WO2018150955A1 - 高強度熱延鋼板およびその製造方法 - Google Patents

高強度熱延鋼板およびその製造方法 Download PDF

Info

Publication number
WO2018150955A1
WO2018150955A1 PCT/JP2018/004043 JP2018004043W WO2018150955A1 WO 2018150955 A1 WO2018150955 A1 WO 2018150955A1 JP 2018004043 W JP2018004043 W JP 2018004043W WO 2018150955 A1 WO2018150955 A1 WO 2018150955A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
phase
steel sheet
rolled steel
hot
Prior art date
Application number
PCT/JP2018/004043
Other languages
English (en)
French (fr)
Inventor
山崎 和彦
俊介 豊田
永明 森安
寿実雄 海宝
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN201880012139.4A priority Critical patent/CN110312814B/zh
Priority to US16/485,978 priority patent/US11603571B2/en
Priority to MX2019009803A priority patent/MX2019009803A/es
Priority to EP18753529.9A priority patent/EP3584337B1/en
Priority to JP2018528084A priority patent/JP6394841B1/ja
Priority to KR1020197024001A priority patent/KR102258320B1/ko
Publication of WO2018150955A1 publication Critical patent/WO2018150955A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention is a high-strength hot-rolled steel sheet having a tensile strength TS of 980 MPa or more, excellent in press formability and low-temperature toughness, and suitable as an automobile structural member, frame member, suspension member such as a suspension, and track frame member It relates to a manufacturing method.
  • a high-strength hot-rolled steel sheet having a predetermined strength is increasing year by year as a material for automobile parts.
  • a high-strength hot-rolled steel sheet having a tensile strength TS of 980 MPa or more is highly expected as a material that can dramatically improve the fuel consumption of an automobile.
  • steel sheets used as automobile undercarriage members are required to have an overall stretch formability, stretch flange formability, bend formability, fatigue characteristics, impact resistance, corrosion resistance, and the like. It is very important to ensure high strength and balance in a high dimension. Since the undercarriage member of an automobile is mainly formed by press molding, the material is required to have a balance between stretch formability, stretch flange formability, and bend formability.
  • automobile members are required to be hard to break even after being subjected to impacts such as collision after being attached to the automobile as a member after press molding.
  • it is necessary to improve low-temperature toughness in order to ensure impact resistance in cold regions.
  • stretch formability is measured by a tensile test or the like based on JIS Z 2241.
  • Stretch flange formability is measured by a hole expansion test or the like based on the iron standard JFST 1001.
  • the bending formability is measured by a bending test or the like based on JIS Z 2248.
  • the low temperature toughness is measured by a Charpy impact test or the like based on JIS Z 2242.
  • Patent Document 1 includes, in mass%, C: 0.01% or more and 0.10% or less, Si: 2.0% or less, Mn: 0.5% or more and 2.5% or less, and V : 0.01% to 0.30%, Nb: 0.01% to 0.30%, Ti: 0.01% to 0.30%, Mo: 0.01% to 0.30% , Zr: 0.01% or more and 0.30% or less, W: 0.01% or more and 0.30% or less of one type or two or more types in total, and a composition containing 0.5% or less and a bainite fraction of 80%
  • the average particle size r (nm) of the precipitate is r ⁇ 207 ⁇ ⁇ 27.4X (V) + 23.5X (Nb) + 31.4X (Ti) + 17.6X (Mo) + 25.5X (Zr) +23 .5X (W) ⁇ (
  • Patent Document 1 a steel material having the above composition is heated and subjected to hot rolling at a finish rolling temperature of 800 ° C. or higher and 1050 ° C. or lower, and then a temperature range (500 where bainite transformation and precipitation occur simultaneously.
  • a temperature range 500 where bainite transformation and precipitation occur simultaneously.
  • the steel sheet structure is a bainite main structure, the bainite is precipitation strengthened by carbides such as V, Ti, Nb, and the precipitate size is appropriately controlled (reasonably coarsened). It is said that a high-strength hot-rolled steel sheet having excellent stretch flange formability can be obtained.
  • Patent Document 2 by mass, C: 0.01 to 0.20%, Si: 1.5% or less, Al: 1.5% or less, Mn: 0.5 to 3.5% , P: 0.2% or less, S: 0.0005 to 0.009%, N: 0.009% or less, Mg: 0.0006 to 0.01%, O: 0.005% or less, and Ti: One or two of 0.01 to 0.20%, Nb: 0.01 to 0.10%, the balance being iron and inevitable impurities, all of the following formulas (1) to (7) It discloses that a high-strength thin steel sheet excellent in hole expansibility and ductility having a tensile strength of 980 N / mm 2 or more whose main steel structure is a bainite phase is obtained.
  • Patent Document 3 it is possible to improve the ductility without deteriorating the hole expanding property by setting the ferrite-bainite two-phase structure and further setting the ferrite crystal grains to a grain size of 2 ⁇ m or more, and the strength is 690 N. It is said that a high-strength hot-rolled steel sheet that is not less than / mm 2 and has excellent hole expansibility and ductility can be obtained.
  • Patent Document 4 discloses a microstructure in which the texture of the steel sheet is controlled and the total area ratio of tempered martensite, martensite and lower bainite exceeds 85%, and the average crystal grain size is 12.0 ⁇ m or less. Thus, it is disclosed that a high-strength hot-rolled steel sheet excellent in stretch flange formability and low-temperature toughness can be obtained.
  • Patent Documents 1 to 3 mention only the press formability, particularly the stretch formability and stretch flange formability, and do not mention any low temperature toughness, and are used in cold regions. If so, there is a concern that brittle fracture will occur.
  • Patent Document 4 refers to stretch flange formability and low temperature toughness. However, there is no mention of the stretch formability and the bending formability, and there is a concern that when it is applied to a member that requires high press formability such as an automobile underbody member, a molding defect may occur.
  • the present invention solves the problems of the prior art, maintains a high strength of a tensile strength TS of 980 MPa or more, and further has a high strength hot-rolled steel sheet having excellent press formability and low temperature toughness and its An object is to provide a manufacturing method.
  • the present inventors have intensively studied to improve the low temperature toughness and press formability of a hot-rolled steel sheet while maintaining a high strength of a tensile strength TS of 980 MPa or more.
  • the main phase is the upper bainite phase
  • the second phase is a lower bainite phase and / or a tempered martensite phase, or a martensite phase structure, and thus a high stretch formability. Is obtained.
  • good toughness can be obtained by controlling the particle size of the main phase and the area ratio of the second phase.
  • by controlling the number density of the second phase having an equivalent circle diameter of 0.5 ⁇ m or more high stretch flangeability can be obtained.
  • the upper bainite phase referred to here is lath-shaped bainitic ferrite, and a structure having an Fe-based carbide and / or a residual austenite phase between the bainitic ferrite and the bainitic ferrite (however, (Including the case where there is no Fe-based carbide and / or residual austenite phase between the bainitic ferrite and the bainitic ferrite).
  • bainitic ferrite has a lath shape, so that both can be distinguished using an SEM (scanning electron microscope).
  • the lower bainite phase and / or tempered martensite phase referred to here is a structure having an Fe-based carbide in lath-like bainitic ferrite (however, between the bainitic ferrite and the bainitic ferrite).
  • the case of having an Fe-based carbide is also included.
  • Lower bainite and tempered martensite can distinguish the orientation and crystal structure of Fe-based carbide in the lath using TEM (transmission electron microscope), but in the present invention, they are not distinguished because they have substantially the same characteristics. .
  • TEM transmission electron microscope
  • the quenched martensite phase (hereinafter referred to as the martensite phase) is a structure having no Fe-based carbide as compared with the lower bainite phase and / or the tempered martensite phase, and the upper bainite phase and the lower bainite phase. And since the contrast of a SEM image is bright compared with a tempered martensite phase and polygonal ferrite, it can distinguish using SEM.
  • the yield ratio which is the ratio of the yield stress (YS) to the tensile strength (TS)
  • YR yield ratio
  • TS tensile strength
  • a soft ferrite phase or an upper bainite phase is a main phase
  • a lower bainite phase and / or a tempered martensite phase or a martensite phase that are hard second phase structures exist in the main phase.
  • voids are generated at the interface between the main phase and the second phase. Since the generated voids are connected to each other, a crack that penetrates the plate thickness is reached at an early stage of the hole expansion test, so that stretch flangeability is deteriorated. Further, it is known that when the area ratio of the second phase is increased, the low temperature toughness of the hot rolled steel sheet is deteriorated.
  • the present inventors have further studied, and the structure containing the upper bainite phase as the main phase and containing one or two of the lower bainite phase and / or the tempered martensite phase and the martensite phase is the second.
  • the ratio of the equivalent circle diameter of less than 0.5 ⁇ m in the second phase in the case of a phase voids are less likely to occur at the interface between the main phase and the second phase during the hole expansion test, and further equivalent to a circle.
  • the number density of the second phase having a diameter of 0.5 ⁇ m or more, it becomes difficult to connect the generated voids, and as a result, stretch flange formability is not significantly reduced, and the stretch formability is high.
  • the present inventors conducted further research, and in a state where the tensile strength TS was maintained at a high strength of 980 MPa or more, the composition necessary for improving the press formability, the area of the upper bainite phase Ratio and average particle diameter, lower bainite phase and / or tempered martensite phase, area ratio of the second phase which is a structure composed of one or two of martensite phase and second equivalent diameter of 0.5 ⁇ m or more.
  • the number density of phases and the arithmetic average roughness (Ra) of the surface of the hot-rolled steel sheet were examined.
  • the main phase is an upper bainite phase having a composition comprising impurities and having a structure with an area ratio of 75.0% or more and less than 97.0%.
  • the average particle size of the main phase is 12.0 ⁇ m or less
  • the structure composed of two types is used as the second phase
  • the number density of the second phase having an equivalent circle diameter of 0.5 ⁇ m or more is 150,000 pieces / mm 2 or less
  • the arithmetic average roughness of the steel sheet surface It was found that (Ra) is 2.00 ⁇ m or less.
  • Component composition is mass%, C: 0.04% to 0.15%, Si: 0.4% to 2.0%, Mn: 1.0% to 3.0%, P: 0.100% or less (including 0%), S: 0.0100% or less (including 0%), Al: 0.01% or more and 2.00% or less, N: 0.010% or less (0 Ti: 0.03% or more and 0.15% or less, B: 0.0005% or more and 0.0050% or less, Cr: 0.10% to 2.50%, Mo: 0.05% to 0.50%, Nb: 0.005% to 0.060%, V: 0.05% to 0.50% Contains one or more selected from the following, The balance Fe and inevitable impurities, The structure is an upper bainite phase having an area ratio of 75.0% or more and less than 97.0% as a main phase, and the average particle size of the main phase is 12.0 ⁇ m or less, A structure composed of
  • the number density of the second phase having a diameter of 0.5 ⁇ m or more is 150,000 pieces / mm 2 or less,
  • the arithmetic mean roughness (Ra) of the steel sheet surface is 2.00 ⁇ m or less,
  • one or two selected from Cu: 0.01% to 0.50% and Ni: 0.01% to 0.50% by mass% The high-strength hot-rolled steel sheet according to [1] containing a seed.
  • Sb 0.0002% or more and 0.0200% or less by mass.
  • Ca 0.0002% to 0.0100%
  • Mg 0.0002% to 0.0100%
  • REM 0.0002% to 0.000.
  • [6] A method for producing a high-strength hot-rolled steel sheet according to any one of [1] to [4], Heating the steel material to 1150 ° C or higher, Next, after rough rolling, Before finish rolling, perform high pressure water descaling with a collision pressure of 3.0 MPa or more,
  • the finish rolling when the RC temperature is defined by the formula (1), the total rolling reduction at the RC temperature or higher is 50% or higher, the total rolling reduction below the RC temperature is 80% or lower, and the finishing rolling finish temperature is ( RC-100 ° C) to (RC + 100 ° C) or less, and then hot rolling to perform finish rolling, Next, cooling is started within 2.0 s after finishing rolling,
  • the Ms temperature is defined by the formula (2), the Ms temperature is cooled at an average cooling rate of 30 ° C./s or higher to a cooling stop temperature of 600 ° C.
  • the high-strength hot-rolled steel sheet is a steel sheet having a tensile strength TS of 980 MPa or more, and the hot-rolled steel sheet is subjected to surface treatment such as hot dipping, alloying hot dipping, and electroplating.
  • surface treatment such as hot dipping, alloying hot dipping, and electroplating.
  • steel plates Moreover, the steel plate which has a film
  • a high-strength hot-rolled steel sheet having a tensile strength TS of 980 MPa or more and excellent in press formability and low-temperature toughness can be obtained. Moreover, this high-strength hot-rolled steel sheet can be manufactured stably. And when applying the high-strength hot-rolled steel sheet of the present invention to an automobile underbody member, structural member, skeleton member, truck frame member, etc., to reduce the weight of the automobile body while ensuring the safety of the automobile, It can contribute to the reduction of environmental impact and has a remarkable industrial effect.
  • the high-strength hot-rolled steel sheet of the present invention is, in mass%, C: 0.04% to 0.15%, Si: 0.4% to 2.0%, Mn: 1.0% to 3.0% %: P: 0.100% or less (including 0%), S: 0.0100% or less (including 0%), Al: 0.01% or more and 2.00% or less, N: 0.010% (Including 0%), Ti: 0.03% or more and 0.15% or less, B: 0.0005% or more and 0.0050% or less, Cr: 0.10% or more and 2.50% or less, Mo: 0.05% or more and 0.50% or less, Nb: 0.005% or more and 0.060% or less, V: 0.05% or more and 0.50% or less And has a component composition consisting of the balance Fe and inevitable impurities.
  • % showing the following component composition shall mean the mass% unless there is particular notice.
  • C 0.04% or more and 0.15% or less
  • C is an element that promotes the formation of bainite by improving the strength of the steel and improving the hardenability.
  • upper bainite When upper bainite is transformed, C is distributed to untransformed austenite, so that untransformed austenite is stabilized.
  • the second phase can be obtained by transforming the untransformed austenite into a lower bainite phase and / or a tempered martensite phase and / or a martensite phase by cooling after winding. Therefore, in the present invention, the C content needs to be 0.04% or more.
  • the C content exceeds 0.15%, the second phase increases and the low temperature toughness of the hot-rolled steel sheet deteriorates.
  • the C content is set to 0.04% or more and 0.15% or less.
  • the C content is 0.04% or more and 0.14% or less. More preferably, the C content is 0.04% or more and 0.13% or less. More preferably, it is 0.05% or more and less than 0.12%.
  • Si 0.4% or more and 2.0% or less Si is an element that contributes to solid solution strengthening and an element that contributes to improving the strength of steel. Further, Si has an effect of suppressing the formation of carbides, and suppresses the precipitation of cementite during the upper bainite transformation. As a result, C is distributed to the untransformed austenite, and by cooling after winding, the untransformed austenite is transformed into the lower bainite phase and / or the tempered martensite phase and / or the martensite phase. Can be obtained. In order to obtain these effects, the Si content needs to be 0.4% or more. On the other hand, Si is an element that forms a subscale on the surface of the steel sheet during hot rolling.
  • the Si content is 2.0% or less.
  • the Si content is 0.4% or more, and preferably 1.8% or less. More preferably, Si content is 0.5% or more, More preferably, it is 1.6% or less.
  • Mn 1.0% or more and 3.0% or less Mn contributes to increasing the strength of the steel by solid solution, and promotes the formation of a bainite phase and a martensite phase by improving hardenability.
  • the Mn content needs to be 1.0% or more.
  • the Mn content is 1.3% or more and 2.6% or less. More preferably, the Mn content is 1.5% or more, and preferably 2.4% or less.
  • P 0.100% or less (including 0%)
  • P is an element that dissolves and contributes to an increase in the strength of steel.
  • P is also an element that generates cracks during hot rolling by segregating at austenite grain boundaries during hot rolling.
  • segregation at the grain boundaries reduces the low temperature toughness and also reduces the workability.
  • the P content is 0.100% or less.
  • the P content is 0.05% or less, and more preferably, the P content is 0.02% or less.
  • S 0.0100% or less (including 0%) S combines with Ti and Mn to form coarse sulfides and lowers the toughness of the hot-rolled steel sheet. Therefore, it is preferable to reduce the S content as much as possible, and the inclusion of S up to 0.0100% is acceptable. Therefore, the S content is set to 0.0100% or less. From the viewpoint of stretch flange formability, the S content is preferably 0.005% or less, and more preferably the S content is 0.003% or less.
  • Al acts as a deoxidizer and is an element effective for improving the cleanliness of steel. If the Al content is less than 0.01%, the effect is not always sufficient, so the Al content is 0.01% or more.
  • Al like Si, has the effect of suppressing the formation of carbides and suppresses the precipitation of cementite during the upper bainite transformation. As a result, C is distributed to the untransformed austenite, and the untransformed austenite is transformed into a lower bainite phase and / or a tempered martensite phase and / or a martensite phase by cooling after winding, thereby obtaining a second phase. be able to.
  • the Al content is set to 0.01% or more and 2.00% or less.
  • the Al content is 0.015% or more, preferably 1.8% or less. More preferably, the Al content is 0.020% or more, and more preferably 1.6% or less.
  • N 0.010% or less (including 0%) N precipitates as a nitride by combining with a nitride-forming element and contributes to refinement of crystal grains.
  • N is liable to be bonded to Ti at a high temperature to form coarse nitrides, and the content exceeding 0.010% is an element that generates cracks during hot rolling.
  • N content shall be 0.010% or less.
  • the N content is 0.008% or less. More preferably, the N content is 0.006% or less.
  • Ti 0.03% or more and 0.15% or less Ti is an element having an action of improving the strength of the steel sheet by precipitation strengthening or solid solution strengthening.
  • Ti forms nitrides in the high temperature range of the austenite phase (the high temperature range in the austenite phase and the higher temperature range than the austenite phase (stage of casting)).
  • precipitation of BN is suppressed and the hardenability required for the production
  • the Ti content needs to be 0.03% or more.
  • Ti increases the recrystallization temperature of the austenite phase during hot rolling, thereby enabling rolling in the austenite non-recrystallized region, thereby contributing to the refinement of the grain size of the upper bainite phase and low temperature toughness.
  • the Ti content exceeds 0.15%, the second phase (lower bainite phase and / or tempered martensite phase, martensite phase, or the like having a circle equivalent diameter of 0.5 ⁇ m or more is obtained due to the effect of grain refinement. The number density of one or two of them) increases, and stretch flangeability deteriorates. Therefore, the Ti content is set to 0.03% or more and 0.15% or less.
  • the Ti content is 0.04% or more, preferably 0.14% or less. More preferably, the Ti content is 0.05% or more, and more preferably 0.13% or less.
  • B 0.0005% or more and 0.0050% or less B is an element that segregates in the prior austenite grain boundaries and suppresses the formation of ferrite, thereby promoting the formation of the upper bainite phase and contributing to the improvement of the strength of the steel sheet. is there.
  • the B content is set to 0.0005% or more.
  • the B content is limited to a range of 0.0005% to 0.0050%.
  • the B content is 0.0006% or more, preferably 0.0040% or less. More preferably, the B content is 0.0007% or more, and more preferably 0.0030% or less.
  • the present invention contains the above components, and further contains one or more selected from the following elements.
  • Cr 0.10% or more and 2.50% or less Cr is an element having an action of improving the strength of the steel sheet by solid solution strengthening.
  • Cr is a carbide forming element, and segregates at the interface between the upper bainite phase and the untransformed austenite during the transformation of the upper bainite after winding the hot-rolled steel sheet, thereby reducing the transformation driving force of the bainite and reducing the untransformed austenite. It is an element having the effect of stopping the upper bainite transformation while remaining.
  • Untransformed austenite is then cooled to transform into a lower bainite phase and / or a tempered martensite phase and / or a structure (second phase) composed of a martensite phase, and a second phase having a desired area ratio.
  • the Cr content is set to 0.10% or more.
  • Cr like Si, is an element that forms a subscale on the steel sheet surface during hot rolling. Therefore, if the Cr content exceeds 2.50%, the subscale becomes too thick, the arithmetic average roughness (Ra) of the steel sheet surface after descaling becomes excessive, and the bending formability of the hot-rolled steel sheet deteriorates. . Therefore, when it contains Cr, Cr content shall be 0.10% or more and 2.50% or less.
  • the Cr content is 0.15% or more, preferably 2.20% or less. More preferably, the Cr content is 0.20% or more, and more preferably 2.00% or less. More preferably, the Cr content is 0.20% or more and 1.60% or less. More preferably, the Cr content is 0.20% or more and 1.00% or less.
  • Mo 0.05% or more and 0.50% or less Mo promotes the formation of a bainite phase through an improvement in hardenability and contributes to an improvement in the strength of the steel sheet.
  • Mo like Cr, is a carbide-forming element, and segregates at the interface between the upper bainite phase and untransformed austenite during the upper bainite transformation after the hot-rolled steel sheet is wound, thereby reducing the transformation driving force of bainite. An element having an effect of stopping the upper bainite transformation while leaving untransformed austenite.
  • Untransformed austenite is then cooled to transform into a lower bainite phase and / or a tempered martensite phase and / or a structure (second phase) composed of a martensite phase, and the second phase having a desired area ratio is transformed.
  • the Mo content is preferably 0.05% or more.
  • the Mo content is 0.10% or more, and preferably 0.40% or less. More preferably, the Mo content is 0.15% or more, and more preferably 0.30% or less.
  • Nb 0.005% or more and 0.060% or less
  • Nb is an element having an action of improving the strength of the steel sheet by precipitation strengthening or solid solution strengthening.
  • Nb like Ti, increases the recrystallization temperature of the austenite phase during hot rolling, thereby enabling rolling in the austenite non-recrystallized region and contributing to refinement of the grain size of the upper bainite phase. , Improve low temperature toughness.
  • the Nb content needs to be 0.005% or more.
  • the number density of the second phase having an equivalent circle diameter of 0.5 ⁇ m or more increases due to the effect of particle size refinement, which deteriorates stretch flangeability.
  • the Nb content is set to 0.005% or more and 0.060% or less.
  • the Nb content is 0.010% or more, preferably 0.050% or less. More preferably, the Nb content is 0.015% or more, and more preferably 0.040% or less.
  • V 0.05% or more and 0.50% or less
  • V is an element having an action of improving the strength of the steel sheet by precipitation strengthening or solid solution strengthening.
  • V like Ti, increases the recrystallization temperature of the austenite phase during hot rolling, thereby enabling rolling in the austenite non-recrystallized region and contributing to refinement of the grain size of the upper bainite phase. , Improve low temperature toughness.
  • the V content needs to be 0.05% or more.
  • the number density of the second phase having a circle-equivalent diameter of 0.5 ⁇ m or more increases due to the effect of refining the particle diameter, and the stretch flangeability is deteriorated.
  • the V content when V is contained, is set to 0.05% or more and 0.50% or less.
  • the V content is 0.10% or more, preferably 0.40% or less. More preferably, the V content is 0.15% or more, and more preferably 0.30% or less.
  • the balance other than the above is Fe and inevitable impurities.
  • Inevitable impurities include Zr, Co, Sn, Zn, W and the like, and these contents are acceptable if the total content is 0.5% or less.
  • the steel sheet of the present invention has the desired characteristics.
  • the hot-rolled steel sheet of the present invention can contain the following elements as required for the purpose of, for example, further improving the strength, press formability, and low temperature toughness.
  • Cu 0.01% or more and 0.50% or less
  • Ni 0.01% or more and 0.50% or less selected from Cu: 0.01% or more and 0.50% or less
  • Cu Solid solution contributes to increasing the strength of steel.
  • Cu promotes the formation of a bainite phase through improvement of hardenability and contributes to strength improvement.
  • the Cu content is preferably 0.01% or more.
  • the content exceeds 0.50%, the surface properties of the hot-rolled steel sheet are lowered, and the bend formability of the hot-rolled steel sheet is deteriorated. Therefore, when it contains Cu, Cu content shall be 0.01% or more and 0.50% or less.
  • the Cu content is 0.05% or more, preferably 0.30% or less.
  • Ni 0.01% or more and 0.50% or less Ni contributes to increasing the strength of steel by solid solution. Moreover, Ni promotes the formation of a bainite phase through improvement of hardenability and contributes to strength improvement. In order to obtain these effects, the Ni content is preferably 0.01% or more. However, when Ni content exceeds 0.50%, a martensite phase will increase and the low temperature toughness of a hot-rolled steel plate will deteriorate. Therefore, when Ni is contained, the Ni content is set to 0.01% or more and 0.50% or less. Preferably, the Ni content is 0.05% or more, preferably 0.30% or less.
  • Sb 0.0002% or more and 0.0200% or less
  • Sb has an effect of suppressing nitriding of the slab surface in the slab heating stage, and precipitation of BN in the slab surface layer portion is suppressed.
  • the presence of the solid solution B can provide the hardenability necessary for the generation of bainite even in the surface layer portion of the hot-rolled steel sheet, thereby improving the strength of the hot-rolled steel sheet.
  • the Sb content needs to be 0.0002% or more.
  • the Sb content exceeds 0.0200%, the rolling load may increase and productivity may be reduced. Therefore, when it contains Sb, Sb content shall be 0.0002% or more and 0.0200% or less.
  • the Sb content is 0.0005% or more, preferably 0.0180% or less. More preferably, Sb content is 0.0010% or more, More preferably, it is 0.0150% or less.
  • Ca controls the shape of oxide and sulfide inclusions and is effective in improving the low temperature toughness of hot-rolled steel sheets.
  • the Ca content is preferably 0.0002% or more.
  • the Ca content is set to 0.0002% or more and 0.0100% or less.
  • the Ca content is 0.0004% or more and 0.0050% or less.
  • Mg 0.0002% or more and 0.0100% or less Mg, like Ca, controls the shape of oxides and sulfide inclusions and is effective in improving the low temperature toughness of hot-rolled steel sheets.
  • the Mg content is preferably 0.0002% or more.
  • Mg content shall be 0.0002% or more and 0.0100% or less.
  • the Mg content is 0.0004% or more, preferably 0.0050% or less.
  • REM 0.0002% or more and 0.0100% or less REM, like Ca, controls the shape of oxide and sulfide inclusions and is effective in improving the low temperature toughness of hot-rolled steel sheets.
  • the REM content is preferably 0.0002% or more.
  • the REM content shall be 0.0002% or more and 0.0100% or less.
  • the REM content is 0.0004% or more, preferably 0.0050% or less.
  • the high-strength hot-rolled steel sheet according to the present invention has an upper bainite phase having an area ratio of 75.0% or more and less than 97.0% as a main phase, and the average grain size of the main phase is 12.0 ⁇ m or less.
  • the number density of the second phase having an equivalent diameter of 0.5 ⁇ m or more is 150,000 pieces / mm 2 or less, and the arithmetic average roughness (Ra) of the steel sheet surface is 2.00 ⁇ m or less.
  • the balance is the retained austenite phase, pearlite phase, and ferrite phase, and the effects of the present invention can be obtained if the area ratios of the retained austenite phase, pearlite phase, and ferrite phase are 0 to less than 3.0% in total.
  • Main phase Upper bainite phase is 75.0% or more and less than 97.0% in area ratio, and average grain size of upper bainite phase is 12.0 ⁇ m or less
  • Second phase Lower bainite phase and / or Or the structure (2nd phase) which consists of 1 type or 2 types in a tempered martensite phase and a martensite phase is more than 3.0% and 25.0% or less by area ratio, and an equivalent circle diameter of 0.5 ⁇ m or more
  • the second phase has a number density of 150,000 / mm 2 or less.
  • Remainder residual austenite phase, pearlite phase, and ferrite phase are 0% or more and less than 3.0% in total of each area ratio.
  • the rolled steel sheet has an upper bainite phase as a main phase.
  • the upper bainite phase is a structure having Fe-based carbide and / or residual austenite phase between lath-like bainitic ferrite and bainitic ferrite (however, lath-like bainitic ferrite and bainitic ferrite Including a case where there is no Fe-based carbide and / or residual austenite phase in between.
  • bainitic ferrite has a lath shape and a relatively high dislocation density inside, so it can be easily used with SEM (scanning electron microscope) or TEM (transmission electron microscope). Can be distinguished.
  • the upper bainite phase In order to achieve a tensile strength TS of 980 MPa or higher and to increase the low temperature toughness, it is necessary to use the upper bainite phase as the main phase. If the area ratio of the upper bainite phase is 75.0% or more and the average particle size of the upper bainite phase is 12.0 ⁇ m or less, the tensile strength TS of 980 MPa or more and excellent low temperature toughness may be combined. it can. On the other hand, when the area ratio of the upper bainite phase is 97.0% or more, the yield ratio (YR) of the steel sheet exceeds 92.0%, and excellent stretch formability cannot be obtained. Therefore, the area ratio of the upper bainite phase is 75.0% or more and less than 97.0%.
  • the area ratio of the upper bainite phase is preferably 80.0% or more, more preferably 85.0% or more. Further, the average particle size of the upper bainite phase is preferably 11.0 ⁇ m or less, more preferably 10.0 ⁇ m or less. More preferably, it is 9.0 ⁇ m or less.
  • the second phase is a structure composed of one or two of the lower bainite phase and / or the tempered martensite phase and the martensite phase. If the area ratio of the second phase exceeds 3.0%, excellent stretch formability can be obtained. On the other hand, if the area ratio of the second phase exceeds 25.0%, excellent low temperature toughness cannot be ensured no matter how small the average particle size of the main phase described above. Therefore, the area ratio of the second phase is more than 3.0% and 25.0% or less.
  • the area ratio of the second phase is preferably 3.5% or more, and preferably 23.0% or less. More preferably, it is 4.0% or more, More preferably, it is 20.0% or less.
  • the lower bainite phase and / or the tempered martensite phase are structures having Fe-based carbides in the lath-like bainitic ferrite (however, the Fe bainite ferrite and the bainitic ferrite also include Fe Including the case of having a carbonized carbide).
  • Lower bainite and tempered martensite can distinguish the orientation and crystal structure of Fe-based carbide in the lath using TEM (transmission electron microscope), but in the present invention, they are not distinguished because they have substantially the same characteristics. . Moreover, since it has a high dislocation density compared with the upper bainite, it can be distinguished using SEM or TEM (transmission electron microscope).
  • the second phase having an equivalent circle diameter of 0.5 ⁇ m or more has a number density of 150,000 pieces / mm 2 or less, voids generated at the interface between the upper bainite phase and the second phase at the time of stretch flange molding. Can hardly occur and high stretch flange formability can be secured.
  • stretch flange formability improves, so that the number density of the 2nd phase of a circle equivalent diameter of 0.5 micrometer or more is small. Therefore, the number density of the second phase having an equivalent circle diameter of 0.5 ⁇ m or more is preferably 130,000 pieces / mm 2 or less. More preferably, it is 115,000 piece / mm ⁇ 2 > or less, More preferably, it is 100,000 piece / mm ⁇ 2 > or less.
  • the structure other than the structure composed of one or two of the upper bainite phase as the main phase, the lower bainite phase as the second phase and / or the tempered martensite phase and the martensite phase is the residual austenite phase, It is a pearlite phase or a ferrite phase (including the case where each phase is not included).
  • the arithmetic average roughness (Ra) of hot-rolled steel sheet is set to 2.00 ⁇ m or less. Since the bending workability is improved as the arithmetic average roughness (Ra) on the steel sheet surface is smaller, the arithmetic average roughness (Ra) on the steel sheet surface is preferably 1.90 ⁇ m or less. More preferably, it is 1.80 micrometers or less, More preferably, it is 1.60 micrometers or less.
  • the surface of the steel sheet having the above-described structure or the like may be a surface-treated steel sheet provided with a plating layer for the purpose of improving corrosion resistance or the like.
  • the plating layer may be a hot-dip plating layer or an electroplating layer.
  • the hot dip plating layer include a galvanizing layer, and examples thereof include hot dip galvanizing and alloying hot dip galvanizing.
  • the electroplating layer include electrogalvanizing.
  • the amount of plating adhesion is not particularly limited, and may be the same as the conventional one.
  • the average particle diameter of the phase, the number density of the second phase having an equivalent circle diameter of 0.5 ⁇ m or more, and the arithmetic average roughness (Ra) of the steel sheet surface can be measured by the methods described in the examples described later.
  • the “° C.” display relating to the temperature represents the temperature on the surface of the steel plate or the surface of the steel material.
  • the steel material having the above composition is heated to 1150 ° C. or higher, then subjected to rough rolling, and then subjected to high pressure water descaling with a collision pressure of 3.0 MPa or more before finish rolling, and finish rolling.
  • the RC temperature is defined by the equation (1)
  • the total rolling reduction at or above the RC temperature is 50% or more
  • the total rolling reduction below the RC temperature is 80% or less
  • the finish rolling finish temperature is (RC ⁇ (100 ° C.)
  • the Ms temperature is defined by equation (2), Cooling at an average cooling rate of 30 ° C./s or higher until the cooling stop temperature of more than 600 ° C.
  • the manufacturing method of the steel material is not particularly limited, and the molten steel having the above composition is melted by a known method such as a converter, and the steel material such as a slab by a casting method such as continuous casting. Any of the conventional methods can be applied.
  • a known casting method such as an ingot-bundling rolling method may be used.
  • Slab after casting Directly rolling the slab after casting, or heating a slab (steel material) that has become a hot piece or a cold piece to 1150 ° C or higher.
  • steel materials such as a slab after being cooled to a low temperature, Ti, etc.
  • Most of these carbonitride-forming elements exist as coarse carbonitrides.
  • the presence of this coarse and non-uniform precipitate causes deterioration of various properties (for example, strength, low temperature toughness, etc.) of the hot rolled steel sheet.
  • the steel material before hot rolling is subjected to direct hot rolling (direct feed rolling) at a high temperature after casting, or the steel material before hot rolling is heated to dissolve coarse precipitates.
  • the heating temperature of the steel material When heating the slab, the heating temperature of the steel material needs to be 1150 ° C. or higher in order to sufficiently dissolve the coarse precipitates before hot rolling. On the other hand, when the heating temperature of the steel material becomes too high, the generation of slab flaws and the yield decrease due to scale-off are caused. Therefore, the heating temperature of the steel material is preferably 1350 ° C. or lower.
  • the heating temperature of the steel material is more preferably 1180 ° C or higher, and preferably 1300 ° C or lower. More preferably, it is 1200 degreeC or more, More preferably, it is 1280 degreeC or less.
  • the steel material is heated to a heating temperature of 1150 ° C. or higher and held for a predetermined time.
  • the holding time of the steel material in the temperature range of 1150 ° C. or higher is preferably 9000 seconds or less. More preferably, the holding time of the steel material in a temperature range of 1150 ° C. or higher is 7200 seconds or less.
  • the lower limit of the holding time is not particularly defined, but the holding time of the steel material in the temperature range of 1150 ° C. or higher is preferably 1800 seconds or longer from the viewpoint of uniformity of slab heating.
  • Hot rolling After rough rolling and before finish rolling, when high pressure water descaling is performed to make the impact pressure 3.0 MPa or higher, and RC temperature in finish rolling is defined by equation (1), The total rolling reduction is 50% or more, the total rolling reduction below the RC temperature is 80% or less, and the finish rolling finish temperature is (RC-100 ° C) or more (RC + 100 ° C) or less. Subsequently, hot rolling consisting of rough rolling and finish rolling is performed. In rough rolling, it is only necessary to secure a desired sheet bar size, and the conditions are not particularly limited. After rough rolling and before finish rolling, descaling using high-pressure water is performed on the entrance side of the finish rolling mill.
  • High pressure water descaling collision pressure 3.0 MPa or more
  • a descaling process by high pressure water injection is performed.
  • the high pressure water descaling collision pressure needs to be 3.0 MPa or more.
  • the collision pressure is preferably 3.0 MPa or more, and preferably descaling corresponding to 12.0 MPa or less. Note that descaling may be performed in the middle of rolling between the finish rolling stands. Moreover, you may cool a steel plate between stands as needed.
  • the collision pressure is a force per unit area at which high-pressure water collides with the steel surface.
  • the total rolling reduction at the RC temperature or higher 50% or higher
  • the total rolling reduction at the RC temperature or higher 50% or higher
  • the finish rolling total rolling reduction at the RC temperature or higher is 55% or higher. More preferably, it is 60% or more. More preferably, it is 70% or more.
  • RC (°C) 850 + 100 ⁇ C + 100 ⁇ N + 10 ⁇ Mn + 700 ⁇ Ti + 5000 ⁇ B + 10 ⁇ Cr + 50 ⁇ Mo + 2000 ⁇ Nb + 150 ⁇ V ⁇ ⁇ ⁇ Formula (1)
  • each element symbol in Formula (1) is the content (% by mass) of each element in steel. In the case of an element not included, the element symbol in the formula is calculated as 0.
  • the total reduction ratio below the RC temperature 80% or less
  • the austenite grains are not recrystallized but strain is accumulated, and a deformation zone is introduced. Strain and deformation bands are generated in the austenite grains, the number of transformation nuclei increases, the grain size of the upper bainite phase after transformation becomes fine, and the low temperature toughness of the hot-rolled steel sheet is improved.
  • the total rolling reduction below the RC temperature exceeds 80%, it consists of one or two of a lower bainite phase and / or a tempered martensite phase and a martensite phase having an equivalent circle diameter of 0.5 ⁇ m or more.
  • the finish rolling total rolling reduction below the RC temperature is set to 80% or less.
  • the finish rolling total rolling reduction at less than the RC temperature is preferably 70% or less. More preferably, it is 60% or less, More preferably, it is 50% or less.
  • the lower limit is not particularly defined, but from the viewpoint of the low temperature toughness of the hot-rolled steel sheet, the finish rolling total rolling reduction at less than the RC temperature is preferably 10% or more.
  • Finish rolling end temperature (RC-100 ° C.) or more and (RC + 100 ° C.) or less Since the finish rolling end temperature is less than (RC-100 ° C.), rolling may be performed at a two-phase temperature range of ferrite + austenite.
  • the area ratio of the desired upper bainite phase cannot be obtained, and the tensile strength TS cannot be ensured to be 980 MPa or more.
  • the particle size becomes too fine, the number density of the second phase having an equivalent circle diameter of 0.5 ⁇ m or more is increased, and stretch flangeability is deteriorated.
  • the finish rolling finish temperature is set to (RC ⁇ 100 ° C.) or more and (RC + 100 ° C.) or less.
  • it is (RC ⁇ 90 ° C.) or higher, preferably (RC + 90 ° C.) or lower. More preferably, it is (RC ⁇ 70 ° C.) or more, and more preferably (RC + 70 ° C.) or less. More preferably, it is (RC ⁇ 50 ° C.) or more, and further preferably (RC + 50 ° C.) or less.
  • the finish rolling end temperature here represents the surface temperature of the steel sheet.
  • Cooling start time within 2.0 s after finishing rolling After finishing rolling, forced cooling is started within 2.0 s, cooling is stopped at a cooling stop temperature (winding temperature), and coiled. If the time from the end of finish rolling to the start of forced cooling becomes longer than 2.0 s, in the case of the finish rolling end temperature above the RC temperature, austenite grain growth occurs, and grains in the upper bainite phase A diameter becomes large and the favorable low-temperature toughness which is the object of the present invention cannot be obtained. In the case of the finish rolling end temperature below the RC temperature, the upper limit of the forced cooling start time may not be particularly defined, but the strain introduced into the austenite grains is recovered, so from the viewpoint of low temperature toughness,
  • the cooling start time is preferably within 2.0 s. Therefore, the forced cooling start time is set to be within 2.0 s after finishing rolling. Preferably, the forced cooling start time is within 1.5 s after finishing rolling. More preferably, the forced cooling start time is within 1.0 s after finishing rolling.
  • average cooling rate from finish rolling end temperature to winding temperature is less than 30 ° C./s. Then, the ferrite transformation occurs before the upper bainite transformation, and an upper bainite phase having a desired area ratio cannot be obtained. Therefore, an average cooling rate shall be 30 degrees C / s or more.
  • the average cooling rate is preferably 35 ° C./s or more, and more preferably 40 ° C./s or more.
  • the upper limit of the average cooling rate is not particularly defined, but if the average cooling rate becomes too high, it is difficult to manage the cooling stop temperature, and it may be difficult to obtain a desired microstructure. For this reason, it is preferable that an average cooling rate shall be 300 degrees C / s or less.
  • an average cooling rate is prescribed
  • Cooling stop temperature Ms temperature above 600 ° C or below
  • the cooling stop temperature is defined by the following formula (2)
  • the bainite transformation is performed by stopping cooling above the Ms temperature. A stagnation phenomenon occurs, the upper bainite transformation is interrupted, and the upper bainite phase and the untransformed austenite phase are maintained.
  • untransformed austenite is transformed into a lower bainite phase and / or a tempered martensite phase and / or a martensite phase, and an upper bainite phase having a desired area ratio and a lower portion
  • a bainite phase and / or a tempered martensite phase and a second phase that is a structure composed of one or two of the martensite phases can be obtained.
  • the coiling temperature is equal to or lower than the Ms temperature, the bainite transformation retention phenomenon does not occur, the desired area ratio of the second phase cannot be secured, and the stretch formability deteriorates.
  • the coiling temperature exceeds 600 ° C., a ferrite phase and a pearlite phase are generated, and a desired tensile strength TS: 980 MPa or more cannot be ensured. That is, the lower the coiling temperature, the higher the driving force of the upper bainite transformation, the higher the upper bainite transformation rate until the bainite transformation retention phenomenon occurs, and the lower the area ratio of the second phase of the hot-rolled steel sheet. It is in. In addition, the higher the coiling temperature, the lower the driving force of the upper bainite transformation, the lower the upper bainite transformation rate until the bainite transformation retention phenomenon occurs, and the higher the area ratio of the second phase of the hot rolled steel sheet. It is in.
  • the coiling temperature is set above the Ms temperature to 600 ° C. or less.
  • the coiling temperature is preferably (Ms + 10 ° C.) or higher, and preferably 580 ° C. or lower. More preferably, it is (Ms + 20 ° C.) or more, and more preferably 560 ° C. or less.
  • Ms (° C) 561-474 x C-33 x Mn-17 x Ni-21 x Mo (2)
  • each element symbol in Formula (2) is the content (% by mass) of each element in steel. In the case of an element not included, the element symbol in the formula is calculated as 0.
  • the hot-rolled steel sheet After winding, the hot-rolled steel sheet is cooled to (Ms-100 ° C) at an average cooling rate of 0.20 ° C / min or more. After winding, the average cooling rate to (Ms-100 ° C): 0.20 ° C / min Min or more
  • the average cooling rate of the hot-rolled steel sheet after winding affects the transformation behavior of the untransformed austenite phase.
  • the hot-rolled steel sheet after winding may be cooled by any cooling method as long as a desired average cooling rate is obtained. Examples of the cooling method include natural air cooling, forced air cooling, gas cooling, mist cooling, water cooling, and oil cooling.
  • the average cooling rate up to (Ms-100 ° C) in the hot-rolled steel sheet after winding is less than 0.20 ° C / min, the untransformed austenite phase decomposes into an upper bainite phase or a pearlite phase,
  • the area ratio of the second phase which is a structure composed of one or two of the desired lower bainite phase and / or tempered martensite phase and martensite phase cannot be ensured. Therefore, in order to transform the untransformed austenite phase to the second phase and obtain the desired area ratio of the second phase, the average cooling rate up to (Ms-100 ° C.) in the hot-rolled steel sheet after winding is set to 0. It is necessary to set it to 20 ° C./min or more.
  • an average cooling rate shall be less than 1800 degrees C / min. More preferably, it is 600 degrees C / min or less, More preferably, it is 60 degrees C / min or less.
  • the transformation of the untransformed austenite phase may not be completed, and residual austenite may be generated (residual), and the desired microstructure may not be obtained. Therefore, it is necessary to control the average cooling rate up to (Ms-100 ° C.) in cooling after winding.
  • it is (Ms-150 ° C), more preferably (Ms-200 ° C).
  • the high-strength hot-rolled steel sheet of the present invention is manufactured.
  • electromagnetic stirring EMS
  • IBSR light pressure casting
  • an equiaxed crystal can be formed at the center of the plate thickness, and segregation can be reduced.
  • segregation at the central portion of the plate thickness can be reduced by preventing the flow of molten steel in the unsolidified portion of the continuous cast slab.
  • temper rolling may be performed according to a conventional method, or the scale formed on the surface may be removed by pickling. Further, after the pickling treatment or temper rolling, a plating treatment or a chemical conversion treatment may be further performed using a conventional hot dip galvanizing line.
  • the plating treatment the steel plate may be passed through a hot dip galvanizing bath to form a galvanized layer on the surface of the steel plate.
  • an alloying hot-dip galvanized steel plate by performing the alloying process which performs the alloying process of this zinc plating layer. For example, after the plating process, the alloying process is performed at an alloying process temperature of 460 to 600 ° C. and a holding time of 1 s or longer.
  • plated steel plates such as an electrogalvanized steel plate, by performing an electroplating process using not only the hot dip galvanized steel plate but the obtained hot rolled steel plate.
  • Molten steel having the composition shown in Table 1 was melted in a converter, and a steel slab (steel material) was produced by a continuous casting method. Next, these steel materials were heated under the production conditions shown in Table 2, subjected to rough rolling, subjected to descaling of the steel sheet surface under the conditions shown in Table 2, and finish-rolled under the conditions shown in Table 2. After finishing rolling, cooling start time (time from finishing finishing to cooling (forced cooling) starting) after finishing rolling, average cooling rate (average cooling rate from finishing rolling finishing temperature to winding temperature) The steel sheet after winding is cooled under the conditions shown in Table 2 to obtain a hot-rolled steel sheet having the thickness shown in Table 2. . The hot-rolled steel sheet thus obtained is subjected to skin pass rolling, followed by pickling (hydrochloric acid concentration: 10% by mass%, temperature 85 ° C.), and partly subjected to galvanizing treatment and further alloying treatment. gave.
  • Test specimens were collected from the hot-rolled steel sheet obtained as described above, and subjected to arithmetic average roughness (Ra) measurement, structure observation, tensile test, hole expansion test, bending test, and Charpy impact test on the surface of the hot-rolled steel sheet.
  • Ra arithmetic average roughness
  • the tissue observation method and various test methods are as follows.
  • the plated steel plate it tested and evaluated with the steel plate after plating.
  • the equivalent-circle diameter of the second phase in the visual field (lower bainite phase and / or tempered martensite phase, or structure composed of one or two of martensite phases) was measured. Then, the number of second phases per 1 mm 2 was examined, and the number density of second phases having an equivalent circle diameter of 0.5 ⁇ m or more was determined.
  • the average grain size of the upper bainite phase is obtained by taking a specimen for measuring the grain size of the upper bainite phase from the hot-rolled steel sheet by electron beam reflection diffraction (Electron-Backscatter-Diffraction-Patterns: EBSD) method using SEM. Using the surface as an observation surface, finish polishing was performed using a colloidal silica solution. After that, an EBSD measuring device measures an area of 100 ⁇ m ⁇ 100 ⁇ m at an electron beam acceleration voltage of 20 keV and a measurement interval of 0.1 ⁇ m step at a thickness of 1/4, and is generally recognized as a grain boundary.
  • EBSD Electro-Backscatter-Diffraction-Patterns
  • the average grain size of the upper bainite phase was calculated by visualizing a grain boundary having a crystal orientation difference of 15 ° or more.
  • the particle size of the area average (Area fraction average) of the upper bainite phase is calculated using OIM Analysis software manufactured by TSL.
  • the area average particle size (referred to as the average particle size) can be obtained by setting Grain Tolerance Angle to 15 ° as the definition of crystal grains.
  • austenite by the EBSD method was defined as the retained austenite phase, and the area ratio of retained austenite was determined.
  • the hole expansion ratio ⁇ (%) defined in (1) was calculated.
  • the clearance is a ratio (%) to the plate thickness.
  • ⁇ obtained by the hole expansion test is 50% or more, the stretch flange formability was evaluated as good.
  • V Bending test
  • the obtained hot-rolled steel sheet was subjected to a shearing process, and a 35 mm (width) x 100 mm (length) bending test piece was collected so that the longitudinal direction of the test piece was perpendicular to the rolling direction.
  • a V-block 90 ° bending test was performed in accordance with the press bending method defined in JIS Z 2248.
  • each steel plate was tested using three test pieces, and the minimum bending radius at which no crack occurred in any of the test pieces was defined as a limit bending radius R (mm), and R was a plate of a hot-rolled steel plate.
  • the R / t value divided by the thickness t (mm) was determined, and the bending workability of the hot-rolled steel sheet was evaluated.
  • the case where the value of R / t was 1.20 or less was evaluated as being excellent in bending workability.
  • V notch sub-size test piece
  • JIS Z 2242 JIS Z 2242
  • the Charpy impact test was performed in accordance with the above-mentioned regulations, the brittle ductile fracture surface transition temperature (vTrs) was measured, and the toughness was evaluated.
  • vTrs brittle ductile fracture surface transition temperature
  • a test piece was prepared with a plate thickness of 2.5 mm by double-side grinding, and for hot-rolled steel plates with a plate thickness of 2.5 mm or less at the original thickness
  • a test piece was prepared and subjected to a Charpy impact test.
  • the measured vTrs is ⁇ 40 ° C. or lower, the low temperature toughness is evaluated as good.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

プレス成形性と低温靭性に優れた引張強さTSが980MPa以上の高強度熱延鋼板およびその製造方法を提供する。 所定の成分組成を有し、組織が、面積率で、75.0%以上97.0%未満の上部ベイナイト相を主相とし、かつ、該主相の平均粒径が12.0μm以下であり、面積率で、3.0%超25.0%以下の下部ベイナイト相および/または焼き戻しマルテンサイト相、マルテンサイト相のうち1種または2種からなる組織を第2相とし、かつ、円相当直径0.5μm以上の該第2相の数密度が150,000個/mm2以下であり、かつ、鋼板表面の算術平均粗さ(Ra)が2.00μm以下である。

Description

高強度熱延鋼板およびその製造方法
 本発明は、自動車の構造部材、骨格部材、サスペンションなどの足回り部材、トラックフレーム部材として好適な、プレス成形性と低温靭性に優れた引張強さTSが980MPa以上の高強度熱延鋼板およびその製造方法に関する。
 近年、地球環境の保全の観点から、自動車排ガス規制が強化されている。そのため、自動車の燃費向上が重要な課題となっている。そして、使用する材料の一層の高強度化および薄肉化が要求されている。これに伴い、自動車部品の素材として、高強度熱延鋼板が積極的に適用されるようになっている。この高強度熱延鋼板の利用は、自動車の構造部材や骨格部材だけでなく、足回り部材やトラックフレーム部材等に対しても行われている。
 上述のように、所定の強度を備えた高強度熱延鋼板は、自動車部品の素材として年々需要が高まっている。特に、引張強さTSが980MPa以上の高強度熱延鋼板は、自動車の燃費を飛躍的に向上し得る素材として大いに期待されている。
 しかしながら、鋼板の高強度化にともない、一般的に低温靭性やプレス成形性等の材料特性は劣化する。特に、自動車の足回り部材として用いられる鋼板は、張出し成形性、伸びフランジ成形性、曲げ成形性、疲労特性、耐衝撃性や耐食性等を総合して有することが求められ、これらの材料特性と高強度とを高い次元でバランス良く確保することが非常に重要である。自動車の足回り部材は、主にプレス成形によって成形されるため、素材には張出し成形性、伸びフランジ成形性および曲げ成形性をバランス良く有することが要求される。
 また、自動車用の部材は、プレス成形後に部材として自動車に取り付けた後に、衝突等による衝撃を受けても破壊しにくいようにすることが要求される。特に、寒冷地における耐衝撃性を確保するために、低温靭性も向上させる必要がある。
 なお、ここでは、張出し成形性、伸びフランジ成形性、曲げ成形性を総合してプレス成形性と呼ぶ。張出し成形性はJIS Z 2241に準拠した引張試験等により測定される。伸びフランジ成形性は鉄連規格JFST 1001に準拠した穴広げ試験等により測定される。また曲げ成形性はJIS Z 2248に準拠した曲げ試験等により測定される。また低温靭性はJIS Z 2242に準拠したシャルピー衝撃試験等により測定される。
 以上のように、これらの材料特性を劣化させることなく鋼板を高強度化するため、従来より種々の検討がなされている。例えば、特許文献1には、質量%で、C:0.01%以上0.10%以下、Si:2.0%以下、Mn:0.5%以上2.5%以下を含み、更にV:0.01%以上0.30%以下、Nb:0.01%以上0.30%以下、Ti:0.01%以上0.30%以下、Mo:0.01%以上0.30%以下、Zr:0.01%以上0.30%以下、W:0.01%以上0.30%以下の1種又は2種以上を合計で0.5%以下含む組成とし、ベイナイト分率80%以上であり、析出物の平均粒径r(nm)がr≧207÷{27.4X(V)+23.5X(Nb)+31.4X(Ti)+17.6X(Mo)+25.5X(Zr)+23.5X(W)}(X(M)(M:V、Nb、Ti、Mo、Zr、W)は析出物を構成する各元素の平均原子量比であり、X(M)=(Mの質量%/Mの原子量)/(V/51+Nb/93+Ti/48+Mo/96+Zr/91+W/184))を満たし、平均粒径rと析出物分率fがr/f≦12000を満たす組織とした熱延鋼板が開示されている。
 また、特許文献1には、上記組成を有する鋼素材を、加熱し、仕上圧延温度を800℃以上1050℃以下とする熱間圧延を施したのち、ベイナイト変態と析出が同時に起こる温度域(500℃から600℃の範囲)まで20℃/s以上で急冷し、500~550℃で巻き取り後、冷却速度5℃/hr以下(0℃/hrを含む)で20hr以上保持することにより、上記組織を有する熱延鋼板を製造する方法が開示されている。そして、特許文献1の技術では、鋼板組織をベイナイト主体組織とし、ベイナイトをV、Ti、Nb等の炭化物により析出強化し、更に析出物サイズを適切に制御(適度に粗大化)することで、伸びフランジ成形性に優れた高強度熱延鋼板が得られるとしている。
 また例えば、特許文献2には、質量%で、C:0.01~0.20%、Si:1.5%以下、Al:1.5%以下、Mn:0.5~3.5%、P:0.2%以下、S:0.0005~0.009%、N:0.009%以下、Mg:0.0006~0.01%、O:0.005%以下、およびTi:0.01~0.20%、Nb:0.01~0.10%の1種または2種を含有し、残部が鉄および不可避的不純物で、下記(1)~(7)式の全てを満たす鋼組織がベイナイト相を主体とする引張強度980N/mm以上の穴広げ性と延性に優れた高強度薄鋼板が得られることを開示している。
[Mg%]≧([O%]/16×0.8)×24・・・(1)
[S%]≦([Mg%]/24-[O%]/16×0.8+0.00012)×32・・・(2)
[S%]≦0.0075/[Mn%]・・・(3)
[Si%]+2.2×[Al%]≧0.35 ・・・(4)
0.9≦48/12×[C%]/[Ti%]<1.7・・・(5)
50227×[C%}-4479×[Mn%]>-9860 ・・・(6)
811×[C%]+135×[Mn%]+602×[Ti%]+794×[Nb%]>465 ・・・(7)
 特許文献3には、質量%で、C:0.01~0.08%、Si:0.30~1.50%、Mn:0.50~2.50%、P≦0.03%、S≦0.005%、及びTi:0.01~0.20%、Nb:0.01~0.04%の1種または2種を含む組成とし、粒径2μm以上のフェライトの割合が80%以上であるフェライト・ベイナイト二相組織とした熱延鋼板が開示されている。特許文献3の技術では、フェライト・ベイナイト二相組織とし、更にフェライト結晶粒を2μm以上の粒径とすることで、穴広げ性を劣化させることなく延性を改善することが可能となり、強度が690N/mm以上であり且つ穴広げ性と延性に優れた高強度熱延鋼板が得られるとしている。
 特許文献4には、鋼板の集合組織を制御し、焼き戻しマルテンサイト、マルテンサイトおよび下部ベイナイトの合計面積率が85%超であるとともに、平均結晶粒径が12.0μm以下であるミクロ組織とすることで、伸びフランジ成形性と低温靭性に優れた高強度熱延鋼板が得られることを開示している。
特開2009-84637号公報 特許第4317419号公報 特開2002-180190号公報 特許第5621942号公報
 しかしながら、特許文献1~3に記載の技術では、プレス成形性のうち、とりわけ張出し成形性と伸びフランジ成形性についてのみ言及しており、低温靭性については何ら言及されておらず、寒冷地で使用された場合、脆性破壊を生じることが懸念される。
 特許文献4に記載の技術では、伸びフランジ成形性と低温靭性について言及している。しかしながら、張出し成形性と曲げ成形性については何ら言及されておらず、自動車足回り部材のような高いプレス成形性が要求される部材に適用した場合、成形不良を生じることが懸念される。
 以上のように、従来技術では、引張強さTSが980MPa以上という高強度を維持しつつ、さらに優れたプレス成形性と低温靭性を有する熱延鋼板の技術は確立されていない。
 そこで、本発明では、かかる従来技術の問題を解決し、引張強さTSが980MPa以上という高強度を維持しつつ、さらに、優れたプレス成形性と低温靭性とを有する高強度熱延鋼板およびその製造方法を提供することを目的とする。
 本発明者らは、上記課題を解決するために、引張強さTSが980MPa以上という高強度を維持しつつ、熱延鋼板の低温靭性とプレス成形性を向上させるべく鋭意研究した。その結果、主相を上部ベイナイト相とし、第2相を、下部ベイナイト相および/または焼き戻しマルテンサイト相、マルテンサイト相のうち1種または2種からなる組織とすることで、高い張出し成形性が得られる。また、主相の粒径と第2相の面積率を制御することで良好な靭性が得られる。更に円相当直径0.5μm以上の該第2相の数密度を制御することで高い伸びフランジ成形性が得られる。更に熱延鋼板の表面の算術平均粗さ(Ra)を制御することで高い曲げ性が得られ、かつ、引張強さTSが980MPa以上という高強度を維持できることを知見した。
 なお、ここでいう上部ベイナイト相とは、ラス状のベイニティックフェライトであり、該ベイニティックフェライトと該ベイニティックフェライトの間にFe系炭化物および/または残留オーステナイト相を有する組織(ただし、該ベイニティックフェライトと該ベイニティックフェライトの間にFe系炭化物および/または残留オーステナイト相を有しない場合も含む)を意味する。ベイニティックフェライトは、ポリゴナルフェライトと異なり、形状がラス状であるため、両者はSEM(走査型電子顕微鏡)を用いて区別可能である。また、ここでいう下部ベイナイト相および/または焼き戻しマルテンサイト相とは、ラス状のベイニティックフェライト内にFe系炭化物を有する組織(ただし、該ベイニティックフェライトと該ベイニティックフェライトの間にもFe系炭化物を有する場合も含む)を意味する。下部ベイナイトと焼き戻しマルテンサイトはラス内のFe系炭化物の方位や結晶構造をTEM(透過型電子顕微鏡)を用いて区別可能であるが、本発明では実質同じ特性を有しているため区別しない。また、上部ベイナイトと比較して高い転位密度を有するため、SEMやTEM(透過型電子顕微鏡)を用いて区別可能である。焼入れマルテンサイト相(以下、マルテンサイト相と称する)は、下部ベイナイト相および/または焼き戻しマルテンサイト相と比較してFe系炭化物を有さない組織であり、また、上部ベイナイト相、下部ベイナイト相および/または焼き戻しマルテンサイト相、ポリゴナルフェライトと比べてSEM像のコントラストが明るいため、SEMを用いて区別可能である。
 一般的に、同一の硬度、延性を有する組織が熱延鋼板中に単相で存在していると、引張強さ(TS)に対する降伏応力(YS)の比である降伏比(YR)が高くなる。高い降伏比を有する鋼板に対して張出し成形を行った場合、ひずみ分散能が低く、ひずみが集中する箇所で容易にネッキングや割れ等の成形不良が生じてしまう。そこで、本発明では、硬度、延性の異なる組織を熱延鋼板中に混在させ、降伏比を低くすることで、素材の張出し成形性を向上させている。
 また、一般的に、軟質なフェライト相や上部ベイナイト相を主相とし、主相中に、硬質な第2相組織である下部ベイナイト相および/または焼き戻しマルテンサイト相、マルテンサイト相が存在すると、穴広げ試験の際に主相と第2相との界面にボイドが発生する。発生したボイド同士が連結することで、穴広げ試験の早期に板厚を貫通する割れに至るため、伸びフランジ成形性が低下する。また、第2相の面積率が大きくなると、熱延鋼板の低温靭性を劣化させることが知られている。そこで、本発明者らは更なる研究を行い、上部ベイナイト相を主相とし、下部ベイナイト相および/または焼き戻しマルテンサイト相、マルテンサイト相のうち1種または2種を含有する組織を第2相とした場合の該第2相における円相当直径0.5μm未満の割合を多くすることで、穴広げ試験の際に主相と第2相との界面にボイドが生じにくくなり、さらに円相当直径0.5μm以上である第2相の数密度を制御することで、発生したボイドの連結が起こりにくくなり、その結果、伸びフランジ成形性が顕著に低下せずに、張出し成形性が高い、引張強さTSが980MPa以上の熱延鋼板を確保できることを新たに知見した。また、主相の面積平均粒径(平均粒径)と、第2相の面積率を制御することで優れた低温靭性が得られることを新たに知見した。さらに、熱延鋼板の組織を制御した上で、熱延鋼板の表面の算術平均粗さ(Ra)を制御することで、優れた曲げ成形性が確保できることを新たに知見した。
 以上の知見を踏まえ、本発明者らは更なる研究を行い、引張強さTSが980MPa以上という高強度を維持した状態で、プレス成形性を向上させるために必要な組成、上部ベイナイト相の面積率と平均粒径、下部ベイナイト相および/または焼き戻しマルテンサイト相、マルテンサイト相のうち1種または2種からなる組織である第2相の面積率と円相当直径0.5μm以上の第2相の数密度、熱延鋼板の表面の算術平均粗さ(Ra)について検討した。
 そして、質量%で、C:0.04%以上0.15%以下、Si:0.4%以上2.0%以下、Mn:1.0%以上3.0%以下、P:0.100%以下(0%を含む)、S:0.0100%以下(0%を含む)、Al:0.01%以上2.00%以下、N:0.010%以下(0%を含む)、Ti:0.03%以上0.15%以下、B:0.0005%以上0.0050%以下を含有し、Cr:0.10%以上2.50%以下、Mo:0.05%以上0.50%以下、Nb:0.005%以上0.060%以下、V:0.05%以上0.50%以下のうちから選ばれる1種または2種以上を含有し、残部Feおよび不可避的不純物からなる組成を有し、さらに、組織が、面積率で75.0%以上97.0%未満の上部ベイナイト相を主相とし、かつ、該主相の平均粒径が12.0μm以下であり、面積率で3.0%超25.0%以下の下部ベイナイト相および/または焼き戻しマルテンサイト相、マルテンサイト相のうち1種または2種からなる組織を第2相とし、かつ、円相当直径0.5μm以上の該第2相の数密度が150,000個/mm以下であり、かつ、鋼板表面の算術平均粗さ(Ra)が2.00μm以下とすることが肝要であることを見出した。
 本発明は、かかる知見に基づき、更なる検討を加えて完成したものである。すなわち、本発明の要旨はつぎの通りである。
[1]成分組成は、質量%で、C:0.04%以上0.15%以下、Si:0.4%以上2.0%以下、Mn:1.0%以上3.0%以下、P:0.100%以下(0%を含む)、S:0.0100%以下(0%を含む)、Al:0.01%以上2.00%以下、N:0.010%以下(0%を含む)、Ti:0.03%以上0.15%以下、B:0.0005%以上0.0050%以下を含有し、
Cr:0.10%以上2.50%以下、Mo:0.05%以上0.50%以下、Nb:0.005%以上0.060%以下、V:0.05%以上0.50%以下のうちから選ばれた1種または2種以上を含有し、
残部Feおよび不可避的不純物からなり、
組織が、面積率で75.0%以上97.0%未満の上部ベイナイト相を主相とし、かつ、該主相の平均粒径が12.0μm以下であり、
面積率で3.0%超25.0%以下の、下部ベイナイト相および/または焼き戻しマルテンサイト相、マルテンサイト相のうち1種または2種からなる組織を第2相とし、かつ、円相当直径0.5μm以上の該第2相の数密度が150,000個/mm以下であり、
鋼板表面の算術平均粗さ(Ra)が、2.00μm以下であり、
引張強さTSが980MPa以上である高強度熱延鋼板。
[2]前記成分組成に加えてさらに、質量%で、Cu:0.01%以上0.50%以下、Ni:0.01%以上0.50%以下のうちから選ばれた1種または2種を含有する[1]に記載の高強度熱延鋼板。
[3]前記成分組成に加えてさらに、質量%で、Sb:0.0002%以上0.0200%以下を含有する[1]または[2]に記載の高強度熱延鋼板。
[4]前記成分組成に加えてさらに、質量%で、Ca:0.0002%以上0.0100%以下、Mg:0.0002%以上0.0100%以下、REM:0.0002%以上0.0100%以下、のうちから選ばれた1種または2種以上を含有する[1]~[3]のいずれかに記載の高強度熱延鋼板。
[5]鋼板の表面に、めっき層を有する[1]~[4]のいずれかに記載の高強度熱延鋼板。
[6][1]~[4]のいずれかに記載された高強度熱延鋼板の製造方法であって、
鋼素材を1150℃以上に加熱し、
次いで、粗圧延を施した後、
仕上圧延前に、衝突圧を3.0MPa以上とする高圧水デスケーリングを行い、
仕上圧延において、RC温度を式(1)で定義したとき、RC温度以上での合計圧下率を50%以上、続いてRC温度未満での合計圧下率を80%以下、仕上圧延終了温度を(RC-100℃)以上(RC+100℃)以下とする仕上圧延を施す熱間圧延をし、
次いで、仕上圧延を終了後2.0s以内に冷却を開始し、
Ms温度を式(2)で定義したとき、Ms温度超600℃以下の冷却停止温度まで、30℃/s以上の平均冷却速度で冷却し、
前記冷却停止温度で巻取り、
次いで、鋼板を(Ms-100℃)まで0.20℃/min以上の平均冷却速度で冷却する引張強さTSが980MPa以上である高強度熱延鋼板の製造方法。
RC(℃)=850+100×C+100×N+10×Mn+700×Ti+5000×B+10×Cr+50×Mo+2000×Nb+150×V ・・・式(1)
Ms(℃)=561-474×C-33×Mn-17×Ni-21×Mo ・・・式(2)
ここで、式(1)および式(2)における各元素記号は、各元素の鋼中の含有量(質量%)である。含まない元素の場合は、式中の元素記号を0として計算する。
[7]さらに、鋼板の表面にめっき処理を施す[6]に記載の高強度熱延鋼板の製造方法。
 なお、本発明において、高強度熱延鋼板とは、引張強さTSが980MPa以上の鋼板であり、溶融めっき処理、合金化溶融めっき処理および電気めっき処理などの表面処理を熱延鋼板に施した鋼板を含むものである。また、熱延鋼板および表面処理を施した鋼板の上にさらに化成処理などにより皮膜を有する鋼板をも含むものである。また、本発明において、プレス成形性に優れたとは、張り出し成形性として引張強さTSに対する降伏強度YPの値(YR%=YP/TS×100)が92.0%以下であり、伸びフランジ成形性として穴拡げ率λの値が50%以上であり、曲げ加工性として板厚に対する限界曲げ半径(R/t)の値が1.20以下であることを意味する。また、低温靭性に優れたとは、脆性延性破面遷移温度(vTrs)が-40℃以下であることを意味する。また、本発明において、主相とは、面積率で75.0%以上であることを意味する。
 本発明によれば、引張強さTSが980MPa以上であり、かつプレス成形性と低温靭性に優れた高強度熱延鋼板が得られる。また、この高強度熱延鋼板を安定して製造することができる。そして、本発明の高強度熱延鋼板を、自動車の足回り部材、構造部材、骨格部材、トラックフレーム部材等に適用した場合、自動車の安全性を確保しつつ自動車車体の重量を軽減するため、環境負荷の低減に寄与でき、産業上格段の効果を奏する。
 以下、本発明について具体的に説明する。
 本発明の高強度熱延鋼板は、質量%で、C:0.04%以上0.15%以下、Si:0.4%以上2.0%以下、Mn:1.0%以上3.0%以下、P:0.100%以下(0%を含む)、S:0.0100%以下(0%を含む)、Al:0.01%以上2.00%以下、N:0.010%以下(0%を含む)、Ti:0.03%以上0.15%以下、B:0.0005%以上0.0050%以下を含有し、Cr:0.10%以上2.50%以下、Mo:0.05%以上0.50%以下、Nb:0.005%以上0.060%以下、V:0.05%以上0.50%以下のうちから選ばれた1種または2種以上を含有し、残部Feおよび不可避的不純物からなる成分組成を有する。
 まず、本発明の高強度熱延鋼板の成分組成の限定理由について説明する。なお、以下の成分組成を表す%は、特に断らない限り質量%を意味するものとする。
 C:0.04%以上0.15%以下
 Cは、鋼の強度を向上させ、焼入れ性を向上させることによってベイナイトの生成を促進する元素である。上部ベイナイト変態時に、未変態オーステナイトにCが分配されることで、未変態オーステナイトが安定化する。これにより、巻取後の冷却で、未変態オーステナイトが、下部ベイナイト相および/または焼き戻しマルテンサイト相、および/またはマルテンサイト相に変態することで、第2相を得ることができる。そのため、本発明では、C含有量を0.04%以上とする必要がある。一方、C含有量が0.15%を超えると、第2相が増加し、熱延鋼板の低温靭性が劣化する。したがって、C含有量は0.04%以上0.15%以下とする。好ましくは、C含有量は0.04%以上0.14%以下である。より好ましくは、C含有量は0.04%以上0.13%以下である。さらに好ましくは0.05%以上0.12%未満である。
 Si:0.4%以上2.0%以下
 Siは、固溶強化に寄与する元素であり、鋼の強度向上に寄与する元素である。また、Siは炭化物の形成を抑制する効果があり、上部ベイナイト変態時のセメンタイトの析出を抑制する。これにより未変態オーステナイトにCが分配され、巻取後の冷却で、未変態オーステナイトが、下部ベイナイト相および/または焼き戻しマルテンサイト相、および/またはマルテンサイト相に変態することで、第2相を得ることができる。これらの効果を得るためには、Si含有量を0.4%以上とする必要がある。一方、Siは、熱間圧延中に鋼板表面にサブスケールを形成する元素である。Si含有量が2.0%を超えるとサブスケールが厚くなり過ぎてしまい、デスケーリング後の鋼板表面の算術平均粗さ(Ra)が過大となり、熱延鋼板の曲げ成形性が劣化する。したがって、Si含有量は2.0%以下とする。好ましくは、Si含有量は0.4%以上であり、好ましくは、1.8%以下である。より好ましくは、Si含有量は0.5%以上であり、より好ましくは、1.6%以下である。
 Mn:1.0%以上3.0%以下
 Mnは、固溶して鋼の強度増加に寄与するとともに、焼入れ性向上によってベイナイト相とマルテンサイト相の生成を促進させる。このような効果を得るためには、Mn含有量を1.0%以上とする必要がある。一方、Mn含有量が3.0%を超えると、マルテンサイト相が増加し、熱延鋼板の低温靭性が劣化する。したがって、Mn含有量を1.0%以上3.0%以下とする。好ましくは、Mn含有量は1.3%以上2.6%以下である。より好ましくは、Mn含有量は1.5%以上であり、好ましくは、2.4%以下である。
 P:0.100%以下(0%を含む)
 Pは、固溶して鋼の強度増加に寄与する元素である。しかし、Pは、熱間圧延時のオーステナイト粒界に偏析することで、熱間圧延時の割れを発生させる元素でもある。また、割れの発生が回避できても、粒界に偏析して低温靭性を低下させるとともに、加工性を低下させる。このため、P含有量を極力低くすることが好ましく、0.100%までのPの含有は許容できる。したがって、P含有量は0.100%以下とする。好ましくは、P含有量は0.05%以下であり、より好ましくは、P含有量は0.02%以下である。
 S:0.0100%以下(0%を含む)
 Sは、TiやMnと結合して粗大な硫化物を形成し、熱延鋼板の靭性を低下させる。そのため、S含有量を極力低くすることが好ましく、0.0100%までのSの含有は許容できる。したがって、S含有量を0.0100%以下とする。伸びフランジ成形性の観点からは、S含有量は0.005%以下とすることが好ましく、さらに好ましくは、S含有量は0.003%以下である。
 Al:0.01%以上2.00%以下
 Alは、脱酸剤として作用し、鋼の清浄度を向上させるのに有効な元素である。Alが0.01%未満ではその効果が必ずしも十分ではないため、Al含有量は0.01%以上とする。また、Alは、Siと同様に、炭化物の形成を抑制する効果があり、上部ベイナイト変態時のセメンタイトの析出を抑制する。これにより、未変態オーステナイトにCが分配され、巻取後の冷却で未変態オーステナイトが下部ベイナイト相および/または焼き戻しマルテンサイト相、および/またはマルテンサイト相に変態することで第2相を得ることができる。一方、Alの過剰な添加は、酸化物系介在物の増加を招き、熱延鋼板の靭性を低下させるとともに、疵発生の原因となる。したがって、Al含有量を0.01%以上2.00%以下とする。好ましくは、Al含有量は0.015%以上であり、好ましくは、1.8%以下である。より好ましくは、Al含有量は0.020%以上であり、より好ましくは、1.6%以下である。
 N:0.010%以下(0%を含む)
 Nは、窒化物形成元素と結合することにより窒化物として析出し、結晶粒微細化に寄与する。しかし、Nは、高温でTiと結合して粗大な窒化物になり易く、また0.010%超の含有は、熱間圧延時の割れを発生させる元素である。このため、N含有量を0.010%以下とする。好ましくは、N含有量は0.008%以下である。より好ましくは、N含有量は0.006%以下である。
 Ti:0.03%以上0.15%以下
 Tiは、析出強化または固溶強化により鋼板の強度を向上させる作用を有する元素である。Tiは、オーステナイト相高温域(オーステナイト相での高温の域とオーステナイト相よりも高温の域(鋳造の段階))で窒化物を形成する。これにより、BNの析出が抑制され、Bが固溶状態になることで上部ベイナイト相の生成に必要な焼入れ性を得ることができ、強度向上に寄与する。これらの効果を発現させるためには、Ti含有量を0.03%以上とする必要がある。また、Tiは熱間圧延時のオーステナイト相の再結晶温度を上昇させることで、オーステナイト未再結晶域での圧延を可能とし、これにより上部ベイナイト相の粒径微細化に寄与し、低温靭性を向上させる。一方、Ti含有量が0.15%を超えると、粒径微細化の効果により、円相当直径0.5μm以上の第2相(下部ベイナイト相および/または焼き戻しマルテンサイト相、マルテンサイト相の内1種または2種からなる組織)の数密度が増加し、伸びフランジ成形性を劣化させる。したがって、Ti含有量を0.03%以上0.15%以下とする。好ましくは、Ti含有量は0.04%以上であり、好ましくは、0.14%以下である。より好ましくは、Ti含有量は0.05%以上であり、より好ましくは、0.13%以下である。
 B:0.0005%以上0.0050%以下
 Bは、旧オーステナイト粒界に偏析し、フェライトの生成を抑制することで、上部ベイナイト相の生成を促進し、鋼板の強度向上に寄与する元素である。これらの効果を発現させるためには、B含有量を0.0005%以上とする。一方、B含有量が0.0050%を超えると、上記した効果が飽和する。したがって、B含有量を0.0005%以上0.0050%以下の範囲に限定する。好ましくは、B含有量は0.0006%以上であり、好ましくは、0.0040%以下である。より好ましくは、B含有量は0.0007%以上であり、より好ましくは、0.0030%以下である。
 本発明は、上記成分を含有し、さらに下記の元素のうちから選ばれる1種または2種以上を含有する。
 Cr:0.10%以上2.50%以下
 Crは、固溶強化により鋼板の強度を向上させる作用を有する元素である。また、Crは炭化物形成元素であり、熱延鋼板巻取後の上部ベイナイト変態時に、上部ベイナイト相と未変態オーステナイトの界面に偏析することで、ベイナイトの変態駆動力を低下させ、未変態オーステナイトを残したまま上部ベイナイト変態を停止させる効果を有する元素である。未変態オーステナイトは、その後冷却されることで、下部ベイナイト相および/または焼き戻しマルテンサイト相、および/またはマルテンサイト相からなる組織(第2相)に変態し、所望の面積率の第2相を得ることができる。これらの効果を発現させるためには、Cr含有量を0.10%以上とする。一方、Crは、Siと同様に、熱間圧延中に鋼板表面にサブスケールを形成する元素である。そのため、Cr含有量が2.50%を超えるとサブスケールが厚くなりすぎてしまい、デスケーリング後の鋼板表面の算術平均粗さ(Ra)が過大となり、熱延鋼板の曲げ成形性が劣化する。したがって、Crを含有する場合は、Cr含有量を0.10%以上2.50%以下とする。好ましくは、Cr含有量は0.15%以上であり、好ましくは、2.20%以下である。より好ましくは、Cr含有量は0.20%以上であり、より好ましくは、2.00%以下である。また、さらに好ましくは、Cr含有量は0.20%以上1.60%以下である。さらに好ましくは、Cr含有量は0.20%以上1.00%以下である。
 Mo:0.05%以上0.50%以下
 Moは、焼入れ性の向上を通じてベイナイト相の形成を促進し、鋼板の強度向上に寄与する。また、Moは、Crと同様に、炭化物形成元素であり、熱延鋼板巻取後の上部ベイナイト変態時に上部ベイナイト相と未変態オーステナイトの界面に偏析することで、ベイナイトの変態駆動力を低下させ、未変態オーステナイトを残したまま上部ベイナイト変態を停止させる効果を有する元素である。未変態オーステナイトは、その後冷却されることで下部ベイナイト相および/または焼き戻しマルテンサイト相、および/またはマルテンサイト相からなる組織(第2相)に変態し、所望の面積率の第2相を得ることができる。このような効果を得るためには、Mo含有量を0.05%以上とすることが好ましい。但し、Mo含有量が0.50%を超えると、マルテンサイト相が増加し、熱延鋼板の低温靭性が劣化する。したがって、Moを含有する場合は、0.05%以上0.50%以下とする。好ましくは、Mo含有量は0.10%以上であり、好ましくは、0.40%以下である。より好ましくは、Mo含有量は0.15%以上であり、より好ましくは、0.30%以下である。
 Nb:0.005%以上0.060%以下
 Nbは、析出強化または固溶強化により鋼板の強度を向上させる作用を有する元素である。また、Nbは、Tiと同様に、熱間圧延時のオーステナイト相の再結晶温度を上昇させることで、オーステナイト未再結晶域での圧延を可能とし、上部ベイナイト相の粒径微細化に寄与し、低温靭性を向上させる。これらの効果を発現させるためには、Nb含有量を0.005%以上とする必要がある。一方、Nb含有量が0.060%を超えると、粒径微細化の効果により、円相当直径0.5μm以上の第2相の数密度が増加し、伸びフランジ成形性を劣化させる。したがって、Nbを含有する場合は、Nb含有量を0.005%以上0.060%以下とする。好ましくは、Nb含有量は、0.010%以上であり、好ましくは、0.050%以下である。より好ましくは、Nb含有量は0.015%以上であり、より好ましくは、0.040%以下である。
 V:0.05%以上0.50%以下
 Vは、析出強化または固溶強化により鋼板の強度を向上させる作用を有する元素である。また、Vは、Tiと同様に、熱間圧延時のオーステナイト相の再結晶温度を上昇させることで、オーステナイト未再結晶域での圧延を可能とし、上部ベイナイト相の粒径微細化に寄与し、低温靭性を向上させる。これらの効果を発現させるためには、V含有量を0.05%以上とする必要がある。一方、V含有量が0.50%を超えると、粒径微細化の効果により、円相当直径0.5μm以上の第2相の数密度が増加し、伸びフランジ成形性を劣化させる。したがって、Vを含有する場合は、V含有量を0.05%以上0.50%以下とする。好ましくは、V含有量は0.10%以上であり、好ましくは、0.40%以下である。より好ましくは、V含有量は0.15%以上であり、より好ましくは、0.30%以下である。
 本発明において、上記以外の残部は、Feおよび不可避的不純物である。不可避的不純物としては、Zr、Co、Sn、Zn、W等が挙げられ、これらの含有量は、合計で0.5%以下であれば許容できる。
 以上の必須含有元素で、本発明の鋼板は目的とする特性が得られる。本発明の熱延鋼板は、例えば高強度化やプレス成形性や低温靭性をさらに向上させることを目的として、必要に応じて下記の元素を含有することができる。
 Cu:0.01%以上0.50%以下、Ni:0.01%以上0.50%以下のうちから選ばれる1種または2種
 Cu:0.01%以上0.50%以下
 Cuは、固溶して鋼の強度増加に寄与する。また、Cuは、焼入れ性の向上を通じてベイナイト相の形成を促進し、強度向上に寄与する。これらの効果を得るためには、Cu含有量を0.01%以上とすることが好ましい。一方、その含有量が0.50%を超えると熱延鋼板の表面性状の低下を招き、熱延鋼板の曲げ成形性を劣化させる。したがって、Cuを含有する場合は、Cu含有量を0.01%以上0.50%以下とする。好ましくは、Cu含有量は0.05%以上であり、好ましくは、0.30%以下である。
 Ni:0.01%以上0.50%以下
 Niは、固溶して鋼の強度増加に寄与する。また、Niは、焼入れ性の向上を通じてベイナイト相の形成を促進し、強度向上に寄与する。これらの効果を得るためには、Ni含有量を0.01%以上とすることが好ましい。但し、Ni含有量が0.50%を超えると、マルテンサイト相が増加して、熱延鋼板の低温靭性を劣化させる。したがって、Niを含有する場合は、Ni含有量を0.01%以上0.50%以下とする。好ましくは、Ni含有量は0.05%以上であり、好ましくは、0.30%以下である。
 Sb:0.0002%以上0.0200%以下
 Sbは、スラブ加熱段階でスラブ表面の窒化を抑制する効果を有し、スラブ表層部のBNの析出が抑制される。また、固溶Bが存在することにより、熱延鋼板表層部においてもベイナイトの生成に必要な焼入れ性を得ることができ、熱延鋼板の強度を向上させる。このような効果の発現のためには、Sb含有量を0.0002%以上とする必要がある。一方、Sb含有量が0.0200%を超えると、圧延荷重の増大を招き、生産性を低下させる場合がある。したがって、Sbを含有する場合は、Sb含有量を0.0002%以上0.0200%以下とする。好ましくは、Sb含有量は0.0005%以上であり、好ましくは、0.0180%以下である。さらに好ましくは、Sb含有量は0.0010%以上であり、さらに好ましくは、0.0150%以下である。
 Ca:0.0002%以上0.0100%以下、Mg:0.0002%以上0.0100%以下、REM:0.0002%以上0.0100%以下のうちから選ばれる1種または2種以上
 Ca:0.0002%以上0.0100%以下
 Caは、酸化物や硫化物系の介在物の形状を制御し、熱延鋼板の低温靭性の向上に有効である。これらの効果を発現させるためには、Ca含有量を0.0002%以上とすることが好ましい。但し、Ca含有量が0.0100%を超えると、熱延鋼板の表面欠陥を引き起こす場合があり、熱延鋼板の曲げ成形性を劣化させる。したがって、Caを含有する場合、Ca含有量を0.0002%以上0.0100%以下とする。好ましくは、Ca含有量は0.0004%以上0.0050%以下である。
 Mg:0.0002%以上0.0100%以下
 Mgは、Caと同様に、酸化物や硫化物系の介在物の形状を制御し、熱延鋼板の低温靭性の向上に有効である。これらの効果を発現させるためには、Mg含有量を0.0002%以上とすることが好ましい。但し、Mg含有量が0.0100%を超えると、逆に鋼の清浄度を劣化させ、低温靭性を劣化する。したがって、Mgを含有する場合、Mg含有量を0.0002%以上0.0100%以下とする。好ましくは、Mg含有量は0.0004%以上であり、好ましくは、0.0050%以下である。
 REM:0.0002%以上0.0100%以下
 REMは、Caと同様に、酸化物や硫化物系の介在物の形状を制御し、熱延鋼板の低温靭性の向上に有効である。これらの効果を発現させるためには、REM含有量を0.0002%以上とすることが好ましい。但し、REM含有量が0.0100%を超えると、逆に鋼の清浄度を劣化させ、低温靭性を劣化する。したがって、REMを含有する場合、REM含有量を0.0002%以上0.0100%以下とする。好ましくは、REM含有量は0.0004%以上であり、好ましくは、0.0050%以下である。
 次に、本発明の高強度熱延鋼板の組織等の限定理由について説明する。
 本発明の高強度熱延鋼板は、組織が、面積率で75.0%以上97.0%未満の上部ベイナイト相を主相とし、かつ、該主相の平均粒径が12.0μm以下であり、面積率で3.0%超25.0%以下の下部ベイナイト相および/または焼き戻しマルテンサイト相、マルテンサイト相のうち1種または2種からなる組織を第2相とし、かつ、円相当直径0.5μm以上の該第2相の数密度が150,000個/mm以下であり、かつ、鋼板表面の算術平均粗さ(Ra)が2.00μm以下である。なお、残部は、残留オーステナイト相、パーライト相、フェライト相であり、残留オーステナイト相、パーライト相、フェライト相の面積率は合計で0~3.0%未満であれば本発明の効果は得られる。
 熱延鋼板の組織
  主相:上部ベイナイト相が、面積率で75.0%以上97.0%未満、かつ、上部ベイナイト相の平均粒径が12.0μm以下
  第2相:下部ベイナイト相および/または焼き戻しマルテンサイト相、マルテンサイト相のうち1種または2種からなる組織(第2相)が、面積率で3.0%超25.0%以下、かつ、円相当直径0.5μm以上の第2相の数密度が150,000個/mm以下
  残部:残留オーステナイト相、パーライト相、フェライト相が、各面積率の合計で、0%以上3.0%未満
 本発明の高強度熱延鋼板は、上部ベイナイト相を主相とする。上部ベイナイト相とは、ラス状のベイニティックフェライトとベイニティックフェライトの間に、Fe系炭化物および/または残留オーステナイト相を有する組織(ただし、ラス状のベイニティックフェライトとベイニティックフェライトの間にFe系炭化物および/または残留オーステナイト相を全く有さない場合を含む)を意味する。ベイニティックフェライトは、ポリゴナルフェライトとは異なり、形状がラス状でかつ内部に比較的高い転位密度を有するため、SEM(走査型電子顕微鏡)やTEM(透過型電子顕微鏡)を用いて容易に区別ができる。引張強さTSが980MPa以上の強度を実現し、低温靭性を高めるためには、上部ベイナイト相を主相とする必要がある。上部ベイナイト相の面積率が75.0%以上で、かつ、上部ベイナイト相の平均粒径が12.0μm以下であれば、980MPa以上の引張強さTSと優れた低温靭性とを兼備することができる。一方、上部ベイナイト相の面積率が97.0%以上では、鋼板の降伏比(YR)が92.0%を超えてしまい,優れた張出し成形性が得られない。したがって、上部ベイナイト相の面積率を75.0%以上97.0%未満とする。上部ベイナイト相の面積率は、好ましくは80.0%以上、より好ましくは85.0%以上である。また、上部ベイナイト相の平均粒径は、好ましくは11.0μm以下、より好ましくは10.0μm以下である。さらに好ましくは9.0μm以下である。
 また、本発明では、下部ベイナイト相および/または焼き戻しマルテンサイト相、マルテンサイト相のうち1種または2種からなる組織を第2相とする。この第2相の面積率が3.0%超であれば、優れた張出し成形性が得られる。一方、第2相の面積率が25.0%を超えると、上述した主相の平均粒径がいくら小さくても、優れた低温靭性を確保することができなくなる。したがって、第2相の面積率を3.0%超25.0%以下とする。第2相の面積率は、好ましくは3.5%以上であり、好ましくは23.0%以下である。より好ましくは4.0%以上であり、より好ましくは20.0%以下である。さらに好ましくは4.5%以上であり、さらに好ましくは15.0%以下である。なお、下部ベイナイト相および/または焼き戻しマルテンサイト相とは、ラス状のベイニティックフェライト内にFe系炭化物を有する組織(ただし、該ベイニティックフェライトと該ベイニティックフェライトの間にもFe系炭化物を有する場合も含む)を意味する。下部ベイナイトと焼き戻しマルテンサイトはラス内のFe系炭化物の方位や結晶構造をTEM(透過型電子顕微鏡)を用いて区別可能であるが、本発明では実質同じ特性を有しているため区別しない。また上部ベイナイトと比較して高い転位密度を有するため、SEMやTEM(透過型電子顕微鏡)を用いて区別可能である。
 また、円相当直径0.5μm以上の第2相は、数密度で150,000個/mm以下であれば、伸びフランジ成形の際、上部ベイナイト相と第2相との界面で発生したボイドの連結が生じにくく、高い伸びフランジ成形性を確保できる。なお、円相当直径0.5μm以上の第2相の数密度は、少ないほど伸びフランジ成形性は向上する。このため、円相当直径0.5μm以上の第2相の数密度は、好ましくは130,000個/mm以下である。より好ましくは115,000個/mm以下であり、さらに好ましくは100,000個/mm以下である。
 なお、主相である上部ベイナイト相と、第2相である下部ベイナイト相および/または焼き戻しマルテンサイト相、マルテンサイト相のうち1種または2種からなる組織以外の組織は、残留オーステナイト相、パーライト相、フェライト相(ただし、各相を有さない場合も含む)である。
 熱延鋼板の表面
  算術平均粗さ(Ra)が2.00μm以下
 鋼板表面の算術平均粗さ(Ra)が大きいと、曲げ成形の際に、曲げ頂点部で局所的な応力集中が生じ、割れが生じてしまうことがある。したがって、高強度熱延鋼板で良好な曲げ加工性を確保するためには、鋼板表面の算術平均粗さ(Ra)を2.00μm以下とする。鋼板表面の算術平均粗さ(Ra)が小さいほど曲げ加工性は向上するため、鋼板表面の算術平均粗さ(Ra)は好ましくは1.90μm以下である。より好ましくは1.80μm以下であり、さらに好ましくは1.60μm以下である。
 鋼板の表面処理(好適条件)
 上記した組織等を有する鋼板の表面には、耐食性の向上等を目的としてめっき層を備えた表面処理鋼板としてもよい。めっき層は、溶融めっき層であっても、電気めっき層であっても良い。溶融めっき層としては、亜鉛めっき層が挙げられ、例えば溶融亜鉛めっき、合金化溶融亜鉛めっき等があげられる。電気めっき層としては、例えば電気亜鉛めっき等があげられる。めっき付着量は特に制限されず、従来と同様でよい。
 なお、上述の上部ベイナイト相、下部ベイナイト相および/または焼き戻しマルテンサイト相(第2相)、マルテンサイト相(第2相)、残留オーステナイト相、パーライト相、フェライト相の各面積率、上部ベイナイト相の平均粒径、円相当直径0.5μm以上の第2相の数密度、鋼板表面の算術平均粗さ(Ra)は、後述する実施例に記載の方法で測定することができる。
 次に、本発明の高強度熱延鋼板の製造方法について説明する。なお、説明において、温度に関する「℃」表示は、鋼板表面あるいは鋼素材の表面における温度を表すものとする。
 本発明は、上記した組成の鋼素材を1150℃以上に加熱し、次いで、粗圧延を施した後、仕上圧延前に、衝突圧を3.0MPa以上とする高圧水デスケーリングを行い、仕上圧延において、RC温度を式(1)で定義したとき、RC温度以上での合計圧下率を50%以上、続いてRC温度未満での合計圧下率を80%以下、仕上圧延終了温度を(RC-100℃)以上(RC+100℃)以下とする仕上圧延を施す熱間圧延をし、次いで、仕上圧延を終了後2.0s以内に冷却を開始し、Ms温度を式(2)で定義したとき、Ms温度超600℃以下の冷却停止温度まで、30℃/s以上の平均冷却速度で冷却し、冷却停止温度で巻取り、次いで、鋼板を(Ms-100℃)まで0.20℃/min以上の平均冷却速度で冷却することを特徴とする高強度熱延鋼板の製造方法である。さらに、巻取り後の冷却をした後、鋼板の表面にめっき処理を施すことができる。
 以下、詳細に説明する。
 本発明において、鋼素材の製造方法は、特に限定する必要はなく、上記した組成を有する溶鋼を、転炉等の公知の方法で溶製し、連続鋳造等の鋳造方法でスラブ等の鋼素材とする、常用の方法がいずれも適用できる。なお、造塊-分塊圧延方法など、公知鋳造方法を用いてもよい。また、原料としてスクラップを使用しても構わない。
 鋳造後スラブ:鋳造後のスラブを直送圧延、または、温片や冷片となったスラブ(鋼素材)を1150℃以上に加熱
 低温まで冷却された後のスラブ等の鋼素材中では、Tiなどの炭窒化物形成元素の殆どが、粗大な炭窒化物として存在している。この粗大で不均一な析出物の存在は、熱延鋼板の諸特性(例えば、強度、低温靭性など)の劣化を招く。そのため、熱間圧延前の鋼素材を鋳造後高温のままで直接熱間圧延(直送圧延)に供する、または、熱間圧延前の鋼素材を加熱して、粗大な析出物を固溶する。スラブを加熱する場合、粗大な析出物を熱間圧延前に十分に固溶させるためには、鋼素材の加熱温度を1150℃以上とする必要がある。一方、鋼素材の加熱温度が高くなりすぎるとスラブ疵の発生や、スケールオフによる歩留まり低下を招く。そのため、鋼素材の加熱温度は1350℃以下とすることが好ましい。鋼素材の加熱温度は、より好ましくは1180℃以上であり、好ましくは1300℃以下である。さらに好ましくは1200℃以上であり、さらに好ましくは1280℃以下である。
 なお、鋼素材は、1150℃以上の加熱温度に加熱して所定時間保持するが、保持時間が9000秒を超えると、スケール発生量が増大する。その結果、続く熱間圧延工程においてスケール噛み込み等が発生し易くなり、熱延鋼板の表面粗さが劣化して、曲げ成形性が劣化する傾向にある。したがって、1150℃以上の温度域における鋼素材の保持時間は、9000秒以下とすることが好ましい。より好ましくは、1150℃以上の温度域における鋼素材の保持時間は、7200秒以下である。保持時間の下限は特に定めないが、スラブ加熱の均一性の観点から、1150℃以上の温度域における鋼素材の保持時間は1800秒以上が好ましい。
 熱間圧延:粗圧延後、仕上圧延前に、衝突圧を3.0MPa以上とする高圧水デスケーリングを行い、仕上圧延における、RC温度を式(1)で定義したとき、RC温度以上での合計圧下率を50%以上、続いてRC温度未満での合計圧下率を80%以下、仕上圧延終了温度を(RC-100℃)以上(RC+100℃)以下とする
 本発明では、鋼素材の加熱に続き、粗圧延と仕上圧延からなる熱間圧延を行う。粗圧延では、所望のシートバー寸法が確保できればよく、その条件は特に限定する必要はない。粗圧延後、仕上圧延前に、仕上圧延機の入り側で高圧水を使用したデスケーリングを行う。
  高圧水デスケーリングの衝突圧:3.0MPa以上
 仕上圧延前までに発生した1次スケールを除去するため、高圧水噴射によるデスケーリング処理を実施する。高強度熱延鋼板の表面の算術平均粗さ(Ra)を2.00μm以下に制御するためには、高圧水デスケーリングの衝突圧を3.0MPa以上とする必要がある。上限は特に規定しないが、好ましくは衝突圧は3.0MPa以上であり、好ましくは12.0MPa以下に相当するデスケーリングである。なお、仕上圧延のスタンド間の圧延途中で、デスケーリングを行っても構わない。また、必要に応じてスタンド間で鋼板を冷却しても良い。
 なお、上記において、衝突圧とは、高圧水が鋼材表面に衝突する単位面積あたりの力である。
  仕上圧延での、RC温度を式(1)で定義したとき、RC温度以上での合計圧下率:50%以上
 RC温度以上で熱延鋼板を圧延することで、各鋼のオーステナイト域での再結晶が顕著に生じることを、発明者らは実験により経験的に知見した。粗大なオーステナイト粒では、変態後の上部ベイナイト相の粒径が粗大となってしまい、本発明で目的とする良好な低温靭性を得ることが困難となる。良好な低温靭性を確保するためには、オーステナイト粒を仕上圧延中に十分に再結晶させて微細化させることが必要であり、RC温度以上での仕上圧延合計圧下率を50%以上とする必要がある。好ましくは、RC温度以上での仕上圧延合計圧下率が55%以上である。より好ましくは60%以上である。さらに好ましくは70%以上である。
RC(℃)=850+100×C+100×N+10×Mn+700×Ti+5000×B+10×Cr+50×Mo+2000×Nb+150×V ・・・式(1)
ここで、式(1)における各元素記号は、各元素の鋼中の含有量(質量%)である。含まない元素の場合は、式中の元素記号を0として計算する。
  仕上圧延での、RC温度未満での合計圧下率:80%以下
 RC温度未満で圧下されることで、オーステナイト粒は再結晶せずにひずみが蓄積され、変形帯が導入される。オーステナイト粒の中にひずみや変形帯が生じることで、変態の核が増加し、変態後の上部ベイナイト相の粒径が微細となり熱延鋼板の低温靭性が向上する。しかし、RC温度未満での合計圧下率が80%を超えると、円相当直径0.5μm以上の、下部ベイナイト相および/または焼き戻しマルテンサイト相、マルテンサイト相のうち1種または2種からなる組織である第2相の数密度が、過度に増加してしまい、熱延鋼板の伸びフランジ成形性を劣化させてしまう。したがって、RC温度未満での仕上圧延合計圧下率を80%以下とする。伸びフランジ成形性の観点から、RC温度未満での仕上圧延合計圧下率は、好ましくは70%以下である。より好ましくは60%以下であり、さらに好ましくは50%以下である。下限は特に定めないが、熱延鋼板の低温靭性の観点から、RC温度未満での仕上圧延合計圧下率は10%以上とすることが好ましい。
  仕上圧延終了温度:(RC-100℃)以上(RC+100℃)以下
 仕上圧延終了温度が(RC-100℃)未満の場合、圧延がフェライト+オーステナイトの二相域温度で行われることがあるため、所望の上部ベイナイト相の面積率が得られず、引張強さTSが980MPa以上を確保できなくなる。また、フェライト+オーステナイトの二相域にならなかった場合は、粒径が微細となりすぎ、円相当直径0.5μm以上の第2相の数密度が増加し、伸びフランジ成形性を劣化させる。また、仕上圧延終了温度が(RC+100℃)超えであると、再結晶後のオーステナイト粒の粒成長が顕著に生じてしまい、オーステナイト粒が粗大化し、上部ベイナイト相の平均粒径が大きくなり、本発明の目的とする優れた低温靭性を確保することができなくなる。したがって、仕上圧延終了温度を(RC-100℃)以上(RC+100℃)以下とした。好ましくは(RC-90℃)以上であり、好ましくは(RC+90℃)以下とする。より好ましくは(RC-70℃)以上であり、より好ましくは(RC+70℃)以下である。さらに好ましくは(RC-50℃)以上であり、さらに好ましくは(RC+50℃)以下である。なお、ここでの仕上圧延終了温度は、鋼板の表面温度を表すものとする。
 冷却開始時間:仕上圧延終了後2.0s以内
 仕上圧延が終了した後、2.0s以内に強制冷却を開始し、冷却停止温度(巻取り温度)で冷却を停止し、コイル状に巻き取る。仕上圧延終了から強制冷却を開始するまでの時間が、2.0sを超えて長くなると、RC温度以上での仕上圧延終了温度の場合、オーステナイト粒の粒成長が生じてしまい、上部ベイナイト相の粒径が大きくなり、本発明の目的とする良好な低温靭性が得られない。なお、RC温度未満での仕上圧延終了温度の場合、強制冷却開始時間の上限は、特に定めなくても良いが、オーステナイト粒に導入したひずみが回復してしまうため、低温靭性の観点から、強制冷却開始時間は2.0s以内が好ましい。したがって、強制冷却開始時間を、仕上圧延終了後2.0s以内とする。好ましくは、強制冷却開始時間は、仕上圧延終了後1.5s以内である。より好ましくは、強制冷却開始時間は、仕上圧延終了後1.0s以内である。
 仕上圧延終了温度から冷却停止温度(巻取り温度)までの平均冷却速度:30℃/s以上
 強制冷却において、仕上圧延終了温度から巻取り温度までの平均冷却速度が、30℃/s未満であると、上部ベイナイト変態の前にフェライト変態が起こり、所望の面積率の上部ベイナイト相が得られない。したがって、平均冷却速度を30℃/s以上とする。平均冷却速度は、好ましくは35℃/s以上であり、さらに好ましくは40℃/s以上である。なお、ここでの平均冷却速度の上限は特に規定しないが、平均冷却速度が大きくなりすぎると、冷却停止温度の管理が困難となり、所望のミクロ組織を得ることが困難となることがある。このため、平均冷却速度を300℃/s以下とすることが好ましい。なお、平均冷却速度は、鋼板の表面における平均冷却速度をもとに規定される。
 冷却停止温度(巻取り温度):Ms温度超600℃以下
 冷却停止温度(巻取り温度)が、Ms温度を下記式(2)で定義したとき、Ms温度超で冷却停止することで、ベイナイト変態停留現象が生じ、上部ベイナイト変態が中断し、上部ベイナイト相と未変態オーステナイト相の2相の状態で保持される。その後、熱延鋼板が冷却される過程で、未変態オーステナイトが、下部ベイナイト相および/または焼き戻しマルテンサイト相、および/またはマルテンサイト相に変態し、所望の面積率の上部ベイナイト相と、下部ベイナイト相および/または焼き戻しマルテンサイト相、マルテンサイト相のうち1種または2種からなる組織である第2相とを得ることができる。しかし、巻取り温度がMs温度以下となると、ベイナイト変態停留現象が生じず、所望の第2相の面積率が確保できず、張り出し成形性が劣化する。また、巻取り温度が600℃を超えると、フェライト相やパーライト相が生成してしまい、所望の引張強さTS:980MPa以上を確保することができなくなる。すなわち、巻取り温度が低温になるほど、上部ベイナイト変態の駆動力が増大し、ベイナイト変態停留現象が生じるまでの上部ベイナイト変態率が高くなり、熱延鋼板の第2相の面積率が低くなる傾向にある。また、巻取り温度が高温になるほど、上部ベイナイト変態の駆動力が減少し、ベイナイト変態停留現象が生じるまでの上部ベイナイト変態率が低くなり、熱延鋼板の第2相の面積率が高くなる傾向にある。したがって、巻取り温度は、Ms温度超600℃以下とする。巻取り温度は、好ましくは、(Ms+10℃)以上であり、好ましくは580℃以下である。より好ましくは、(Ms+20℃)以上であり、より好ましくは560℃以下である。
Ms(℃)=561-474×C-33×Mn-17×Ni-21×Mo ・・・式(2)
ここで、式(2)における各元素記号は、各元素の鋼中の含有量(質量%)である。含まない元素の場合は、式中の元素記号を0として計算する。
 巻取り後、熱延鋼板を(Ms-100℃)まで、0.20℃/min以上の平均冷却速度で冷却
 巻取り後、(Ms-100℃)までの平均冷却速度:0.20℃/min以上
 巻取後の熱延鋼板の平均冷却速度は、未変態オーステナイト相の変態挙動に影響を及ぼす。巻取後の熱延鋼板の冷却は、所望の平均冷却速度が得られれば、いかなる冷却方法でも構わない。冷却方法の例として、自然空冷、強制空冷、ガス冷却、ミスト冷却、水冷却、油冷却等があげられる。巻取後の熱延鋼板における(Ms-100℃)までの平均冷却速度が0.20℃/min未満であると、未変態オーステナイト相が分解して上部ベイナイト相またはパーライト相になってしまい、所望の下部ベイナイト相および/または焼き戻しマルテンサイト相、マルテンサイト相のうち1種または2種からなる組織である第2相の面積率が、確保できなくなる。したがって、未変態オーステナイト相を第2相に変態させ、所望の第2相の面積率を得るためには、巻取後の熱延鋼板における(Ms-100℃)までの平均冷却速度を0.20℃/min以上とする必要がある。好ましくは0.25℃/min以上であり、より好ましくは0.30℃/min以上である。さらに好ましくは0.50℃/min以上である。なお、ここでの平均冷却速度の上限は特に規定しないが、平均冷却速度が大きくなりすぎると、ベイナイト変態停留現象が生じず、所望の下部ベイナイト相および/または焼き戻しマルテンサイト相、マルテンサイト相のうち1種または2種からなる組織である第2相の面積率を得るのが困難となることがある。このため、平均冷却速度を1800℃/min未満とすることが好ましい。より好ましくは600℃/min以下であり、さらに好ましくは60℃/min以下である。
 また、(Ms-100℃)超では、未変態オーステナイト相の変態が完了せずに、残留オーステナイトが生成(残留)されることがあり、所望のミクロ組織を得られないことがある。そのため、巻取り後の冷却において、特に(Ms-100℃)までの平均冷却速度を制御する必要がある。好ましくは(Ms-150℃)であり、さらに好ましくは(Ms-200℃)である。
 以上により、本発明の高強度熱延鋼板が製造される。
 なお、本発明においては、連続鋳造時の鋼の成分偏析低減のために、電磁撹拌(EMS)、軽圧下鋳造(IBSR)等を適用することができる。電磁撹拌処理を行うことにより、板厚中心部に等軸晶を形成させ、偏析を低減させることができる。また、軽圧下鋳造を施した場合は、連続鋳造スラブの未凝固部の溶鋼の流動を防止することにより、板厚中心部の偏析を低減させることができる。これらの偏析低減処理の少なくとも1つの適用により、後述するプレス成形性、低温靭性をより優れたレベルにすることができる。
 巻取り後は、常法にしたがい、調質圧延を施してもよく、また、酸洗を施して表面に形成されたスケールを除去してもよい。また、酸洗処理後あるいは調質圧延後に、さらに、常用の溶融亜鉛めっきラインを利用して、めっき処理や化成処理を施してもよい。例えば、めっき処理として、鋼板を溶融亜鉛めっき浴に通過させて、鋼板の表面に亜鉛めっき層を形成する処理としてもよい。さらに、この亜鉛めっき層の合金化処理を施す合金化処理を施し、合金化溶融亜鉛めっき鋼板としてもよい。例えば、めっき処理後、合金化処理温度460~600℃、保持時間1s以上で合金化処理を行う。なお、溶融亜鉛めっき鋼板のみならず、得られた熱延鋼板を用いて電気めっき処理を行い、電気亜鉛めっき鋼板等のめっき鋼板としてもよい。
 表1に示す組成の溶鋼を転炉で溶製し、連続鋳造法により鋼スラブ(鋼素材)を製造した。次いで、これらの鋼素材を、表2に示す製造条件で加熱し、粗圧延を施し、表2に示す条件で鋼板表面のデスケーリングを施し、表2に示す条件で仕上圧延を施した。仕上圧延終了後、表2に示す条件の冷却開始時間(仕上圧延終了後から冷却(強制冷却)を開始するまでの時間)、平均冷却速度(仕上圧延終了温度から巻取り温度までの平均冷却速度)で冷却し、表2に示す条件の巻取り温度(冷却停止温度)で巻取り、表2に示す条件で巻取り後の鋼板を冷却し、表2に示す板厚の熱延鋼板とした。このようにして得られた熱延鋼板をスキンパス圧延し、その後酸洗(塩酸濃度:質量%で10%、温度85℃)を行い、一部については溶融亜鉛めっき処理、さらには合金化処理を施した。
 以上により得られた熱延鋼板から試験片を採取し、熱延鋼板表面の算術平均粗さ(Ra)の測定、組織観察、引張試験、穴広げ試験、曲げ試験、シャルピー衝撃試験を実施した。組織観察方法および各種試験方法は以下の通りである。なお、めっき鋼板の場合は、めっき後の鋼板で試験、評価を行った。
 (i)熱延鋼板表面の算術平均粗さ(Ra)の測定
 得られた熱延鋼板から鋼板表面の算術平均粗さ測定用試験片(大きさ:t(板厚)×50mm(幅)×50mm(長さ))を採取し、JIS B0601に準拠して、算術平均粗さ(Ra)の測定を行った。また、算術平均粗さ(Ra)の測定は、圧延方向と直角方向で3回行い、その平均値を算出して評価した。なお、めっき板については、めっき後の鋼板のRaを、熱延鋼板については酸洗してスケールを除去した後の鋼板のRaを求めた。
 (ii)組織観察
  各組織の面積率、第2相(下部ベイナイト相および/または焼き戻しマルテンサイト相、マルテンサイト相のうち1種または2種からなる組織)の数密度および第2相の円相当直径、上部ベイナイトの平均粒径
 得られた熱延鋼板から走査電子顕微鏡(SEM)用試験片を採取し、圧延方向に平行な板厚断面を研磨後、腐食液(3質量%ナイタール溶液)で組織を現出させ、板厚1/4位置にて走査電子顕微鏡(SEM)を用い、3000倍の倍率で10視野撮影して画像処理により各相(上部ベイナイト相、下部ベイナイト相および/または焼き戻しマルテンサイト相、マルテンサイト相、パーライト相、フェライト相)の面積率を定量化した。また、視野内の第2相(下部ベイナイト相および/または焼き戻しマルテンサイト相、マルテンサイト相のうち1種または2種からなる組織)の円相当直径を測定した。その上で、1mm当たりの第2相の個数を調べて、円相当直径0.5μm以上の第2相の個数密度を求めた。
 上部ベイナイト相の平均粒径は、熱延鋼板からSEMを使用した電子線反射回折(Electron Backscatter Diffraction Patterns:EBSD)法による上部ベイナイト相の粒径測定用試験片を採取し、圧延方向に平行な面を観察面として、コロイダルシリカ溶液を用いて仕上げ研磨を行った。その後、EBSD測定装置によって、電子線の加速電圧20keV、測定間隔0.1μmステップで、100μm×100μmの面積を、板厚1/4位置で10箇所測定し、一般的に結晶粒界として認識されている大傾角粒界の閾値である15°と定義して、結晶方位差が15°以上の粒界を可視化して上部ベイナイト相の平均粒径を算出した。上部ベイナイト相の面積平均(Area fraction average)の粒径は、TSL社製OIM Analysisソフトを使用して算出する。この際、結晶粒の定義として、Grain Tolerance Angleを15°とすることで面積平均粒径(平均粒径と称する)を求めることができる。また、EBSD法によりオーステナイトと同定されたものを残留オーステナイト相と定義し、残留オーステナイトの面積率を求めた。
 (iii)引張試験
 得られた熱延鋼板から、引張方向が圧延方向と直角方向になるようにJIS5号試験片(GL:50mm)を採取し、JIS Z 2241の規定に準拠して引張試験を行い、降伏強度(降伏点、YP)、引張強さ(TS)、全伸び(El)を求めた。試験は2回行い、それぞれの平均値をその鋼板の機械特性値とした。また、次式
        YR(%)=YP/TS×100
で定義される降伏比(YR)を算出した。本発明では、引張試験で得られたYRが92.0%以下の場合、張り出し成形性が良好と評価した。
 (iv)穴広げ試験
 得られた熱延鋼板から、穴広げ試験用試験片(大きさ:t(板厚)×100mm(幅)×100mm(長さ))を採取し、鉄連規格JFST 1001に準拠して、試験片中央に10mmφポンチで、クリアランス:12%±1%で、ポンチ穴を打ち抜いた後、該ポンチ穴に60°円錐ポンチを打抜き方向から押し上げるように挿入して、亀裂が板厚を貫通した時点での穴径dmmを求め、次式
        λ(%)={(d-10)/10}×100
で定義される穴広げ率λ(%)を算出した。なお、クリアランスは、板厚に対する割合(%)である。本発明では、穴広げ試験で得られたλが50%以上の場合を、伸びフランジ成型性が良好と評価した。
 (v)曲げ試験
 得られた熱延鋼板にせん断加工を施し、試験片の長手方向が圧延方向と直角になるように35mm(幅)×100mm(長さ)の曲げ試験片を採取した。せん断端面を有するこれらの試験片を用いて、JIS Z 2248に規定の押し曲げ法に準拠し、Vブロック90°曲げ試験を行った。このとき、各鋼板について、3個の試験片を用いて試験を行ない、いずれの試験片にもワレが発生しない最小の曲げ半径を限界曲げ半径R(mm)とし、Rを熱延鋼板の板厚t(mm)で除したR/t値を求め、熱延鋼板の曲げ加工性を評価した。なお、本発明では、R/tの値が1.20以下である場合を、曲げ加工性に優れていると評価した。
 (vi)シャルピー衝撃試験
 得られた熱延鋼板から、試験片の長手方向が圧延方向と直角になるように、厚さ2.5mmのサブサイズ試験片(Vノッチ)を採取し、JIS Z 2242の規定に準拠してシャルピー衝撃試験を行い、脆性延性破面遷移温度(vTrs)を測定し、靭性を評価した。ここで、板厚が2.5mmを超える熱延鋼板については両面研削にて板厚を2.5mmとして試験片を作製し、板厚が2.5mm以下の熱延鋼板については元厚にて試験片を作製し、シャルピー衝撃試験に供した。本発明では、測定されたvTrsが-40℃以下である場合を、低温靭性が良好であると評価した。
 以上により得られた結果を表3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表3より、本発明例では、プレス成形性、低温靭性に優れた引張強度TSが980MPa以上の高強度熱延鋼板が得られているのがわかる。一方、本発明の範囲を外れる比較例は、強度、プレス成形性、低温靭性のいずれか1つ以上が、上述の目標性能を満足できない。

Claims (7)

  1.  成分組成は、質量%で、C:0.04%以上0.15%以下、
    Si:0.4%以上2.0%以下、
    Mn:1.0%以上3.0%以下、
    P:0.100%以下(0%を含む)、
    S:0.0100%以下(0%を含む)、
    Al:0.01%以上2.00%以下、
    N:0.010%以下(0%を含む)、
    Ti:0.03%以上0.15%以下、
    B:0.0005%以上0.0050%以下を含有し、
    Cr:0.10%以上2.50%以下、
    Mo:0.05%以上0.50%以下、
    Nb:0.005%以上0.060%以下、
    V:0.05%以上0.50%以下のうちから選ばれた1種または2種以上を含有し、
    残部Feおよび不可避的不純物からなり、
    組織が、面積率で75.0%以上97.0%未満の上部ベイナイト相を主相とし、かつ、該主相の平均粒径が12.0μm以下であり、
    面積率で3.0%超25.0%以下の、下部ベイナイト相および/または焼き戻しマルテンサイト相、マルテンサイト相のうち1種または2種からなる組織を第2相とし、かつ、円相当直径0.5μm以上の該第2相の数密度が150,000個/mm以下であり、
    鋼板表面の算術平均粗さ(Ra)が、2.00μm以下であり、
    引張強さTSが980MPa以上である高強度熱延鋼板。
  2.  前記成分組成に加えてさらに、質量%で、Cu:0.01%以上0.50%以下、
    Ni:0.01%以上0.50%以下のうちから選ばれた1種または2種を含有する請求項1に記載の高強度熱延鋼板。
  3.  前記成分組成に加えてさらに、質量%で、Sb:0.0002%以上0.0200%以下を含有する請求項1または2に記載の高強度熱延鋼板。
  4.  前記成分組成に加えてさらに、質量%で、Ca:0.0002%以上0.0100%以下、
    Mg:0.0002%以上0.0100%以下、
    REM:0.0002%以上0.0100%以下、のうちから選ばれた1種または2種以上を含有する請求項1~3のいずれか1項に記載の高強度熱延鋼板。
  5.  鋼板の表面に、めっき層を有する請求項1~4のいずれか1項に記載の高強度熱延鋼板。
  6.  請求項1~4のいずれか1項に記載された高強度熱延鋼板の製造方法であって、
    鋼素材を1150℃以上に加熱し、
    次いで、粗圧延を施した後、
    仕上圧延前に、衝突圧を3.0MPa以上とする高圧水デスケーリングを行い、
    仕上圧延において、RC温度を式(1)で定義したとき、RC温度以上での合計圧下率を50%以上、続いてRC温度未満での合計圧下率を80%以下、仕上圧延終了温度を(RC-100℃)以上(RC+100℃)以下とする仕上圧延を施す熱間圧延をし、
    次いで、仕上圧延を終了後2.0s以内に冷却を開始し、
    Ms温度を式(2)で定義したとき、Ms温度超600℃以下の冷却停止温度まで、30℃/s以上の平均冷却速度で冷却し、
    前記冷却停止温度で巻取り、
    次いで、鋼板を(Ms-100℃)まで0.20℃/min以上の平均冷却速度で冷却する引張強さTSが980MPa以上である高強度熱延鋼板の製造方法。
    RC(℃)=850+100×C+100×N+10×Mn+700×Ti+5000×B+10×Cr+50×Mo+2000×Nb+150×V ・・・式(1)
    Ms(℃)=561-474×C-33×Mn-17×Ni-21×Mo ・・・式(2)
    ここで、式(1)および式(2)における各元素記号は、各元素の鋼中の含有量(質量%)である。含まない元素の場合は、式中の元素記号を0として計算する。
  7.  さらに、鋼板の表面にめっき処理を施す請求項6に記載の高強度熱延鋼板の製造方法。
PCT/JP2018/004043 2017-02-17 2018-02-06 高強度熱延鋼板およびその製造方法 WO2018150955A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201880012139.4A CN110312814B (zh) 2017-02-17 2018-02-06 高强度热轧钢板及其制造方法
US16/485,978 US11603571B2 (en) 2017-02-17 2018-02-06 High-strength hot-rolled steel sheet and method for producing the same
MX2019009803A MX2019009803A (es) 2017-02-17 2018-02-06 Lamina de acero laminada en caliente de alta resistencia y metodo para producir la misma.
EP18753529.9A EP3584337B1 (en) 2017-02-17 2018-02-06 High strength hot-rolled steel sheet and method for producing same
JP2018528084A JP6394841B1 (ja) 2017-02-17 2018-02-06 高強度熱延鋼板およびその製造方法
KR1020197024001A KR102258320B1 (ko) 2017-02-17 2018-02-06 고강도 열연 강판 및 그의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017027510 2017-02-17
JP2017-027510 2017-02-17

Publications (1)

Publication Number Publication Date
WO2018150955A1 true WO2018150955A1 (ja) 2018-08-23

Family

ID=63170193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004043 WO2018150955A1 (ja) 2017-02-17 2018-02-06 高強度熱延鋼板およびその製造方法

Country Status (7)

Country Link
US (1) US11603571B2 (ja)
EP (1) EP3584337B1 (ja)
JP (1) JP6394841B1 (ja)
KR (1) KR102258320B1 (ja)
CN (1) CN110312814B (ja)
MX (1) MX2019009803A (ja)
WO (1) WO2018150955A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020203934A1 (ja) * 2019-03-29 2020-10-08 日本製鉄株式会社 高強度熱間圧延鋼板
WO2020250735A1 (ja) * 2019-06-14 2020-12-17 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
JPWO2021117705A1 (ja) * 2019-12-09 2021-06-17
WO2021117711A1 (ja) * 2019-12-09 2021-06-17 日本製鉄株式会社 熱延鋼板
WO2021123130A1 (en) * 2019-12-20 2021-06-24 Tata Steel Ijmuiden B.V. Hot rolled high strength steel strip having high hole expansion ratio
WO2021187321A1 (ja) * 2020-03-17 2021-09-23 Jfeスチール株式会社 高強度鋼板およびその製造方法
JP2021147645A (ja) * 2020-03-17 2021-09-27 Jfeスチール株式会社 高強度鋼板およびその製造方法
JP2021147646A (ja) * 2020-03-17 2021-09-27 Jfeスチール株式会社 高強度鋼板およびその製造方法
WO2021225073A1 (ja) * 2020-05-08 2021-11-11 日本製鉄株式会社 熱延鋼板およびその製造方法
WO2022209838A1 (ja) * 2021-03-31 2022-10-06 Jfeスチール株式会社 高強度鋼板およびその製造方法
WO2022209839A1 (ja) * 2021-03-31 2022-10-06 Jfeスチール株式会社 高強度鋼板およびその製造方法
WO2022244707A1 (ja) * 2021-05-17 2022-11-24 Jfeスチール株式会社 高強度熱延鋼板及び高強度熱延鋼板の製造方法
WO2023190200A1 (ja) * 2022-03-30 2023-10-05 Jfeスチール株式会社 高強度鋼板およびその製造方法
JP7424551B1 (ja) 2022-06-03 2024-01-30 Jfeスチール株式会社 熱延鋼板、角形鋼管、それらの製造方法および建築構造物
WO2024095809A1 (ja) * 2022-10-31 2024-05-10 日本製鉄株式会社 熱延鋼板

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111286669A (zh) * 2020-02-17 2020-06-16 本钢板材股份有限公司 屈服强度≥900Mpa的马氏体热轧态高强钢及制备方法
CN115244202B (zh) * 2020-05-08 2023-06-13 日本制铁株式会社 热轧钢板及其制造方法
CN114107798A (zh) * 2020-08-31 2022-03-01 宝山钢铁股份有限公司 一种980MPa级贝氏体高扩孔钢及其制造方法
CN114107791B (zh) * 2020-08-31 2023-06-13 宝山钢铁股份有限公司 一种980MPa级全贝氏体型超高扩孔钢及其制造方法
AT17293U1 (de) * 2020-10-21 2021-11-15 Valmet Oy Yankee-trocknungszylinder und maschine zur herstellung von seidenpapier
EP4279617A4 (en) * 2021-01-15 2024-07-03 Nippon Steel Corp HOT-ROLLED STEEL SHEET
EP4047105A1 (de) * 2021-02-17 2022-08-24 ThyssenKrupp Steel Europe AG Warmgewalztes stahlflachprodukt und verfahren zur herstellung eines warmgewalzten stahlflachprodukts
KR20230077777A (ko) * 2021-11-25 2023-06-02 주식회사 포스코 성형성이 우수한 초고강도 열연 강판 및 이의 제조 방법

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5621942B2 (ja) 1972-03-16 1981-05-22
JP2002180190A (ja) 2000-12-07 2002-06-26 Nippon Steel Corp 穴拡げ性と延性に優れた高強度熱延鋼板及びその製造方法
JP2009019265A (ja) * 2007-06-12 2009-01-29 Nippon Steel Corp 穴広げ性に優れた高ヤング率鋼板及びその製造方法
JP2009084637A (ja) 2007-09-28 2009-04-23 Kobe Steel Ltd 疲労特性及び伸びフランジ性に優れた高強度熱延鋼板
JP4317419B2 (ja) 2003-10-17 2009-08-19 新日本製鐵株式会社 穴拡げ性と延性に優れた高強度薄鋼板
JP2013227603A (ja) * 2012-04-24 2013-11-07 Nippon Steel & Sumitomo Metal Corp 伸びと穴拡げ性と低温靭性に優れた高強度熱延鋼板及びその製造方法
WO2014171063A1 (ja) * 2013-04-15 2014-10-23 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
WO2014188966A1 (ja) * 2013-05-21 2014-11-27 新日鐵住金株式会社 熱延鋼板及びその製造方法
WO2016135898A1 (ja) * 2015-02-25 2016-09-01 新日鐵住金株式会社 熱延鋼板

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2985362B2 (ja) 1991-04-11 1999-11-29 東ソー株式会社 臭化マンガン水溶液の製造方法
JP3520632B2 (ja) 1995-11-10 2004-04-19 Jfeスチール株式会社 疲労特性および加工性に優れる熱延高張力鋼板ならびにその製造方法
JP4062961B2 (ja) * 2001-06-07 2008-03-19 Jfeスチール株式会社 耐型かじり性および耐疲労特性に優れた高張力熱延鋼板およびその製造方法
JP3869747B2 (ja) * 2002-04-09 2007-01-17 新日本製鐵株式会社 変形性能に優れた高強度鋼板、高強度鋼管および製造方法
JP4466352B2 (ja) * 2004-12-10 2010-05-26 Jfeスチール株式会社 温間成形に適した熱延鋼板およびその製造方法
BR112012007753B1 (pt) * 2009-10-08 2021-11-16 Nippon Steel Corporation Tubo de aço de alta resistência. chapa de aço para tubo de aço de alta resistência, e processos para produção dos mesmos
WO2012133636A1 (ja) * 2011-03-31 2012-10-04 新日本製鐵株式会社 等方加工性に優れるベイナイト含有型高強度熱延鋼板及びその製造方法
WO2013065346A1 (ja) 2011-11-01 2013-05-10 Jfeスチール株式会社 曲げ特性と低温靭性に優れた高強度熱延鋼板およびその製造方法
CN104040009B (zh) 2012-01-05 2016-05-18 新日铁住金株式会社 热轧钢板及其制造方法
KR101702794B1 (ko) * 2012-09-13 2017-02-03 제이에프이 스틸 가부시키가이샤 열연 강판 및 그 제조 방법
EP2977481B1 (en) * 2013-03-19 2019-10-16 JFE Steel Corporation High-strength hot rolled steel sheet having tensile strength of 780 mpa or more
JP5679091B1 (ja) 2013-04-04 2015-03-04 Jfeスチール株式会社 熱延鋼板およびその製造方法
EP2987886B1 (en) 2013-04-15 2018-06-06 JFE Steel Corporation High strength hot rolled steel sheet and method for producing same
JP5783229B2 (ja) * 2013-11-28 2015-09-24 Jfeスチール株式会社 熱延鋼板およびその製造方法
US11345972B2 (en) * 2014-02-27 2022-05-31 Jfe Steel Corporation High-strength hot-rolled steel sheet and method for manufacturing the same
JP6135577B2 (ja) 2014-03-28 2017-05-31 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
US11578375B2 (en) 2015-07-27 2023-02-14 Jfe Steel Corporation High-strength hot-rolled steel sheet and method for manufacturing the same
CN105112815B (zh) * 2015-10-14 2017-01-18 山东钢铁股份有限公司 一种低温韧性优异的超厚规格管线钢板及制造方法
EP3831972B1 (en) * 2018-07-31 2023-04-05 JFE Steel Corporation High-strength hot-rolled steel sheet and method for manufacturing same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5621942B2 (ja) 1972-03-16 1981-05-22
JP2002180190A (ja) 2000-12-07 2002-06-26 Nippon Steel Corp 穴拡げ性と延性に優れた高強度熱延鋼板及びその製造方法
JP4317419B2 (ja) 2003-10-17 2009-08-19 新日本製鐵株式会社 穴拡げ性と延性に優れた高強度薄鋼板
JP2009019265A (ja) * 2007-06-12 2009-01-29 Nippon Steel Corp 穴広げ性に優れた高ヤング率鋼板及びその製造方法
JP2009084637A (ja) 2007-09-28 2009-04-23 Kobe Steel Ltd 疲労特性及び伸びフランジ性に優れた高強度熱延鋼板
JP2013227603A (ja) * 2012-04-24 2013-11-07 Nippon Steel & Sumitomo Metal Corp 伸びと穴拡げ性と低温靭性に優れた高強度熱延鋼板及びその製造方法
WO2014171063A1 (ja) * 2013-04-15 2014-10-23 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
WO2014188966A1 (ja) * 2013-05-21 2014-11-27 新日鐵住金株式会社 熱延鋼板及びその製造方法
WO2016135898A1 (ja) * 2015-02-25 2016-09-01 新日鐵住金株式会社 熱延鋼板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3584337A4

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020203934A1 (ja) * 2019-03-29 2020-10-08 日本製鉄株式会社 高強度熱間圧延鋼板
JP7070794B2 (ja) 2019-03-29 2022-05-18 日本製鉄株式会社 高強度熱間圧延鋼板
JPWO2020203934A1 (ja) * 2019-03-29 2021-10-21 日本製鉄株式会社 高強度熱間圧延鋼板
WO2020250735A1 (ja) * 2019-06-14 2020-12-17 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
JP6819840B1 (ja) * 2019-06-14 2021-01-27 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
KR20220005094A (ko) * 2019-06-14 2022-01-12 제이에프이 스틸 가부시키가이샤 고강도 열연 강판 및 그 제조 방법
KR102635009B1 (ko) 2019-06-14 2024-02-08 제이에프이 스틸 가부시키가이샤 고강도 열연 강판 및 그 제조 방법
WO2021117711A1 (ja) * 2019-12-09 2021-06-17 日本製鉄株式会社 熱延鋼板
JPWO2021117711A1 (ja) * 2019-12-09 2021-06-17
JP7277833B2 (ja) 2019-12-09 2023-05-19 日本製鉄株式会社 熱延鋼板
WO2021117705A1 (ja) * 2019-12-09 2021-06-17 日本製鉄株式会社 熱延鋼板
EP4074854A4 (en) * 2019-12-09 2023-01-04 Nippon Steel Corporation HOT ROLLED STEEL PLATE
EP4074855A4 (en) * 2019-12-09 2023-01-04 Nippon Steel Corporation HOT ROLLED STEEL PLATE
JP7188618B2 (ja) 2019-12-09 2022-12-13 日本製鉄株式会社 熱延鋼板
JPWO2021117705A1 (ja) * 2019-12-09 2021-06-17
WO2021123130A1 (en) * 2019-12-20 2021-06-24 Tata Steel Ijmuiden B.V. Hot rolled high strength steel strip having high hole expansion ratio
WO2021187321A1 (ja) * 2020-03-17 2021-09-23 Jfeスチール株式会社 高強度鋼板およびその製造方法
JP6973694B1 (ja) * 2020-03-17 2021-12-01 Jfeスチール株式会社 高強度鋼板およびその製造方法
JP2021147645A (ja) * 2020-03-17 2021-09-27 Jfeスチール株式会社 高強度鋼板およびその製造方法
JP2021147646A (ja) * 2020-03-17 2021-09-27 Jfeスチール株式会社 高強度鋼板およびその製造方法
JP7192819B2 (ja) 2020-03-17 2022-12-20 Jfeスチール株式会社 高強度鋼板およびその製造方法
JP7192818B2 (ja) 2020-03-17 2022-12-20 Jfeスチール株式会社 高強度鋼板およびその製造方法
JP7339585B2 (ja) 2020-05-08 2023-09-06 日本製鉄株式会社 熱延鋼板およびその製造方法
JPWO2021225073A1 (ja) * 2020-05-08 2021-11-11
WO2021225073A1 (ja) * 2020-05-08 2021-11-11 日本製鉄株式会社 熱延鋼板およびその製造方法
JP7168137B1 (ja) * 2021-03-31 2022-11-09 Jfeスチール株式会社 高強度鋼板およびその製造方法
JP7168136B1 (ja) * 2021-03-31 2022-11-09 Jfeスチール株式会社 高強度鋼板およびその製造方法
WO2022209838A1 (ja) * 2021-03-31 2022-10-06 Jfeスチール株式会社 高強度鋼板およびその製造方法
WO2022209839A1 (ja) * 2021-03-31 2022-10-06 Jfeスチール株式会社 高強度鋼板およびその製造方法
WO2022244707A1 (ja) * 2021-05-17 2022-11-24 Jfeスチール株式会社 高強度熱延鋼板及び高強度熱延鋼板の製造方法
JP7239071B1 (ja) * 2021-05-17 2023-03-14 Jfeスチール株式会社 高強度熱延鋼板及び高強度熱延鋼板の製造方法
WO2023190200A1 (ja) * 2022-03-30 2023-10-05 Jfeスチール株式会社 高強度鋼板およびその製造方法
JP7392904B1 (ja) * 2022-03-30 2023-12-06 Jfeスチール株式会社 高強度鋼板およびその製造方法
JP7424551B1 (ja) 2022-06-03 2024-01-30 Jfeスチール株式会社 熱延鋼板、角形鋼管、それらの製造方法および建築構造物
WO2024095809A1 (ja) * 2022-10-31 2024-05-10 日本製鉄株式会社 熱延鋼板

Also Published As

Publication number Publication date
EP3584337B1 (en) 2020-12-23
EP3584337A1 (en) 2019-12-25
JP6394841B1 (ja) 2018-09-26
CN110312814A (zh) 2019-10-08
US20200063227A1 (en) 2020-02-27
KR102258320B1 (ko) 2021-05-28
EP3584337A4 (en) 2019-12-25
US11603571B2 (en) 2023-03-14
CN110312814B (zh) 2021-10-01
JPWO2018150955A1 (ja) 2019-02-21
MX2019009803A (es) 2019-11-11
KR20190109459A (ko) 2019-09-25

Similar Documents

Publication Publication Date Title
JP6394841B1 (ja) 高強度熱延鋼板およびその製造方法
JP6252692B2 (ja) 高強度熱延鋼板およびその製造方法
JP6179676B2 (ja) 高強度鋼板およびその製造方法
JP6179677B2 (ja) 高強度鋼板およびその製造方法
JP5967319B2 (ja) 高強度鋼板およびその製造方法
CN112534077B (zh) 高强度热轧钢板及其制造方法
JP6372633B1 (ja) 高強度鋼板およびその製造方法
JP5672421B1 (ja) 高強度熱延鋼板およびその製造方法
WO2013005714A1 (ja) 冷延鋼板の製造方法
WO2015129199A1 (ja) 高強度熱延鋼板およびその製造方法
WO2016021198A1 (ja) 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法
JP6315160B1 (ja) 高強度鋼板およびその製造方法
WO2014171063A1 (ja) 高強度熱延鋼板およびその製造方法
WO2013005618A1 (ja) 冷延鋼板
KR20120023129A (ko) 고강도 강판 및 그 제조 방법
JP5825206B2 (ja) 冷延鋼板の製造方法
JP5609793B2 (ja) 溶融めっき冷延鋼板の製造方法
JP5644704B2 (ja) 冷延鋼板の製造方法
JP5644703B2 (ja) 冷延鋼板の製造方法
JP2015145523A (ja) 冷延鋼板

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018528084

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18753529

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197024001

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018753529

Country of ref document: EP

Effective date: 20190917