WO2018148919A1 - 一种利用回归轨道实施通信的卫星星座实现方法 - Google Patents
一种利用回归轨道实施通信的卫星星座实现方法 Download PDFInfo
- Publication number
- WO2018148919A1 WO2018148919A1 PCT/CN2017/073854 CN2017073854W WO2018148919A1 WO 2018148919 A1 WO2018148919 A1 WO 2018148919A1 CN 2017073854 W CN2017073854 W CN 2017073854W WO 2018148919 A1 WO2018148919 A1 WO 2018148919A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- satellite
- orbit
- determining
- satellites
- geostationary
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/185—Space-based or airborne stations; Stations for satellite systems
- H04B7/18521—Systems of inter linked satellites, i.e. inter satellite service
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/185—Space-based or airborne stations; Stations for satellite systems
- H04B7/1851—Systems using a satellite or space-based relay
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/10—Artificial satellites; Systems of such satellites; Interplanetary vehicles
- B64G1/1007—Communications satellites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/10—Artificial satellites; Systems of such satellites; Interplanetary vehicles
- B64G1/1085—Swarms and constellations
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/185—Space-based or airborne stations; Stations for satellite systems
- H04B7/1851—Systems using a satellite or space-based relay
- H04B7/18519—Operations control, administration or maintenance
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/185—Space-based or airborne stations; Stations for satellite systems
- H04B7/1853—Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
- H04B7/18539—Arrangements for managing radio, resources, i.e. for establishing or releasing a connection
- H04B7/18541—Arrangements for managing radio, resources, i.e. for establishing or releasing a connection for handover of resources
Definitions
- the present invention relates to the field of satellite communication technologies, and more particularly to a satellite constellation implementation method for performing communication using a return orbit in a globally covered non-stationary orbit communication constellation.
- Satellite Internet is the best and only choice for the Internet to evolve into space. Considering the limitation of synchronous orbital position, the non-geostationary satellite constellation network will become an important part of the satellite Internet.
- the O3b network system built by Google Company adopts an equatorial orbit with a 0° inclination angle.
- the orbital height is 8062Km.
- the total throughput of each satellite is 12GBit/s.
- the main coverage area of the O3b constellation is between 40° north and south;
- OneWeb proposes to provide satellite Internet services with a group of low-Earth orbit satellites, which will launch 720 satellites to complete the initial construction, and may launch another 1972 satellites in the end to complete the final Constellation.
- Its orbital height is about 1200Km
- the orbital inclination is about 88°, it is expected to be built during 2017-2020
- the coverage area is global coverage
- the next-generation comet system constellation consists of 66 satellites, and there are 6 on-orbit spare satellites and 9 A ground spare satellite.
- Its orbital height is 781Km, the orbital inclination is about 86.4°, and the coverage area is global coverage.
- the design methods of the constellations of non-stationary orbit communication satellites face the problem of coexistence with the geostationary orbit satellites.
- the coordination and allocation of spatial communication spectrum resources is organized and managed by the International Telecommunications Union (ITU).
- ITU International Telecommunications Union
- the geostationary orbit satellite system has priority over non-geost orbit satellite systems, which need to perform frequency domain coexistence analysis with GSO satellite systems to ensure that no harmful interference is caused to thousands of GSO satellites in orbit. . It is extremely difficult to obtain the final frequency license.
- an object of the present invention is to provide a satellite constellation implementation method for implementing communication by using a regression orbit, which utilizes the regression characteristics of the regression orbit to realize on-demand coverage of key areas and reduce co-channel interference to geostationary orbit satellites through parameter design.
