WO2018149045A1 - 控制电路和电路控制方法 - Google Patents

控制电路和电路控制方法 Download PDF

Info

Publication number
WO2018149045A1
WO2018149045A1 PCT/CN2017/085911 CN2017085911W WO2018149045A1 WO 2018149045 A1 WO2018149045 A1 WO 2018149045A1 CN 2017085911 W CN2017085911 W CN 2017085911W WO 2018149045 A1 WO2018149045 A1 WO 2018149045A1
Authority
WO
WIPO (PCT)
Prior art keywords
level signal
switch
unit
control
signal
Prior art date
Application number
PCT/CN2017/085911
Other languages
English (en)
French (fr)
Inventor
高春禹
谢波
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17897091.9A priority Critical patent/EP3572889B1/en
Priority to CN201780085675.2A priority patent/CN110249273B/zh
Publication of WO2018149045A1 publication Critical patent/WO2018149045A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/005Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting using a power saving mode
    • H02J9/007Detection of the absence of a load
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/46The network being an on-board power network, i.e. within a vehicle for ICE-powered road vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery

Definitions

  • the embodiments of the present application relate to the field of circuits, and in particular, to a control circuit and a circuit control method.
  • the control of the switch unit is often manually controlled by the user.
  • the load uses at least two power supplies, such as a first power source and a second power source, the first power source and the load are connected by manual control, and the power supply channel between the second power source and the load is provided with a switch unit. Controlled by the load.
  • the load is first supplied by the first power source.
  • the load controls the switch unit to be turned on, so that the second power source supplies power to the load.
  • a telematic terminal device (Telematic Box, TBOX) is provided in the in-vehicle device, and the TBOX is connected to the built-in battery VBAT of the built-in terminal device.
  • the VBAT supplies power to the TBOX through the power supply channel, and the power supply channel between the VBAT and the TBOX requires manual control by the user.
  • the switching unit is turned off.
  • the switch unit is controlled by the TBOX.
  • the TBOX controls the switch unit to be turned on, so that the VBAT supplies power to the TBOX.
  • an embodiment of the present application provides a control circuit, including: a switch unit, a trigger unit, and a control unit.
  • the trigger unit and the control unit are connected, and the control unit and the switch unit are connected.
  • the trigger unit is further connected to the output end of the power source, so that the trigger unit outputs a first level signal for a preset time to the control unit after a sudden change of the electrical signal obtained by the power source is obtained.
  • the control unit is configured to output a switch control signal to the switch unit under the action of the first level signal.
  • One end of the switch unit is connected to the output end of the power supply, and the other end of the switch unit is connected to the load device.
  • the switch unit turns on the channel between the power supply and the load device under the action of the switch control signal, so that the power supply supplies power to the load device, and the load device After the electric power continues to output the second level signal to the control unit, the starting moment of the output device outputting the second level signal is before the end time of the trigger unit outputting the first level signal.
  • the load device continuously outputs a second level signal to the control unit, and the control unit is further configured to output a switch control signal to the switch unit under the action of the second level signal, so that the switch unit The element maintains an open state under the continuous action of the switch control signal, so that the power supply continues to supply power to the load device.
  • the switch unit can be automatically turned on when the power is supplied, so that the power supply automatically supplies power to the load device.
  • the start time of the second level signal output by the load device is before the end time of the trigger unit outputting the first level signal, so that the control unit is under the action of the first level signal output by the trigger unit before the load device is powered on.
  • the control switch unit is turned on, after the preset time, the trigger unit interrupts outputting the first level signal, but at this time, the control unit acquires the second level signal outputted by the load device, thereby at the second level signal Under the action, the control unit still keeps outputting the switch control signal to the switch unit, so that the switch unit remains off, and the power supply can continue to supply power to the load device, so that the control of the switch unit is transferred from the trigger unit to the load device, so that the load device can be Control the channels that power it.
  • the control unit is further configured to stop when the first level signal and the second level signal are not acquired.
  • the switch control signal is output to the switch unit, and the switch unit is further configured to disconnect the channel between the power source and the load device when the switch control signal is not acquired.
  • the trigger unit and the load device can control the disconnection of the switch unit by stopping providing the first level signal and the second level signal to the control unit, so that the power source is not connected to the load device, preventing leakage of the power source, and saving the power source. Electrical energy.
  • the trigger unit and the load device control the open circuit unit by outputting a high level signal to the control unit, so that the power supply supplies power to the load device, and the trigger unit and the load device control the switch unit to open by outputting a low level signal to the control unit.
  • the power supply is not connected to the load device, which not only prevents the power supply from leaking, but also the power device is in a high state after power-on, and the load device is in a low state after power-off, so that the load can be realized only through a simple circuit connection.
  • the device outputs a high level signal to the control unit after power-on. After the load device is powered down, the load device outputs a low level signal to the control unit without complicated software logic control, thereby simplifying the circuit and reducing the cost.
  • the first level signal and the second level signal are high level signals, and the switch unit is at a low level.
  • the switch can be switched, and the control unit includes an inverter. Therefore, the control unit is specifically configured to output a low level signal to the switch unit under the action of the high level signal; the switch unit is specifically configured to turn on the channel between the power source and the load device under the action of the low level signal. In this way, the control unit inverts the first level signal and the second level signal, which are high level signals, by using an inverter to make it a low level signal, thereby being controllable to a low level enable switch. Switch unit.
  • the switch unit is a high level enable switch
  • the control unit includes an electrical signal excitation device. Therefore, the control unit is specifically configured to output a high level signal to the switching unit under the action of the first level signal and/or the second level signal.
  • the switch unit is specifically configured to turn on a channel between the power source and the load device under the action of a high level signal output by the control unit. In this way, the control unit uses the electrical signal to excite the device to process the first level signal and the second level signal, which are high level signals, to become high level.
  • the signal which can be controlled as a high level enable switch unit.
  • the power source is the vehicle
  • the built-in terminal device has a built-in battery
  • the load device is a built-in terminal device.
  • the circuit control method of the implementation manner includes: after the trigger unit acquires a sudden change of the electrical signal outputted by the power source, and outputs a first level signal for the preset time to the control unit, Then, the control unit outputs a switch control signal to the switch unit under the action of the first level signal, so that the switch unit turns on the channel between the power source and the load device under the action of the switch control signal, so that the power source supplies power to the load device, and the load
  • the second level signal is continuously output to the control unit, and the start time of the load device outputting the second level signal is before the end time of the trigger unit outputting the first level signal.
  • the load device outputs a second level signal to the control unit, and the control unit outputs a switch control signal to the switch unit under the action of the second level signal, so that the switch unit maintains an open state under the continuous action of the switch control signal, so that the power source continues Power the load device.
  • the switch unit can be automatically turned on when the power is supplied, so that the power supply automatically supplies power to the load device.
  • the start time of the second level signal output by the load device is before the end time of the trigger unit outputting the first level signal, so that the control unit is under the action of the first level signal output by the trigger unit before the load device is powered on.
  • the control switch unit is turned on, after the preset time, the trigger unit interrupts outputting the first level signal, but at this time, the control unit acquires the second level signal outputted by the load device, thereby at the second level signal Under the action, the control unit still keeps outputting the switch control signal to the switch unit, so that the switch unit remains off, and the power supply can continue to supply power to the load device, so that the control of the switch unit is transferred from the trigger unit to the load device, so that the load device can be Control the channels that power it.
  • the first level signal and the second level signal are high level signals
  • the method for implementing the method further includes: the trigger unit outputs a low level signal after the preset time, and the control unit acquires a low level signal of the load device after the load device is powered off. Therefore, the control unit stops outputting the switch control signal to the switch unit when the first level signal and the second level signal are not acquired, including: the low level signal of the control unit at the trigger unit and the low level signal of the load device The output of the switch control signal to the switch unit is stopped.
  • the trigger unit and the load device pass the control
  • the unit outputs a high level signal to control the open circuit of the switch unit, so that the power supply supplies power to the load device, and the trigger unit and the load device control the switch unit to open by outputting a low level signal to the control unit, so that the power supply is not connected to the load device, which can prevent The leakage of the power supply, and the load device is in a high state after being powered on, and the load device is in a low state after being powered down, so that the load device can be output to the control unit after power-on only by a simple circuit connection.
  • the first level signal is a high level signal
  • the switch unit is a low level enable switch
  • the control unit includes inverter.
  • the control unit outputs a switch control signal to the switch unit under the action of the first level signal
  • the control unit outputs a low level signal to the switch unit under the action of the high level signal.
  • the switching unit turns on the channel between the power source and the load device under the action of the switch control signal, including: the switch unit turns on the channel between the power source and the load device under the action of the low level signal.
  • the control unit inverts the first level signal that is a high level signal by the inverter to make it a low level signal, so that the switching unit of the low level enable switch can be controlled.
  • the switch unit is a high level enable switch
  • the control unit includes an electrical signal excitation device.
  • the control unit outputs a switch control signal to the switch unit under the action of the first level signal, and the control unit outputs a high level signal to the switch unit under the action of the first level signal.
  • the switching unit turns on the channel between the power source and the load device under the action of the switch control signal, and the switch unit turns on the channel between the power source and the load device under the action of the high level signal outputted by the control unit.
  • the triggering unit is Differential circuit. Since the trigger unit is connected to the output end of the power source, the trigger unit is a differential circuit, which can prevent leakage of the power source and save power of the power source.
  • the power source is the vehicle
  • the built-in terminal device has a built-in battery
  • the load device is a built-in terminal device.
  • the differential circuit is configured to output a first level signal for a preset time to the switch control circuit after the sudden change of the electrical signal outputted to the power source; and the switch control circuit is configured to act on the first level signal
  • the switch outputs a switch control signal; the switch is configured to turn on a channel between the power source and the load device under the action of the switch control signal, so that the power source supplies power to the load device, and the load device continues to output the second power to the switch control circuit after being powered on.
  • a flat signal the start time of the load device outputting the second level signal is before the end time of the differential circuit outputting the first level signal; and the switch control circuit is further configured to output the switch control to the switch under the action of the second level signal signal.
  • the switch can be automatically turned on when the power is supplied, so that the power supply automatically supplies power to the load device.
  • the function of the first level signal outputted by the differential control circuit before the end of the output of the first level signal by the differential circuit before the end of the output of the first level signal by the load device Next, the control switch is turned on, and after the preset time, the differential circuit interrupts outputting the first level signal, but at this time, the switch control circuit acquires the second level signal outputted by the load device, thereby at the second level signal Under the action of the switch control circuit still keeps the switch output control signal to the switch, so that the switch remains off, the power supply can continue to supply power to the load device, so that the control of the switch is transferred from the differential circuit to the load device, so that the load device can be Control the channels that power it.
  • the first level signal and the second level signal are high level signals, and the switch is at a low level.
  • the switch can be switched, and the switch control circuit includes an inverter;
  • the inverter is configured to output a low-level signal to the switch under the action of the high-level signal; and the switch is specifically configured to turn on the channel between the power source and the load device under the action of the low-level signal.
  • the first level signal and the second level signal which are high level signals, are inverted by the inverter to make it a low level signal, so that the switch of the low level enable switch can be controlled. .
  • the switch is a high level enable switch
  • the switch control circuit includes an electrical signal excitation device.
  • the power source is built in the vehicle.
  • the terminal device has a built-in battery
  • the load device is a built-in terminal device.
  • the control circuit includes: a switch unit, a trigger unit, and a control unit.
  • the trigger unit and the control unit are connected, and the control unit and the switch unit are connected.
  • the trigger unit is configured to output a first level signal for a preset time to the control unit after the sudden change of the electrical signal outputted to the power source is obtained.
  • the control unit is configured to output a switch control signal to the switch unit under the action of the first level signal, and the switch unit is configured to turn on a channel between the power source and the load device under the action of the switch control signal, so that the power source supplies power to the load device After the load device is powered on, the second level signal is continuously output to the control unit, and the start time of the load device outputting the second level signal is before the end time of the trigger unit outputting the first level signal.
  • the control unit is further configured to output a switch control signal to the switch unit under the action of the second level signal.
  • the power supply starts to supply power to the load device, and when the switch unit provided on the channel between the power supply and the load device is open circuit, the trigger unit detects a sudden change of the electrical signal of the power supply output, thereby outputting the first to the control unit.
  • the level signal causes the control unit to output a switch control signal to the switch unit under the action of the first level signal, and the switch unit turns on the channel between the power source and the load device under the action of the switch control signal to make the power source to the load device powered by.
  • the second level signal is continuously output to the control unit, and the control unit outputs a switch control signal to the switch unit under the action of the second level signal, so that the switch unit maintains an open channel between the power source and the load device.
  • the switch unit can be automatically turned on when the power is supplied, so that the power supply automatically supplies power to the load device.
  • the start time of the second level signal output by the load device is before the end time of the trigger unit outputting the first level signal, so that the control unit is under the action of the first level signal output by the trigger unit before the load device is powered on.
  • the control switch unit is turned on, after the preset time, the trigger unit interrupts outputting the first level signal, but at this time, the control unit acquires the second level signal outputted by the load device, thereby at the second level signal
  • the control unit still keeps outputting the switch control signal to the switch unit, so that the switch unit remains off, and the power supply can continue to supply power to the load device, so that the control of the switch unit is transferred from the trigger unit to the load device, so that the load device can be Control the channels that power it.
  • the power supply is automatically powered by the load device, and the trigger unit outputs a first level signal to the control unit by a sudden change of the electrical signal obtained by the power supply to control the conduction of the switch unit.
  • the control of the unit from open circuit to open circuit eliminates the need for other devices to maintain electrical connection with the switch unit, thereby reducing the occurrence of leakage, and the power supply for the automatic power supply of the load device is realized in an energy-saving manner.
  • FIG. 1 is a schematic structural diagram of a TBOX power supply control circuit according to an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of another control circuit according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of another control circuit according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another control circuit according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of another control circuit according to an embodiment of the present disclosure.
  • FIG. 10 is a flowchart of a method for another circuit control method according to an embodiment of the present disclosure.
  • the embodiment of the present application provides a control circuit and a circuit control method, which are used to implement automatic power supply for a load device, and the power supply for the automatic power supply of the load device is implemented in an energy-saving manner.
  • the TBOX of the built-in terminal device is generally used for both safety and emergency reasons, and generally adopts two types of power supply modes: a built-in battery (B+) and a built-in battery (VBAT) built-in terminal device.
  • B+ will be the main power supply for TBOX.
  • VBAT will automatically switch to the power supply of TBOX to maintain the normal operation of the TBOX system.
  • the TBOX needs to be able to work normally and can perform a shutdown action.
  • the built-in battery of the built-in terminal device is inserted into the TBOX for the first time, and the TBOX is powered by VBAT.
  • the internal system of the built-in terminal device cannot be automatically turned on after VBAT is powered.
  • the switch unit is in an open state, so that VBAT cannot supply power to the TBOX, and the system unit of the TBOX cannot be powered on.
  • the user needs to manually control the switch unit to be turned off, so that VBAT supplies power to the TBOX.
  • such a setting will cause trouble to the user's operation, and the automatic booting of the TBOX system cannot be realized.
  • the power management chip can be used to control the opening and closing of the power control switch to achieve automatic startup of the TBOX system.
  • the TBOX is electrically connected to the switching unit of the VBAT through the power management chip. Even if the VBAT does not supply power to the TBOX at this time, when the B+ is changed from the power supply to the TBOX to the non-power supply, the TBOX controls the VBAT in time.
  • the switch unit is turned on to enable the VBAT to supply power to the TBOX, so that the TBOX remains in operation.
  • the power management chip and the VBAT are always connected, the power management chip will be produced. The electricity leaks, thus consuming the power on the VBAT.
  • control circuit and the circuit control method provided by the embodiments of the present application can solve the following problems if used in the on-board circuit:
  • the TBOX internal power supply unit can be automatically turned on to supply power to the TBOX internal system unit, so that the system unit starts working.
  • the TBOX internal system unit starts working, if the TBOX wants to perform the shutdown operation by itself, it can cut off the internal battery to the power supply path of the back-end power supply unit to avoid the continuous leakage of the built-in battery.
  • control circuit and the circuit control method provided by the embodiments of the present application can also solve other technical problems.
  • control circuit and the circuit control method provided by the embodiments of the present application can also solve other technical problems.
  • the differential circuit converts a rectangular wave into a sharp pulse wave.
  • the output waveform of the differential circuit reflects the abrupt portion of the input waveform, that is, only when the input waveform is abruptly changed.
  • the differential circuit has no output for the constant portion of the input signal.
  • the specific circuit implementation of the differential circuit can be realized, for example, by the resistor R and the capacitor C, that is, the RC differential circuit.
  • the width of the sharp pulse waveform outputted by the RC differential circuit is related to the RC (ie, the time constant of the circuit). The smaller the RC, the more the sharp pulse waveform is. Sharp, otherwise wide.
  • the trigger unit is configured to output a first level signal for a preset time to the control unit after the sudden change of the electrical signal outputted to the power source; and the control unit is configured to output the switch control signal to the switch unit under the action of the first level signal
  • the switch unit is configured to turn on a channel between the power source and the load device under the action of the switch control signal, so that the power source supplies power to the load device, and the load device continuously outputs a second level signal to the control unit after the power is turned on, and the load device outputs The start timing of the second level signal is before the end timing of the trigger unit outputting the first level signal.
  • the control unit is further configured to output a switch control signal to the switch unit under the action of the second level signal, so that the switch unit continues to be an open circuit under the action of the switch control signal.
  • the power supply starts to supply power to the load device, and when the switch unit provided on the channel between the power supply and the load device is open circuit, the trigger unit detects a sudden change of the electrical signal of the power supply output, thereby outputting the first to the control unit.
  • the level signal causes the control unit to output a switch control signal to the switch unit under the action of the first level signal, and the switch unit turns on the channel between the power source and the load device under the action of the switch control signal to make the power source to the load device powered by.
  • the second level signal is continuously output to the control unit, and the control unit outputs a switch control signal to the switch unit under the action of the second level signal, so that the switch unit maintains an open channel between the power source and the load device.
  • the switch unit can be automatically turned on when the power is supplied, so that the power supply automatically supplies power to the load device.
  • the start time of the second level signal output by the load device is before the end time of the trigger unit outputting the first level signal, so that the control unit is under the action of the first level signal output by the trigger unit before the load device is powered on.
  • the control circuit of the embodiment of the present application adopts a simple circuit unit design.
  • the load device can obtain power supply of the power supply, thereby completing the power-on operation. And after power-on, the load device can easily obtain the control authority of the power supply path of the power supply.
  • the switch unit can be controlled to open, thereby disconnecting the path between the power source and the load device.
  • the trigger unit no longer outputs the first level signal for the preset time to the control unit, but the second level signal is continuously output to the control unit after the load device is powered on, and the load device outputs The start time of the two-level signal is before the end time of the triggering unit outputting the first level signal, so that under the action of the second level signal, the control unit outputs a switch control signal to the switch unit to control the switch unit to be turned off. status.
  • the control authority for the switching unit at this time belongs to the load device. If the load device has a power-off requirement, the load device stops outputting the second level signal to the control unit.
  • the function of the switch unit is to control the opening of the channel between the power source and the load device.
  • the switch unit acquires the switch control signal, the switch unit is in an open state to open the channel between the power source and the load device.
  • the switch control information is not acquired, the switch unit is in an open state to open the channel between the power source and the load device.
  • the switch unit includes, but is not limited to, a low level enable switch and a high level enable switch. Specifically, it may be a MOS (metal-oxide-semiconductor) transistor or a triode.
  • the function of the trigger unit is to output a first level signal when a sudden change of the electrical signal of the power source is detected.
  • the specific form of the trigger unit includes but is not limited to a differential circuit or a control chip.
  • the control unit may perform an OR process on the first level signal output by the trigger unit and the second level signal output by the load device, that is, the control unit may acquire the first level signal and/or the second level.
  • the switch control signal is output to the switch unit.
  • the control unit can also perform signal processing such that for different types of switch units, different control units can be designed to output signals that can open the switch unit.
  • the first level signal and the second level signal may be the same level signal or different level signals, and the switch control signal may directly use the first level signal and/or the second level signal, or The first level signal and the second level signal are processed.
  • the control unit the first level signal, the second level signal, and the switch control signal
  • FIG. 3 it is a schematic structural diagram of a control circuit provided by an embodiment of the present application.
  • the control unit includes two diodes, one diode enables the first level signal to be output from the trigger unit to the switching unit, but prevents the second level signal from being output from the load device to the trigger unit; another diode can make The two-level signal is output from the load device to the switching unit, but prevents the first level signal from being output from the trigger unit to the load device.
  • control unit can prevent the first level signal from being output to the load device and prevent the second level signal from being output to the power source.
  • the first level signal or the second level information, or the superimposed signal of the first level signal and the second level signal may be used as the switch control signal.
  • the power source may be a device that obtains electrical energy from the power grid, or may be a battery or the like, which is used to supply power to the load device.
  • the load device can be a plurality of specific devices, such as a TBOX, a control device having a preset function, and the like, which are not specifically limited in this embodiment, as long as the load device can output a second level signal and the load device outputs
  • the start time of the second level signal may be before the end time of the trigger unit outputting the first level signal.
  • FIG. 4 is a schematic structural diagram of a control circuit according to an embodiment of the present application.
  • the control circuit comprises: a switch unit, a differential circuit and a control unit, a differential circuit and a control unit are connected, and the control unit and the switch unit are connected.
  • the built-in battery is connected to one end of the switch unit, and the other end of the switch unit is connected to the TBOX, so that the switch unit can control the opening of the channel between the built-in battery and the TBOX.
  • the TBOX includes two parts of a power supply unit and a vehicle safety control system unit (referred to as a system unit).
  • the power supply unit is connected to the switch unit and connected to the built-in battery of the vehicle body.
  • the power supply unit After the power supply unit obtains the power, the power supply unit can supply power to the system unit. .
  • the TBOX is also connected to the control unit, specifically the system unit and the control unit.
  • the control circuit of the embodiment of the present application may be integrated on the TBOX, that is, the control circuit is an internal circuit of the TBOX.
  • the output end of the built-in battery is connected to the differential circuit, and the differential circuit is configured to output a first level signal for a preset time to the control unit after the sudden change of the electrical signal outputted to the built-in battery.
  • the control unit is configured to output a switch control signal to the switch unit under the action of the first level signal.
  • the switch unit is configured to turn on the channel between the built-in battery and the load device under the action of the switch control signal, so that the built-in battery supplies power to the TBOX, and the TBOX continues to output the second level signal to the control unit after the power is turned on, and the TBOX output is second.
  • the start time of the level signal is before the end time of the trigger unit outputting the first level signal.
  • the control unit is further configured to output a switch control signal to the switch unit under the action of the second level signal.
  • the built-in battery of the vehicle body fails, the built-in battery does not supply power to the TBOX.
  • the TBOX needs to use the power of the built-in battery in order to continue working or booting.
  • the control unit outputs a switch control signal to the switch unit under the action of the high level signal output from the differential circuit.
  • the switch control signal is made.
  • the original open circuit state is in an open state, thereby turning on the channel between the built-in battery and the power supply unit, and the built-in battery supplies power to the power supply unit.
  • the power supply unit obtains the power outputted by the built-in battery, and the power supply unit starts to work, and supplies power to the system unit of the vehicle safety control device, so that the system unit is powered on.
  • the system unit After the system unit is turned on, the system unit quickly outputs a high level signal to the control unit, and the start time of the high level signal output by the system unit can be before the end time of the high level signal output by the differential circuit, specifically by adjusting The above preset time and circuit implementation of the system unit.
  • the control unit After the high-level signal outputted by the system unit is processed by the control unit through the channel at E, the control unit outputs a switch control signal to the switch unit, that is, outputs a switch control signal to the switch unit through the channel at C.
  • the control unit simultaneously acquires the high level signal output by the system unit and the high level signal output by the differential circuit, and outputs to the switch unit under the action of the two high level signals.
  • the high level signal generated by the differential circuit at B reaches the battery level and starts to fall, that is, the high level signal outputted by the differential circuit continues for a preset time, and becomes a low level signal, and the control unit cannot be low according to the low
  • the level signal generates a switch control signal, so that after a preset time, the differential circuit loses the enable control of the switch unit.
  • the high level signal at the E is It can take over the control of the switch unit. That is, the enabling control of the switching unit is first performed by the differentiating circuit, and then by the differential circuit and the system unit, and finally, only the system unit realizes the enabling control of the switching unit. At this point, the power-up process of the system unit is completed, and the system unit (ie, the load device) also gains control of the switch unit.
  • the TBOX as the load device in the embodiment of the present application is powered on, and has the control authority for the switch unit, that is, the TBOX can control the breaking of the switch unit.
  • control unit is further configured to stop outputting the switch control signal to the switch unit when the first level signal and the second level signal are not acquired; the switch unit is further configured to not acquire the switch When controlling the signal, disconnect the channel between the power supply and the load device.
  • the load device may stop outputting the second level signal to the control unit before powering down, so that when the switch unit is disconnected, the load device cannot obtain the power of the power source, and the power-off operation is naturally realized. In this way, a fast power-down of the load device can be achieved.
  • the load device may perform a power-off operation before stopping outputting the second level signal to the control unit, for example, performing a shutdown operation, and outputting the second level to the control unit after the power-off is completed. Signal, which also enables control of the switching unit.
  • the first level signal and the second level signal are high level signals
  • the trigger unit is further configured to output a low level signal after a preset time
  • the control unit is further configured to: after the load device is powered off , get the low level signal to the load device.
  • the control unit is further configured to stop outputting the switch control signal to the switch unit under the action of the low level signal of the trigger unit and the low level signal of the load device. That is, the control unit outputs a switch control signal to the switch unit under the action of the high level signal to open the switch unit.
  • the trigger unit After the preset time, the trigger unit outputs a low level signal to the control unit, for example, a signal with a zero voltage.
  • the voltage or power output from the load device to the control unit after power-on is greater than the output of the load device to the control unit after power-off.
  • the voltage or power, that is, the power-on and off of the load device itself can output a high-level signal or a low-level signal to the control unit.
  • Such a circuit arrangement does not require the load device to set a special complicated software for controlling the opening and closing of the switch unit. Logic control, thereby reducing the design difficulty and cost of the control circuit of the embodiment of the present application.
  • the execution steps of the specific power-off process may refer to the detailed description of steps 1005 to 1008 of the embodiment shown in FIG.
  • Shutdown power-off process Refer to Figure 4.
  • the system unit When the TBOX is powered off, the system unit is in the state of power-off and shutdown. Therefore, the channel at E is automatically in a low state after the system unit is shut down, and the system is completely low.
  • the level signal obtained by the control unit from the system unit is a low level signal, and at this time, the high level of the differential circuit output turns to a low level signal after a preset time, and the control unit does not have a high level signal. Function, does not output a switch control signal to the switch unit, Thereby the switching unit changes from an open circuit to an open circuit.
  • the channel between the built-in battery and the power supply unit is in an open state, and the built-in battery will no longer supply power to the power supply unit, and the power-off process ends.
  • there will be no more devices inside the entire TBOX that consume the power of the built-in battery thus avoiding the leakage of the built-in battery and saving the power of the built-in battery.
  • control unit and the switch unit of the embodiment of the present application have various implementation manners, such as the implementation of the control circuit shown in FIG. 3, that is, the control unit includes two diodes, and the switch control signal output by the control unit to the switch unit may be For a first level signal, or a second level signal, or a superposition of the first level signal and the second level signal, specific implementation details of the implementation may refer to the corresponding description above.
  • the first level signal and the second level signal are high level signals
  • the switch unit is a low level enable switch
  • the control unit includes an inverter, the inverter having a high level The level is converted to a low level function.
  • the control unit is specifically configured to output a low level signal to the switching unit under the action of the high level signal. That is, when the control unit acquires a high level signal that is a first level signal and/or a high level signal that is a second level signal, the inverter of the control unit can convert the two high level signals into low The level signal is outputted by the control unit to the switch unit as a switch control signal.
  • the switching unit is specifically configured to turn on a channel between the power source and the load device under the action of the low level signal.
  • control unit includes an inverter
  • a particular implementation can be as shown in Figures 5a, 5b and 6.
  • the control unit includes two inverters, and an inverter is connected to the trigger unit to convert a high level signal outputted by the trigger unit into a low level signal, and output the low level signal to the switch unit;
  • the other inverter is connected to a load device (such as a system unit) to convert a high level signal output from the load device into a low level signal and output the low level signal to the switching unit.
  • the switch unit is a low level enable switch. After the switch unit acquires a low level signal, it is in an open state under the action of a low level signal. If the two inverters do not obtain a high level signal, the low level signal is not output to the switching unit, and the switching unit is in an open state.
  • the two inverters can be set to meet the control requirements of the low-level enable switch. At the same time, the high level of the output of the trigger unit is prevented from flowing into the load device, and the high-level signal output from the load device is prevented from flowing into the differential. Circuit.
  • the circuit structure shown in FIG. 5b is a specific implementation of the control circuit shown in FIG. 5a.
  • the inverter is an NMOS
  • the switch unit includes a PMOS and a resistor.
  • the specific connection of the device refer to the structure shown in Figure 5b.
  • the inverter converts the high level signal into a low level signal after acquiring one of the diodes or simultaneously acquiring a high level signal of the two diode inputs, and the low level signal As the switch control signal, it is input to the switch unit so that the switch unit is open under the action of the low level signal.
  • the device type of FIG. 6 can refer to FIG. 5b.
  • the inverter can be an NMOS, and the switching unit can include a PMOS and a resistor.
  • the switch unit is a high level enable switch
  • the control unit includes an electrical signal excitation device.
  • the electrical signal can be used to excite the device to make the first level signal and the second level.
  • the voltage of the signal is increased and a switching control signal is obtained to control the switching unit.
  • the switching unit is a high level switch (such as NMOS)
  • the level of the excitation signal needs to be higher than the output level of the VBAT to be effectively turned on, and the high level signal of the differential circuit can only reach the highest level.
  • the VBAT level cannot open the switching unit, so it is necessary to use an electrical signal to excite the device to process the signal.
  • control unit includes an electrical signal energizing device
  • a particular implementation may be as shown in Figures 7a, 7b and 8.
  • the control unit includes two electrical signal excitation devices, wherein an electrical signal excitation device is connected to the trigger unit to raise the level of the first level signal output by the trigger unit and raise the level.
  • the first level signal is used as a switch control signal
  • the switch control signal is input to the switch unit, and the switch unit driven to the high level is opened, and the electric signal excitation device prevents the second level signal input of the load device output.
  • the trigger unit Into the trigger unit; another electrical signal excitation device is connected to the load device, the level of the second level signal outputted by the load device is raised, and the second level signal after the level rise is used as the switch control signal,
  • the switch control signal is input to the switch unit such that the switch unit is opened by the switch control signal, and the electric signal excitation device prevents the first level signal output by the trigger unit from being input into the load circuit.
  • the two electrical signal excitation devices do not output the switch control signal to the switch unit after the first level signal or the second level signal is not obtained, and the switch unit does not obtain the switch control signal, and the switch unit is in an open circuit.
  • control unit may include only one electrical signal excitation device.
  • control unit further includes two diodes.
  • the functions of the two diodes may refer to the embodiment shown in FIG. 6.
  • the electrical signal excitation device can raise the level of the first level signal and/or the second level signal input by the diode, and input the increased level signal as a switch control signal to the switch. a unit such that the switching unit turns on an open circuit when the switch control signal is acquired.
  • the control circuit of the embodiment of the present application in the circuit scenario of the TBOX, after the built-in battery of the TBOX circuit is inserted, the system can be powered on automatically. After the TBOX is turned on, the TBOX has active control over the power supply path of the built-in battery. After the TBOX is powered off, the connection between the internal battery and the power supply unit at the back end can be cut off. Solved the problem of continuous leakage of the built-in battery. Moreover, since the circuit architecture design adopted by the control circuit of the embodiment of the present application can be constructed by using a very simple separate electronic component, no special complicated software logic control is required. Therefore, development is difficult and the cost is low.
  • the triggering unit can be a control circuit or the like in addition to the differential circuit, which is not specifically limited in this embodiment of the present application. If it is a specific form of the differential circuit, it can detect the sudden change of the power output signal, and can also prevent the power supply from leaking after connecting with the power supply.
  • the TBOX of the above embodiment is only one specific implementation of the load device.
  • the load device of the embodiment of the present application may also be other device types, such as an electric motor, a control device, and the like.
  • the power source may be a device for obtaining power from the power grid or a power source for the power grid, in addition to the built-in battery described above.
  • the built-in battery includes, but is not limited to, a lithium battery, a nickel hydrogen battery, a lead crystal battery, and the like.
  • the unit modules of the control circuit of the embodiment of the present application can be set independently or integrated with each other, for example, the switch unit and the control unit are integrated into one device, which is not specifically limited in the embodiment of the present application.
  • FIG. 9 is a flowchart of a method for controlling a circuit according to an embodiment of the present application.
  • the circuit control method can be applied to the control circuit in each embodiment.
  • the control circuit applying the circuit control method includes: a switch unit, a trigger unit and a control unit, the trigger unit and the control unit are connected, and the control unit and the switch unit are connected.
  • Step 901 After the trigger unit acquires a sudden change of the electrical signal outputted by the power source, the first level signal of the preset time is output to the control unit.
  • control unit when the control unit acquires the first level signal, it outputs a switch control signal to the switch unit to control the switch unit.
  • the first level signal is converted to a switch control signal.
  • the power supply can supply power to the load device, and the load device continuously outputs a second level signal to the control unit after the power is turned on, and the start timing of the load device outputting the second level signal is at the trigger unit. Before the end time of the first level signal is output.
  • Step 904 The control unit outputs a switch control signal to the switch unit under the action of the second level signal.
  • the switch control signal is output to the switch unit under the action of the second level signal, so that the switch unit is in an open state under the action of the switch control signal, and the power supply and the load device are turned on.
  • the second level signal is converted to a switch control signal.
  • control unit outputs the switch control signal to the switch unit when the first level signal or the second level signal is acquired, or the first level signal and the second level signal are simultaneously acquired, thereby realizing the trigger unit and Load device pair Control of the breaking of the switching unit.
  • the circuit control method further includes a power down process of the load device. That is, after the control unit outputs the switch control signal to the switch unit, the method of the embodiment of the present application further includes: the control unit stops when the first level signal and the second level signal are not acquired. The switch control signal is output to the switch unit; the switch unit disconnects the channel between the power source and the load device when the switch control signal is not acquired.
  • the control unit Since the first level signal output by the trigger unit only maintains the preset time, after the preset time, the control unit only acquires the second level signal, and outputs the switch control to the switch unit under the action of the second level signal. a signal to control the open circuit of the switch unit.
  • the trigger unit When the load device stops outputting the second level signal to the control unit, the trigger unit has stopped outputting the first level signal, so that the control unit does not acquire the first level signal and the second level
  • the flat signal stops outputting the switch control signal to the switch unit. Without the acquisition of the switch control signal, the switch unit is disconnected, so that the load device can actively control the open circuit of the channel between the power supply and the load device.
  • the power supply starts to supply power to the load device, and when the switch unit provided on the channel between the power supply and the load device is open circuit, the trigger unit detects a sudden change of the electrical signal of the power supply output, thereby to the control unit.
  • the first level signal is output, so that the control unit outputs a switch control signal to the switch unit under the action of the first level signal, and the switch unit turns on the channel between the power source and the load device under the action of the switch control signal to enable the power source Power the load device.
  • the second level signal is continuously output to the control unit, and the control unit outputs a switch control signal to the switch unit under the action of the second level signal, so that the switch unit maintains an open channel between the power source and the load device.
  • the switch unit can be automatically turned on when the power is supplied, so that the power supply automatically supplies power to the load device.
  • the start time of the second level signal output by the load device is before the end time of the trigger unit outputting the first level signal, so that the control unit is under the action of the first level signal output by the trigger unit before the load device is powered on.
  • FIG. 10 is a flowchart of a method for controlling a circuit according to an embodiment of the present application.
  • the circuit control method of the embodiment of the present application can be applied to the control circuit provided by the foregoing embodiments.
  • the circuit control method of the embodiment of the present application reference may be made to the detailed description of the control circuit of the foregoing embodiments.
  • the control circuit applied to the circuit control method of the embodiment of the present application includes: a switch unit, a trigger unit, and a control unit.
  • the trigger unit and the control unit are connected, and the control unit and the switch unit are connected.
  • the trigger unit is a differential circuit
  • the power source is a built-in battery of the vehicle built-in terminal device
  • the load device is an in-vehicle built-in terminal device as an example, wherein the vehicle is described.
  • the internal battery of the built-in terminal device is simply referred to as a built-in battery.
  • FIG. 4 The circuit control method of the embodiment of the present application includes:
  • Step 1001 After obtaining the sudden change of the electrical signal outputted by the built-in battery, the differentiating circuit outputs a high level signal for the preset time to the control unit.
  • the preset time is related to the device parameters of the differential circuit, and the preset time adjustment can be implemented by designing a differential circuit by using different devices.
  • the built-in battery of the vehicle-mounted circuit fails, the built-in battery does not supply power to the TBOX.
  • the TBOX needs to use the power of the built-in battery in order to continue working or booting.
  • the built-in battery is inserted, so that the electric signal outputted by the built-in battery is abruptly changed from zero to a preset voltage, and the differential circuit is connected to the output end of the built-in battery, and the differential circuit detects a sudden change of the electrical signal outputted by the built-in battery, that is, a rectangular wave is obtained.
  • the differential circuit converts the rectangular wave into a high level signal and outputs the high level signal to the control unit, the output of the high level signal continuing for a preset time.
  • Step 1002 The control unit outputs a switch control signal to the switch unit under the action of the high level signal output by the differential circuit.
  • Step 1003 The switch unit turns on a channel between the power source and the load device under the action of the switch control signal.
  • the switch unit acquires a switch control signal input by the control unit.
  • the switch unit turns on the channel between the built-in battery and the TBOX under the action of the switch control signal, so that the built-in battery supplies power to the TBOX.
  • the system unit of the TBOX After the system unit of the TBOX is powered on, the system unit continuously outputs a high level signal to the control unit, and the start time of the high level signal output by the TBOX is before the end time of the high level signal output by the differential circuit.
  • the control unit outputs a switch control signal to the switch unit when the high level signal is acquired. Since the high level signal output by the differential circuit continues for a preset time, the start time of the high level signal output by the TBOX is before the end time of the high level signal output by the differential circuit, which ensures that after the preset time, the control unit A high level signal can still be obtained, at which time the high level signal is output by the TBOX.
  • Step 1004 The control unit outputs a switch control signal to the switch unit under the action of the high level signal output by the TBOX.
  • the control unit continuously acquires a high level signal of the TBOX output, and continuously outputs a switch control signal to the switch unit under the action of the high level signal, so that the switch unit maintains an open state under the action of the switch control signal.
  • the switch unit when the control unit acquires the high level signal of the differential circuit, or acquires the high level signal of the TBOX, or simultaneously acquires the high level signal of the differential circuit and the high level signal of the TBOX,
  • the switch unit outputs a switch control signal such that the switch unit is open under the action of the switch control signal, and turns on a channel between the built-in battery and the TBOX to allow the internal battery to supply power to the TBOX. Therefore, during the power-on process of the TBOX, the open circuit of the switch unit is first controlled by the differential circuit. After the TBOX is powered on, the TBOX outputs a high-level signal to the control unit before the high-level signal output by the differential circuit ends.
  • the control unit simultaneously acquires the high level signal of the differential circuit and the high level signal of the TBOX output, and the open circuit of the switch unit TBOX and the differential circuit are simultaneously controlled. After the preset time, the high level signal of the differential circuit stops outputting, and the control is stopped. The unit only gets the high level signal to the TBOX output. Therefore, the open route of the switch unit is controlled by the TBOX. In this way, the method of the embodiment of the present application automatically opens the switch unit after the built-in battery is inserted, so as to implement power-on of the TBOX, and control the power supply channel between the built-in battery and the TBOX. The transfer from the differential circuit to the TBOX is realized.
  • Step 1005 The differential circuit outputs a low level signal after a preset time.
  • the built-in battery Since the high level of the differential circuit output maintains the preset time, the built-in battery generates a rectangular wave on the channel when inserted, and the waveform of the subsequent output is constant, so that after the preset time, the differential circuit does not output high power to the control unit.
  • the flat signal can output a low level signal to the control unit at this time, for example, a signal with a zero voltage, because the control unit does not convert the low level signal into a switch control signal, so that the differential circuit no longer controls the open circuit of the switch unit.
  • the TBOX still outputs a high level signal to the control unit, so that the control unit outputs a switch control signal to the switch unit under the action of the high level signal of the TBOX, so that the switch unit is still in an open circuit, that is, the open state of the switch unit. It is controlled by TBOX.
  • the system unit of the TBOX After the TBOX is powered off, for example, when the TBOX is turned off, the system unit of the TBOX is in a low state, so that the control unit no longer acquires a high level signal from the TBOX, but acquires a low level signal.
  • Step 1007 The control unit stops outputting the switch control signal to the switch unit under the action of the low level signal of the differential circuit and the low level signal of the TBOX.
  • the switch control signal is output to the switch unit.
  • the differential unit After the preset time, the differential unit outputs a low level signal, and after the TBOX is powered off, only the low level signal is output, thereby controlling The unit only acquires a low level signal at this time, and the control unit stops outputting the switch control signal to the switching unit.
  • Step 1008 The switch unit disconnects the channel between the internal battery and the TBOX when the switch control signal is not acquired.
  • the output of the TBOX to the high-low level signal of the control unit does not need to be realized by a software logic process, and can be realized by a simple circuit connection, so that the circuit of the TBOX switching control of the switching unit is simple, and the cost is reduced.
  • control unit and the switch unit of the circuit control method of the embodiment of the present application have various implementation methods, which are not specifically limited in this embodiment of the present application.
  • control unit can process the acquired signal to output the switch suitable for the switch The signal of the unit.
  • the control unit can process the acquired signal to output the switch suitable for the switch The signal of the unit.
  • the switching unit is a low level enable switch
  • the control unit includes an inverter.
  • the inverter can cause the high level signal to be converted to a low level signal, thereby outputting a low level signal for the low level enabled switching unit, and correspondingly, the first level signal and/or the load device output by the trigger unit
  • the output second level signal is a high level signal.
  • the step of the step of turning on the channel between the power source and the load device under the action of the switch control signal is: the switch unit turns on the channel between the power source and the load device under the action of the low level signal.
  • the specific step of the step of the control unit outputting the switch control signal to the switch unit under the action of the first level signal is that the control unit outputs a high level signal to the switch unit under the action of the first level signal.
  • the control unit boosts the first level signal outputted by the trigger unit by using the electrical signal excitation device to obtain a high level signal, and outputs the high level signal as a switch control signal to the switch unit. Therefore, the step of the step of turning on the channel between the power source and the load device under the action of the switch control signal is: the switch unit is between the power source and the load device under the action of the high level signal output by the control unit Channel.
  • control unit outputs a high level signal to the switch unit under the action of the second level signal.
  • the control unit boosts the second level signal outputted by the load device by using the electrical signal excitation device to obtain a high level signal, and outputs the high level signal as a switch control signal to the switch unit. After the switch unit acquires the high level signal, it opens under the action of the high level signal to turn on the channel between the power source and the load device.
  • FIG. 7a For a specific circuit diagram of the embodiment of the present application, reference may be made to FIG. 7a, FIG. 7b, and FIG. 8. For specific description, reference may be made to the description of the embodiment shown in FIG. 7a, FIG. 7b, and FIG. 8.
  • the built-in battery of the TBOX circuit is used in the circuit scenario of the TBOX by using the control circuit of the embodiment of the present application.
  • the TBOX system can be powered on automatically.
  • the TBOX has active control of the power supply channel of the built-in battery.
  • the connection between the built-in battery and the power supply unit at the back end can be cut off, thereby solving the problem of continuous leakage of the built-in battery.
  • the circuit architecture design adopted by the control circuit of the embodiment of the present application can be constructed by using a very simple separate electronic component, no special complicated software logic control is required. Therefore, development is difficult and the cost is low.
  • the triggering unit can be a control circuit or the like in addition to the differential circuit, which is not specifically limited in this embodiment of the present application.
  • the TBOX of the above embodiment is only one specific implementation of the load device.
  • the load device of the embodiment of the present application may also be other device types, such as an electric motor, a control device, and the like.
  • the built-in battery starts to supply power to the TBOX
  • the switch unit provided on the channel between the built-in battery and the TBOX is open circuit
  • the differential circuit detects a sudden change of the electrical signal outputted by the built-in battery, thereby controlling
  • the unit outputs a high level signal, so that the control unit outputs a switch control signal to the switch unit under the action of the high level signal, and the switch unit turns on the channel between the built-in battery and the TBOX under the action of the switch control signal to enable the built-in
  • the battery supplies power to the TBOX.
  • the control unit After the TBOX is powered on, the high-level signal is continuously output to the control unit, and the control unit outputs a switch control signal to the switch unit under the action of the high-level signal, so that the switch unit keeps the channel between the built-in battery and the TBOX open, so that The built-in battery continues to power the TBOX.
  • the switch unit can be automatically turned on when the internal battery is powered, so that the built-in battery automatically supplies power to the TBOX.
  • the start time of the high level signal output by the TBOX is before the end time of the high level signal output by the differential circuit, so that before the TBOX is powered on, the control unit controls the switch under the action of the high level signal outputted by the differential circuit. The unit is turned on.
  • the differential circuit interrupts outputting a high level signal, but at this time, the control unit acquires a high level signal outputted by the TBOX, thereby controlling the high level signal of the TBOX output.
  • the unit still keeps the switch control signal output to the switch unit, so that the switch unit remains off, and the built-in battery can continue to supply power to the TBOX, so that the control of the switch unit is transferred from the differential circuit to the TBOX, so that the TBOX can supply the channel for the power supply. Take control.
  • control circuit including: a switch, a differential circuit, and a switch control circuit, a differential circuit and a switch control circuit connection, a switch control circuit, and a switch connection.
  • control circuit for the switch, reference may be made to the detailed description of the switch unit in the embodiments of the above control circuit and the circuit control method, and details are not described herein again.
  • control circuit In the control circuit, a detailed description of the trigger unit and the differential circuit in the embodiments of the control circuit and the circuit control method described above may be referred to in the control circuit, and details are not described herein again.
  • control circuit for the switch control circuit, reference may be made to the detailed description of the control unit in the above embodiments of the control circuit and the circuit control method, and details are not described herein again.
  • the switch control circuit comprises an inverter or an electrical signal excitation device.
  • the switch control circuit comprises an inverter or an electrical signal excitation device.
  • the switch can be automatically turned on when the power is supplied, so that the power supply automatically supplies power to the load device.
  • Loader The start time of the output second level signal is before the end time of the differential circuit outputting the first level signal, so that the switch control circuit is under the action of the first level signal output by the differential circuit before the load device is powered up,
  • the control switch is turned on, and after the preset time, the differential circuit interrupts outputting the first level signal, but at this time, the switch control circuit acquires the second level signal outputted by the load device, thereby functioning at the second level signal
  • the switch control circuit still maintains a switch control signal to the switch to keep the switch off, and the power supply can continue to supply power to the load device, thereby controlling the control of the switch from the differential circuit to the load device, so that the load device can The power supply channel is controlled.
  • the power supply is automatically powered by the load device, and the differential circuit outputs a first level signal to the switch control circuit by abruptly changing the electrical signal outputted to the power supply to control the conduction of the switch.
  • the control from open circuit to open circuit eliminates the need for other devices to remain electrically connected to the switch, thereby reducing the occurrence of leakage, and the power supply automatically supplies the load device in an energy-saving manner.

Landscapes

  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Electronic Switches (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

提供了一种控制电路和电路控制方法,提供的控制电路包括:开关单元、触发单元和控制单元,触发单元和控制单元连接,控制单元和开关单元连接。触发单元用于获取到电源输出的电信号的突变后,通过控制单元控制开关单元开路,以导通所述电源和负载器件之间的通道,以使电源向负载器件供电,负载器件上电后持续向控制单元输出电平信号,以通过控制单元控制开关单元维持开路状态。这样,即可实现电源供电时自动打开开关单元,使得电源自动为负载器件供电,且对开关单元的控制权从触发单元转到了负载器件,使得负载器件可对为其供电的通道进行控制。

Description

控制电路和电路控制方法
本申请要求于2017年2月17日提交中国专利局、申请号为201710086717.6,发明名称为“一种车载内置电池自动开关机的方法和设备”的中国专利申请优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及电路领域,尤其涉及一种控制电路和电路控制方法。
背景技术
在一些控制电路中,电源通过供电通道向负载供电,为了方便控制该供电通道的通断,在电源和负载之间的供电通道上设有开关单元。
现有的技术中,对该开关单元的控制往往是通过用户手动控制。或者,负载使用至少两个供电电源,例如第一电源和第二电源,第一电源和负载通过手动控制进行供电连接,第二电源和负载之间的供电通道上设有一开关单元,该开关单元由负载进行控制。负载先由第一电源供电,在第一电源因故障等原因停止供电时,负载控制该开关单元导通,以使得第二电源向负载供电。
例如,在车载设备中设有车载内置终端设备(Telematic Box,TBOX),TBOX与车载内置终端设备内置电池VBAT连接,VBAT通过供电通道给TBOX供电,而VBAT和TBOX间的供电通道需要用户手动控制开关单元的开断。或者,该开关单元由TBOX控制,当TBOX原先的供电电源车载蓄电池停止向TBOX供电时,TBOX控制该开关单元导通,以使得VBAT向TBOX供电。
但是,这样带来的问题是,若对供电通道的开断的控制由用户手动控制实现,则不方便用户的使用,给用户操作带来麻烦。若由负载保持对开关单元的控制,需要负载与开关单元保持通电连接,这样将导致漏电的情况,从而浪费了电能。
发明内容
本申请实施例提供了一种控制电路和电路控制方法,用于以节能的方式实现电源为负载器件的自动供电。
第一方面,本申请实施例提供一种控制电路,该控制电路包括:开关单元、触发单元和控制单元,触发单元和控制单元连接,控制单元和开关单元连接。该触发单元还与电源的输出端连接,从而触发单元在获取到电源输出的电信号的突变后,向控制单元输出持续预设时间的第一电平信号。控制单元用于在第一电平信号作用下,向开关单元输出开关控制信号。开关单元的一端连接电源的输出端,开关单元的另一端连接负载器件,开关单元在开关控制信号作用下,导通电源和负载器件之间的通道,以使电源向负载器件供电,负载器件上电后持续向控制单元输出第二电平信号,负载器件输出第二电平信号的起始时刻在触发单元输出第一电平信号的结束时刻之前。负载器件持续向控制单元输出第二电平信号,控制单元还用于在第二电平信号作用下,向开关单元输出开关控制信号,以使开关单 元在开关控制信号的持续作用下,维持开路状态,使得电源继续为负载器件供电。
这样,即可实现电源供电时自动打开开关单元,使得电源自动为负载器件供电。因负载器件输出第二电平信号的起始时刻在触发单元输出第一电平信号的结束时刻之前,从而在负载器件上电前,控制单元在触发单元输出的第一电平信号的作用下,控制开关单元导通,在预设时间之后,触发单元中断输出第一电平信号,但此时,控制单元获取到负载器件输出的第二电平信号,从而在该第二电平信号的作用下,控制单元仍然保持向开关单元输出开关控制信号,以使开关单元保持关闭状态,电源可持续为负载器件供电,从而对开关单元的控制权从触发单元转到了负载器件,使得负载器件可对为其供电的通道进行控制。
结合本申请实施例的第一方面,在本申请实施例的第一方面的第一种实现方式中,控制单元还用于在未获取到第一电平信号和第二电平信号时,停止向开关单元输出开关控制信号,开关单元还用于在未获取到开关控制信号时,断开电源和负载器件之间的通道。这样,触发单元和负载器件可通过停止为控制单元提供第一电平信号和第二电平信号,来控制开关单元断路,使得电源不与负载器件连接,防止电源的漏电现象,节约了电源的电能。
结合本申请实施例的第一方面的第一种实现方式,本申请实施例的第一方面的第二种实现方式中,第一电平信号和第二电平信号为高电平信号,触发单元还用于在预设时间后,输出低电平信号,控制单元还用于在负载器件下电后,获取到负载器件的低电平信号,而控制单元还用于在触发单元的低电平信号和负载器件的低电平信号的作用下,停止向开关单元输出开关控制信号。这样,触发单元和负载器件通过向控制单元输出高电平信号来控制开关单元开路,以使电源为负载器件供电,触发单元和负载器件通过向控制单元输出低电平信号控制开关单元断路,使得电源不与负载器件连接,不但可以防止电源的漏电,且负载器件上电后处于高电平状态,负载器件下电后处于低电平状态,这样只需通过简单的电路连接,即可实现负载器件在上电后向控制单元输出高电平信号,在负载器件下电后,负载器件向控制单元输出低电平信号,而无需复杂的软件逻辑控制,从而简化了电路、降低了成本。
结合本申请实施例的第一方面,本申请实施例的第一方面的第三种实现方式中,第一电平信号和第二电平信号为高电平信号,开关单元为低电平使能开关,控制单元包括反相器。从而控制单元具体用于在高电平信号作用下,向开关单元输出低电平信号;开关单元具体用于在低电平信号作用下,导通电源和负载器件之间的通道。这样,控制单元利用反相器对为高电平信号的第一电平信号和第二电平信号进行反相处理,使其变为低电平信号,从而可控制为低电平使能开关的开关单元。
结合本申请实施例的第一方面,本申请实施例的第一方面的第四种实现方式中,开关单元为高电平使能开关,控制单元包括电信号激励器件。从而控制单元具体用于在第一电平信号和/或第二电平信号作用下,向开关单元输出高电平信号。开关单元具体用于在控制单元输出的高电平信号作用下,导通电源和负载器件之间的通道。这样,控制单元利用电信号激励器件对为高电平信号的第一电平信号和第二电平信号进行处理,使其变为高电平 信号,从而可控制为高电平使能开关的开关单元。
结合本申请实施例的第一方面或者第一方面的第一种至第四种实现方式中的任一种实现方式,本申请实施例的第一方面的第五种实现方式中,触发单元为微分电路。因触发单元与电源的输出端连接,触发单元为微分电路,可防止电源的漏电现象,节约电源的电能。
结合本申请实施例的第一方面或者第一方面的第一种至第四种实现方式中的任一种实现方式,本申请实施例的第一方面的第六种实现方式中,电源为车载内置终端设备内置电池,负载器件为车载内置终端设备。
第二方面,本申请实施例提供了一种电路控制方法,该方法应用于控制电路,该控制电路包括:开关单元、触发单元和控制单元,触发单元和控制单元连接,控制单元和开关单元连接。具体的器件描述可参阅上述第一方面的描述,本实现方式的电路控制方法包括:触发单元获取到电源输出的电信号的突变后,向控制单元输出持续预设时间的第一电平信号,然后控制单元在第一电平信号作用下,向开关单元输出开关控制信号,从而开关单元在开关控制信号作用下,导通电源和负载器件之间的通道,以使电源向负载器件供电,负载器件上电后持续向控制单元输出第二电平信号,负载器件输出第二电平信号的起始时刻在触发单元输出第一电平信号的结束时刻之前。负载器件向控制单元输出第二电平信号,控制单元在第二电平信号作用下向开关单元输出开关控制信号,以使开关单元在开关控制信号的持续作用下,维持开路状态,使得电源继续为负载器件供电。
这样,即可实现电源供电时自动打开开关单元,使得电源自动为负载器件供电。因负载器件输出第二电平信号的起始时刻在触发单元输出第一电平信号的结束时刻之前,从而在负载器件上电前,控制单元在触发单元输出的第一电平信号的作用下,控制开关单元导通,在预设时间之后,触发单元中断输出第一电平信号,但此时,控制单元获取到负载器件输出的第二电平信号,从而在该第二电平信号的作用下,控制单元仍然保持向开关单元输出开关控制信号,以使开关单元保持关闭状态,电源可持续为负载器件供电,从而对开关单元的控制权从触发单元转到了负载器件,使得负载器件可对为其供电的通道进行控制。
结合本申请实施例的第二方面,在本申请实施例的第二方面的第一种实现方式中,控制单元在第二电平信号作用下,向开关单元输出开关控制信号之后,本实现方式的方法还包括:控制单元在未获取到第一电平信号和第二电平信号时,停止向开关单元输出开关控制信号,从而,开关单元在未获取到开关控制信号时,断开电源和负载器件之间的通道。这样,触发单元和负载器件可通过停止为控制单元提供第一电平信号和第二电平信号,来控制开关单元断路,使得电源不与负载器件连接,防止电源的漏电现象,节约了电源的电能。
结合本申请实施例的第二方面的第一种实现方式,本申请实施例的第二方面的第二种实现方式中,第一电平信号和第二电平信号为高电平信号,本实现方式的方法还包括:触发单元在预设时间后,输出低电平信号,而控制单元在负载器件下电后,获取到负载器件的低电平信号。从而,控制单元在未获取到第一电平信号和第二电平信号时,停止向开关单元输出开关控制信号,包括:控制单元在触发单元的低电平信号和负载器件的低电平信号的作用下,停止向开关单元输出开关控制信号。这样,触发单元和负载器件通过向控制 单元输出高电平信号来控制开关单元开路,以使电源为负载器件供电,触发单元和负载器件通过向控制单元输出低电平信号控制开关单元断路,使得电源不与负载器件连接,不但可以防止电源的漏电,且负载器件上电后处于高电平状态,负载器件下电后处于低电平状态,这样只需通过简单的电路连接,即可实现负载器件在上电后向控制单元输出高电平信号,在负载器件下电后,负载器件向控制单元输出低电平信号,而无需复杂的软件逻辑控制,从而简化了电路、降低了成本。
结合本申请实施例的第二方面,本申请实施例的第二方面的第三种实现方式中,第一电平信号为高电平信号,开关单元为低电平使能开关,控制单元包括反相器。控制单元在第一电平信号作用下,向开关单元输出开关控制信号,包括:控制单元在高电平信号作用下,向开关单元输出低电平信号。
从而,开关单元在开关控制信号作用下,导通电源和负载器件之间的通道,包括:开关单元在低电平信号作用下,导通电源和负载器件之间的通道。这样,控制单元利用反相器对为高电平信号的第一电平信号进行反相处理,使其变为低电平信号,从而可控制为低电平使能开关的开关单元。
结合本申请实施例的第二方面,本申请实施例的第二方面的第四种实现方式中,第二电平信号为高电平信号,开关单元为低电平使能开关,控制单元包括反相器。控制单元在第二电平信号作用下,向开关单元输出开关控制信号,包括:控制单元在高电平信号作用下,向开关单元输出低电平信号。本实现方式的方法还包括:开关单元在低电平信号作用下,导通电源和负载器件之间的通道。这样,控制单元利用反相器对为高电平信号的第二电平信号进行反相处理,使其变为低电平信号,从而可控制为低电平使能开关的开关单元。
结合本申请实施例的第二方面,本申请实施例的第二方面的第五种实现方式中,开关单元为高电平使能开关,控制单元包括电信号激励器件。控制单元在第一电平信号作用下,向开关单元输出开关控制信号,包括:控制单元在第一电平信号作用下,向开关单元输出高电平信号。而开关单元在开关控制信号作用下,导通电源和负载器件之间的通道,包括:开关单元在控制单元输出的高电平信号作用下,导通电源和负载器件之间的通道。控制单元在第二电平信号作用下,向开关单元输出开关控制信号,包括:控制单元在第二电平信号作用下,向开关单元输出高电平信号。这样,控制单元利用电信号激励器件对为高电平信号的第一电平信号和第二电平信号进行处理,使其变为高电平信号,从而可控制为高电平使能开关的开关单元。
结合本申请实施例的第二方面或者第二方面的第一种至第五种实现方式中的任一种实现方式,本申请实施例的第一方面的第六种实现方式中,触发单元为微分电路。因触发单元与电源的输出端连接,触发单元为微分电路,可防止电源的漏电现象,节约电源的电能。
结合本申请实施例的第二方面或者第二方面的第一种至第五种实现方式中的任一种实现方式,本申请实施例的第一方面的第七种实现方式中,电源为车载内置终端设备内置电池,负载器件为车载内置终端设备。
第三方面,本申请实施例提供了一种控制电路,该电路包括:开关、微分电路和开关控制电路,微分电路和开关控制电路连接,开关控制电路和开关连接。
其中,微分电路,用于获取到电源输出的电信号的突变后,向开关控制电路输出持续预设时间的第一电平信号;开关控制电路,用于在第一电平信号作用下,向开关输出开关控制信号;开关,用于在开关控制信号作用下,导通电源和负载器件之间的通道,以使电源向负载器件供电,负载器件上电后持续向开关控制电路输出第二电平信号,负载器件输出第二电平信号的起始时刻在微分电路输出第一电平信号的结束时刻之前;开关控制电路,还用于在第二电平信号作用下,向开关输出开关控制信号。
这样,即可实现电源供电时自动打开开关,使得电源自动为负载器件供电。因负载器件输出第二电平信号的起始时刻在微分电路输出第一电平信号的结束时刻之前,从而在负载器件上电前,开关控制电路在微分电路输出的第一电平信号的作用下,控制开关导通,在预设时间之后,微分电路中断输出第一电平信号,但此时,开关控制电路获取到负载器件输出的第二电平信号,从而在该第二电平信号的作用下,开关控制电路仍然保持向开关输出开关控制信号,以使开关保持关闭状态,电源可持续为负载器件供电,从而对开关的控制权从微分电路转到了负载器件,使得负载器件可对为其供电的通道进行控制。
结合本申请实施例的第三方面,在本申请实施例的第三方面的第一种实现方式中,开关控制电路,还用于在未获取到第一电平信号和第二电平信号时,停止向开关输出开关控制信号;开关,还用于在未获取到开关控制信号时,断开电源和负载器件之间的通道。这样,微分电路和负载器件可通过停止为开关控制电路提供第一电平信号和第二电平信号,来控制开关断路,使得电源不与负载器件连接,防止电源的漏电现象,节约了电源的电能。
结合本申请实施例的第三方面的第一种实现方式,在本申请实施例的第三方面的第二种实现方式中,第一电平信号和第二电平信号为高电平信号,微分电路,还用于在预设时间后,输出低电平信号;开关控制电路,还用于在负载器件下电后,获取到负载器件的低电平信号;开关控制电路,还用于在微分电路的低电平信号和负载器件的低电平信号的作用下,停止向开关输出开关控制信号。这样只需通过简单的电路连接,即可实现负载器件在上电后向开关控制电路输出高电平信号,在负载器件下电后,负载器件向开关控制电路输出低电平信号,而无需复杂的软件逻辑控制,从而简化了电路、降低了成本。
结合本申请实施例的第三方面,在本申请实施例的第三方面的第三种实现方式中,第一电平信号和第二电平信号为高电平信号,开关为低电平使能开关,开关控制电路包括反相器;
反相器,用于在高电平信号作用下,向开关输出低电平信号;开关,具体用于在低电平信号作用下,导通电源和负载器件之间的通道。这样,利用反相器对为高电平信号的第一电平信号和第二电平信号进行反相处理,使其变为低电平信号,从而可控制为低电平使能开关的开关。
结合本申请实施例的第三方面,在本申请实施例的第三方面的第四种实现方式中,开关为高电平使能开关,开关控制电路包括电信号激励器件。
电信号激励器件,用于在第一电平信号和/或第二电平信号作用下,向开关输出高电平信号;开关,具体用于在开关控制电路输出的高电平信号作用下,导通电源和负载器件之 间的通道。利用电信号激励器件对为高电平信号的第一电平信号和第二电平信号进行处理,使其变为高电平信号,从而可控制为高电平使能开关的开关。
结合本申请实施例的第三方面或者第三方面的第一种至第四种实现方式中的任一种,在本申请实施例的第三方面的第五种实现方式中,电源为车载内置终端设备内置电池,负载器件为车载内置终端设备。
本申请实施例提供的技术方案中,控制电路包括:开关单元、触发单元和控制单元,触发单元和控制单元连接,控制单元和开关单元连接。其中,触发单元用于获取到电源输出的电信号的突变后,向控制单元输出持续预设时间的第一电平信号。控制单元用于在第一电平信号作用下,向开关单元输出开关控制信号,开关单元用于在开关控制信号作用下,导通电源和负载器件之间的通道,以使电源向负载器件供电,负载器件上电后持续向控制单元输出第二电平信号,负载器件输出第二电平信号的起始时刻在触发单元输出第一电平信号的结束时刻之前。控制单元还用于在第二电平信号作用下,向开关单元输出开关控制信号。这样,电源在开始为负载器件供电,而在电源和负载器件之间的通道上设置的开关单元为断路时,触发单元此时检测到电源输出的电信号的突变,从而向控制单元输出第一电平信号,使得控制单元在第一电平信号作用下,向开关单元输出开关控制信号,开关单元在开关控制信号作用下,导通电源和负载器件之间的通道,以使电源向负载器件供电。负载器件上电后持续向控制单元输出第二电平信号,而控制单元在第二电平信号作用下,向开关单元输出开关控制信号,以使得开关单元保持电源和负载器件之间的通道开路,让电源继续为负载器件供电。这样,即可实现电源供电时自动打开开关单元,使得电源自动为负载器件供电。因负载器件输出第二电平信号的起始时刻在触发单元输出第一电平信号的结束时刻之前,从而在负载器件上电前,控制单元在触发单元输出的第一电平信号的作用下,控制开关单元导通,在预设时间之后,触发单元中断输出第一电平信号,但此时,控制单元获取到负载器件输出的第二电平信号,从而在该第二电平信号的作用下,控制单元仍然保持向开关单元输出开关控制信号,以使开关单元保持关闭状态,电源可持续为负载器件供电,从而对开关单元的控制权从触发单元转到了负载器件,使得负载器件可对为其供电的通道进行控制。如此,即实现了电源为负载器件的自动供电,且因触发单元通过获取到电源输出的电信号的突变,来向控制单元输出第一电平信号,以控制开关单元的导通,此时开关单元从断路到开路的控制无需其它器件与开关单元一直保持电连接状态,从而减少了漏电的发生,电源为负载器件的自动供电以节能的方式得到实现。
附图说明
图1为本申请实施例提供的一种TBOX供电控制电路的结构示意图;
图2为本申请实施例提供的另一种控制电路的结构示意图;
图3为本申请实施例提供的另一种控制电路的结构示意图;
图4为本申请实施例提供的另一种控制电路的结构示意图;
图5a为本申请实施例提供的另一种控制电路的结构示意图;
图5b为图5a所示实施例的控制电路的具体结构示意图;
图6为本申请实施例提供的另一种控制电路的结构示意图;
图7a为本申请实施例提供的另一种控制电路的结构示意图;
图7b为图7a所示实施例的控制电路的具体结构示意图;
图8为本申请实施例提供的另一种控制电路的结构示意图;
图9为本申请实施例提供的一种电路控制方法的方法流程图;
图10为本申请实施例提供的另一种电路控制方法的方法流程图。
具体实施方式
本申请实施例提供了一种控制电路和电路控制方法,用于实现电源为负载器件的自动供电,且电源为负载器件的自动供电以节能的方式得到实现。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
在一些控制电路中,电源通过供电通道向负载供电,为了方便控制该供电通道的通断,在电源和负载之间的供电通道上设有开关单元。该开关单元若由用户手动控制开断,将给用户带来操作上的不方便。或者,采用电源管理芯片对该开关单元进行控制,但是该管理芯片会产生漏电的困扰,使得电源的电能被浪费。
例如,在车载电路领域,车载内置终端设备TBOX出于安全以及应急考虑,一般同时采用车身内置蓄电池(B+)和车载内置终端设备内置电池(VBAT)两种供电方式。正常情况下,B+会是TBOX的主要供电源。如果B+出现故障,VBAT会自动切换为TBOX的供电源,以维持TBOX系统的正常工作。在这两种供电方式单独或同时存在的情况下,TBOX需要能够正常工作并可以执行关机动作。
参阅图1,当B+不供电的情况下,车载内置终端设备内置电池初次插入TBOX中,用VBAT给TBOX供电。在有的设备中,车载内置终端设备内部系统在VBAT供电后,无法实现自动开机。例如,如图1所示,开关单元为断路状态,从而VBAT无法为TBOX供电,TBOX的系统单元无法上电开机。此时,需用用户手动控制开关单元关闭,以使VBAT为TBOX供电。但是,这样的设置,将对用户的操作带来麻烦,不能实现TBOX系统的自动开机。
为此,可以使用电源管理芯片来控制电源控制开关的开闭,以实现TBOX系统的自动开机。例如,当B+为TBOX供电时,TBOX通过电源管理芯片与VBAT的开关单元电连接,即使VBAT此时不向TBOX供电,当B+从向TBOX供电变为不供电的情况下,TBOX及时控制VBAT的开关单元导通,以使VBAT向TBOX供电,使得TBOX保持工作状态。但是,这样的设置,因该电源管理芯片与VBAT一直保持连接,从而该电源管理芯片会产 生漏电,从而消耗掉VBAT上的电能。
另外,上述的两种方式,还会带来其它的问题。例如,TBOX器件的漏电问题。TBOX系统开机后,如果有下电关机的要求,TBOX系统会自动关机。但是TBOX系统自身无法对供电系统进行切断关闭。因此,VBAT会一直挂载在系统上,即VBAT一直与TBOX的器件保持连接状态,从而导致车载内置终端设备的内置电池后端所挂载电源器件(例如,图1所示的供电单元)会一直产生静态电流漏电,从而消耗掉VBAT电量。除非用户手动关闭电源控制开关。供电单元等器件的长时间静态电流漏电,将使得VBAT的电量逐渐减少,待以后需要VBAT给TBOX系统供电的时候,VBAT会由于电量过低而导致TBOX系统无法开机。
针对上述问题,在车载内置终端设备内置电池单独供电的情况下,本申请实施例提供的控制电路和电路控制方法,若使用在车载电路中,可以解决如下的问题:
1.内置电池插入后,TBOX内部供电单元能够自动开启,给TBOX内部系统单元进行供电,使得系统单元启动工作。
2.TBOX内部系统单元启动工作后,TBOX如果要自行执行关机动作,则能够切断内置电池给后端供电单元的供电通路,以避免内置电池持续漏电的产生。
当然,本申请实施例提供的控制电路和电路控制方法还可以解决其它的技术问题,详见下文的相应描述。
为了更好地理解本申请实施例提供的方案,现先对一些器件或技术名称进行相应的说明,本申请各实施例提供的控制电路或电路控制方法的相关器件和技术名称可参考这些说明,可以理解的是,这些说明只是示例性说明。
微分电路:微分电路可把矩形波转换为尖脉冲波,微分电路的输出波形反映输入波形的突变部分,即只有输入波形发生突变的瞬间才有输出。而微分电路对输入信号的恒定部分则没有输出。微分电路的具体电路实现例如可以通过电阻R和电容C实现,即RC微分电路,RC微分电路输出的尖脉冲波形的宽度与RC有关(即电路的时间常数),RC越小,尖脉冲波形越尖,反之则宽。
使能:负责控制信号的输入和输出叫做使能。
反相器:反相器可以将输入信号的相位反转180度,例如可以为CMOS反相器。例如,可以为将低电平信号转换成高电平信号。
参阅图2,其为本申请实施例提供的控制电路的结构示意图。该控制电路包括:开关单元、触发单元和控制单元,触发单元和控制单元连接,控制单元和开关单元连接。
触发单元用于获取到电源输出的电信号的突变后,向控制单元输出持续预设时间的第一电平信号;控制单元用于在第一电平信号作用下,向开关单元输出开关控制信号;开关单元用于在开关控制信号作用下,导通电源和负载器件之间的通道,以使电源向负载器件供电,负载器件上电后持续向控制单元输出第二电平信号,负载器件输出第二电平信号的起始时刻在触发单元输出第一电平信号的结束时刻之前。该控制单元还用于在第二电平信号作用下,向开关单元输出开关控制信号,以使开关单元在开关控制信号的作用下,继续为开路。
本申请实施例的控制电路的具体执行流程可参考图9所示的电路控制方法的实施例的描述。
这样,电源在开始为负载器件供电,而在电源和负载器件之间的通道上设置的开关单元为断路时,触发单元此时检测到电源输出的电信号的突变,从而向控制单元输出第一电平信号,使得控制单元在第一电平信号作用下,向开关单元输出开关控制信号,开关单元在开关控制信号作用下,导通电源和负载器件之间的通道,以使电源向负载器件供电。负载器件上电后持续向控制单元输出第二电平信号,而控制单元在第二电平信号作用下,向开关单元输出开关控制信号,以使得开关单元保持电源和负载器件之间的通道开路,让电源继续为负载器件供电。这样,即可实现电源供电时自动打开开关单元,使得电源自动为负载器件供电。因负载器件输出第二电平信号的起始时刻在触发单元输出第一电平信号的结束时刻之前,从而在负载器件上电前,控制单元在触发单元输出的第一电平信号的作用下,控制开关单元导通,在预设时间之后,触发单元中断输出第一电平信号,但此时,控制单元获取到负载器件输出的第二电平信号,从而在该第二电平信号的作用下,控制单元仍然保持向开关单元输出开关控制信号,以使开关单元保持关闭状态,电源可持续为负载器件供电,从而对开关单元的控制权从触发单元转到了负载器件,使得负载器件可对为其供电的通道进行控制。如此,即实现了电源为负载器件的自动供电,且因触发单元通过获取到电源输出的电信号的突变,来向控制单元输出第一电平信号,以控制开关单元的导通,此时开关单元从断路到开路的控制无需其它器件与开关单元一直保持电连接状态,从而减少了漏电的发生,电源为负载器件的自动供电以节能的方式得到实现。
本申请实施例的控制电路采用简单的电路单元设计,在电源开始供电时,负载器件可以获取电源的供电,从而完成上电操作。且上电后,负载器件可以简易地获得电源的供电通路的控制权限。
例如,负载器件停止向控制单元输出第二电平信号后,即可控制开关单元断路,从而断开电源与负载器件间的通路。具体方案如下:
控制单元还用于在未获取到第一电平信号和第二电平信号时,停止向开关单元输出开关控制信号;开关单元还用于在未获取到开关控制信号时,断开电源和负载器件之间的通道。
即在预设时间后,触发单元不再向控制单元输出持续预设时间的第一电平信号,但是,因负载器件上电后持续向控制单元输出第二电平信号,且负载器件输出第二电平信号的起始时刻在触发单元输出第一电平信号的结束时刻之前,从而在第二电平信号作用下,此时控制单元向开关单元输出开关控制信号,以控制开关单元处于关闭状态。此时对开关单元的控制权限属于负载器件。若负载器件有下电需求,则负载器件停止向控制单元输出该第二电平信号,此时,控制单元未获取到第一电平信号和第二电平信号,从而停止向开关单元输出开关控制信号。开关单元在未获取到开关控制信号时,断开电源和负载器件之间的通道,从而电源与负载器件之间的通道为断路状态,负载器件不再与电源连接,从而避免产生因电源挂载在负载器件上导致的静态漏电,节省了电源的电能。本申请实施例在电源为电池的具体场景尤其适用,因电池存储的电能有限,漏电过多,将会影响电池后续对负 载器件的供电。
这样,负载器件下电后,无需专门的软件控制,电源与负载器件的通路将被自动切断,从而解决了电源漏电的问题。且电源再次为负载器件供电时,无需特殊的初始化过程,即可重复以上的供电流程。
可以理解的是,本申请实施例的控制电路可有多种具体实现方式。
其中,开关单元的功能是控制电源和负载器件之间的通道的开断。开关单元在获取到开关控制信号时,处于开路状态,以使电源和负载器件之间的通道开路,当未获取到开关控制信息时,处于打开状态,以使电源和负载器件之间的通道断路。开关单元包括但不限于低电平使能开关、高电平使能开关,具体来说,可以是MOS(metal-oxide-semiconductor,金属-氧化物-半导体)管、三极管等类型的开关。
触发单元的功能是检测到电源的电信号的突变时,输出第一电平信号,该触发单元的具体形式包括但不限于微分电路或者控制芯片等。
控制单元可对触发单元输出的第一电平信号和负载器件输出的第二电平信号进行“或”的处理,即该控制单元可在获取到第一电平信号和/或第二电平信号时,向开关单元输出开关控制信号。在有的实施例中,该控制单元还可以进行信号处理,从而针对开关单元的不同类型,可以设计不同的控制单元,输出可打开开关单元的信号。
第一电平信号和第二电平信号可以为相同的电平信号,也可以为不同的电平信号,开关控制信号可以直接使用第一电平信号和/或第二电平信号,也可以对第一电平信号和第二电平信号进行处理得到。
关于开关单元、控制单元、第一电平信号、第二电平信号以及开关控制信号,可以有多种具体的形式。例如,如图3所示,其为本申请实施例提供的一种控制电路的结构示意图。在图3中,控制单元包括两个二极管,一二极管可使得第一电平信号从触发单元输出到开关单元,但防止第二电平信号从负载器件输出到触发单元;另一二极管可使得第二电平信号从负载器件输出到开关单元,但防止第一电平信号从触发单元输出到负载器件。可见,控制单元可防止第一电平信号输出到负载器件,防止第二电平信号输出到电源。其中,可以以第一电平信号或第二电平信息、或者第一电平信号和第二电平信号的叠加信号作为开关控制信号。
或者,开关单元、控制单元、第一电平信号、第二电平信号以及开关控制信号的具体实现,可以参考图5a、图5b、图6、图7a、图7b和图8所示的实施例,本申请实施例对此不作具体限定。
而电源可以是从电网获取电能的装置,也可以是电池等,其用于为负载器件提供电能。
负载器件根据需要可以为多种具体的器件,例如TBOX、具有预设功能的控制设备等,本申请实施例对此不作具体限定,只要该负载器件能输出第二电平信号,且负载器件输出第二电平信号的起始时刻在触发单元输出第一电平信号的结束时刻之前即可。
本申请实施例的控制电路可以用于多种具体的电路中,例如车载电路、自动控制电路等等,本申请实施例对此不作具体限定。
为了对本申请实施例的控制电路进行更加直观的说明,下文将以本申请实施例的控制 电路应用在车载电路的其中一种电路为场景进行详细的描述,其中在具体的示例中,触发单元为微分电路、电源为车载内置终端设备内置电池,即VBAT,本申请实施例简称之为内置电池,负载器件为车载内置终端设备TBOX。
具体描述如下:
参阅图4,其为本申请实施例提供的一种控制电路的结构示意图。该控制电路包括:开关单元、微分电路和控制单元,微分电路和控制单元连接,控制单元和开关单元连接。内置电池和开关单元的一端连接,开关单元的另一端和TBOX连接,从而开关单元可以控制内置电池和TBOX之间的通道的开断。该TBOX包括供电单元和车载安全控制装置系统单元(简称之为系统单元)两部分,供电单元除了和开关单元连接,还和车身内置蓄电池连接,供电单元在获取到电能后,可为系统单元供电。该TBOX还和控制单元连接,具体来说,是系统单元和控制单元连接。在有的实施例中,可以将本申请实施例的控制电路集成在TBOX上,即控制电路为TBOX的内部电路。
其中,内置电池的输出端和微分电路连接,微分电路用于获取到内置电池输出的电信号的突变后,向控制单元输出持续预设时间的第一电平信号。控制单元用于在第一电平信号作用下,向开关单元输出开关控制信号。开关单元用于在开关控制信号作用下,导通内置电池和负载器件之间的通道,以使内置电池向TBOX供电,TBOX上电后持续向控制单元输出第二电平信号,TBOX输出第二电平信号的起始时刻在触发单元输出第一电平信号的结束时刻之前。该控制单元还用于在第二电平信号作用下,向开关单元输出开关控制信号。
本申请实施例的控制电路的执行流程可参考图10所示的电路控制方法的方法流程示意图,具体实现细节详见图10所示的实施例的描述。例如TBOX的上电过程可参阅图10所示实施例的步骤1001至步骤1004的详细描述。
例如,在车身内置蓄电池出现故障时,车身内置蓄电池不向TBOX供电。TBOX为了继续工作或实现开机需要使用内置电池的电能。
现以使用内置电池的电能实现开机为例,进行如下描述:
参阅图4,车身内置蓄电池不向TBOX供电,即车内蓄电池供电中断,TBOX自身备份的内置电池插入,从而控制电路获取到内置电池的电能,具体可以是用户将内置电池插入车载系统,或者在车身内置蓄电池发生故障时,车载系统自动控制内置电池进入使用状态。内置电池插入后,内置电池的输出电信号由零变为预设电压,从而A处的通道先产生突变的电信号,即一矩形波,与内置电池连接的微分电路检测到该突变的电信号,从而产生持续预设时间的高电平信号,并将该高电平信号输出至控制单元。其中,该预设时间可由微分电路的器件参数决定。即内置电池的插入可在微分电路上触发一段时间的高电平,在矩形波之后内置电池输出的电信号为恒定的电信号,微分电路检测不到电信号的突变,微分电路输出的高电平信号逐步跌落为低电平。通过B处的通道,控制单元在获取到微分电路输出的高电平信号后,对该高电平信号进行处理,以向开关单元输出开关控制信号,从而控制开关单元。即控制单元在微分电路输出的高电平信号作用下,向开关单元输出开关控制信号。通过C处的通道,开关单元在获取到开关控制信号后,在开关控制信号的作 用下,从原来的断路状态处于开路状态,从而导通了内置电池和供电单元之间的通道,内置电池为供电单元供电。通过D处的通道,供电单元获取到内置电池输出的电能,供电单元开始工作,为车载安全控制装置系统单元供电,以使该系统单元上电开机。系统单元开机后,系统单元快速向控制单元输出高电平信号,该系统单元输出的高电平信号的起始时刻在微分电路输出的高电平信号的结束时刻之前即可,具体可通过调节上述的预设时间和系统单元的电路实现。通过E处的通道,系统单元输出的高电平信号经过控制单元处理后,控制单元向开关单元输出开关控制信号,即通过C处的通道向开关单元输出开关控制信号。在上述的预设时间内,此时,控制单元同时获取到系统单元输出的高电平信号和微分电路输出的高电平信号,在这两个高电平信号的作用下,向开关单元输出开关控制信号,以使得开关单元处于开路状态。即,控制单元先是获取到微分电路输出的高电平信号,并根据该微分电路输出的高电平信号向开关单元输出开关控制信号;然后,在上述的预设时间内,控制单元还获取到系统单元输出的高电平信号,此时,控制单元根据系统单元输出的高电平信号和微分电路输出的高电平信号向开关单元输出开关控制信号。因B处由微分电路产生的高电平信号达到电池电平后开始下降,即由微分电路输出的高电平信号持续了预设时间后,变为低电平信号,而控制单元不能根据低电平信号产生开关控制信号,从而在预设时间后,微分电路失去对开关单元的使能控制,此时因系统单元一直持续向控制单元输出高电平信号,E处的高电平信号即可接管对开关单元的控制。即对开关单元的使能控制先是由微分电路执行,后由微分电路和系统单元共同执行,最后只由系统单元实现对开关单元的使能控制。此时,系统单元的上电流程完成,且系统单元(即负载器件)还获得了对开关单元的控制权限。
其中,控制单元包括对获取的高电平信号进行处理的作用,“控制单元在高电平信号作用下,向开关单元输出开关控制信号”例如可以为“控制单元将高电平信号转化为低电平信号,并向开关单元输出该低电平信号”。控制单元的作用还包括:在微分电路控制开关单元打开的同时,系统单元输出的高电平信号也能控制开关单元打开,从而在微分电路的高电平信号消失后,系统单元能继续控制开关单元打开,即使得开关单元开路。
通过上述流程的执行,本申请实施例中的作为负载器件的TBOX完成上电,且具有对开关单元的控制权限,即TBOX可控制开关单元的开断。
在本申请的一些实施例中,控制单元还用于在未获取到第一电平信号和第二电平信号时,停止向开关单元输出开关控制信号;开关单元还用于在未获取到开关控制信号时,断开电源和负载器件之间的通道。
从触发单元发出第一电平信号计时,在预设时间后,触发单元不向控制单元输出第一电平信号,控制单元只获取到负载器件输出的第二电平信号,从而若负载器件停止向控制单元输出第二电平信号,则控制单元获取不到第一电平信号和第二电平信号,从而停止向开关单元输出开关控制信号,使得开关单元断路。即负载器件通过是否输出第二电平信号来实现对开关单元的开断的控制,从而使得负载器件有更多的控制权限,方便在负载器件需要的时候,实现开关单元的断路。并且,负载器件停止输出第二电平信号后,开关单元断路,这时,电源和负载器件之间的通道为断路,即电源并不挂载在负载器件上,从而负 载器件不能引起电源的漏电,节约了电源的电能,若电源是电池时,防止了电池因漏电导致的电能被消耗完。
在本申请的一些实施例中,负载器件可以在下电前停止向控制单元输出第二电平信号,从而开关单元断路时,负载器件获取不到电源的电能,自然就实现了下电操作。这样,即可实现负载器件的快速下电。
在本申请的一些实施例中,负载器件可以在停止向控制单元输出第二电平信号前先进行下电操作,例如进行关机操作,下电完成后,不会向控制单元输出第二电平信号,这也能实现对开关单元的控制。
在本申请的一些实施例中,利用负载器件在上下电后的电压差,来控制电平信号的输出,即在上电后,负载器件有电压,负载器件向控制单元输出高电平信号,在下电后,因负载器件无电压,控制单元从负载器件获取到的电平信号为低电平信号。相应的,设置控制单元获取到高电平信号后,向开关单元输出开关控制信号,控制单元获取到低电平信号时,不向开关单元输出开关控制信号。这样的设置,即可通过简单的电路设计,而不用软件逻辑控制即可实现负载器件对开关单元的控制,从而降低了电路设计的复杂度和电路成本。
具体来说,第一电平信号和第二电平信号为高电平信号,而触发单元还用于在预设时间后,输出低电平信号,控制单元还用于在负载器件下电后,获取到负载器件的低电平信号。控制单元还用于在触发单元的低电平信号和负载器件的低电平信号的作用下,停止向开关单元输出开关控制信号。即控制单元在高电平信号的作用下,才向开关单元输出开关控制信号,以使开关单元开路,在预设时间之后,触发单元向控制单元输出低电平信号,例如电压为零的信号,而负载器件输出高电平信号,从而开关单元的开断由负载器件控制。若负载器件下电后,负载器件输出的电平信号为低电平,例如电压为零的电平信号,即负载器件不向控制单元输出电压。控制单元从负载器件获取的电平信号为低电平信号,而触发单元输出的信号也为低电平信号,从而控制单元不向开关单元输出开关控制信号,开关单元从开路变为断路,即负载器件的下电结果,便可控制开关单元的断路。负载器件下电后不向外输出电压或电流,即使有漏电,漏电电压或电流也较小,故,负载器件上电后向控制单元输出的电压或功率大于负载器件下电后向控制单元输出的电压或功率,即,负载器件的上下电本身即可实现向控制单元输出高电平信号或低电平信号,这样的电路设置,负载器件无需为控制开关单元的开断设置专门复杂的软件逻辑控制,从而降低了本申请实施例的控制电路的设计难度和成本。
在TBOX场景的电路中,使用了本申请的控制电路后,具体的下电流程的执行步骤可参考图10所示实施例的步骤1005至步骤1008的详细描述。
下面即以上述的TBOX场景对负载器件的下电流程进行详细的说明。
关机下电流程:参阅图4,TBOX下电时,由于系统单元处于掉电关机的状态,因此,E处的通道在系统单元关机后,自动处于低电平的状态,在系统彻底变为低电平后,控制单元从系统单元获取的电平信号为低电平信号,且此时微分电路输出的高电平在预设时间之后转为低电平信号,控制单元没有高电平信号的作用,不向开关单元输出开关控制信号, 从而开关单元从开路变为断路。这样,内置电池和供电单元之间的通道为断路状态,内置电池将不再给供电单元进行供电,下电流程结束。这个时候整个的TBOX内部将不再有任何的器件消耗内置电池的电量,从而避免了内置电池的漏电,节约了内置电池的电能。且在系统单元上无需为实现对开关单元的控制设置软件逻辑控制,只要进行简单的电路连接,即可完成系统单元向控制单元的高电平信号和低电平信号的输出。这样的设置使得电路设计简单,降低了电路成本。
这样,本申请实施例的控制电路,在TBOX内置电池插入供电后,TBOX系统可以接管对内置电池的通路的开关控制权,待TBOX系统下电后,可以关闭内置电池与后端供电单元的通路,从而解决内置电池漏电问题。
本申请实施例的控制单元和开关单元,有多种实现方式,例如如图3所示的控制电路的实现方式,即控制单元包括两个二极管,而控制单元向开关单元输出的开关控制信号可以为第一电平信号、或者第二电平信号、或者第一电平信号和第二电平信号的叠加,该实现方式的具体实现细节可参考上文的相应描述。
在本申请有的实施例中,第一电平信号和第二电平信号为高电平信号,开关单元为低电平使能开关,控制单元包括反相器,该反相器具有将高电平转换为低电平的功能,此时,控制单元具体用于在高电平信号作用下,向开关单元输出低电平信号。即控制单元获取到为第一电平信号的高电平信号和/或为第二电平信号的高电平信号时,控制单元的反相器可将该两种高电平信号转化为低电平信号,控制单元以该转化得到的低电平信号作为开关控制信号输出给开关单元。相应的,开关单元具体用于在该低电平信号作用下,导通电源和负载器件之间的通道。
在控制单元包括反相器的实施例中,具体的实现方案,可如图5a、图5b和图6所示。
参阅图5a,控制单元包括两个反相器,一个反相器与触发单元连接,将触发单元输出的高电平信号转化为低电平信号,并将该低电平信号输出到开关单元;另一个反相器与负载器件(如系统单元)连接,将负载器件输出的高电平信号转化为低电平信号,并将该低电平信号输出到开关单元。开关单元为低电平使能开关,开关单元获取到低电平信号后,在低电平信号的作用下,处于开路状态。若这两个反相器获取不到高电平信号,则不向开关单元输出低电平信号,则开关单元处于断路状态。这两个反相器的设置即可以满足对低电平使能开关的控制要求,同时,防止了触发单元输出的高电平流入负载器件,也防止了负载器件输出的高电平信号流入微分电路。
其中,图5b所示的电路结构是图5a所示的控制电路的具体实现方式,如图5b所示,该反相器为NMOS,该开关单元包括PMOS和电阻。器件的具体连接方式,可参阅图5b所示的结构。
参阅图6,控制单元包括一个反相器和两个二极管。其中一个二极管和触发单元连接,使得触发单元输出的高电平信号流入反相器,并防止负载器件输出的高电平信号流入触发单元;另一个二极管与负载器件连接,使得负载器件输出的高电平信号输出到反相器,并防止触发单元输出的高电平流入负载器件。而该反相器在获取到其中一个二极管或同时获取到两个二极管输入的高电平信号后,将该高电平信号转化为低电平信号,以该低电平信 号作为开关控制信号,将其输入到开关单元,以使开关单元在该低电平信号的作用下处于开路。其中,图6的器件类型可以参考图5b,即在图6中,该反相器可以为NMOS,该开关单元可包括PMOS和电阻。
在本申请有的实施例中,开关单元为高电平使能开关,控制单元包括电信号激励器件。为了驱动该高电平使能开关,在触发单元和负载器件输出的高电平信号还不能满足开关单元的控制要求时,可利用电信号激励器件来使得第一电平信号和第二电平信号的电压提高,得到开关控制信号,以控制开关单元。例如,开关单元若是高电平开关(比如NMOS),激励信号的电平需要是比VBAT的输出电平更高的控制信号才能有效打开,而微分电路的高电平信号,最高也只能达到VBAT电平,无法打开开关单元,故需要使用电信号激励器件对信号进行处理。
此时,控制单元具体用于在第一电平信号和/或第二电平信号作用下,向开关单元输出高电平信号。开关单元具体用于在控制单元输出的高电平信号作用下,导通电源和负载器件之间的通道。这样,控制单元在获取到第一电平信号和/或第二电平信号后,通过电信号激励器件,可将第一电平信号和/或第二电平信号的电平升高,并以该电平升高后的高电平信号作为开关控制信号,将该开关控制信号输入到为高电平使能的开关单元,驱动开关单元开路。
在控制单元包括电信号激励器件的实施例中,具体的实现方案,可如图7a、图7b和图8所示。
参阅图7a,控制单元包括两个电信号激励器件,其中一个电信号激励器件与触发单元连接,以使触发单元输出的第一电平信号的电平升高,并将电平升高后的第一电平信号作为开关控制信号,将该开关控制信号输入到开关单元,驱动为高电平使能的开关单元开路,并且该电信号激励器件可防止负载器件输出的第二电平信号输入到触发单元中;另一个电信号激励器件与负载器件连接,将负载器件输出的第二电平信号的电平升高,以电平升高后的第二电平信号作为开关控制信号,将该开关控制信号输入到开关单元中,使得开关单元在开关控制信号的作用下开路,并且该电信号激励器件防止触发单元输出的第一电平信号输入到负载电路中。这两个电信号激励器件在获取不到第一电平信号或第二电平信号后,不向开关单元输出开关控制信号,开关单元获取不到开关控制信号,则开关单元处于断路。
其中,图7b所示的电路结构为图7a的控制电路的具体实现方式。如图7b所示,该开关单元为NMOS,该电信号激励器件可以为光耦器件或磁感应器件等。
在有的实施例中,控制单元可以只包括一个电信号激励器件,例如,如图8所示,控制单元还包括两个二极管,这两个二级管的功能可参考图6所示实施例对二极管的相应描述,而电信号激励器件可将二极管输入的第一电平信号和/或第二电平信号的电平升高,以升高后的电平信号作为开关控制信号输入到开关单元,以使开关单元在获取到该开关控制信号时导通开路。
通过在TBOX的电路场景中,使用本申请实施例的控制电路,TBOX电路的内置电池插入后,系统可以自动上电开机。且TBOX开机后,TBOX对内置电池的供电通路有主动控制权,在TBOX下电关机后,可以切断内置电池与后端的供电单元等器件的连接,从而 解决了内置电池的持续漏电问题。并且由于本申请实施例的控制电路采用的电路架构设计,可以用很简单的分离电子元器件搭建,无需专门复杂的软件逻辑控制。因此,开发难度低,成本低。
可以理解,上述对控制单元和开关单元的描述为示例性描述,本申请实施例的控制电路还可以包括其它的控制单元和开关单元的形式。
可以理解,触发单元除了可以是微分电路之外,还可以是控制芯片等实现方式,本申请实施例对此不作具体限定。若为微分电路的具体形式,即可以检测电源输出信号的突变,也可以避免在与电源连接后让电源产生漏电。
可以理解,上述实施例的TBOX只是负载器件的其中一种具体实现方式,本申请实施例的负载器件还可以是其它的器件类型,例如电动机、控制设备等等。而电源除了可以是上述的内置电池外,还可以是从电网获取电能的装置、或者为电网电源等。
可以理解,内置电池包括但不限于锂电池、镍氢电池、铅晶蓄电池等类型。
可以理解,本申请实施例的控制电路的各单元模块可独立设置,也可互相集成设置,例如将开关单元和控制单元集成为一个器件,本申请实施例对此不作具体限定。
图9为本申请实施例提供的一种电路控制方法的方法流程图,该电路控制方法可应用于上述各实施例中的控制电路中。
其中,应用该电路控制方法的控制电路包括:开关单元、触发单元和控制单元,触发单元和控制单元连接,控制单元和开关单元连接。这些单元器件以及电源和负载器件的具体描述,可参考图2至图8所示实施例的控制电路的相应描述,在此不再赘述。
本申请实施例的电路控制方法包括:
步骤901:触发单元获取到电源输出的电信号的突变后,向控制单元输出持续预设时间的第一电平信号。
其中,预设时间可根据触发单元的部件参数进行调节。电源输出的电信号的突变包括电源开始供电时电信号从零突变至预设电压的矩形波。
步骤902:控制单元在第一电平信号作用下,向开关单元输出开关控制信号。
即,控制单元获取到第一电平信号时,才向开关单元输出开关控制信号,以控制开关单元。例如,将第一电平信号转化为开关控制信号。
步骤903:开关单元在开关控制信号作用下,导通电源和负载器件之间的通道。
电源和负载器件之间的通道导通后,电源可向负载器件供电,负载器件上电后持续向控制单元输出第二电平信号,负载器件输出第二电平信号的起始时刻在触发单元输出第一电平信号的结束时刻之前。
步骤904:控制单元在第二电平信号作用下,向开关单元输出开关控制信号。
控制单元获取到第二电平信号时,在第二电平信号作用下,向开关单元输出开关控制信号,以使得开关单元在开关控制信号的作用下,处于开路状态,导通电源和负载器件间的通道。例如,将第二电平信号转化为开关控制信号。
这样,控制单元在获取到第一电平信号或者第二电平信号,或者同时获取到第一电平信号和第二电平信号时,才向开关单元输出开关控制信号,实现了触发单元和负载器件对 开关单元的开断的控制。
在本申请的一些实施例中,该电路控制方法还包括负载器件的下电流程。即控制单元在第二电平信号作用下,向开关单元输出开关控制信号之后,本申请实施例的方法还包括:控制单元在未获取到第一电平信号和第二电平信号时,停止向开关单元输出开关控制信号;开关单元在未获取到开关控制信号时,断开电源和负载器件之间的通道。
因触发单元输出的第一电平信号只维持预设时间,在预设时间之后,控制单元只获取到第二电平信号,且在第二电平信号的作用下,向开关单元输出开关控制信号,以控制开关单元开路,在负载器件停止向控制单元输出第二电平信号时,因触发单元已停止输出第一电平信号,从而控制单元未获取到第一电平信号和第二电平信号,停止向开关单元输出开关控制信号,没有开关控制信号的获取,开关单元断路,这样,即可实现负载器件主动控制电源和负载器件之间通道的断路。
综上所述,电源在开始为负载器件供电,而在电源和负载器件之间的通道上设置的开关单元为断路时,触发单元此时检测到电源输出的电信号的突变,从而向控制单元输出第一电平信号,使得控制单元在第一电平信号作用下,向开关单元输出开关控制信号,开关单元在开关控制信号作用下,导通电源和负载器件之间的通道,以使电源向负载器件供电。负载器件上电后持续向控制单元输出第二电平信号,而控制单元在第二电平信号作用下,向开关单元输出开关控制信号,以使得开关单元保持电源和负载器件之间的通道开路,让电源继续为负载器件供电。这样,即可实现电源供电时自动打开开关单元,使得电源自动为负载器件供电。因负载器件输出第二电平信号的起始时刻在触发单元输出第一电平信号的结束时刻之前,从而在负载器件上电前,控制单元在触发单元输出的第一电平信号的作用下,控制开关单元导通,在预设时间之后,触发单元中断输出第一电平信号,但此时,控制单元获取到负载器件输出的第二电平信号,从而在该第二电平信号的作用下,控制单元仍然保持向开关单元输出开关控制信号,以使开关单元保持关闭状态,电源可持续为负载器件供电,从而对开关单元的控制权从触发单元转到了负载器件,使得负载器件可对为其供电的通道进行控制。
图10为本申请实施例提供的一种电路控制方法的方法流程图。本申请实施例的电路控制方法可应用于上述各实施例提供的控制电路中,本申请实施例的电路控制方法可参考上述各实施例的控制电路的详细描述。
本申请实施例的电路控制方法应用于的控制电路包括:开关单元、触发单元和控制单元,触发单元和控制单元连接,控制单元和开关单元连接。对这些单元器件以及电源和负载器件的具体描述,可参考上述各实施例的控制电路的相应描述。
参考上述各实施例的控制电路和图9所示的实施例,下文将以触发单元为微分电路,电源为车载内置终端设备内置电池,负载器件为车载内置终端设备为例进行描述,其中对车载内置终端设备内置电池简称之为内置电池,具体的电路结构示意图可参考图4,本申请实施例的电路控制方法包括:
步骤1001:微分电路获取到内置电池输出的电信号的突变后,向控制单元输出持续预设时间的高电平信号。
其中,预设时间与微分电路的器件参数有关,预设时间的调整可以通过使用不同的器件来设计微分电路来实现。
例如,车载电路的车身内置蓄电池出现故障时,车身内置蓄电池不向TBOX供电。TBOX为了继续工作或实现开机需要使用内置电池的电能。内置电池插入,从而内置电池输出的电信号由零突变为预设电压,因微分电路与内置电池的输出端连接,微分电路检测到内置电池输出的电信号的突变后,即获取到矩形波,微分电路可把该矩形波转换为高电平信号,并向控制单元输出该高电平信号,该高电平信号的输出持续预设时间。
步骤1002:控制单元在微分电路输出的高电平信号作用下,向开关单元输出开关控制信号。
微分电路持续输出预设时间的高电平信号,从而该高电平信号持续预设时间作用在控制单元上,使得控制单元在获取到该高电平信号的期间,持续向开关单元输出开关控制信号,以通过该开关控制信号控制开关单元。
步骤1003:开关单元在开关控制信号作用下,导通电源和负载器件之间的通道。
开关单元的一端与内置电池连接,开关单元的另一端与TBOX的供电单元连接,从而开关单元控制内置电池和TBOX之间的通道的开断。
开关单元获取到控制单元输入的开关控制信号,在持续获取开关控制信号期间,开关单元在开关控制信号作用下,导通内置电池和TBOX之间的通道,以使内置电池向TBOX供电。TBOX的系统单元上电后,该系统单元持续向控制单元输出高电平信号,TBOX输出的高电平信号的起始时刻在微分电路输出的高电平信号的结束时刻之前。
控制单元在获取到高电平信号时,才向开关单元输出开关控制信号。因微分电路输出的高电平信号持续预设时间,TBOX输出的高电平信号的起始时刻在微分电路输出的高电平信号的结束时刻之前,这保证了在预设时间之后,控制单元仍能获取到高电平信号,此时该高电平信号由TBOX输出。
其中,微分电路输出的高电平信号在有的实施例中称之为第一电平信号,TBOX输出的高电平信号在有的实施例中称之为第二电平信号。
步骤1004:控制单元在TBOX输出的高电平信号作用下,向开关单元输出开关控制信号。
控制单元持续获取TBOX输出的高电平信号,并在该高电平信号的作用下,持续向开关单元输出开关控制信号,以使开关单元在开关控制信号作用下,一直保持开路状态。
由上文可知,控制单元在获取到微分电路的高电平信号、或者获取到TBOX的高电平信号、或者同时获取到微分电路的高电平信号和TBOX的高电平信号时,都会向开关单元输出开关控制信号,以使得开关单元在开关控制信号的作用下,处于开路,导通内置电池和TBOX之间的通道,以让内置电池为TBOX供电。从而在TBOX上电过程中,开关单元的开路先是由微分电路控制,在TBOX上电完成后,TBOX在微分电路输出的高电平信号结束之前,向控制单元输出高电平信号,此时,控制单元同时获取到微分电路的高电平信号和TBOX输出的高电平信号,开关单元的开路由TBOX和微分电路同时控制,在预设时间之后,微分电路的高电平信号停止输出,控制单元只获取到TBOX输出的高电平信号, 从而开关单元的开路由TBOX控制,这样,本申请实施例的方法,实现了内置电池插入后,自动打开开关单元,以实现TBOX的上电,且内置电池和TBOX之间的供电通道的控制权实现了从微分电路到TBOX的转移。
步骤1005:微分电路在预设时间后,输出低电平信号。
因微分电路输出的高电平维持预设时间,内置电池在插入时才在通道上产生一矩形波,后续输出的波形恒定,从而,在预设时间之后,微分电路不向控制单元输出高电平信号,此时可向控制单元输出低电平信号,例如电压为零的信号,因控制单元不将低电平信号转为开关控制信号,从而微分电路不再控制开关单元的开路。但TBOX仍向控制单元输出高电平信号,从而控制单元在TBOX的高电平信号的作用下,仍然向开关单元输出开关控制信号,以使得开关单元仍处于开路,即开关单元的开路状态此时由TBOX控制。
步骤1006:控制单元在TBOX下电后,获取到TBOX的低电平信号。
在TBOX下电后,例如TBOX关机时,TBOX的系统单元处于低电平状态,从而控制单元不再从TBOX获取到高电平信号,而是获取到低电平信号。
步骤1007:控制单元在微分电路的低电平信号和TBOX的低电平信号的作用下,停止向开关单元输出开关控制信号。
因控制单元在高电平信号作用下,才向开关单元输出开关控制信号,在预设时间之后,微分单元输出低电平信号,而TBOX下电后,也只输出低电平信号,从而控制单元此时只获取到低电平信号,控制单元停止向开关单元输出开关控制信号。
可以理解,步骤1007是控制单元在未获取到第一电平信号和第二电平信号时,停止向开关单元输出开关控制信号的具体实现方式,本申请有的实施例还有其它的实现方式,例如不将第一电平信号和第二电平信号限定在高电平信号等。
步骤1008:开关单元在未获取到开关控制信号时,断开内置电池和TBOX之间的通道。
开关单元在获取到开关控制信号时,在开关控制信号的作用期间处于开路,当控制单元停止向开关单元输出开关控制信号时,开关单元获取不到开关控制信号,从而变为断路状态,断开了内置电池和TBOX之间的供电通道,使得内置电池不与TBOX的器件连接,防止了内置电源因与TBOX挂载产生的漏电现象,节约了内置电池的电能。
因在预设时间之后,控制单元只获取到TBOX输出的高电平信号,此时开关单元的开断由TBOX控制。而TBOX在上电后的工作状态下的电平比下电后的关机状态的电平要高,即TBOX的上电后的电平高于下电后电平,从而TBOX下电后,控制单元只能从TBOX处获取到低电平信号,从而停止向开关单元输出开关控制信号,开关单元从开路转为断路。这样,TBOX向控制单元的高低电平信号的输出无需通过软件逻辑过程实现,通过简单的电路连接即可实现,使得TBOX对开关单元的开断控制的实现电路简单,减少了成本。
这样,本申请实施例的电路控制方法,在TBOX内置电池插入供电后,TBOX系统可以接管对内置电池的通路开关控制权,待TBOX系统下电后,可以关闭内置电池与后端供电单元的通道,从而解决内置电池耗电问题。
本申请实施例的电路控制方法涉及到的控制单元和开关单元有多种实现方法,本申请实施例对此不作具体限定。其中,控制单元可对获取的信号进行处理,以输出适合于开关 单元的信号。现举出其中几个例子进行说明。
例一:
开关单元为低电平使能开关,控制单元包括反相器。该反相器可以使得高电平信号转为低电平信号,从而为低电平使能的开关单元输出低电平信号,相应的,触发单元输出的第一电平信号和/或负载器件输出的第二电平信号为高电平信号。
此时,控制单元在第一电平信号作用下,向开关单元输出开关控制信号的步骤的具体实现为:控制单元在高电平信号作用下,向开关单元输出低电平信号。即开关控制信号为低电平信号。控制单元通过反相器的作用将触发单元输出的高电平信号转化为低电平信号,以该低电平信号作为开关控制信号。
相应的,开关单元在开关控制信号作用下,导通电源和负载器件之间的通道的步骤的具体实现为:开关单元在低电平信号作用下,导通电源和负载器件之间的通道。
另一方面,控制单元在第二电平信号作用下,向开关单元输出开关控制信号的步骤的具体实现为:控制单元在高电平信号作用下,向开关单元输出低电平信号。例如,控制单元通过反相器的作用将负载器件输出的高电平信号转化为低电平信号,以该低电平信号作为开关控制信号。从而开关单元在获取到根据负载器件输出的高电平信号得到的低电平信号后,开关单元在低电平信号作用下,导通电源和负载器件之间的通道。
具体的电路图和实现细节,可参考图5a、图5b和图6,以及图5a、图5b和图6所示实施例的相应描述。
例二:
开关单元为高电平使能开关,控制单元包括电信号激励器件。在触发单元输出的电平和负载器件输出的电平还不能驱动为高电平使能的开关单元时,可将电信号激励器件集成到控制单元上,以使得控制单元可以利用电信号激励器件将第一电平信号和第二电平信号进行激励升压,并以升压后的电平信号输出给开关单元,以驱动开关单元工作。
此时,控制单元在第一电平信号作用下,向开关单元输出开关控制信号的步骤的具体实现为:控制单元在第一电平信号作用下,向开关单元输出高电平信号。例如,控制单元利用电信号激励器件将触发单元输出的第一电平信号升压,得到高电平信号,并以该高电平信号作为开关控制信号,输出给开关单元。从而,开关单元在开关控制信号作用下,导通电源和负载器件之间的通道的步骤的具体实现为:开关单元在控制单元输出的高电平信号作用下,导通电源和负载器件之间的通道。
类似的,控制单元在第二电平信号作用下,向开关单元输出开关控制信号的具体实现为:控制单元在第二电平信号作用下,向开关单元输出高电平信号。控制单元利用电信号激励器件将负载器件输出的第二电平信号升压,得到高电平信号,并以该高电平信号作为开关控制信号,输出给开关单元。开关单元获取到该高电平信号后,在该高电平信号的作用下开路,导通电源和负载器件之间的通道。
其中,本申请实施例的具体电路图可参考图7a、图7b和图8,具体的描述,可参考图7a、图7b和图8所示实施例的描述。
通过在TBOX的电路场景中,使用本申请实施例的控制电路,TBOX电路的内置电池 插入后,TBOX系统可以自动上电开机。且TBOX开机后,TBOX对内置电池的供电通道有主动控制权,在TBOX下电关机后,可以切断内置电池与后端的供电单元等器件的连接,从而解决了内置电池的持续漏电问题。并且由于本申请实施例的控制电路采用的电路架构设计,可以用很简单的分离电子元器件搭建,无需专门复杂的软件逻辑控制。因此,开发难度低,成本低。
可以理解,上述对控制单元和开关单元的描述为示例性描述,本申请实施例的控制电路还可以包括其它的控制单元和开关单元的形式。
可以理解,触发单元除了可以是微分电路之外,还可以是控制芯片等实现方式,本申请实施例对此不作具体限定。
可以理解,上述实施例的TBOX只是负载器件的其中一种具体实现方式,本申请实施例的负载器件还可以是其它的器件类型,例如电动机、控制设备等等。
综上所述,内置电池在开始为TBOX供电,而在内置电池和TBOX之间的通道上设置的开关单元为断路时,微分电路此时检测到内置电池输出的电信号的突变,从而向控制单元输出高电平信号,使得控制单元在该高电平信号作用下,向开关单元输出开关控制信号,开关单元在开关控制信号作用下,导通内置电池和TBOX之间的通道,以使内置电池向TBOX供电。TBOX上电后持续向控制单元输出高电平信号,而控制单元在该高电平信号作用下,向开关单元输出开关控制信号,以使得开关单元保持内置电池和TBOX之间的通道开路,让内置电池继续为TBOX供电。这样,即可实现内置电池供电时自动打开开关单元,使得内置电池自动为TBOX供电。因TBOX输出的高电平信号的起始时刻在微分电路输出的高电平信号的结束时刻之前,从而在TBOX上电前,控制单元在微分电路输出的高电平信号的作用下,控制开关单元导通,在预设时间之后,微分电路中断输出高电平信号,但此时,控制单元获取到TBOX输出的高电平信号,从而在该TBOX输出的高电平信号的作用下,控制单元仍然保持向开关单元输出开关控制信号,以使开关单元保持关闭状态,内置电池可持续为TBOX供电,从而对开关单元的控制权从微分电路转到了TBOX,使得TBOX可对为其供电的通道进行控制。
在本申请的一些实施例中还提供了一种控制电路,该控制电路包括:开关、微分电路和开关控制电路,微分电路和开关控制电路连接,开关控制电路和开关连接。关于该控制电路的更多描述可参阅图2至图8所示实施例的详细描述。
其中,在该控制电路中,关于该开关可参阅上述各控制电路和电路控制方法等实施例中对开关单元的详细描述,在此,不再赘述。
在该控制电路中,关于该微分电路可参阅上述各控制电路和电路控制方法等实施例中对触发单元和微分电路的详细描述,在此,不再赘述。
在该控制电路中,关于该开关控制电路可参阅上述各控制电路和电路控制方法等实施例中对控制单元的详细描述,在此,不再赘述。
其中,该开关控制电路包括反相器或电信号激励器件,具体的描述,可参阅图5a、图5b、图6、图7a、图7b和图8所示实施例的描述。
这样,即可实现电源供电时自动打开开关,使得电源自动为负载器件供电。因负载器 件输出第二电平信号的起始时刻在微分电路输出第一电平信号的结束时刻之前,从而在负载器件上电前,开关控制电路在微分电路输出的第一电平信号的作用下,控制开关导通,在预设时间之后,微分电路中断输出第一电平信号,但此时,开关控制电路获取到负载器件输出的第二电平信号,从而在该第二电平信号的作用下,开关控制电路仍然保持向开关输出开关控制信号,以使开关保持关闭状态,电源可持续为负载器件供电,从而对开关的控制权从微分电路转到了负载器件,使得负载器件可对为其供电的通道进行控制。如此,即实现了电源为负载器件的自动供电,且因微分电路通过获取到电源输出的电信号的突变,来向开关控制电路输出第一电平信号,以控制开关的导通,此时开关从断路到开路的控制无需其它器件与开关一直保持电连接状态,从而减少了漏电的发生,电源为负载器件的自动供电以节能的方式得到实现。

Claims (21)

  1. 一种控制电路,其特征在于,
    所述电路包括:开关单元、触发单元和控制单元,所述触发单元和所述控制单元连接,所述控制单元和所述开关单元连接;
    所述触发单元,用于获取到电源输出的电信号的突变后,向所述控制单元输出持续预设时间的第一电平信号;
    所述控制单元,用于在所述第一电平信号作用下,向所述开关单元输出开关控制信号;
    所述开关单元,用于在所述开关控制信号作用下,导通所述电源和负载器件之间的通道,以使所述电源向所述负载器件供电,所述负载器件上电后持续向所述控制单元输出第二电平信号,所述负载器件输出所述第二电平信号的起始时刻在所述触发单元输出所述第一电平信号的结束时刻之前;
    所述控制单元,还用于在所述第二电平信号作用下,向所述开关单元输出所述开关控制信号。
  2. 根据权利要求1所述的电路,其特征在于,
    所述控制单元,还用于在未获取到所述第一电平信号和所述第二电平信号时,停止向所述开关单元输出所述开关控制信号;
    所述开关单元,还用于在未获取到所述开关控制信号时,断开所述电源和所述负载器件之间的通道。
  3. 根据权利要求2所述的电路,其特征在于,
    所述第一电平信号和所述第二电平信号为高电平信号,
    所述触发单元,还用于在所述预设时间后,输出低电平信号;
    所述控制单元,还用于在所述负载器件下电后,获取到所述负载器件的低电平信号;
    所述控制单元,还用于在所述触发单元的低电平信号和所述负载器件的低电平信号的作用下,停止向所述开关单元输出所述开关控制信号。
  4. 根据权利要求1所述的电路,其特征在于,
    所述第一电平信号和所述第二电平信号为高电平信号,所述开关单元为低电平使能开关,所述控制单元包括反相器;
    所述控制单元,具体用于在所述高电平信号作用下,向所述开关单元输出低电平信号;
    所述开关单元,具体用于在所述低电平信号作用下,导通所述电源和所述负载器件之间的通道。
  5. 根据权利要求1所述的电路,其特征在于,
    所述开关单元为高电平使能开关,所述控制单元包括电信号激励器件;
    所述控制单元,具体用于在所述第一电平信号和/或所述第二电平信号作用下,向所述开关单元输出高电平信号;
    所述开关单元,具体用于在所述控制单元输出的高电平信号作用下,导通所述电源和所述负载器件之间的通道。
  6. 根据权利要求1至5任一项所述的电路,其特征在于,
    所述触发单元为微分电路。
  7. 根据权利要求1至5任一项所述的电路,其特征在于,
    所述电源为车载内置终端设备内置电池,所述负载器件为车载内置终端设备。
  8. 一种电路控制方法,其特征在于,
    所述方法应用于控制电路,所述控制电路包括:开关单元、触发单元和控制单元,所述触发单元和所述控制单元连接,所述控制单元和所述开关单元连接;
    所述方法包括:
    所述触发单元获取到电源输出的电信号的突变后,向所述控制单元输出持续预设时间的第一电平信号;
    所述控制单元在所述第一电平信号作用下,向所述开关单元输出开关控制信号;
    所述开关单元在所述开关控制信号作用下,导通所述电源和负载器件之间的通道,以使所述电源向所述负载器件供电,所述负载器件上电后持续向所述控制单元输出第二电平信号,所述负载器件输出所述第二电平信号的起始时刻在所述触发单元输出所述第一电平信号的结束时刻之前;
    所述控制单元在所述第二电平信号作用下,向所述开关单元输出所述开关控制信号。
  9. 根据权利要求8所述的方法,其特征在于,
    所述控制单元在所述第二电平信号作用下,向所述开关单元输出所述开关控制信号之后,所述方法还包括:
    所述控制单元在未获取到所述第一电平信号和所述第二电平信号时,停止向所述开关单元输出所述开关控制信号;
    所述开关单元在未获取到所述开关控制信号时,断开所述电源和所述负载器件之间的通道。
  10. 根据权利要求9所述的方法,其特征在于,
    所述第一电平信号和所述第二电平信号为高电平信号,
    所述方法还包括:
    所述触发单元在所述预设时间后,输出低电平信号;
    所述控制单元在所述负载器件下电后,获取到所述负载器件的低电平信号;
    所述控制单元在未获取到所述第一电平信号和所述第二电平信号时,停止向所述开关单元输出所述开关控制信号,包括:
    所述控制单元在所述触发单元的低电平信号和所述负载器件的低电平信号的作用下,停止向所述开关单元输出所述开关控制信号。
  11. 根据权利要求8所述的方法,其特征在于,
    所述第一电平信号为高电平信号,所述开关单元为低电平使能开关,所述控制单元包括反相器;
    所述控制单元在所述第一电平信号作用下,向所述开关单元输出开关控制信号,包括:
    所述控制单元在所述高电平信号作用下,向所述开关单元输出低电平信号;
    所述开关单元在所述开关控制信号作用下,导通所述电源和负载器件之间的通道,包 括:
    所述开关单元在所述低电平信号作用下,导通所述电源和所述负载器件之间的通道。
  12. 根据权利要求8所述的方法,其特征在于,
    所述第二电平信号为高电平信号,所述开关单元为低电平使能开关,所述控制单元包括反相器;
    所述控制单元在所述第二电平信号作用下,向所述开关单元输出所述开关控制信号,包括:
    所述控制单元在所述高电平信号作用下,向所述开关单元输出低电平信号;
    所述方法还包括:
    所述开关单元在所述低电平信号作用下,导通所述电源和所述负载器件之间的通道。
  13. 根据权利要求8所述的方法,其特征在于,
    所述开关单元为高电平使能开关,所述控制单元包括电信号激励器件;
    所述控制单元在所述第一电平信号作用下,向所述开关单元输出开关控制信号,包括:
    所述控制单元在所述第一电平信号作用下,向所述开关单元输出高电平信号;
    所述开关单元在所述开关控制信号作用下,导通所述电源和负载器件之间的通道,包括:
    所述开关单元在所述控制单元输出的高电平信号作用下,导通所述电源和所述负载器件之间的通道;
    所述控制单元在所述第二电平信号作用下,向所述开关单元输出所述开关控制信号,包括:
    所述控制单元在所述第二电平信号作用下,向所述开关单元输出高电平信号。
  14. 根据权利要求8至13任一项所述的方法,其特征在于,
    所述触发单元为微分电路。
  15. 根据权利要求8至13任一项所述的方法,其特征在于,
    所述电源为车载内置终端设备内置电池,所述负载器件为车载内置终端设备。
  16. 一种控制电路,其特征在于,
    所述控制电路包括:开关、微分电路和开关控制电路,所述微分电路和所述开关控制电路连接,所述开关控制电路和所述开关连接;
    所述微分电路,用于获取到电源输出的电信号的突变后,向所述开关控制电路输出持续预设时间的第一电平信号;
    所述开关控制电路,用于在所述第一电平信号作用下,向所述开关输出开关控制信号;
    所述开关,用于在所述开关控制信号作用下,导通所述电源和负载器件之间的通道,以使所述电源向所述负载器件供电,所述负载器件上电后持续向所述开关控制电路输出第二电平信号,所述负载器件输出所述第二电平信号的起始时刻在所述微分电路输出所述第一电平信号的结束时刻之前;
    所述开关控制电路,还用于在所述第二电平信号作用下,向所述开关输出所述开关控制信号。
  17. 根据权利要求16所述的控制电路,其特征在于,
    所述开关控制电路,还用于在未获取到所述第一电平信号和所述第二电平信号时,停止向所述开关输出所述开关控制信号;
    所述开关,还用于在未获取到所述开关控制信号时,断开所述电源和所述负载器件之间的通道。
  18. 根据权利要求17所述的控制电路,其特征在于,
    所述第一电平信号和所述第二电平信号为高电平信号,
    所述微分电路,还用于在所述预设时间后,输出低电平信号;
    所述开关控制电路,还用于在所述负载器件下电后,获取到所述负载器件的低电平信号;
    所述开关控制电路,还用于在所述微分电路的低电平信号和所述负载器件的低电平信号的作用下,停止向所述开关输出所述开关控制信号。
  19. 根据权利要求16所述的控制电路,其特征在于,
    所述第一电平信号和所述第二电平信号为高电平信号,所述开关为低电平使能开关,所述开关控制电路包括反相器;
    所述反相器,用于在所述高电平信号作用下,向所述开关输出低电平信号;
    所述开关,具体用于在所述低电平信号作用下,导通所述电源和所述负载器件之间的通道。
  20. 根据权利要求16所述的控制电路,其特征在于,
    所述开关为高电平使能开关,所述开关控制电路包括电信号激励器件;
    所述电信号激励器件,用于在所述第一电平信号和/或所述第二电平信号作用下,向所述开关输出高电平信号;
    所述开关,具体用于在所述开关控制电路输出的高电平信号作用下,导通所述电源和所述负载器件之间的通道。
  21. 根据权利要求16至20任一项所述的控制电路,其特征在于,
    所述电源为车载内置终端设备内置电池,所述负载器件为车载内置终端设备。
PCT/CN2017/085911 2017-02-17 2017-05-25 控制电路和电路控制方法 WO2018149045A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17897091.9A EP3572889B1 (en) 2017-02-17 2017-05-25 Control circuit and circuit control method
CN201780085675.2A CN110249273B (zh) 2017-02-17 2017-05-25 控制电路和电路控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710086717 2017-02-17
CN201710086717.6 2017-02-17

Publications (1)

Publication Number Publication Date
WO2018149045A1 true WO2018149045A1 (zh) 2018-08-23

Family

ID=63169119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/085911 WO2018149045A1 (zh) 2017-02-17 2017-05-25 控制电路和电路控制方法

Country Status (3)

Country Link
EP (1) EP3572889B1 (zh)
CN (1) CN110249273B (zh)
WO (1) WO2018149045A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113410098B (zh) * 2021-06-30 2022-07-19 中车株洲电力机车研究所有限公司 一种继电器的安全驱动电路

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000358001A (ja) * 1999-06-15 2000-12-26 Ntt Communicationware Corp 電源発振自動抑止方法及び装置
US6473852B1 (en) * 1998-10-30 2002-10-29 Fairchild Semiconductor Corporation Method and circuit for performing automatic power on reset of an integrated circuit
CN102109829A (zh) * 2009-12-24 2011-06-29 北京普源精电科技有限公司 一种自动开机电路
CN103607680A (zh) * 2013-11-13 2014-02-26 北京旋极信息技术股份有限公司 一种音频装置
CN105204601A (zh) * 2015-09-16 2015-12-30 江苏辰汉电子科技有限公司 一种系统上电自动开机电路及其开机方法
CN205017207U (zh) * 2015-09-25 2016-02-03 Tcl通力电子(惠州)有限公司 开关机控制电路和开关电源

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2590280Y (zh) * 2002-12-02 2003-12-03 邹鹏幼 感应式照明自动开关
JP5633139B2 (ja) * 2009-11-13 2014-12-03 セイコーエプソン株式会社 情報機器
CN104348365B (zh) * 2010-06-28 2017-10-17 华为技术有限公司 控制电路及方法、电源装置
JP2012249369A (ja) * 2011-05-26 2012-12-13 Toyota Industries Corp 二次電池電力供給起動回路及びセルバランス装置
CN103019287B (zh) * 2011-09-27 2015-12-16 联发科技(新加坡)私人有限公司 控制电路与电路控制方法
US20150188347A1 (en) * 2013-12-30 2015-07-02 Joy Ride Technology Co., Ltd. Battery Management Device and Power Supplying System Including the Same
JP6299564B2 (ja) * 2014-11-12 2018-03-28 株式会社デンソー 電子制御装置
CN104836209B (zh) * 2015-04-30 2018-01-23 华为技术有限公司 一种数字电源保护电路及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6473852B1 (en) * 1998-10-30 2002-10-29 Fairchild Semiconductor Corporation Method and circuit for performing automatic power on reset of an integrated circuit
JP2000358001A (ja) * 1999-06-15 2000-12-26 Ntt Communicationware Corp 電源発振自動抑止方法及び装置
CN102109829A (zh) * 2009-12-24 2011-06-29 北京普源精电科技有限公司 一种自动开机电路
CN103607680A (zh) * 2013-11-13 2014-02-26 北京旋极信息技术股份有限公司 一种音频装置
CN105204601A (zh) * 2015-09-16 2015-12-30 江苏辰汉电子科技有限公司 一种系统上电自动开机电路及其开机方法
CN205017207U (zh) * 2015-09-25 2016-02-03 Tcl通力电子(惠州)有限公司 开关机控制电路和开关电源

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3572889A4

Also Published As

Publication number Publication date
EP3572889A4 (en) 2020-02-26
CN110249273B (zh) 2021-02-12
CN110249273A (zh) 2019-09-17
EP3572889A1 (en) 2019-11-27
EP3572889B1 (en) 2021-07-07

Similar Documents

Publication Publication Date Title
US9395797B2 (en) Microcontroller with multiple power modes
KR20070026441A (ko) 상태 유지 플립-플롭 및 그를 포함하는 회로와, 전력 손실감소 방법
US9966940B2 (en) Charge-saving power-gate apparatus and method
CN103502649B (zh) 一种远程连接和断开用于在冷却系统中采用的可变容量压缩机的频率变换器的辅助电源的系统和方法
WO2019184363A1 (zh) 用于降低功耗的供电系统及电子设备
US20180284859A1 (en) Power Multiplexing with an Active Load
US9356637B2 (en) Power-supply device, method for controlling the same, and communication device including the same
TW201624869A (zh) 電池電源裝置
US20140013135A1 (en) System and method of controlling a power supply
WO2018149045A1 (zh) 控制电路和电路控制方法
US9703345B2 (en) Electronic device and power management control method
US9705323B2 (en) Power supply system and power control circuit thereof
CN108683374B (zh) 一种励磁轴发系统启停逻辑控制电路和励磁轴发系统
TW201206004A (en) Methods and circuits for power switching
CN204890035U (zh) 全数字彩色多普勒超声诊断仪的cpld电源管理电路
CN209805473U (zh) 一种供电的控制电路及充电器
US10886774B2 (en) Method and apparatus to switch power supply for low current standby operation
CN111465911B (zh) 用于上电和深度掉电退出的低涌流电路
CN103580514B (zh) 电源供应系统及其电源控制电路
CN216672981U (zh) 一种按键电路、电源控制系统以及车辆
CN219718089U (zh) 上电和/或下电控制装置及电子设备
JP2018093722A (ja) 電源装置、電源装置の制御方法、及び電源装置を含む通信装置
CN110943527B (zh) 电源供应装置
CN117792013A (zh) 零待机电路和驱动芯片
JP2004258852A (ja) 電源制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17897091

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017897091

Country of ref document: EP

Effective date: 20190820