WO2018153282A1 - 基于金属银增强荧光的自由曲面测量装置及其测量方法 - Google Patents

基于金属银增强荧光的自由曲面测量装置及其测量方法 Download PDF

Info

Publication number
WO2018153282A1
WO2018153282A1 PCT/CN2018/075939 CN2018075939W WO2018153282A1 WO 2018153282 A1 WO2018153282 A1 WO 2018153282A1 CN 2018075939 W CN2018075939 W CN 2018075939W WO 2018153282 A1 WO2018153282 A1 WO 2018153282A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
tested
deionized water
fluorescent film
stand
Prior art date
Application number
PCT/CN2018/075939
Other languages
English (en)
French (fr)
Inventor
刘俭
刘辰光
李亮
刘妍
谭久彬
Original Assignee
哈尔滨工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 哈尔滨工业大学 filed Critical 哈尔滨工业大学
Priority to DE112018000986.6T priority Critical patent/DE112018000986T5/de
Publication of WO2018153282A1 publication Critical patent/WO2018153282A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • G01B11/303Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces using photoelectric detection means

Definitions

  • the invention relates to a free-form surface measuring device based on metallic silver enhanced fluorescence and a measuring method thereof, and belongs to the technical field of optical precision measurement.
  • a weakly attached nano-scale thickness fluorescent medium is deposited on the surface of the sample by physical vapor deposition technique to construct an isotropic fluorescent scattering surface, and then the sample surface film is excited. Fluorescence results in an axial envelope curve, and the surface morphology of the sample can be obtained by image processing.
  • the axial response formula affected by the thickness is given to measure the above error, and the axial response formula is:
  • t f represents the thickness of the phosphor
  • I t is the confocal axial response of the infinitely thin fluorescent interposer.
  • the object of the present invention is to solve the problem of large surface error due to the unevenness of the fluorescent interposer on the surface of the sample, and to provide a free-form surface measuring device based on metallic silver enhanced fluorescence and a measuring method thereof.
  • the invention relates to a free-form surface measuring device based on metal silver enhanced fluorescence
  • the measuring device comprises a lighting module, a detecting module and a sample module;
  • the lighting module follows the direction of propagation of the illumination light: laser, collimating mirror, pupil, polarization splitting The prism, the scanning galvanometer and the scanning lens;
  • the detecting module according to the direction of propagation of the signal light are: a scanning lens, a scanning galvanometer, a polarization beam splitting prism, a filter, a collecting lens, a pinhole and a photodetector;
  • the sample module includes the sample to be tested And a three-dimensional micro-position stage for placing the sample to be tested; the surface of the sample to be tested is plated with a metal fluorescent film;
  • the laser emits a laser beam, and the laser beam passes through the collimating mirror and the pupil to form parallel light.
  • the parallel light sequentially passes through the polarization beam splitting prism, the scanning galvanometer and the scanning lens, and the transmitted light forms a focused spot on the sample to be tested, and the focused spot is excited to be tested.
  • the metal fluorescent film on the surface of the sample emits fluorescence; the fluorescence excited by the metal fluorescent film on the surface of the sample is sequentially collected by the photodetector after passing through the scanning lens, the scanning galvanometer, the polarization beam splitting prism, the filter, the collecting lens and the pinhole. .
  • the measuring method of the free-form surface measuring device based on metallic silver enhanced fluorescence according to the present invention is:
  • Step 1 plating a surface of the sample to be tested with a metal fluorescent film having a thickness of less than 40 nm;
  • Step 2 The laser emits a laser beam, and the laser beam passes through the collimating mirror and the pupil to form parallel light.
  • the parallel light sequentially passes through the polarization beam splitting prism, the scanning galvanometer and the scanning lens, and the transmitted light forms a focused spot on the sample to be tested, and the focused spot is focused. Fluctuating the metal fluorescent film that excites the surface of the sample to be tested;