- a satellite constellation implementation method for implementing communication by using a regression orbit which comprises the following steps: 1) determining a regression period and a semi-major axis of the orbit, and an inclination of the orbit, orbit Eccentricity and perigee angle; 2) According to multiple coverage requirements and mission costs, determine the number of satellites and the number of orbital planes are n; 3) Design the trajectory crossing the equatorial point according to the preset expectations
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Astronomy & Astrophysics (AREA)
- Aviation & Aerospace Engineering (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Remote Sensing (AREA)
- Radio Relay Systems (AREA)
Abstract
本发明涉及一种利用回归轨道实施通信的卫星星座实现方法,其步骤:确定回归周期和轨道半长轴,以及轨道的倾角、轨道的偏心率和近地点幅角;确定卫星个数及轨道面数均为n个;确定第一颗卫星的升交点赤经和平近点角,根据卫星的服务需求,依次确定后续卫星的升交点赤经和平近点角;确定需要协调的静止轨道卫星网络集合以及非静止卫星星座对静止卫星干扰保护带的宽度;在地面上任意位置,看到全部设置的卫星在空中均沿一条固定的相同的轨迹相继过顶,当形成多重覆盖后,地面用户能同时看到多颗卫星;如果卫星轨迹穿越对静止卫星的干扰保护带,则在当前接入卫星进入保护带时,地面用户切换到另一颗不在保护带内的卫星继续实施通信。
Description
本发明涉及一种卫星通信技术领域,特别是关于一种在全球覆盖的非静止轨道通信星座中利用回归轨道实施通信的卫星星座实现方法。
卫星互联网是互联网向空间进化过程中最好的可能也是唯一的选择。考虑到同步轨道轨位的限制,非静止轨道卫星星座网络将成为卫星互联网的重要组成部分。当前,全球范围内已有多个大型非静止轨道卫星星座项目投入建设或宣布计划。其中Google公司建设的O3b网络系统,采用0°倾角的赤道轨道,轨道高度8062Km,目前在轨12颗卫星,每颗卫星总吞吐量达12GBit/s。O3b星座的主要覆盖区域为南北纬40°之间的区域;OneWeb公司提出以近地轨道卫星群来提供卫星互联网业务,将发射720颗卫星完成初期构建,后期可能会再发射1972颗卫星以完成最终的星座。其轨道高度约为1200Km,轨道倾角约88°,预计2017-2020年期间建成,覆盖区域为全球覆盖;下一代铱星系统星座由66颗卫星组成,另外还有6颗在轨备用卫星和9颗地面备用卫星。其轨道高度为781Km,轨道倾角约为86.4°,覆盖区域为全球覆盖。
当前各非静止轨道通信卫星星座的设计方法面临着与静止轨道卫星同频共存的问题。空间通信频谱资源的协调和分配由国际无线电联合会(International Telecommunications Union,ITU)组织和管理。按照当前ITU的协调框架和规则,静止轨道卫星系统地位均优先于非静止轨道卫星系统,后者需要与GSO卫星系统完成频域的共存分析,保证不对在轨的数千颗GSO卫星造成有害干扰。获得最终用频许可的难度极高。
发明内容
针对上述问题,本发明的目的是提供一种利用回归轨道实施通信的卫星星座实现方法,其利用回归轨道的回归特性,通过参数设计,实现重点区域按需覆盖和降低对静止轨道卫星同频干扰的影响,以利于非静止轨道卫星星座系统设计、建设和实施。
为实现上述目的,本发明采取以下技术方案:一种利用回归轨道实施通信的卫星星座实现方法,其特征在于包括以下步骤:1)确定回归周期和轨道半长轴,以及轨道的倾角、轨道的偏心率和近地点幅角;2)根据多重覆盖需求和任务成本,确定卫星个数及轨道面数均为n个;3)根据预设期望按需设计的穿越赤道点的经
Claims (1)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17870648.7A EP3389195A4 (en) | 2017-02-17 | 2017-02-17 | IMPLEMENTATION METHOD FOR SATELLITE CONSTELLATION FOR CARRYING OUT A COMMUNICATION BY MEANS OF A REGRESSION RUNNING PATH |
PCT/CN2017/073854 WO2018148919A1 (zh) | 2017-02-17 | 2017-02-17 | 一种利用回归轨道实施通信的卫星星座实现方法 |
CN201780001218.0A CN107980210B (zh) | 2017-02-17 | 2017-02-17 | 一种利用回归轨道实施通信的卫星星座实现方法 |
US15/779,326 US11101881B2 (en) | 2017-02-17 | 2017-02-17 | Satellite constellation realization method for implementing communication by utilizing a recursive orbit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2017/073854 WO2018148919A1 (zh) | 2017-02-17 | 2017-02-17 | 一种利用回归轨道实施通信的卫星星座实现方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018148919A1 true WO2018148919A1 (zh) | 2018-08-23 |
Family
ID=62006130
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/073854 WO2018148919A1 (zh) | 2017-02-17 | 2017-02-17 | 一种利用回归轨道实施通信的卫星星座实现方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11101881B2 (zh) |
EP (1) | EP3389195A4 (zh) |
CN (1) | CN107980210B (zh) |
WO (1) | WO2018148919A1 (zh) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111680354A (zh) * | 2020-04-20 | 2020-09-18 | 北京航空航天大学 | 近地回归轨道卫星星下点和摄影点轨迹自交点的计算方法 |
