WO2018149005A1 - 一种纳米级水雾制造方法及设备 - Google Patents

一种纳米级水雾制造方法及设备 Download PDF

Info

Publication number
WO2018149005A1
WO2018149005A1 PCT/CN2017/076701 CN2017076701W WO2018149005A1 WO 2018149005 A1 WO2018149005 A1 WO 2018149005A1 CN 2017076701 W CN2017076701 W CN 2017076701W WO 2018149005 A1 WO2018149005 A1 WO 2018149005A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
nano
water mist
atomization
scale water
Prior art date
Application number
PCT/CN2017/076701
Other languages
English (en)
French (fr)
Inventor
孔显娟
石荣
Original Assignee
北京国悦纳净健康科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京国悦纳净健康科技有限公司 filed Critical 北京国悦纳净健康科技有限公司
Publication of WO2018149005A1 publication Critical patent/WO2018149005A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B14/00Arrangements for collecting, re-using or eliminating excess spraying material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • B05B7/0416Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/166Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed the material to be sprayed being heated in a container
    • B05B7/1666Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed the material to be sprayed being heated in a container fixed to the discharge device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/1686Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed involving vaporisation of the material to be sprayed or of an atomising-fluid-generating product

Definitions

  • the invention relates to the field of liquid atomization technology, in particular to a nanometer water mist manufacturing method and device.
  • the atomization amount of the electrospray atomization is too small, the atomization rate is less than 0.1 mL/h; the pressure atomization brings unpleasant noise; the atomization particle size of the rotary atomization is too large, exceeding 100 ⁇ m, and The amount of atomization is small.
  • ultrasonic atomizers are also present on the market, these ultrasonic atomizers do not heat the generated water mist, the atomization amount is small, the power consumption is large, and a large amount of water mist is lost during the water mist migration process. Therefore, the atomization effect is poor.
  • the object of the present invention is to provide a nanometer water mist manufacturing method and equipment for solving the problem that the atomization device of the prior art is too small, the atomization device is noisy, the atomization rate is low, and the atomization particle size is large. The problem of large power consumption.
  • the technical solution adopted by the present invention is to provide a nano-scale water mist manufacturing method, and the nano-scale water mist manufacturing method comprises the following steps:
  • Step a using a heater to heat the purified water in the heating chamber to generate water vapor;
  • Step b using the atomizing sheet to pat the pure water in the atomization chamber to generate nano-scale water mist;
  • Step c heating the air in the dry burning chamber by using a heating wire
  • step d the water vapor, the nano-scale water mist and the heated air are mixed by a fan and pushed to the cabin.
  • the mixed gas in the cabin is introduced into the dry burning chamber through a return pipe to be recycled.
  • the invention also provides a nano-scale water mist manufacturing device, which comprises a heating chamber filled with pure water, a spraying chamber equipped with pure water, a dry burning chamber provided with an air inlet, and a setting a cabin having a hatch, an atomizer, a heater, a heating wire, a fan and a gas pipe, wherein the heating chamber is respectively connected to the atomization chamber and the dry chamber, and the cabin passes the a gas pipe is connected to the atomization chamber, the atomization sheet is installed in the atomization chamber, the atomization sheet is used to generate a nano-scale water mist, and the heater is installed in the heating chamber,
  • the electric heating wire is installed in the dry burning chamber, wherein the electric heating wire is used to increase the temperature of the air in the dry burning chamber, and the fan is used for mixing nanometer water mist, water vapor and hot air and then pushing it through the gas pipe to the place. Said in the cabin.
  • the pod is a foldable pod.
  • the nano-scale water mist manufacturing apparatus further includes a return air pipe, and the cabin is connected to the air inlet of the dry cooking chamber through the air return pipe.
  • the fan is installed in the dry burning chamber.
  • the heating chamber and the atomization chamber are each provided with a water inlet for adding purified water to the heating chamber and the atomization chamber, respectively, and the water inlet is provided with a cap.
  • the present invention produces a nano-scale water mist by atomizing a sheet, which reduces the noise generated during the operation of the atomizing device. Since the nano-scale water mist manufacturing apparatus of the present invention generates nano-scale water mist by high-frequency vibration of a plurality of atomized sheets, the atomization rate of the atomizing apparatus is improved. In addition, the water mist generated by the atomized sheet is a nano-scale water mist, so that the water mist produced by the nano-scale water mist manufacturing apparatus of the present invention has a smaller and more uniform particle size than the water mist generated by the rotary atomizing device.
  • the invention adopts a plurality of atomized sheets to generate nano-scale water mist, and mixes the generated nano-scale water mist, water vapor and hot air to increase the temperature of the nano-scale water mist, and reduce the nano-scale water mist in operation.
  • the loss during the transfer process increases the amount of atomization of the nanoscale water mist manufacturing equipment.
  • Embodiment 1 is a schematic structural view of a nano-scale water mist manufacturing apparatus in Embodiment 1.
  • Embodiment 2 is a schematic structural view of a nano-scale water mist manufacturing apparatus in Embodiment 2.
  • Figure 3 is a schematic view of the structure of the cabin.
  • Figure 4 is a schematic cross-sectional view of the cabin.
  • Figure 5 is a flow chart of a nanoscale water mist manufacturing method.
  • the nano-scale water mist manufacturing apparatus comprises a heating chamber 1, a spraying chamber 2, a dry burning chamber 3, a cabin 4, an atomizing sheet 21, a heater 12, a heating wire 34, a fan 31, and a gas pipe. 32.
  • the nano-scale water mist manufacturing apparatus of the invention has the advantages of low noise, fast atomization rate and large atomization amount.
  • the atomization chamber 2, the heating chamber 1 and the dry combustion chamber 3 are three compartments connected together, and from left to right are the atomization chamber 2, the heating chamber 1 and the dry combustion chamber 3.
  • the heating chamber 1 is in communication with the upper portion of the atomization chamber 2 and the dry combustion chamber 3, respectively, and the cabin 4 communicates with the atomization chamber 2 through the gas delivery tube 32.
  • the lower portion of the dry combustion chamber 3 is provided with an intake hole through which external air can enter the dry combustion chamber 3.
  • the atomizing sheet 21 is installed at the bottom of the atomizing chamber 2. In the embodiment, three atomizing sheets 21 are disposed in the atomizing chamber 2. After the atomizing sheet 21 is energized, high frequency vibration occurs, and the molecular structure of the liquid water is hit. Scattered to produce a natural and elegant nano-scale water mist.
  • each atomizing sheet 21 is connected to a switch, and by controlling each switch, the operation and the closing of the corresponding atomizing sheet 21 can be independently controlled, thereby achieving the adjustment of the atomization.
  • the purpose of the atomization rate of the sheet 21 is provided to a switch, and by controlling each switch, the operation and the closing of the corresponding atomizing sheet 21 can be independently controlled, thereby achieving the adjustment of the atomization.
  • the purpose of the atomization rate of the sheet 21 is provided to a switch, and by controlling each switch, the operation and the
  • the heater 12 is installed at the bottom of the heating chamber 1, and by energizing the heater 12, the purified water in the heating chamber 1 is evaporated to generate water vapor.
  • the heating wire 34 is installed in the upper portion of the dry burning chamber 3, and heat is supplied to the heating wire 34 to increase the temperature of the air in the dry burning chamber 3.
  • the fan 31 is installed in the middle of the dry cooking chamber 3, and the blower 31 blows the hot air in the dry burning chamber 3 and the water vapor in the heating chamber 1 to the atomizing chamber 2, so that the heated air and water After mixing steam and nano-scale water mist
  • the air intake pipe 32 enters the nacelle 4 for inhalation by the patient in the nacelle 4.
  • the fan 31 can also be installed in the atomization chamber 2 and the heating chamber 1.
  • the temperature of the nano-scale water mist is increased, and the loss of the nano-scale water mist during the migration process is reduced, thereby increasing the fog of the nano-scale water mist manufacturing equipment. Amount.
  • the cabin 4 is a collapsible compartment 4.
  • the cabin 4 includes a first panel surface 42 and a second panel surface 42.
  • the first panel surface 41 and the second panel surface 42 are connected.
  • a folding surface 43 is connected between the first panel surface 41 and the second panel surface 42.
  • the folding surface 43 is connected.
  • a plurality of folding mechanisms are provided. When the first plate surface 41 and the second plate surface 42 are close to each other, the folded surface 43 can be compressed and folded between the first plate surface 41 and the second plate surface 42, thereby greatly reducing the space occupied by the cabin 4.
  • a hatch 411 is disposed on the first deck 41, and the user can enter and exit the pod 4 through the hatch 411.
  • One end of the gas pipe 32 is mounted on the first plate surface 41, and the other end is installed on the upper portion of the atomization chamber 2. The hot air, water vapor and the nano-scale water mist are mixed and then enter the cabin 4 through the gas pipe 32.
  • the heating chamber 1 and the atomizing chamber 2 are respectively provided with a water adding port 11 for adding pure water, when the heating chamber 1 or the atomizing chamber 2 is inside.
  • a water adding port 11 for adding pure water, when the heating chamber 1 or the atomizing chamber 2 is inside.
  • a return air pipe 33 is disposed between the cabin 4 and the dry cooking chamber 3.
  • One end of the return air pipe 33 is connected to the cabin 4, and the other end is dry-burned.
  • the air inlets of the chamber 3 are connected, and the mixed gas in the cabin 4 is introduced into the dry cooking chamber 3 through the air return pipe 33. Since the temperature of the mixed gas in the tank 4 is high, the mixed gas contains a large amount of heat and nano-scale water mist, and the mixed gas in the tank 4 is introduced into the dry burning chamber 3 for recycling, and the heating wire 34 consumes little.
  • the amount of electricity can heat the gas in the dry chamber 3 to a set temperature, thereby reducing the power loss of the heating wire 34 and increasing the amount of atomization output from the nano-scale water mist manufacturing equipment.
  • FIG. 5 is a flow chart showing a nano-scale water mist manufacturing method of the nano-scale water mist manufacturing apparatus shown in FIG. 1 , which specifically includes the following steps:
  • the atomizing sheet 21 breaks up the liquid water molecular structure of the purified water in the chamber to generate a natural floating nano-scale water mist.
  • the fan 31 After the fan 31 is energized and rotated, the air heated in the dry burning chamber 3 and the water vapor in the heating chamber 1 are pushed to the atomizing chamber 2, so that the water vapor, the nano-scale water mist and the heated air are mixed, and the pressure is pushed. Next, the mixed gas enters the cabin 4 along the gas pipe 32.
  • the mixed gas in the cabin 4 is introduced into the dry cooking chamber 3 through the air return pipe 33 for recycling. Since the temperature of the mixed gas in the cabin 4 is high, the mixed gas contains a large amount of heat and nano-scale water mist, and the air in the cabin 4 is reused by introducing the air into the dry cooking chamber 3, and the heating wire 34 consumes only a small amount of electricity.
  • the air in the dry burning chamber 3 can be heated to a set temperature, thereby reducing the energy loss of the heating wire 34 and increasing the amount of atomization output from the atomizing chamber.
  • the present embodiment is based on the first embodiment, and is different from the first embodiment in that the return air duct is removed in the embodiment, the dry combustion chamber 3 is a tubular structure, and one end of the dry combustion chamber 3 is provided. It is connected to the cabin 4, and the other end is connected to the heating chamber 1, and the fan 31 and the heating wire 34 are both installed in the dry burning chamber 3.
  • the dry burning chamber 3 is a tubular structure, not only the structure of the nano-scale water mist manufacturing apparatus is simplified, but also the efficiency of circulating air in the cabin 4 is higher.

Landscapes

  • Devices For Medical Bathing And Washing (AREA)
  • Electrotherapy Devices (AREA)

Abstract

一种纳米级水雾制造方法及设备,其中,该纳米级水雾制造方法包括以下步骤:利用加热器(12)加热加热室(1)中的纯净水产生水蒸气;利用雾化片(21)高频拍击雾化室(2)内的纯净水产生纳米级水雾;利用电热丝(34)加热干烧室(3)内的空气;利用风机(31)将所述水蒸气、纳米级水雾和加热后的空气进行混合并将其推送至舱体(4)。本发明纳米级水雾制造设备包括加热室(1)、雾化室(2)、干烧室(3)、舱体(4)、至少一个雾化片(21)、加热器(12)、电热丝(34)、风机(31)和输气管(32)。本发明的纳米级水雾制造设备具有噪音低、雾化速率快和雾化量大的优点。

Description

一种纳米级水雾制造方法及设备 技术领域
本发明涉及液体雾化技术领域,具体涉及一种纳米级水雾制造方法及设备。
背景技术
目前常见的雾化方式有四类:电喷射雾化、压力雾化、转盘雾化及超声波雾化。其中,电喷射雾化的雾化量过小,雾化速率低于0.1mL/h;压力雾化会带来令人不适的噪音;转盘雾化的雾化粒径过大,超过100μm,且雾化量较小。虽然目前市场上也出现一些超声雾化器,但是这些超声雾化器由于没有对产生的水雾进行加热,雾化量小,耗电量大,在水雾运移过程中大量的水雾丢失,因此雾化效果差。
发明内容
本发明的目的在于提供一种纳米级水雾制造方法及设备,用以解决现有技术中的雾化装置雾化量过小、雾化装置噪音大、雾化速率低、雾化粒径大和耗电量大的问题。
为实现上述目的,本发明采用的技术方案是:提供一种纳米级水雾制造方法,所述纳米级水雾制造方法包括以下步骤:
步骤a,利用加热器加热加热室中的纯净水产生水蒸气;
步骤b,利用雾化片高频拍击雾化室内的纯净水产生纳米级水雾;
步骤c,利用电热丝加热干烧室内的空气;
步骤d,利用风机将所述水蒸气、纳米级水雾和加热后的空气进行混合并将其推送至舱体。
优选的,所述步骤d之后还包括通过回气管将所述舱体内的混合气体导入干烧室循环利用。
本发明还提供一种纳米级水雾制造设备,所述纳米级水雾制造设备包括装有纯净水的加热室、装有纯净水的雾化室、设置有进气口的干烧室、设置有舱门的舱体、雾化片、加热器、电热丝、风机和输气管,其特征在于,所述加热室分别与所述雾化室、干烧室连通,所述舱体通过所述输气管与所述雾化室连通,所述雾化片安装在所述雾化室中,所述雾化片用于产生纳米级水雾,所述加热器安装在所述加热室中,所述电热丝安装在所述干烧室中,所述电热丝用于提高干烧室内空气的温度,所述风机用于将纳米级水雾、水蒸汽和热空气混合后通过输气管推送至所述舱体中。
优选的,所述舱体为可折叠的舱体。
优选的,所述纳米级水雾制造设备还包括回气管,所述舱体通过所述回气管与所述干烧室的进气口连接。
优选的,所述风机安装在所述干烧室中。
优选的,所述加热室和雾化室均设置有用于分别向所述加热室和雾化室添加纯净水的加水口,所述加水口上设置有盖帽。
本发明具有如下优点:
1、本发明通过雾化片来产生纳米级水雾,降低了雾化设备工作过程中产生的噪音。由于本发明的纳米级水雾制造设备是通过多个雾化片的高频振动来产生纳米级水雾,提高了雾化设备的雾化速率。此外,雾化片产生的水雾是纳米级水雾,因此相对于转盘雾化设备产生的水雾,本发明纳米级水雾制造设备产生的水雾粒径更小更均匀。
2、本发明采用多个雾化片来产生纳米级水雾,并将产生的纳米级水雾、水蒸汽和热空气进行混合来提高纳米级水雾的温度,减小纳米级水雾在运移过程中的损失,从而增大了纳米级水雾制造设备的雾化量。
附图说明
图1为实施例1中纳米级水雾制造设备的结构示意图。
图2为实施例2中纳米级水雾制造设备的结构示意图。
图3为舱体的结构示意图。
图4为舱体的剖面结构示意图。
图5为纳米级水雾制造方法的流程图。
具体实施方式
以下实施例用于说明本发明,但不用来限制本发明的范围。
实施例1
如图1所示,该纳米级水雾制造设备包括加热室1、雾化室2、干烧室3、舱体4、雾化片21、加热器12、电热丝34、风机31和输气管32。本发明的纳米级水雾制造设备具有噪音低、雾化速率快和雾化量大的优点。雾化室2、加热室1和干烧室3为三个连接在一起的舱室,从左至右依次为雾化室2、加热室1和干烧室3。加热室1分别与雾化室2、干烧室3上部连通,舱体4通过输气管32与雾化室2连通。干烧室3的下部设置有进气孔,外部的空气可以通过进气孔进入干烧室3内。雾化片21安装在雾化室2的底部,在本实施例中,雾化室2内设置有三个雾化片21,雾化片21通电后会发生高频振动,将液态水分子结构打散而产生自然飘逸的纳米级水雾。为了能调节雾化片21的雾化速率,每个雾化片21均与一个开关连接,通过控制每个开关便能独立控制与之对应雾化片21的工作与关闭,从而达到调节雾化片21的雾化速率的目的。加热器12安装在加热室1的底部,通过给加热器12通电,使得加热室1中的纯净水蒸发而产生水蒸气。电热丝34安装在干烧室3的上部,通过给电热丝34供电发热,来提高干烧室3中空气的温度。在本实施例中,风机31安装在干烧室3的中部,风机31将干烧室3中的热空气和加热室1中的水蒸气吹向雾化室2,使得加热后的空气、水蒸气和纳米级水雾进行混合后 通过输气管32进入舱体4中,供舱体4中的患者吸入,当然,风机31也可以安装在雾化室2和加热室1中。通过将纳米级水雾、水蒸汽和热空气进行混合,来提高纳米级水雾的温度,减小纳米级水雾在运移过程中的损失,从而增大了纳米级水雾制造设备的雾化量。
如图3和4所示,为了减小在不使用舱体4时舱体4所占用的空间,在本实施例中,舱体4为可折叠的舱体4。舱体4包括第一板面和第二板面42,第一板面41和第二板面42连接,第一板面41和第二板面42之间连接有折叠面43,折叠面43设置有多个折叠机构。当第一板面41和第二板面42相互靠近时折叠面43可以被压缩折叠在第一板面41和第二板面42之间,从而大大减小舱体4占用的空间。第一板面41上设置有舱门411,用户可通过舱门411进出舱体4。输气管32的一端安装在第一板面41上,另一端安装在雾化室2的上部,热空气、水蒸气和纳米级水雾进行混合后通过输气管32进入舱体4中。
进一步的,为了方便分别向加热室1和雾化室2添加入纯净水,加热室1和雾化室2均设置有用于添加纯净水的加水口11,当加热室1或雾化室2内缺少纯净水时,只需拧下加水口11上的盖帽加入纯净水,再拧紧盖帽,纳米级水雾制造设备便可继续使用。
进一步的,为了降低电热丝34的电量损耗,在本实施例中,舱体4与干烧室3之间设置有回气管33,回气管33的一端与舱体4连接,另一端与干烧室3的进气口连接,通过回气管33将舱体4内的混合气体导入干烧室3。由于舱体4中的混合气体温度较高,混合气体中含有大量的热量和纳米级水雾,通过将舱体4中的混合气体导入干烧室3循环利用,电热丝34只需消耗很少的电量,便可将干烧室3中的气体加热到设定的温度,从而降低了电热丝34的电量损耗,又增加了纳米级水雾制造设备输出的雾化量。
图5示出了图1所示的纳米级水雾制造设备的纳米级水雾制造方法流程图,具体包括以下步骤:
S101,利用加热器12加热加热室1中的纯净水产生水蒸气;
加热器12通电后发热将加热室1内的纯净水加热蒸发,产生大量的水蒸气。
S102,利用雾化片21高频拍击雾化室2内的纯净水产生纳米级水雾;
三块雾化片21通电后会发生高频振动,雾化片21将化室内纯净水的液态水分子结构打散而产生自然飘逸的纳米级水雾。
S103,利用电热丝34加热干烧室3内的空气;
电热丝34通电后发热将干烧室3内的空气加热,使得烧室内的空气温度升高达到设定的温度。上述三个步骤可以同时执行,也可以首先执行任意其中一个步骤,再执行其他两个步骤。
S104,利用风机31将水蒸气、纳米级水雾和加热后的空气进行混合并将其推送至舱体4;
风机31通电转动后,将干烧室3内加热后的空气和加热室1内的水蒸气推送至雾化室2,使得水蒸气、纳米级水雾和加热后的空气混合,在压力的推动下,混合后的气体沿着输气管32进入舱体4。
优选的,在上述纳米级水雾制造方法中,在执行完步骤S104之后还包括通过回气管33将舱体4内的混合气体导入干烧室3循环利用。由于舱体4中的混合气体温度较高,混合气体中含有大量的热量和纳米级水雾,通过将舱体4中的空气导入干烧室3重新利用,电热丝34只需消耗很少电量,便可将干烧室3中的空气加热到设定的温度,从而降低了电热丝34的能量损耗,又增加了雾化室输出的雾化量。
实施例2
如图2所示,本实施例以实施例1为基础,与实施例1的不同之处在于,本实施例中去掉了回风管,干烧室3为管状结构,干烧室3的一端与舱体4连接,另一端与加热室1连接,风机31和电热丝34均安装在干烧室3内。通过将干烧室3设计为管状结构,不仅简化了纳米级水雾制造设备的结构,而且使舱体4内的空气循环使用的效率更高。
虽然,上文中已经用一般性说明及具体实施例对本发明作了详尽的 描述,但在本发明基础上,可以对之做一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。

Claims (7)

  1. 一种纳米级水雾制造方法,其特征在于,所述纳米级水雾制造方法包括以下步骤:
    步骤a,利用加热器加热加热室中的纯净水产生水蒸气;
    步骤b,利用雾化片高频拍击雾化室内的纯净水产生纳米级水雾;
    步骤c,利用电热丝加热干烧室内的空气;
    步骤d,利用风机将所述水蒸气、纳米级水雾和加热后的空气进行混合并将其推送至舱体。
  2. 根据权利要求1所述的纳米级水雾制造方法,其特征在于,所述步骤d之后还包括通过回气管将所述舱体内的混合气体导入干烧室循环利用。
  3. 一种纳米级水雾制造设备,所述纳米级水雾制造设备包括装有纯净水的加热室、装有纯净水的雾化室、设置有进气口的干烧室、设置有舱门的舱体、至少一个雾化片、加热器、电热丝、风机和输气管,其特征在于,所述加热室分别与雾化室、干烧室连通,所述舱体通过所述输气管与所述雾化室连通,所述雾化片安装在所述雾化室中,所述雾化片用于产生纳米级水雾,所述加热器安装在所述加热室中,所述电热丝安装在所述干烧室中,所述电热丝用于提高干烧室内空气的温度,所述风机用于将纳米级水雾、水蒸汽和热空气混合后通过输气管推送至所述舱体中。
  4. 根据权利要求3所述的纳米级水雾制造设备,其特征在于,所述舱体为可折叠的舱体。
  5. 根据权利要求3或4所述的纳米级水雾制造设备,其特征在于,所述纳米级水雾制造设备还包括回气管,所述舱体通过所述回气管与所述干烧室的进气口连接。
  6. 根据权利要求3所述的纳米级水雾制造设备,其特征在于,所述风机安装在所述干烧室中。
  7. 根据权利要求3所述的纳米级水雾制造设备,其特征在于,所述加热室和雾化室均设置有用于分别向所述加热室和雾化室添加纯净水的加水口,所述加水口上设置有盖帽。
PCT/CN2017/076701 2017-02-15 2017-03-15 一种纳米级水雾制造方法及设备 WO2018149005A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710081146.7A CN107051806A (zh) 2017-02-15 2017-02-15 一种纳米级水雾制造方法及设备
CN201710081146.7 2017-02-15

Publications (1)

Publication Number Publication Date
WO2018149005A1 true WO2018149005A1 (zh) 2018-08-23

Family

ID=59599238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/076701 WO2018149005A1 (zh) 2017-02-15 2017-03-15 一种纳米级水雾制造方法及设备

Country Status (2)

Country Link
CN (1) CN107051806A (zh)
WO (1) WO2018149005A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110538374A (zh) * 2019-08-27 2019-12-06 北京玖门医疗科技有限责任公司 一种创伤面康复及呼吸道湿化的雾化器
CN113171520A (zh) * 2021-05-27 2021-07-27 北京玖门医疗科技有限责任公司 一种纳米水雾制造控制装置及方法
CN113440694A (zh) * 2021-06-28 2021-09-28 北京玖门医疗科技有限责任公司 一种远程控制的纳米水雾制造设备及其工作方法
CN113440696A (zh) * 2021-06-28 2021-09-28 北京玖门医疗科技有限责任公司 一种测试启动的纳米水雾制造装置及方法
CN113440695A (zh) * 2021-06-28 2021-09-28 北京玖门医疗科技有限责任公司 一种过滤型纳米水雾制造装置及其工作方法
CN113440693A (zh) * 2021-06-28 2021-09-28 北京玖门医疗科技有限责任公司 一种智能监测纳米水雾制造装置及方法
CN113441332A (zh) * 2021-06-28 2021-09-28 北京玖门医疗科技有限责任公司 一种纳米水雾制造控制装置及方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0213056A2 (en) * 1985-08-15 1987-03-04 Rhinotherm Netzer Sereni Limited Partnership Method and apparatus for producing a stream of heated vapor particularly useful for therapeutic purposes
CN2115803U (zh) * 1991-05-02 1992-09-16 张红颖 恒温多功能超声雾化机
JP2003038648A (ja) * 2001-07-27 2003-02-12 Daikin Ind Ltd 呼吸用気体供給装置
CN1807975A (zh) * 2006-01-25 2006-07-26 程洪亮 高压纳米水蒸汽发生方法及发生器
EP1707889A1 (fr) * 2005-03-29 2006-10-04 Seb Sa Humidificateur d'air
JP2007144199A (ja) * 2006-12-18 2007-06-14 Atsugi Color Genzosho:Kk 就寝時のいびき防止器
US20090110379A1 (en) * 2007-10-29 2009-04-30 Smiths Medical Asd, Inc. Pid coefficient adjustment for respiratory heater closed loop control
CN105555347A (zh) * 2012-03-24 2016-05-04 莱诺凯尔有限公司 制备用于高温治疗的受控混合物的系统和方法
CN106139344A (zh) * 2015-07-07 2016-11-23 丛繁滋 一种适用于动脉粥样硬化及其病症的呼吸机恒温恒湿装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2167710Y (zh) * 1993-04-30 1994-06-08 黑龙江无线电一厂 桑那浴浴箱
JPH1128240A (ja) * 1997-07-11 1999-02-02 Jamco Corp 折畳み式サウナ浴室
CN1943535A (zh) * 2005-12-15 2007-04-11 宫本海 一种壁挂式蒸淋器
JP4830784B2 (ja) * 2006-10-23 2011-12-07 パナソニック株式会社 サウナ装置
CN201899690U (zh) * 2010-12-20 2011-07-20 胡毅煌 循环喷雾、蒸汽浴装置
CN202928007U (zh) * 2012-09-07 2013-05-08 顾艳 一种桑拿用快速空气加热加湿装置
CN105456017A (zh) * 2014-09-01 2016-04-06 青岛海尔智能技术研发有限公司 家用桑拿机和桑拿雾气生成方法
CN105796315A (zh) * 2014-12-29 2016-07-27 青岛海尔智能技术研发有限公司 超声雾化桑拿机及其控制方法
CN106038231B (zh) * 2016-06-23 2018-09-21 杭州清稞节能环保科技有限公司 一种纳米水离子疗养仪
CN206500311U (zh) * 2017-02-15 2017-09-19 北京国悦纳净健康科技有限公司 一种纳米级水雾制造设备

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0213056A2 (en) * 1985-08-15 1987-03-04 Rhinotherm Netzer Sereni Limited Partnership Method and apparatus for producing a stream of heated vapor particularly useful for therapeutic purposes
CN2115803U (zh) * 1991-05-02 1992-09-16 张红颖 恒温多功能超声雾化机
JP2003038648A (ja) * 2001-07-27 2003-02-12 Daikin Ind Ltd 呼吸用気体供給装置
EP1707889A1 (fr) * 2005-03-29 2006-10-04 Seb Sa Humidificateur d'air
CN1807975A (zh) * 2006-01-25 2006-07-26 程洪亮 高压纳米水蒸汽发生方法及发生器
JP2007144199A (ja) * 2006-12-18 2007-06-14 Atsugi Color Genzosho:Kk 就寝時のいびき防止器
US20090110379A1 (en) * 2007-10-29 2009-04-30 Smiths Medical Asd, Inc. Pid coefficient adjustment for respiratory heater closed loop control
CN105555347A (zh) * 2012-03-24 2016-05-04 莱诺凯尔有限公司 制备用于高温治疗的受控混合物的系统和方法
CN106139344A (zh) * 2015-07-07 2016-11-23 丛繁滋 一种适用于动脉粥样硬化及其病症的呼吸机恒温恒湿装置

Also Published As

Publication number Publication date
CN107051806A (zh) 2017-08-18

Similar Documents

Publication Publication Date Title
WO2018149005A1 (zh) 一种纳米级水雾制造方法及设备
CN206500311U (zh) 一种纳米级水雾制造设备
CN201488171U (zh) 一种空气加湿器
CN102095236A (zh) 一种通风装置
CN113209428A (zh) 一种过滤型纳米水雾制造装置及其工作方法
CN101274144B (zh) 液体蒸发装置
CN202109573U (zh) 一种改进型暖风机
CN107101220A (zh) 一种降低燃气锅炉NOx排放的方法与系统
CN201935326U (zh) 一种通风装置
CN207856345U (zh) 一种制备类胡萝卜素用喷雾干燥塔
CN208668162U (zh) 一种节能的纸机蒸汽气罩回收系统
CN101566424B (zh) 节能、环保并自动完成喷雾蒸发浓缩干燥的方法及设备
CN109925733A (zh) 一种环保型舞台烟雾机
CN113289165A (zh) 一种智能监测纳米水雾制造装置及方法
CN108793294A (zh) 一种浓盐水处理系统及处理方法
CN113289164A (zh) 一种远程控制的纳米水雾制造设备及其工作方法
CN211435119U (zh) 一种小分子雾化干燥结晶设备
CN106214040A (zh) 一种雾化负离子水洗手装置
CN202470809U (zh) 一种新型喷雾蒸发冷却塔
CN113441332A (zh) 一种纳米水雾制造控制装置及方法
CN113171520A (zh) 一种纳米水雾制造控制装置及方法
WO2023241129A1 (zh) 电子雾化装置及其雾化装置
CN206176362U (zh) 自洁净轴流进风式燃烧器
CN108954273A (zh) 一种螺旋蒸汽产生装置
CN100398906C (zh) 高压纳米水蒸汽发生方法及发生器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17896785

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC, EPO FORM 1205A DATED 21/11/19

122 Ep: pct application non-entry in european phase

Ref document number: 17896785

Country of ref document: EP

Kind code of ref document: A1