WO2018147619A1 - 글루코스 센서 및 그 제조방법 - Google Patents

글루코스 센서 및 그 제조방법 Download PDF

Info

Publication number
WO2018147619A1
WO2018147619A1 PCT/KR2018/001581 KR2018001581W WO2018147619A1 WO 2018147619 A1 WO2018147619 A1 WO 2018147619A1 KR 2018001581 W KR2018001581 W KR 2018001581W WO 2018147619 A1 WO2018147619 A1 WO 2018147619A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
glucose
glucose sensor
separation layer
forming
Prior art date
Application number
PCT/KR2018/001581
Other languages
English (en)
French (fr)
Inventor
최봉진
금중한
윤주인
온정훈
Original Assignee
동우화인켐 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동우화인켐 주식회사 filed Critical 동우화인켐 주식회사
Publication of WO2018147619A1 publication Critical patent/WO2018147619A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4077Means for protecting the electrolyte or the electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4075Composition or fabrication of the electrodes and coatings thereon, e.g. catalysts

Definitions

  • the present invention relates to a glucose sensor and a method of manufacturing the same. More specifically, the present invention significantly increases the sensitivity to glucose by applying an electrode having a mesh structure to increase the specific surface area of the electrode, and at least among the upper and lower regions of the metal electrode.
  • the present invention relates to a glucose sensor and a method of manufacturing the same, in which a conductive oxide film is formed in one region to prevent oxidation of a metal electrode, thereby preventing deterioration in sensing performance.
  • Glucose is a broad source of nutrition for most organisms and is a component that plays a fundamental role in energy supply, carbon storage, biosynthesis, and carbon skeleton and cell wall formation. Research is being actively conducted.
  • the metal electrode constituting the conventional glucose sensor is exposed to the air and oxidized, so that there is a problem that the sensing performance of the glucose sensor is degraded.
  • Patent Document 1 Republic of Korea Patent Publication No. 10-1107506 (Registration Date: January 12, 2012, Name: Glucose sensor equipped with titanium dioxide-graphene complex)
  • the present invention provides a glucose sensor and a method of manufacturing the same, which can significantly increase the sensitivity of glucose detection by increasing the specific surface area of the electrode by applying an electrode having a mesh structure. Shall be.
  • the present invention also provides a glucose sensor and a method of manufacturing the same which form a conductive oxide film in at least one of an upper region and a lower region of the metal electrode to prevent oxidation of the metal electrode, thereby preventing deterioration of sensing performance. It is a technical problem.
  • a glucose sensor includes a substrate, an electrode part including a reference electrode part formed on the substrate, and a sensing electrode part formed on the substrate while being spaced apart from the reference electrode part.
  • a glucose reaction unit is formed on a region including the at least one region, and at least one of the reference electrode unit and the sensing electrode unit constituting the electrode unit has a mesh structure.
  • the glucose sensor according to the present invention further comprises a conductive oxide film formed in at least one of an upper region and a lower region of the electrode unit.
  • the conductive oxide film is characterized in that it comprises at least one selected from the group consisting of indium tin oxide (ITO), indium zinc oxide (IZO).
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • the sensing electrode part may include at least one selected from the group consisting of Au, Ag, APC, and Pt.
  • the glucose reaction unit is characterized in that it comprises glucose oxidase or glucose dehydrogenase.
  • Glucose sensor according to the invention is characterized in that it further comprises a separation layer formed between the substrate and the electrode portion.
  • Glucose sensor according to the invention is characterized in that it further comprises a protective layer formed between the separation layer and the electrode portion.
  • the substrate is characterized in that the base film having a flexible characteristic.
  • at least one of the reference electrode portion and the sensing electrode portion constituting the electrode portion is a mesh structure.
  • the electrode part has a single layer or a multilayer structure including at least one selected from the group consisting of Au, Ag, APC, and Pt.
  • the method of manufacturing a glucose sensor according to the present invention further includes a conductive oxide film forming step of forming a conductive oxide film in at least one of an upper region and a lower region of the electrode unit.
  • the conductive oxide film is characterized in that it comprises at least one selected from the group consisting of ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide).
  • the glucose reaction unit is characterized in that it comprises glucose oxidase or glucose dehydrogenase.