CN112257016A (zh) * | 2020-10-15 | 2021-01-22 | 中国西安卫星测控中心 | 一种Walker星座中长期碰撞预警方法 |
CN113193901A (zh) * | 2021-04-14 | 2021-07-30 | 张颂 | 一种大型星座干扰规避方法 |
CN113722897A (zh) * | 2021-08-18 | 2021-11-30 | 中国科学院西北生态环境资源研究院 | 一种基于高分系列卫星的协同观测方法 |
CN113777638A (zh) * | 2021-07-02 | 2021-12-10 | 长光卫星技术有限公司 | 一种全球目标星座重访能力快速计算方法 |
CN115242291A (zh) * | 2022-06-30 | 2022-10-25 | 北京邮电大学 | 基于时间相关性的6g低轨卫星网络参数设定方法 |
CN116033582A (zh) * | 2022-12-12 | 2023-04-28 | 中国空间技术研究院 | 一种基于概率分布限值的卫星星座频率干扰规避方法 |
CN117278105B (zh) * | 2023-09-27 | 2024-04-26 | 中国人民解放军31007部队 | 基于规避角的低轨星载动中通抗下行干扰方法 |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3657601B1 (en) * | 2014-06-27 | 2022-08-03 | ViaSat Inc. | Method of rotationally coupling antennas |
CN109672469A (zh) * | 2018-11-30 | 2019-04-23 | 航天科工空间工程发展有限公司 | 一种gso与ngso卫星频谱共存规避角计算方法 |
CN109932734B (zh) * | 2019-04-09 | 2021-11-12 | 桂林电子科技大学 | 一种适用于伪卫星位置的计算方法 |
FR3099672B1 (fr) * | 2019-07-31 | 2021-06-25 | Thales Sa | Procede de determination d'une puissance maximale d'emission d'un satellite non-geostationnaire |
CN110417460B (zh) * | 2019-08-16 | 2021-03-30 | 国家无线电监测中心 | 一种非静止轨道卫星对静止轨道卫星干扰的分析方法 |
CN110518965B (zh) * | 2019-10-09 | 2022-05-10 | 北京中科晶上科技股份有限公司 | 一种非同步轨道卫星对同步轨道卫星上行干扰规避方法 |
CN110708110B (zh) * | 2019-10-09 | 2022-08-09 | 北京中科晶上科技股份有限公司 | 一种非同步轨道卫星对同步轨道卫星上行干扰规避方法 |
CN112118041B (zh) * | 2020-09-21 | 2022-01-21 | 清华大学 | 一种地球站及其接入方法和装置 |
CN112152739B (zh) * | 2020-09-24 | 2021-05-28 | 清华大学 | 卫星星座的干扰概率分布计算方法及装置 |
FR3114463B1 (fr) * | 2020-09-24 | 2022-08-19 | Thales Sa | Systeme et procede de suppression de signaux interferents montants generes a l'interieur d'un systeme spatial de communication multi-spots |
CN113644959B (zh) * | 2021-07-21 | 2022-11-15 | 中国西安卫星测控中心 | 一种太阳同步回归轨道对地观测混合星座设计方法 |
CN115967427A (zh) * | 2021-10-11 | 2023-04-14 | 中国移动通信集团设计院有限公司 | 卫星信号覆盖图绘制方法、卫星终端及可读存储介质 |
CN113839727B (zh) * | 2021-11-24 | 2022-03-04 | 中国星网网络创新研究院有限公司 | 一种确定空间隔离范围的方法、装置、设备及存储介质 |
CN114826940B (zh) * | 2022-04-25 | 2023-04-25 | 北京理工大学 | 一种天地融合网络的效能评估方法及装置 |
CN116112056B (zh) * | 2022-12-12 | 2024-01-05 | 中国空间技术研究院 | 一种基于地面站俯仰方位角度划分的频率干扰规避方法 |
CN115801108B (zh) * | 2023-01-30 | 2023-07-25 | 北京宏宇航天技术有限公司 | 一种卫星星座分析方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1233889A (zh) * | 1999-04-30 | 1999-11-03 | 北京大学 | 中轨赤道卫星星座方案 |
CN103269245A (zh) * | 2013-05-13 | 2013-08-28 | 北京邮电大学 | 一种天基数据网的用户与geo星关联方法 |
CN106209207A (zh) * | 2016-07-22 | 2016-12-07 | 清华大学 | 一种分析各卫星通信系统之间相互干扰的方法 |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3384865B2 (ja) * | 1994-03-31 | 2003-03-10 | 富士通株式会社 | 複数衛星の制御方法及び複数衛星の制御装置 |
CA2213770A1 (en) * | 1995-03-29 | 1996-10-03 | Dennis Mullins | Method and apparatus for limiting interference between satellite systems |
US6675011B1 (en) * | 1996-12-28 | 2004-01-06 | Casio Computer Co., Ltd. | Communication terminal device with communication controller |
US6019318A (en) * | 1997-06-16 | 2000-02-01 | Hugehs Electronics Corporation | Coordinatable system of inclined geosynchronous satellite orbits |
US5995841A (en) * | 1997-08-22 | 1999-11-30 | Teledesic Llc | Technique for sharing radio frequency spectrum in multiple satellite communication systems |
