WO2018151253A1 - マイクロ波電子管、ゲッタ、マイクロ波増幅装置及び電源 - Google Patents

マイクロ波電子管、ゲッタ、マイクロ波増幅装置及び電源 Download PDF

Info

Publication number
WO2018151253A1
WO2018151253A1 PCT/JP2018/005495 JP2018005495W WO2018151253A1 WO 2018151253 A1 WO2018151253 A1 WO 2018151253A1 JP 2018005495 W JP2018005495 W JP 2018005495W WO 2018151253 A1 WO2018151253 A1 WO 2018151253A1
Authority
WO
WIPO (PCT)
Prior art keywords
microwave
helix
electron
getter
power supply
Prior art date
Application number
PCT/JP2018/005495
Other languages
English (en)
French (fr)
Inventor
大志 益田
Original Assignee
Necネットワーク・センサ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necネットワーク・センサ株式会社 filed Critical Necネットワーク・センサ株式会社
Priority to JP2018568626A priority Critical patent/JP6904986B2/ja
Priority to US16/487,354 priority patent/US11270863B2/en
Priority to EP18754726.0A priority patent/EP3584819A4/en
Publication of WO2018151253A1 publication Critical patent/WO2018151253A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J25/00Transit-time tubes, e.g. klystrons, travelling-wave tubes, magnetrons
    • H01J25/34Travelling-wave tubes; Tubes in which a travelling wave is simulated at spaced gaps
    • H01J25/36Tubes in which an electron stream interacts with a wave travelling along a delay line or equivalent sequence of impedance elements, and without magnet system producing an H-field crossing the E-field
    • H01J25/38Tubes in which an electron stream interacts with a wave travelling along a delay line or equivalent sequence of impedance elements, and without magnet system producing an H-field crossing the E-field the forward travelling wave being utilised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/02Electrodes; Magnetic control means; Screens
    • H01J23/027Collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/02Electrodes; Magnetic control means; Screens
    • H01J23/08Focusing arrangements, e.g. for concentrating stream of electrons, for preventing spreading of stream
    • H01J23/087Magnetic focusing arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/12Vessels; Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/16Circuit elements, having distributed capacitance and inductance, structurally associated with the tube and interacting with the discharge
    • H01J23/24Slow-wave structures, e.g. delay systems
    • H01J23/26Helical slow-wave structures; Adjustment therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/34Circuit arrangements not adapted to a particular application of the tube and not otherwise provided for
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J25/00Transit-time tubes, e.g. klystrons, travelling-wave tubes, magnetrons
    • H01J25/34Travelling-wave tubes; Tubes in which a travelling wave is simulated at spaced gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J7/00Details not provided for in the preceding groups and common to two or more basic types of discharge tubes or lamps
    • H01J7/14Means for obtaining or maintaining the desired pressure within the vessel
    • H01J7/18Means for absorbing or adsorbing gas, e.g. by gettering
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/54Amplifiers using transit-time effect in tubes or semiconductor devices
    • H03F3/58Amplifiers using transit-time effect in tubes or semiconductor devices using travelling-wave tubes

Definitions

  • the present invention relates to an apparatus for amplifying microwaves.
  • microwave tube is a device for amplifying an input microwave (see Patent Document 1).
  • Patent Document 1 discloses a microwave tube including an electron gun unit, a high-frequency circuit unit, a collector unit, and a focusing device.
  • the electron gun unit includes a first heater and a second heater.
  • the first heater is for heating the cathode disposed in the vicinity of the cathode for generating the electron beam of the electron gun section.
  • the second heater is for gas adsorption having a second heater for heating in which one end is connected to the cathode and the other end is connected to the external lead wire of the cathode.
  • the second heater provided in the microwave tube getter disclosed in Patent Document 1 has one end connected to the cathode and the other end connected to an external lead wire of the cathode. Therefore, the power supply to the second heater varies due to the application of voltage to the cathode. For this reason, the microwave tube disclosed in Patent Document 1 can supply the second heater with the optimum power for the gas adsorption operation by the getter in both of the amplification operation of the microwave and the stop of the amplification operation. Have difficulty.
  • An object of the present invention is to provide a microwave tube or the like that can perform a gas adsorption operation by a getter satisfactorily regardless of a microwave amplification operation.
  • a microwave electron tube includes a helix in which microwaves can travel in a spiral tube from an input unit toward an output unit, an electron gun that emits an electron flow toward the helix, and the electron flow. And a focusing device that passes the vicinity of the helix toward the collector, the collector that absorbs the electron flow, and a getter that includes a heater that is insulated from a cathode of the electron gun.
  • the microwave tube or the like of the present invention can perform a gas adsorption operation by a getter satisfactorily regardless of the microwave amplification operation.
  • FIG. 1 is a block diagram showing a configuration of a microwave amplifying apparatus 100 that is an example of the microwave amplifying apparatus of the present embodiment.
  • the microwave amplification device 100 includes a microwave tube 901 and a power source 931.
  • the microwave tube 901 amplifies the input microwave.
  • the power source 931 supplies power to each component of the microwave tube 901.
  • FIG. 2 is a conceptual diagram showing a configuration of a microwave tube 101 which is an example of the microwave tube 901 shown in FIG. FIG. 2 shows a longitudinal section of the microwave tube 101.
  • the microwave tube 101 is a helix type traveling wave tube.
  • the helical traveling wave tube is described in, for example, Patent Document 1 and the like.
  • the microwave tube 101 includes an electron gun 51, a helix 17, a focusing device 15, a collector 16, a getter 31, a conductor member 26, and insulators 19b and 19c.
  • the electron gun 51 is a part that emits electrons in the direction of the helix 17.
  • the electron gun 51 includes a heater 11, a cathode 12, a Wehnelt electrode 13, an anode 14, and an insulator 19a.
  • the cathode 12, Wehnelt electrode 13, insulator 19a, and anode 14 are arranged coaxially.
  • the heater 11 heats the cathode 12 with electric power applied between the terminals KJ.
  • the heating temperature at which the heater 11 heats the cathode 12 is, for example, 1000 degrees.
  • the cathode 12 emits electrons from the electron emission surface 52 of the cathode 12 toward the anode 14 by heating by the heater 11 and a voltage applied between the terminals JG.
  • the terminal J is assumed to be connected to one terminal of a heater power supply 39, an anode power supply 30, a helix power supply 34, and a collector power supply 33, which will be described later with reference to FIG. Further, it is assumed that the terminal K is connected to the other terminal of the heater power supply 39 described later with reference to FIG.
  • the Wehnelt electrode 13 has a substantially cylindrical shape, and focuses electrons emitted from the electron emission surface 52 of the cathode 12 so as to pass through the opening 53 of the anode 14 and travel toward the helix 17.
  • the insulator 19a has, for example, a cylindrical shape.
  • the insulator 19 a insulates the cathode 12 and the Wehnelt electrode 13 from the anode 14.
  • the insulator 19a also keeps the interior space of the electron gun 51 and the periphery of the helix 17, the interior space of the collector 16, the periphery of the getter 31 and the like connected to the interior through the opening 53 in a vacuum. Seal to sag.
  • the internal space of the electron gun 51 is a space that is covered with the components of the electron gun 51 except for the opening 53.
  • the internal space of the collector 16 is a space in which a portion other than the opening of the collector 16 is covered by the configuration of the collector 16.
  • the internal space of the electron gun 51, the periphery of the helix 17, the internal space of the collector 16, the periphery of the getter 31, and the like will be referred to as “the periphery of the helix”.
  • the insulator 19a is, for example, ceramics.
  • Electrons emitted from the opening 53 of the electron gun 51 travel from the opening 53 toward the helix 17 and the collector 16 due to a voltage applied between the terminals JB.
  • the terminal G is assumed to be connected to the other terminal of the anode power source 30 described later with reference to FIG.
  • the focusing device 15 is, for example, a cylindrical magnet disposed concentrically with the electron gun 51.
  • the magnet is, for example, a permanent magnet.
  • the focusing device 15 shown in FIG. 2 is composed of two sets of cylindrical magnets. Note that the number of magnets constituting the focusing device 15 is not limited to two and is arbitrary.
  • the focusing device 15 advances the electrons so that the electrons emitted from the electron gun 51 travel in the direction of the collector 16 in the space near the helix 17 covered with the helical helix 17 by the generated magnetic field. Control the direction.
  • the helix 17 is formed by spirally forming a tubular elongated conductor having a hollow inside. From the input 61 of the helix 17, the microwave is input into the hollow tube. The input microwave travels along the spiral shape of the helix 17 in the tube of the helix 17 toward the output unit 62. When the microwave travels through the tube of the helix 17, it interacts with electrons emitted from the electron gun 51 and passing through a space near the helix 17. The microwave is amplified by the interaction. The amplified microwave is output from the output unit 62.
  • the collector 16 travels toward the collector 16 and absorbs electrons that collide with the collector 16. The energy of the colliding electrons is converted into heat. The converted heat is released from the surface of the collector 16 to the outside.
  • the terminal A of the collector 16 is connected to the terminal B.
  • the terminal B is assumed to be connected to the other terminal of the collector power supply 33 described later with reference to FIG.
  • the insulator 19b has a cylindrical shape and insulates the anode 14 and the conductor member 26 from each other.
  • the insulator 19b seals the periphery of the helix and the like together with other members in a vacuum.
  • the insulator 19b is ceramics, for example.
  • the conductor member 26 covers the periphery of the helix 17. And the conductor member 26 seals a helix periphery etc. to a vacuum with other members.
  • Terminal E of the conductor member 26 is connected to the terminal F.
  • Terminal F is assumed to be connected to ground.
  • the insulator 19c has, for example, a cylindrical shape and insulates the collector 16 and the conductor member 26 from each other.
  • the insulator 19c seals the periphery of the helix and the like together with other members in a vacuum.
  • the insulator 19c is, for example, ceramics.
  • the getter 31 is a non-evaporable getter.
  • the non-evaporable getter is described in Patent Document 1 and the like.
  • the getter 31 includes a heater 32.
  • the upper end of the heater 32 is connected to the terminal C of the conductor member 26. As described above, since the conductor member 26 is connected to the ground, the upper end of the heater 32 is connected to the ground. The lower end of the heater 32 is connected to the terminal D.
  • the terminal D is assumed to be connected to a terminal of the getter power supply 35 described later with reference to FIG. 4 that is not connected to the ground.
  • the heater 32 heats the getter material formed on the getter surface by the electric power applied between the terminals DF.
  • the heating temperature at which the heater 32 heats the getter material is, for example, several hundred degrees.
  • getter material a known porous material in which zirconium is the main component and vanadium, iron, or the like is added thereto can be used.
  • the getter 31 may have a getter material formed directly or indirectly on the surface of the heating part of the heater 32.
  • the getter 31 may be installed in a box-shaped getter room that is surrounded by a partition. However, the getter room does not completely block the getter 31 from the space such as the helix. The getter room prevents the getter 31 from coming into contact with another conductive member to which a predetermined potential is applied, such as the collector 16.
  • FIG. 3 is a perspective view showing a configuration of a getter room 27 which is an example of the above-described getter room.
  • FIG. 3 also shows the getter 31.
  • the getter room 27 has a rectangular parallelepiped-like shape, for example.
  • the getter room 27 includes surfaces 18a to 18e and an upper portion 48.
  • the surfaces 18a to 18e are made of, for example, a metal plate.
  • the upper part 48 has a lattice shape as shown in FIG.
  • the lattice-like portion is made of, for example, a metal wire.
  • the space inside the getter room 27 is connected to the space outside the getter room 27 by a gap between the lattices.
  • the getter 31 is fixed on the surface 18b.
  • the surface 18a has a configuration in which the insulators 28a and 28b are fitted into a metal plate or the like.
  • a hole 29a is formed in the insulator 28a, and a hole 29b is formed in the insulator 28b.
  • a heater (not shown) inside the getter 31 includes wire rods 38 a and 38 b that are electrically connected to each other inside the getter 31.
  • the wire 38a is connected to the outside of the getter room through the hole 29a, and the wire 38b is connected to the outside of the getter room.
  • FIG. 4 is a diagram illustrating a configuration of a power supply 131 that is an example of the power supply 931 illustrated in FIG.
  • the power source 131 includes a heater power source 39, an anode power source 30, a collector power source 33, a helix power source 34, a getter power source 35, and a control unit 36. Note that the small black circles shown in FIG. 4 represent the terminals of each power source. Each of the power supplies is supplied with electric power from the outside through a power line (not shown).
  • One terminal of the getter power supply 35 is assumed to be connected to the terminal D shown in FIG. Further, it is assumed that the other terminal of the getter power supply 35 is connected to a ground (not shown).
  • the control unit 36 is connected to each of the heater power supply 39, the anode power supply 30, the collector power supply 33, the helix power supply 34, and the getter power supply 35 by signal lines (not shown). And the control part 36 controls each said operation
  • the control includes on / off control of the power supplied by the getter power supply 35 between both terminals of the getter power supply 35, which is performed at a predetermined timing.
  • the getter power supply 35 turns on and off the power supplied between both terminals of the getter power supply 35 according to an instruction from the control unit 36.
  • the value of the supplied power is determined to be a power value corresponding to a temperature at which the getter 31 works effectively, for example, by measuring the temperature of the getter 31 and measuring the relationship between the temperature and the supplied power.
  • a temperature sensor (not shown) may be installed in the getter 31, and the temperature may be measured by the output of the temperature sensor.
  • the timing of turning on / off the power supplied between the two terminals of the getter power supply 35 by the getter power supply 35 is, for example, a fixed time interval.
  • the timing is, for example, a timing linked to the start of the microwave amplification operation by the microwave tube 101 shown in FIG. It is assumed that the degree of vacuum around the helix deteriorates with the amplification operation. Therefore, for example, the control unit 36 turns on the power supplied between the two terminals at the same time as the amplification operation starts or slightly before the start. In addition, at the end of the amplification operation or after the end, the power supplied between the terminals is turned off.
  • timing is, for example, a timing linked to a value representing the degree of vacuum.
  • the value representing the degree of vacuum is, for example, an output value of a vacuum gauge (not shown in FIG. 2) installed around the helix.
  • the control unit 36 turns on the power when the output value exceeds a predetermined threshold value indicating that the degree of vacuum is poor. And the control part 36 turns off the said electric power, when the said output value is less than the said threshold value.
  • the value representing the degree of vacuum is a helix current value sent from the helix power supply 34 to the control unit 36 through a signal path (not shown in FIG. 4).
  • the helix current value is a value of a current generated between the helix 17 and the conductive portion electrically connected to the helix 17 shown in FIG. 2 and a ground (not shown).
  • the helix current value for example, a current value generated between a conductive support (not shown) that supports the helix 17 and the ground is used.
  • an increase in the helix current value represents a decrease in the degree of vacuum.
  • the reason can be considered as follows. As the degree of vacuum in the microwave tube decreases, that is, the number of gas molecules in the tube increases, the probability that electrons and gas molecules collide increases. Then, the collision direction of electrons and gas molecules disturbs the traveling direction of the electron flow, and the probability of collision with the helix 17 or the conductive portion increases. As a result, the helix current increases due to a decrease in the degree of vacuum.
  • the control unit 36 when the helix current value exceeds a certain threshold, the control unit 36 turns on the power supplied between the terminals. For example, the control unit 36 turns off the power when the helix current value becomes equal to or less than the threshold value.
  • the on / off of the electric power by the control unit 36 as described above connects one terminal of the heater 32 shown in FIG. 2 to the ground, and further, the getter power source shown in FIG. This can be realized by a configuration in which power can be supplied by the power supply 35.
  • one terminal of the anode power supply 30 is connected to the terminal J shown in FIG. Further, it is assumed that the other terminal of the anode power supply 30 is connected to the terminal G shown in FIG.
  • one terminal of the getter power supply 35 is connected to the terminal D shown in FIG. Further, it is assumed that the other terminal of the getter power supply 35 is connected to a ground (not shown).
  • one terminal of the helix power supply 34 is connected to the terminal J shown in FIG. Further, it is assumed that the other terminal of the helix power supply 34 is connected to the ground.
  • the microwave tube 101 shown in FIG. 2 includes a getter 31 between the focusing device 15 and the collector 16.
  • the position of the getter included in the microwave tube of the present embodiment does not hinder the microwave amplification operation by the microwave tube 101, and as long as one terminal of the heater included in the getter can be connected to the ground, Is optional.
  • FIG. 5 is a conceptual diagram showing a configuration of a microwave tube 101a which is an example of the microwave tube of the present embodiment in which a getter is installed between the anode and the focusing device.
  • FIG. 5 shows a longitudinal section of the microwave tube 101a.
  • the getter 31 a is not formed between the collector 16 and the focusing device 15 but between the anode 14 and the focusing device 15.
  • the description of the microwave tube 101a is the same as the description of the microwave tube 101 shown in FIG. However, in the description, the getter 31 is read as the getter 31a, the heater 32 is read as the heater 32a, the terminal D is read as the terminal Da, and the terminal C is read as the terminal Ca.
  • a plurality of getters may be installed in the microwave tube of this embodiment.
  • FIG. 6 is a conceptual diagram showing a configuration of a microwave tube 101b which is an example of the microwave tube of the present embodiment in which getters are installed at two locations.
  • FIG. 6 shows a longitudinal section of the microwave tube 101b.
  • the microwave tube 101b includes two getters, a getter 31 and a getter 31a.
  • the microwave tube 101b can improve the degree of vacuum around the helix by providing two getters.
  • the description of the microwave tube 101b is the same as the description of the microwave tube 101 shown in FIG.
  • the description of the microwave tube 101b is the same as the description of the microwave tube 101a shown in FIG.
  • the description of the microwave tube 101b is the same as the description of the microwave tube 101 shown in FIG. However, in the description, the getter 31, the heater 32, the terminal D, and the terminal C are appropriately replaced as necessary. [Processing flow]
  • the control unit 36 illustrated in FIG. 4 performs the processing illustrated in any of FIGS.
  • FIG. 7 is a conceptual diagram illustrating a processing flow example (part 1) of processing performed by the control unit 36 illustrated in FIG.
  • the processing flow example illustrated in FIG. 7 is a processing flow example in which the control unit 36 causes the power supply unit 37 to repeat power supply and stop at regular intervals.
  • the control unit 36 starts the process shown in FIG. 7 when, for example, power necessary for the operation of the control unit 36 is supplied from the outside.
  • control part 36 instruct indicates the start of the electric power supply between the both terminals of the getter power supply 35 with respect to the power supply part 37 shown in FIG.
  • the power supply unit 37 starts supplying power between both terminals of the getter power supply 35.
  • the control unit 36 determines whether or not the time T1 has elapsed since the completion of the process of S101.
  • the time T1 is a predetermined time for the process of S102.
  • the control part 36 performs the process of S103, when the determination result by the process of S102 is yes.
  • control part 36 performs the process of S102 again, when the determination result by the process of S102 is no.
  • control unit 36 instructs the power supply unit 37 to stop the power supply between both terminals of the getter power supply 35 as the same process.
  • the power supply unit 37 stops the power supply between both terminals of the getter power supply 35.
  • control part 36 determines whether time T2 passed since the completion of the process of S103 as a process of S104.
  • the time T2 is a time predetermined for the process of S104.
  • the control unit 36 performs the process of S105 when the determination result by the process of S104 is yes.
  • control part 36 performs the process of S104 again, when the determination result by the process of S104 is no.
  • control unit 36 determines whether to end the process illustrated in FIG. 7 as the same process.
  • the control unit 36 performs the determination by, for example, determining whether there is input of end information from the outside.
  • the end information is input, for example, when the supply of external power necessary for the operation of the control unit 36 is stopped.
  • the control unit 36 terminates the process illustrated in FIG. 7 when the determination result of the process of S105 is yes.
  • control unit 36 performs the process of S101 again.
  • FIG. 8 is a conceptual diagram showing a processing flow example (part 2) of processing performed by the control unit 36 shown in FIG.
  • the processing flow example shown in FIG. 8 is a processing flow example in which the control unit 36 causes the power supply unit 37 to supply and stop power in conjunction with the microwave amplification operation by the microwave tube 101 shown in FIG.
  • the control unit 36 starts the processing illustrated in FIG. 8 when, for example, power necessary for the operation of the control unit 36 is supplied from the outside.
  • control part 36 determines whether the microwave amplification operation
  • the control unit 36 determines whether any one of the heater power supply 39, the anode power supply 30, the collector power supply 33, and the helix power supply 34 illustrated in FIG. 4 has started the voltage supply to the target portion. To do.
  • any one of the above-described power sources that determines whether the control unit 36 starts the voltage supply notifies the control unit 36 when the supply is started.
  • the control unit 36 performs the process of S202 when the determination result by the process of S201 is yes.
  • control part 36 performs the process of S201 again when the determination result by the process of S202 is no.
  • the control unit 36 instructs the power supply unit 37 illustrated in FIG. 4 to start power supply between both terminals of the getter power supply 35 as the same process.
  • the power supply unit 37 starts supplying power between both terminals of the getter power supply 35.
  • control part 36 determines whether the microwave amplification operation
  • the control unit 36 determines whether any one of the heater power supply 39, the anode power supply 30, the collector power supply 33, and the helix power supply 34 illustrated in FIG. 4 has finished supplying the voltage to the target portion. To do.
  • any one of the above-mentioned power sources for determining whether the control unit 36 has finished the voltage supply notifies the control unit 36 when the supply is completed.
  • the control part 36 performs the process of S204, when the determination result by the process of S203 is yes.
  • control part 36 performs the process of S203 again, when the determination result by the process of S203 is no.
  • control unit 36 instructs the power supply unit 37 illustrated in FIG. 4 to stop the power supply between both terminals of the getter power supply 35 as the same process.
  • the power supply unit 37 stops the power supply between both terminals of the getter power supply 35.
  • FIG. 9 is a conceptual diagram showing a processing flow example (part 3) of processing performed by the control unit 36 shown in FIG.
  • the processing flow example shown in FIG. 9 is a processing flow example in the case where the degree of vacuum inside the microwave tube 101 shown in FIG.
  • the control unit 36 starts the processing shown in FIG. 9 when, for example, power necessary for the operation of the control unit 36 is supplied from the outside.
  • the control part 36 determines whether the value showing the vacuum degree inside the microwave tube 101 shown in FIG. 2 is larger than threshold value Th as the process of S301.
  • the threshold value Th is a threshold value for a value representing a degree of vacuum set in advance for the process of S301 and the process of S303 described later.
  • the control part 36 performs the process of S302, when the determination result by the process of S301 is yes.
  • control part 36 performs the process of S301 again, when the determination result by the process of S302 is no.
  • control unit 36 instructs the power supply unit 37 illustrated in FIG. 4 to start power supply between both terminals of the getter power supply 35 as the same process.
  • the power supply unit 37 starts supplying power between both terminals of the getter power supply 35.
  • control part 36 determines whether the value showing the said vacuum degree is below threshold value Th as a process of S303.
  • the control unit 36 performs the process of S304 when the determination result by the process of S303 is yes.
  • control part 36 performs the process of S303 again when the determination result by the process of S303 is no.
  • control unit 36 instructs the power supply unit 37 illustrated in FIG. 4 to stop the power supply between both terminals of the getter power supply 35 as the same process.
  • the power supply unit 37 stops the power supply between both terminals of the getter power supply 35.
  • control part 36 determines whether the process shown in FIG. 9 is complete
  • the control unit 36 performs the determination by, for example, determining whether there is input of end information from the outside.
  • the end information is input, for example, when the supply of external power necessary for the operation of the control unit 36 is stopped.
  • the control unit 36 terminates the process illustrated in FIG. 9 when the determination result of the process of S305 is yes.
  • the control part 36 performs the process represented to S301 again, when the determination result by the process of S305 is no.
  • the getter heater provided in the microwave tube of the microwave tube of the present embodiment is driven by a getter power supply in a state where one terminal of the heater is not connected to the cathode but connected to the ground. Therefore, even when a predetermined cathode voltage is applied to the cathode for the operation of the electron gun or when the cathode voltage is not applied, it is possible to supply the same voltage to the heater and operate the heater. Therefore, the microwave tube can improve the degree of vacuum in the microwave tube favorably by the getter even during the microwave amplification operation. That is, the microwave tube of the present embodiment can satisfactorily perform the gas adsorption operation by the getter regardless of the microwave amplification operation.
  • the microwave tube disclosed in Patent Document 1 includes a getter inside the electron gun.
  • the getter of the microwave tube of this embodiment is set at a position closer to the helix, such as between the electron gun and the helix, or between the helix and the collector. Therefore, a more effective adsorption operation can be performed particularly for the gas released from the helix.
  • FIG. 10 is a block diagram showing the configuration of the microwave electron tube 101x, which is the minimum microwave tube configuration of the present embodiment.
  • the microwave electron tube 101x includes a helix 17x, an electron gun 51x, a focusing device 15x, a collector 16x, and a getter 31x.
  • microwaves can travel in a spiral tube from the input unit toward the output unit.
  • the electron gun 51x emits an electron stream toward the helix 17x.
  • the focusing device 15x causes the electron stream to pass through the vicinity of the helix 17x toward the collector 16x.
  • the collector 16x absorbs the electron flow.
  • the getter 31x includes a heater (not shown) that is insulated from the cathode of the electron gun 51x.
  • the microwave electron tube 101x In order for the microwave electron tube 101x to perform a microwave amplification operation, it is necessary to supply a voltage to a cathode (not shown) included in the electron gun 51x. However, the heater is not electrically connected to the cathode. Therefore, even when a predetermined voltage is applied to the electron gun 51x and the cathode, the getter 31x can supply power to the heater and perform a gas adsorption operation. Therefore, the microwave electron tube 101x can perform the gas adsorption operation by the getter while performing the microwave amplification operation.
  • the microwave electron tube 101x has the effects described in the section [Effects of the Invention] due to the above-described configuration.
  • Appendix 1 A helix that allows microwaves to travel through the spiral tube from the input to the output, An electron gun that emits an electron stream toward the helix; A focusing device for passing the electron stream toward the collector and in the vicinity of the helix; The collector that absorbs the electron stream; A getter comprising a heater insulated from a cathode of the electron gun; A microwave electron tube.
  • Appendix 2 The microwave electron tube according to appendix 1, wherein one terminal of the heater is electrically connected to a ground.
  • (Appendix 13) The microwave amplifying device according to attachment 12, wherein the control repeats the driving and the stopping of the driving.
  • (Appendix 14) The microwave amplifying device according to appendix 13, wherein the repetition is periodic.
  • (Appendix 15) 15. The microwave amplifying device according to any one of appendices 12 to 14, wherein the control starts the driving in conjunction with the start of microwave amplification by the microwave electron tube.
  • (Appendix 16) The microwave amplification device according to attachment 15, wherein the driving is started when a start determination is made to start the amplification.
  • (Appendix 17) The microwave amplification device according to appendix 16, wherein the start determination is performed based on a voltage or current value supplied to at least one of the electron gun, the helix, the focusing device, and the collector.
  • (Appendix 18) The microwave amplifying device according to any one of Appendix 15 to Appendix 17, wherein the control ends the driving in conjunction with the end of the amplification.
  • (Appendix 19) The control is started in conjunction with a vacuum value representing a degree of vacuum in any one of the internal space of the electron gun, the space around the helix, and the internal space of the collector. Or the microwave amplifying device according to any one of Supplementary Note 18.
  • (Appendix 20) The microwave amplifying apparatus according to appendix 19, wherein the control starts the driving when it is determined that the vacuum value represents deterioration of the degree of vacuum.
  • (Appendix 21) The microwave amplifying device according to appendix 19 or appendix 20, wherein the control terminates the driving in conjunction with the vacuum value.
  • (Appendix 22) The microwave amplifying apparatus according to appendix 21, wherein the control terminates the driving when it is determined that the vacuum value represents an improvement in the degree of vacuum.
  • Appendix 26 The power supply according to appendix 25, wherein the driving is started when the control makes a start determination to start the amplification.
  • Appendix 27 27.
  • Appendix 28 28.
  • a helix that allows microwaves to travel through the spiral tube from the input to the output, An electron gun that emits an electron stream toward the helix; A focusing device for passing the electron stream toward the collector and in the vicinity of the helix; The collector that absorbs the electron stream; A getter provided in a microwave electron tube provided with A control unit for controlling timing of driving a heater insulated from a cathode provided in the electron gun; The control starts the driving in conjunction with a vacuum value representing a degree of vacuum in any one of the internal space of the electron gun, the space around the helix, and the internal space of the collector. Power supply.
  • (Appendix 30) The power supply according to appendix 29, wherein the control starts the driving when it is determined that the vacuum value indicates deterioration of the degree of vacuum.
  • (Appendix 31) The power supply described in appendix 29 or appendix 30, wherein the control terminates the driving in conjunction with the vacuum value.
  • (Appendix 32) The power supply according to appendix 31, wherein the control terminates the driving when it is determined that the vacuum value represents an improvement in the degree of vacuum.
  • (Appendix 33) The power supply according to any one of supplementary notes 30 to 32, wherein the vacuum value is an output of a vacuum gauge installed in any of the above.
  • the appendix 29 to appendix 32, wherein the vacuum value is a value of a helix current flowing between the helix or the conductive portion electrically connected to the helix and the ground. Power supply.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microwave Tubes (AREA)

Abstract

マイクロ波の増幅動作に関係なくゲッタによるガス吸着動作を良好に行い得るマイクロ波管等の提供が課題である。当該課題を解決するためにマイクロ波電子管は、入力部から出力部に向けて螺旋状の管内をマイクロ波が進行し得るへリックスと、前記へリックスに向けて電子流を放出する電子銃と、前記電子流を、コレクタに向けて、前記へリックスの近傍を通過させる集束装置と、前記電子流を吸収する前記コレクタと、前記電子銃の備えるカソードと絶縁されたヒータを備える、ゲッタと、を備える。

Description

[規則37.2に基づきISAが決定した発明の名称] マイクロ波電子管、ゲッタ、マイクロ波増幅装置及び電源
 本発明はマイクロ波を増幅するための装置に関する。
 マイクロ波電子管(以下、「マイクロ波管」ともいう。)は、入力されたマイクロ波を増幅するための装置である(特許文献1参照)。
 特許文献1は、電子銃部と、高周波回路部と、コレクタ部と、集束装置とを備えるマイクロ波管を開示する。前記電子銃部は、第一のヒータと第二のヒータとを備える。前記第一のヒータは、前記電子銃部の前記電子ビーム発生用のカソードに近接して配置された前記カソードの加熱用のものである。前記第二のヒータは、内部に一端が前記カソードに接続され、他端が前記カソードの外部リード線に接続された加熱用の第2のヒータを有するガス吸着用のものである。
特開2002-25454号公報
 特許文献1が開示するマイクロ波管のゲッタが備える前記第二のヒータは、前述のように、一端が前記カソードに接続され、他端が前記カソードの外部リード線に接続される。そのため、カソードへの電圧の印加により、前記第二のヒータへの電力供給が変動する。そのため、特許文献1が開示するマイクロ波管は、マイクロ波の増幅動作中と増幅動作停止との両方の状態において、ゲッタによるガス吸着動作に最適な電力を前記第二のヒータに供給することが困難である。
 本発明は、マイクロ波の増幅動作に関係なくゲッタによるガス吸着動作を良好に行い得るマイクロ波管等の提供を目的とする。
 本発明のマイクロ波電子管は、入力部から出力部に向けて螺旋状の管内をマイクロ波が進行し得るへリックスと、前記へリックスに向けて電子流を放出する電子銃と、前記電子流を、コレクタに向けて、前記へリックスの近傍を通過させる集束装置と、前記電子流を吸収する前記コレクタと、前記電子銃の備えるカソードと絶縁されたヒータを備える、ゲッタと、を備える。
 本発明のマイクロ波管等は、マイクロ波の増幅動作に関係なくゲッタによるガス吸着動作を良好に行い得る。
本実施形態のマイクロ波増幅装置の構成を表す概念図である。 本実施形態のマイクロ波管の縦断面例を表す概念図である。 ゲッタルームの構成例を表す斜視図である。 電源の構成例を表す図である。 アノードと集束装置との間にゲッタを設置した本実施形態のマイクロ波管の構成例を表す概念図である。 二箇所にゲッタを設置した本実施形態のマイクロ波管の構成例を表す概念図である。 制御部が行う処理の処理フロー例(その1)を表す概念図である。 制御部が行う処理の処理フロー例(その2)を表す概念図である。 制御部が行う処理の処理フロー例(その3)を表す概念図である。 本発明の最小限のマイクロ波管の構成を表すブロック図である。
 図1は、本実施形態のマイクロ波増幅装置の例であるマイクロ波増幅装置100の構成を表すブロック図である。
 マイクロ波増幅装置100は、マイクロ波管901と電源931とを備える。
 マイクロ波管901は、入力されたマイクロ波を増幅する。
 電源931は、マイクロ波管901の各構成に電力を供給する。
 図2は、図1に表すマイクロ波管901の例であるマイクロ波管101の構成を表す概念図である。図2はマイクロ波管101の縦断面を表す。マイクロ波管101は、ヘリックス型進行波管である。ヘリックス型進行波管については、例えば、特許文献1等に説明がある。
 マイクロ波管101は、電子銃51と、へリックス17と、集束装置15と、コレクタ16と、ゲッタ31と、導体部材26と、絶縁体19b、19cとを備える。
 電子銃51は、へリックス17の向きに電子を放出する部分である。
 電子銃51は、ヒータ11と、カソード12と、ウェネルト電極13とアノード14と絶縁体19aとを備える。カソード12、ウェネルト電極13、絶縁体19a及びアノード14は、同軸的に配置されている。
 ヒータ11は、端子K-J間に印加される電力により、カソード12を加熱する。ヒータ11がカソード12を加熱する加熱温度は例えば千度である。
 カソード12は、ヒータ11による加熱と端子J-G間に印加される電圧により、カソード12の電子放出面52からアノード14に向けて電子を放出する。なお、端子Jは図4を参照して後述する、ヒータ電源39、アノード電源30、へリックス電源34及びコレクタ電源33の一方の端子に接続されることが想定されている。また、端子Kは、図4を参照して後述するヒータ電源39の、他方の端子に接続されることが想定されている。
 ウェネルト電極13は、略円筒形状であり、カソード12の電子放出面52から放出された電子がアノード14の開口部53を通過してへリックス17に向けて進むよう集束させる。
 絶縁体19aは例えば円筒形状である。絶縁体19aは、カソード12及びウェネルト電極13と、アノード14とを絶縁する。絶縁体19aは、また、電子銃51の内部空間、及び、当該内部と開口部53を介して接続された、へリックス17の周囲、コレクタ16の内部空間、ゲッタ31の周囲等が真空に保たれるよう封止する。ここで、電子銃51の内部空間は、電子銃51の各構成により開口部53以外が覆われた空間である。また、コレクタ16の内部空間は、コレクタ16の構成によりコレクタ16の開口部以外の部分が覆われた空間である。
 以下において、電子銃51の内部空間、へリックス17の周囲、コレクタ16の内部空間、ゲッタ31の周囲等を、「へリックス周囲等」ということにする。
 絶縁体19aは例えばセラミクスである。
 電子銃51の開口部53から放出された電子は、端子J-B間に印加された電圧等により、開口部53からへリックス17及びコレクタ16の向きに進行する。なお、端子Gは、図4を参照して後述するアノード電源30の、他方の端子に接続されることが想定されている。
 集束装置15は、例えば、電子銃51と同心円的に配置された円筒形の磁石である。当該磁石は例えば永久磁石である。図2に表す集束装置15は、二組の円筒形の磁石から構成されている。なお、集束装置15を構成する磁石の数は、二組に限らず任意である。
 集束装置15は、発生する磁界により、電子銃51から放出された電子が、螺旋状のへリックス17で覆われたへリックス17近傍の空間を、コレクタ16の方向に進行するよう、電子の進行方向を制御する。
 へリックス17は、内部が中空の管状の細長い導体が螺旋状に成型されたものである。へリックス17の入力部61からは、マイクロ波がその中空の管内に入力される。入力されたマイクロ波は、出力部62に向けて、へリックス17の管内をへリックス17の螺旋形状に沿って進む。そして、マイクロ波は、へリックス17の管内を進む際に、電子銃51から放出されへリックス17近傍の空間を通過する電子との間で相互作用を起こす。そして、当該相互作用により当該マイクロ波は増幅される。増幅されたマイクロ波は、出力部62から出力される。
 コレクタ16は、コレクタ16に向けて進行し、コレクタ16に衝突する電子を吸収する。衝突した電子のエネルギーは熱に変換される。変換された熱はコレクタ16の表面から外部に放出される。コレクタ16の端子Aは端子Bに接続されている。端子Bは、図4を参照して後述するコレクタ電源33の、他方の端子に接続されることが想定されている。
 絶縁体19bは、円筒形状であり、アノード14と導体部材26とを絶縁する。絶縁体19bは、また、他の部材とともに、へリックス周囲等を真空に封止する。絶縁体19bは、例えば、セラミクスである。
 導体部材26は、へリックス17の周囲を覆っている。そして、導体部材26は、他の部材とともに、へリックス周囲等を真空に封止する。
 導体部材26の端子Eは端子Fに接続されている。端子Fはグランドに接続されることが想定されている。
 絶縁体19cは、例えば円筒形状であり、コレクタ16と導体部材26とを絶縁する。絶縁体19cは、また、他の部材とともに、へリックス周囲等を真空に封止する。絶縁体19cは、例えば、セラミクスである。
 ゲッタ31は、非蒸発型ゲッタである。非蒸発型ゲッタについては、特許文献1等に説明がある。
 ゲッタ31は、ヒータ32を備える。
 ヒータ32の上端は導体部材26の端子Cに接続されている。前述のように、導体部材26はグランドに接続されているので、ヒータ32の上端はグランドに接続されている。ヒータ32の下端は端子Dに接続されている。端子Dは図4を参照して後述するゲッタ電源35の、グランドに接続されない方の端子に接続されることが想定されている。
 ヒータ32は、端子D-F間に印加される電力により、ゲッタ表面に形成されたゲッタ材料を加熱する。ヒータ32が当該ゲッタ材料を加熱する加熱温度は、例えば、数百度である。
 当該ゲッタ材料は、ヒータ32による加熱により温度が上昇すると気体分子の吸着能力が高くなる。そして、当該ゲッタ材料がゲッタ31の周囲の真空中に残留する気体を吸着した結果、ゲッタ31の周囲の真空度は向上する。そして、当該向上により、へリックス周囲等の内部の真空度は向上する。
 当該ゲッタ材料には、ジルコニウムを主成分としてこれにバナジウムや鉄等を添加した多孔質体の公知のものを用いることができる。
 ゲッタ31は、ヒータ32の加熱部の表面に直接又は間接にゲッタ材料が形成されたものであっても構わない。
 ゲッタ31は、周囲を仕切りで囲む箱状のゲッタルーム内に設置されても構わない。ただし、当該ゲッタルームは、ゲッタ31をへリックス周囲等の空間から完全に遮断するものではない。当該ゲッタルームは、ゲッタ31をコレクタ16等の、所定の電位が与えられた他の導電性部材に接触することを防止する。
 図3は、前述のゲッタルームの例であるゲッタルーム27の構成を表す斜視図である。図3にはゲッタ31を併せて表してある。
 ゲッタルーム27は例えば直方体類似の形状である。
 ゲッタルーム27は、面18a乃至18eと、上部48とを備える。
 面18a乃至18eは、例えば、金属板により構成される。
 上部48は、図3に表すように格子状になっている。当該格子状の部分は、例えば、金属の線材により構成されている。ゲッタルーム27の内部の空間は、当該格子の隙間により、ゲッタルーム27の外部の空間とつながっている。
 ゲッタ31は、面18b上に固定されている。
 面18aは、金属等の板に絶縁体28a及び28bをはめ込んだ構成である。絶縁体28aには穴29aが、絶縁体28bには穴29bが、それぞれ、形成されている。
 ゲッタ31の内部にある図示しないヒータは、ゲッタ31の内部で互いに電気的に接続された線材38a及び38bを備える。そして、線材38aは穴29aを通じて、線材38bは穴29bを通じて、それぞれ、ゲッタルームの外部につながっている。
 図4は、図1に表す電源931の例である電源131の構成を表す図である。
 電源131は、ヒータ電源39と、アノード電源30と、コレクタ電源33と、へリックス電源34と、ゲッタ電源35と、制御部36とを備える。なお、図4に表す小さい黒丸は各電源の端子を表す。上記各電源には、図示しない電源線により、外部から電力が供給されている。
 ゲッタ電源35の、一方の端子は、図2に表す端子Dに接続されることが想定されている。また、ゲッタ電源35の、他方の端子は、図示しないグランドに接続されることが想定されている。
 制御部36は、図示しない信号線により、ヒータ電源39、アノード電源30、コレクタ電源33、へリックス電源34及びゲッタ電源35の各々と接続されている。そして、制御部36は、当該信号線を通じて前記各々に制御信号を送ることにより、前記各々の動作を制御する。当該制御には、所定のタイミングで行われる、ゲッタ電源35がゲッタ電源35の両端子間に供給する電力のオンオフの制御が含まれる。
 ゲッタ電源35は、制御部36からの指示により、ゲッタ電源35の両端子間に供給する電力のオンオフを行う。なお、当該供給電力の値は、例えば、ゲッタ31の温度を測定し、温度と供給電力の関係を測定することにより、ゲッタ31が有効に働く温度に相当する電力値に定める。なお、ゲッタ31に図示しない温度センサを設置し、温度センサの出力により温度を測定しても構わない。
 ゲッタ電源35がゲッタ電源35の両端子間に供給する電力のオンオフの前記タイミングは、例えば、一定の時間間隔である。
 また、前記タイミングは、例えば、図2に表すマイクロ波管101によるマイクロ波の増幅動作開始に連動させたタイミングである。当該増幅動作にともないへリックス周囲等の真空度が悪化することが想定される。そのため、制御部36は、例えば、当該増幅動作開始と同時又は当該開始の少し前に、当該両端子間に供給する電力をオンにする。また、当該増幅動作終了時又は当該終了後に、当該両端子間に供給する電力をオフにする。
 また、前記タイミングは、例えば、真空度を表す値に連動させたタイミングである。
 当該真空度を表す値は、例えば、へリックス周囲等に設置された、図2には図示しない真空計の出力値である。制御部36は、当該出力値が、真空度が悪いことを表す所定の閾値を超える等の場合に、前記電力をオンする。そして、制御部36は、当該出力値が、前記閾値を下回る等の場合に、前記電力をオフする。
 前記真空度を表す値は、あるいは、へリックス電源34から図4には図示しない信号経路により制御部36に送られる、へリックス電流値である。ここで、へリックス電流値は、図2に表すへリックス17やへリックス17と電気的に接続された導電性の部分と、図示しないグランドとの間に生じる電流の値である。へリックス電流値としては、例えば、へリックス17を支持する図示しない導電性の支持部と、前記グランドとの間に生じる電流の値を用いる。
 へリックス電流値の増大が真空度の低下を表すことは、経験等により理解されている。その理由としては、次が考えられる。マイクロ波管内の真空度の低下すなわち管内のガス分子が増加することによって電子とガス分子の衝突する確率が上昇する。すると、電子とガス分子との衝突により、電子流の進行方向が乱れ、へリックス17や前記導電性の部分に衝突する確率が高くなる。これにより、真空度の低下によりへリックス電流が増加する。
 制御部36は、例えば、へリックス電流値がある閾値を超えた場合に、当該両端子間に供給する電力をオンにする。また、制御部36は、例えば、へリックス電流値が当該閾値以下になった場合に、前記電力をオフする。
 上記のような、制御部36による前記電力のオンオフは、図2に表すヒータ32の一方の端子をグランドに接続し、さらにヒータ32に対し、他の電源とは独立な図4に表すゲッタ電源35により電力供給を行い得る構成により実現可能なことである。
 なお、本実施形態のゲッタ電源としては、制御部36が存在しない場合も想定され得る。
 なお、図4に表すヒータ電源39の、一方の端子は、図2に表す端子Kに接続されることが想定されている。また、ヒータ電源39の、他方の端子は、図2に表す端子Jに接続されることが想定されている。
 また、アノード電源30の、一方の端子は、図2に表す端子Jに接続されることが想定されている。また、アノード電源30の、他方の端子は、図2に表す端子Gに接続されることが想定されている。
 また、コレクタ電源33の、一方の端子は、図2に表す端子Jに接続されることが想定されている。また、コレクタ電源33の、他方の端子は、図2に表す端子Bに接続されることが想定されている。
 また、ゲッタ電源35の、一方の端子は、図2に表す端子Dに接続されることが想定されている。また、ゲッタ電源35の、他方の端子は、図示しないグランドに接続されることが想定されている。
 また、へリックス電源34の一方の端子は、図2に表す端子Jに接続されることが想定されている。また、へリックス電源34の他方の端子は、前記グランドに接続されることが想定されている。
 図2に表すマイクロ波管101は、ゲッタ31を、集束装置15とコレクタ16との間に備える。しかしながら、本実施形態のマイクロ波管が備えるゲッタの位置は、マイクロ波管101によるマイクロ波の増幅動作が妨げられず、また、ゲッタが備えるヒータの一方の端子がグランドと接続が可能な限り、任意である。
 図5は、アノードと集束装置との間にゲッタを設置した本実施形態のマイクロ波管の例であるマイクロ波管101aの構成を表す概念図である。図5はマイクロ波管101aの縦断面を表す。
 ゲッタ31aは、コレクタ16と集束装置15との間ではなく、アノード14と集束装置15との間に形成されている。
 マイクロ波管101aの説明は、上記を除いて、図2に表すマイクロ波管101の説明と同じである。ただし、当該説明において、ゲッタ31はゲッタ31aと、ヒータ32はヒータ32aと、端子Dは、端子Daと、端子Cは端子Caと、それぞれ、読み替える。
 本実施形態のマイクロ波管が備えるゲッタの設置箇所は複数でも構わない。
 図6は、二箇所にゲッタを設置した本実施形態のマイクロ波管の例であるマイクロ波管101bの構成を表す概念図である。図6はマイクロ波管101bの縦断面を表す。
 マイクロ波管101bは、ゲッタ31とゲッタ31aとの二つのゲッタを備える。マイクロ波管101bは、このように、二つのゲッタを備えることにより、へリックス周囲等の真空度をより向上させ得る。
 マイクロ波管101bの説明は、ゲッタ31に関しては、上記を除いて、図2に表すマイクロ波管101の説明と同じである。また、マイクロ波管101bの説明は、ゲッタ31aに関しては、上記を除いて、図5に表すマイクロ波管101aの説明と同じである。
 マイクロ波管101bの説明は、上記を除いて、図2に表すマイクロ波管101の説明と同じである。ただし、当該説明において、ゲッタ31、ヒータ32、端子D、端子Cについては、必要に応じて、適宜読み替えるものとする。
[処理フロー]
 図4に表す制御部36は、図7乃至図9のいずれかに表す処理を行う。
 図7は、図4に表す制御部36が行う処理の処理フロー例(その1)を表す概念図である。図7が表す処理フロー例は、制御部36が、電源部37に対し、電力供給と停止を一定間隔で繰り返させる処理フロー例である。
 制御部36は、例えば、制御部36の稼動に必要な電力が外部から供給されることにより、図7に表す処理を開始する。
 そして、制御部36は、S101の処理として、図4に表す電源部37に対し、ゲッタ電源35の両端子間への電力供給の開始を指示する。当該指示を受けて、電源部37は、ゲッタ電源35の両端子間への電力供給を開始する。
 次に、制御部36は、S102の処理として、S101の処理の完了時から時間T1が経過したかについての判定を行う。ここで、制御部36は、タイマーを利用できることを前提としている。また、時間T1は、S102の処理のために予め定められた時間である。
 制御部36は、S102の処理による判定結果がyesの場合は、S103の処理を行う。
 一方、制御部36は、S102の処理による判定結果がnoの場合は、S102の処理を再度行う。
 制御部36は、S103の処理を行う場合は、同処理として、電源部37に対し、ゲッタ電源35の両端子間への電力供給の停止を指示する。当該指示を受けて、電源部37は、ゲッタ電源35の両端子間への電力供給を停止する。
 そして、制御部36は、S104の処理として、S103の処理の完了時から時間T2が経過したかについての判定を行う。ここで、時間T2は、S104の処理のために予め定められた時間である。
 制御部36は、S104の処理による判定結果がyesの場合は、S105の処理を行う。
 一方、制御部36は、S104の処理による判定結果がnoの場合は、S104の処理を再度行う。
 制御部36は、S105の処理を行う場合は、同処理として、図7に表す処理を終了するかについての判定を行う。制御部36は、当該判定を、例えば、外部からの終了情報の入力の有無を判定することにより行う。当該終了情報は、例えば、制御部36の稼動に必要な外部からの電力の供給が停止することにより、入力される。
 制御部36は、S105の処理による判定結果がyesの場合は、図7に表す処理を終了する。
 一方、制御部36は、S105の処理による判定結果がnoの場合は、S101の処理を再度行う。
 図8は、図4に表す制御部36が行う処理の処理フロー例(その2)を表す概念図である。図8が表す処理フロー例は、図2に表すマイクロ波管101によるマイクロ波増幅動作に連動して、制御部36が電源部37に電力供給と停止とを行わせる処理フロー例である。
 制御部36は、例えば、制御部36の稼動に必要な電力が外部から供給されることにより、図8に表す処理を開始する。
 そして、制御部36は、S201の処理として、図2に表すマイクロ波管101によるマイクロ波増幅動作が開始されるかについての判定を行う。制御部36は、当該判定を、例えば、図4に表すヒータ電源39、アノード電源30、コレクタ電源33及びへリックス電源34のうちのいずれかが、対象部分への電圧供給を開始したかの判定を行うことにより行う。ここで、制御部36が電圧供給を開始するかの判定を行う上記電源のいずれかは、当該供給を開始する場合には、制御部36に通知することを前提としている。
 制御部36は、S201の処理による判定結果がyesの場合はS202の処理を行う。
 一方、制御部36は、S202の処理による判定結果がnoの場合はS201の処理を再度行う。
 制御部36は、S202の処理を行う場合は、同処理として、図4に表す電源部37に対し、ゲッタ電源35の両端子間への電力供給の開始を指示する。当該指示を受けて、電源部37は、ゲッタ電源35の両端子間への電力供給を開始する。
 そして、制御部36は、S203の処理として、図2に表すマイクロ波管101によるマイクロ波増幅動作が終了されたかについての判定を行う。制御部36は、当該判定を、例えば、図4に表すヒータ電源39、アノード電源30、コレクタ電源33及びへリックス電源34のうちのいずれかが、対象部分への電圧供給を終了したかの判定を行うことにより行う。ここで、制御部36が電圧供給を終了したかの判定を行う上記電源のいずれかは、当該供給を終了した場合には、制御部36に通知することを前提としている。
 制御部36は、S203の処理による判定結果がyesの場合はS204の処理を行う。
 一方、制御部36は、S203の処理による判定結果がnoの場合はS203の処理を再度行う。
 制御部36は、S204の処理を行う場合は、同処理として、図4に表す電源部37に対し、ゲッタ電源35の両端子間への電力供給の停止を指示する。当該指示を受けて、電源部37は、ゲッタ電源35の両端子間への電力供給を停止する。
 そして、制御部36は、図8に表す処理を終了する。
 図9は、図4に表す制御部36が行う処理の処理フロー例(その3)を表す概念図である。図9が表す処理フロー例は、図2に表すマイクロ波管101の内部の真空度にして、制御部36が電源部37に電力供給と停止とを行わせる場合の処理フロー例である。
 制御部36は、例えば、制御部36の稼動に必要な電力が外部から供給されることにより、図9に表す処理を開始する。
 そして、制御部36は、S301の処理として、図2に表すマイクロ波管101の内部の真空度を表す値が閾値Thより大きいかについての判定を行う。ここで、閾値Thは、S301の処理及び後述のS303の処理のために予め設定された真空度を表す値についての閾値である。また、ここでは、真空度を表す値が大きいほどマイクロ波管101の内部の真空度が悪いことが想定されることを前提としている。
 制御部36は、S301の処理による判定結果がyesの場合はS302の処理を行う。
 一方、制御部36は、S302の処理による判定結果がnoの場合はS301の処理を再度行う。
 制御部36は、S302の処理を行う場合は、同処理として、図4に表す電源部37に対し、ゲッタ電源35の両端子間への電力供給の開始を指示する。当該指示を受けて、電源部37は、ゲッタ電源35の両端子間への電力供給を開始する。
 そして、制御部36は、S303の処理として、前記真空度を表す値が閾値Th以下かについての判定を行う。
 制御部36は、S303の処理による判定結果がyesの場合はS304の処理を行う。
 一方、制御部36は、S303の処理による判定結果がnoの場合はS303の処理を再度行う。
 制御部36は、S304の処理を行う場合は、同処理として、図4に表す電源部37に対し、ゲッタ電源35の両端子間への電力供給の停止を指示する。当該指示を受けて、電源部37は、ゲッタ電源35の両端子間への電力供給を停止する。
 そして、制御部36は、S305の処理として、図9に表す処理を終了するかについての判定を行う。制御部36は、当該判定を、例えば、外部からの終了情報の入力の有無を判定することにより行う。当該終了情報は、例えば、制御部36の稼動に必要な外部からの電力の供給が停止することにより、入力される。
 制御部36は、S305の処理による判定結果がyesの場合は、図9に表す処理を終了する。
 一方、制御部36は、S305の処理による判定結果がnoの場合は、S301に表す処理を再度行う。
[効果]
 本実施形態のマイクロ波管がマイクロ波管内に備えるゲッタのヒータは、当該ヒータの一方の端子が、カソードには接続されておらずグランドに接続された状態で、ゲッタ電源により駆動される。そのため、電子銃の動作のためにカソードに所定のカソード電圧を印加した状態でも、当該カソード電圧を印加していない状態でも、当該ヒータに等しい電圧を供給し、当該ヒータを動作させることができる。従い、前記マイクロ波管は、マイクロ波の増幅動作中であっても、前記ゲッタによりマイクロ波管内の真空度の向上を良好に行うことができる。すなわち、本実施形態のマイクロ波管は、マイクロ波の増幅動作に関係なくゲッタによるガス吸着動作を良好に行い得る。
 さらに、[背景]の項で説明したように、特許文献1が開示するマイクロ波管は、ゲッタを電子銃の内部に備える。これに対し、本実施形態のマイクロ波管のゲッタは、電子銃とへリックスとの間や、へリックスとコレクタとの間という、へリックスにより近い位置に設定される。そのため、特に、へリックスから放出されるガスについて、より有効な吸着動作を行い得る。
 図10は、本実施形態の最小限のマイクロ波管の構成であるマイクロ波電子管101xの構成を表すブロック図である。
 マイクロ波電子管101xは、へリックス17xと、電子銃51xと、集束装置15xと、コレクタ16xと、ゲッタ31xとを備える。
 へリックス17xは、入力部から出力部に向けて螺旋状の管内をマイクロ波が進行し得る。
 電子銃51xは、へリックス17xに向けて電子流を放出する。
 集束装置15xは、前記電子流を、コレクタ16xに向けて、へリックス17xの近傍を通過させる。
 コレクタ16xは、前記電子流を吸収する。
 ゲッタ31xは、電子銃51xの備えるカソードと絶縁された図示しないヒータを備える。
 マイクロ波電子管101xがマイクロ波の増幅動作を行うためには、電子銃51xが備える図示しないカソードへの電圧の供給が必要である。しかし、前記ヒータは、前記カソードと、電気的に接続されていない。そのため、ゲッタ31xは、電子銃51x、前記カソードに所定の電圧を印加しているときでも、前記ヒータに電力を供給し、ガスの吸着動作を行うことができる。そのため、マイクロ波電子管101xは、マイクロ波の増幅動作を行っている間も、ゲッタによるガス吸着動作を行うことができる。
 そのため、マイクロ波電子管101xは、前記構成により、[発明の効果]の項に記載した効果を奏する。
 以上、本発明の各実施形態を説明したが、本発明は、前記した実施形態に限定されるものではなく、本発明の基本的技術的思想を逸脱しない範囲で更なる変形、置換、調整を加えることができる。例えば、各図面に示した要素の構成は、本発明の理解を助けるための一例であり、これらの図面に示した構成に限定されるものではない。
 また、前記の実施形態の一部又は全部は、以下の付記のようにも記述され得るが、以下には限られない。
(付記1)
 入力部から出力部に向けて螺旋状の管内をマイクロ波が進行し得るへリックスと、
 前記へリックスに向けて電子流を放出する電子銃と、
 前記電子流を、コレクタに向けて、前記へリックスの近傍を通過させる集束装置と、
 前記電子流を吸収する前記コレクタと、
 前記電子銃の備えるカソードと絶縁されたヒータを備える、ゲッタと、
 を備える、マイクロ波電子管。
(付記2)
 前記ヒータの一方の端子がグランドに電気的に接続されている、付記1に記載されたマイクロ波電子管。
(付記3)
 前記ゲッタが、前記集束装置と前記コレクタとの間に設置される、付記1又は付記2に記載されたマイクロ波電子管。
(付記4)
 前記ゲッタが、前記集束装置と前記電子銃との間に設置される、付記1乃至付記3のうちのいずれか一に記載されたマイクロ波電子管。
(付記5)
 前記ゲッタが、前記へリックスの近傍に設置される、付記1乃至付記4のうちのいずれか一に記載されたマイクロ波電子管。
(付記6)
 複数の前記ゲッタを備える、付記1乃至付記5のうちのいずれか一に記載されたマイクロ波電子管。
(付記7)
 前記ゲッタが、前記ゲッタを収容する収容部材に設置されている、付記1乃至付記6のうちのいずれか一に記載されたマイクロ波電子管。
(付記8)
 前記ヒータが、前記電子銃、前記へリックス、前記集束装置及び前記コレクタのうちのいずれも駆動しない電源により駆動される、付記1乃至付記7のうちのいずれか一に記載されたマイクロ波電子管。
(付記9)
 マイクロ波の増幅中に前記ゲッタがガス吸着動作を行う、付記1乃至付記8のうちのいずれか一に記載されたマイクロ波電子管。
(付記10)
 入力部から出力部に向けて螺旋状の管内をマイクロ波が進行し得るへリックスと、
 前記へリックスに向けて電子流を放出する電子銃と、
 前記電子流を、コレクタに向けて、前記へリックスの近傍を通過させる集束装置と、
 前記電子流を吸収する前記コレクタと、
 を備える、マイクロ波電子管に設置可能な
 前記電子銃の備えるカソードと絶縁されたヒータを備える、ゲッタ。
(付記11)
 付記1乃至付記9のうちのいずれか一に記載されたマイクロ波電子管と
 前記ヒータの駆動を行う電源と、
 を備えるマイクロ波増幅装置。
(付記12)
 前記電源が前記ヒータを駆動するタイミングの制御を行う制御部をさらに備える、付記11に記載されたマイクロ波増幅装置。
(付記13)
 前記制御が、前記駆動及び前記駆動の停止の繰返しを行うものである、付記付記12に記載されたマイクロ波増幅装置。
(付記14)
 前記繰返しが定期的なものである、付記13に記載されたマイクロ波増幅装置。
(付記15)
 前記制御が、前記マイクロ波電子管によるマイクロ波の増幅の開始と連動して前記駆動を開始するものである、付記12乃至付記14のうちのいずれか一に記載されたマイクロ波増幅装置。
(付記16)
 前記増幅が開始される旨の開始判定を行った場合に、前記駆動を開始する、付記付記15に記載されたマイクロ波増幅装置。
(付記17)
 前記開始判定を、前記電子銃、前記へリックス、前記集束装置、前記コレクタのうちの少なくとも一つに供給される電圧又は電流の値により行う、付記16に記載されたマイクロ波増幅装置。
(付記18)
 前記制御が、前記増幅の終了と連動して前記駆動を終了するものである、付記15乃至付記17のうちのいずれか一に記載されたマイクロ波増幅装置。
(付記19)
 前記制御が、前記電子銃の内部空間、前記へリックスの周囲の空間及び前記コレクタの内部空間のいずれかにおける真空度を表す真空値と連動して、前記駆動を開始するものである、付記12乃至付記18のうちのいずれか一に記載されたマイクロ波増幅装置。
(付記20)
 前記制御が、前記真空値が真空度の悪化を表すものと判定された場合に、前記駆動を開始するものである、付記19に記載されたマイクロ波増幅装置。
(付記21)
 前記制御が、前記真空値と連動して、前記駆動を終了するものである、付記19又は付記20に記載されたマイクロ波増幅装置。
(付記22)
 前記制御が、前記真空値が真空度の向上を表すものと判定された場合に、前記駆動を終了するものである、付記21に記載されたマイクロ波増幅装置。
(付記23)
 前記真空値が前記いずれかに設置された真空計の出力である、付記19乃至付記22のうちのいずれか一に記載されたマイクロ波増幅装置。
(付記24)
 前記真空値が前記へリックス又は前記へリックスと電気的に接続された導電性部分と、記グランドとの間を流れるへリックス電流の値である、付記付記22に記載されたマイクロ波増幅装置。
(付記25)
 入力部から出力部に向けて螺旋状の管内をマイクロ波が進行し得るへリックスと、
 前記へリックスに向けて電子流を放出する電子銃と、
 前記電子流を、コレクタに向けて、前記へリックスの近傍を通過させる集束装置と、
 前記電子流を吸収する前記コレクタと、
 を備えるマイクロ波電子管が備えるゲッタが備える、
 前記電子銃の備えるカソードと絶縁されたヒータを駆動するタイミングの制御を行う制御部を備え、
 前記制御が、前記マイクロ波電子管によるマイクロ波の増幅の開始と連動して前記駆動を開始するものである、電源。
(付記26)
 前記制御が、前記増幅が開始される旨の開始判定を行った場合に、前記駆動を開始するものである、付記25に記載された電源。
(付記27)
 前記開始判定を、前記電子銃、前記へリックス、前記集束装置、前記コレクタのうちの少なくとも一つに供給される電圧又は電流の値により行う、付記26に記載された電源。
(付記28)
 前記制御が、前記増幅の終了と連動して前記駆動を終了するものである、付記25乃至付記27のうちのいずれか一に記載された電源。
(付記29)
 入力部から出力部に向けて螺旋状の管内をマイクロ波が進行し得るへリックスと、
 前記へリックスに向けて電子流を放出する電子銃と、
 前記電子流を、コレクタに向けて、前記へリックスの近傍を通過させる集束装置と、
 前記電子流を吸収する前記コレクタと、
 を備えるマイクロ波電子管が備えるゲッタが備える、
 前記電子銃の備えるカソードと絶縁されたヒータを駆動するタイミングの制御を行う制御部を備え、
 前記制御が、前記電子銃の内部空間、前記へリックスの周囲の空間及び前記コレクタの内部空間のいずれかにおける真空度を表す真空値と連動して、前記駆動を開始するものである、
 電源。
(付記30)
 前記制御が、前記真空値が真空度の悪化を表すものと判定された場合に、前記駆動を開始するものである、付記29に記載された電源。
(付記31)
 前記制御が、前記真空値と連動して、前記駆動を終了するものである、付記29又は付記30に記載された電源。
(付記32)
 前記制御が、前記真空値が真空度の向上を表すものと判定された場合に、前記駆動を終了するものである、付記31に記載された電源。
(付記33)
 前記真空値が前記いずれかに設置された真空計の出力である、付記30乃至付記32のうちのいずれか一に記載された電源。
(付記34)
 前記真空値が前記へリックス又は前記へリックスと電気的に接続された導電性部分と、グランドとの間を流れるへリックス電流の値である、付記29乃至付記32のうちのいずれか一に記載された電源。
 以上、上述した実施形態を模範的な例として本発明を説明した。しかしながら、本発明は、上述した実施形態には限定されない。即ち、本発明は、本発明のスコープ内において、当業者が理解し得る様々な態様を適用することができる。
 この出願は、2017年2月20日に出願された日本出願特願2017-029286を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 11、32、32a  ヒータ
 12  カソード
 13  ウェネルト電極
 14  アノード
 15、15x  集束装置
 16、16x  コレクタ
 17、17x  へリックス
 18a、18b、18c、18d  面
 19a、19b、19c、28a、28b  絶縁体
 27  ゲッタルーム
 26  導体部材
 30  アノード電源
 31  ゲッタ
 33  コレクタ電源
 34  へリックス電源
 35  ゲッタ電源
 37  電源部
 36  制御部
 38a、38b  線材
 39  ヒータ電源
 48  上部
 51、51x  電子銃
 52  電子放出面
 53  開口部
 61  入力部
 62  出力部
 100  マイクロ波増幅装置
 101、101a、101b、901  マイクロ波管
 101x  マイクロ波電子管
 131、931  電源
 A、B、C、Ca、D、Da、E、F、G、H、I、J、K、L、M、N  端子

Claims (34)

  1.  入力部から出力部に向けて螺旋状の管内をマイクロ波が進行し得るへリックスと、
     前記へリックスに向けて電子流を放出する電子銃と、
     前記電子流を、コレクタに向けて、前記へリックスの近傍を通過させる集束装置と、
     前記電子流を吸収する前記コレクタと、
     前記電子銃の備えるカソードと絶縁されたヒータを備える、ゲッタと、
     を備える、マイクロ波電子管。
  2.  前記ヒータの一方の端子がグランドに電気的に接続されている、請求項1に記載されたマイクロ波電子管。
  3.  前記ゲッタが、前記集束装置と前記コレクタとの間に設置される、請求項1又は請求項2に記載されたマイクロ波電子管。
  4.  前記ゲッタが、前記集束装置と前記電子銃との間に設置される、請求項1乃至請求項3のうちのいずれか一に記載されたマイクロ波電子管。
  5.  前記ゲッタが、前記へリックスの近傍に設置される、請求項1乃至請求項4のうちのいずれか一に記載されたマイクロ波電子管。
  6.  複数の前記ゲッタを備える、請求項1乃至請求項5のうちのいずれか一に記載されたマイクロ波電子管。
  7.  前記ゲッタが、前記ゲッタを収容する収容部材に設置されている、請求項1乃至請求項6のうちのいずれか一に記載されたマイクロ波電子管。
  8.  前記ヒータが、前記電子銃、前記へリックス、前記集束装置及び前記コレクタのうちのいずれも駆動しない電源により駆動される、請求項1乃至請求項7のうちのいずれか一に記載されたマイクロ波電子管。
  9.  マイクロ波の増幅中に前記ゲッタがガス吸着動作を行う、請求項1乃至請求項8のうちのいずれか一に記載されたマイクロ波電子管。
  10.  入力部から出力部に向けて螺旋状の管内をマイクロ波が進行し得るへリックスと、
     前記へリックスに向けて電子流を放出する電子銃と、
     前記電子流を、コレクタに向けて、前記へリックスの近傍を通過させる集束装置と、
     前記電子流を吸収する前記コレクタと、
     を備える、マイクロ波電子管に設置可能な
     前記電子銃の備えるカソードと絶縁されたヒータを備える、ゲッタ。
  11.  請求項1乃至請求項9のうちのいずれか一に記載されたマイクロ波電子管と
     前記ヒータの駆動を行う電源と、
     を備えるマイクロ波増幅装置。
  12.  前記電源が前記ヒータを駆動するタイミングの制御を行う制御部をさらに備える、請求項11に記載されたマイクロ波増幅装置。
  13.  前記制御が、前記駆動及び前記駆動の停止の繰返しを行うものである、請求項12に記載されたマイクロ波増幅装置。
  14.  前記繰返しが定期的なものである、請求項13に記載されたマイクロ波増幅装置。
  15.  前記制御が、前記マイクロ波電子管によるマイクロ波の増幅の開始と連動して前記駆動を開始するものである、請求項12乃至請求項14のうちのいずれか一に記載されたマイクロ波増幅装置。
  16.  前記増幅が開始される旨の開始判定を行った場合に、前記駆動を開始する、請求項15に記載されたマイクロ波増幅装置。
  17.  前記開始判定を、前記電子銃、前記へリックス、前記集束装置、前記コレクタのうちの少なくとも一つに供給される電圧又は電流の値により行う、請求項16に記載されたマイクロ波増幅装置。
  18.  前記制御が、前記増幅の終了と連動して前記駆動を終了するものである、請求項15乃至請求項17のうちのいずれか一に記載されたマイクロ波増幅装置。
  19.  前記制御が、前記電子銃の内部空間、前記へリックスの周囲の空間及び前記コレクタの内部空間のいずれかにおける真空度を表す真空値と連動して、前記駆動を開始するものである、請求項12乃至請求項18のうちのいずれか一に記載されたマイクロ波増幅装置。
  20.  前記制御が、前記真空値が真空度の悪化を表すものと判定された場合に、前記駆動を開始するものである、請求項19に記載されたマイクロ波増幅装置。
  21.  前記制御が、前記真空値と連動して、前記駆動を終了するものである、請求項19又は請求項20に記載されたマイクロ波増幅装置。
  22.  前記制御が、前記真空値が真空度の向上を表すものと判定された場合に、前記駆動を終了するものである、請求項21に記載されたマイクロ波増幅装置。
  23.  前記真空値が前記いずれかに設置された真空計の出力である、請求項19乃至請求項22のうちのいずれか一に記載されたマイクロ波増幅装置。
  24.  前記真空値が前記へリックス又は前記へリックスと電気的に接続された導電性部分と、記グランドとの間を流れるへリックス電流の値である、請求項22に記載されたマイクロ波増幅装置。
  25.  入力部から出力部に向けて螺旋状の管内をマイクロ波が進行し得るへリックスと、
     前記へリックスに向けて電子流を放出する電子銃と、
     前記電子流を、コレクタに向けて、前記へリックスの近傍を通過させる集束装置と、
     前記電子流を吸収する前記コレクタと、
     を備えるマイクロ波電子管が備えるゲッタが備える、
     前記電子銃の備えるカソードと絶縁されたヒータを駆動するタイミングの制御を行う制御部を備え、
     前記制御が、前記マイクロ波電子管によるマイクロ波の増幅の開始と連動して前記駆動を開始するものである、電源。
  26.  前記制御が、前記増幅が開始される旨の開始判定を行った場合に、前記駆動を開始するものである、請求項25に記載された電源。
  27.  前記開始判定を、前記電子銃、前記へリックス、前記集束装置、前記コレクタのうちの少なくとも一つに供給される電圧又は電流の値により行う、請求項26に記載された電源。
  28.  前記制御が、前記増幅の終了と連動して前記駆動を終了するものである、請求項25乃至請求項27のうちのいずれか一に記載された電源。
  29.  入力部から出力部に向けて螺旋状の管内をマイクロ波が進行し得るへリックスと、
     前記へリックスに向けて電子流を放出する電子銃と、
     前記電子流を、コレクタに向けて、前記へリックスの近傍を通過させる集束装置と、
     前記電子流を吸収する前記コレクタと、
     を備えるマイクロ波電子管が備えるゲッタが備える、
     前記電子銃の備えるカソードと絶縁されたヒータを駆動するタイミングの制御を行う制御部を備え、
     前記制御が、前記電子銃の内部空間、前記へリックスの周囲の空間及び前記コレクタの内部空間のいずれかにおける真空度を表す真空値と連動して、前記駆動を開始するものである、
     電源。
  30.  前記制御が、前記真空値が真空度の悪化を表すものと判定された場合に、前記駆動を開始するものである、請求項29に記載された電源。
  31.  前記制御が、前記真空値と連動して、前記駆動を終了するものである、請求項29又は請求項30に記載された電源。
  32.  前記制御が、前記真空値が真空度の向上を表すものと判定された場合に、前記駆動を終了するものである、請求項31に記載された電源。
  33.  前記真空値が前記いずれかに設置された真空計の出力である、請求項30乃至請求項32のうちのいずれか一に記載された電源。
  34.  前記真空値が前記へリックス又は前記へリックスと電気的に接続された導電性部分と、グランドとの間を流れるへリックス電流の値である、請求項29乃至請求項32のうちのいずれか一に記載された電源。
PCT/JP2018/005495 2017-02-20 2018-02-16 マイクロ波電子管、ゲッタ、マイクロ波増幅装置及び電源 WO2018151253A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018568626A JP6904986B2 (ja) 2017-02-20 2018-02-16 マイクロ波電子管及びマイクロ波増幅装置
US16/487,354 US11270863B2 (en) 2017-02-20 2018-02-16 Microwave amplification device including a microwave electron tube having a getter that can be controlled
EP18754726.0A EP3584819A4 (en) 2017-02-20 2018-02-16 ELECTRONIC HYPER FREQUENCY TUBE, DEGAZER, HYPER FREQUENCY AMPLIFICATION DEVICE AND POWER SOURCE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017029286 2017-02-20
JP2017-029286 2017-02-20