  • Step 3 The fluorescence excited by the metal fluorescent film on the surface of the sample to be tested is sequentially collected by the photodetector after passing through the scanning lens, the scanning galvanometer, the polarization beam splitting prism, the filter, the collecting lens and the pinhole;
  • Step 4 After the fluorescence excited by the metal fluorescent film on the surface of the sample to be tested is collected by the photodetector, the surface position of the sample to be tested is determined by the position of the vertex of the axial response curve;
  • Step 5 The three-dimensional micro-position stage drives the sample to be tested to move in a three-dimensional direction to form a three-dimensional scanning image
  • Step 6 Immerse the sample to be tested in an organic solvent, and clean the metal fluorescent film on the surface to restore the original state.
  • the invention has the advantages that the free-form surface measuring device based on the metal silver enhanced fluorescence and the measuring method thereof can measure the surface topography of the large-diameter free-form surface object, and the metal silver-reinforced fluorescent film is used compared with the prior art.
  • the fluorescent light-emitting efficiency is high, the film thickness is small, the sample itself is not damaged, the surface height error is extremely small, and the measurement efficiency can be improved, and the measurement cost can also be reduced. Since there is no need to touch the surface of the sample, damage to the surface of the sample can be avoided; since the optical path is simple, the cost is reduced.
  • FIG. 1 is a schematic view showing the structure of a free-form surface measuring device based on metallic silver enhanced fluorescence according to the present invention.
  • the free-form surface measuring device based on metal silver enhanced fluorescence includes a lighting module, a detecting module and a sample module.
  • the illumination module is sequentially arranged according to the direction of propagation of the illumination light: a laser 1, a collimating mirror 2, a diaphragm 3, a polarization beam splitting prism 4, a scanning galvanometer 5, and a scanning lens 6;
  • the detecting module is: a scanning lens 6, a scanning galvanometer 5, a polarization beam splitting prism 4, a filter 9, a collecting lens 10, a pinhole 11 and a photodetector 12;
  • the sample module includes a sample 7 to be tested and a three-dimensional micro-position stage 8 for placing the sample 7 to be tested;
  • the surface of the sample to be tested 7 is plated with a metal fluorescent film
  • the laser 1 emits a laser beam, and the laser beam passes through the collimator lens 2 and the aperture 3 to form parallel light.
  • the parallel light sequentially passes through the polarization beam splitting prism 4, the scanning galvanometer 5 and the scanning lens 6, and the transmitted light forms a focus on the sample 7 to be tested.
  • the spot, the focused spot excites the metal fluorescent film on the surface of the sample 7 to be tested to emit fluorescence; the fluorescence excited by the metal fluorescent film on the surface of the sample 7 to be tested sequentially passes through the scanning lens 6, the scanning galvanometer 5, the polarization beam splitting prism 4, and the filter 9 After the lens 10 and the pinhole 11 are collected, they are collected by the photodetector 12.
  • Embodiment 1 is an illumination and imaging lens having a field of view of 50 mm ⁇ 50 mm.
  • the present embodiment will be described below with reference to FIG. 1.
  • the first embodiment further illustrates the first embodiment.
  • the wavelength of the laser beam emitted by the laser 1 is 532 nm, and the optical power of the illumination light after passing through the scanning lens 6 is less than 1 w.
  • the present embodiment will be described below with reference to FIG. 1. This embodiment further describes the first embodiment.
  • the metal fluorescent film coated on the surface of the sample 7 to be tested is a fluorescent film doped with nano silver particles.
  • the surface height measurement error caused by the inconsistency of the fluorescent film is reduced to 20 nm or less.
  • Embodiment 1 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Five embodiments are described below with reference to FIG. 1. This embodiment further describes Embodiment 1 or Embodiment 4, and the thickness of the metal fluorescent film plated on the surface of the sample 7 to be tested is less than 40 nm.
