WO2018151293A1 - 遠心圧縮機 - Google Patents

遠心圧縮機 Download PDF

Info

Publication number
WO2018151293A1
WO2018151293A1 PCT/JP2018/005737 JP2018005737W WO2018151293A1 WO 2018151293 A1 WO2018151293 A1 WO 2018151293A1 JP 2018005737 W JP2018005737 W JP 2018005737W WO 2018151293 A1 WO2018151293 A1 WO 2018151293A1
Authority
WO
WIPO (PCT)
Prior art keywords
return
passage
fluid
flow path
flow
Prior art date
Application number
PCT/JP2018/005737
Other languages
English (en)
French (fr)
Inventor
穣 枡谷
寛史 樋口
Original Assignee
三菱重工コンプレッサ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工コンプレッサ株式会社 filed Critical 三菱重工コンプレッサ株式会社
Priority to US16/345,101 priority Critical patent/US11359633B2/en
Priority to EP18754032.3A priority patent/EP3514392B1/en
Publication of WO2018151293A1 publication Critical patent/WO2018151293A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • F04D17/122Multi-stage pumps the individual rotor discs being, one for each stage, on a common shaft and axially spaced, e.g. conventional centrifugal multi- stage compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4213Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps suction ports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • F04D29/444Bladed diffusers

Definitions

  • the present invention relates to a centrifugal compressor having an intermediate suction passage.
  • the inflow angle of the gas is made approximately the same as the inlet angle of the return guide vane.
  • the second passage and the passage from the front impeller are separated by a partition wall provided on the inner surface of the casing up to the inlet of the return vane. Thereby, the inflow angle of the gas is made approximately the same as the inlet angle of the return guide vane.
  • Patent Document 2 it is engaged with the return vane in the flow path of the injection flow, and the main flow and the injection flow join at the rotational axis direction, and from the return vane leading edge in the radial direction A partition wall is provided to separate the main flow and the injection flow from the upstream side to a predetermined position on the inner peripheral side of the return vane front edge. This causes the main flow and the inlet flow to merge after being sufficiently decelerated by the return vanes, and to align the flow speed and direction at the junction.
  • the total pressure at the inlet of the intermediate suction passage also differs from the total pressure in the return passage. For this reason, it becomes difficult to maintain the pressure at the intermediate suction inlet, which is one of the guaranteed conditions of the compressor, and the pressure at the compressor inlet and outlet. Furthermore, since the fluid having a difference in total pressure flows into the next compression stage, the performance of the next compression stage may be degraded. For this reason, in a centrifugal compressor having an intermediate suction passage, it is preferable to make the total pressure in the intermediate suction passage and the total pressure in the return passage approximately the same.
  • the present invention solves the above-mentioned problems, and provides a centrifugal compressor capable of improving the operating efficiency and reducing the size by equalizing the total pressure of the intermediate suction passage and the total pressure of the return passage.
  • the purpose is to
  • the centrifugal compressor according to the present invention comprises an impeller rotating around a main shaft, and a main flow of fluid to be compressed by the impeller from the radial direction outer side of the main shaft with respect to the impeller.
  • a plurality of stages including a return flow passage having a return vane guiding inward in the direction, and a first curved flow passage connected to the downstream side of the return flow passage and converting the direction of the main flow to a direction along the main axis
  • a chamber which is formed in a scroll shape in view and through which a fluid sucked from the suction port for sucking in the fluid passes, and a fluid sucked from the suction port and passed through the chamber
  • a inlet guide vane for guiding said impeller, said inlet guide vane, characterized in that it is formed in the return vanes integral connected the return flow path.
  • the total pressure in the intermediate suction passage and the total pressure in the return passage can be made approximately the same to improve the operating efficiency and miniaturize.
  • the intermediate suction flow passage has a partition wall which partitions the return flow passage, and the partition wall is radially inner side from the radial direction outer side in a cross sectional view along the main shaft It is preferable that the thickness in the main axis direction becomes thinner toward the end.
  • the inlet guide vane integrated with the return vane can guide the sucked fluid to the impeller without disturbing the main flow.
  • the tip end of the partition wall is disposed at an intermediate portion between the second curved flow passage, which is the inlet of the return flow passage, and the first curved flow passage. preferable.
  • the total pressure in the intermediate suction passage and the total pressure in the return passage can be made approximately the same to improve the operating efficiency and miniaturize.
  • the chamber be accommodated within the outer diameter of the casing.
  • the total pressure in the intermediate suction flow passage and the total pressure in the return flow passage can be made approximately the same to improve the operating efficiency and miniaturize.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a compressor according to the present embodiment.
  • FIG. 2 is a cross-sectional view of an intermediate suction passage of the compressor according to the present embodiment.
  • FIG. 3 is a cross-sectional view taken along line AA of FIG.
  • FIG. 4 is a cross-sectional view taken along the line BB of FIG.
  • FIG. 5 is a graph showing an example of the pressure of the fluid.
  • FIG. 6 is a cross-sectional view of an intermediate suction passage of a conventional compressor.
  • FIG. 7 is a cross-sectional view taken along the line CC of FIG.
  • FIG. 8 is a cross-sectional view taken along line DD of FIG.
  • FIG. 9 is a graph showing an example of a conventional pressure distribution of fluid.
  • FIG. 10 is a graph showing an example of conventional fluid pressure.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a compressor according to the present embodiment.
  • the compressor 1 is a single-shaft, multistage compression centrifugal compressor.
  • the compressor 1 has a casing 2, a bearing portion 3, a main shaft 4 and a compression portion 5.
  • the casing 2 is a housing accommodating the bearing portion 3, the main shaft 4 and the compression portion 5.
  • the casing 2 has a suction port 21 and a discharge port 22.
  • the suction port 21 sucks fluid into the casing 2 via the suction flow channel 211.
  • the suction flow channel 211 is a flow channel of fluid between the suction port 21 and the compression unit 5.
  • the discharge port 22 discharges the fluid from the casing 2 via the discharge flow path 221.
  • the discharge flow path 221 is a flow path of fluid between the discharge port 22 and the compression unit 5. Inside the casing 2, there is a flow path between the suction port 21 and the discharge port 22 through which the fluid to be compressed flows.
  • the bearing portion 3 supports the main shaft 4 rotatably about an axis.
  • FIG. 2 is a cross-sectional view of an intermediate suction passage of the compressor according to the present embodiment.
  • FIG. 3 is a cross-sectional view taken along line AA of FIG.
  • the compression unit 5 compresses the fluid sucked from the suction port 21 and discharges the fluid from the discharge port 22.
  • the compression unit 5 has a plurality of stages of compression units 6. In the present embodiment, the compression unit 5 has a five-stage compression unit 6.
  • the plurality of stages of compression units 6 are arranged in series between the suction flow channel 211 and the discharge flow channel 221.
  • the first-stage compression unit 6 is connected to the suction flow channel 211.
  • the fifth stage compression unit 6 is connected to the discharge flow path 221. Since the plurality of stages of compression units 6 are configured similarly, the second stage compression unit 6 in which the intermediate suction unit 7 is disposed will be described, and the description of the other compression units 6 will be omitted.
  • the compression unit 6 is disposed in the first curved channel 61, the impeller 62 disposed in the first curved channel 61, the return channel 63 connected to the compression unit 6 in the previous stage, and the return channel 63. And a return vane 64.
  • the first curved channel 61 converts the flow direction of the fluid by 90 ° in the direction along the main shaft 4.
  • the first bending channel 61 has an upstream bending portion 611 and a downstream bending portion 612.
  • the upstream bending portion 611 diverts the flow of fluid in a direction along the axial direction.
  • the downstream bend 612 diverts the flow of fluid from radially inward to outward.
  • the first curved flow path 61 of the first-stage compression unit 6 is connected to the suction flow path 211 on the upstream side, and connected to the return flow path 63 of the second-stage compression unit 6 on the downstream side.
  • the first bent flow path 61 of the second and subsequent stages of the compression unit 6 is connected on the upstream side to the downstream side of the return flow path 63 and on the downstream side to the upstream side of the return flow path 63 of the next stage compression unit 6 There is.
  • the fluid that has passed through the first curved flow channel 61 flows into the compression unit 6 of the next stage.
  • the impeller 62 is fixed to the main shaft 4.
  • the impeller 62 has a large number of blades 621 disposed on its surface.
  • the impeller 62 rotates in conjunction with the main shaft 4 to deliver the fluid flowing into the first curved flow channel 61 toward the return flow channel 63.
  • the return flow passage 63 allows the fluid to flow radially inward from the radially outer side with respect to the impeller 62 of the compression unit 6.
  • the return flow path 63 has a second curved flow path 631 which is an inlet portion of the return flow path 63.
  • the return channel 63 diverts the fluid 180 ° in the second curved channel 631 from the radially outer side to the inward direction.
  • the upstream side of the return channel 63 is connected to the downstream side of the first curved channel 61 of the compression unit 6 in the previous stage, and the downstream side is connected to the upstream side of the first curved channel 61.
  • the fluid that has passed through the return channel 63 flows into the first curved channel 61.
  • the return vanes 64 guide the fluid to the impeller 62.
  • the return vanes 64 rectify the fluid flowing in the return flow path 63. More specifically, the return vanes 64 guide the fluid flowing through the return flow path 63 to the inner side in the radial direction, in other words, to the main shaft 4 side.
  • the return vanes 64 are arranged at equal intervals in the circumferential direction of the return flow path 63. In other words, the return vanes 64 are disposed on the entire circumference of the return flow passage 63 at predetermined intervals in the rotational direction of the main shaft 4.
  • the return vanes 64 are disposed apart from the circumferentially adjacent return vanes 64.
  • the return vanes 64 are plate-like members extending in the radial direction. More specifically, the return vanes 64 are airfoils having curved curved surfaces.
  • the compression unit 5 is configured by the plurality of stages of compression units 6 having such a configuration.
  • the first-stage compression unit 6 compresses the fluid flowing in from the suction flow channel 211 and causes the fluid to flow into the second-stage compression unit 6.
  • the compression units 6 in the second and subsequent stages compress the fluid that has flowed in from the compression unit 6 in the previous stage and cause the fluid to flow into the compression unit 6 in the next stage.
  • the fifth-stage compression unit 6 compresses the fluid that has flowed in from the fourth-stage compression unit 6 and discharges it from the discharge flow path 221.
  • FIG. 4 is a cross-sectional view taken along the line BB of FIG.
  • the intermediate suction unit 7 merges the sucked fluid with the main flow which is the fluid flowing through the return channel 63.
  • the intermediate suction unit 7 is connected to the second-stage compression unit 6.
  • the middle suction unit 7 has a middle suction port (suction port) 71, a middle suction flow path 72, and an IGV 73 disposed in the middle suction flow path 72.
  • the middle suction port 71 is disposed along the circumferential direction of the scroll of the middle suction passage 72.
  • the middle suction port 71 is disposed on the outer periphery of the casing 2.
  • the middle suction port 71 extends in a direction parallel to the radial direction.
  • the downstream side of the intermediate suction port 71 is connected to the upstream side of the intermediate suction passage 72.
  • the intermediate suction port 71 is disposed upward at the upper left portion of the intermediate suction flow passage 72 in the axial direction view of the main shaft 4 (hereinafter referred to as “axial direction view”). ing.
  • the intermediate suction passage 72 is connected to the return passage 63.
  • the intermediate suction passage 72 joins the fluid sucked from the intermediate suction port 71 to the main flow.
  • the intermediate suction passage 72 has a scroll shape as viewed in the axial direction. In the middle suction passage 72, the entire scroll is accommodated within the outer diameter of the casing 2.
  • the intermediate suction passage 72 has a chamber 721 and an inflow passage 722.
  • the chamber 721 is formed in a scroll shape. In the present embodiment, the chamber 721 forms a counterclockwise scroll when viewed in the axial direction.
  • the chamber 721 passes the fluid sucked from the middle suction port 71.
  • the radially outer side of the chamber 721 communicates with the middle suction port 71.
  • the chamber 721 communicates with the inflow passage 722 radially inward.
  • the radially inner side wall 721 a of the chamber 721 is located slightly radially outward of the front edge 732 of the IGV 73.
  • the inflow path 722 communicates the radial inner side of the chamber 721 with the return flow path 63.
  • a side wall (partition wall) 723 of the intermediate suction passage 72 partitions the return passage 63 and the intermediate suction passage 72.
  • the side wall 723 is formed to be thinner in thickness from the radially outer side toward the radially inner side in a cross-sectional view along the main axis. In other words, the side wall 723 is formed in a wedge shape in a cross-sectional view along the main axis.
  • the inner diameter end (tip) 723 a of the side wall 723 is located at the radial center of the return vane 64.
  • the intermediate suction passage 72 is connected to the return passage 63 at the radial center of the return vane 64.
  • a connection portion between the return flow path 63 and the intermediate suction flow path 72 is disposed at an intermediate portion between the second curved flow path 631 of the return flow path 63 and the first curved flow path 61.
  • the IGV 73 guides the fluid that has passed through the suction chamber 721 to the impeller 62 of the compression unit 6.
  • the IGV 73 is integral with the return vane 64.
  • the term “integral” includes that the IGV 73 and the return vane 64 are an integral body, and that the IGV 73 and the return vane 64 are combined and integrated.
  • the IGV 73 and the return vanes 64 are disposed at the same position and at the same distance in the circumferential direction.
  • the IGV 73 is an airfoil matched to the airfoil of the return vane 64. More specifically, the IGV 73 has the same shape as the trailing edge 641 to the center of the return vane 64.
  • the leading edge 732 of the IGV 73 is blunt with a blunt tip.
  • the trailing edge 731 of the IGV 73 and the trailing edge 641 of the return vane 64 are arranged at the same position in the axial direction.
  • the IGV 73 and the return vanes 64 are disposed so as to overlap with each other in the axial direction.
  • the side wall 723 of the intermediate suction passage 72 is not interposed between the integrated IGV 73 and the return vane 64.
  • the end faces of the blade surfaces in the axial direction are in contact with each other.
  • the compressor 1 rotates the impellers 62 of all the compression units 6 in conjunction with the main shaft 4. Thereby, the fluid is sucked from the suction port 21 and flows into the first curved flow channel 61 of the compression unit 6 through the suction flow channel 211. The fluid is then pressurized by the impeller 62. Then, the fluid is delivered from the first curved flow channel 61 to the return flow channel 63 of the compression unit 6 of the next stage.
  • the compressor 1 sucks the fluid from the middle suction flow passage 72 of the middle suction unit 7.
  • the sucked fluid is rectified by the IGV 73 while passing through the intermediate suction passage 72, and merges with the main flow around the entire circumference.
  • the fluid in which the fluids sucked in by the intermediate suction unit 7 join together flows into the first curved flow channel 61.
  • the fluid is then pressurized by the impeller 62.
  • the compressor 1 discharges the fluid compressed by the plurality of stages of compression units 6 from the discharge port 22 of the discharge flow channel 221.
  • the return flow channel 63 and the intermediate suction flow channel 72 are at positions away from the second curved flow channel 631 of the return flow channel 63, and the first curved flow channel It connects at the position away from the bending part 611 of the upstream of 61.
  • FIG. the static pressure of the return flow path 63 on the hub side and the static pressure of the intermediate suction flow path 72 on the shroud side become approximately the same.
  • FIG. 5 is a graph showing an example of the pressure of the fluid.
  • the static pressure on the hub side is high, and the static pressure on the shroud side is low.
  • the static pressure of the return flow path 63 on the hub side and the intermediate suction flow path on the shroud side It is almost the same as the static pressure of 72.
  • the static pressure of the return flow channel 63 and the static pressure of the intermediate suction flow channel 72 become approximately the same.
  • each flow velocity is made to be equal.
  • the same dynamic pressure is applied to the static pressure of the return flow passage 63 and the static pressure of the intermediate suction flow passage 72, and the total pressure of the return flow passage 63 and the total pressure of the intermediate suction flow passage 72 are calculated. It is derived that the total pressure is equivalent as shown in.
  • the total pressure of the return flow channel 63 and the total pressure of the intermediate suction flow channel 72 can be made approximately the same.
  • the present embodiment since the total pressure of the return passage 63 and the total pressure of the intermediate suction passage 72 are substantially the same, the pressure balance between the inlet and the outlet of the compressor 1 and the intermediate suction inlet is maintained. Further, according to the present embodiment, since the fluid having no difference in total pressure flows into the compression unit 6 of the next stage, the performance of the impeller 62 of the compression unit 6 of the next stage can be maintained. Thus, the present embodiment can improve the operating efficiency of the compressor 1.
  • FIG. 6 is a cross-sectional view of an intermediate suction passage of a conventional compressor.
  • FIG. 7 is a cross-sectional view taken along the line CC of FIG.
  • FIG. 8 is a cross-sectional view taken along line DD of FIG.
  • FIG. 9 is a graph showing an example of a conventional pressure distribution of fluid.
  • FIG. 10 is a graph showing an example of conventional fluid pressure.
  • the conventional compressor 100 differs from the compressor 1 in the configuration of the connection portion between the return flow path 163 and the intermediate suction flow path 172.
  • the compression unit 160 is configured in the same manner as the compression unit 6 of the present embodiment. More specifically, the return flow path 163 is configured in the same manner as the return flow path 63 of the present embodiment. As shown in FIG. 7, the return vanes 164 are configured similarly to the return vanes 64 of the present embodiment.
  • the middle suction unit 170 is different from the middle suction unit 7 in the middle suction passage 172 and the IGV 173. As shown in FIG. 8, the intermediate suction passage 172 is line-symmetrical in an axial direction view.
  • the IGV 173 has different airfoils depending on the circumferential position. More specifically, the pair of IGVs 173 which are in a symmetrical relationship with respect to the target axis are provided with axisymmetrical airfoils.
  • the IGV 173 and the return vanes 164 have different airfoils and arrangements.
  • a sidewall 1721 of the intermediate suction passage 172 is interposed between the IGV 173 and the return vane 164.
  • the inner diameter end 173 a of the side wall 1721 is positioned in radial alignment with the trailing edge 1641 of the return vane 164 and the trailing edge 1731 of the IGV 173.
  • the inner diameter end 173 a of the side wall 1721 is close to the upstream bending portion 1611 of the bending flow channel 161.
  • the connection between the return flow path 163 and the intermediate suction flow path 172 is close to the bending portion 1611 on the upstream side of the bending flow path 161.
  • the total pressure of the return flow path 163 and the total pressure of the intermediate suction flow path 172 calculated by applying the same dynamic pressure to the static pressure of the return flow path 163 and the static pressure of the intermediate suction flow path 172 are shown in FIG. It will be. That is, the total pressure of the intermediate suction passage 172 becomes lower than the total pressure of the return passage 163. If the difference between the total pressure of the return flow path 163 and the total pressure of the intermediate suction flow path 172 is large, the total pressure at the inlet of the intermediate suction flow path 172 is lower than the total pressure of the return flow path 163. In this case, in the conventional compressor 100, it becomes difficult to maintain the pressure balance between the inlet and the outlet of the compressor 100 and the intermediate suction inlet. Furthermore, in the conventional compressor 100, a fluid having a difference in total pressure may flow into the compression unit 160 of the next stage, and the performance of the compression unit 160 of the next stage may be degraded.
  • the wing shape of the IGV 173 and the return vane 164 is different, and the cross-sectional shape of the wing surface is different.
  • the side wall 1721 of the intermediate suction passage 172 is not interposed between the IGV 173 and the return vane 164, the end face of the wing face of the IGV 173 and the end face of the wing face of the return vane 164 are in the fluid.
  • the bending direction of the airfoil is different from the bending direction of the airfoil of the return vane 164.
  • the side wall 1721 of the intermediate suction passage 172 is not interposed between the IGV 173 and the return vane 164, the flow of the main flow may be disturbed and the performance of the compression unit 160 may be degraded.
  • the IGV 73 which is integral with the return vane 64 can join the sucked fluid to the main flow and guide it to the impeller 62 without disturbing the main flow.
  • the scroll of the intermediate suction passage 72 is accommodated within the outer diameter of the casing 2.
  • this embodiment can arrange middle suction unit 7 which has IGV73 which is integral with return vane 64, without enlarging the whole.
  • the radially inner side wall 721 a of the chamber 721 is located slightly radially outward of the front edge 732 of the IGV 73.
  • the intermediate suction unit 7 can be disposed without increasing the outer diameter of the casing 2.
  • the casing 2 that occupies a large proportion of the cost of the compressor 1 is not upsized, the cost can be reduced.
  • the chamber 721 of the intermediate suction passage 72 is formed in a scroll shape. Therefore, even if the inflow condition including the flow rate and the rotation speed of the fluid sucked from the intermediate suction unit 7 changes, the present embodiment makes the inflow angle to the front edge 732 of the IGV 73 a predetermined angle along the circumferential direction of the scroll. You can keep it. Thereby, this embodiment can suppress that the inflow angle to the front edge of the return vane 64 changes, even if the inflow conditions of the fluid inhaled change.
  • the inflow angle of the IGV 73 into the leading edge 732 changes when the inflow condition of the fluid to be sucked changes. Thereby, the inflow angle to the front edge of the return vane 64 also changes.
  • the side wall 723 is formed in a wedge shape in a cross-sectional view along the main axis. Thereby, generation of a wake from inner diameter end 723a can be suppressed. Moreover, by making the thickness on the radially outer side of the side wall 723 thicker than the inner diameter end 723 a, the strength of the side wall 723 can be enhanced. Furthermore, by making the thickness on the radially outer side of the side wall 723 thicker than the inner diameter end 723a, manufacturing including cutting and casting can be facilitated.
  • the intermediate suction unit 7 is described as being connected to the second-stage compression unit 6, but is not limited thereto.
  • the intermediate suction unit 7 may be connected to any compression unit 6.
  • the intermediate suction unit 7 may be connected to a plurality of compression units 6.
  • Compressor centrifugal compressor
  • Reference Signs List 2 casing 4 main shaft 5 compression unit 6 compression unit 61 first bending flow channel 611 upstream bending section 612 downstream bending section 62 impeller 63 return flow channel 631 second bending flow channel 64 return vane 641 trailing edge 7 middle suction unit 71 Middle suction port (suction port) 72 Middle suction passage 721 Chamber 722 Inflow passage 723 Side wall (partition wall) 723a Inner diameter end 73 IGV (inlet guide vane) 731 trailing edge 732 leading edge

Abstract

主軸(4)回りに回転するインペラと、インペラで圧縮する対象の流体の主流を、インペラに対して主軸(4)の径方向外側から径方向内側に案内するリターンベーン(64)を有するリターン流路(63)と、リターン流路(63)の下流側と接続され、主流の方向を主軸(4)に沿った方向に転換する第一曲がり流路(61)とを有する複数段の圧縮ユニット(6)と、少なくともいずれか一段の圧縮ユニット(6)のリターン流路(63)と接続され、吸い込んだ流体を主流に合流させる中間吸込流路(72)とを備え、中間吸込流路(72)は、スクロール形状に形成されたチャンバ(721)と、吸い込んだ流体を、インペラに案内するIGV(73)を有し、IGV(73)は、接続されたリターン流路(63)のリターンベーン(64)と一体である。

Description

遠心圧縮機
 本発明は、中間吸込流路を有する遠心圧縮機に関する。
 多段遠心圧縮機では、二段目以降の圧縮段へ流入する主流に、中間吸込流路から注入流を合流させる技術が知られている(例えば、特許文献1、特許文献2参照)。
特開昭57-206080号公報 特開平09-144698号公報
 中間吸込流路を有する遠心圧縮機では、ガスの流入角をリターンガイドベーンの入口角と同程度にすることが好ましい。特許文献1に記載の技術では、第2の通路と前段羽根車からの通路とが、リターンベーンの入口部まで、ケーシングの内面に設けられた仕切壁によって仕切られている。これにより、ガスの流入角をリターンガイドベーンの入口角と同程度にする。また、特許文献2に記載の技術では、注入流の通路におけるリターンベーンに係合され、かつ回転軸方向では主流と注入流が合流する位置にあり、半径方向ではリタ-ンベ-ン前縁より上流側からリタ-ンベ-ン前縁よりも内周側の所定位置まで主流と注入流を分離するように設置された仕切壁を備えている。これにより、主流と注入流がリターンベーンにより十分に減速された後に合流し、かつ合流部における流れの速さおよび方向の整合を取る。
 また、中間吸込流路の全圧とリターン流路の全圧との差が大きいと、中間吸込流路の入口の全圧もリターン流路の全圧から差が生じる。このため、圧縮機の保証条件の一つである中間吸込入口の圧力と圧縮機入口と出口の圧力バランスを保つことが困難になる。さらに、全圧に差がある流体が次の圧縮段に流入するので、次の圧縮段の性能が低下するおそれがある。このため、中間吸込流路を有する遠心圧縮機では、中間吸込流路の全圧とリターン流路の全圧とを同程度にすることが好ましい。
 さらにまた、ケーシング全体の径を小さく抑え、遠心圧縮機のコストを低減することが好ましい。
 本発明は上述した課題を解決するものであり、中間吸込流路の全圧とリターン流路の全圧とを同程度にして運転効率を向上し、小型化することができる遠心圧縮機を提供することを目的とする。
 上述の目的を達成するために、本発明の遠心圧縮機は、主軸回りに回転するインペラと、前記インペラで圧縮する対象の流体の主流を、前記インペラに対して前記主軸の径方向外側から径方向内側に案内するリターンベーンを有するリターン流路と、前記リターン流路の下流側と接続され、前記主流の方向を前記主軸に沿った方向に転換する第一曲がり流路とを有する複数段の圧縮ユニットと、少なくともいずれか一段の前記圧縮ユニットの前記リターン流路と接続され、吸い込んだ流体を前記主流に合流させる中間吸込流路とを備え、前記中間吸込流路は、前記主軸の軸線方向視においてスクロール形状に形成され、流体を吸い込む吸込口から吸い込んだ流体が通過するチャンバと、前記吸込口から吸い込み前記チャンバを通過した流体を前記インペラに案内するインレットガイドベーンとを有し、前記インレットガイドベーンは、接続された前記リターン流路の前記リターンベーンと一体に形成されていることを特徴とする。
 この構成によれば、中間吸込流路の全圧とリターン流路の全圧とを同程度にして運転効率を向上し、小型化することができる。
 本発明の遠心圧縮機においては、前記中間吸込流路は、前記リターン流路とを仕切る仕切壁を有し、前記仕切壁は、前記主軸に沿った断面視において、径方向外側から径方向内側に向かうに連れて前記主軸方向の厚さが薄くなることが好ましい。
 この構成によれば、リターンベーンと一体であるインレットガイドベーンで、主流の流れを乱さずに、吸い込んだ流体をインペラに案内することができる。
 本発明の遠心圧縮機においては、前記仕切壁の先端部は、前記リターン流路の入口部である第二曲がり流路と、前記第一曲がり流路との中間部に配置されていることが好ましい。
 この構成によれば、中間吸込流路の全圧とリターン流路の全圧とを同程度にして運転効率を向上し、小型化することができる。
 本発明の遠心圧縮機においては、前記中間吸込流路は、前記チャンバがケーシングの外径内に収容されていることが好ましい。
 この構成によれば、遠心圧縮機を大型化することなく、リターンベーンと一体であるインレットガイドベーンを有する中間吸込流路を適用することができる。
 本発明によれば、中間吸込流路の全圧とリターン流路の全圧とを同程度にして運転効率を向上し、小型化することができる。
図1は、本実施形態に係る圧縮機の概略構成を示す断面図である。 図2は、本実施形態に係る圧縮機の中間吸込流路の断面図である。 図3は、図2のA-A線断面図である。 図4は、図2のB-B線断面図である。 図5は、流体の圧力の一例を示すグラフである。 図6は、従来の圧縮機の中間吸込流路の断面図である。 図7は、図6のC-C線断面図である。 図8は、図6のD-D線断面図である。 図9は、従来の流体の圧力の分布の一例を示すグラフである。 図10は、従来の流体の圧力の一例を示すグラフである。
 以下、本発明の実施の形態について、添付図面を参照して詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。さらに、以下に記載した構成要素は適宜組み合わせることが可能であり、また、実施形態が複数ある場合には、各実施形態を組み合わせることも可能である。
 図1を用いて、本実施形態の圧縮機(遠心圧縮機)1の概要について説明する。図1は、本実施形態に係る圧縮機の概略構成を示す断面図である。圧縮機1は、一軸で多段圧縮の遠心圧縮機である。圧縮機1は、ケーシング2と、軸受部3と、主軸4と、圧縮部5とを有する。
 ケーシング2は、軸受部3と主軸4と圧縮部5とを収容した筐体である。ケーシング2は、吸引口21と、吐出口22とを有する。吸引口21は、吸引流路211を介してケーシング2内に流体を吸引する。吸引流路211は、吸引口21と圧縮部5との間の流体の流路である。吐出口22は、吐出流路221を介してケーシング2から流体を吐出する。吐出流路221は、吐出口22と圧縮部5との間の流体の流路である。ケーシング2の内部には、吸引口21と吐出口22との間に、圧縮する対象の流体が流れる流路を有する。
 軸受部3は、主軸4を軸線回りに回転自在に軸支する。
 図1ないし図3を用いて、圧縮部5について説明する。図2は、本実施形態に係る圧縮機の中間吸込流路の断面図である。図3は、図2のA-A線断面図である。圧縮部5は、吸引口21から吸引した流体を圧縮し吐出口22から吐出する。圧縮部5は、複数段の圧縮ユニット6を有する。本実施形態では、圧縮部5は、五段の圧縮ユニット6を有する。
 複数段の圧縮ユニット6は、吸引流路211と吐出流路221との間に直列に配置されている。一段目の圧縮ユニット6は、吸引流路211と接続されている。五段目の圧縮ユニット6は、吐出流路221と接続されている。複数段の圧縮ユニット6は同様に構成されているため、中間吸込ユニット7が配置された二段目の圧縮ユニット6について説明し、その他の圧縮ユニット6の説明を省略する。
 圧縮ユニット6は、第一曲がり流路61と、第一曲がり流路61に配置されたインペラ62と、前段の圧縮ユニット6と接続されたリターン流路63と、リターン流路63に配置されたリターンベーン64とを有する。
 第一曲がり流路61は、流体の流れる方向を主軸4に沿った方向に90°転換する。第一曲がり流路61は、上流側の曲げ部611と下流側の曲げ部612とを有している。上流側の曲げ部611は、流体の流れるを軸線方向に沿った方向に転換させる。下流側の曲げ部612は、流体の流れるを径方向の内側から外側に向かう方向に転換させる。一段目の圧縮ユニット6の第一曲がり流路61は、上流側が吸引流路211と接続され、下流側が二段目の圧縮ユニット6のリターン流路63と接続されている。二段目以降の圧縮ユニット6の第一曲がり流路61は、上流側がリターン流路63の下流側と接続され、下流側が次段の圧縮ユニット6のリターン流路63の上流側と接続されている。第一曲がり流路61を通過した流体は、次段の圧縮ユニット6に流入する。
 インペラ62は、主軸4に固定されている。インペラ62は、表面に多数のブレード621が配置されている。インペラ62は、主軸4に連動して回転することで、第一曲がり流路61に流入する流体をリターン流路63に向けて送出する。
 リターン流路63は、流体を圧縮ユニット6のインペラ62に対して径方向外側から径方向内側に流入させる。リターン流路63は、リターン流路63の入口部である第二曲がり流路631を有する。リターン流路63は、第二曲がり流路631において、流体を、径方向の外側から内側に向かう方向に180°転換させる。リターン流路63は、上流側が前段の圧縮ユニット6の第一曲がり流路61の下流側と接続され、下流側が第一曲がり流路61の上流側と接続されている。リターン流路63を通過した流体は、第一曲がり流路61に流入する。
 リターンベーン64は、流体をインペラ62に案内する。リターンベーン64は、リターン流路63を流れる流体を整流する。より詳しくは、リターンベーン64は、リターン流路63を流れる流体を、径方向の内側、言い換えると、主軸4側に案内する。リターンベーン64は、リターン流路63の周方向に等間隔で配置されている。言い換えると、リターンベーン64は、主軸4の回転方向に所定の間隔で、リターン流路63の全周に配置されている。リターンベーン64は、周方向に隣接するリターンベーン64と離れて配置されている。リターンベーン64は、径方向に伸びた板状の部材である。より詳しくは、リターンベーン64は、湾曲した曲面を有する翼型である。これにより、リターン流路63に流入した流体は、リターンベーン64の間を通過して、インペラ62に到達する。
 このような構成の複数段の圧縮ユニット6で圧縮部5が構成されている。本実施形態では、一段目の圧縮ユニット6は、吸引流路211から流入した流体を圧縮し、二段目の圧縮ユニット6へ流入させる。二段目以降の圧縮ユニット6は、前段の圧縮ユニット6から流入した流体を圧縮し、次段の圧縮ユニット6に流入させる。五段目の圧縮ユニット6は、四段目の圧縮ユニット6から流入した流体を圧縮し、吐出流路221から吐出する。
 図1ないし図4に示すように、中間吸込ユニット7について説明する。図4は、図2のB-B線断面図である。中間吸込ユニット7は、吸い込んだ流体を、リターン流路63を流れる流体である主流に合流させる。本実施形態では、中間吸込ユニット7は、二段目の圧縮ユニット6と接続されている。中間吸込ユニット7は、中間吸込口(吸込口)71と、中間吸込流路72と、中間吸込流路72に配置されたIGV73とを有する。
 中間吸込口71は、中間吸込流路72のスクロールの周方向に沿って配置されている。中間吸込口71は、ケーシング2の外周に配置されている。中間吸込口71は、径方向と平行な方向に沿って延びている。中間吸込口71は、下流側が中間吸込流路72の上流側と接続されている。図4に示すように、本実施形態では、中間吸込口71は、主軸4の軸線方向視(以下、「軸線方向視」という。)において、中間吸込流路72の左上部に上向きに配置されている。
 中間吸込流路72は、リターン流路63と接続されている。中間吸込流路72は、中間吸込口71から吸い込んだ流体を主流に合流させる。中間吸込流路72は、軸線方向視においてスクロール形状である。中間吸込流路72は、スクロールの全体がケーシング2の外径内に収容されている。中間吸込流路72は、チャンバ721と流入路722とを有する。
 チャンバ721は、スクロール形状に形成されている。本実施形態では、チャンバ721は、軸線方向視において、反時計回りのスクロールを形成している。チャンバ721は、中間吸込口71から吸い込んだ流体が通過する。チャンバ721は、径方向外側が中間吸込口71と連通している。チャンバ721は、径方向内側が流入路722と連通している。チャンバ721の径方向の内側の側壁721aは、IGV73の前縁732よりわずかに径方向外側に位置している。
 流入路722は、チャンバ721の径方向の内側と、リターン流路63とを連通している。
 中間吸込流路72の側壁(仕切壁)723は、リターン流路63と中間吸込流路72とを仕切る。側壁723は、主軸に沿った断面視において、径方向外側から径方向内側に向かう連れて厚さが薄くなるように形成されている。言い換えると、側壁723は、主軸に沿った断面視において、くさび形状に形成されている。側壁723の内径端(先端)723aは、リターンベーン64の径方向の中央部に位置している。言い換えると、中間吸込流路72は、リターンベーン64の径方向の中央部において、リターン流路63と接続されている。リターン流路63と中間吸込流路72との接続部は、リターン流路63の第二曲がり流路631と第一曲がり流路61との中間部に配置されている。
 IGV73は、吸い込みチャンバ721を通過した流体を圧縮ユニット6のインペラ62に案内する。IGV73は、リターンベーン64と一体である。一体であるとは、IGV73とリターンベーン64とが一体物であることと、IGV73とリターンベーン64とを組み合わせ一体化していることとを含む。IGV73とリターンベーン64とは、周方向において、同じ位置に同じ間隔で配置されている。IGV73は、リターンベーン64の翼型に合わせた翼型である。より詳しくは、IGV73は、リターンベーン64の後縁641から中央部までの翼型と同じ形状である。IGV73の前縁732は、先端部を丸くした鈍頭状である。IGV73の後縁731とリターンベーン64の後縁641とは、軸線方向視において、同じ位置に配置されている。IGV73とリターンベーン64とは、軸線方向視において、重なり合って配置されている。
 一体であるIGV73とリターンベーン64との間には、中間吸込流路72の側壁723が介在していない。言い換えると、IGV73とリターンベーン64とは軸線方向の翼面の端面同士が接している。
 次に、上記構成を有する圧縮機1の作用および効果について説明する。
 圧縮機1は、主軸4に連動してすべての圧縮ユニット6のインペラ62を回転させる。これにより、流体は、吸引口21から吸入され、吸引流路211を介して圧縮ユニット6の第一曲がり流路61に流入する。そして、流体は、インペラ62で昇圧される。そして、流体は、第一曲がり流路61から次段の圧縮ユニット6のリターン流路63に送出される。
 圧縮機1は、中間吸込ユニット7の中間吸込流路72から流体を吸い込ませる。吸い込まれた流体は、中間吸込流路72を通過しながらIGV73で整流されて、全周において主流と合流する。
 そして、中間吸込ユニット7で吸い込まれた流体が合流した流体は、第一曲がり流路61に流入する。そして、流体は、インペラ62で昇圧される。
 このようにして、圧縮機1は、複数段の圧縮ユニット6で圧縮された流体を、吐出流路221の吐出口22から吐出させる。
 以上説明したように、本実施の形態によれば、リターン流路63と中間吸込流路72とは、リターン流路63の第二曲がり流路631から離れた位置、かつ、第一曲がり流路61の上流側の曲げ部611から離れた位置で接続している。これにより、本実施形態によれば、ハブ側のリターン流路63の静圧と、シュラウド側の中間吸込流路72の静圧とが同程度になる。
 図5を用いて、リターン流路63の圧力と中間吸込流路72の圧力とについて説明する。図5は、流体の圧力の一例を示すグラフである。第一曲がり流路61の上流側の曲げ部611においては、ハブ側の静圧が高く、シュラウド側の静圧が低い。しかしながら、リターン流路63と中間吸込流路72との接続部が上流側の曲げ部611から離れているので、ハブ側であるリターン流路63の静圧と、シュラウド側である中間吸込流路72の静圧とは同程度になる。このため、図5に示すように、本実施形態では、リターン流路63の静圧と中間吸込流路72の静圧とが同程度になる。
 さらに、リターン流路63と中間吸込流路72との接続部において、それぞれの流速が等しくなるようにしている。これにより、リターン流路63の静圧と中間吸込流路72の静圧とに同じ動圧を加え、リターン流路63の全圧と中間吸込流路72の全圧とを算出すると、図5に示すように、同等の全圧になっていることが導き出される。
 このように、本実施形態は、リターン流路63の全圧と中間吸込流路72の全圧とを同程度にすることができる。
 本実施形態は、リターン流路63の全圧と中間吸込流路72の全圧とが同程度であるので、圧縮機1の入口と出口と中間吸込入口との圧力バランスが保たれる。また、本実施形態によれば、次段の圧縮ユニット6には全圧の差がない流体が流入するので、次段の圧縮ユニット6のインペラ62の性能を維持することができる。このように、本実施形態は、圧縮機1の運転効率を向上することができる。
 これに対して、図6ないし図10を用いて、従来の圧縮機100について説明する。図6は、従来の圧縮機の中間吸込流路の断面図である。図7は、図6のC-C線断面図である。図8は、図6のD-D線断面図である。図9は、従来の流体の圧力の分布の一例を示すグラフである。図10は、従来の流体の圧力の一例を示すグラフである。図6に示すように、従来の圧縮機100は、リターン流路163と中間吸込流路172との接続部の構成が圧縮機1と異なる。
 圧縮ユニット160は、本実施形態の圧縮ユニット6と同様に構成されている。より詳しくは、リターン流路163は、本実施形態のリターン流路63と同様に構成されている。図7に示すように、リターンベーン164は、本実施形態のリターンベーン64と同様に構成されている。中間吸込ユニット170は、中間吸込流路172とIGV173とが中間吸込ユニット7と異なる。図8に示すように、中間吸込流路172は、軸線方向視において、線対称である。IGV173は、周方向の位置によって、翼型が異なる。より詳しくは、対象軸に対して対称関係にある一対のIGV173は、線対称の翼型が配置されている。これにより、IGV173とリターンベーン164とは、異なる翼型、配置である。図6に示すように、IGV173とリターンベーン164との間には、中間吸込流路172の側壁1721が介在している。側壁1721の内径端173aは、リターンベーン164の後縁1641およびIGV173の後縁1731と径方向において一致する位置に位置付けられている。
 さらに、側壁1721の内径端173aは、曲がり流路161の上流側の曲げ部1611に近接している。言い換えると、リターン流路163と中間吸込流路172との接続部は、曲がり流路161の上流側の曲げ部1611に近接している。これにより、図9に示すように、ハブ側のリターン流路163の静圧が高く、シュラウド側の中間吸込流路172の静圧が低くなる。
 さらに、リターン流路163の静圧と中間吸込流路172の静圧とに同じ動圧を加えて算出した、リターン流路163の全圧と中間吸込流路172の全圧は、図10のようになる。すなわち、中間吸込流路172の全圧がリターン流路163の全圧より低くなる。リターン流路163の全圧と中間吸込流路172の全圧との差が大きいと、中間吸込流路172の入口の全圧が、リターン流路163の全圧より低くなる。この場合、従来の圧縮機100は、圧縮機100の入口と出口と中間吸込入口との圧力バランスを保つことが困難になる。さらに、従来の圧縮機100は、全圧の差がある流体が次段の圧縮ユニット160に流入し、次段の圧縮ユニット160の性能が低下するおそれがある。
 しかも、従来の圧縮機100は、IGV173とリターンベーン164との翼型が異なり、翼面の断面形状が異なる。これにより、IGV173とリターンベーン164との間に中間吸込流路172の側壁1721が介在していていない構成にすると、IGV173の翼面の端面と、リターンベーン164の翼面の端面とが流体中に暴露してしまう。さらに、対称軸の片側に配置されたIGV173については、翼型の湾曲方向がリターンベーン164の翼型の湾曲方向と異なる。これにより、IGV173とリターンベーン164との間に中間吸込流路172の側壁1721が介在していていない構成とすると、主流の流れが乱れ、圧縮ユニット160の性能を低下させるおそれがある。
 これに対して、本実施形態は、リターンベーン64と一体であるIGV73で、主流の流れを乱さずに、吸い込んだ流体を主流に合流させてインペラ62に案内することができる。
 本実施形態によれば、中間吸込流路72のスクロールがケーシング2の外径内に収容されている。これにより、本実施形態は、全体を大型化することなく、リターンベーン64と一体であるIGV73を有する中間吸込ユニット7を配置することができる。
 本実施形態は、チャンバ721の径方向の内側の側壁721aが、IGV73の前縁732よりわずかに径方向外側に位置している。これにより、本実施形態では、ケーシング2の外径を大きくすることなく、中間吸込ユニット7を配置することができる。このように、本実施形態は、圧縮機1のコストの大きな割合を占めるケーシング2が大型化されないので、コストを低減することができる。
 これに対して、チャンバ721の径方向の内側の側壁721aが、IGV73の前縁732より大きく径方向外側に位置している場合、中間吸込ユニット7全体が径方向外側に位置することになり、ケーシング2の外径が大きくなる。
 本実施形態は、中間吸込流路72のチャンバ721がスクロール形状に形成されている。これにより、本実施形態は、中間吸込ユニット7から吸い込む流体の流量や回転数を含む流入条件が変化しても、IGV73の前縁732への流入角をスクロールの周方向に沿った所定角度に保つことができる。これにより、本実施形態は、吸い込む流体の流入条件が変化しても、リターンベーン64の前縁への流入角が変化することを抑制することができる。
 これに対して、中間吸込流路72のチャンバ721がスクロール形状ではない場合、吸い込む流体の流入条件が変化すると、IGV73の前縁732への流入角が変化する。これにより、リターンベーン64の前縁への流入角も変化する。
 本実施形態は、側壁723が、主軸に沿った断面視において、くさび形状に形成されている。これにより、内径端723aからの後流の発生を抑制することができる。しかも、側壁723の径方向外側の厚みを内径端723aより厚くすることで、側壁723の強度を高めることができる。さらにまた、側壁723の径方向外側の厚みを内径端723aより厚くすることで、切削や鋳造を含む製造を容易にすることができる。
 本実施形態において、中間吸込ユニット7は、二段目の圧縮ユニット6と接続されているものとして説明したがこれに限定されない。中間吸込ユニット7は、いずれの圧縮ユニット6と接続されていてもよい。中間吸込ユニット7は、複数の圧縮ユニット6と接続されていてもよい。
 1    圧縮機(遠心圧縮機)
 2    ケーシング
 4    主軸
 5    圧縮部
 6    圧縮ユニット
 61   第一曲がり流路
 611  上流側の曲げ部
 612  下流側の曲げ部
 62   インペラ
 63   リターン流路
 631  第二曲がり流路
 64   リターンベーン
 641  後縁
 7    中間吸込ユニット
 71   中間吸込口(吸込口)
 72   中間吸込流路
 721  チャンバ
 722  流入路
 723  側壁(仕切壁)
 723a 内径端
 73   IGV(インレットガイドベーン)
 731  後縁
 732  前縁

Claims (4)

  1.  主軸回りに回転するインペラと、
     前記インペラで圧縮する対象の流体の主流を、前記インペラに対して前記主軸の径方向外側から径方向内側に案内するリターンベーンを有するリターン流路と、
     前記リターン流路の下流側と接続され、前記主流の方向を前記主軸に沿った方向に転換する第一曲がり流路とを有する複数段の圧縮ユニットと、
     少なくともいずれか一段の前記圧縮ユニットの前記リターン流路と接続され、吸い込んだ流体を前記主流に合流させる中間吸込流路と
     を備え、
     前記中間吸込流路は、前記主軸の軸線方向視においてスクロール形状に形成され、流体を吸い込む吸込口から吸い込んだ流体が通過するチャンバと、前記吸込口から吸い込み前記チャンバを通過した流体を前記インペラに案内するインレットガイドベーンとを有し、
     前記インレットガイドベーンは、接続された前記リターン流路の前記リターンベーンと一体に形成されていることを特徴とする遠心圧縮機。
  2.  前記中間吸込流路は、前記リターン流路とを仕切る仕切壁を有し、
     前記仕切壁は、前記主軸に沿った断面視において、径方向外側から径方向内側に向かう連れて前記主軸方向の厚さが薄くなることを特徴とする請求項1に記載の遠心圧縮機。
  3.  前記仕切壁の先端部は、前記リターン流路の入口部である第二曲がり流路と、前記第一曲がり流路との中間部に配置されていることを特徴とする請求項2に記載の遠心圧縮機。
  4.  前記中間吸込流路は、前記チャンバがケーシングの外径内に収容されていることを特徴とする請求項2に記載の遠心圧縮機。
PCT/JP2018/005737 2017-02-20 2018-02-19 遠心圧縮機 WO2018151293A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/345,101 US11359633B2 (en) 2017-02-20 2018-02-19 Centrifugal compressor with intermediate suction channel
EP18754032.3A EP3514392B1 (en) 2017-02-20 2018-02-19 Centrifugal compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017029167A JP7085306B2 (ja) 2017-02-20 2017-02-20 遠心圧縮機
JP2017-029167 2017-02-20

Publications (1)

Publication Number Publication Date
WO2018151293A1 true WO2018151293A1 (ja) 2018-08-23

Family

ID=63170309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005737 WO2018151293A1 (ja) 2017-02-20 2018-02-19 遠心圧縮機

Country Status (4)

Country Link
US (1) US11359633B2 (ja)
EP (1) EP3514392B1 (ja)
JP (1) JP7085306B2 (ja)
WO (1) WO2018151293A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3757397A1 (en) * 2019-06-27 2020-12-30 Trane International Inc. System and method for unloading a multi-stage compressor

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6935312B2 (ja) * 2017-11-29 2021-09-15 三菱重工コンプレッサ株式会社 多段遠心圧縮機
FR3087855B1 (fr) * 2018-10-29 2020-11-13 Danfoss As Un turbocompresseur centrifuge ayant un trajet de flux de gaz comportant une chambre de detente
US11143201B2 (en) 2019-03-15 2021-10-12 Pratt & Whitney Canada Corp. Impeller tip cavity
JP2021134677A (ja) * 2020-02-25 2021-09-13 三菱重工業株式会社 遠心圧縮機
US11536277B2 (en) 2020-04-30 2022-12-27 Trane International Inc. Interstage capacity control valve with side stream flow distribution and flow regulation for multi-stage centrifugal compressors
US11391289B2 (en) 2020-04-30 2022-07-19 Trane International Inc. Interstage capacity control valve with side stream flow distribution and flow regulation for multi-stage centrifugal compressors
US11268536B1 (en) * 2020-09-08 2022-03-08 Pratt & Whitney Canada Corp. Impeller exducer cavity with flow recirculation
JP2022186266A (ja) * 2021-06-04 2022-12-15 三菱重工コンプレッサ株式会社 遠心圧縮機
US11841026B2 (en) 2021-11-03 2023-12-12 Trane International Inc. Compressor interstage throttle, and method of operating therof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57206800A (en) * 1981-06-15 1982-12-18 Hitachi Ltd Single shaft multi-stage centrifugal compressor
JPH0979192A (ja) * 1995-09-14 1997-03-25 Hitachi Ltd 多段遠心圧縮機とその段間注入流路構造
JPH09144698A (ja) * 1995-11-22 1997-06-03 Hitachi Ltd 中間吸込付き多段遠心圧縮機
JP2016056741A (ja) * 2014-09-10 2016-04-21 株式会社日立製作所 遠心式流体機械

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5930240Y2 (ja) * 1978-12-18 1984-08-29 株式会社荏原製作所 遠心式冷凍機
US4725196A (en) * 1986-09-19 1988-02-16 Hitachi, Ltd. Single-shaft multi-stage centrifugal compressor
JP3134109B2 (ja) * 1993-03-04 2001-02-13 株式会社日立製作所 多段遠心式圧縮機
DE59510130D1 (de) * 1995-07-31 2002-05-02 Man Turbomasch Ag Ghh Borsig Kompressionsvorrichtung
IT1392796B1 (it) * 2009-01-23 2012-03-23 Nuovo Pignone Spa Sistema reversibile di iniezione ed estrazione del gas per macchine rotative a fluido
JP6184018B2 (ja) * 2014-02-06 2017-08-23 三菱重工業株式会社 中間吸込型ダイアフラムおよび遠心回転機械
JP6653157B2 (ja) * 2015-10-30 2020-02-26 三菱重工サーマルシステムズ株式会社 遠心圧縮機械の戻り流路形成部、遠心圧縮機械
JP6642189B2 (ja) * 2016-03-29 2020-02-05 三菱重工コンプレッサ株式会社 遠心圧縮機
JP2017180237A (ja) * 2016-03-30 2017-10-05 三菱重工業株式会社 遠心圧縮機
JP7019446B2 (ja) * 2018-02-20 2022-02-15 三菱重工サーマルシステムズ株式会社 遠心圧縮機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57206800A (en) * 1981-06-15 1982-12-18 Hitachi Ltd Single shaft multi-stage centrifugal compressor
JPH0979192A (ja) * 1995-09-14 1997-03-25 Hitachi Ltd 多段遠心圧縮機とその段間注入流路構造
JPH09144698A (ja) * 1995-11-22 1997-06-03 Hitachi Ltd 中間吸込付き多段遠心圧縮機
JP2016056741A (ja) * 2014-09-10 2016-04-21 株式会社日立製作所 遠心式流体機械

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3757397A1 (en) * 2019-06-27 2020-12-30 Trane International Inc. System and method for unloading a multi-stage compressor
US11085684B2 (en) 2019-06-27 2021-08-10 Trane International Inc. System and method for unloading a multi-stage compressor

Also Published As

Publication number Publication date
JP7085306B2 (ja) 2022-06-16
US11359633B2 (en) 2022-06-14
US20190285072A1 (en) 2019-09-19
EP3514392B1 (en) 2020-12-23
EP3514392A1 (en) 2019-07-24
JP2018135768A (ja) 2018-08-30
EP3514392A4 (en) 2019-10-16

Similar Documents

Publication Publication Date Title
WO2018151293A1 (ja) 遠心圧縮機
US10400788B2 (en) Intermediate intake-type diaphragm and centrifugal rotating machine
US8939720B2 (en) Volute shaped pump casing for a centrifugal pump
US11073163B2 (en) Centrifugal compressor
US20150354588A1 (en) Centrifugal compressor
US10670025B2 (en) Centrifugal compressor
KR102073766B1 (ko) 배기가스 터보차저의 레이디얼 압축기의 압축기 휠
EP3567260B1 (en) Centrifugal rotary machine
US11215195B2 (en) Centrifugal compressor and turbo refrigerator
JP6651404B2 (ja) ターボ機械
US10844863B2 (en) Centrifugal rotary machine
US11187242B2 (en) Multi-stage centrifugal compressor
US20170350410A1 (en) Centrifugal compressor impeller
WO2019107488A1 (ja) 多段遠心圧縮機、ケーシング及びリターンベーン
JP6768172B1 (ja) 遠心圧縮機
JP2017057779A (ja) ターボチャージャ
JP2015075013A (ja) 遠心圧縮機
JP2019019695A (ja) 遠心圧縮機インペラ及び遠心圧縮機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18754032

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018754032

Country of ref document: EP

Effective date: 20190416

NENP Non-entry into the national phase

Ref country code: DE