Publications (1)

Publication Number Publication Date
WO2018151253A1 true WO2018151253A1 (ja) 2018-08-23

Family

ID=63169460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005495 WO2018151253A1 (ja) 2017-02-20 2018-02-16 マイクロ波電子管、ゲッタ、マイクロ波増幅装置及び電源

Country Status (4)

Country Link
US (1) US11270863B2 (ja)
EP (1) EP3584819A4 (ja)
JP (1) JP6904986B2 (ja)
WO (1) WO2018151253A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5385960U (ja) * 1976-12-15 1978-07-15
JPS5888762U (ja) * 1981-12-11 1983-06-16 日本電気株式会社 電子ビ−ム管
JPS6224466U (ja) * 1985-03-19 1987-02-14
JPS62133641A (ja) * 1985-12-05 1987-06-16 Toshiba Corp 進行波管の製造方法
JPH01154434A (ja) * 1987-12-11 1989-06-16 Toshiba Corp 進行波管
JPH0463541U (ja) * 1990-10-09 1992-05-29
JPH10199453A (ja) * 1997-01-08 1998-07-31 Futaba Corp 電子源内蔵真空気密容器およびゲッターの活性化方法
JP2002025454A (ja) 2000-07-05 2002-01-25 Nec Corp マイクロ波電子管
JP2017029286A (ja) 2015-07-30 2017-02-09 秀雄 古賀 頭皮清拭具

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2410063A (en) 1940-07-02 1946-10-29 Univ Leland Stanford Junior High-frequency tube structure and apparatus
US2749466A (en) 1951-12-18 1956-06-05 Machlett Lab Inc Electron tube gettering means
NL105112C (ja) 1958-05-15
US3073987A (en) * 1959-12-17 1963-01-15 Raytheon Co Electron discharge device with getter
JPS5385960A (en) 1977-01-05 1978-07-28 Hitachi Ltd Auxiliary suction mouth body of electric cleaner
JP2000294156A (ja) 1999-04-02 2000-10-20 Nec Eng Ltd 進行波管用電源
FR2936354B1 (fr) * 2008-09-19 2012-09-21 Thales Sa Tube hyperfrequences avec dispositif d'extraction d'ions produits dans le tube

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5385960U (ja) * 1976-12-15 1978-07-15
JPS5888762U (ja) * 1981-12-11 1983-06-16 日本電気株式会社 電子ビ−ム管
JPS6224466U (ja) * 1985-03-19 1987-02-14
JPS62133641A (ja) * 1985-12-05 1987-06-16 Toshiba Corp 進行波管の製造方法
JPH01154434A (ja) * 1987-12-11 1989-06-16 Toshiba Corp 進行波管
JPH0463541U (ja) * 1990-10-09 1992-05-29
JPH10199453A (ja) * 1997-01-08 1998-07-31 Futaba Corp 電子源内蔵真空気密容器およびゲッターの活性化方法
JP2002025454A (ja) 2000-07-05 2002-01-25 Nec Corp マイクロ波電子管
JP2017029286A (ja) 2015-07-30 2017-02-09 秀雄 古賀 頭皮清拭具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3584819A4

Also Published As

Publication number Publication date
EP3584819A4 (en) 2021-05-19
US11270863B2 (en) 2022-03-08
US20200058460A1 (en) 2020-02-20
EP3584819A1 (en) 2019-12-25
JPWO2018151253A1 (ja) 2019-11-21
JP6904986B2 (ja) 2021-07-21

Similar Documents

Publication Publication Date Title
US8258725B2 (en) Hollow beam electron gun for use in a klystron
US20130028386A1 (en) Electric field emission x-ray tube apparatus equipped with a built-in getter
KR101547516B1 (ko) 원통형 3극 전계 방출 x-선관
US10475618B2 (en) Electron gun capable of suppressing the influence of electron emission from the cathode side surface
US3581093A (en) Dc operated positive ion accelerator and neutron generator having an externally available ground potential target
WO2018151253A1 (ja) マイクロ波電子管、ゲッタ、マイクロ波増幅装置及び電源
US10068738B2 (en) Traveling wave tube and high-frequency circuit system
KR102094293B1 (ko) 전계방출 소자
CN102842477B (zh) X射线管
US3192425A (en) X-ray tube with adjustable electron beam cross-section
US2164538A (en) Gas discharge tube and circuits
US3207946A (en) Electron gun for generating laminar electron flow
JP2005190757A (ja) X線発生装置
CN110534388B (zh) 一种微型微焦斑x射线管的阴极光学结构
JP2011238441A (ja) イオン化装置
KR101869753B1 (ko) 전자빔제어수단을 포함하는 엑스선 발생장치
RU2267185C1 (ru) Лампа бегущей волны
US3379920A (en) Traveling-wave tube with efficiencyenhancing focus-field jump
JP2002025454A (ja) マイクロ波電子管
US3192431A (en) Deflection system for cylindrical beam cathode ray tube
Ahn et al. A Ceramic Surface Charging Model for Accurate Prediction of E-Beam Trajectory in Field Emission Digital X-Ray Sources
Akimov et al. Electron miniaccelerator for the charged particles beam nundestructive diagnostics
RU129707U1 (ru) Рентгеновская трубка (варианты)
JP2685503B2 (ja) シンクロトロン放射光発生装置
GB706909A (en) Improvements in or relating to electrical amplifying devices of the travelling wave kind

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18754726

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018568626

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018754726

Country of ref document: EP