  • Embodiment 5 in which the metal silver-enhanced interposer of the sample 7 to be tested has five times the luminous efficiency of the organic interposer.
  • the organic interposer refers to a conventional organic interposer.
  • Step 1 The surface of the sample to be tested 7 is coated with a metal fluorescent film having a thickness of less than 40 nm;
  • Step 2 the laser 1 emits a laser beam, and the laser beam passes through the collimating mirror 2 and the pupil 3 to form parallel light.
  • the parallel light sequentially passes through the polarization beam splitting prism 4, the scanning galvanometer 5 and the scanning lens 6, and the transmitted light is in the sample to be tested 7 Forming a focused spot on the focus, and the focused spot excites the metal fluorescent film on the surface of the sample 7 to be tested to emit fluorescence;
  • Step 3 The fluorescence excited by the metal fluorescent film on the surface of the sample to be tested 7 passes through the scanning lens 6, the scanning galvanometer 5, the polarization beam splitting prism 4, the filter 9, the collecting lens 10 and the pinhole 11, and is photodetected by the photodetector. 12 collection;
  • Step 4 after the fluorescence excited by the metal fluorescent film on the surface of the sample 7 to be tested is collected by the photodetector 12, the surface position of the sample 7 to be tested is determined by the position of the vertex of the axial response curve;
  • Step 5 the three-dimensional micro-position stage 8 drives the sample 7 to be tested to move in a three-dimensional direction to form a three-dimensional scanning image;
  • Step 6 Immerse the sample 7 to be tested in an organic solvent, and clean the metal fluorescent film on the surface to restore the original state.
  • the present embodiment will be described below with reference to FIG. 1.
  • the present embodiment further describes Embodiment 7, and the specific process of plating a metal fluorescent film having a thickness of less than 40 nm on the surface of the sample to be tested 7 in step 1 is :
  • Step a slowly add 75 mL of hydrogen peroxide to 175 mL of concentrated sulfuric acid in an ice water bath, stir slowly, immerse the sample 7 to be tested, heat and boil for 30 min, take out the sample 7 to be tested, wash it with deionized water, and blow with nitrogen. dry;
  • Step b slowly add 70mL ammonia water and 70mL hydrogen peroxide to 350mL deionized water, stir evenly, immerse the sample 7 obtained in step a, heat at 80 °C for 25min, take out the sample 7 to be tested, then wash it with deionized water, and use nitrogen gas.
  • Step c weighing 100mg polyethyleneimine, 0.16mg nano silver, 12mg rhodamine B and 292.2mg sodium chloride, dissolved in 50mL deionized water, stirred to form a solution A;
  • Step d weighing 100mg polyethyleneimine, 12mg rhodamine B and 292.2mg sodium chloride, dissolved in 50mL deionized water, stirred to form a solution B;
  • Step e weighing 250mg sodium polystyrene sulfonate and 292.2mg sodium chloride, dissolved in 50mL deionized water, stirred to form a solution C;
  • Step f weighing 250mg sodium polystyrene sulfonate, dissolved in 50mL deionized water, stirred to form a solution D;
  • Step g the sample 7 obtained in step b is immersed in the solution A, allowed to stand for 15 min, then taken out, immersed in deionized water, allowed to stand for 2 min, and taken out;
  • Step h the sample 7 obtained in step g is immersed in the solution C, allowed to stand for 15 min, then taken out, immersed in deionized water, allowed to stand for 2 min, and taken out;
  • Step i the sample 7 obtained in step h is immersed in the solution B, allowed to stand for 15 min, then taken out, immersed in deionized water, allowed to stand for 2 min, and taken out;
  • Step j The obtained sample 7 to be tested is immersed in the solution A, allowed to stand for 15 min, then taken out, immersed in deionized water, allowed to stand for 2 min, and taken out; then the obtained sample 7 to be tested is immersed in the solution C, and allowed to stand for 15 min. Then take out, immerse in deionized water, let stand for 2 min, take out; repeat 10 times;
  • Step k The sample 7 to be obtained obtained in the step j is immersed in the solution B, allowed to stand for 15 min, then taken out, immersed in deionized water, allowed to stand for 2 min, taken out, and dried with nitrogen.
  • the height error of the thickness of the metal fluorescent film plated on the surface of the sample 7 to be tested is less than 20 nm.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