US6249513B1 (en) * | 1998-02-06 | 2001-06-19 | Com Dev Limited | Managing inter-satellite connections in a constellation with overlapping orbital planes |
US20030189136A1 (en) * | 1998-05-20 | 2003-10-09 | Toshihide Maeda | Communication system, communication receiving device and communication terminal in the system |
US5999127A (en) * | 1998-10-06 | 1999-12-07 | The Aerospace Corporation | Satellite communications facilitated by synchronized nodal regressions of low earth orbits |
US6511020B2 (en) * | 2000-01-07 | 2003-01-28 | The Boeing Company | Method for limiting interference between satellite communications systems |
US6453220B1 (en) * | 2000-01-31 | 2002-09-17 | Space Systems/Loral, Inc. | Low earth orbit satellite constellation stationkeeping algorithm with absolute altitude control |
US6714521B2 (en) * | 2000-12-29 | 2004-03-30 | Space Resources International Ltd. | System and method for implementing a constellation of non-geostationary satellites that provides simplified satellite tracking |
US6892986B2 (en) * | 2002-04-29 | 2005-05-17 | The Boeing Company | Satellite constellations using nodally-adjusted repeating ground track orbits |
JP2004140721A (ja) * | 2002-10-21 | 2004-05-13 | Hitachi Ltd | 人工衛星を利用した信号の受信方法、サービスの提供方法、人工衛星の制御方法、および受信端末ならびに人工衛星を制御する装置 |
JP5565146B2 (ja) * | 2010-06-30 | 2014-08-06 | 株式会社Jvcケンウッド | 位置検出装置および位置検出方法 |
CN105744531B (zh) * | 2016-02-04 | 2019-05-24 | 中国空间技术研究院 | 基于直列式干扰抑制的geo和ngeo通信卫星频谱共享方法 |
US9932131B2 (en) * | 2016-02-17 | 2018-04-03 | The Boeing Company | Polysynchronous constellation design |
CN106027138B (zh) * | 2016-05-05 | 2018-07-13 | 清华大学 | 规避与同步卫星共线干扰的地面站系统及方法 |
US9694917B1 (en) * | 2016-06-15 | 2017-07-04 | The Aerospace Corporation | Deployment and control algorithms for wheel cluster formations of satellites |
CN106209205B (zh) * | 2016-07-05 | 2018-12-18 | 清华大学 | 一种重点区域按需覆盖的全球通信星座设计方法 |
US10843822B1 (en) | 2017-02-28 | 2020-11-24 | Space Exploration Technologies Corp. | Satellite constellations |
-
2017
- 2017-02-17 CN CN201780001218.0A patent/CN107980210B/zh active Active
- 2017-02-17 US US15/779,326 patent/US11101881B2/en active Active
- 2017-02-17 EP EP17870648.7A patent/EP3389195A4/en active Pending
- 2017-02-17 WO PCT/CN2017/073854 patent/WO2018148919A1/zh unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1233889A (zh) * | 1999-04-30 | 1999-11-03 | 北京大学 | 中轨赤道卫星星座方案 |
CN103269245A (zh) * | 2013-05-13 | 2013-08-28 | 北京邮电大学 | 一种天基数据网的用户与geo星关联方法 |
CN106209207A (zh) * | 2016-07-22 | 2016-12-07 | 清华大学 | 一种分析各卫星通信系统之间相互干扰的方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3389195A4 * |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111680354B (zh) * | 2020-04-20 | 2022-10-21 | 北京航空航天大学 | 近地回归轨道卫星星下点和摄影点轨迹自交点的计算方法 |
CN111680354A (zh) * | 2020-04-20 | 2020-09-18 | 北京航空航天大学 | 近地回归轨道卫星星下点和摄影点轨迹自交点的计算方法 |
CN112257016A (zh) * | 2020-10-15 | 2021-01-22 | 中国西安卫星测控中心 | 一种Walker星座中长期碰撞预警方法 |
CN112257016B (zh) * | 2020-10-15 | 2024-03-29 | 中国西安卫星测控中心 | 一种Walker星座中长期碰撞预警方法 |
CN113193901A (zh) * | 2021-04-14 | 2021-07-30 | 张颂 | 一种大型星座干扰规避方法 |
CN113777638B (zh) * | 2021-07-02 | 2024-02-20 | 长光卫星技术股份有限公司 | 一种全球目标星座重访能力快速计算方法 |
CN113777638A (zh) * | 2021-07-02 | 2021-12-10 | 长光卫星技术有限公司 | 一种全球目标星座重访能力快速计算方法 |
