WO2018151133A1 - ブラシレスモータ - Google Patents

ブラシレスモータ Download PDF

Info

Publication number
WO2018151133A1
WO2018151133A1 PCT/JP2018/005015 JP2018005015W WO2018151133A1 WO 2018151133 A1 WO2018151133 A1 WO 2018151133A1 JP 2018005015 W JP2018005015 W JP 2018005015W WO 2018151133 A1 WO2018151133 A1 WO 2018151133A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
bus bar
terminal
coil
neutral point
Prior art date
Application number
PCT/JP2018/005015
Other languages
English (en)
French (fr)
Inventor
鈴木 隆広
Original Assignee
株式会社ミツバ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ミツバ filed Critical 株式会社ミツバ
Publication of WO2018151133A1 publication Critical patent/WO2018151133A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/52Fastening salient pole windings or connections thereto

Definitions

  • the present invention relates to a brushless motor.
  • This application claims priority on February 16, 2017 based on Japanese Patent Application No. 2017-026755 for which it applied to Japan, and uses the content here.
  • an inner rotor type brushless motor has a stator that is fitted and fixed to a motor case, and a rotor that is disposed at the center in the radial direction of the motor case and is rotatably supported by the stator.
  • a plurality of permanent magnets are disposed on the outer peripheral surface of the rotor.
  • the stator includes a substantially cylindrical stator core and a plurality of teeth portions protruding radially inward from the stator core.
  • An insulator formed of an insulating resin material is attached to each tooth portion, and a coil is wound through the insulator. When power from an external power supply is supplied to the coil, an attractive force or a repulsive force is generated between the magnetic flux generated in the coil and the permanent magnet, and the rotor rotates.
  • a bus bar unit is used as a power supply means to the coil of such a brushless motor.
  • the bus bar unit is formed in a substantially annular shape by a resin mold in a state where a plurality of metal bus bars are insulated from each other.
  • a neutral point that forms a neutral point (common)
  • a plurality of phase bus bars for supplying power to the coils of each phase in the resin mold body
  • the bus bar is formed in a substantially annular shape by a resin mold in a state of being insulated from each other.
  • a method for connecting coils of a brushless motor there is a method of forming a two-phase three-phase structure (see, for example, Patent Document 1).
  • the tooth part around which the coil of the first system is wound and the tooth part around which the coil of the second system is wound are arranged symmetrically about the rotation axis.
  • Each bus bar is arranged in a plurality of layers along the axial direction. In this way, by adopting a two-phase three-phase structure for the coil, even if a problem or the like occurs and power cannot be supplied to one coil, power can be supplied to the other coil. For this reason, it is possible to prevent the brushless motor from being completely driven.
  • the present invention provides a brushless motor capable of shortening the overall length of each bus bar and reducing the axial thickness of the bus bar unit.
  • a brushless motor includes a stator having twelve teeth portions around which a coil is wound by a concentrated winding method, and two coils of three coils.
  • a bus bar unit that is wired so as to have a phase structure, and the coil wound around the tooth portion is arranged in every other tooth portion of the same system, and the first of one of the two systems It is a brushless motor that is arranged so that both sides in the circumferential direction of the system are different from each other in the other phase of the other second system with respect to an arbitrary phase of the system, and the bus bar unit Connect the coils of the same phase in the first system, connect the three first system phase bus bars having the first system phase terminals to which the coils are connected, and the coils of the respective phases of the first system.
  • the first system neutral point bus bar having the first system neutral point terminal to which the coil is connected is connected to the coil in the same phase of the second system, and the coil is connected to the first line.
  • Three second system phase bus bars having two system phase terminals and the coils of each phase of the second system are connected to form a neutral point, and a second system neutral point terminal to which the coil is connected
  • a second system neutral point bus bar having a circle, and the first system phase bus bar, the first system neutral point bus bar, the second system phase bus bar, and the second system neutral point bus bar are arranged.
  • a plurality of layers of the first system phase bus bar, the first system neutral point bus bar, the second system phase bus bar, and the second system neutral point bus bar arranged in an axial direction.
  • Either one of the sbars has a crank portion formed in a crank shape, and the crank portion is formed with either the first system phase terminal or the second system phase terminal, Any one of the first system phase bus bar and the second system phase bus bar is different in a layer in which the one bus bar is disposed and a layer in which the crank portion is disposed, It arrange
  • the crank portion in one of the first system phase bus bar and the second system phase bus bar, the one bus bar in which this crank portion is formed,
  • the other bus bar can be arranged in the same layer. And only a crank part can be arrange
  • the first system phase bus bar and the second system phase bus bar have power supply terminals connected to an external power source for each phase.
  • the power supply terminal is arranged avoiding the crank portion.
  • the power supply terminal and the bus bar can be arranged by effectively utilizing the space in the same layer as the layer where the crank portion is arranged. For this reason, the axial thickness of the bus bar unit can be reduced.
  • the power supply terminals are unevenly arranged in the circumferential direction.
  • Such a configuration can prevent the entire length of each bus bar from becoming unnecessarily long.
  • the first system phase terminal is disposed at an end of the first system phase bus bar.
  • the second system phase terminal is disposed at an end of the second system phase bus bar, and the crank portion is one of the first system phase bus bar and the second system phase bus bar. It is formed in the edge part.
  • This configuration makes it possible to set the length of the crank portion as short as possible. Since the space occupied by the crank portion can be saved in the layer where the crank portion is disposed, the layout of the bus bar as a whole can be improved.
  • the brassless motor according to any one of the first to fourth aspects of the present invention includes the first system neutral point bus bar and the second system neutral point.
  • the bus bars are arranged on different layers.
  • the brushless motor according to any one of the first to fifth aspects of the present invention includes the first system phase bus bar and the second system phase bus bar, respectively.
  • the bus bar corresponding to the same phase may be arranged in another layer.
  • This configuration makes it possible to reduce useless empty space as much as possible and suppress the increase in the number of layers. Further, the overall length of each bar can be set as short as possible.
  • the crank portion is formed by forming the crank portion in one of the first system phase bus bar and the second system phase bus bar.
  • One bus bar and the other bus bar can be arranged in the same layer. And only a crank part can be arrange
  • the number of layers can be reduced in the entire bus bar unit, and the axial thickness of the bus bar unit can be reduced.
  • by forming the crank portion it is possible to relax restrictions on the layout of the bus bar, so that the entire length of the bus bar can be shortened.
  • FIG. 1 It is a perspective view of the brushless motor in the embodiment of the present invention. It is a perspective view of a stator, a rotor, and a bus bar unit in an embodiment of the present invention. It is a schematic block diagram of the stator and rotor in embodiment of this invention. It is a disassembled perspective view of the bus-bar unit in embodiment of this invention. It is a top view which shows the arrangement
  • FIG. 1 is a perspective view of the brushless motor 1
  • FIG. 2 is a perspective view of the stator 2, the rotor 3, and the bus bar unit 5.
  • the brushless motor 1 is used in, for example, an electric power steering device (EPS).
  • the brushless motor 1 includes a substantially bottomed cylindrical motor housing 4, a substantially cylindrical stator 2 fitted and fixed in the motor housing 4, and a rotor 3 that is rotatably arranged radially inside the stator 2.
  • a bus bar unit 5 that is disposed on one end side in the axial direction of the stator 2 and supplies power to the stator 2.
  • the rotational axis direction of the rotor 3 is simply referred to as an axial direction
  • the rotational direction of the rotor 3 is referred to as a circumferential direction
  • the radial direction of the rotor 3 orthogonal to the axial direction and the circumferential direction is simply referred to as a radial direction.
  • a substantially cylindrical bearing housing 6 is formed on the bottom 4a of the motor housing 4 so as to protrude outward in the axial direction at the center in the radial direction.
  • a bearing (not shown) for rotatably supporting one end side of the rotating shaft 7 of the rotor 3 is provided in the bearing housing 6.
  • a control housing 8 is integrally formed at the end of the motor housing 4 opposite to the bottom 4a. The control housing 8 is formed in a cylindrical shape so as to communicate between the motor housing 4 side and the axially outer side opposite to the motor housing 4.
  • a bus bar unit 5 is accommodated in the control housing 8. Further, a terminal unit 70 is provided so as to close the opening 8 a of the control housing 8. The terminal unit 70 is for electrically connecting an external power source (not shown) and the bus bar unit 5.
  • the terminal unit 70 includes a plate-shaped resin mold body 71 formed so as to close the opening 8a of the control housing 8, and a plurality of (6 in this embodiment) embedded in the resin mold body 71. Terminal 72.
  • Each terminal 72 has one end 72 a protruding from the resin mold body 71 to the outside in the axial direction through the opening 8 a of the control housing 8. On the other hand, the other end (not shown) of each terminal 72 protrudes toward the bus bar unit 5 side. The other end of each terminal 72 is connected to the bus bar unit 5.
  • the control housing 8 is provided with a bearing plate (not shown) between the bus bar unit 5 and the terminal unit 70.
  • the bearing plate is formed with an insertion hole (not shown) through which each phase feed terminal 25U1 to 25W2 (described later) of the bus bar unit 5 can be inserted.
  • the phase feeding terminals 25U1 to 25W2 project to the terminal unit 70 side through the insertion holes and are connected to the corresponding terminals 72.
  • the bearing plate is provided with a bearing (not shown) for rotatably supporting the other end of the rotating shaft 7 of the rotor 3.
  • FIG. 3 is a schematic configuration diagram of the stator 2 and the rotor 3.
  • one end of the rotating shaft 7 of the rotor 3 protrudes outward in the axial direction via the bearing housing 6 of the motor housing 4.
  • the pinion gear 9 is externally fitted and fixed to the protruding end.
  • a sensor magnet (not shown) is provided at the other end of the rotating shaft 7.
  • the sensor magnet detects the rotational position of the rotor 3.
  • a magnetic sensor for detecting a sensor magnet is mounted on a control board (not shown) housed in the control housing 8. By detecting the magnetic change of the sensor magnet by this magnetic sensor, the rotational position of the rotor 3 is detected.
  • the rotor 3 has a cylindrical rotor core 10 that is externally fitted and fixed at a position corresponding to the stator 2 of the rotating shaft 7.
  • a plurality of (for example, eight in this embodiment) magnets 11 are provided at equal intervals in the circumferential direction.
  • Each magnet 11 is arranged so that the magnetic poles are in order in the circumferential direction.
  • a magnetic attractive force or a repulsive force is generated between the magnet 11 and the magnetic field formed on the stator 2, and the rotor 3 rotates.
  • the stator 2 has a stator core 14 that is, for example, shrink-fitted and fixed to the inner peripheral surface of the peripheral wall 4b (see FIG. 1) of the motor housing 4.
  • the stator core 14 includes a substantially cylindrical back yoke portion 12 and twelve teeth portions 13 protruding from the back yoke portion 12 toward the radial center.
  • the back yoke portion 12 is configured as a magnetic path.
  • the teeth portion 13 is formed so that a cross section perpendicular to the axial direction is substantially T-shaped.
  • the teeth part 13 is arrange
  • a resin insulator 15 is attached to each tooth portion 13 so as to cover the periphery of the tooth portion 13.
  • a coil 16 is wound around each of the teeth portions 13 from above the insulator 15 by a concentrated winding method.
  • a terminal portion 16 a of each coil 16 is drawn out to the control housing 8 side and is connected to the bus bar unit 5.
  • the coil 16 is connected by the bus bar unit 5 so as to have two systems of three phases (U phase, V phase, W phase). Details will be described below.
  • each coil 16 is arranged in every other tooth portion 13 of the same system.
  • each coil 16 is assigned to an arbitrary phase of one of the two systems such that both sides in the circumferential direction of this phase are other phases of the other system and are different from each other. ing. That is, the first-system coil 16 includes the first U-phase coil 161U, the first V-phase coil 161V, the first W-phase coil 161W, the first U-phase coil 161U, the first V-phase coil 161V, and the first W on every other tooth portion 13.
  • the phase coils 161W are assigned in this order.
  • the second-system coil 16 includes the second U-phase coil 162U, the second V-phase coil 162V, the second W-phase coil 162W, the second U-phase coil 162U, the second V-phase coil 162V, The 2W phase coils 162W are assigned in this order.