一种基于金属银增强荧光的自由曲面测量装置,包括照明模块、探测模块和样品模块;照明模块按照照明光的传播方向依次为:激光器(1)、准直镜(2)、光阑(3)、偏振分光棱镜(4)、扫描振镜(5)和扫描透镜(6);探测模块按照信号光传播方向依次为:扫描透镜(6)、扫描振镜(5)、偏振分光棱镜(4)、滤光片(9)、收集透镜(10)、针孔(11)和光电探测器(12);样品模块包括待测样品(7)和用于放置待测样品(7)的三维微位载物台(8);待测样品(7)表面镀有金属荧光薄膜。该装置能够解决由于样品表面的荧光中介层的不均匀,导致面形高度误差大的问题。

Description

基于金属银增强荧光的自由曲面测量装置及其测量方法 技术领域
本发明涉及一种基于金属银增强荧光的自由曲面测量装置及其测量方法,属于光学精密测量技术领域。
背景技术
在使用大口径自由曲面样品测量装置时,利用物理气相沉积技术,在样品表面沉积一层弱附着的纳米级厚度荧光介质,构建了一个各向同性荧光散射表面,而后收集样品表面薄膜激发出的荧光得到轴向包络曲线,通过图像处理即可得到样品表面形貌。
但由于在其计算扫描点的z轴高度时,由于膜厚度的原因会引入一个共焦轴向响应峰值位置偏移。实际情况下,由于样品表面的荧光中介层的不均匀,这就引入了由于膜厚度不均匀引入的面形高度误差。
现有技术中给出了受厚度影响的轴向响应公式对上述误差进行测量,轴向响应公式为:
Figure PCTCN2018075939-appb-000001
其中t f表示荧光物质厚度,I t为无限薄荧光中介层的共焦轴向响应。分析
Figure PCTCN2018075939-appb-000002
可知,当z=t f/2时,I T(z)取得最大值,因为I T(z)为偶函数。这表明轴向的响应峰值处于膜厚度的1/2处。可见,由于荧光膜厚度不均匀产生的高度测量误差为厚度不一致性的1/2。即大小为(H-h)/2,其中H为中介层最大厚度,h为中介层最小厚度。
由此可见,现有技术中面形高度误差比较大。
发明内容
本发明目的是为了解决由于样品表面的荧光中介层的不均匀,导致面形高 度误差大的问题,提供了一种基于金属银增强荧光的自由曲面测量装置及其测量方法。
本发明所述基于金属银增强荧光的自由曲面测量装置,该测量装置包括照明模块、探测模块和样品模块;照明模块按照照明光的传播方向依次为:激光器、准直镜、光阑、偏振分光棱镜、扫描振镜和扫描透镜;探测模块按照信号光传播方向依次为:扫描透镜、扫描振镜、偏振分光棱镜、滤光片、收集透镜、针孔和光电探测器;样品模块包括待测样品和用于放置待测样品的三维微位载物台;所述待测样品表面镀有金属荧光薄膜;
激光器发出激光光束,激光光束经过准直镜和光阑后形成平行光,平行光依次经过偏振分光棱镜、扫描振镜和扫描透镜,透射的光在待测样品上形成聚焦光斑,聚焦光斑激发待测样品表面的金属荧光薄膜发出荧光;待测样品表面的金属荧光薄膜激发出的荧光依次经过扫描透镜、扫描振镜、偏振分光棱镜、滤光片、收集透镜和针孔后,被光电探测器收集。
本发明所述基于金属银增强荧光的自由曲面测量装置的测量方法,该测量方法的具体过程为:
步骤1、在待测样品表面镀上一层厚度小于40nm的金属荧光薄膜;
步骤2、激光器发出激光光束,激光光束经过准直镜和光阑后形成平行光,平行光依次经过偏振分光棱镜、扫描振镜和扫描透镜,透射的光在待测样品上形成聚焦光斑,聚焦光斑激发待测样品表面的金属荧光薄膜发出荧光;
步骤3、待测样品表面的金属荧光薄膜激发出的荧光依次经过扫描透镜、扫描振镜、偏振分光棱镜、滤光片、收集透镜和针孔后,被光电探测器收集;
步骤4、待测样品表面的金属荧光薄膜激发出的荧光被光电探测器收集后,通过轴向响应曲线顶点位置确定待测样品的表面位置;
步骤5、三维微位载物台带动待测样品在三维方向上移动,形成三维扫描成像;
步骤6、将待测样品浸入有机溶剂中,清洗表面的金属荧光薄膜,恢复成原有状态。
本发明的优点:本发明提出的基于金属银增强荧光的自由曲面测量装置及其测量方法,能够全貌测量大口径自由曲面物体表面形貌,同现有技术相比,使用金属银增强的荧光膜代替传统有机荧光薄膜,其荧光发光效率高,膜厚度小,不损伤样品本身,面型高度误差极小,并且可以提高测量效率,同时还可以降低测量成本。由于无需接触样品表面,因此可以避免对样品表面产生损伤;由于光路简单,因此又降低了成本。
附图说明
图1是本发明所述基于金属银增强荧光的自由曲面测量装置的结构示意图。
具体实施方式
具体实施方式一:下面结合图1说明本实施方式,本实施方式所述基于金属银增强荧光的自由曲面测量装置,该测量装置包括照明模块、探测模块和样品模块;
照明模块按照照明光的传播方向依次为:激光器1、准直镜2、光阑3、偏振分光棱镜4、扫描振镜5和扫描透镜6;
探测模块按照信号光传播方向依次为:扫描透镜6、扫描振镜5、偏振分光棱镜4、滤光片9、收集透镜10、针孔11和光电探测器12;
样品模块包括待测样品7和用于放置待测样品7的三维微位载物台8;
所述待测样品7表面镀有金属荧光薄膜;
激光器1发出激光光束,激光光束经过准直镜2和光阑3后形成平行光, 平行光依次经过偏振分光棱镜4、扫描振镜5和扫描透镜6,透射的光在待测样品7上形成聚焦光斑,聚焦光斑激发待测样品7表面的金属荧光薄膜发出荧光;待测样品7表面的金属荧光薄膜激发出的荧光依次经过扫描透镜6、扫描振镜5、偏振分光棱镜4、滤光片9、收集透镜10和针孔11后,被光电探测器12收集。
具体实施方式二:下面结合图1说明本实施方式,本实施方式对实施方式一作进一步说明,扫描透镜6作为照明和成像镜头,具有50mm×50mm视场。
具体实施方式三:下面结合图1说明本实施方式,本实施方式对实施方式一作进一步说明,激光器1发射的激光光束的波长为532nm,照明光经过扫描透镜6后光功率小于1w。
具体实施方式四:下面结合图1说明本实施方式,本实施方式对实施方式一作进一步说明,待测样品7表面镀的金属荧光薄膜为掺入纳米银颗粒的荧光薄膜。
本实施方式中,由荧光薄膜的不一致性引起的面形高度测量误差降低到20nm以下。
具体实施方式五:下面结合图1说明本实施方式,本实施方式对实施方式一或实施方式四作进一步说明,待测样品7表面镀的金属荧光薄膜的厚度小于40nm。
具体实施方式六:下面结合图1说明本实施方式,本实施方式对实施方式五作进一步说明,所述待测样品7的金属银增强中介层的发光效率是有机中介层的5倍。
本实施方式中,所述有机中介层是指传统的有机中介层。
具体实施方式七:下面结合图1说明本实施方式,本实施方式所述基于金属银增强荧光的自由曲面测量装置的测量方法,该测量方法的具体过程为:
步骤1、在待测样品7表面镀上一层厚度小于40nm的金属荧光薄膜;
步骤2、激光器1发出激光光束,激光光束经过准直镜2和光阑3后形成平行光,平行光依次经过偏振分光棱镜4、扫描振镜5和扫描透镜6,透射的光在待测样品7上形成聚焦光斑,聚焦光斑激发待测样品7表面的金属荧光薄膜发出荧光;
步骤3、待测样品7表面的金属荧光薄膜激发出的荧光依次经过扫描透镜6、扫描振镜5、偏振分光棱镜4、滤光片9、收集透镜10和针孔11后,被光电探测器12收集;
步骤4、待测样品7表面的金属荧光薄膜激发出的荧光被光电探测器12收集后,通过轴向响应曲线顶点位置确定待测样品7的表面位置;
步骤5、三维微位载物台8带动待测样品7在三维方向上移动,形成三维扫描成像;
步骤6、将待测样品7浸入有机溶剂中,清洗表面的金属荧光薄膜,恢复成原有状态。
具体实施方式八:下面结合图1说明本实施方式,本实施方式对实施方式七作进一步说明,步骤1所述在待测样品7表面镀上一层厚度小于40nm的金属荧光薄膜的具体过程为:
步骤a、将75mL双氧水缓慢滴加到在冰水浴中的175mL浓硫酸中,缓慢搅拌均匀,将待测样品7浸入,加热煮沸30min,取出待测样品7后用去离子水清洗,并用氮气吹干;
步骤b、将70mL氨水和70mL双氧水缓慢加入到350mL去离子水中,搅拌均匀,将步骤a获得的待测样品7浸入,80℃加热25min,取出待测样品7后用去离子水清洗,并用氮气吹干;
步骤c、称量100mg聚乙烯亚胺、0.16mg纳米银、12mg罗丹明B和292.2mg氯化钠,溶解于50mL去离子水中,搅拌均匀形成溶液A;
步骤d、称量100mg聚乙烯亚胺、12mg罗丹明B和292.2mg氯化钠,溶解于50mL去离子水中,搅拌均匀形成溶液B;
步骤e、称量250mg聚苯乙烯磺酸钠和292.2mg氯化钠,溶解于50mL去离子水中,搅拌均匀形成溶液C;
步骤f、称量250mg聚苯乙烯磺酸钠,溶解于50mL去离子水中,搅拌均匀形成溶液D;
步骤g、将步骤b获得的待测样品7浸入溶液A中,静置15min,然后取出,浸入去离子水中,静置2min,取出;
步骤h、将步骤g获得的待测样品7浸入溶液C中,静置15min,然后取出,浸入去离子水中,静置2min,取出;
步骤i、将步骤h获得的待测样品7浸入溶液B中,静置15min,然后取出,浸入去离子水中,静置2min,取出;
步骤j、将获得的待测样品7浸入溶液A中,静置15min,然后取出,浸入去离子水中,静置2min,取出;然后将获得的待测样品7浸入溶液C中,静置15min,然后取出,浸入去离子水中,静置2min,取出;重复10次;
步骤k、将步骤j获得的待测样品7浸入溶液B中,静置15min,然后取出,浸入去离子水中,静置2min,取出,用氮气吹干。
本实施方式中,待测样品7表面镀的金属荧光薄膜的厚度的高度误差小于20nm。
具体实施方式九:下面结合图1说明本实施方式,本实施方式对实施方式七作进一步说明,步骤6所述有机溶剂包括水、酒精和丙酮。

Claims (9)

  1. 基于金属银增强荧光的自由曲面测量装置,其特征在于,该测量装置包括照明模块、探测模块和样品模块;
    照明模块按照照明光的传播方向依次为:激光器(1)、准直镜(2)、光阑(3)、偏振分光棱镜(4)、扫描振镜(5)和扫描透镜(6);
    探测模块按照信号光传播方向依次为:扫描透镜(6)、扫描振镜(5)、偏振分光棱镜(4)、滤光片(9)、收集透镜(10)、针孔(11)和光电探测器(12);
    样品模块包括待测样品(7)和用于放置待测样品(7)的三维微位载物台(8);
    所述待测样品(7)表面镀有金属荧光薄膜;
    激光器(1)发出激光光束,激光光束经过准直镜(2)和光阑(3)后形成平行光,平行光依次经过偏振分光棱镜(4)、扫描振镜(5)和扫描透镜(6),透射的光在待测样品(7)上形成聚焦光斑,聚焦光斑激发待测样品(7)表面的金属荧光薄膜发出荧光;待测样品(7)表面的金属荧光薄膜激发出的荧光依次经过扫描透镜(6)、扫描振镜(5)、偏振分光棱镜(4)、滤光片(9)、收集透镜(10)和针孔(11)后,被光电探测器(12)收集。
  2. 根据权利要求1所述的基于金属银增强荧光的自由曲面测量装置,其特征在于,扫描透镜(6)作为照明和成像镜头,具有50mm×50mm视场。
  3. 根据权利要求1所述的基于金属银增强荧光的自由曲面测量装置,其特征在于,激光器(1)发射的激光光束的波长为532nm,照明光经过扫描透镜(6)后光功率小于1w。
  4. 根据权利要求1所述的基于金属银增强荧光的自由曲面测量装置,其特征在于,待测样品(7)表面镀的金属荧光薄膜为掺入纳米银颗粒的荧光薄膜。
  5. 根据权利要求1或4所述的基于金属银增强荧光的自由曲面测量装置,其特征在于,待测样品(7)表面镀的金属荧光薄膜的厚度小于40nm。
  6. 根据权利要求5所述的基于金属银增强荧光的自由曲面测量装置,其特征在于,所述待测样品(7)的金属银增强中介层的发光效率是有机中介层的5倍。
  7. 基于权利要求4所述基于金属银增强荧光的自由曲面测量装置的测量方法,其特征在于,该测量方法的具体过程为:
    步骤1、在待测样品(7)表面镀上一层厚度小于40nm的金属荧光薄膜;
    步骤2、激光器(1)发出激光光束,激光光束经过准直镜(2)和光阑(3)后形成平行光,平行光依次经过偏振分光棱镜(4)、扫描振镜(5)和扫描透镜(6),透射的光在待测样品(7)上形成聚焦光斑,聚焦光斑激发待测样品(7)表面的金属荧光薄膜发出荧光;
    步骤3、待测样品(7)表面的金属荧光薄膜激发出的荧光依次经过扫描透镜(6)、扫描振镜(5)、偏振分光棱镜(4)、滤光片(9)、收集透镜(10)和针孔(11)后,被光电探测器(12)收集;
    步骤4、待测样品(7)表面的金属荧光薄膜激发出的荧光被光电探测器(12)收集后,通过轴向响应曲线顶点位置确定待测样品(7)的表面位置;
    步骤5、三维微位载物台(8)带动待测样品(7)在三维方向上移动,形成三维扫描成像;
    步骤6、将待测样品(7)浸入有机溶剂中,清洗表面的金属荧光薄膜,恢复成原有状态。
  8. 根据权利要求7所述的基于金属银增强荧光的自由曲面测量装置的测量方法,其特征在于,步骤1所述在待测样品(7)表面镀上一层厚度小于40nm的金属荧光薄膜的具体过程为:
    步骤a、将75mL双氧水缓慢滴加到在冰水浴中的175mL浓硫酸中,缓慢搅拌均匀,将待测样品(7)浸入,加热煮沸30min,取出待测样品(7)后用去离子水 清洗,并用氮气吹干;
    步骤b、将70mL氨水和70mL双氧水缓慢加入到350mL去离子水中,搅拌均匀,将步骤a获得的待测样品(7)浸入,80℃加热25min,取出待测样品(7)后用去离子水清洗,并用氮气吹干;
    步骤c、称量100mg聚乙烯亚胺、0.16mg纳米银、12mg罗丹明B和292.2mg氯化钠,溶解于50mL去离子水中,搅拌均匀形成溶液A;
    步骤d、称量100mg聚乙烯亚胺、12mg罗丹明B和292.2mg氯化钠,溶解于50mL去离子水中,搅拌均匀形成溶液B;
    步骤e、称量250mg聚苯乙烯磺酸钠和292.2mg氯化钠,溶解于50mL去离子水中,搅拌均匀形成溶液C;
    步骤f、称量250mg聚苯乙烯磺酸钠,溶解于50mL去离子水中,搅拌均匀形成溶液D;
    步骤g、将步骤b获得的待测样品(7)浸入溶液A中,静置15min,然后取出,浸入去离子水中,静置2min,取出;
    步骤h、将步骤g获得的待测样品(7)浸入溶液C中,静置15min,然后取出,浸入去离子水中,静置2min,取出;
    步骤i、将步骤h获得的待测样品(7)浸入溶液B中,静置15min,然后取出,浸入去离子水中,静置2min,取出;
    步骤j、将获得的待测样品(7)浸入溶液A中,静置15min,然后取出,浸入去离子水中,静置2min,取出;然后将获得的待测样品(7)浸入溶液C中,静置15min,然后取出,浸入去离子水中,静置2min,取出;重复10次;
    步骤k、将步骤j获得的待测样品(7)浸入溶液B中,静置15min,然后取出,浸入去离子水中,静置2min,取出,用氮气吹干。
  9. 根据权利要求7所述的基于金属银增强荧光的自由曲面测量装置的测量方法,其特征在于,步骤6所述有机溶剂包括水、酒精和丙酮。
PCT/CN2018/075939 2017-02-24 2018-02-09 基于金属银增强荧光的自由曲面测量装置及其测量方法 WO2018153282A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112018000986.6T DE112018000986T5 (de) 2017-02-24 2018-02-09 Ein Freiformoberflächenmessgeräts auf der Basis von silberverstärkter Fluoreszenz und sein Messverfahren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710104479.7A CN106908017B (zh) 2017-02-24 2017-02-24 基于金属银增强荧光的自由曲面测量装置及其测量方法
CN201710104479.7 2017-02-24

Publications (1)

Publication Number Publication Date
WO2018153282A1 true WO2018153282A1 (zh) 2018-08-30

Family

ID=59208822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/075939 WO2018153282A1 (zh) 2017-02-24 2018-02-09 基于金属银增强荧光的自由曲面测量装置及其测量方法

Country Status (3)

Country Link
CN (1) CN106908017B (zh)
DE (1) DE112018000986T5 (zh)
WO (1) WO2018153282A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106908017B (zh) * 2017-02-24 2019-03-29 哈尔滨工业大学 基于金属银增强荧光的自由曲面测量装置及其测量方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998057119A1 (en) * 1997-06-10 1998-12-17 Kla-Tencor Corporation Improved stylus profiler and array
CN104279984A (zh) * 2014-11-05 2015-01-14 哈尔滨工业大学 基于双光子方法测量光滑自由曲面样品装置和方法
CN104359419A (zh) * 2014-11-05 2015-02-18 哈尔滨工业大学 差动结构光大曲率样品微观形貌测量膜厚校正装置和方法
CN104677315A (zh) * 2015-03-05 2015-06-03 上海光刻电子科技有限公司 硅片表面不平整度测量方法
CN106908017A (zh) * 2017-02-24 2017-06-30 哈尔滨工业大学 基于金属银增强荧光的自由曲面测量装置及其测量方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080277595A1 (en) * 2007-05-10 2008-11-13 Pacific Biosciences Of California, Inc. Highly multiplexed confocal detection systems and methods of using same
CN103090787B (zh) * 2013-01-29 2016-01-20 哈尔滨工业大学 基于被测表面荧光激发的共焦显微测量装置
CN104296687A (zh) * 2014-11-05 2015-01-21 哈尔滨工业大学 基于荧光共焦显微技术的光滑大曲率样品测量装置与方法
CN104568873B (zh) * 2014-12-22 2017-11-24 中国科学院苏州生物医学工程技术研究所 一种对荧光物质进行成像的激光扫描共聚焦显微镜
CN205539686U (zh) * 2015-11-19 2016-08-31 江苏鼎云信息科技有限公司 一种小型扫描共聚焦光谱显微镜
CN105487214B (zh) * 2015-11-20 2018-02-13 浙江大学 一种快速三维超分辨率显微方法和装置
CN105319196B (zh) * 2015-11-30 2019-02-05 哈尔滨工业大学 一种超分辨结构探测共焦荧光成像装置及其成像方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998057119A1 (en) * 1997-06-10 1998-12-17 Kla-Tencor Corporation Improved stylus profiler and array
CN104279984A (zh) * 2014-11-05 2015-01-14 哈尔滨工业大学 基于双光子方法测量光滑自由曲面样品装置和方法
CN104359419A (zh) * 2014-11-05 2015-02-18 哈尔滨工业大学 差动结构光大曲率样品微观形貌测量膜厚校正装置和方法
CN104677315A (zh) * 2015-03-05 2015-06-03 上海光刻电子科技有限公司 硅片表面不平整度测量方法
CN106908017A (zh) * 2017-02-24 2017-06-30 哈尔滨工业大学 基于金属银增强荧光的自由曲面测量装置及其测量方法

Also Published As

Publication number Publication date
CN106908017A (zh) 2017-06-30
CN106908017B (zh) 2019-03-29
DE112018000986T5 (de) 2019-11-07

Similar Documents

Publication Publication Date Title
WO2016070768A1 (zh) 基于荧光共焦显微技术的光滑大曲率样品测量装置与方法
Kim et al. Fiber‐optic SERS probes fabricated using two‐photon polymerization for rapid detection of bacteria
JP5158552B1 (ja) 顕微鏡及び検査装置
Wong et al. High throughput and high yield nanofabrication of precisely designed gold nanohole arrays for fluorescence enhanced detection of biomarkers
US20180321442A1 (en) Optical fibers having metallic micro/nano-structure on end-facet, and fabrication method, and application method thereof
CN103344620B (zh) 双模式表面等离子体耦合发射荧光成像检测装置及方法
US8587786B2 (en) Method for high-resolution detection of nanoparticles on two-dimensional detector surfaces
CN106018379B (zh) 一种大面积表面增强拉曼散射基底及其制备方法
CN104296686A (zh) 基于荧光差动共焦技术的光滑大曲率样品测量装置与方法
Fernando et al. Optical and optoelectronic property analysis of nanomaterials inside transmission electron microscope
JP2019523865A (ja) シンギュラー・ビームを用いたダーク・フィールド・ウェファ・ナノ欠陥検査システム
US10139283B2 (en) Non-contact thermal measurements of VUV optics
CN104502326A (zh) 一种增强sers信号的定量分析方法及其应用
WO2018153282A1 (zh) 基于金属银增强荧光的自由曲面测量装置及其测量方法
JPH03115834A (ja) 薄い層の物理特性を検査する方法
TWI756287B (zh) 用於在透明基板上檢查缺陷的方法及裝置和發射入射光之方法
JP2013113747A (ja) しわのよったナノ多孔質金属箔
JP5673211B2 (ja) 光学式検体検出装置
JP2015008241A (ja) ビア形状測定装置及びビア検査装置
CN109443240A (zh) 一种基于中介层散射的激光三角光测量装置和方法
WO2022049979A1 (ja) 検査装置及び検査方法
JP2012052848A5 (ja) プローブ、プローブを備えた顕微鏡
CN202757591U (zh) 一种多碱光电阴极膜层厚度的测量系统
JP5345169B2 (ja) マスク検査装置及びマスク検査方法
JP2004028793A (ja) 薄膜の物性値測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18756667

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18756667

Country of ref document: EP

Kind code of ref document: A1