CN113722897A (zh) * | 2021-08-18 | 2021-11-30 | 中国科学院西北生态环境资源研究院 | 一种基于高分系列卫星的协同观测方法 |
CN113722897B (zh) * | 2021-08-18 | 2024-04-19 | 中国科学院西北生态环境资源研究院 | 一种基于高分系列卫星的协同观测方法 |
CN115242291A (zh) * | 2022-06-30 | 2022-10-25 | 北京邮电大学 | 基于时间相关性的6g低轨卫星网络参数设定方法 |
CN115242291B (zh) * | 2022-06-30 | 2023-06-30 | 北京邮电大学 | 基于时间相关性的6g低轨卫星网络参数设定方法 |
CN116033582B (zh) * | 2022-12-12 | 2023-12-22 | 中国空间技术研究院 | 一种基于概率分布限值的卫星星座频率干扰规避方法 |
CN116033582A (zh) * | 2022-12-12 | 2023-04-28 | 中国空间技术研究院 | 一种基于概率分布限值的卫星星座频率干扰规避方法 |
CN117278105B (zh) * | 2023-09-27 | 2024-04-26 | 中国人民解放军31007部队 | 基于规避角的低轨星载动中通抗下行干扰方法 |
Also Published As
Publication number | Publication date |
---|---|
CN107980210B (zh) | 2019-01-04 |
US20210167847A1 (en) | 2021-06-03 |
EP3389195A1 (en) | 2018-10-17 |
US11101881B2 (en) | 2021-08-24 |
EP3389195A4 (en) | 2019-09-18 |
CN107980210A (zh) | 2018-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018148919A1 (zh) | 一种利用回归轨道实施通信的卫星星座实现方法 | |
Cakaj et al. | The coverage analysis for low earth orbiting satellites at low elevation | |
MX2018012616A (es) | Sistema y metodo satelital leo dual para cobertura global. | |
Meziane-Tani et al. | Optimization of small satellite constellation design for continuous mutual regional coverage with multi-objective genetic algorithm | |
CN110198184B (zh) | 一种低轨星座系统间频谱共存星座设计方法 | |
KR102280475B1 (ko) | 위성 컨스텔레이션을 이용한 간섭 지리위치 지정 시스템 및 방법 | |
WO2022179106A1 (zh) | 一种可降低频率干扰的方法及通信卫星系统 | |
US10889388B2 (en) | Inclined geosynchronous orbit spacecraft constellations | |
CN114422370B (zh) | 基于时间片的leo卫星星座的网络拓扑构建方法及系统 | |
US5995841A (en) | Technique for sharing radio frequency spectrum in multiple satellite communication systems | |
CN109413662A (zh) | 一种低轨通信卫星星座与用户站连通规划方法 | |
Huangt et al. | A GSO protected area calculation model based on controllable NGSO system parameters | |
Mendoza et al. | Spectrum coexistence of LEO and GSO networks: An interference-based design criteria for LEO inter-satellite links | |
Di Vruno et al. | Large satellite constellations and their potential impact on VGOS operations | |
Minn et al. | Sky Radio Quiet Zones for Mitigating RFI From Large-Scale NGSO Satellites to Ground Radio Astronomy System | |
Anpilogov et al. | A conflict in the radio frequency spectrum of LEO-HTS and HEO-HTS systems | |
Cakaj | The coverage belt for low earth orbiting satellites | |
Zhang et al. | Hybrid GEO and IGSO satellite constellation design with ground supporting constraint for space information networks | |
Juknaite et al. | Low Latency Broadband Internet Satellite Constellations-Technology, Risks and Global Impact | |
Noreen et al. | Integrated network architecture for sustained human and robotic exploration | |
Pfandzelter et al. | Can Orbital Servers Provide Mars-Wide Edge Computing? | |
Morgan-Jones et al. | Regional coverage analysis of LEO satellites with Kepler orbits | |
Terziev et al. | The Impact of Innovation in the Satellite Industry on the Telecommunications Services Market | |
JPWO2021182427A5 (zh) | ||
TH1801006767A (th) | ระบบโครงข่ายดาวเทียมวงโคจรต่ำของโลกสำหรับการสื่อสารกับการนำกลับมาใช้ใหม่ของสเปกตรัมวงโคจรค้างฟ้า |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |