverter air conditioners are different, k12 is adaptively adjusted by the microprocessor in the inverter air conditioner electric controller, T11 is the differential coefficient, and the T11 of different types of inverter air conditioners also has differences, and the T11 is also changed by the inverter air conditioner.
  • the microprocessor in the electronic controller is adaptively adjusted.
  • G1(S) is called a PID operation.
  • the coefficients k12 and T11 are adaptive, G1(S) is also called an adaptive PID algorithm.
  • the power-adjustable household appliance acquires a first power difference, and acquires a second power difference according to the first power difference.
  • the inverter air conditioner obtains a first power difference, and acquires a second power difference according to the first power difference.
  • the first power difference is a difference between the limited power consumption and the power consumption of the inverter air conditioner, and the first power difference is positively correlated with the second power difference.
  • the electronic controller of the inverter air conditioner obtains the difference between the power consumption Pset of the limit and the power consumption Pa of the inverter air conditioner, that is, the first power difference Pe, at this time, because the power cloud controller detects that the total power consumption of the controlled area is greater than the limit.
  • the electric power is used, so the electric power Pa of the inverter air conditioner is greater than the limit electric power Pset, and the first power difference Pe is a negative value, and the Pe2 is also negative after the proportional differential operation or the proportional operation of the G2 (S).
  • G2(S) is the operation function of the microprocessor to perform proportional differential operation or proportional operation on the first power difference Pe in the electric controller of the inverter air conditioner.
  • the absolute value of the first power difference Pe is proportional to the absolute value of the second power difference Pe2.
  • the power-adjustable household appliance acquires an attenuation coefficient according to the second temperature difference and the second power difference.
  • the inverter air conditioner obtains an attenuation coefficient according to the second temperature difference and the second power difference.
  • the attenuation coefficient K13 is increased; when the second temperature difference Te2 is a positive number and the second power difference Pe2 is a negative number, the attenuation coefficient K13 Decrease; when the second temperature difference Te2 is positive and the second power difference Pe2 is zero, the attenuation coefficient K13 remains unchanged; when the second temperature difference Te2 is negative or zero, the attenuation coefficient K13 is 1; the attenuation coefficient K13 is increased
  • the decreasing speed is positively correlated with the magnitude of the absolute value of the second power difference Pe2; the attenuation coefficient K13 is greater than 0 and less than or equal to 1.
  • the power adjustable home appliance obtains a third temperature difference, wherein the third temperature difference is a product of the second temperature difference and the attenuation coefficient. Controlling the self-power consumption of the power-adjustable household appliance according to the third temperature difference.
  • the inverter air conditioner obtains a third temperature difference, and controls the inverter air conditioner to work according to the third temperature difference to generate electric power of the inverter air conditioner and adjust the indoor temperature.
  • the inverter air conditioner obtains a third temperature difference, and controls the inverter air conditioner according to the third temperature difference to generate electric power of the inverter air conditioner and adjusts the indoor temperature.
  • the chirp air conditioner obtains a third temperature difference, wherein the third temperature difference is a product of the second temperature difference and the attenuation coefficient. Controlling the self-power consumption of the power-adjustable household appliance according to the third temperature difference.
  • the specific change of the attenuation coefficient K13 is realized by the virtual device electronic potentiometer RW in the electric controller of the inverter air conditioner, the electronic potentiometer RW is used to adjust the size of the third temperature difference Te3, and the third temperature difference Te3 is the second temperature difference Te2.
  • K13 is the attenuation coefficient, and its value range is the closed interval of [0,1].
  • the attenuation coefficient k13 ranges from [a, 1].
  • the microprocessor in the electric controller of the inverter air conditioner takes the sliding end of the electronic potentiometer RW to the value range [ The "a" end of a, 1] is adjusted to make the third temperature difference Te3 smaller, thereby reducing the compressor power so that the power consumption Pa of the inverter air conditioner is less than or equal to the limit power power Pset.
  • the microprocessor in the electronic controller of the inverter air conditioner adjusts the sliding end of the electronic potentiometer RW to the "1" end of the value range [a, 1] to make the third temperature difference Te3
  • the compressor power is increased.
  • the power consumption Pa of the inverter air conditioner is less than or equal to the limit power consumption Pset, the cooling or heating capacity of the inverter air conditioner is enhanced, so that the indoor temperature reaches the desired temperature of the user as soon as possible.
  • the microprocessor in the electric controller of the inverter air conditioner does not adjust the sliding end of the electronic potentiometer RW, so that the power controllable inverter air conditioner performs cooling or heating according to the limit electric power Pset, and maintains the current Some compressor power.
  • T31 is the differential coefficient
  • T31 also It is adaptively adjusted by the microprocessor in the electronic controller in the inverter air conditioner.
  • T32 is the inertia factor, which is also adaptively adjusted by the microprocessor in the electronic controller within the inverter air conditioner. That is, G3(S) is also an adaptive PID algorithm.
  • the microprocessor in the electric controller of the inverter air conditioner obtains a series of variable parameter values by performing proportional integral differential operation on the change of the third temperature difference Te3.
  • These variable parameter values include compressor frequency, DC voltage pulse width modulation value, and compressor current, and control the operation of the compressor through these parameter values to adjust the power of the compressor. That is, the output value of G3(S) is converted into a G4(S) transfer function by a DC-DC inverter, a compressor, a DC filter circuit, a power factor corrector, an AC rectifier circuit, and an AC filter circuit.
  • the electric power of the air conditioner Pa is collected by the microprocessor in the inverter air conditioner electric controller to form a power closed loop negative feedback control of the inverter air conditioner.
  • the electric power Pa of the inverter air conditioner is subjected to an inverted transfer function composed of a “DC filter circuit, a power factor corrector, an AC rectifier circuit, and an AC filter circuit”, and then “Condenser, evaporator, connecting pipe, and After the G5(S) transfer function is formed by the integrated transfer function of the fan duct system, capillary or electronic expansion valve, indoor air mass and thermodynamic properties, outdoor air environment and thermodynamic properties, the indoor temperature Troom is output and the temperature is formed. Outer loop negative feedback control.
  • variable-frequency air conditioner power closed-loop negative feedback system in the above embodiment positively changes the attenuation ratio of the second temperature difference of the temperature outer loop negative feedback, so that the power consumption of the inverter air conditioner does not exceed the limit power value given by the power cloud controller, Cooperate with the power cloud platform to realize the peaking of power consumption in the monitored power supply area to ensure the safe and reliable operation of the power system.
  • the following may further include the following S108-S112; or, optionally, may further include the following S113.
  • the back difference value may be preset, that is, preset a fixed value, or may be calculated by the power cloud controller.
  • the stop control power command is sent to each of the inverter air conditioners.
  • the back difference is the variation of the power control of the power cloud controller, that is, the two characteristic curves obtained by the electric power control uplink (entry control) and downlink (exit control) within the range of electric power control.
  • the difference between them is shown in Figure 17.
  • the purpose is to prevent the power cloud controller from entering the power control state and then appearing to immediately exit the power control state or exit the power control state and immediately enter the power control state.
  • the power cloud controller when the power cloud controller detects that the total power consumption of the control area is not greater than the limited power consumption of the control area minus the back difference, it may be determined that the power consumption of the control area is lower than the peak power consumption. That is, at this time, the power supply is sufficient, and the power cloud controller does not need to perform power control on any inverter air conditioner in the control area, and sends a stop control power command to each inverter air conditioner.
  • the back difference value is introduced to avoid determining whether the power cloud controller performs power control on each inverter air conditioner in the control region when only one limited power is used as a critical condition.
  • the system will oscillate, that is, if the total power consumption of the control area jumps around the limited power, the power cloud controller will control the power control and stop power control of each inverter air conditioner in the control area. Frequent changes, which is not conducive to the stability of the system. Therefore, after introducing the difference value, the specific control process also needs to distinguish whether the current power cloud controller is performing power control on each inverter air conditioner in the control area.
  • each inverter air conditioner When the power cloud controller does not perform power control on each inverter air conditioner in the control area, if the power cloud controller detects that the total power consumption of the control region is less than or equal to the limited power consumption, then each frequency conversion of the control region is not performed.
  • the air conditioner performs power control; if the power cloud controller detects that the total power consumption of the control area is greater than the limited power consumption, power control is performed on each inverter air conditioner in the control area.
  • the power cloud controller When the power cloud controller is performing power control on each inverter air conditioner in the control area, if the power terminal controller detects that the total power consumption of the control area is less than or equal to the limited power consumption minus the back difference value, then the pair stops. Power control of each inverter air conditioner in the control area; if the power cloud controller detects that the total power consumption of the control area is greater than the limited power consumption minus the back difference value, then the power control of each inverter air conditioner in the control area is maintained. .
  • step S109 when the total power consumption is less than or equal to the limited power consumption, step S109 is performed.
  • the power cloud controller determines whether to control the power-adjustable home appliance.
  • the power cloud controller determines whether it is in the control of the inverter air conditioner.
  • step S110 is performed.
  • the power cloud controller performs the back-value difference adaptive operation.
  • the power cloud controller obtains the back difference value by performing the back difference calculation.
  • the method of the difference value operation can also be other methods, and is not limited herein.
  • the power cloud controller determines whether the total power consumption is less than the limited power consumption minus the back difference value.
  • the power cloud controller determines whether the total power consumption is less than the limited power consumption and reaches the "limited power consumption minus the return difference value".
  • step S108 is performed. Specifically, when the total power consumption is less than the limited power consumption and the "limited power consumption minus the return difference value" is reached, the control of the power consumption of the inverter air conditioner is stopped. When the total power consumption is equal to the limited power consumption, the original power control state is maintained; when the total power consumption is less than the limited power consumption and the "limited power consumption minus the back difference value" is not reached, step S112 is performed to maintain the original power.
  • the switching of the control of the power consumption of the inverter air conditioner to the control of stopping the power consumption of the inverter air conditioner is performed by using a hysteresis method, wherein the upper limit value of the hysteresis method is a limited power consumption, and the hysteresis method is The limit value is the value of "Limited power consumption minus back difference value".
  • the difference value is given by the initial value of the power value Pe that needs to be down-regulated this time, and is continuously calculated adaptively by the power cloud controller according to the situation of the controlled area.
  • the power cloud controller maintains the original power control state.
  • the power cloud controller is always in the reciprocating query process, when the power consumption of the inverter air conditioner is stopped, the power cloud controller is further used to reacquire the total power and other parameters after a period of time to proceed to the next step.
  • the electric power control of the inverter air conditioner since the power cloud controller is always in the reciprocating query process, when the power consumption of the inverter air conditioner is stopped, the power cloud controller is further used to reacquire the total power and other parameters after a period of time to proceed to the next step.
  • the electric power control of the inverter air conditioner since the power cloud controller is always in the reciprocating query process, when the power consumption of the inverter air conditioner is stopped, the power cloud controller is further used to reacquire the total power and other parameters after a period of time to proceed to the next step. The electric power control of the inverter air conditioner.
  • the first temperature difference Te 3° C.
  • the first temperature difference Te ⁇ 3° C.
  • the second temperature difference Te2 enters a saturation value, so that the inverter air conditioner operates at the rated power Prate.
  • the power cloud controller sent a limit power control to the inverter air conditioner.
  • the microprocessor in the electronic controller of the inverter air conditioner adjusts the electronic potentiometer RW to the "a" direction of [a, 1] at a relatively high speed, and the attenuation coefficient K13 decreases, because the second temperature difference Te2 is The saturation value remains unchanged, so the third temperature difference Te3 decreases.
  • the first power difference Pe and the second power difference Pe2 are both equal to 0, and the microprocessor in the electronic controller of the inverter air conditioner no longer adjusts the electronic potentiometer RW.
  • the second temperature difference Te2 exits the saturation value and falls, and the third temperature difference Te3 also decreases, causing the compressor power to decrease, and the first power difference Pe and the second power difference Pe2 change from 0 to a positive value.
  • the microprocessor in the electric controller of the inverter air conditioner adjusts the sliding end of the electronic potentiometer RW to move to the "1" of the value range [a, 1]. This process gradually approaches the set temperature as the room temperature slowly approaches, causing the electronic potentiometer RW to slowly approach the "1" step by step. During the period when the electronic potentiometer RW slowly approaches the "1", the inverter air conditioner operates at a limit power Pset that is close to but less than the power cloud controller.
  • the microprocessor in the electronic controller of the inverter air conditioner no longer adjusts the electronic potentiometer RW.
  • the first temperature difference Te, the second temperature difference Te2, and the third temperature difference Te3 are further reduced, and the electric power Pa of the inverter air conditioner is further decreased, thereby further increasing the power difference values Pe and Pe2.
  • the electronic potentiometer RW has reached "1" and will no longer exceed "1". Therefore, at this time, as the indoor temperature approaches the set temperature, the power consumption Pa of the inverter air conditioner also rapidly decreases. Refer to the EF section shown in FIG.
  • the compressor maintains minimum power operation, and the inverter air conditioner consumes the least amount of active power of the power supply, keeping the energy output of the inverter air conditioner balanced with the energy absorbed by the human body and the energy emitted by the room.
  • the microprocessor in the electric controller of the inverter air conditioner automatically sets the sliding end of the electronic potentiometer RW at the "1" of the value range [a, 1], that is, the attenuation coefficient K13 is 1, this
  • the third temperature difference Te3 is equal to the second temperature difference Te2, because the temperature difference between the set temperature Tset and the indoor temperature Troom, that is, the first temperature difference Te is larger, and after the G1(S) operation, the second temperature difference Te2 reaches the maximum saturation value.
  • the third temperature difference Te3 is equal to the second temperature difference Te2, Te3 is also a saturation value, and after the third temperature difference Te3 is calculated by G3(S), the compressor operating power is rapidly increased from 0, and the power consumption Pa of the inverter air conditioner is also rapidly increased.
  • G2(S) is a proportional differential transfer function.
  • the microprocessor in the electronic controller in the inverter air conditioner adjusts the sliding end of the electronic potentiometer RW to move to the "a" of the value range [a, 1].
  • the attenuation coefficient K13 decreases and Te3 decreases.
  • the inertia function of the regulator G3(S) causes the power to continue to rise, but the drop of Te3 and the differential function in G3(S) act together to slow the rise speed, referring to the B1C1 segment shown in FIG.
  • the microprocessor in the internal electronic controller stops adjusting the sliding end of the electronic potentiometer RW, and the inverter air conditioner maintains the limited power value Pset given by the power cloud controller. Referring to the horizontal line C1D1 in Fig. 13 .
  • the indoor temperature approaches the set temperature
  • the second temperature difference Te2 exits the saturation value and falls
  • the third temperature difference Te3 also decreases, causing the compressor power to drop
  • the first power difference Pe and the second power difference Pe2 are from 0. It becomes a positive value
  • the microprocessor in the electric controller in the inverter air conditioner adjusts the sliding end of the electronic potentiometer RW to move to the "1" of the value range [a, 1]. This process gradually approaches the set temperature as the room temperature slowly approaches, causing the electronic potentiometer RW to slowly approach the "1" step by step.
  • the inverter air conditioner operates at a limited power Pset that is close to but less than the power cloud controller.
  • the microprocessor in the electric controller in the inverter air conditioner no longer adjusts the electronic potentiometer RW.
  • the indoor temperature further approaches the set temperature value
  • the first The temperature difference Te, the second temperature difference Te2, and the third temperature difference Te3 are further reduced, and the electric power Pa of the inverter air conditioner is further decreased, so that the first power difference Pe and the second power difference Pe2 are further increased.
  • the electronic potentiometer RW has reached "1" and will not exceed "1". Therefore, as the indoor temperature approaches the set temperature, the power consumption Pa of the inverter air conditioner also rapidly drops, referring to the E1F1 segment in FIG.
  • the compressor maintains minimum power operation, and the inverter air conditioner consumes the least amount of active power of the power supply, keeping the energy output of the inverter air conditioner balanced with the energy emitted by the human body and the energy emitted by the room. 13 in the G1H1 segment.
  • the embodiment of the present disclosure provides a power control method.
  • the power cloud controller acquires the total power consumption of the control area. If the total power consumption of the control area is greater than the limited power consumption of the control area, the power peak is reached at this time, and the power supply is obtained. Insufficient, it is necessary to control the total power consumption to be lower than the limited power. Then, the power cloud controller sends the limited power consumption of the inverter air conditioner to each inverter air conditioner in the control area, and has achieved the purpose of controlling the total power consumption.
  • the inverter air conditioner receives the limited power consumption of the inverter air conditioner sent by the power cloud controller, detects the power consumption of the inverter, and controls the power consumption of the inverter air conditioner by using a closed loop negative feedback method according to the limited power consumption and the detected self power consumption.
  • the self-power consumption of the inverter air conditioner is not greater than the limit power.
  • the above method controls the total power consumption of the control area through the power cloud controller, and the specific control of the inverter air conditioner to its own power, thereby improving the control of the electric power during the peak period of power, so as to reduce the power peak.
  • the embodiment of the present disclosure provides a controller, which may be software or hardware.
  • the controller may be referred to as a power cloud controller, and may also be referred to as other.
  • the controller includes:
  • the obtaining unit 11 is configured to acquire a total power consumption of the control area
  • the sending unit 12 is configured to: if the total power consumption of the control area acquired by the acquiring unit 11 is greater than the limited power consumption of the control area, send the control parameter of the home appliance to at least one power-tuned home appliance of the control area, and the control parameter Used to limit the power used or to obtain the limit power.
  • control parameter is a limit power
  • sending unit 12 is configured to send, to each power-tunable home appliance in the control area, the limited power of the power-adjustable household appliance.
  • the controller further includes: a determining unit 13 configured to determine whether the total power consumption of the control region acquired by the acquiring unit 11 is greater than the limited power consumption of the control region.
  • the obtaining unit 11 is further configured to acquire the power-adjustable household appliance of the control area before transmitting the limited power consumption of the power-adjustable household appliance to each power-tunable home appliance in the control area.
  • the total power consumption of the total and power-adjustable household appliances according to the total power consumption of the control area, the limited power consumption of the control area, the total number of household appliances with adjustable power of the control area, and the total power consumption of the household appliance with adjustable power To obtain the limit power consumption of each power-adjustable household appliance.
  • the sending unit 12 is further configured to: when the limited power consumption of the power adjustable home appliance is sent to each power adjustable home appliance of the control area, the total use of the control area acquired by the acquiring unit 11 When the electric power is less than or equal to the limited electric power of the control area minus the return difference, the stop control power command is sent to each of the power-adjustable household appliances.
  • the power-adjustable household appliances include: inverter air conditioner, inverter refrigerator, frequency conversion washing machine, power adjustable electric water heater, power adjustable electric frying pan, power adjustable electric furnace, power controllable electric pressure cooker, power controllable electric frying
  • the pot and power can regulate one or more of the electric cookers.
  • the obtaining unit 11 may be configured by an interface circuit having a receiving function on the power cloud controller and the processor.
  • the interface circuit can be a receiver or an information receiving interface.
  • the sending unit 12 may be implemented by an interface circuit having a transmitting function on the power cloud controller.
  • the interface circuit may be a transmitter or an information sending interface.
  • the other unit may be a separately set processor, or may be integrated in one processor of the power cloud controller, or may be stored in the memory of the power cloud controller in the form of program code, by the power cloud controller.
  • One of the processors calls and executes the functions of each of the above units.
  • the processor described herein may be a central processing unit (English name: Central Processing Unit, English abbreviation: CPU), or a specific integrated circuit (English name: Application Specific Integrated Circuit, English abbreviation: ASIC), or configured One or more integrated circuits that implement embodiments of the present disclosure.
  • CPU Central Processing Unit
  • ASIC Application Specific Integrated Circuit
  • the embodiment of the present disclosure provides a power cloud controller.
  • the power consumption of the limit is sent to each of the inverter air conditioners in the control area, and each inverter air conditioner in the area is commanded.
  • the power consumption of the self can not exceed the limit power, which realizes the macro control of the total power consumption of the control area by the power cloud controller, thereby improving the control of the power of the electric appliance and further reducing the peak of the power.
  • the inverter air conditioner includes:
  • the receiving unit 21 is configured to receive, by the power cloud controller, a control parameter of the power adjustable home appliance, where the control parameter is a limited power, or the control parameter is used to obtain a limited power;
  • the detecting unit 22 is configured to detect power consumption of the self
  • the control unit 23 is configured to control the power consumption of the power-adjustable household appliance according to the control parameter received by the receiving unit 21 and the self-powered power detected by the detecting unit 22, so that the power consumption of the power-adjustable household appliance is not Greater than the limit power.
  • control unit 23 is specifically configured to control the power consumption of the power-adjustable household appliance by using a closed-loop negative feedback method.
  • the power-adjustable household appliances include inverter air conditioners, inverter refrigerators, frequency conversion washing machines, power controllable electric water heaters, power controllable electric woks, power controllable electric furnaces, power controllable electric pressure cookers, power controllable electric fryers And power can regulate one or more of the electric cookers.
  • the control unit 23 is specifically configured to obtain a temperature difference between the set temperature and the indoor temperature; according to the set temperature and the indoor temperature.
  • the size relationship and the relationship between the power consumption of the limit and the power consumption of the power obtain the attenuation coefficient, and obtain the attenuation coefficient.
  • the indoor temperature is over-adjusted, the attenuation coefficient is increased, and the indoor temperature is over-modulated to work when the power is adjustable.
  • the indoor temperature is greater than the set temperature.
  • the working mode of the household appliance with adjustable power is cooling, the indoor temperature is lower than the set temperature.
  • the attenuation coefficient is decreased.
  • the limit electric power is greater than the detected self-power consumption
  • the attenuation coefficient is increased; the temperature difference is attenuated according to the attenuation coefficient; and the power-adjustable household appliance is controlled according to the temperature difference after the attenuation Self power consumption.
  • the control unit 23 is specifically configured to obtain a first temperature difference, where the first temperature difference is a difference between the set temperature and the indoor temperature; Obtaining a second temperature difference according to the first temperature difference; wherein, when the power-adjustable household appliance working mode is heating, the first temperature difference and the second temperature difference are both positive numbers or the same negative numbers, and the first temperature difference is positively correlated with the second temperature difference
  • the working mode of the power-adjustable household appliance is cooling, if the first temperature difference is a positive number, the second temperature difference is a negative number, and if the first temperature difference is a negative number, the second temperature difference is a positive number, and the absolute value of the first temperature difference is Positively correlating with the absolute value of the second temperature difference; obtaining a first power difference, wherein the first power difference is a difference between the power consumption of the household appliance and the power consumption of the
  • the embodiment of the present disclosure provides a power control system.
  • the system includes: the controller 31 of the second embodiment and the power adjustable household appliance 32 of the third embodiment, wherein the controller 31 It can also be referred to as a power cloud controller 31.
  • the controller 31 It can also be referred to as a power cloud controller 31.
  • the power adjustable household appliance 32 is an inverter air conditioner.
  • the power cloud controller 31 is configured to acquire the total power consumption of the control area. If the total power consumption is greater than the limited power consumption, the limited power consumption of the inverter air conditioner is sent to each of the inverter air conditioners in the control area.
  • the power cloud controller 31 is further configured to determine whether the total power consumption is greater than the limited power.
  • the power cloud controller 31 is further configured to acquire the total number of inverter air conditioners in the power consumption area and the total power consumption of the inverter air conditioner.
  • the limited power consumption of each air conditioner is obtained according to the total power consumption of the control area, the limited power consumption, the total number of inverter air conditioners, and the total power consumption of the inverter air conditioner.
  • the power cloud controller 31 is further configured to: when the total power consumption of the control area is not greater than the control area When the limited power consumption is subtracted from the difference value, a stop control power command is sent to each of the inverter air conditioners.
  • the power regulating device 32 is configured to control the power consumption of any of the inverter air conditioners to be less than or equal to the limit power.
  • the power adjustment device 32 herein is an inverter air conditioner 32.
  • the inverter air conditioner 32 is specifically used for the limited power consumption of the inverter air conditioner sent by the inverter air conditioner receiving power cloud controller; detecting the power consumption of the inverter; and controlling the power consumption according to the limit and the detected self power consumption by using a closed loop negative feedback method
  • the inverter air conditioner uses its own electric power so that the self-power consumption of the inverter air conditioner is not greater than the limit power consumption.
  • the inverter air conditioner 32 is specifically configured to obtain a temperature difference between the set temperature and the indoor temperature; according to the relationship between the set temperature and the indoor temperature, and the limited power and the detected self-power
  • the magnitude relationship of the obtained attenuation coefficient is specifically: if the indoor temperature is over-adjusted, the attenuation coefficient is increased, and the indoor temperature is over-adjusted when the air-conditioning working mode is heating The indoor temperature is greater than the set temperature, when the air conditioning working mode is cooling, the indoor temperature is less than the set temperature, and if the indoor temperature is not over-adjusted, when the limit electric power is less than the detected self
  • the attenuation coefficient is decreased, and when the limit electric power is greater than the detected self-power consumption, the attenuation coefficient is increased; and the temperature difference is attenuated according to the attenuation coefficient;
  • the subsequent temperature difference controls the self-power consumption of the inverter air conditioner.
  • the inverter air conditioner 32 is further configured to obtain a first temperature difference, where the first temperature difference is a difference between the set temperature and the indoor temperature. Obtaining a second temperature difference according to the first temperature difference; wherein, when the air conditioning working mode is heating, the first temperature difference and the second temperature difference are both positive numbers or the same negative numbers, and the first temperature difference is positively correlated with the second temperature difference; when the air conditioning working mode is In the case of cooling, if the first temperature difference is a positive number, the second temperature difference is a negative number. If the first temperature difference is a negative number, the second temperature difference is a positive number, and the absolute value of the first temperature difference is positively correlated with the absolute value of the second temperature difference.
  • Obtaining a first power difference wherein the first power difference is a difference between the limited power and the power of the inverter air conditioner. And obtaining a second power difference according to the first power difference; the first power difference is positively correlated with the second power difference.
  • a third temperature difference is obtained, wherein the third temperature difference is a product of the second
  • the closed-loop negative feedback system in the inverter air conditioner power control system in the above embodiment positively changes the attenuation ratio of the second temperature difference of the temperature outer loop negative feedback, so that the power consumption of the inverter air conditioner does not exceed the power cloud controller given
  • the limit power value is matched with the power cloud platform to realize the peak of power consumption in the monitored power area to ensure the safe and reliable operation of the power system.
  • the inverter air conditioner 32 includes a communication device and a power detecting device disposed at a power input end of the inverter air conditioner.
  • the power detecting device is configured to detect the power consumption of the corresponding inverter air conditioner.
  • the communication device is configured to send the power consumption of the corresponding inverter air conditioner to the power cloud controller and receive data and control commands such as the limit power power sent by the power cloud to the inverter air conditioner.
  • the power cloud controller 31 includes a communication device that acquires the total number of inverter air conditioners in the power consumption area and the total power consumption of the inverter air conditioner according to the power consumption of the inverter air conditioner received by the communication device.
  • the power cloud controller 31 is further configured to perform control according to the method of FIG. 17 when the total power consumption is less than or equal to the limited power consumption:
  • the power cloud controller implements the limit power control on the inverter air conditioner
  • the power consumption of the inverter air conditioner is stopped.
  • the total power consumption is equal to the limited power consumption
  • the original power control state is maintained or the original power is not controlled.
  • the total electric power is less than the limited electric power but does not reach the "limited electric power minus the return difference value”
  • the original power control state is maintained or the original power uncontrolled state is maintained.
  • the power control system of the inverter air conditioner includes: the power cloud controller 31 is configured to acquire the total power consumption of the control area and determine whether the total power consumption is greater than the limited power; the power cloud controller determines the total power. Whether the electric power is greater than the limited electric power can determine whether the power consumption of the control area reaches the power peak, and if so, the power cloud controller is further used to obtain the total number of inverter air conditioners in the power consumption area and the total power consumption of the inverter air conditioner; The total power consumption, the limited power consumption, the total number of inverter air conditioners, and the total power consumption of the inverter air conditioner obtain the limit power consumption of each air conditioner; the power cloud controller can limit the power of the inverter air conditioner by obtaining the limited power consumption, and the power adjustment device The power used to control any inverter air conditioner is less than or equal to the limit power.
  • the embodiment of the present disclosure provides a power control system, and the power cloud controller 31 is configured to acquire the total power consumption of the control region. If the total power consumption is greater than the limited power consumption, the limited power consumption of the inverter air conditioner is sent to each of the inverter air conditioners in the control area.
  • the inverter air conditioner 32 is specifically used for the limited power consumption of the inverter air conditioner sent by the inverter air conditioner receiving power cloud controller; detecting the power consumption of the inverter; and controlling the power consumption according to the limit and the detected self power consumption by using a closed loop negative feedback method
  • the inverter air conditioner uses its own electric power so that the self-power consumption of the inverter air conditioner is not greater than the limit power consumption.
  • the power cloud controller 31 the macro control of the total power consumption of the control area, and the specific control of the inverter air conditioner 32 for its own power consumption, thereby improving the control of the electrical power, thereby reducing the power peak.
  • the embodiment of the present disclosure provides a controller, as shown in FIG. 18, the controller includes: a processor 41, a memory 42, a bus 43 and a communication interface 44;
  • the memory 42 is configured to store computer execution instructions
  • the processor 41 is connected to the memory 42 via the bus 43, and when the power cloud controller is running, the processor 41 executes the memory 42 to store The computer executes instructions to cause the power cloud controller to perform the power control method as described in the first embodiment.
  • the processor 41 can be, for example, a CPU, a general purpose processor, a digital signal processor DSP, an application specific integrated circuit ASIC, an FPGA or other programmable logic device, a transistor logic device, a hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor 41 can also be a combination of computing functions, including, for example, one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the memory 42 may be a storage device or a collective name of a plurality of storage elements, and is used to store executable program code or parameters, data, and the like required for the operation of the access network management device.
  • the memory 42 may include a random access memory (English name: Random-Access Memory, English abbreviation: RAM), and may also include non-volatile memory (English name: non-volatile memory, English abbreviation: NVRAM), such as disk storage, flash memory. (Flash) and so on.
  • the bus 43 can be an industry standard architecture (English name: Industry Standard Architecture, English abbreviation: ISA) bus, external device interconnection (English full name: Peripheral Component, English abbreviation: PCI) bus or extended industry standard architecture (English full name: Extended Industry Standard Architecture, English abbreviation: EISA) bus.
  • the bus 43 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 18, but it does not mean that there is only one bus or one type of bus.
  • the Communication interface 44 uses any type of transceiver, for communicating with other devices or communication networks, such as Ethernet, radio access network (RAN), Wireless Local Area Networks (WLAN), etc. .
  • the communication interface 44 may include a receiving unit that implements a receiving function, and a transmitting unit that implements a transmitting function.
  • the embodiment of the present disclosure provides an inverter air conditioner, as shown in FIG. 19, the inverter air conditioner includes: a processor 51, a memory 52, a bus 53, and a communication interface 54;
  • the memory 52 is configured to store computer execution instructions, and the processor 51 is coupled to the memory 52 via the bus 53.
  • the processor 51 executes the memory stored in the memory 52.
  • the computer executes instructions to cause the inverter air conditioner to perform the power control method as described in the first embodiment.
  • the processor 51 can be, for example, a CPU, a general purpose processor, a digital signal processor DSP, an application specific integrated circuit ASIC, an FPGA or other programmable logic device, a transistor logic device, a hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor 51 can also be a combination of computing functions, including, for example, one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the memory 52 may be a storage device or a collective name of a plurality of storage elements, and is used to store executable program code or parameters, data, and the like required for the operation of the access network management device.
  • the memory 52 may include a random access memory (English name: Random-Access Memory, English abbreviation: RAM), and may also include non-volatile memory (English name: non-volatile memory, English abbreviation: NVRAM), such as disk storage, flash memory. (Flash) and so on.
  • the bus 53 can be an industry standard architecture (English name: Industry Standard Architecture, English abbreviation: ISA) bus, external device interconnection (English full name: Peripheral Component, English abbreviation: PCI) bus or extended industry standard architecture (English full name: Extended Industry Standard Architecture, English abbreviation: EISA) bus.
  • the bus 53 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 19, but it does not mean that there is only one bus or one type of bus.
  • the Communication interface 54 may include a receiving unit that implements a receiving function, and a transmitting unit that implements a transmitting function.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in various embodiments of the present disclosure may be integrated into one processing unit, or each unit may be physically included separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the above software functional units are stored in a storage medium and include instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform part of the steps of the methods described in various embodiments of the present disclosure.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, and the program code can be stored. Medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Mathematical Physics (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本公开实施例提供了一种功率控制方法、装置和系统,涉及家用电器控制领域,用以提高对家用电器功率的控制,进而可以起到削减电力高峰的作用。该方法包括:获取控制区域的总用电功率;若控制区域的总用电功率大于控制区域的限定用电功率,则向控制区域的至少一台功率可调的家用电器发送该家用电器的控制参数,控制参数为限额用电功率或用于获取限额用电功率。

Description

一种功率控制方法、装置和系统
本申请要求于2017年02月22日提交中国专利局、申请号为201710097252.4、发明名称为“一种变频空调的功率控制方法及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及家用电器控制领域,尤其涉及一种功率控制方法、装置和系统。
背景技术
峰谷电现象,即高峰时电力短缺而低谷时电力过剩的现象,是系统负荷特性与系统电源的特点造成的,不但使得供电边际成本增大,更影响到用电的稳定。这种现象在各用电国家日益严重,并导致了一系列问题。
尤其,电力高峰时拉闸限电,对人们的生活有很大影响,但要想既能满足生活需要,又能削减用电高峰就必须控制某些家用电器的功率,例如,控制变频空调的功率。目前,使用的控制变频空调的功率的方法是改变变频空调的运行频率或改变变频空调的设定温度,但这二种方法效果不好。
由于变频空调的工作频率与它的功率是非线性的,并且,每台变频空调都不一样。所以,通过改变频率的方法不能较好地控制变频空调的功率。因为变频空调压缩机运行的功率是由设定温度与室内温度的差值以及室内温度的变化情况来决定的。室内温度会受到室外温度、室内人员多少、是否有大加热器等的影响,功率无法恒定的控制在某个范围内。所以,改变变频空调的设定温度也是一样不能较好地控制变频空调的功率。
发明内容
本公开的实施例提供一种功率控制方法、装置和系统,用以提高对家用电器的功率的控制,进而可以起到削减电力高峰的作用。
为达到上述目的,本公开的实施例采用如下技术方案:
第一方面,本公开实施例提供了一种功率控制方法,所述方法包括:
获取控制区域的总用电功率;
若所述控制区域的总用电功率大于所述控制区域的限定用电功率,则向所述控制区域的至少一台功率可调的家用电器发送该家用电器的控制参数,所述控制参数为限额用电功率或用于获取限额用电功率。
第二方面,本公开实施例提供了一种功率控制方法,所述方法包括:
功率可调的家用电器接收电力云端控制器发送的该功率可调的家用电器的控制参数,所述控制参数为所述限额用电功率,或所述控制参数用于获取限额用电功率;
检测自身用电功率;
根据所述控制参数和所述自身用电功率,控制所述功率可调的家用电器的自身用电功率,以使所述功率可调的家用电器的自身用电功率小于或等于所述限额用电功率。
第三方面,本公开实施例提供了一种电力云端控制器,所述控制器包括:
获取单元,用于获取控制区域的总用电功率;
发送单元,用于若所述控制区域的总用电功率大于所述控制区域的限定用电功率,则向所述控制区域的至少一台功率可调的家用电器发送该家用电器的控制参数,所述控制参数为限额用电功率或用于获取限额用电功率。
第四方面,本公开实施例提供了一种功率可调的家用电器,所述功率可调的家用电器包括:
接收单元,用于接收电力云端控制器发送的该功率可调的家用电器的控制参数,所述控制参数为所述限额用电功率,或所述控制参数用于获取限额用电功率;
检测单元,用于检测自身用电功率;
控制单元,用于根据所述接收单元接收的所述控制参数和所述检测单元检测到的自身用电功率,控制所述功率可调的家用电器的自身用电功率,以使所述功率可调的家用电器的自身用电功率不大于所述限额用电功率。
第五方面,本公开实施例提供了一种功率控制系统,所述系统包括:第三方面所述的电力云端控制器和第四方面所述的功率可调的家用电器。
第六方面,本公开实施例提供了一种电力云端控制器,该电力云端控制器包括:处理器、存储器、总线和通信接口;
所述存储用于存储计算机执行指令,所述处理器与所述存储器通过所述总线连接,当所述电力云端控制器运行时,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述电力云端控制器执行如第一方面描述的功率控制方法。
第七方面,本公开实施例提供了一种功率可调的家用电器,该功率可调的家用电器包括:处理器、存储器、总线和通信接口;
所述存储器用于存储计算机执行指令,所述处理器与所述存储器通过所述总线连接,当所述功率可调的家用电器运行时,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述功率可调的家用电器执行如第二方面描述的功率控制方法。
本公开实施例提供了一种功率控制方法、电力云端控制器、功率可调的家用电器和系统,电力云端控制器获取控制区域的总用电功率,若控制区域的总用电功率大于控制区域的限定用电功率,说明此时达到了用电高峰,电力供应不足,需要通过控制总用电功率使其低于限定用电功率。则电力云端控制器向控制区域的至少一台功率可调的家用电器发送该家用电器的控制参数,已达到控制总用电功率的目的。功率可调的家用电器接收电力云端控制器发送的该功率可调的家用电器的控制参数,检测自身用电功率,根据控制参数和检测到的自身用电功率,采用闭环负反馈的方法控制功率可调的家用电器的自身用电功率,以使功率可 调的家用电器的自身用电功率不大于限额用电功率。上述方法通过电力云端控制器对控制区域总用电功率的宏观调控,以及功率可调的家用电器对自身用电功率的具体控制,从而提高了对家用电器功率的控制,进而起到削减电力高峰的作用。
附图说明
图1为本公开实施例提供的一种功率控制系统的架构图;
图2为本公开实施例提供的功率控制方法的流程图之一;
图3为本公开实施例提供的变频空调的功率检测装置示意图;
图4为本公开实施例提供的变频空调结构示意图之一;
图5为本公开实施例提供的变频空调结构示意图之二;
图6(a)为本公开实施例提供的功率控制方法的流程图之二;
图6(b)为本公开实施例提供的功率控制方法的流程图之三;
图7为本公开实施例提供的普通的变频空调的电控制原理图;
图8为本公开实施例提供的用电功率随时间变化的曲线图;
图9为本公开实施例提供的功率控制方法的流程图之四;
图10为本公开实施例提供的变频空调的电控制原理图;
图11为本公开实施例提供的功率控制方法的流程图之五;
图12为本公开实施例提供的变频空调用电功率随时间变化的曲线图之一;
图13为本公开实施例提供的变频空调用电功率随时间变化的曲线图之二;
图14为本公开实施例提供的一种电力云端控制器的框图;
图15为本公开实施例提供的一种功率可调的家用电器的框图;
图16为本公开实施例提供的一种功率控制系统框图;
图17为本公开实施例提供的开启用电功率控制和停止控制的转换逻辑图;
图18为本公开实施例提供的一种电力云端控制器的内部结构示意图;
图19为本公开实施例提供的一种功率可调的家用电器的内部结构示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开实施例中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本公开实施例中字符“/”,一般表示前后关联对象是一种“或”的关系。
为了便于清楚描述本公开实施例的技术方案,在本公开的实施例中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本公开实施例中,电力云端控制器是指能够与其控制区域的多台家用电器进行通讯的,且具有根据控制区域内的总用电功率与限定用电功率的关系确定是否控制至少一台功率可调的家用电器的功率等功能的的一个控制器或多个控制器的组合,也可以称为控制器。该电力云端控制器可以为安装在某种计算机设备上的软件,计算机设备例如可以为服务器;也可以是硬件,例如可以是一个或多个计算机设备组成的系统,本公开实施例不作限定。
参照图1所示,本公开实施例提供了一种功率控制系统,该系统包括电力云端控制器,N个功率可调的家用电器,N为大于1的整数,且每个功率可调的家用电器可以与电力云端控制器进行网络通信。
电力云端控制器可以根据控制区域内的总用电功率与限定用电功率的关系确定是否控制至少一台功率可调的家用电器的功率,即是否向功率可调的家用电器发送控制参数或发送停止控制功率命令;功率可调的家用电器在电力云端控制器注册后,可以向电力云端控制器发送该功率可调的家用电器的当前用电功率。
下面解释本公开实施例涉及的几个名词。
额定用电功率:额定工作状态下输入的电功率,又称为额定输入功率(Rated input power),空调器在额定工况条件下进行制冷运行时输入的电功率和在额定工况条件下进行制热运行时输入的电功率中取小的那个输入电功率作为额定输入功率。
最小用电功率:又称最小工作输入功率(Minimum running input power),空调器在所允许的最恶劣环境状态下能产生最小制冷量的输入电功率和在所允许的最恶劣环境状态下能产生最小制热的输入电功率中取大的那个输入电功率作为最小工作输入功率。
当前用电功率,即当前运行输入的电功率。
需要说明的是:在本公开实施例中,功率可调的家用电器包括电机调频调功率的家用电器和电加热调压调功率的家用电器,例如变频空调,变频冰箱,变频洗衣机等电机调频调功率的家用电器和功率可调控电热水器,功率可调控电炒锅,功率可调控电炉,功率可调控电压力锅,功率可调控电炸锅,功率可调控电炖锅等电加热调压调功率的家用电器,还可以包括其他的功率可调的家用电器,本公开实施例不作限制。具体的,可以是对其中的一种或多种功率可调的家用电器进行功率控制,在此不再赘述。
在本公开实施例中是针对变频空调为例来说明功率控制的,对其他功率可调的家用电器的功率控制可以参考对变频空调的功率控制,本公开实施例不予赘述。
需要说明的是:因家家户户都通常有功率可控的且功率较大的家用电器,这样在一个较大的区域内,功率可调的且功率较大的家用电器的数量就可能很庞大,那么,与电力云通信的数据量也就较 大。因此为了保证功率控制的实时性,采取几个住宅小区为一个区域电力云或一个居民社区为一个区域电力云,对区域电力云内的功率可调的家用电器进行功率控制。区域电力云是电力云的一个组成部分,也就是,电力云由许多的区域电力云组成。在云控制软件中,区域电力云不仅是软件中规划的区域,也可能同时是实际地图上有着明确地理位置限定的区域。
区域电力云可以通过电力云端控制器与在该区域电力云中注册的功率可调的家用电器进行网络通信。例如,电力云端控制器可以向已注册的功率可调的家用电器发送控制参数或停止功率控制的命令。每台已注册的功率可调的家用电器向电力云端控制器实时反馈当前用电功率。区域电力云通过本区域供电的用电功率检测装置,例如电源总功率测量器,采集本区域的总用电功率,并根据相关的用电参数控制本区域电力云的功率。因此,在本公开实施例中,电力云端控制器就是指上述的区域电力云的控制模块。
家用电器在区域电力云的注册可以有多种实现方式:
可选的,当功率可调的家用电器被安装好(包括初次安装,以及家用电器被移动位置后安装等),且用户同意并签署该家用电器允许电力云进行功率控制的法律合同之后,在家用电器中输入位置信息,家用电器通过网络通信模块将其存储的基本信息和用户输入的位置信息发送给电力云端控制器,家用电器的基本信息包括唯一电子身份码、通信电路的MAC码、家用电器型号、家用电器生产厂家、额定用电功率、最小用电功率、功率可调控/可选择时间工作家用电器标识、区域电力云网址和端口等信息中的一个或者多个信息电力云端控制器根据接收到的家用电器位置信息,将该家用电器的基本信息存储到地理上对应的区域电力云内,并激活该家用电器与对应的区域电力云端控制器的通信和功率控制功能。
优选的,家用电器的外壳上和说明书中都有该家用电器的二维码,二维码中含有该家用电器的唯一电子身份码、通信电路的MAC码、家用电器型号、家用电器生产厂家、额定用电功率、最小用电 功率、功率可调控/可选择时间工作家用电器标识、区域电力云网址和端口等信息中的一个或者多个。家用电器在用户家中安装后,用户同意并签署该家用电器允许电力云进行功率控制的法律合同之后,用与网络链接的智能手机扫描家用电器外壳上或说明书中的对应二维码。扫描二维码后,智能手机可以与区域电力云端控制器进行通信,智能手机将其扫描的家用电器的二维码内的信息发送给电力云端控制器,同时家用电器也通过网络通信模块将其二维码内存储的信息发送给电力云端控制器,电力云端控制器将智能手机发送的家用电器信息与家用电器发送的家用电器信息进行比对,若一致,则电力云端控制器确认是该家用电器要进行注册,电力云向智能手机发送获取智能手机位置信息的命令。在智能手机给出是否向电力云端控制器提供位置信息询问时,智能手机上获取到确认向电力云端控制器提供位置信息的指令后,智能手机将它的定位信息发给电力云端控制器,从而电力云端控制器确定该家用电器所在的地理信息。电力云端控制器根据获得的家用电器地理信息,将该家用电器的二维码信息存储到地理上对应的区域电力云内,并激活该家用电器与对应的区域电力云端控制器的通信和功率控制功能。
实施例一
本公开实施例提供了一种功率控制方法,其中,功率可调的家用电器包括:变频空调、变频冰箱、变频洗衣机、功率可调控电热水器、功率可调控电炒锅、功率可调控电炉、功率可调控电压力锅、功率可调控电炸锅和功率可调控电炖锅中的一种或多种,也可以是其他的,具体的本公开以变频空调为例说明。参照图2所示,该方法包括:
S101、电力云端控制器获取控制区域的总用电功率。
示例性的,电力云端控制器通过控制区域的用电功率检测装置获取控制区域的总用电功率,其中该控制区域的用电功率检测装置实时检测控制区域的总用电功率。例如,用电功率检测装置可以是电源总功率测量器。电力云端控制器通过控制区域供电的电源总功率测量器采集该控制区域的总用电功率,还可以采集该控制区域的 总用电量。
S102、电力云端控制器判断控制区域的总用电功率是否大于控制区域的限定用电功率。
示例性的,控制区域的限定用电功率可以是预存在电力云端控制器中的,也可以是电力云端控制器通过电力云中该地区的配额用电功率进行综合处理得出的。电力云端控制器判断控制区域的总用电功率是否大于控制区域的限定用电功率,若控制区域的总用电功率大于控制区域的限定用电功率,则可以确定控制区域的用电量达到用电高峰,即此时电力供应不足,需执行步骤S103和步骤S104。若控制区域的总用电功率不大于控制区域的限定用电功率,则可以确定控制区域的用电量未达到用电高峰,即此时电力供应充足,电力云端控制器不需要对控制区域的功率可调的家用电器进行功率控制。
S103、电力云端控制器获取控制区域的功率可调的家用电器的总数和功率可调的家用电器的总用电功率,根据控制区域的总用电功率、控制区域的限定用电功率、控制区域的功率可调的家用电器的总数和功率可调的家用电器的总用电功率,获取每一台功率可调的家用电器的限额用电功率。
需要说明的是:实际上,电力云端控制器可以根据当前注册的,且通信正常的功率可调的家用电器,获取至少一台功率可调的家用电器的限额用电功率。具体获取哪台功率可调的家用电器的限额用电功率由电力云端控制器来确定的。
功率可调的家用电器上设置有功率检测装置,例如电量计量装置或电路,用来检测功率可调的家用电器当前的自身用电功率。
具体的,以功率可调的家用电器是变频空调为例说明。众所周知不论电源线是从室内机还是室外机接入,功率可调变频空调都由室内机、室外机、连接室内外机的管线和电源线等组成。但为了保证变频空调电源功率计量的准确性,功率检测装置都安装在变频空调电源的进线处。所以功率检测装置需要根据空调电源的进线位置 来确定安装在空调的室内机还是室外机,也就是说,空调电源进线是接入室内机的,电量计量装置安装在室内机,空调电源进线是接入室外机的,电量计量装置安装在室外机。具体的功率检测装置与变频空调室内机控制板的电连接情况或功率检测装置与变频空调室外机控制板的电连接情况,参照图3所示。根据变频空调采用电网电源是三相电还是单相电,功率检测装置也分为三相功率检测装置和单相功率检测装置。功率检测装置可以是单独的装置,也可以是嵌入室内机或室外机控制板中的电路,其与室内机控制板或室外机控制板组成一个完整的控制板。
变频空调上还设置有网络通信模块,用来实现变频空调与电力云的链接建立和注册,从而使变频空调与电力云可以进行网络通信和信息传输。具体的,在本公开实施例中,在变频空调室内机增加了网络通信模块。该网络通信模块可以是无线通信模块,也可以是有线通信模块,或其它能与电力云端控制器连接的通信模块,该网络通信模块可以是单独的模块,也可以是嵌入室内机控制板的电路,与室内机主控板组成一个完整的控制板。
当电源线从室内机接入时,变频空调的结构示意图参照图4所示,当电源线从室外机接入时,变频空调的结构示意图参照图5所示,变频空调包括功率检测装置01、室内机主控板02、室外机主控板03、室内机04、室外机05、冷凝器06、室外风机07、压缩机08、四通阀09、电子膨胀阀或毛细管10、室内外机电源线与通信线11、室内风扇12、蒸发器13、网络通信模块14。
电力云端控制器通过控制区域内的功率可调的家用电器上的网络通信模块获取功率可调的家用电器的总数以及功率可调的家用电器的总用电功率。
可选的,上述S103,可以通过下述步骤S103a-S103e实现:
S103a、在控制区域的总用电功率大于控制区域的限定用电功率的情况下,电力云端控制器向控制区域内的功率可调的家用电器发送第一控制信令,第一控制信令用于获取该功率可调的家用电器当 前的自身用电功率。
可选的,电力云端控制器可以向其控制区域的所有功率可调的家用电器发送该第一控制信令。当前处于工作状态的,且通信正常的功率可调的家用电器才可能接收到该控制信令,并应答该控制信令。
S103b、功率可调的家用电器接收电力云端控制器发送的控制信令。
当前处于工作状态的,通信正常的功率可调的家用电器应答该控制信令,将当前的自身用电功率发送给电力云端控制器。
S103c、功率可调的家用电器向电力云端控制器发送该功率可调的家用电器当前的自身用电功率。
S103d、电力云端控制器接收各功率可调的家用电器发送的自身用电功率。
S103e、电力云端控制器统计收到已应答的功率可调的家用电器的数量以及计算收到已应答的功率可调的家用电器的总用电功率。
优选的,上述S103,也可以通过下述步骤S103f-S103h实现:
S103f、功率可调的家用电器按照预设周期,周期性的向电力云端控制器发送其当前的自身用电功率。
这里的功率可调的家用电器指的是处于工作状态且通信正常的功率可调的家用电器。
需要说明的是:为了避免数据量大、网络阻塞和电力云端控制器处理来不及等问题,电力云端控制器可以根据功率可调的家用电器发来的数据与网络的通信阻塞情况,动态调整功率可调的家用电器向电力云端控制器上报自身用电功率的预设周期。
S103g、电力云端控制器接收各功率可调的家用电器当前的自身用电功率,并存储。
S103h、在电力云端控制器判断得到控制区域的总用电功率大于控制区域的限定用电功率的情况下,电力云端控制器统计此时处于工作状态的功率可调的家用电器的总数以及计算各功率可调的家用 电器当前的总用电功率。
根据控制区域的总用电功率、限定用电功率、功率可调的家用电器的总数以及功率可调的家用电器的总用电功率,获取每一台功率可调的家用电器的限额用电功率。
可选的,电力云端控制器计算控制区域的总用电功率与控制区域的限定用电功率的差值,该差值的绝对值即为功率可调的家用电器(包括变频空调)的总用电功率需要下调的功率值Pe。
电力云端控制器的处理系统将功率可调的家用电器(包括变频空调)的总用电功率值减去需要下调的功率值得出功率可调的家用电器(包括变频空调)下调后的用电功率值,并将该功率可调的家用电器(包括变频空调)下调后的用电功率值除以控制区域的功率可调的家用电器(包括变频空调)的总数得出每一台空调的限额用电功率。
示例性的,若电力云端控制器检测到控制区域的总用电功率为22KW,其中控制区域的限定用电功率为20KW,功率可调的家用电器的总数为10台,功率可调的家用电器的总用电功率为10KW,则可以判断出控制区域的用电功率超出了限定用电功率2KW,为了使总用电功率小于或等于控制区域的限定用电功率,则应使功率可调的家用电器的总用电功率从10KW下降到8KW,因为功率可调的家用电器的总数为10台,所以平均每台功率可调的家用电器的功率应限制在800W以下,因此功率可调的家用电器的限额用电功率应为800W。
上述方法仅代表了理论上电力云端控制器获取每一台功率可调的家用电器的限额用电功率的方法,实际中,可以参考下述方法。
可选的,在功率可调的家用电器完成注册后,电力云端控制器可以将0到该功率可调的家用电器的额定用电功率划分为多个功率区间,为每个功率区间预设一个限额用电功率,存储在电力云控制器的存储单元中。例如,当电力云端控制器获取到该功率可调的家用电器当前用电功率值时,根据该功率可调的家用电器当前用电功 率值属于的功率区间,从电力云的存储单元中查询预设的限额用电功率。
优选的,1)电力云端控制器首先判断是否有能够进行功率控制的功率可调的家用电器,能进行功率控制的功率可调的家用电器必须满足以下三个条件:未停机、通信正常且当前用电功率大于最小用电功率。示例的,根据上述步骤103d或103g,若电力云端控制器可以收到一功率可调的家用电器发送的当前自身用电功率,则电力云端控制器可以判断该功率可调的家用电器为未停机且通信正常的功率可调的家用电器;若电力云端控制器接收到的功率可调的家用电器的当前自身用电功率大于最小用电功率,则电力云端控制器可以判断该功率可调的家用电器可以进行功率控制。当电力云端控制器判断得到没有能够进行功率控制的功率可调的家用电器时,直接报警,报警用于指示当前“没有功率可以下调”的功率可调的家用电器;2)当电力云端控制器判断得到有能进行功率控制的功率可调的家用电器时,先计算能进行功率控制的所有功率可调的家用电器能下调的最大总用电功率Pds(通过计算各功率可调的家用电器当前用电功率与最小用电功率的差值来计算各功率可调的家用电器可以下调的最大用电功率Pd,然后求和获得所有功率可调的家用电器能下调的最大总用电功率Pds),然后比较Pds与Pe的关系,若Pds小于Pe,则将能进行功率控制的功率可调的家用电器的功率直接设置成各自的最小用电功率,并且报警,该报警用于指示“可下调的功率不足”;3)若Pds大于等于Pe,则通过计算各功率可调的家用电器当前用电功率与Pe/Pds的乘积,按比例计算得到各功率可调的家用电器的下调功率。
具体的,电力云端控制器对于因停机或发生通信故障而不能通信的功率可调的家用电器做出标识,不在功率调整控制计算中给予考虑。也就是说,电力云端控制器仅对能正常进行通讯的功率可调的家用电器进行功率调整控制的计算。
参照图6(a)所示,电力云端控制器的具体计算过程如下(需 要说明的是:i=1,2,……,可以通信的功率可调的家用电器的最后一台数量的个数。):
S201a、电力云端控制器计算功率可调的家用电器当前运行功率的总和Pq
Pq=ΣPai————————公式(1)
其中,Pai为某台功率可调的家用电器的当前用电功率。
S202a、电力云端控制器计算每台功率可调的家用电器可以下调的功率Pdi
Pdi=Pai-Pmini————————公式(2)
其中,Pmini为某台功率可调的家用电器的最小用电功率;Pai为该台功率可调的家用电器当前运行的功率。
需要说明的是:当Pdi≤0时,表示该功率可调的家用电器当前用电功率小于或等于其最小用电功率。则该功率可调的家用电器的限额用电功率为其最小用电功率。
S203a、电力云端控制器计算可以下调的最大总用电功率Pds
Pds=ΣPdi————————公式(3)
S204a、电力云端控制器比较Pds是否小于或等于0。如果成立,执行步骤S205a,如果不成立,执行步骤S206a。
S205a、电力云端控制器将功率可调的家用电器的限额用电功率Pseti直接设置成各自的最小用电功率Pmini,即Pseti=Pmini,发给对应的功率可调的家用电器。并报警,报警用于指示当前“没有功率可以下调”的功率可调的家用电器。而不进行公式(4)、公式(5)、公式(6)和公式(7)的计算。
S206a、电力云端控制器比较Pds是否小于Pe。如果成立,执行步骤S207a,如果不成立,执行步骤S208a-S212a。
S207a、电力云端控制器将功率可调的家用电器的限额用电功率Pseti直接设置成各自的最小用电功率Pmini,即Pseti=Pmini,发给对应的功率可调的家用电器。并报警,该报警用于指示“可下调的功率不足”,然后人工处理。而不进行下面公式(4)和公式(5) 的计算。但可以进行公式(6)和公式(7)的计算,这样可以获知调节后还差多少功率需要调节,为人工决策提供辅助参考。
S208a、电力云端控制器计算各台功率可调的家用电器应下调的功率Podi
Podi=Pdi*(Pe/Pds)————————公式(4)
其中,Pe为电网需要下调的功率。需要说明的是:上述步骤S202a中Pdi≤0的功率可调的家用电器不进行公式(4)的计算,且令Podi=Pdi。
S209a、电力云端控制器计算各台功率可调的家用电器下调后的限额用电功率Pseti
Pseti=Pai-Podi————————公式(5)
S210a、电力云端控制器计算下调后所有功率可调的家用电器的限额用电功率的总和Pfq
Pfq=ΣPseti————————公式(6)
S211a、检查计算后的数据PΔ是否为0
PΔ=Pq-Pe-Pfq————————公式(7)
如果公式(7)的结果为0,执行步骤S212a,否则,返回S201a重新计算。
S212a、电力云端控制器将公式(5)计算出来的Pseti发给对应的功率可调的家用电器,实现功率控制。
需要说明的是:以上各个步骤中,只要对功率可调的家用电器进行了下调功率的处理,电力云都分别将对所下调功率的功率可调的家用电器进行记录,这些记录包括功率可调的家用电器原用电功率Pai、现在设定的限额用电功率Pseti、对应设置Pseti的时间、原使用的电量Qai,并累计下调功率后使用的电量和时间。在解除功率控制后,将这些限额用电功率所使用的电量记录在月限额用电功率使用电量的数据库中,让电力部门给予政策性补贴或奖励。
示例1:
在电力云端控制器的某一控制区域中,限定用电功率为15kW, 总用电功率16.5kW,只有5个变频空调能与电力云正常通信,每个能通信空调的额定用电功率、最小用电功率、当前用电功率以及电力云端控制器按照上述公式(1)~公式(7)的计算步骤和结果如表1所示。
表1
Figure PCTCN2018076810-appb-000001
在表1中,当前可以下调的最大总用电功率Pds大于需要下调的总功率Pe,并且每台可以通信的空调当前用电功率都大于最小用电功率,所以,可以实现功率的下调。
示例2:
在电力云端控制器的某一控制区域中,限定用电功率为15kW,总用电功率为16.5kW,只有5个变频空调能与电力云正常通信,电力云端控制器的计算步骤和结果如表2所示。
表2
Figure PCTCN2018076810-appb-000002
Figure PCTCN2018076810-appb-000003
在表2中,由于这5个空调的当前运行功率都小于或等于它们各自的最小运行功率,所以,没有办法下调功率,只能进行“没有功率可以下调”的报警。
示例3:
在电力云端控制器的某一控制区域中,限定用电功率为20kW,总用电功率为22.2kW,有10个变频空调能与电力云正常通信,每个能通信空调的额定用电功率、最小用电功率、当前用电功率以及电力云段端控制器按照上述公式(1)~公式(7)的计算步骤和结果如表3所示。
表3
Figure PCTCN2018076810-appb-000004
Figure PCTCN2018076810-appb-000005
在表3中,虽然可以通信的空调有运行在最小用电功率上的,但当前可以下调的最大总用电功率Pds大于需要下调的总功率Pe,所以,可以实现功率的下调。
示例4:
在电力云端控制器的某一控制区域中,限定用电功率为20kW,总用电功率22.5kW,有10个变频空调能与电力云正常通信,每个能通信空调的额定用电功率、最小用电功率、当前用电功率以及电力云端控制器按照上述公式(1)~公式(7)的计算步骤和结果如表4所示。
表4
Figure PCTCN2018076810-appb-000006
Figure PCTCN2018076810-appb-000007
在表4中,因可以下调的最大总用电功率Pds小于需要下调的总功率Pe,所以不进行公式(4)的计算,直接将可以调节电功率的空调的限额用电功率设置成各自的最小用电功率,即Pseti=Pmini,并报警,该报警用于指示“可下调的功率不足”。
需要说明的是:上述计算过程并不是唯一的,是可以变化的。例如
示例的,参考图6(b)所示,一种变化方案是:
S201b、电力云端控制器计算每台变频空调可以下调的功率Pdi
Pdi=Pai-Pmini————————公式(1)
其中,Pmini为某台变频空调的最小用电功率;Pai为该台变频空调当前运行的功率。
需要说明的是:当Pdi≤0时,表示该变频空调当前用电功率小于或等于其最小用电功率。则该变频空调的限额用电功率为其最小用电功率。
S202b、电力云端控制器计算可以下调的最大总用电功率Pds
Pds=ΣPdi————————公式(2)
S203b、电力云端控制器比较Pds是否大于0。如果成立,执行步骤S205b,如果不成立,执行步骤S204b。
S204b、电力云端控制器将可以进行功率控制的变频空调的限额用电功率Pseti直接设置成各自的最小用电功率Pmini,即 Pseti=Pmini,发给各个变频空调。并报警,该报警用于指示“没有功率可以下调”,让人工来进行处理。同时无需进行公式(3)、公式(4)、公式(5)和公式(6)的计算。
S205b、电力云端控制器比较Pds是否小于Pe。如果成立,执行步骤S206b,如果不成立,执行步骤S207b-209b。
S206b、电力云端控制器将可以进行功率控制的变频空调的限额用电功率Pseti直接设置成各自的最小用电功率Pmini,即Pseti=Pmini,发给各个变频空调。并报警,该报警用于指示“可下调的功率不足”,让人工来进行处理。而不进行下面公式(3)和公式(4)的计算。但可以进行公式(5)和公式(6)的计算,这样可以获知调节后还差多少功率需要调节,为人工决策提供辅助参考。
S207b、电力云端控制器计算各台变频空调应下调的功率Podi
Podi=Pdi*(Pe/Pds)————————公式(3)
其中,Pe为电网需要下调的功率。需要说明的是:上述步骤S202a中Pdi≤0的变频空调不进行公式(3)的计算,且令Podi=Pdi。
S208b、电力云端控制器计算各台变频空调下调后的限额用电功率Pseti
Pseti=Pai-Podi————————公式(4)
S209b、电力云端控制器计算所有变频空调下调的功率的总和Podq
Podq=ΣPodi————————公式(5)
S210b、电力云端控制器检查计算后的数据PΔ是否为0
PΔ=Podq-Pe————————公式(6)
如果公式(6)的结果为0,执行步骤S211b,否则,返回S201b重新计算。
S211b、电力云端控制器将公式(4)计算出来的Pseti发给对应的变频空调,实现功率控制。
S104、电力云端控制器向控制区域的至少一台功率可调的家用电器发送该家用电器的控制参数。
控制参数为限额用电功率或用于获取限额用电功率。若控制参数用于获取限额用电功率,则示例的,控制参数可以是调整系数,也可以是家用电器需要下调的功率值。电力云端控制器向控制区域的至少一台功率可调的家用电器发送该家用电器的调整系数,该家用电器根据该调整系数以及自身用电功率来进行限额功率的确定。则示例的,控制参数也可以是家用电器需要下调的功率值。电力云端控制器向控制区域的至少一台功率可调的家用电器发送该家用电器需要下调的功率值,该家用电器根据该需要下调的功率值以及自身用电功率来进行限额功率的确定。控制参数也可以是其他的可以用于获取限额用电功率的参数,本公开实施例不作限定。
若控制参数为限额用电功率,则可以按上述S103的方法获得限额用电功率,也可以是其他方法;若控制参数不是限额用电功率,则可以按上述S103的方法获得限额用电功率,然后再计算获得控制参数,也可以是其他方法,本公开实施例不作限定。下面本公开实施例以控制参数为限额用电功率为例进行详细说明。
示例的,电力云端控制器向控制区域的每一台功率可调的家用电器发送该功率可调的家用电器的限额用电功率。
进一步示例的,电力云端控制器向控制区域的每一台变频空调发送该变频空调的限额用电功率。
具体的,电力云端控制器向控制区域的每一台变频空调发送功率控制命令,功率控制命令用于指示该变频空调的限额用电功率。即电力云端控制器要求该变频空调控制其自身用电功率不超过限额用电功率。
本公开实施例提供的变频空调的功率控制方法,该方法包括:电力云端控制器获取控制区域的总用电功率并判断总用电功率是否大于限定用电功率;通过判断总用电功率是否大于限定用电功率可以确定该控制区域的用电量是否达到电力高峰,若是,获取用电区域内变频空调的总数以及变频空调的总用电功率;根据控制区域的总用电功率、限定用电功率、变频空调的总数以及变频空调的总用 电功率获取每一台功率可调的家用电器(包括变频空调)的控制参数(控制参数为限额用电功率或者可以用于获取限额用电功率),获取控制参数的方法可以是上述的任一种方法。通过获取控制参数可以对变频空调的功率进行限制,控制任一变频空调的用电功率小于或等于限额用电功率,具体的,电力云端控制器将获取的控制参数发送给功率可调的家用电器(包括变频空调),功率可调的家用电器(包括变频空调)接收该控制参数之后,根据该控制参数控制其自身用电功率小于或等于限额用电功率。通过上述方法可以在用电高峰期对变频空调的用电功率进行控制和调节,使变频空调在不停止运行的同时起到削减电力高峰的作用。
若变频空调的用电功率大于限额用电功率,则说明变频空调的用电功率超出了限额用电功率,需要对变频空调的用电功率进行调节,电力云端控制器的处理系统通过计算出的变频空调的限额用电功率,并将此限额用电功率值发送至变频空调的电控器中,变频空调的电控器中的微处理器通过该限额用电功率对变频空调的功率大小进行调节,使变频空调的用电功率小于或等于限额用电功率。若变频空调的用电功率大于限额用电功率,则变频空调的电控器中的微处理器通过该限额功率对变频空调的功率产生限制,使变频空调的用电功率不大于限额用电功率的情况下稳定运行。
S105、功率可调的家用电器接收电力云端控制器发送的该功率可调的家用电器的控制参数。
控制参数为限额用电功率,或控制参数用于获取限额用电功率,具体的参考步骤S104的描述,此处不再赘述。
示例的,变频空调接收电力云端控制器发送的该变频空调的限额用电功率。
具体的,变频空调接收电力云端控制器发送的功率控制命令,功率控制命令用于指示该变频空调的限额用电功率。变频空调控制其自身用电功率小于或等于限额用电功率。
S106、功率可调的家用电器检测自身用电功率。
示例的,变频空调检测自身用电功率。变频空调通过其上设置的功率检测装置检测自身用电功率。
S107、功率可调的家用电器根据控制参数和自身用电功率,控制功率可调的家用电器的自身用电功率,以使功率可调的家用电器的自身用电功率小于或等于限额用电功率。
这样可以对功率可调的家用电器的自身用电功率进行一定的调节,但是不能严格控制功率。
进一步的,功率可调的家用电器根据控制参数和自身用电功率,采用闭环负反馈的方法控制功率可调的家用电器的自身用电功率,以使功率可调的家用电器的自身用电功率小于或等于限额用电功率。
示例的,变频空调根据限额用电功率和检测到的自身用电功率,采用闭环负反馈的方法控制变频空调的自身用电功率,以使变频空调的自身用电功率不大于限额用电功率。
本公开实施例提供的变频空调的功率控制方法中控制任一变频空调的用电功率小于或等于限额用电功率包括:任一变频空调通过闭环负反馈控制自身用电功率小于或等于限额用电功率。
反馈控制是指将系统的输出信息返送到输入端,与输入信息进行比较,并利用二者的偏差进行控制的过程。反馈控制其实是用过去的情况来指导现在和将来。在控制系统中,如果返回的信息的作用是抵消输入信息,称为负反馈,负反馈可以使系统趋于稳定;若其作用是增强输入信息,则称为正反馈,正反馈可以使信号得到加强。
在自动控制理论中,“反馈控制”是信号沿前向通道(或称前向通路)和反馈通道进行闭路传递,从而形成一个闭合回路的控制方法。反馈信号分“正反馈”和“负反馈”两种。为了和给定信号比较,必须把反馈信号转换成与给定信号具有相同量刚和相同量级的信号。控制器根据反馈信号和给定信号相比较后得到的偏差信号,经运算后输出控制作用去消除偏差,使被控量(系统的输出)等于给 定值。闭环控制系统都是负反馈控制系统。
需要说明的是,变频空调中的功率调节装置包括变频空调电控器内的微处理器,变频空调电控器内的微处理器对变频空调内部的功率以及各项参数进行调节。
需要说明的是:下述以变频空调为例的具体的控制方法也适用于变频冰箱、变频洗衣机等电机调频调功率的家用电器。本领域技术人员根据下述变频空调的具体控制过程,很容易想到功率可调控电热水器、功率可调控电炒锅、功率可调控电炉、功率可调控电压力锅、功率可调控电炸锅和功率可调控电炖锅等电加热调压调功率的家用电器的利用闭环负反馈的控制方法的具体过程,本公开不予赘述。
例如,如图7所示,现有技术中普通的变频空调的电控制原理就利用了闭环反馈。
图7中符号含义和功能的说明:1)Tset:温度设定值或温度设定,由变频空调使用者通过遥控器或空调上的按键设定。2)Troom:室内温度值或室内温度。3)Te:温度差值。Te=Tset-Troom,即,温度设定值Tset减去房间室内温度值Troom。4)Ts:电控器的数字采样时间。5)Pa:空调使用的电源有功功率,近似于压缩机实际工作的功率值。6)G3(S):变频空调电控器的控制算法。在这个算法中,首先需要对温度差值Te进行数值的符号运算。当制热状态时,不对Te进行数值符号运算,即,保持原有的正负数。而制冷状态时,Te为正数,将Te变成负数;Te为负数,就把Te变成正数。其次,是进行变频空调的控制算法。7)G4(S):变频空调中压缩机、电源滤波器、交流电整流器、功率因素校正器、直流——交流逆变器等的综合传递函数。8)G5(S):变频空调中冷凝器、蒸发器、连接管、风扇风道系统、毛细管或电子膨胀阀、室内空气总质量和热力学性质、室外空气环境和热力学性质等的综合传递函数。
图7的控制原理和过程:在普通变频空调中,当变频空调运行时,控制器的微处理芯片就会采集室内温度Troom,根据温度设定值Tset,获得温度设定值Tset与室内温度Troom的温度差值 Te=Tset-Troom。然后,控制器的微处理芯片根据温度差值Te和控制算法G3(S),计算出数字输出值,并通过综合传递函数G4(S),从而产生空调有功功率Pa。一般在稳定运行时,变频空调的功率小于或等于额定功率Prate。
压缩机产生的有功功率将冷媒压缩后,经冷凝器和蒸发器换热、并经空调风扇和风道吹出所需的冷能(制冷时)或热能(制热时),再与室内的空气进行热惯性传递,形成新的室内温度。
当室内温度Troom接近设定温度Tset时,温度差值Te变小,经过G3(S)、G4(S)运算后,功率Pa也就变小,输出的冷能或热能变小,室温Troom的变化就变小。当室温Troom等于设定温度Tset时,压缩机功率为最小,使空调对室内输出的冷能或热能最小,使空调对室内输出的冷能或热能与人体吸收的冷能或热能以及房间对外散发的冷能或热能保持一致,达到变频空调工作的温度稳定状态。这个过程的功率与时间关系,如图8所示。
本公开实施例提供的变频空调采用的闭环负反馈的方法主要体现在两个方面,一方面是功率内环的负反馈控制,另一方面是温度外环的负反馈控制。参考图9所示,具体的包括以下步骤:
S301、功率可调的家用电器获取设定温度与室内温度的温度差值。
示例的,变频空调获取设定温度与室内温度的温度差值。
变频空调的控制器根据采集的室内温度Troom与温度设定值Tset,获得二者的温度差值。在本公开实施例中,Troom与Tset的温度差值Te可以是Tset-Troom,那么当Tset大于Troom时,Te为正,当Tset小于Troom,Te为负;Troom与Tset的温度差值Te也可以是Tset-Troom的绝对值,则Te一直为正,具体的不做限定。
S302、功率可调的家用电器根据设定温度与室内温度的大小关系以及限额用电功率与检测到的自身用电功率的大小关系,获取衰减系数。
示例的,变频空调根据设定温度与室内温度的大小关系以及限 额用电功率与检测到的自身用电功率的大小关系,获取衰减系数。
衰减系数为大于0,且小于或等于1的数。获取衰减系数具体为:若室内温度过调,则增大衰减系数,优选的,衰减系数为1。室内温度过调为当功率可调的家用电器(变频空调)工作模式为制热时,室内温度大于设定温度,当功率可调的家用电器(变频空调)工作模式为制冷时,室内温度小于设定温度;若室内温度未过调,当限额用电功率小于检测到的自身用电功率时,减小衰减系数,当限额用电功率大于检测到的自身用电功率时,增大衰减系数。
在本步骤中,可选的,可以直接比较设定温度与室内温度的大小,同时结合变频空调工作模式为制热还是制冷,获得变频空调有没有工作在过调状态,若工作在过调状态,说明此时用电功率过大,要及时将用电功率降下来,可以增大衰减系数,优选的可以将衰减系数设为1,使用电功率快速下降。若未工作在过调状态,则要比较限额用电功率与检测到的自身用电功率的大小,当限额用电功率小于检测到的自身用电功率时,减小衰减系数,使衰减系数向最小衰减系数靠近,在保证自身用电功率不超过限额用电功率的前提下,降低自身用电功率;当限额用电功率大于检测到的自身用电功率时,增大衰减系数,使衰减系数向1靠近,在保证自身用电功率不超过限额用电功率的前提下,提升自身用电功率。
优选的,计算Tset与Troom的温度差值Te,若变频空调工作模式为制热,则Te=Tset-Troom,若变频空调工作模式为制冷,则Te=Troom-Tset,则可知当Te为负值时,变频空调工作在过调状态,说明此时用电功率过大,要及时将用电功率降下来,可以增大衰减系数,优选的可以将衰减系数设为1,使用电功率快速下降。当Te为正值时,变频空调未工作在过调状态,则计算限额用电功率Pset与检测到的自身用电功率Pa的功率差值Pe,Pe=Pset-Pa,当Pe为负时,表征限额用电功率小于检测到的自身用电功率,此时需要减小衰减系数,使衰减系数向最小衰减系数靠近,在保证自身用电功率不超过限额用电功率的前提下,降低自身用电功率;当Pe为正时, 表征限额用电功率大于检测到的自身用电功率,此时需要增大衰减系数,使衰减系数向1靠近,在保证自身用电功率不超过限额用电功率的前提下,提升自身用电功率。
S303、功率可调的家用电器根据衰减系数,衰减温度差值。
示例的,变频空调根据衰减系数,衰减温度差值。
根据步骤S302获得衰减系数,衰减步骤S301获得温度差值,以得到衰减后的温度差值,衰减后的温度差值等于衰减系数与温度差值的乘积。
S304、功率可调的家用电器根据衰减后的温度差值控制变频空调的自身用电功率。
示例的,变频空调根据衰减后的温度差值控制变频空调的自身用电功率。
本步骤可以参考现有技术变频空调的控制,在此不再赘述。
示例的,本公开实施例提供的变频空调在增加了功率检测装置和与电力云连接的网络通信模块的前提下,其电控制原理框图如图10所示。
图10比图7中多出来的符号的含义和功能的说明:1)Pset:电力云端控制器给出的用电功率设定值,简称功率设定值或功率设定。2)Pe:功率差值。Pe=Pset-Pa,即,用电功率设定值Pset减去空调使用的电源有功功率值Pa。3)G1(S):是温度闭环的校正传递函数,由微处理芯片对温度差值Te进行数学运算的函数。4)Te2:温度差值Te经G1(S)处理后的温度差值。5)Te3:经电子电位器Rw衰减后的温度差值。6)Rw:电子电位器。用于调节Te3的大小,使功率可控变频空调使用的电源有功功率不大于电力云给定的用电功率值。该功能由本公开提供的变频空调的微处理芯片实现。7)G2(S):是微处理芯片对功率差值Pe进行比例微分运算或比例运算的运算函数,注:大多数变频空调需采用比例微分运算。8)Pe2:另一种功率差值的表达形式。是微处理芯片对功率差值Pe进行比例微分运算或比例运算处理后的功率差值。微处理芯片根据Pe2的正负来决 定电子电位器往哪个方向调节,根据Pe2的大小来决定调节电子电位器Rw的速度。9)在图10中,G3(S)不存在图7中G3(S)对温度差值Te的数值符号运算功能。10)在图10中,G1(S)、G2(S)、Rw和G3(S)由电控制器中同一个微处理芯片完成这些运算。
根据图10的电控制原理框图,参考图11所示,本公开实施例提供的功率可调的家用电器的功率控制方法优选的具体控制原理和过程为:
S401、功率可调的家用电器获取第一温差,根据第一温差获取第二温差。
示例的,变频空调获取第一温差,根据第一温差获取第二温差。
其中,第一温差为设定温度与室内温度的差值,当功率可调的家用电器(变频空调)工作模式为制热时,第一温差与第二温差同为正数或同为负数,第一温差与第二温差正相关;当功率可调的家用电器(变频空调)工作模式为制冷时,若第一温差为正数,则第二温差为负数,若第一温差为负数,则第二温差为正数,第一温差的绝对值与第二温差的绝对值正相关。
具体的,当变频空调的用电功率大于限额用电功率时,变频空调获取控制区域内的Troom与Tset,并计算Tset与Troom的差值,即第一温差Te,通过第一算法将第一温差Te转换为第二温差Te2,其中第一算法为第一温差Te和温度闭环的校正传递函数的乘积Te2=Te*G1(S),温度闭环的校正函数G1(S)的表达式为G1(S)=k11*k12*(T11*S+1)/S,表达式中,K11是制热、制冷变换系数。制热时k11=1,制冷时k11=-1,K12是比例系数,由G1(S)的表达式可明确该控制方法的结果为:当空调工作模式为制热时,第一温差Te与第二温差Te2同为正数或同为负数,第一温差Te与第二温差Te2正相关,当空调工作模式为制冷时,若第一温差Te为正数,则第二温差Te2为负数,若第一温差Te为负数,则第二温差Te2为正数,第一温差Te的绝对值与第二温差Te2的绝对值正相关。
需要说明的是,不同型号变频空调的k12存在差异,k12由变频 空调电控器中的微处理器自适应调整,T11是微分系数,不同型号变频空调的T11也存在差异,T11也由变频空调电控器中的微处理器自适应调整。
进一步的,由于,G1(S)=k11*k12*(T11*S+1)/S是比例积分微分运算表达式,所以,G1(S)称为PID运算。又因为系数k12和T11是自适应的,所以,G1(S)又称为自适应PID算法。
S402、功率可调的家用电器获取第一功率差,根据第一功率差获取第二功率差。
示例的,变频空调获取第一功率差,根据第一功率差获取第二功率差。
其中,第一功率差为限额用电功率与变频空调的用电功率的差值并且第一功率差与第二功率差正相关。
具体的,变频空调的电控器获取限额用电功率Pset与变频空调的用电功率Pa的差值,即第一功率差Pe,此时因为电力云端控制器检测到被控区域用电总功率大于限定用电功率,所以存在变频空调的用电功率Pa大于限额用电功率Pset,第一功率差Pe为负值,经G2(S)的比例微分运算或比例运算后,Pe2也为负。其中第二算法为对限额用电功率Pset与变频空调的用电功率Pa的差值进行比例微分运算或比例运算,该运算在比例微分运算时,G2(S)=k2(T2*S+1);在比例运算时,G2(S)=k2,k2>1。其中,大多数变频空调需采用比例微分运算,G2(S)是变频空调的电控器中微处理器对第一功率差Pe进行比例微分运算或比例运算的运算函数。第一功率差Pe的绝对值与第二功率差Pe2的绝对值成正比,当限额用电功率Pset与变频空调的用电功率Pa的差值为负值时,第二功率差Pe2=G2(S)*Pe=k2(T2*S+1)*Pe,或Pe2=G2(S)*Pe=k2*Pe。
S403、功率可调的家用电器根据第二温差和第二功率差获取衰减系数。
示例的,变频空调根据第二温差和第二功率差获取衰减系数。
需要说明的是,当第二温差Te2为正数且第二功率差Pe2为正 数时,衰减系数K13增大;当第二温差Te2为正数且第二功率差Pe2为负数时衰减系数K13减小;当第二温差Te2为正数且第二功率差Pe2为零时,衰减系数K13保持不变;当第二温差Te2为负数或零时,衰减系数K13为1;衰减系数K13增大或减小的速度与第二功率差Pe2的绝对值的大小正相关;衰减系数K13大于0且小于或等于1。
S404、功率可调的家用电器获取第三温差,其中所述第三温差为所述第二温差与所述衰减系数的乘积。根据所述第三温差控制所述功率可调的家用电器的自身用电功率。
示例的,变频空调获取第三温差,根据第三温差控制变频空调进行工作产生变频空调的用电功率并对室内温度进行调节。
具体的,变频空调获取第三温差,根据第三温差控制变频空调进行工作产生变频空调的用电功率并对室内温度进行调节。傧频空调获取第三温差,其中所述第三温差为所述第二温差与所述衰减系数的乘积。根据所述第三温差控制所述功率可调的家用电器的自身用电功率。
示例性的,衰减系数K13的具体变化由变频空调的电控器中的虚拟装置电子电位器RW实现,电子电位器RW用于调节第三温差Te3的大小,第三温差Te3为第二温差Te2与衰减系数K13的乘积,即通过公式Te3=k13*Te2对Te3的大小进行调节。k13为衰减系数,其取值范围为[0,1]的闭区间,当k13=0时,变频空调就停止运行。但实际上在电力限制的区域,往往是不允许变频空调停止运行的。所以,一般情况下,衰减系数k13的范围为[a,1]。a的数值为:0<a<1,由具体的变频空调根据自身情况确定。同时,a确定了该变频空调的最小运行功率Pmin,若设变频空调的额定功率为Prate,则Pmin=a*Prate。
需要说明的是,在第二温差Te2大于0的情况下,当第二功率差Pe2为负时,变频空调的电控器中的微处理器将电子电位器RW的滑动端往取值范围[a,1]的“a”端调节,使第三温差Te3变小,从 而减小压缩机功率,使变频空调的用电功率Pa小于或等于限额用电功率Pset。
当第二功率差Pe2为正时,变频空调的电控器中的微处理器将电子电位器RW的滑动端往取值范围[a,1]的“1”端调节,使第三温差Te3变大,增加压缩机功率,在变频空调的用电功率Pa小于或等于限额用电功率Pset的情况下,增强变频空调的制冷或制热能力,使室内温度尽快地达到用户的希望温度。
当第二功率差Pe2为0时,变频空调的电控器中的微处理器不调节电子电位器RW的滑动端,使功率可控变频空调按照限额用电功率Pset进行制冷或制热,保持现有的压缩机功率。
进一步的,当第二温差Te2小于等于0时,无论第二功率差Pe2为何值,变频空调的电控器中的微处理器都将电子电位器RW的滑动端置于“1”端。因为,Te2=0时,表示室内温度Troom等于用户设定的温度Tset,压缩机运行在最小功率Pamin上;而Te2<0时,表示室内温度Troom过调了,不需要空调输出功率了,所以,可以保持最小功率Pamin运行并将电子电位器RW的滑动端置于“1”端。
根据第三温差Te3控制变频空调进行工作产生变频空调的用电功率并对室内温度进行调节,其中当第三温差Te3为减小时,通过第一控制参数控制变频空调的用电功率减小,G3(S)为变频空调的控制算法,其对第三温差Te3进行比例微分运算,G3(S)表达式为:G3(S)=k3*(T31*S+1)/(T32*S+1),其中,K3是比例系数。
需要说明的是,不同型号变频空调的k3存在差异,所以k3由变频空调内的电控器中的微处理器自适应调整,T31是微分系数,不同型号变频空调的T31存在差异,所以T31也由变频空调内的电控器中的微处理器自适应调整。T32是惯性系数,其同样由变频空调内的电控器中的微处理器自适应调整。即,G3(S)也是自适应PID算法。
变频空调的电控器内的微处理器通过将第三温差Te3的变化进行比例积分微分运算得出一系列的变量参数值。这些变量参数值包 括压缩机频率、直流电压脉冲宽度调制值以及压缩机电流,并通过这些参数值控制压缩机的运行,实现对压缩机的功率进行调节。也就是,G3(S)的输出值经过“直流交流逆变器、压缩机、直流滤波电路、功率因素校正器、交流整流电路和交流滤波电路”构成的G4(S)传递函数后,形成变频空调的用电功率Pa,通过变频空调电控器中微处理器的采集,形成变频空调的功率闭环负反馈控制。
可选的,变频空调的用电功率Pa经过“直流滤波电路、功率因素校正器、交流整流电路和交流滤波电路”构成的倒传递函数后再与变频空调中“冷凝器、蒸发器、连接管、风扇风道系统、毛细管或电子膨胀阀、室内空气总质量和热力学性质、室外空气环境和热力学性质”等的综合传递函数一起构成的G5(S)传递函数后,输出室内温度Troom,并形成温度外环负反馈控制。
通过上述实施例中的变频空调功率闭环负反馈系统正相关地改变温度外环负反馈的第二温差的衰减比例,从而使变频空调的用电功率不超过电力云端控制器给定的限额功率值,配合电力云平台实现监控用电区域的用电削峰,保证电力系统的安全正常可靠运行。
在步骤107之后,优选的,还可以包括下述S108-S112;或者,可选的,还可以包括下述S113。
S108、当电力云端控制器检测到控制区域的总用电功率小于或等于控制区域的限定用电功率减去回差值时,向每一台功率可调的家用电器发送停止控制功率命令。
需要说明的是:回差值可以是预设的,即预设一个固定值,也可以是电力云端控制器计算得到的。
示例的,当电力云端控制器检测到控制区域的总用电功率不大于控制区域的限定用电功率减去回差值时,向每一台变频空调发送停止控制功率命令。
在本公开实施例中,回差值是电力云端控制器电功率控制的变差,即在电功率控制的范围内,电功率控制上行(进入控制)和下行(退出控制)所得到的两条特性曲线之间的差值,如图17所示。 目的是防止电力云端控制器进入功率控制状态后又出现马上退出功率控制状态或退出功率控制状态后又马上进入功率控制状态的系统震荡现象。
具体的,当电力云端控制器检测到控制区域的总用电功率不大于控制区域的限定用电功率减去回差值时,则可以确定控制区域的用电量已低于用电高峰用电量,即此时电力供应充足,电力云端控制器不需要再对控制区域的任一变频空调进行功率控制,向每一台变频空调发送停止控制功率命令。
在本公开实施例提供的变频空调的功率控制方法中引入回差值是为了避免当只有一个限定用电功率作为临界条件来决定电力云端控制器是否对控制区域的每一台变频空调是否进行功率控制时,会引起系统震荡,即若控制区域的总用电功率在限定用电功率左右跳变的时候,电力云端控制器就会对控制区域的每一台变频空调在进行功率控制和停止功率控制之间频繁变化,这样不利于系统的稳定性。因此,引入回差值之后具体控制过程还要区分当前电力云端控制器是否在对控制区域的每一台变频空调在进行功率控制。
当电力云端控制器未对控制区域的每一台变频空调在进行功率控制时,若电力云端控制器检测到控制区域的总用电功率小于或等于限定用电功率,则不对控制区域的每一台变频空调进行功率控制;若电力云端控制器检测到控制区域的总用电功率大于限定用电功率,则对控制区域的每一台变频空调进行功率控制。
当电力云端控制器正在对控制区域的每一台变频空调在进行功率控制时,若电力端控制器检测到控制区域的总用电功率小于或等于限定用电功率减去回差值时,则停止对控制区域的每一台变频空调的功率控制;若电力云端控制器检测到控制区域的总用电功率大于限定用电功率减去回差值时,则保持对控制区域的每一台变频空调的功率控制。
优选的,本公开实施例提供的变频空调的功率控制方法,参照图2所示,当总用电功率小于或等于限定用电功率时,执行步骤 S109。
S109、电力云端控制器判断是否在对功率可调的家用电器进行控制中。
示例的,电力云端控制器判断是否在对变频空调进行控制中。
具体的,当在电力云端控制器对变频空调进行控制时,执行步骤S110。
S110、电力云端控制器进行回差值自适应运算。
具体的,电力云端控制器通过进行回差值运算获得回差值,示例的,设功率回差值为ΔP,ΔP=k*Pe,其中,Pe为本次需要下调的功率值,k为大于1的正数,一般为1.2。回差值运算的方法也可以是其他的方法,在此不受限制。
S111、电力云端控制器判断总用电功率是否小于限定用电功率减去回差值。
电力云端控制器判断总用电功率是否小于限定用电功率并达到“限定用电功率减去回差值”。
若是,执行步骤S108,具体的,当总用电功率小于限定用电功率、并达到“限定用电功率减去回差值”时,停止对变频空调的用电功率进行控制。当总用电功率等于限定用电功率时,保持原有的功率控制状态;当总用电功率小于限定用电功率并且未达到“限定用电功率减去回差值”时,执行步骤S112,保持原有的功率控制状态;其中,开启对变频空调的用电功率的控制到停止对变频空调的用电功率的控制的转换采用回差法,其中,回差法的上限值为限定用电功率,回差法的下限值为“限定用电功率减去回差值”的数值。回差值由本次需要下调的功率值Pe的初始值给定,并由电力云端控制器根据被控区域的情况不断地进行自适应计算。
S112、电力云端控制器保持原有的功率控制状态。
进一步的,因电力云端控制器始终都在往复查询处理中,当停止对变频空调的用电功率进行控制后,电力云端控制器还用于在一段时间后重新获取总用电功率等参数进行下一步的变频空调的用电 功率控制。
S113、当电力云端控制器检测到控制区域的总用电功率小于或等于控制区域的限定用电功率时,向每一台功率可调的家用电器发送停止控制功率命令。
为了使本领域的技术人员更好的理解上述方案,下面结合附图和具体实施例对本公开实施例中的变频空调的功率控制方法作进一步的说明。
示例性的,参照图12所示的变频空调用电功率随时间变化的曲线图,在制热模式下,第一温差Te=3℃,或在制冷模式下,第一温差Te=-3℃,第二温差Te2进入饱和值,使变频空调在额定功率Prate下运行。在A时刻,电力云端控制器向变频空调发来了限额功率的控制情况。
可选的,设置电力云端控制器发来的限额功率Pset为变频空调的额定功率Prate的一半,即Pset=Prate/2。
由于第一功率差Pe=Pset-Prate=-Prate/2,并且,经G2(S)的比例微分运算或比例运算后,第二功率差Pe2为负。所以,变频空调的电控器中的微处理器以较快的速度调节电子电位器RW往[a,1]的“a”方向,此时衰减系数K13下降,由于此时第二温差Te2为饱和值保持不变,因此第三温差Te3下降,经G3(S)运算后,使变频空调的用电功率Pa快速从额定功率Prate降到接近电力云端控制器的设定值Pset=Prate/2,参照图12所示的AB段。当空调的用电功率Pa接近设定功率Pset=Pa/2时,由于第一功率差Pe变得比较小,经比例微分运算后,第二功率差Pe2近似于0,或经比例运算后,Pe2接近0,此时变频空调的电控器中的微处理器调节电子电位器RW往[a,1]的“a”方向的速度变得缓慢,使第三温差Te3缓慢下降,经G3(S)运算后,使变频空调的用电功率Pa缓慢降到电力云端控制器的限额功率值Pset=Prate/2,参照图12所示的BC段。当空调的用电功率Pa等于设定功率Pset=Pa/2时,第一功率差Pe和第二功率差Pe2都等于0,变频空调的电控器中的微处理器不再调节电子电位器RW, 使空调保持电力云端控制器的设定值Pset=Prate/2运行,参照图12所示的CD段。
当室内温度接近设定温度时,第二温差Te2退出饱和值并下降,第三温差Te3也下降,导致压缩机功率下降,第一功率差Pe和第二功率差Pe2从0变成正值,变频空调的电控器中的微处理器调节电子电位器RW的滑动端往取值范围[a,1]的“1”处移动。这个过程随室内温度缓慢地逐步逼近设定温度,而使电子电位器RW缓慢地逐步逼近“1”处。在电子电位器RW缓慢地逐步逼近“1”处的时期内,变频空调就以接近但小于电力云端控制器给定的限额功率Pset运行。参照图12所示的DE段。当电子电位器RW达到“1”处时,变频空调的电控器中的微处理器就不再调节电子电位器RW了,此时,随着室内温度进一步接近设定温度值,第一温差Te、第二温差Te2和第三温差Te3都进一步减小,变频空调的用电功率Pa也进一步下降,从而使功率差值Pe和Pe2进一步增大。但电子电位器RW已达到“1”处,不会再超越“1”。所以,此时,随着室内温度接近设定温度,变频空调的用电功率Pa也快速下降。参照图12所示的EF段。当室内温度进一步逼近设定温度时,第一温差Te逐步趋于0,经G1(S)=k11*k12*(T11*S+1)/S运算后,第二温差Te2和第三温差Te3逐步接近最小值,再经G3(S)运算后,压缩机逐步降低运行功率,参照图12所示的FG段。
当室内温度达到设定温度时,第一温差Te为0,经G1(S)=k11*k12*(T11*S+1)/S运算后,第二温差Te2和第三温差Te3保持最小值,再经G3(S)运算后,压缩机保持最小功率运行,变频空调消耗最少的电源有功功率,保持变频空调输出的能量与使人体吸收的能量和房间对外散发的能量实现平衡,参照图12所示的GH段。
示例性的,参照图13所示,在电力云端控制器给定限定功率Pset的开机运行控制情况下,因为空调停机后有3分钟的停机保护,所以,再次启动时空调的功率从0开始运行,假设在制冷时,室内温度Troom远高于设定温度Tset,在制热时,室内温度Troom远低 于设定温度Tset,限定功率Pset为该变频空调额定功率Prate的一半功率,即,限定功率Pset=Prate/2。
变频空调在通电时,变频空调中电控器内的微处理器将电子电位器RW的滑动端自动设置在取值范围[a,1]的“1”处,即衰减系数K13为1,此时第三温差Te3等于第二温差Te2,因为设定温度Tset与室内温度Troom的温度差值,即第一温差Te较大,经G1(S)运算后,第二温差Te2达到最大饱和值,并且因为第三温差Te3等于第二温差Te2,所以Te3也是饱和值,第三温差Te3经G3(S)运算后,使压缩机运行功率从0快速上升,变频空调的用电功率Pa也快速上升。参照图13所示的A1B1段。当变频空调的用电功率Pa上升到电力云端控制器的限额功率Pset附近时,导致第一功率差Pe=Pset-Pa经G2(S)运算后的第二功率差Pe2预计为负值,此时G2(S)为比例微分传递函数,变频空调内的电控器中的微处理器就调节电子电位器RW的滑动端往取值范围[a,1]的“a”处移动,此时虽然衰减系数K13下降,Te3下降。但调节器G3(S)的惯性函数使功率继续上升,但Te3的下降和G3(S)中的微分函数综合作用,使上升速度变慢,参照图13所示的B1C1段。
经过B1C1时间后,电子电位器RW的滑动端移动到了取值范围[a,1]中的某处,第一功率差Pe=Pset-Pa=0,第二功率差Pe2也为0,变频空调内的电控器中的微处理器停止调节电子电位器RW的滑动端,变频空调保持电力云端控制器给定的限定功率值Pset运行。参照图13中的水平线C1D1段。
再经过A1D1时间的运行后室内温度接近设定温度,第二温差Te2退出饱和值并下降,第三温差Te3也下降,导致压缩机功率下降,第一功率差Pe和第二功率差Pe2从0变成正值,变频空调内的电控器中的微处理器调节电子电位器RW的滑动端往取值范围[a,1]的“1”处移动。这个过程随室内温度缓慢地逐步逼近设定温度,而使电子电位器RW缓慢地逐步逼近“1”处。在电子电位器RW缓慢地逐步逼近“1”处的时期内,变频空调就以接近但小于电力云端控制器给定 的限定功率Pset运行。参照图13中D1E1段。当电子电位器RW达到“1”处时,变频空调内的电控器中的微处理器就不再调节电子电位器RW了,此时,随着室内温度进一步接近设定温度值,第一温差Te、第二温差Te2和第三温差Te3都进一步减小,变频空调的用电功率Pa也进一步下降,使第一功率差Pe和第二功率差Pe2进一步增大。但此时电子电位器RW已达到“1”处,不会再超越“1”。所以,随着室内温度接近设定温度,变频空调的用电功率Pa也快速下降,参照图13中E1F1段。当室内温度进一步逼近设定温度时,第一温差Te逐步趋近于0,经G1(S)=k11*k12*(T11*S+1)/S运算后,第二温差Te2和第三温差Te3逐步接近最小值,再经G3(S)运算后,压缩机逐步降低运行功率,参照图13中F1G1段。
当室内温度达到设定温度时,即第一温差Te为0,经G1(S)=k11*k12*(T11*S+1)/S运算后,第二温差Te2和第三温差Te3保持最小值,再经G3(S)运算后,压缩机保持最小功率运行,变频空调消耗最少的电源有功功率,保持变频空调输出的能量与使人体散发的能量和房间对外散发的能量实现平衡,参照图13中G1H1段。
本公开实施例提供了一种功率控制方法,电力云端控制器获取控制区域的总用电功率,若控制区域的总用电功率大于控制区域的限定用电功率,说明此时达到了用电高峰,电力供应不足,需要通过控制总用电功率使其低于限定用电功率。则电力云端控制器向控制区域的每一台变频空调发送该变频空调的限额用电功率,已达到控制总用电功率的目的。变频空调接收电力云端控制器发送的该变频空调的限额用电功率,检测自身用电功率,根据限额用电功率和检测到的自身用电功率,采用闭环负反馈的方法控制变频空调的自身用电功率,以使变频空调的自身用电功率不大于限额用电功率。上述方法通过电力云端控制器对控制区域总用电功率的宏观调控,以及变频空调对自身用电功率的具体控制,从而在电力高峰时期提高了对电器功率的控制,以起到削减电力高峰的作用。
实施例二
本公开实施例提供了一种控制器,该控制器可以是软件或硬件,该控制器可以称为电力云端控制器,也可以称为其他的,本公开实施例不作限定。其中各个功能模块的实现可以参考上述实施例,在此不再赘述。参考图14所示,该控制器包括:
获取单元11,用于获取控制区域的总用电功率;
发送单元12,用于若获取单元11获取的控制区域的总用电功率大于控制区域的限定用电功率,则向控制区域的至少一台功率可调的家用电器发送该家用电器的控制参数,控制参数为限额用电功率或用于获取限额用电功率。
可选的,控制参数为限额用电功率,发送单元12,具体用于向控制区域的每一台功率可调的家用电器发送该功率可调的家用电器的限额用电功率。
可选的,该控制器还包括:判断单元13,用于判断获取单元11获取的控制区域的总用电功率是否大于控制区域的限定用电功率。
可选的,获取单元11,还用于在向控制区域的每一台功率可调的家用电器发送该功率可调的家用电器的限额用电功率之前,获取控制区域的功率可调的家用电器的总数和功率可调的家用电器的总用电功率,根据控制区域的总用电功率、控制区域的限定用电功率、控制区域的功率可调的家用电器的总数和功率可调的家用电器的总用电功率,获取每一台功率可调的家用电器的限额用电功率。
可选的,发送单元12,还用于在向控制区域的每一台功率可调的家用电器发送该功率可调的家用电器的限额用电功率之后,当获取单元11获取的控制区域的总用电功率小于或等于控制区域的限定用电功率减去回差值时,向每一台功率可调的家用电器发送停止控制功率命令。
可选的,功率可调的家用电器包括:变频空调、变频冰箱、变频洗衣机、功率可调控电热水器、功率可调控电炒锅、功率可调控电炉、功率可调控电压力锅、功率可调控电炸锅和功率可调控电炖锅中的一种或多种。
需要说明的是,本实施例中获取单元11可以为电力云端控制器上具备接收功能的接口电路与处理器配合完成的。示例的,接口电路可以是接收机或信息接收接口。发送单元12可以是电力云端控制器上具备发送功能的接口电路完成的,示例的,接口电路可以是发送机或信息发送接口。其他单元可以为单独设立的处理器,也可以集成在电力云端控制器的某一个处理器中实现,此外,也可以以程序代码的形式存储于电力云端控制器的存储器中,由电力云端控制器的某一个处理器调用并执行以上各个单元的功能。这里所述的处理器可以是一个中央处理器(英文全称:Central Processing Unit,英文简称:CPU),或者是特定集成电路(英文全称:Application Specific Integrated Circuit,英文简称:ASIC),或者是被配置成实施本公开实施例的一个或多个集成电路。
本公开实施例提供了一种电力云端控制器,通过当控制区域总用电功率大于限定用电功率时,向控制区域内每一台变频空调发送限额用电功率,命令制区域内每一台变频空调的自身用电功率不能超过限额用电功率,实现了电力云端控制器对控制区域总用电功率的宏观调控,从而提高了对电器功率的控制,进而起到削减电力高峰的作用。
实施例三
本公开实施例提供了一种功率可调的家用电器,其中各个功能模块的实现可以参考上述实施例,在此不再赘述。参考图15所示,该变频空调包括:
接收单元21,用于接收电力云端控制器发送的该功率可调的家用电器的控制参数,控制参数为限额用电功率,或控制参数用于获取限额用电功率;
检测单元22,用于检测自身用电功率;
控制单元23,用于根据接收单元21接收的控制参数和检测单元22检测到的自身用电功率,控制功率可调的家用电器的自身用电 功率,以使功率可调的家用电器的自身用电功率不大于限额用电功率。
可选的,控制单元23,具体用于采用闭环负反馈的方法控制功率可调的家用电器的自身用电功率。
可选的,功率可调的家用电器包括变频空调、变频冰箱、变频洗衣机、功率可调控电热水器、功率可调控电炒锅、功率可调控电炉、功率可调控电压力锅、功率可调控电炸锅和功率可调控电炖锅中的一种或多种。
可选的,在功率可调的家用电器为变频空调、变频冰箱或变频洗衣机的情况下,控制单元23,具体用于获取设定温度与室内温度的温度差值;根据设定温度与室内温度的大小关系以及限额用电功率与自身用电功率的大小关系,获取衰减系数,获取衰减系数具体为:若室内温度过调,则增大衰减系数,室内温度过调为当功率可调的家用电器工作模式为制热时,室内温度大于设定温度,当功率可调的家用电器工作模式为制冷时,室内温度小于设定温度,若室内温度未过调,当限额用电功率小于检测到的自身用电功率时,减小衰减系数,当限额用电功率大于检测到的自身用电功率时,增大衰减系数;根据衰减系数,衰减温度差值;根据衰减后的温度差值控制功率可调的家用电器的自身用电功率。
可选的,在功率可调的家用电器为变频空调、变频冰箱或变频洗衣机的情况下,控制单元23,具体用于获取第一温差,第一温差为设定温度与室内温度的差值;根据第一温差获取第二温差;其中,当功率可调的家用电器工作模式为制热时,第一温差与第二温差同为正数或同为负数,第一温差与第二温差正相关;当功率可调的家用电器工作模式为制冷时,若第一温差为正数,则第二温差为负数,若第一温差为负数,则第二温差为正数,第一温差的绝对值与第二温差的绝对值正相关;获取第一功率差,第一功率差为限额用电功率与功率可调的家用电器的用电功率的差值;根据第一功率差获取第二功率差;第一功率差与第二功率差正相关;根据第二温差和第 二功率差获取衰减系数;其中,当第二温差为正数且第二功率差为正数时,衰减系数增大;当第二温差为正数且第二功率差为负数时衰减系数减小;当第二温差为正数且第二功率差为零时,衰减系数保持不变;当第二温差为负数或零时,衰减系数为1;衰减系数增大或减小的速度与第二功率差的绝对值的大小正相关;衰减系数大于0且小于或等于1;获取第三温差,其中第三温差为第二温差与衰减系数的乘积。根据第三温差控制功率可调的家用电器的自身用电功率。
实施例四
本公开实施例提供了一种功率控制系统,参考图16所示,该系统包括:实施例二所述的控制器31和实施例三所述的功率可调的家用电器32,其中控制器31又可称为电力云端控制器31。具体的实现可以参考上述实施例,在此不再赘述。
示例的,功率可调的家用电器32为变频空调。
电力云端控制器31,用于获取控制区域的总用电功率。若总用电功率大于限定用电功率,向所述控制区域的每一台变频空调发送该变频空调的限额用电功率。
可选的,电力云端控制器31,还用于判断总用电功率是否大于限定用电功率。
可选的,电力云端控制器31还用于获取用电区域内变频空调的总数以及变频空调的总用电功率。根据控制区域的总用电功率、限定用电功率、变频空调的总数以及变频空调的总用电功率获取每一台空调的限额用电功率。
可选的,在向所述控制区域的每一台变频空调发送该变频空调的限额用电功率之后,电力云端控制器31,还用于当所述控制区域的总用电功率不大于所述控制区域的限定用电功率减去回差值时,向所述每一台变频空调发送停止控制功率命令。
功率调节装置32,用于控制任一变频空调的用电功率小于或等于限额用电功率。
需要说明的是:此处的功率调节装置32即是变频空调32。
变频空调32,具体用于变频空调接收电力云端控制器发送的该变频空调的限额用电功率;检测自身用电功率;根据所述限额用电功率和检测到的自身用电功率,采用闭环负反馈的方法控制所述变频空调的自身用电功率,以使所述变频空调的自身用电功率不大于所述限额用电功率。
可选的,变频空调32,具体用于获取设定温度与室内温度的温度差值;根据所述设定温度与室内温度的大小关系以及所述限额用电功率与所述检测到的自身用电功率的大小关系,获取衰减系数,所述获取衰减系数具体为:若室内温度过调,则增大所述衰减系数,所述室内温度过调为当所述空调工作模式为制热时,所述室内温度大于所述设定温度,当所述空调工作模式为制冷时,所述室内温度小于所述设定温度,若室内温度未过调,当所述限额用电功率小于所述检测到的自身用电功率时,减小所述衰减系数,当所述限额用电功率大于所述检测到的自身用电功率时,增大所述衰减系数;根据所述衰减系数,衰减所述温度差值;根据衰减后的温度差值控制所述变频空调的自身用电功率。
可选的,变频空调32,还具体用于获取第一温差,第一温差为设定温度与室内温度的差值。根据第一温差获取第二温差;其中,当空调工作模式为制热时,第一温差与第二温差同为正数或同为负数,第一温差与第二温差正相关;当空调工作模式为制冷时,若第一温差为正数,则第二温差为负数,若第一温差为负数,则第二温差为正数,第一温差的绝对值与第二温差的绝对值正相关。获取第一功率差,第一功率差为限额用电功率与变频空调的用电功率的差值。根据第一功率差获取第二功率差;第一功率差与第二功率差正相关。根据第二功率差获取衰减系数;其中,当第二温差为正数且第二功率差为正数时,衰减系数增大;当第二温差为正数且第二功率差为负数时衰减系数减小;当第二温差为正数且第二功率差为零时,衰减系数保持不变;当第二温差为负数或零时,衰减系数为1; 衰减系数增大或减小的速度与第二功率差的绝对值的大小正相关;衰减系数大于0且小于或等于1。获取第三温差,其中第三温差为第二温差与衰减系数的乘积。根据第三温差控制变频空调进行工作产生变频空调的用电功率并对室内温度进行调节。
通过上述实施例中的变频空调功率控制系统中的闭环负反馈系统正相关地改变温度外环负反馈的第二温差的衰减比例,从而使变频空调的用电功率不超过电力云端控制器给定的限额功率值,配合电力云平台实现监控用电区域的用电削峰,保证电力系统的安全正常可靠运行。
可选的,变频空调32,包括通信装置以及在变频空调的电源输入端处设置的功率检测装置。功率检测装置用于检测对应变频空调的用电功率。通信装置用于将对应变频空调的用电功率发送至电力云端控制器并接收电力云发送给变频空调的限额用电功率等数据和控制命令。
可选的,电力云端控制器31包括通信装置,根据通信装置接收的变频空调的用电功率获取用电区域内变频空调的总数以及变频空调的总用电功率。
可选的,参照图17所示,电力云端控制器31还用于当总用电功率小于或等于限定用电功率时,按照图17方法进行控制:
在电力云端控制器对变频空调实施限额功率控制时,当总用电功率小于所述限定用电功率、并达到“限定用电功率减去回差值”时,停止对所述变频空调的用电功率进行控制。总用电功率等于所述限定用电功率时,保持原有的功率控制状态或保持原有的功率不控制状态。总用电功率虽小于所述限定用电功率但未达到“限定用电功率减去回差值”时,保持原有的功率控制状态或保持原有的功率不控制状态。开启对所述变频空调的用电功率进行控制和停止对所述变频空调的用电功率进行控制的转换采用回差法,并且,该回差的上限值始终为所述限定用电功率,下限值是“限定用电功率减去回差值”的数值。而回差值由本次需要下调的功率值Pe的初始值给定,并由 电力云端控制器根据被控区域的情况不断地进行自适应计算。
本公开实施例提供的变频空调的功率控制系统,该系统包括:电力云端控制器31用于获取控制区域的总用电功率并判断总用电功率是否大于限定用电功率;电力云端控制器通过判断总用电功率是否大于限定用电功率可以确定该控制区域的用电量是否达到电力高峰,若是,电力云端控制器还用于获取用电区域内变频空调的总数以及变频空调的总用电功率;根据控制区域的总用电功率、限定用电功率、变频空调的总数以及变频空调的总用电功率获取每一台空调的限额用电功率;电力云端控制器通过获取限额用电功率可以对变频空调的功率进行限制,功率调节装置用于控制任一变频空调的用电功率小于或等于限额用电功率。通过上述系统可以在用电高峰期对变频空调的用电功率进行控制和调节,使变频空调在不停止运行的同时起到削减电力高峰的作用。
本公开实施例提供了一种功率控制系统,电力云端控制器31用于获取控制区域的总用电功率。若总用电功率大于限定用电功率,向所述控制区域的每一台变频空调发送该变频空调的限额用电功率。变频空调32,具体用于变频空调接收电力云端控制器发送的该变频空调的限额用电功率;检测自身用电功率;根据所述限额用电功率和检测到的自身用电功率,采用闭环负反馈的方法控制所述变频空调的自身用电功率,以使所述变频空调的自身用电功率不大于所述限额用电功率。通过电力云端控制器31对控制区域总用电功率的宏观调控,以及变频空调32对自身用电功率的具体控制,从而提高了对电器功率的控制,进而起到削减电力高峰的作用。
实施例五
本公开实施例提供了一种控制器,参考图18所示,该控制器包括:处理器41、存储器42、总线43和通信接口44;
所述存储器42用于存储计算机执行指令,所述处理器41与所述存储器42通过所述总线43连接,当所述电力云端控制器运行时, 所述处理器41执行所述存储器42存储的所述计算机执行指令,以使所述电力云端控制器执行如实施例一中描述的功率控制方法。
需要说明的是:处理器41,例如可以是CPU,通用处理器,数字信号处理器DSP,专用集成电路ASIC,FPGA或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本公开公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器41也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
存储器42可以是一个存储装置,也可以是多个存储元件的统称,且用于存储可执行程序代码或接入网管理设备运行所需要参数、数据等。且存储器42可以包括随机存储器(英文全称:Random-Access Memory,英文简称:RAM),也可以包括非易失性存储器(英文全称:non-volatile memory,英文简称:NVRAM),例如磁盘存储器,闪存(Flash)等。
总线43可以是工业标准体系结构(英文全称:Industry Standard Architecture,英文简称:ISA)总线、外部设备互连(英文全称:Peripheral Component,英文简称:PCI)总线或扩展工业标准体系结构(英文全称:Extended Industry Standard Architecture,英文简称:EISA)总线等。该总线43可以分为地址总线、数据总线、控制总线等。为便于表示,图18中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
通信接口44,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(Wireless Local Area Networks,WLAN)等。通信接口44可以包括接收单元实现接收功能,以及发送单元实现发送功能。
实施例六
本公开实施例提供了一种变频空调,参考图19所示,该变频空调包括:处理器51、存储器52、总线53和通信接口54;
所述存储器52用于存储计算机执行指令,所述处理器51与所述存储器52通过所述总线53连接,当所述变频空调运行时,所述处理器51执行所述存储器52存储的所述计算机执行指令,以使所述变频空调执行如实施例一中描述的功率控制方法。
需要说明的是:处理器51,例如可以是CPU,通用处理器,数字信号处理器DSP,专用集成电路ASIC,FPGA或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本公开公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器51也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
存储器52可以是一个存储装置,也可以是多个存储元件的统称,且用于存储可执行程序代码或接入网管理设备运行所需要参数、数据等。且存储器52可以包括随机存储器(英文全称:Random-Access Memory,英文简称:RAM),也可以包括非易失性存储器(英文全称:non-volatile memory,英文简称:NVRAM),例如磁盘存储器,闪存(Flash)等。总线53可以是工业标准体系结构(英文全称:Industry Standard Architecture,英文简称:ISA)总线、外部设备互连(英文全称:Peripheral Component,英文简称:PCI)总线或扩展工业标准体系结构(英文全称:Extended Industry Standard Architecture,英文简称:EISA)总线等。该总线53可以分为地址总线、数据总线、控制总线等。为便于表示,图19中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
通信接口54,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(Wireless Local Area Networks,WLAN)等。通信接口54可以包括接收单元实现接收功能,以及发送单元实现发送功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置 实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理包括,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。

Claims (14)

  1. 一种功率控制方法,其特征在于,所述方法包括:
    获取控制区域的总用电功率;
    若所述控制区域的总用电功率大于所述控制区域的限定用电功率,则向所述控制区域的至少一台功率可调的家用电器发送该家用电器的控制参数,所述控制参数为限额用电功率或用于获取限额用电功率。
  2. 根据权利要求1所述的方法,其特征在于,所述控制参数为限额用电功率,所述向所述控制区域的至少一台功率可调的家用电器发送该家用电器的控制参数包括:向所述控制区域的每一台功率可调的家用电器发送该功率可调的家用电器的限额用电功率。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    判断所述控制区域的总用电功率是否大于所述控制区域的限定用电功率。
  4. 根据权利要求2或3所述的方法,其特征在于,在向所述控制区域的每一台功率可调的家用电器发送该功率可调的家用电器的限额用电功率之前,还包括:
    获取所述控制区域的功率可调的家用电器的总数和功率可调的家用电器的总用电功率,根据所述控制区域的总用电功率、所述控制区域的限定用电功率、所述控制区域的功率可调的家用电器的总数和功率可调的家用电器的总用电功率,获取所述每一台功率可调的家用电器的限额用电功率。
  5. 根据权利要求4所述的方法,其特征在于,在向所述控制区域的每一台功率可调的家用电器发送该功率可调的家用电器的限额用电功率之后,还包括:
    当所述控制区域的总用电功率小于或等于所述控制区域的限定用电功率减去回差值时,向所述每一台功率可调的家用电器发送停止控制功率命令。
  6. 根据权利要求1至5任一项所述的方法,其特征在于,所述 功率可调的家用电器包括:变频空调、变频冰箱、变频洗衣机、功率可调控电热水器、功率可调控电炒锅、功率可调控电炉、功率可调控电压力锅、功率可调控电炸锅和功率可调控电炖锅中的一种或多种。
  7. 一种功率控制方法,其特征在于,所述方法包括:
    功率可调的家用电器接收电力云端控制器发送的该功率可调的家用电器的控制参数,所述控制参数为所述限额用电功率,或所述控制参数用于获取限额用电功率;
    检测自身用电功率;
    根据所述控制参数和所述自身用电功率,控制所述功率可调的家用电器的自身用电功率,以使所述功率可调的家用电器的自身用电功率小于或等于所述限额用电功率。
  8. 根据权利要求7所述的方法,其特征在于,所述控制所述功率可调的家用电器的自身用电功率包括:
    采用闭环负反馈的方法控制所述功率可调的家用电器的自身用电功率。
  9. 根据权利要求7或8所述的方法,其特征在于,所述功率可调的家用电器包括变频空调、变频冰箱、变频洗衣机、功率可调控电热水器、功率可调控电炒锅、功率可调控电炉、功率可调控电压力锅、功率可调控电炸锅和功率可调控电炖锅中的一种或多种。
  10. 根据权利要求7或8所述的方法,其特征在于,在所述功率可调的家用电器为变频空调、变频冰箱或变频洗衣机的情况下,所述采用闭环负反馈的方法控制所述功率可调的家用电器的自身用电功率包括:
    获取设定温度与室内温度的温度差值;
    根据所述设定温度与室内温度的大小关系以及所述限额用电功率与所述自身用电功率的大小关系,获取衰减系数,所述获取衰减系数具体为:若室内温度过调,则增大所述衰减系数,所述室内温度过调为当所述功率可调的家用电器工作模式为制热时,所述室内温度大于所述设定温度,当所述功率可调的家用电器工作模式为制冷时,所 述室内温度小于所述设定温度,若室内温度未过调,当所述限额用电功率小于所述检测到的自身用电功率时,减小所述衰减系数,当所述限额用电功率大于所述检测到的自身用电功率时,增大所述衰减系数;
    根据所述衰减系数,衰减所述温度差值;
    根据衰减后的温度差值控制所述功率可调的家用电器的自身用电功率。
  11. 根据权利要求7或8所述的方法,其特征在于,在所述功率可调的家用电器为变频空调、变频冰箱或变频洗衣机的情况下,所述采用闭环负反馈的方法控制所述功率可调的家用电器的自身用电功率包括:
    获取第一温差,所述第一温差为设定温度与室内温度的差值;
    根据所述第一温差获取第二温差;其中,当所述功率可调的家用电器工作模式为制热时,所述第一温差与所述第二温差同为正数或同为负数,第一温差与所述第二温差正相关;当所述功率可调的家用电器工作模式为制冷时,若所述第一温差为正数,则所述第二温差为负数,若所述第一温差为负数,则所述第二温差为正数,第一温差的绝对值与所述第二温差的绝对值正相关;
    获取第一功率差,所述第一功率差为所述限额用电功率与所述功率可调的家用电器的用电功率的差值;
    根据所述第一功率差获取第二功率差;所述第一功率差与所述第二功率差正相关;
    根据所述第二温差和所述第二功率差获取衰减系数;其中,当所述第二温差为正数且所述第二功率差为正数时,所述衰减系数增大;当所述第二温差为正数且所述第二功率差为负数时所述衰减系数减小;当所述第二温差为正数且所述第二功率差为零时,所述衰减系数保持不变;当所述第二温差为负数或零时,所述衰减系数为1;所述衰减系数增大或减小的速度与所述第二功率差的绝对值的大小正相关;所述衰减系数大于0且小于或等于1;
    获取第三温差,其中所述第三温差为所述第二温差与所述衰减系数的乘积;
    根据所述第三温差控制所述功率可调的家用电器的自身用电功率。
  12. 一种控制器,其特征在于,所述控制器包括:
    获取单元,用于获取控制区域的总用电功率;
    发送单元,用于若所述控制区域的总用电功率大于所述控制区域的限定用电功率,则向所述控制区域的至少一台功率可调的家用电器发送该家用电器的控制参数,所述控制参数为限额用电功率或用于获取限额用电功率。
  13. 一种功率可调的家用电器,其特征在于,所述功率可调的家用电器包括:
    接收单元,用于接收电力云端控制器发送的该功率可调的家用电器的控制参数,所述控制参数为所述限额用电功率,或所述控制参数用于获取限额用电功率;
    检测单元,用于检测自身用电功率;
    控制单元,用于根据所述接收单元接收的所述控制参数和所述检测单元检测到的自身用电功率,控制所述功率可调的家用电器的自身用电功率,以使所述功率可调的家用电器的自身用电功率不大于所述限额用电功率。
  14. 一种功率控制系统,其特征在于,所述系统包括:权利要求12所述的控制器和权利要求13所述的功率可调的家用电器。
PCT/CN2018/076810 2017-02-22 2018-02-14 一种功率控制方法、装置和系统 WO2018153338A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710097252.4A CN106871354B (zh) 2017-02-22 2017-02-22 一种变频空调的功率控制方法及系统
CN201710097252.4 2017-02-22