  • phase coils 161U to 162W there are two each of the phase coils 161U to 162W, and in the same system, the coils 161U to 162W of the same phase are opposed to each other around the rotation axis 7 (point-symmetrical arrangement).
  • the respective phase coils 161U to 162W are arranged so that both the circumferential sides of the first U-phase coil 161U are the second V-phase coil 162V and the second W-phase coil 162W.
  • FIG. 4 is an exploded perspective view of the bus bar unit 5.
  • the bus bar unit 5 includes a resin mold body 19 in a state of being laminated with a substantially annular resin mold body (insulator) 19 at a predetermined interval so as to have a constant insulation distance. And a plurality of bus bars 20 embedded (arranged).
  • the resin mold body 19 is formed so that the inner diameter is substantially the same as the inner diameter of the stator core 14, that is, the diameter of the inner peripheral surface of the tooth portion 13.
  • the resin mold body 19 is formed so that the outer diameter is smaller than the outer diameter of the stator core 14, that is, the outer diameter of the back yoke portion 12.
  • the plurality of bus bars 20 are roughly classified into two types of bus bars.
  • the first system bus bar 20 includes two first U-phase bus bars 21U1 and 21U2, two first V-phase bus bars 21V1 and 21V2, two first W-phase bus bars 21W1 and 21W2, and a first neutral point bus bar 21N. It is comprised by.
  • Two first U-phase bus bars 21U1 and 21U2 connect two first U-phase coils 161U in series.
  • Two first V-phase bus bars 21V1, 21V2 connect two first V-phase coils 161V in series.
  • Two first W-phase bus bars 21W1 and 21W2 connect two first W-phase coils 161W in series.
  • the first neutral point bus bar 21N forms a neutral point of the first system.
  • the second bus bar 20 includes two second U-phase bus bars 22U1 and 22U2, two second V-phase bus bars 22V1 and 22V2, two second W-phase bus bars 22W1 and 22W2, and a second neutral point bus bar 22N. It is comprised by. Two second U-phase bus bars 22U1 and 22U2 connect two second U-phase coils 162U in series. Two second V-phase bus bars 22V1 and 22V2 connect two second V-phase coils 162V in series. Two second W-phase bus bars 22W1 and 22W2 connect two second W-phase coils 162W in series.
  • the second neutral point bus bar 22N forms a neutral point of the second system.
  • the bus bars 21U1 to 22N are arranged side by side so as to have five layers in the axial direction and are insulated from each other.
  • the first layer L1, the second layer L2, the layers are sequentially arranged from the portion farthest from the stator core (upper side in FIG. 4) toward the stator core 14 (downward in FIG. 4). These are referred to as the third layer L3, the fourth layer L4, and the fifth layer L5.
  • a first U-phase bus bar 21U1 and a second W-phase bus bar 22W1 are arranged.
  • a first U-phase bus bar 22U1, a first V-phase bus bar 21V1, a second U-phase bus bar 22U2, a second V-phase bus bar 22V1, and a second W-phase bus bar 22W2 are arranged.
  • a first W-phase bus bar 21W1, a second V-phase bus bar 22V1, and a first W-phase bus bar 21W2 are arranged.
  • a first V-phase bus bar 21V2 and a second neutral point bus bar 22N are arranged.
  • a first neutral point bus bar 21N and a first U-phase bus bar 21U2 are arranged.
  • FIG. 5A is a plan view showing an arrangement state of the first layer L1 in each bus bar.
  • FIG. 5B is a plan view showing an arrangement state of the second layer L2 among the bus bars.
  • FIG. 5C is a plan view showing an arrangement state of the third layer L3 among the bus bars.
  • FIG. 5D is a plan view showing an arrangement state of the fourth layer L4 among the bus bars.
  • FIG. 5E is a plan view showing an arrangement state of the fifth layer L5 among the bus bars.
  • the first U-phase bus bar 21U1 arranged in the first layer L1 has a circumferential length slightly shorter than a semicircle along the circumferential direction of the resin mold body 19. It extends in an arc shape.
  • a first U-phase terminal 23U1 to which the terminal portion 16a of the first U-phase coil 161U is connected is formed at one end in the circumferential direction of the first U-phase bus bar 21U1 so as to protrude outward in the radial direction.
  • the other circumferential end of the first U-phase bus bar 21U1 is once bent radially inward, and then the first U-phase power supply terminal 25U1 is formed to protrude toward the terminal unit 70 and along the axial direction. That is, the first U-phase power supply terminal 25U1 is located radially inward of the first U-phase terminal 23U1.
  • the tip end of the first U-phase terminal 23U1 has a cut-and-raised portion 28 whose center in the circumferential direction is cut and raised on the side opposite to the stator core 14 (the upper side in FIG. 4 and the front side in FIG. 5). Yes.
  • the tip of the first U-phase terminal 23U1 is formed in a bifurcated shape. Thereby, the terminal part 16a of the coil 16 can be clamped by the first U-phase terminal 23U1. Further, the first U-phase terminal 23U1 and the terminal portion 16a of the coil 16 can be easily welded, for example, by TIG welding.
  • the terminals 23U2 to 24W2 of the bus bars 21U2 to 22N which will be described in detail below, are formed in the same shape as the first U-phase terminal 23U1. Further, the positional relationship between each of the power supply terminals 25U2 to 25W2 and each of the terminals 23U2 to 24W2 is the same as the positional relationship in which the first U-phase power supply terminal 25U1 is located radially inward of the first U-phase terminal 23U1. Therefore, in the following, detailed description of the positional relationship between the power supply terminals 25U2 to 25W2 and the terminals 23U2 to 24W2 will be omitted as appropriate.
  • the second W-phase bus bar 22W2 disposed in the first layer L1 is formed in an arc shape so as to straddle the two second W-phase coils 162W along the circumferential direction of the resin mold body 19.
  • the circumferential length of the second W-phase bus bar 22W2 is set to be slightly shorter than the semicircle.
  • a second W-phase terminal 24W1 to which the terminal portion 16a of the second W-phase coil 162W is connected is formed so as to protrude radially outward at both circumferential ends of the second W-phase bus bar 22W1.
  • the terminal portions 16a of the separate second W-phase coils 162W are connected to these two second W-phase terminals 24W1, respectively.
  • the first U-phase bus bar 21U1 and the second W-phase bus bar 22W2 formed in this way have a first U-phase power supply terminal so that a predetermined interval is formed between the first U-phase terminal 23U1 and the second W-phase terminal 24W1.
  • 25U1 and second W-phase terminal 24W1 are arranged at a predetermined interval.
  • First U-phase bus bar 21U1 is arranged such that first U-phase terminal 23U1 is located at a position where terminal portion 16a of first U-phase coil 161U is pulled out.
  • Second W-phase bus bar 22W2 is arranged such that two second W-phase terminals 24W1 are located at positions where terminal portion 16a of second V-phase coil 162V is pulled out.
  • the second U-phase bus bar 22U1 arranged in the second layer L2 is formed in an arc shape so as to straddle the two second U-phase coils 162U along the circumferential direction of the resin mold body 19.
  • the circumferential length of the second U-phase bus bar 22U1 is set to be slightly shorter than the semicircle.
  • a second U-phase terminal 24U1 to which the terminal portion 16a of the second U-phase coil 162U is connected is formed protruding outward in the radial direction. Terminal portions 16a of separate second U-phase coils 162U are connected to these two second U-phase terminals 24U1.
  • the second U-phase bus bar 22U2 arranged in the second layer L2 has a second U-phase terminal 24U2 connected to the end 16a of the second U-phase coil 162U at one end in the circumferential direction so as to protrude radially outward.
  • the other circumferential end of the second U-phase bus bar 22U2 is once bent radially inward, and then a second U-phase power supply terminal 25U2 is formed to protrude toward the terminal unit 70 and along the axial direction.
  • the second U-phase bus bar 22U2 is formed so that the second U-phase terminal 24U2 and the second U-phase power supply terminal 25U2 do not overlap in the radial direction.
  • the first V-phase bus bar 21V1 arranged in the second layer L2 has a first V-phase terminal 23V1 connected to the end 16a of the first V-phase coil 161V at one end in the circumferential direction so as to protrude outward in the radial direction.
  • the other end in the circumferential direction of the first V-phase bus bar 21V1 is once bent radially inward, and then the first V-phase power supply terminal 25V1 protrudes toward the terminal unit 70 and along the axial direction.
  • the first V-phase bus bar 21V1 is formed such that the first V-phase terminal 23V1 and the first V-phase power supply terminal 25V1 are positioned so as not to overlap in the radial direction.
  • the second V-phase bus bar 22V1 arranged in the second layer L2 is formed in a substantially L shape. That is, the second V-phase bus bar 22V1 includes a base end of the second V-phase terminal 24V1 extending in the radial direction and a base end of the second V-phase power supply terminal 25V2 protruding toward the terminal unit 70 and along the axial direction. Are joined together.
  • the terminal portion 16a of the second V-phase coil 162V is connected to the second V-phase terminal 24V1.
  • the second W-phase bus bar 22W2 disposed in the second layer L2 has a second W-phase terminal 24W2 connected to the end portion 16a of the second W-phase coil 162W at one end in the circumferential direction so as to protrude outward in the radial direction.
  • the other circumferential end of the second W-phase bus bar 22W2 is once bent radially inward, and then the second W-phase power supply terminal 25W2 is formed to protrude toward the terminal unit 70 and along the axial direction.
  • the second W-phase bus bar 22W2 is formed such that the second W-phase terminal 24W2 and the second W-phase power supply terminal 25W2 do not overlap in the radial direction.
  • the second U-phase bus bars 22U1, 22U2, the first V-phase bus bar 21V1, the second V-phase bus bar 22V1, and the second W-phase bus bar 22W2 formed in this way are arranged at predetermined intervals in the circumferential direction.
  • the second U-phase bus bars 22U1 and 22U2 are arranged such that the two second U-phase terminals 24U1 and the second U-phase terminal 24U2 are positioned at positions where the terminal portion 16a of the second U-phase coil 162U is pulled out.
  • First V-phase bus bar 21V1 is arranged such that first V-phase terminal 23V1 is located at a position where terminal portion 16a of first V-phase coil 161V is drawn.
  • the second V-phase bus bar 22V1 is arranged such that the second V-phase terminal 24V1 is located at a position where the terminal portion 16a of the second V-phase coil 162V is pulled out.
  • Second W-phase bus bar 22W2 is arranged such that second W-phase terminal 24W2 is located at a position where terminal portion 16a of second W-phase coil 162W is pulled out.
  • the second U-phase bus bar 22U2 and the second V-phase bus bar 22V1 can be arranged with a crank portion 26 described later formed on the second V-phase bus bar 22V2 between the phase power supply terminals 25U2 and 25V2 of the bus bars 22U2 and 22V1. Further, the crank portion 26 is disposed so as to be avoided.
  • the second V-phase bus bar 22V2 arranged in the third layer L3 is formed in an arc shape so as to straddle the two second V-phase coils 162V along the circumferential direction of the resin mold body 19.
  • the circumferential length of the second V-phase bus bar 22V2 is set to be slightly shorter than the semicircle.
  • a second V-phase terminal 24V2 to which the terminal portion 16a of the second V-phase coil 162V is connected is formed at both ends in the circumferential direction of the second V-phase bus bar 22V2 so as to protrude radially outward. Terminal portions 16a of separate second V-phase coils 162V are connected to these two second V-phase terminals 24V2.
  • a crank portion 26 bent in a crank shape is formed at one circumferential end of the second V-phase bus bar 22V2, and a second V-phase terminal 24V2 is formed at the end of the crank portion 26.
  • FIG. 6 is an enlarged perspective view of the crank portion 26.
  • the crank portion 26 includes a rising portion 26a that bends from the second V-phase bus bar 22V2 toward the second layer L2, and an extending portion that extends along the circumferential direction from the tip of the rising portion 26a. 26b.
  • the extending part 26b is located in the second layer L2.
  • the extending portion 26b is set to a length that allows a later-described first W-phase terminal 23W1 formed on the first W-phase bus bar 21W1 to be disposed at a position corresponding to the extending portion 26b of the third layer L3.
  • the first W-phase bus bar 21W1 disposed in the third layer L3 is formed in an arc shape so as to straddle the two first W-phase coils 161W along the circumferential direction of the resin mold body 19.
  • the circumferential length of the first W-phase bus bar 21W1 is set to be slightly shorter than the semicircle.
  • a first W-phase terminal 23W1 to which the terminal portion 16a of the first W-phase coil 161W is connected is protruded and formed radially outward at both circumferential ends of the first W-phase bus bar 21W1. Terminal portions 16a of separate first W-phase coils 161W are connected to these two first W-phase terminals 23W1, respectively.
  • a crank portion 26 is formed in the second V-phase bus bar 22V2 arranged in the same layer (third layer L3). Therefore, the first W-phase terminal 23W1 of the first W-phase bus bar 21W1 is arranged in the empty space S1 formed by the crank portion 26. Therefore, even if the circumferential lengths of the second V-phase bus bar 22V2 and the first W-phase bus bar 21W1 are set to be slightly shorter than the semicircle, the empty space S1 can be secured as compared with the other layers. .
  • the first W-phase bus bar 21W2 is arranged in this empty space S1.
  • the first W-phase bus bar 21W2 arranged in the third layer L3 is formed in a substantially L shape. That is, the first W-phase bus bar 21W2 includes a base end of the first W-phase terminal 23W2 extending in the radial direction and a base end of the first W-phase power supply terminal 25W1 protruding toward the terminal unit 70 and along the axial direction. Are joined together. Terminal portion 16a of first W-phase coil 161W is connected to first W-phase terminal 23W2.
  • the second V-phase bus bar 22V2 formed in this way is arranged so that the second V-phase terminal 24V2 is located at a position where the terminal portion 16a of the second V-phase coil 162V is pulled out.
  • the first W-phase bus bars 21W1 and 21W2 are arranged such that the first W-phase terminal 23W1 is located at a position where the terminal portion 16a of the first W-phase coil 161W is pulled out.
  • First W-phase bus bar 21W2 is arranged such that first W-phase terminal 23W2 is located at a position where terminal portion 16a of first W-phase coil 161W is pulled out.
  • the first V-phase bus bar 21V2 arranged in the fourth layer L4 is formed in an arc shape so as to straddle the two first V-phase coils 161V along the circumferential direction of the resin mold body 19.
  • the circumferential length of the first V-phase bus bar 21V2 is set to be slightly shorter than the semicircle.
  • a first V-phase terminal 23V2 to which the terminal portion 16a of the first V-phase coil 161V is connected is formed to protrude radially outward at both ends in the circumferential direction of the first V-phase bus bar 21V2. These two first V-phase terminals 23V2 are connected to terminal portions 16a of separate first V-phase coils 161V, respectively.
  • the second neutral point bus bar 22N arranged in the fourth layer L4 is arranged along the circumferential direction of the resin mold body 19 with the coils 162U, 162V, 162W of the respective phases of the second system (second U-phase coil 162U, second V).
  • the phase coil 162V and the second W-phase coil 162W) are extended and formed in an arc shape.
  • the circumferential length of the second neutral point bus bar 22N is set to be slightly shorter than the semicircle.
  • the second neutral point bus bar 22N is connected to the both ends in the circumferential direction and substantially in the circumferential direction to the second neutral phase terminal 162a of the second U-phase coil 162U, the second V-phase coil 162V, and the second W-phase coil 162W, respectively.
  • a point terminal 24N is formed to protrude outward in the radial direction.
  • the terminal portions 16a of the coils 162U, 162V, 162W of the respective phases of the second system are connected to the three second neutral point terminals 24N one by one.
  • the first V-phase bus bar 21V2 and the second neutral point bus bar 22N formed in this way are arranged at predetermined intervals in the circumferential direction.
  • the first V-phase bus bar 21V2 is arranged such that two first V-phase terminals 23V2 are located at positions where the terminal portion 16a of the first V-phase coil 161V is pulled out.
  • the second neutral point bus bar 22N is arranged such that the second neutral point terminal 24N is located at a position where the terminal portion 16a of each phase coil 162U, 162V, 162W of the second system is pulled out.
  • the first U-phase bus bar 21U2 arranged in the fifth layer L5 is formed to extend in an arc shape so as to straddle the two first U-phase coils 161V along the circumferential direction of the resin mold body 19.
  • the circumferential length of the first U-phase bus bar 21U2 is set to be slightly shorter than the semicircle.
  • a first U-phase terminal 23U2 to which the terminal portion 16a of the first U-phase coil 161U is connected is protruded and formed radially outward at both ends in the circumferential direction of the first U-phase bus bar 21U2. Terminal portions 16a of separate first U-phase coils 161U are connected to these two first U-phase terminals 23U2.
  • the first neutral point bus bar 21N arranged in the fifth layer L5 is arranged along the circumferential direction of the resin mold body 19 with the coils 161U, 161V, 161W of the respective phases of the first system (the first U-phase coil 161U, the first V).
  • the phase coil 161V and the first W-phase coil 161W are extended in an arc shape so as to straddle one by one.
  • the circumferential length of the first neutral point bus bar 21N is set to be slightly shorter than the semicircle.
  • the first neutral point bus bar 21N has a first neutral point to which end portions 16a of the first U-phase coil 161U, the first V-phase coil 161V, and the first W-phase coil 161W are connected to both ends in the circumferential direction and substantially in the center in the circumferential direction.
  • the point terminal 23N is formed so as to protrude outward in the radial direction.
  • One terminal portion 16a of each phase coil 161U, 161V, 161W of the first system is connected to each of the three second neutral point terminals 23N.
  • the first U-phase bus bar 21U2 and the first neutral point bus bar 21N formed in this way are arranged at predetermined intervals in the circumferential direction.
  • First U-phase bus bar 21U2 is arranged such that two first U-phase terminals 23U2 are located at positions where terminal portion 16a of first U-phase coil 161U is drawn out.
  • the first neutral point bus bar 21N is arranged such that the first neutral point terminal 23N is located at a position where the terminal portion 16a of each phase coil 161U, 161V, 161W of the first system is pulled out.
  • the bus bar 20 arranged in the five layers includes the first neutral point bus bar 21N of the first system and the second neutral point bus bar 22N of the second system arranged in different layers.
  • the bus bars 21U1 to 22W2 corresponding to the same phases of the first system bus bars 21U1 to 21W2 and the second system bus bars 22U1 to 22W2 are arranged in different layers.
  • at least one bus bar (first U-phase bus bar 21U1, 21U2, first V-phase bus bar 21V2, first W-phase bus bar 21W1, second U-phase bus bar 22U1, second V-phase bus bar 22V2, And a second W-phase bus bar 22W1) is arranged.
  • FIG. 7 is a plan view of the stator 2 and the bus bar unit 5 as seen from the axial direction.
  • the bus bars 21U to 22W arranged in the five layers (L1 to L5) have the power feeding terminals 25U1 to 25W2 arranged unevenly in the circumferential direction. More specifically, the power supply terminals 25U1 to 25W2 are concentratedly arranged in a substantially semicircular range of the resin mold body 19. The intervals between the power supply terminals 25U1 to 25W2 are set unevenly.
  • each of the power supply terminals 25U1 to 25W2 protrudes from one end surface 19a of the resin mold body 19 in the axial direction.
  • the tips of the power supply terminals 25U1 to 25W2 are, for example, TIG welded to the other ends of the terminals 72 (see FIG. 1) of the terminal unit 70.
  • the electric power of the external power source is supplied to the bus bar unit 5 via the terminal unit 70.
  • power is supplied to each coil 16 (161U to 162W) via the bus bar unit 5.
  • the resin mold body 19 is formed with a protruding protrusion 27 that holds the roots of the power supply terminals 25U1 to 25W2 protruding from the resin mold body 19. Due to the holding convex portion 27, the strength of the portions of the power supply terminals 25U1 to 25W2 protruding from the resin mold body 19 is improved. For this reason, it is possible to easily connect the tips of the power supply terminals 25U1 to 25W2 and the other end of the terminal 72.
  • FIG. 8 is a connection diagram of the coil 16 by the bus bar unit 5. As shown in FIG. 8, the coil 16 is connected by the star connection method by the bus bar unit 5 so as to have two systems of three phases (U phase, V phase, W phase). In each system, the coils 16 having the same phase are connected in series.
  • the stator 2 is provided with twelve teeth portions 13 and the coils 16 are wound around the teeth portions 13 by the concentrated winding method
  • the coils 161U to 162W of the same phase are arranged opposite to each other about the rotation shaft 7 (point-symmetric arrangement).
  • the respective phase coils 161U to 162W are arranged so that both the circumferential sides of the first U-phase coil 161U are the second V-phase coil 162V and the second W-phase coil 162W.
  • the bus bar unit 5 for connecting the coil 16 includes a substantially annular resin mold body 19 and a plurality of bus bars 20 of a plurality of systems embedded in the resin mold body 19.
  • a crank portion 26 is formed in the second V-phase bus bar 22V2 arranged in the third layer L3 among the bus bars 20 of each system, and the space of the first W-phase bus bar 21W1 in the space vacated by the crank portion 26 is formed.
  • a 1W phase terminal 23W1 is disposed. That is, among the plurality of bus bars 20, the second V-phase bus bar 22V2 and the first W-phase bus bar 21W1 can be arranged so as to partially overlap with each other in the axial direction while being arranged in the same layer (third layer L3). .
  • each of the second V-phase bus bar 22V2 and the first W-phase bus bar 21W1 is set to be slightly shorter than a semicircle, a free space S1 is ensured as compared with other layers. it can.
  • the first W-phase bus bar 21W2 can be arranged in this empty space S1.
  • the number of bus bars 20 stacked in the entire bus bar unit 5 can be five, and the axial thickness of the bus bar unit 5 can be reduced.
  • the crank portion 26 in the second V-phase bus bar 22V2 it is possible to alleviate the restrictions on the layout of each bus bar 20, such as disposing the first W-phase bus bar 21W2 in the empty space S1, for example. For this reason, the overall length of each bus bar 20 can be set short as a whole.
  • the respective power supply terminals U1 to W2 are non-uniformly arranged in the circumferential direction of the power supply terminals 25U1 to 25W2. More specifically, the power supply terminals 25U1 to 25W2 are concentratedly arranged in a substantially semicircular range of the resin mold body 19. The intervals between the phase power supply terminals 25U1 to 25W2 are set non-uniformly. For this reason, it is possible to prevent the entire length of the bus bar 20 from becoming unnecessarily long in consideration of the layout of the phase power supply terminals 25U1 to 25W2.
  • the second U-phase bus bar 22U2 and the second V-phase bus bar 22V1 can be provided with a crank portion 26, which will be described later, formed on the second V-phase bus bar 22V2 between the phase feeding terminals 25U2 and 25V2 of the bus bars 22U2 and 22V1.
  • the crank portion 26 is disposed so as to be avoided.
  • the phase feeding terminals 25U1 to 25W2 and the bus bars 20 can be arranged by effectively utilizing the space in the same layer as the layer (second layer L2) in which the crank portion 26 is arranged. For this reason, the axial thickness of the bus bar unit 5 can be reduced.
  • crank portion 26 is formed at one circumferential end of the second V-phase bus bar 22V2.
  • a second V-phase terminal 24V2 is formed at the end of the crank portion 26.
  • the crank portion 26 is formed at the circumferential end of the second V-phase bus bar 22V2, thereby increasing the length of the crank portion 26.
  • the bus bar 20 when the bus bar 20 is arranged in each of the layers L1 to L5 as described above, the first neutral point bus bar 21N of the first system and the second neutral point bus bar 22N of the second system are arranged in different layers.
  • the bus bars 21U1 to 22W2 corresponding to the same phases of the first system bus bars 21U1 to 21W2 and the second system bus bars 22U1 to 22W2 are arranged in different layers. For this reason, useless empty space can be reduced as much as possible and an increase in the number of layers can be suppressed. Further, the overall length of each bus bar 20 can be set as short as possible.
  • the present invention is not limited to the above-described embodiment, and includes various modifications made to the above-described embodiment without departing from the spirit of the present invention.
  • the brushless motor 1 is used for an electric power steering apparatus has been described.
  • the brushless motor 1 can be used for various uses.
  • crank portion 26 is formed in the second V-phase bus bar 22V2 and a part of the crank portion 26 and the first W-phase bus bar 21W1 is disposed with a gap in the axial direction has been described.
  • the present invention is not limited to this, and the crank portion 26 may be formed on the first W-phase bus bar 21W1.
  • the crank part 26 may be formed in the bus bar 20 of another layer.
  • the crank portion 26 may not be formed only at the circumferential end of the bus bar 20.
  • the crank portion 26 may be formed from the circumferential center to the circumferential end of the second V-phase bus bar 22V2.
  • the bus bars 20 arranged in the layers L1 to L5 can be arbitrarily set according to specifications and the like.
  • the case where the coil 16 is connected by the star connection method so that the coil 16 has a two-phase three-phase (U phase, V phase, W phase) structure by the bus bar unit 5 has been described. Further, in each system, the case where the coils 16 having the same phase are connected in series has been described. However, the present invention is not limited to this, and the bus bar unit 5 may be configured such that the coils 16 having the same phase are connected in parallel in each system.
  • the brushless motor 1 is an 8-pole 12-slot motor having 8 magnets 11 (8 magnetic poles) and 12 slots 17 (12 slots). Explained the case. However, the number of magnets 11 can be set to an arbitrary number.
  • a resin mold body is formed in advance in a cylindrical shape with a resin material, a plurality of substantially annular grooves are formed along the circumferential direction, and the plurality of bus bars 20 are connected from the outside in the radial direction. It is good also as a structure inserted and arranged.
  • 2nd W phase bus bar (2nd system phase bus bar) 22N 2nd neutral point bus bar (second neutral point bus bar) 23U1, 23U2 ... 1st U phase terminal (1st system phase terminal) 23V1, 23V2 ... 1st V phase terminal (1st system phase terminal) 23W1, 23W2 ... 1st W phase terminal (1st system phase terminal) 23N ... 1st neutral point terminal (1st system neutral point terminal) 24U1, 24U2 ... 2nd U phase terminal (2nd system phase terminal) 24V1, 24V2 ... 2nd V phase terminal (2nd system phase terminal) 24W1, 24W2 ... 2nd W phase terminal (2nd system phase terminal) 24N 2nd neutral point terminal (second neutral point terminal) 25U1 ...

Abstract

第3層(L3)の第2V相バスバー(22V2)に、クランク状に形成され第2層(L2)に配置されるクランク部(26)を形成し、このクランク部(26)と第3層(L3)に配置された第1W相バスバー(21W1)の周方向一端部とを軸方向で間隙を介して重なるように配置した。

Description

ブラシレスモータ
 本発明は、ブラシレスモータに関するものである。
 本願は、2017年2月16日に、日本に出願された特願2017-026755号に基づき優先権を主張し、その内容をここに援用する。
 例えば、インナーロータ型のブラシレスモータは、モータケースに内嵌固定されたステータと、モータケースの径方向中央に配置されステータに対して回転自在に支持されたロータとを有している。ロータの外周面には、複数の永久磁石が配設されている。ステータは、略円筒状のステータコアと、このステータコアから径方向内側に突設された複数のティース部とを備えている。
 各ティース部には、絶縁性を有する樹脂材料により形成されたインシュレータが装着され、このインシュレータを介してコイルが巻装されている。そして、コイルに外部電源からの電力が給電されると、コイルに発生する磁束と永久磁石との間に吸引力、または反発力が生じロータが回転する。
 ところで、このようなブラシレスモータのコイルへの給電手段として、バスバーユニットを用いる場合がある。バスバーユニットは、金属製の複数のバスバーを互いに絶縁された状態で樹脂モールドにより略円環状に形成されている。例えば、コイルをスター結線方式にて結線する場合にあっては、樹脂モールド体に、各相のコイルに給電を行うための複数の相バスバーと、中性点(コモン)を形成する中性点バスバーとが互いに絶縁された状態で樹脂モールドにより略円環状に形成されている。
 また、ブラシレスモータのコイルの結線方法として、2系統の3相構造となるように形成する方法がある(例えば、特許文献1参照)。これによれば、1系統目のコイルが巻回されているティース部と、2系統目のコイルが巻回されているティース部とが回転軸線を中心に点対称に配置されている。各バスバーは、軸方向に並んで複数層に配置されている。
 このように、コイルを2系統の3相構造とすることにより、不具合等が生じて1系統のコイルに給電できなくなった場合であっても、もう1系統のコイルに給電を行うことができる。このため、ブラシレスモータが完全に駆動しなくなってしまうことを防止できる。
特開2016-111921号公報
 ところで、上述の従来技術のようなブラシレスモータにおいて、2系統の3層構造となるようにバスバーユニットを構成する場合、1系統毎の同相のコイルの位置が、回転軸線を中心に点対称位置に存在する。このため、単純に同相同士のコイルを結線しようとすると、バスバーの全長が長くなってしまうという問題があった。また、2系統分のバスバーが必要になるので、バスバーを配置する層数が増えてバスバーユニットが軸方向に厚くなってしまうという問題があった。
 そこで、本発明は、各バスバーの全長を短くでき、且つバスバーユニットの軸方向の厚さを薄くすることができるブラシレスモータを提供する。
 上記の課題を解決するために、本発明の第1態様によれば、ブラシレスモータは、集中巻方式によりコイルが巻回されるティース部を12個有するステータと、前記コイルを、2系統の3相構造となるように結線するバスバーユニットと、を備え、前記ティース部に巻回されたコイルは、同一系統が1つ置きの前記ティース部に配置され、且つ2系統のうちの一方の第1系統の任意の相に対し、該相の周方向両隣が他方の第2系統の他の相であって互いに異なる相となるように配置されているブラシレスモータであって、前記バスバーユニットは、前記第1系統目の同相同士の前記コイルを結線し、前記コイルが接続される第1系統相端子を有する3つの第1系統相バスバーと、前記第1系統目の各相の前記コイルを結線して中性点を形成し、前記コイルが接続される第1系統中性点端子を有する1つの第1系統中性点バスバーと、前記第2系統目の同相同士の前記コイルを結線し、前記コイルが接続される第2系統相端子を有する3つの第2系統相バスバーと、前記第2系統目の各相の前記コイルを結線して中性点を形成し、前記コイルが接続される第2系統中性点端子を有する1つの第2系統中性点バスバーと、前記第1系統相バスバー、前記第1系統中性点バスバー、前記第2系統相バスバー、及び前記第2系統中性点バスバーが配置される円環状の絶縁体と、を備え、前記第1系統相バスバー、前記第1系統中性点バスバー、前記第2系統相バスバー、及び前記第2系統中性点バスバーが、軸方向に並んで複数層に配置され、前記第1系統相バスバー及び前記第2系統相バスバーのうちの何れか一方は、クランク状に形成されたクランク部を有し、該クランク部に、前記第1系統相端子及び前記第2系統相端子の何れか一方が形成されており、前記第1系統相バスバー及び前記第2系統相バスバーのうちの何れか一方は、この一方のバスバーが配置されている層と前記クランク部が配置されている層が異なっており、前記クランク部は、他方のバスバーと軸方向で間隙を介して重なるように配置されている。
 このように、ティース部を12個有するステータにおいて、第1系統相バスバー及び第2系統相バスバーのうちの何れか一方にクランク部を形成することにより、このクランク部が形成された一方のバスバーと他方のバスバーとを同一層に配置できる。そして、クランク部のみを他の層に配置して他方のバスバーと軸方向で重ねて配置できる。このため、一方のバスバーと他方のバスバーとが配置された層に空きスペースが形成されるので、この空きスペースにさらにその他のバスバーを配置することができる。この結果、バスバーユニット全体では層数を減少させることができ、バスバーユニットの軸方向の厚さを薄くすることができる。
 また、クランク部を形成することにより、バスバーのレイアウトの制約を緩和できるので、バスバーの全長を短くできる。
 本発明の第2態様によれば、本発明の第1態様に係るブラシレスモータは、前記第1系統相バスバーと前記第2系統相バスバーは、相毎に外部電源に接続される給電端子を有し、前記給電端子は、前記クランク部を避けて配置されている。
 このように構成することで、クランク部が配置されている層と同一層のスペースを有効活用して、給電端子やバスバーを配置できる。このため、バスバーユニットの軸方向の厚さを薄くすることができる。
 本発明の第3態様によれば、本発明の第2態様に係るブラシレスモータは、前記給電端子は、周方向に不均等で配置されている。
 このように構成することで、無駄に各バスバーの全長が長くなってしまうことを抑制できる。
 本発明の第4態様によれば、本発明の第1態様から第3態様の何れか一の態様に係るブラシレスモータは、前記第1系統相バスバーの端部に前記第1系統相端子が配置されており、前記第2系統相バスバーの端部に前記第2系統相端子が配置されており、前記クランク部は、前記第1系統相バスバー及び前記第2系統相バスバーのうちの何れか一方の端部に形成されている。
 このように構成することで、クランク部の長さをできる限り短く設定することができる。この分クランク部が配置されている層において、クランク部の占有スペースを省スペースにできるので、バスバー全体としてレイアウト性を向上できる。
 本発明の第5態様によれば、本発明の第1態様から第4態様の何れか一の態様に係るブラスレスモータは、前記第1系統中性点バスバーと、前記第2系統中性点バスバーは、それぞれ別の層に配置されている。
 また、本発明の第6態様によれば、本発明の第1態様から第5態様の何れか一の態様に係るブラシレスモータは、前記第1系統相バスバーと、前記第2系統相バスバーのそれぞれ同相に相当するバスバーは、別の層に配置されていてもよい。
 このように構成することで、無駄な空きスペースを極力減らし、層数の増大を抑えることができる。また、各バーの各々全長をできる限り短く設定することができる。
 上述のブラシレスモータによれば、ティース部を12個有するステータにおいて、第1系統相バスバー及び第2系統相バスバーのうちの何れか一方にクランク部を形成することにより、このクランク部が形成された一方のバスバーと他方のバスバーとを同一層に配置できる。そして、クランク部のみを他の層に配置して他方のバスバーと軸方向で重ねて配置できる。このため、一方のバスバーと他方のバスバーとが配置された層に空きスペースが形成されるので、この空きスペースにさらにその他のバスバーを配置することができる。この結果、バスバーユニット全体では層数を減少させることができ、バスバーユニットの軸方向の厚さを薄くすることができる。
 また、クランク部を形成することにより、バスバーのレイアウトの制約を緩和できるので、バスバーの全長を短くできる。
本発明の実施形態におけるブラシレスモータの斜視図である。 本発明の実施形態におけるステータ、ロータ及びバスバーユニットの斜視図である。 本発明の実施形態におけるステータ及びロータの概略構成図である。 本発明の実施形態におけるバスバーユニットの分解斜視図である。 本発明の実施形態における各バスバーのうち、第1層の配置状態を示す平面図である。 本発明の実施形態における各バスバーのうち、第2層の配置状態を示す平面図である。 本発明の実施形態における各バスバーのうち、第3層の配置状態を示す平面図である。 本発明の実施形態における各バスバーのうち、第4層の配置状態を示す平面図である。 本発明の実施形態における各バスバーのうち、第5層の配置状態を示す平面図である。 本発明の実施形態におけるクランク部の拡大斜視図である。 本発明の実施形態におけるステータ及びバスバーユニットを軸方向からみた平面図である。 本発明の実施形態におけるバスバーユニットによるコイルの結線図である。
 次に、本発明の実施形態を図面に基づいて説明する。
(ブラシレスモータ)
 図1は、ブラシレスモータ1の斜視図、図2は、ステータ2、ロータ3及びバスバーユニット5の斜視図である。
 図1、図2に示すように、ブラシレスモータ1は、例えば、電動パワーステアリング装置(EPS;Electric Power Steering)に用いられる。ブラシレスモータ1は、略有底円筒状のモータハウジング4と、このモータハウジング4内に内嵌固定された略円筒状のステータ2と、ステータ2の径方向内側に回転自在に配置されたロータ3と、ステータ2の軸方向一端側に配置され、このステータ2に給電を行うためのバスバーユニット5と、を備えている。
 なお、以下の説明では、ロータ3の回転軸線方向を単に軸方向、ロータ3の回転方向を周方向、軸方向及び周方向に直交するロータ3の径方向を単に径方向と称して説明する。
 モータハウジング4の底部4aには、径方向中央に略円筒状の軸受ハウジング6が、軸方向外側に向かって突出形成されている。この軸受ハウジング6内に、ロータ3の回転軸7の一端側を回転自在に支持するための不図示の軸受が設けられている。
 モータハウジング4の底部4aとは反対側端には、制御ハウジング8が一体成形されている。制御ハウジング8は、モータハウジング4側とこのモータハウジング4とは反対側の軸方向外側とを連通するように、筒状に形成されている。
 制御ハウジング8には、バスバーユニット5が収納されている。さらに、制御ハウジング8の開口部8aを閉塞するように、ターミナルユニット70が設けられている。
 ターミナルユニット70は、不図示の外部電源とバスバーユニット5とを電気的に接続するためのものである。ターミナルユニット70は、制御ハウジング8の開口部8aを閉塞するように形成された板状の樹脂モールド体71と、樹脂モールド体71に殆どが埋設された複数本(この実施形態では6本)のターミナル72と、により構成されている。
 各ターミナル72は、一端72aが樹脂モールド体71から制御ハウジング8の開口部8aを介して軸方向外側に突出している。一方、各ターミナル72の他端(不図示)は、バスバーユニット5側に向かって突出している。そして、各ターミナル72の他端が、バスバーユニット5に接続されている。
 制御ハウジング8には、バスバーユニット5とターミナルユニット70との間に、不図示の軸受プレートが設けられている。軸受プレートには、バスバーユニット5の後述する各相給電端子25U1~25W2を挿通可能な不図示の挿通孔が形成されている。この挿通孔を介して、各相給電端子25U1~25W2がターミナルユニット70側に突出され、対応するターミナル72に接続される。さらに、軸受プレートには、ロータ3の回転軸7の他端を回転自在に支持するための不図示の軸受が設けられている。
 図3は、ステータ2及びロータ3の概略構成図である。
 図2、図3に示すように、ロータ3の回転軸7の一端は、モータハウジング4の軸受ハウジング6を介して軸方向外側に突出している。この突出した一端に、ピニオンギヤ9が外嵌固定されている。このピニオンギヤ9に、例えばステアリングに設けられたギヤが噛合される。
 回転軸7の他端には、不図示のセンサマグネットが設けられている。センサマグネットは、ロータ3の回転位置を検出する。制御ハウジング8に収納されている不図示の制御基板には、センサマグネットを検出する磁気センサが実装されている。この磁気センサによって、センサマグネットの磁気変化を検出することにより、ロータ3の回転位置を検出する。
 ロータ3は、回転軸7のステータ2に対応する位置に外嵌固定された円柱状のロータコア10を有している。ロータコア10の外周面には、複数(例えば、本実施形態では8個)のマグネット11が周方向に等間隔で設けられている。各マグネット11は、周方向に磁極が順番となるように配置されている。このマグネット11とステータ2に形成される磁界との間で磁気的な吸引力や反発力が生じ、ロータ3が回転する。
 ステータ2は、モータハウジング4の周壁4b(図1参照)の内周面に、例えば焼嵌め固定されるステータコア14を有している。ステータコア14は、略円筒状のバックヨーク部12と、バックヨーク部12から径方向中央に向かって突出する12個のティース部13と、により構成されている。バックヨーク部12は、磁路として構成される。
 ティース部13は、軸方向に直交する断面が略T字状となるように形成されている。ティース部13は、周方向に等間隔で配置されており、周方向に隣接するティース部13間に蟻溝状のスロット17が形成される。つまり、スロット17の個数も12個に設定される。すなわち、本実施形態のブラシレスモータ1は、マグネット11の個数が8個(磁極数が8極)、スロット17の個数が12個(スロット数が12)の8極12スロットのモータである。
 各ティース部13には、このティース部13の周囲を覆うように樹脂製のインシュレータ15が装着されている。そして、各ティース部13には、インシュレータ15の上からコイル16が集中巻方式により巻回されている。各コイル16の端末部16aは、制御ハウジング8側に引き出されており、バスバーユニット5に接続されている。
 ここで、バスバーユニット5によって、コイル16は、2系統の3相(U相、V相、W相)構造となるように結線されている。以下、詳述する。
(各相コイルの割り当て)
 まず、ティース部13に巻回されている各コイル16の相の割り当てについて説明する。
 各コイル16は、同一系統が1つ置きのティース部13に配置されている。また、各コイル16は、2系統のうちの一方の系統の任意の相に対し、この相の周方向両隣が他方の系統の他の相であって、且つ互いに異なる相となるように割り当てられている。
 すなわち、1系統目のコイル16は、1つ置きのティース部13に第1U相コイル161U、第1V相コイル161V、第1W相コイル161W、第1U相コイル161U、第1V相コイル161V、第1W相コイル161Wの順に割り当てられている。同様に、2系統目のコイル16は、1つ置きのティース部13に第2U相コイル162U、第2V相コイル162V、第2W相コイル162W、第2U相コイル162U、第2V相コイル162V、第2W相コイル162Wの順に割り当てられている。
 つまり、各相コイル161U~162Wはそれぞれ2つずつ存在し、同一系統においては、同一相のコイル161U~162Wが回転軸7を中心に対向配置(点対称配置)されている。そして、第1U相コイル161Uの周方向両隣が第2V相コイル162Vと第2W相コイル162Wとなるように、各相コイル161U~162Wが配置されている。
(バスバーユニット)
 図4は、バスバーユニット5の分解斜視図である。
 次に、バスバーユニット5について詳述する。
 図2、図4に示すように、バスバーユニット5は、略円環状の樹脂モールド体(絶縁体)19と、一定の絶縁距離を存するよう所定間隔を空けて積層された状態で樹脂モールド体19に埋設(配置)された複数のバスバー20と、により構成されている。
 樹脂モールド体19は、内径がステータコア14の内径、つまりティース部13の内周面の直径とほぼ同一となるように形成されている。また、樹脂モールド体19は、外径がステータコア14の外径、つまり、バックヨーク部12の外径よりも小さくなるように形成されている。
 複数のバスバー20は、大きく2系統のバスバーに分類される。第1系統のバスバー20は、2つの第1U相バスバー21U1,21U2と、2つの第1V相バスバー21V1,21V2と、2つの第1W相バスバー21W1,21W2と、第1中性点バスバー21Nと、により構成されている。
 2つの第1U相バスバー21U1,21U2は、2つの第1U相コイル161Uを直列に接続する。2つの第1V相バスバー21V1,21V2は、2つの第1V相コイル161Vを直列に接続する。2つの第1W相バスバー21W1,21W2は、2つの第1W相コイル161Wを直列に接続する。第1中性点バスバー21Nは、第1系統の中性点を形成する。
 第2系統のバスバー20は、2つの第2U相バスバー22U1,22U2と、2つの第2V相バスバー22V1,22V2と、2つの第2W相バスバー22W1,22W2と、第2中性点バスバー22Nと、により構成されている。
 2つの第2U相バスバー22U1,22U2は、2つの第2U相コイル162Uを直列に接続する。2つの第2V相バスバー22V1,22V2は、2つの第2V相コイル162Vを直列に接続する。2つの第2W相バスバー22W1,22W2は、2つの第2W相コイル162Wを直列に接続する。第2中性点バスバー22Nは、第2系統の中性点を形成する。
 これらバスバー21U1~22Nは、軸方向に5層となるように、且つ互いに絶縁された状態で並んで配置されている。
 なお、以下の説明では、各層を、ステータコア14から最も離間した箇所(図4における上側)からステータコア14に接近するに従って(図4における下方に向かうに従って)順に第1層L1、第2層L2、第3層L3、第4層L4、第5層L5と称する。
 第1層L1には、第1U相バスバー21U1と、第2W相バスバー22W1と、が配置されている。第2層L2には、第1U相バスバー22U1と、第1V相バスバー21V1と、第2U相バスバー22U2と、第2V相バスバー22V1と、第2W相バスバー22W2と、が配置されている。第3層L3には、第1W相バスバー21W1と、第2V相バスバー22V1と、第1W相バスバー21W2と、が配置されている。第4層L4には、第1V相バスバー21V2と、第2中性点バスバー22Nと、が配置されている。第5層L5には、第1中性点バスバー21Nと、第1U相バスバー21U2と、が配置されている。
 図5Aは、各バスバーのうち、第1層L1の配置状態を示す平面図である。図5Bは、各バスバーのうち、第2層L2の配置状態を示す平面図である。図5Cは、各バスバーのうち、第3層L3の配置状態を示す平面図である。図5Dは、各バスバーのうち、第4層L4の配置状態を示す平面図である。図5Eは、各バスバーのうち、第5層L5の配置状態を示す平面図である。
 図4、図5Aに示すように、第1層L1に配置された第1U相バスバー21U1は、樹脂モールド体19の周方向に沿って周方向の長さが半円よりもやや短くなるように円弧状に延出形成されている。第1U相バスバー21U1の周方向一端には、第1U相コイル161Uの端末部16aが接続される第1U相端子23U1が径方向外側に向かって突出形成されている。第1U相バスバー21U1の周方向他端は、一旦径方向内側に屈曲された後、第1U相給電端子25U1がターミナルユニット70側に向かって、且つ軸方向に沿って突出形成されている。つまり、第1U相給電端子25U1は、第1U相端子23U1よりも径方向内側に位置している。
 ここで、第1U相端子23U1の先端は、周方向中央がステータコア14とは反対側(図4における上側、図5における紙面手前側)に切り起されてなる切起し部28を有している。第1U相端子23U1の先端は、二又状に形成されている。これにより、第1U相端子23U1によってコイル16の端末部16aを挟持できる。また、第1U相端子23U1とコイル16の端末部16aとを、例えばTIG溶接によって容易に溶接できる。
 なお、以下に詳述する各バスバー21U2~22Nの端子23U2~24W2は、第1U相端子23U1と同一形状に形成されているので、同一符号を付して説明を省略する。また、各給電端子25U2~25W2と各端子23U2~24W2との位置関係も、第1U相端子23U1よりも第1U相給電端子25U1が径方向内側に位置している位置関係と同様である。このため、以下では、各給電端子25U2~25W2と各端子23U2~24W2との位置関係の詳細な説明について、適宜割愛する。
 第1層L1に配置された第2W相バスバー22W2は、樹脂モールド体19の周方向に沿って、2つの第2W相コイル162Wに跨るように円弧状に延出形成されている。換言すれば、第2W相バスバー22W2の周方向の長さは、半円よりもやや短くなるように設定されている。
 第2W相バスバー22W1の周方向両端には、それぞれ第2W相コイル162Wの端末部16aが接続される第2W相端子24W1が径方向外側に向かって突出形成されている。これら2つの第2W相端子24W1には、それぞれ別々の第2W相コイル162Wの端末部16aが接続される。
 このように形成された第1U相バスバー21U1と第2W相バスバー22W2は、第1U相端子23U1と第2W相端子24W1との間に所定の間隔が形成されるように、且つ第1U相給電端子25U1と第2W相端子24W1との間に所定間隔をあけて配置されている。第1U相バスバー21U1は、第1U相コイル161Uの端末部16aが引き出される位置に、第1U相端子23U1が位置するように配置されている。第2W相バスバー22W2は、第2V相コイル162Vの端末部16aが引き出される位置に、それぞれ2つの第2W相端子24W1が位置するように配置されている。
 第2層L2に配置された第2U相バスバー22U1は、樹脂モールド体19の周方向に沿って、2つの第2U相コイル162Uに跨るように円弧状に延出形成されている。換言すれば、第2U相バスバー22U1の周方向の長さは、半円よりもやや短くなるように設定されている。
 第2U相バスバー22U1の周方向両端には、それぞれ第2U相コイル162Uの端末部16aが接続される第2U相端子24U1が径方向外側に向かって突出形成されている。これら2つの第2U相端子24U1には、それぞれ別々の第2U相コイル162Uの端末部16aが接続される。
 第2層L2に配置された第2U相バスバー22U2は、周方向一端に第2U相コイル162Uの端末部16aが接続される第2U相端子24U2が径方向外側に向かって突出形成されている。第2U相バスバー22U2の周方向他端は、一旦径方向内側に屈曲された後、第2U相給電端子25U2がターミナルユニット70側に向かって、且つ軸方向に沿って突出形成されている。第2U相バスバー22U2は、第2U相端子24U2と第2U相給電端子25U2とが径方向で重ならない位置となるように形成されている。
 第2層L2に配置された第1V相バスバー21V1は、周方向一端に第1V相コイル161Vの端末部16aが接続される第1V相端子23V1が径方向外側に向かって突出形成されている。第1V相バスバー21V1の周方向他端は、一旦径方向内側に屈曲された後、第1V相給電端子25V1がターミナルユニット70側に向かって、且つ軸方向に沿って突出形成されている。第1V相バスバー21V1は、第1V相端子23V1と第1V相給電端子25V1とが径方向で重ならない位置となるように形成されている。
 第2層L2に配置された第2V相バスバー22V1は、略L字状に形成されている。すなわち、第2V相バスバー22V1は、径方向に延出する第2V相端子24V1の基端と、ターミナルユニット70側に向かって、且つ軸方向に沿って突出する第2V相給電端子25V2の基端と、が接合された形になる。第2V相端子24V1には、第2V相コイル162Vの端末部16aが接続される。
 第2層L2に配置された第2W相バスバー22W2は、周方向一端に第2W相コイル162Wの端末部16aが接続される第2W相端子24W2が径方向外側に向かって突出形成されている。第2W相バスバー22W2の周方向他端は、一旦径方向内側に屈曲された後、第2W相給電端子25W2がターミナルユニット70側に向かって、且つ軸方向に沿って突出形成されている。第2W相バスバー22W2は、第2W相端子24W2と第2W相給電端子25W2とが径方向で重ならない位置となるように形成されている。
 このように形成された第2U相バスバー22U1,22U2、第1V相バスバー21V1、第2V相バスバー22V1、及び第2W相バスバー22W2は、それぞれ周方向に所定間隔をあけて配置されている。第2U相バスバー22U1,22U2は、第2U相コイル162Uの端末部16aが引き出される位置に、それぞれ2つの第2U相端子24U1及び第2U相端子24U2が位置するように配置されている。第1V相バスバー21V1は、第1V相コイル161Vの端末部16aが引き出される位置に、第1V相端子23V1が位置するように配置されている。
 第2V相バスバー22V1は、第2V相コイル162Vの端末部16aが引き出される位置に、第2V相端子24V1が位置するように配置されている。第2W相バスバー22W2は、第2W相コイル162Wの端末部16aが引き出される位置に、第2W相端子24W2が位置するように配置されている。第2U相バスバー22U2及び第2V相バスバー22V1は、これらバスバー22U2,22V1の各相給電端子25U2,25V2の間に、第2V相バスバー22V2に形成されている後述のクランク部26を配置可能なように、このクランク部26を避けて配置されている。
 第3層L3に配置された第2V相バスバー22V2は、樹脂モールド体19の周方向に沿って、2つの第2V相コイル162Vに跨るように円弧状に延出形成されている。換言すれば、第2V相バスバー22V2の周方向の長さは、半円よりもやや短くなるように設定されている。
 第2V相バスバー22V2の周方向両端には、それぞれ第2V相コイル162Vの端末部16aが接続される第2V相端子24V2が径方向外側に向かって突出形成されている。これら2つの第2V相端子24V2には、それぞれ別々の第2V相コイル162Vの端末部16aが接続される。ここで、第2V相バスバー22V2の周方向一端には、クランク状に屈曲されたクランク部26が形成されており、このクランク部26の端部に、第2V相端子24V2が形成されている。
 図6は、クランク部26の拡大斜視図である。
 図6に示すように、クランク部26は、第2V相バスバー22V2から第2層L2側に向かって屈曲する立上り部26aと、立上り部26aの先端から周方向に沿って延出する延出部26bと、により構成されている。延出部26bは、第2層L2に位置している。延出部26bは、第3層L3の延出部26bに対応する位置に、第1W相バスバー21W1に形成されている後述の第1W相端子23W1を配置可能な長さに設定されている。
 第3層L3に配置された第1W相バスバー21W1は、樹脂モールド体19の周方向に沿って、2つの第1W相コイル161Wに跨るように円弧状に延出形成されている。換言すれば、第1W相バスバー21W1の周方向の長さは、半円よりもやや短くなるように設定されている。
 第1W相バスバー21W1の周方向両端には、それぞれ第1W相コイル161Wの端末部16aが接続される第1W相端子23W1が径方向外側に向かって突出形成されている。これら2つの第1W相端子23W1には、それぞれ別々の第1W相コイル161Wの端末部16aが接続される。
 ここで、図4、図5に示すように、同一層(第3層L3)に配置されている第2V相バスバー22V2にはクランク部26が形成されている。このため、このクランク部26によって形成された空きスペースS1に、第1W相バスバー21W1の第1W相端子23W1が配置されている。よって、第2V相バスバー22V2及び第1W相バスバー21W1のそれぞれの周方向の長さが半円よりもやや短くなる程度に設定されていても、他の層と比較して空きスペースS1を確保できる。この空きスペースS1に、第1W相バスバー21W2が配置されている。
 第3層L3に配置された第1W相バスバー21W2は、略L字状に形成されている。すなわち、第1W相バスバー21W2は、径方向に延出する第1W相端子23W2の基端と、ターミナルユニット70側に向かって、且つ軸方向に沿って突出する第1W相給電端子25W1の基端と、が接合された形になる。第1W相端子23W2には、第1W相コイル161Wの端末部16aが接続される。
 このように形成された第2V相バスバー22V2は、第2V相コイル162Vの端末部16aが引き出される位置に、第2V相端子24V2が位置するように配置されている。第1W相バスバー21W1,21W2は、第1W相コイル161Wの端末部16aが引き出される位置に、第1W相端子23W1が位置するように配置されている。第1W相バスバー21W2は、第1W相コイル161Wの端末部16aが引き出される位置に、第1W相端子23W2が位置するように配置されている。
 第4層L4に配置された第1V相バスバー21V2は、樹脂モールド体19の周方向に沿って、2つの第1V相コイル161Vに跨るように円弧状に延出形成されている。換言すれば、第1V相バスバー21V2の周方向の長さは、半円よりもやや短くなるように設定されている。
 第1V相バスバー21V2の周方向両端には、それぞれ第1V相コイル161Vの端末部16aが接続される第1V相端子23V2が径方向外側に向かって突出形成されている。これら2つの第1V相端子23V2には、それぞれ別々の第1V相コイル161Vの端末部16aが接続される。
 第4層L4に配置された第2中性点バスバー22Nは、樹脂モールド体19の周方向に沿って、第2系統の各相のコイル162U,162V,162W(第2U相コイル162U、第2V相コイル162V、第2W相コイル162W)の1つずつに跨るように円弧状に延出形成されている。換言すれば、第2中性点バスバー22Nの周方向の長さは、半円よりもやや短くなるように設定されている。
 第2中性点バスバー22Nの周方向両端、及び周方向略中央には、それぞれ第2U相コイル162U、第2V相コイル162V及び第2W相コイル162Wの端末部16aが接続される第2中性点端子24Nが径方向外側に向かって突出形成されている。これら3つの第2中性点端子24Nに、それぞれ第2系統の各相のコイル162U,162V,162Wの端末部16aが1つずつ接続される。
 このように形成された第1V相バスバー21V2及び第2中性点バスバー22Nは、それぞれ周方向に所定間隔をあけて配置されている。第1V相バスバー21V2は、第1V相コイル161Vの端末部16aが引き出される位置に、それぞれ2つの第1V相端子23V2が位置するように配置されている。第2中性点バスバー22Nは、第2系統の各相のコイル162U,162V,162Wの端末部16aが引き出される位置に、それぞれ第2中性点端子24Nが位置するように配置されている。
 第5層L5に配置された第1U相バスバー21U2は、樹脂モールド体19の周方向に沿って、2つの第1U相コイル161Vに跨るように円弧状に延出形成されている。換言すれば、第1U相バスバー21U2の周方向の長さは、半円よりもやや短くなるように設定されている。
 第1U相バスバー21U2の周方向両端には、それぞれ第1U相コイル161Uの端末部16aが接続される第1U相端子23U2が径方向外側に向かって突出形成されている。これら2つの第1U相端子23U2には、それぞれ別々の第1U相コイル161Uの端末部16aが接続される。
 第5層L5に配置された第1中性点バスバー21Nは、樹脂モールド体19の周方向に沿って、第1系統の各相のコイル161U,161V,161W(第1U相コイル161U、第1V相コイル161V、第1W相コイル161W)の1つずつに跨るように円弧状に延出形成されている。換言すれば、第1中性点バスバー21Nの周方向の長さは、半円よりもやや短くなるように設定されている。
 第1中性点バスバー21Nの周方向両端、及び周方向略中央には、それぞれ第1U相コイル161U、第1V相コイル161V及び第1W相コイル161Wの端末部16aが接続される第1中性点端子23Nが径方向外側に向かって突出形成されている。これら3つの第2中性点端子23Nに、それぞれ第1系統の各相のコイル161U,161V,161Wの端末部16aが1つずつ接続される。
 このように形成された第1U相バスバー21U2及び第1中性点バスバー21Nは、それぞれ周方向に所定間隔をあけて配置されている。第1U相バスバー21U2は、第1U相コイル161Uの端末部16aが引き出される位置に、それぞれ2つの第1U相端子23U2が位置するように配置されている。第1中性点バスバー21Nは、第1系統の各相のコイル161U,161V,161Wの端末部16aが引き出される位置に、それぞれ第1中性点端子23Nが位置するように配置されている。
 このように5層(L1~L5)に配置されたバスバー20は、第1系統の第1中性点バスバー21Nと、第2系統の第2中性点バスバー22Nとがそれぞれ別の層に配置されている。第1系統の各相バスバー21U1~21W2と第2系統の各相バスバー22U1~22W2のそれぞれ同相に相当するバスバー21U1~22W2は、それぞれ別の層に配置されている。
 各層L1~L5のそれぞれに、少なくとも1つ、周方向の長いバスバー(第1U相バスバー21U1,21U2、第1V相バスバー21V2、第1W相バスバー21W1、第2U相バスバー22U1、第2V相バスバー22V2、及び第2W相バスバー22W1)が配置されている。
 図7は、ステータ2及びバスバーユニット5を軸方向からみた平面図である。
 図7に示すように、5層(L1~L5)に配置された各バスバー21U~22Wは、それぞれの給電端子25U1~25W2が周方向に不均等に配置されている。より具体的には、樹脂モールド体19のほぼ半円の範囲に、給電端子25U1~25W2が集中配置されている。各給電端子25U1~25W2間の間隔は、不均一に設定されている。
 図2、図4に示すように、各給電端子25U1~25W2は、樹脂モールド体19の軸方向一端面19aから突出されている。各給電端子25U1~25W2の先端は、ターミナルユニット70のターミナル72(図1参照)の他端に、例えばTIG溶接される。これにより、ターミナルユニット70を介してバスバーユニット5に外部電源の電力が供給される。さらに、バスバーユニット5を介して各コイル16(161U~162W)に給電が行われる。
 また、樹脂モールド体19には、この樹脂モールド体19から突出する各給電端子25U1~25W2の根元を保持する保持凸部27が突出形成されている。この保持凸部部27により、各給電端子25U1~25W2の樹脂モールド体19から突出する部位の強度が向上される。このため、各給電端子25U1~25W2の先端とターミナル72の他端との接続作業を容易に行うことができる。
 図8は、バスバーユニット5によるコイル16の結線図である。
 図8に示すように、バスバーユニット5によって、コイル16は、2系統の3相(U相、V相、W相)構造となるようにスター結線方式にて結線される。また各系統において、同相となるコイル16は、直列に結線される。
 したがって、上述の実施形態によれば、不具合が生じて2系統のうちの1系統のコイル16に給電できなくなった場合であっても、もう1系統のコイル16に給電を行うことができる。このため、ブラシレスモータ1が完全に駆動しなくなってしまうことを防止できる。
 また、ステータ2に12個のティース部13が設けられ、各ティース部13にコイル16が集中巻方式により巻回されているブラシレスモータ1において、各相コイル161U~162Wはそれぞれ2つずつ存在し、同一系統においては、同一相のコイル161U~162Wが回転軸7を中心に対向配置(点対称配置)されている。そして、第1U相コイル161Uの周方向両隣が第2V相コイル162Vと第2W相コイル162Wとなるように、各相コイル161U~162Wが配置されている。
 この上で、コイル16を結線するバスバーユニット5は、略円環状の樹脂モールド体19と、この樹脂モールド体19に埋設された複数の各系統のバスバー20と、を備えている。そして、各系統のバスバー20のうち、第3層L3に配置された第2V相バスバー22V2にクランク部26が形成されており、このクランク部26によって空いたスペースに、第1W相バスバー21W1の第1W相端子23W1を配置している。つまり、複数のバスバー20のうち、第2V相バスバー22V2と第1W相バスバー21W1は、同一層(第3層L3)に配置されながら、一部を軸方向で間隙を介して重なるように配置できる。
 このため、第2V相バスバー22V2及び第1W相バスバー21W1のそれぞれの周方向の長さが半円よりもやや短くなる程度に設定されていても、他の層と比較して空きスペースS1を確保できる。この空きスペースS1に、第1W相バスバー21W2を配置できる。この結果、バスバーユニット5全体でバスバー20の積層数を5層とすることができ、バスバーユニット5の軸方向の厚さを薄くすることができる。また、第2V相バスバー22V2にクランク部26を形成することにより、例えば、空きスペースS1に第1W相バスバー21W2を配置するなど、各バスバー20のレイアウトの制約を緩和できる。このため、全体として各バスバー20の全長を短く設定できる。
 また、各相給電端子U1~W2は、それぞれの給電端子25U1~25W2が周方向に不均等に配置されている。より具体的には、樹脂モールド体19のほぼ半円の範囲に、給電端子25U1~25W2が集中配置されている。そして、各相給電端子25U1~25W2間の間隔は、不均一に設定されている。このため、各相給電端子25U1~25W2のレイアウトを考慮して無駄にバスバー20の全長が長くなってしまうことを防止できる。
 さらに、第2U相バスバー22U2及び第2V相バスバー22V1は、これらバスバー22U2,22V1の各相給電端子25U2,25V2の間に、第2V相バスバー22V2に形成されている後述のクランク部26を配置可能なように、このクランク部26を避けて配置されている。このように、クランク部26が配置されている層(第2層L2)と同一層のスペースを有効活用して、各相給電端子25U1~25W2やバスバー20を配置できる。このため、バスバーユニット5の軸方向の厚さを薄くすることができる。
 また、クランク部26は、第2V相バスバー22V2の周方向一端に形成されている。そして、クランク部26の端部に、第2V相端子24V2が形成されている。ここで、第2V相バスバー22V2と第1W相バスバー21W1との一部を軸方向で重ねるにあたって、第2V相バスバー22V2の周方向端部にクランク部26を形成することにより、クランク部26の長さをできる限り短く設定することができる。この分、クランク部26が配置されている層(第2層L2)において、クランク部26の占有スペースを省スペースにできるので、バスバー20全体としてレイアウト性を向上できる。
 さらに、上記のように各層L1~L5にバスバー20を配置するにあたって、第1系統の第1中性点バスバー21Nと、第2系統の第2中性点バスバー22Nとがそれぞれ別の層に配置されている。また、第1系統の各相バスバー21U1~21W2と第2系統の各相バスバー22U1~22W2のそれぞれ同相に相当するバスバー21U1~22W2は、それぞれ別の層に配置されている。このため、無駄な空きスペースを極力減らし、層数の増大を抑えることができる。また、各バスバー20の各々全長をできる限り短く設定することができる。
 なお、本発明は上述の実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲において、上述の実施形態に種々の変更を加えたものを含む。
 例えば、上述の実施形態では、ブラシレスモータ1は、電動パワーステアリング装置に用いられるものである場合について説明した。しかしながら、これに限られるものではなく、さまざまな用途にブラシレスモータ1を用いることができる。
 また、上述の実施形態では、第2V相バスバー22V2にクランク部26を形成し、このクランク部26と第1W相バスバー21W1の一部を軸方向に間隙を介して配置した場合について説明した。しかしながら、これに限られるものではなく、第1W相バスバー21W1にクランク部26を形成してもよい。さらに、各バスバー20のレイアウトに応じて、他の層のバスバー20にクランク部26を形成してもよい。また、クランク部26は、バスバー20の周方向端部のみに形成しなくてもよい。例えば、第2V相バスバー22V2の周方向中央から周方向端部に渡ってクランク部26を形成してもよい。
 さらに、各層L1~L5に配置するバスバー20は、仕様等に応じて任意に設定することができる。
 また、上述の実施形態では、バスバーユニット5によってコイル16は、2系統の3相(U相、V相、W相)構造となるようにスター結線方式にて結線される場合について説明した。また各系統において、同相となるコイル16は、直列に結線される場合について説明した。しかしながら、これに限られるものではなく、各系統において、同相となるコイル16が並列結線されるようにバスバーユニット5を構成してもよい。
 さらに、上述の実施形態では、ブラシレスモータ1は、マグネット11の個数が8個(磁極数が8極)、スロット17の個数が12個(スロット数が12)の8極12スロットのモータである場合について説明した。しかしながら、マグネット11の個数については、任意の個数に設定することが可能である。
 また、上述の実施形態では、略円環状の樹脂モールド体19と、樹脂モールド体19に複数のバスバー20をモールド成形する場合について説明した。しかしながら、これに限られるものではなく、例えば円筒状に予め樹脂材料により樹脂モールド体を形成し、周方向に沿って複数の略環状の溝部を形成し、複数のバスバー20を径方向の外側から挿入配置する構成としてもよい。
1…ブラシレスモータ
2…ステータ
5…バスバーユニット
13…ティース部
16…コイル
19…樹脂モールド体
21U1,21U2…第1U相バスバー(第1系統相バスバー)
21V1,21V2…第1V相バスバー(第1系統相バスバー)
21W1,21W2…第1W相バスバー(第1系統相バスバー)
21N…第1中性点バスバー(第1系統中性点バスバー)
22U1,22U2…第2U相バスバー(第2系統相バスバー)
22V1,22V2…第2V相バスバー(第2系統相バスバー)
22W1,22W2…第2W相バスバー(第2系統相バスバー)
22N…第2中性点バスバー(第2系統中性点バスバー)
23U1,23U2…第1U相端子(第1系統相端子)
23V1,23V2…第1V相端子(第1系統相端子)
23W1,23W2…第1W相端子(第1系統相端子)
23N…第1中性点端子(第1系統中性点端子)
24U1,24U2…第2U相端子(第2系統相端子)
24V1,24V2…第2V相端子(第2系統相端子)
24W1,24W2…第2W相端子(第2系統相端子)
24N…第2中性点端子(第2系統中性点端子)
25U1…第1U相給電端子(給電端子)
25U2…第2U相給電端子(給電端子)
25V1…第1V相給電端子(給電端子)
25V2…第2V相給電端子(給電端子)
25W1…第1W相給電端子(給電端子)
25W2…第2W相給電端子(給電端子)
26…クランク部
161U…第1U相コイル(コイル)
161V…第1V相コイル(コイル)
161W…第1W相コイル(コイル)
162U…第2U相コイル(コイル)
162V…第2V相コイル(コイル)
162W…第2W相コイル(コイル)
L1…第1層(層)
L2…第2層(層)
L3…第3層(層)
L4…第4層(層)
L5…第5層(層)

Claims (6)

  1.  集中巻方式によりコイルが巻回されるティース部を12個有するステータと、
     前記コイルを、2系統の3相構造となるように結線するバスバーユニットと、を備え、
     前記ティース部に巻回されたコイルは、同一系統が1つ置きの前記ティース部に配置され、且つ2系統のうちの一方の第1系統の任意の相に対し、該相の周方向両隣が他方の第2系統の他の相であって互いに異なる相となるように配置されているブラシレスモータであって、
     前記バスバーユニットは、
      前記第1系統目の同相同士の前記コイルを結線し、前記コイルが接続される第1系統相端子を有する3つの第1系統相バスバーと、
      前記第1系統目の各相の前記コイルを結線して中性点を形成し、前記コイルが接続される第1系統中性点端子を有する1つの第1系統中性点バスバーと、
      前記第2系統目の同相同士の前記コイルを結線し、前記コイルが接続される第2系統相端子を有する3つの第2系統相バスバーと、
      前記第2系統目の各相の前記コイルを結線して中性点を形成し、前記コイルが接続される第2系統中性点端子を有する1つの第2系統中性点バスバーと、
     前記第1系統相バスバー、前記第1系統中性点バスバー、前記第2系統相バスバー、及び前記第2系統中性点バスバーが配置される円環状の絶縁体と、
     を備え、
     前記第1系統相バスバー、前記第1系統中性点バスバー、前記第2系統相バスバー、及び前記第2系統中性点バスバーが、軸方向に並んで複数層に配置され、
     前記第1系統相バスバー及び前記第2系統相バスバーのうちの何れか一方は、クランク状に形成されたクランク部を有し、該クランク部に、前記第1系統相端子及び前記第2系統相端子の何れか一方が形成されており、
     前記第1系統相バスバー及び前記第2系統相バスバーのうちの何れか一方は、この一方のバスバーが配置されている層と前記クランク部が配置されている層が異なっており、前記クランク部は、他方のバスバーと軸方向で間隙を介して重なるように配置されているブラシレスモータ。
  2.  前記第1系統相バスバーと前記第2系統相バスバーは、相毎に外部電源に接続される給電端子を有し、
     前記給電端子は、前記クランク部を避けて配置されている請求項1に記載のブラシレスモータ。
  3.  前記給電端子は、周方向に不均等で配置されている
    請求項2に記載のブラシレスモータ。
  4.  前記第1系統相バスバーの端部に前記第1系統相端子が配置されており、
     前記第2系統相バスバーの端部に前記第2系統相端子が配置されており、
     前記クランク部は、前記第1系統相バスバー及び前記第2系統相バスバーのうちの何れか一方の端部に形成されている
    請求項1~請求項3の何れかに記載のブラシレスモータ。
  5.  前記第1系統中性点バスバーと、前記第2系統中性点バスバーは、それぞれ別の層に配置されている
    請求項1~請求項4の何れか1項に記載のブラシレスモータ。
  6.  前記第1系統相バスバーと、前記第2系統相バスバーのそれぞれ同相に相当するバスバーは、別の層に配置されている
    請求項1~請求項5の何れか1項に記載のブラシレスモータ。
PCT/JP2018/005015 2017-02-16 2018-02-14 ブラシレスモータ WO2018151133A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017026755A JP6706583B2 (ja) 2017-02-16 2017-02-16 ブラシレスモータ
JP2017-026755 2017-11-30

Publications (1)

Publication Number Publication Date
WO2018151133A1 true WO2018151133A1 (ja) 2018-08-23

Family

ID=63170281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005015 WO2018151133A1 (ja) 2017-02-16 2018-02-14 ブラシレスモータ

Country Status (2)

Country Link
JP (1) JP6706583B2 (ja)
WO (1) WO2018151133A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021024606A1 (ja) * 2019-08-02 2021-02-11 株式会社デンソー ステータ及びモータ
JP2022500992A (ja) * 2018-09-11 2022-01-04 エルジー イノテック カンパニー リミテッド モータ

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6851920B2 (ja) * 2017-07-07 2021-03-31 株式会社ミツバ ブラシレスモータ及び電動パワーステアリング装置
CN111052557B (zh) * 2017-09-28 2022-04-22 日本电产株式会社 马达
JP2021164220A (ja) * 2020-03-31 2021-10-11 日本電産株式会社 バスバーユニットおよびモータ
JP2022127366A (ja) 2021-02-19 2022-08-31 日本電産株式会社 バスバーユニット、ステータ、モータ
WO2023108919A1 (zh) * 2021-12-16 2023-06-22 广东威灵电机制造有限公司 汇流排组件、定子总成、电机及助力自行车

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014176213A (ja) * 2013-03-08 2014-09-22 Kayaba Ind Co Ltd バスバーユニット
JP2015216714A (ja) * 2014-05-07 2015-12-03 日本精工株式会社 電動機、電動パワーステアリング装置および車両
JP2016111921A (ja) * 2014-11-26 2016-06-20 ジョンソン エレクトリック ソシエテ アノニム ブラシレス直流電気モータ及び電動パワーステアリングシステム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014176213A (ja) * 2013-03-08 2014-09-22 Kayaba Ind Co Ltd バスバーユニット
JP2015216714A (ja) * 2014-05-07 2015-12-03 日本精工株式会社 電動機、電動パワーステアリング装置および車両
JP2016111921A (ja) * 2014-11-26 2016-06-20 ジョンソン エレクトリック ソシエテ アノニム ブラシレス直流電気モータ及び電動パワーステアリングシステム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022500992A (ja) * 2018-09-11 2022-01-04 エルジー イノテック カンパニー リミテッド モータ
JP7383711B2 (ja) 2018-09-11 2023-11-20 エルジー イノテック カンパニー リミテッド モータ
WO2021024606A1 (ja) * 2019-08-02 2021-02-11 株式会社デンソー ステータ及びモータ

Also Published As

Publication number Publication date
JP6706583B2 (ja) 2020-06-10
JP2018133934A (ja) 2018-08-23

Similar Documents

Publication Publication Date Title
WO2018151133A1 (ja) ブラシレスモータ
JP5847543B2 (ja) バスバーユニットおよびブラシレスモータ
JP4868147B2 (ja) アキシャルエアギャップ型電動機
US10418873B2 (en) Brushless motor with stator having twelve teeth with corresponding coils having axially arranged connecting wires
JP5930801B2 (ja) 車載用モータ、及びそれを用いた電動パワーステアリング装置
JP4404199B2 (ja) 同期電動機
JP6068953B2 (ja) 電動モータ
US11121596B2 (en) Stator of brushless motor, brushless motor, and method of manufacturing stator of brushless motor
JP2009290921A (ja) ブラシレスモータ
JP2009261082A (ja) 回転電機の集配電リング
JP6851920B2 (ja) ブラシレスモータ及び電動パワーステアリング装置
JP2009038863A (ja) モータ
JP2010233327A (ja) ブラシレスモータ
JP2010154701A (ja) 回転電機用ターミナル
JP2008125278A (ja) アキシャルエアギャップ型電動機
JP2007174869A (ja) インシュレータ、ステータアセンブリ、セグメントステータ、及び回転電機用ステータ
JP2012090497A (ja) ブラシレスモータ及び電動パワーステアリング装置
JP6834479B2 (ja) モータ
US10840656B2 (en) Bus bar unit and rotary electric machine having the same
JP4875857B2 (ja) 回転電機
JP6103558B1 (ja) 回転電機
JP2019097261A (ja) ブラシレスモータ
JP6719531B2 (ja) ステータ及びモータ
JP6488100B2 (ja) 電動モータ
JP2020195205A (ja) 回転電機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18754201

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18754201

Country of ref document: EP

Kind code of ref document: A1