Publications (2)

Publication Number Publication Date
WO2018153338A1 WO2018153338A1 (zh) 2018-08-30
WO2018153338A9 true WO2018153338A9 (zh) 2019-10-17

Family

ID=59169211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/076810 WO2018153338A1 (zh) 2017-02-22 2018-02-14 一种功率控制方法、装置和系统

Country Status (2)

Country Link
CN (1) CN106871354B (zh)
WO (1) WO2018153338A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106871354B (zh) * 2017-02-22 2019-08-02 海信(广东)空调有限公司 一种变频空调的功率控制方法及系统
CN107329097A (zh) * 2017-06-30 2017-11-07 广东美的制冷设备有限公司 电源检测及空调控制装置、方法、空调器及计算机装置
CN107883526B (zh) * 2017-10-19 2019-08-27 广东美的制冷设备有限公司 空调器节能控温方法、空调器及存储介质
CN110553368A (zh) * 2019-08-28 2019-12-10 珠海格力电器股份有限公司 空调功率检测装置和控制方法
CN110658380B (zh) * 2019-10-09 2021-09-28 广东美的制冷设备有限公司 功率检测方法、装置、空调器以及存储介质
CN111023466A (zh) * 2019-12-23 2020-04-17 宁波奥克斯电气股份有限公司 一种空调耗电量的控制方法、系统、存储介质及空调器
CN113251584A (zh) * 2021-04-13 2021-08-13 Tcl空调器(中山)有限公司 空调运行控制方法、装置、设备和存储介质
CN114484755B (zh) * 2022-01-26 2024-05-28 广东美的制冷设备有限公司 空调的控制方法、装置、设备、空调及介质

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002197353A (ja) * 2000-12-26 2002-07-12 Summit Inc ユーザ管理方法及びその方法を実現するためのプログラムが記録された記録媒体並びに広告提供方法
KR20070064090A (ko) * 2005-12-16 2007-06-20 엘지전자 주식회사 인버터 에어컨의 역률보상방법
CN104348150B (zh) * 2013-07-31 2017-12-19 国家电网公司 电力负荷管控方法、服务器及系统
CN104006488B (zh) * 2014-04-28 2016-08-17 国家电网公司 空调控制系统及其控制空调运行的方法
CN104374042B (zh) * 2014-07-28 2017-02-15 广东电网公司电力科学研究院 空调负荷的控制方法及系统
CN104317346A (zh) * 2014-09-26 2015-01-28 滁州市圣宏制造有限公司 一种功率控制的方法及系统
JP2016082700A (ja) * 2014-10-16 2016-05-16 ダイキン工業株式会社 インバータ圧縮機の制御装置
JP6464903B2 (ja) * 2015-04-16 2019-02-06 ダイキン工業株式会社 空気調和機のインバータ駆動装置
GB2540364B (en) * 2015-07-14 2020-07-22 Samsung Electronics Co Ltd Power load management apparatus and method
CN105042800B (zh) * 2015-09-01 2017-11-07 东南大学 基于需求响应的变频空调负荷建模与运行控制方法
CN105528011B (zh) * 2016-01-29 2018-08-17 宇龙计算机通信科技(深圳)有限公司 一种电路控制方法及装置
CN106228258B (zh) * 2016-07-11 2019-11-05 浙江工业大学 一种计及需求侧管理的家庭能源局域网能量优化控制方法
CN106871354B (zh) * 2017-02-22 2019-08-02 海信(广东)空调有限公司 一种变频空调的功率控制方法及系统

Also Published As

Publication number Publication date
WO2018153338A1 (zh) 2018-08-30
CN106871354A (zh) 2017-06-20
CN106871354B (zh) 2019-08-02

Similar Documents

Publication Publication Date Title
WO2018153338A9 (zh) 一种功率控制方法、装置和系统
CN103528134B (zh) 空调器及其加热控制方法
CN108592340B (zh) 空调系统的控制方法、装置、存储介质和处理器
CN103912957B (zh) 空调机组的控制方法、控制装置及空调机组
WO2015029177A1 (ja) 空気調和システム
CN107560113A (zh) 一种智能空调器控制方法及空调器
CN107525217B (zh) 一种空调器控制方法、控制装置及空调器
CN105485863B (zh) 一种空调的控制装置及控制空调用电的方法
CN108895601B (zh) 基于磁悬浮主机的中央空调群控方法
CN107166508B (zh) 一种热泵型地暖机控制方法及热泵型地暖机
CN111059727A (zh) 一种空调压缩机频率控制方法
CN107883540A (zh) 空调器及其控制方法、控制装置和计算机可读存储介质
CN105674477A (zh) 空调辅助电加热的控制方法和装置
CN104764170A (zh) 热泵启停控制方法和装置及空调器
WO2019015536A1 (zh) 一种空调器的控制方法
CN111023523A (zh) 空调器控制方法、装置、空调器和存储介质
CN106091281A (zh) 一种变频空调控制方法、装置及系统
CN113587384B (zh) 空调器的控制方法、装置、空调器和存储介质
CN113418283B (zh) 用于空调器的控制方法
CN108731222B (zh) 一种机房空调控制方法及装置
CN109983284B (zh) 一种基于变频压缩机的空调系统及其控制方法
CN112393386A (zh) 一种空调器和能耗控制方法
CN108302691A (zh) 空调控制方法及空调器
CN113154626B (zh) 空调机组的控制方法
CN111829173A (zh) 一种控制方法、系统及空气源热泵热风机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18757239

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21.11.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 18757239

Country of ref document: EP

Kind code of ref document: A1