  • the method of manufacturing a glucose sensor according to the present invention may further include a protective layer forming step of forming a protective layer between the separation layer and the electrode portion before the electrode forming step.
  • the protective layer is characterized in that it is formed to surround the side wall of the separation layer.
  • the method of manufacturing a glucose sensor according to the present invention may further include a protective film bonding step of bonding the protective film to which the adhesive is applied before the carrier substrate separation step.
  • the bonding agent is characterized in that the pressure-sensitive bonding agent.
  • the carrier substrate separation step the carrier substrate is separated by applying a physical force to the carrier substrate while the protective film is gripped.
  • the protective film bonding step the protective film is bonded to the electrode unit by a lamination method using a roll-to-roll.
  • the base film in the method of manufacturing a glucose sensor according to the present invention, is bonded to the separation layer by a lamination method using a roll-to-roll.
  • the electrode having a mesh (mesh) structure to increase the specific surface area of the electrode (specific surface area)
  • FIG. 1 is a cross-sectional view of a glucose sensor according to an embodiment of the present invention
  • FIG. 2 is a view showing an exemplary planar shape in the case where the electrode portion constituting the glucose sensor according to an embodiment of the present invention has a two-electrode structure
  • FIG. 3 is a view showing an exemplary planar shape in the case where the electrode portion constituting the glucose sensor according to an embodiment of the present invention has a three-electrode structure
  • FIG. 4 is a process flowchart of a glucose sensor manufacturing method according to an embodiment of the present invention.
  • 5 to 15 are exemplary process cross-sectional views of a method of manufacturing a glucose sensor according to an embodiment of the present invention.
  • first or second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another, for example without departing from the scope of the rights according to the inventive concept, and the first component may be called a second component and similarly the second component. The component may also be referred to as the first component.
  • FIG. 1 is a cross-sectional view of a glucose sensor according to an embodiment of the present invention
  • Figure 2 is a view showing an exemplary planar shape when the electrode portion constituting the glucose sensor according to an embodiment of the present invention has a two-electrode structure
  • 3 is a diagram illustrating an exemplary planar shape when an electrode part constituting a glucose sensor according to an embodiment of the present invention has a three-electrode structure.
  • a glucose sensor may include a substrate 90, a separation layer 20, a protective layer 30, an electrode portion 40, and conductive oxide films 52 and 54. , Glucose reaction unit 60 and protective film 80.
  • the substrate 90 serves to provide a structural base of the components that make up the glucose sensor.
  • the substrate 90 may be a base film 90 having flexible properties, and specific examples thereof include polyester-based resins such as polyethylene terephthalate, polyethylene isophthalate, polyethylene naphthalate, and polybutylene terephthalate; Cellulose resins such as diacetyl cellulose and triacetyl cellulose; Polycarbonate resins; Acrylic resins such as polymethyl (meth) acrylate and polyethyl (meth) acrylate; Styrene resins such as polystyrene and acrylonitrile-styrene copolymers; Polyolefin-based resins such as polyethylene, polypropylene, cyclo-based or norbornene-structured polyolefins, ethylene-propylene copolymers; Vinyl chloride-based resins; Amide resins such as nylon and aromatic polyamides; Imide resin; Polyether sulfone resin; Sulfone resins; Polyether ether ketone resins; Sulf
  • thermosetting resin or ultraviolet curable resin such as (meth) acrylic-type, urethane type, acrylurethane type, epoxy type, and silicone type
  • the thickness of such a transparent optical film can be suitably determined, generally, it can be determined to 1-500 micrometers in consideration of workability, thinness, etc., such as intensity
  • Such a base film 90 may contain a suitable one or more additives.
  • a ultraviolet absorber, antioxidant, a lubricant, a plasticizer, a mold release agent, a coloring agent, a flame retardant, a nucleating agent, an antistatic agent, a pigment, a coloring agent, etc. are mentioned, for example.
  • the base film 90 may be a structure including various functional layers such as a hard coating layer, an antireflection layer, and a gas barrier layer on one or both surfaces of the film, and the functional layer is not limited to the above-described ones, and various functionalities It may comprise a layer.
  • the base film 90 may be surface-treated as needed.
  • Such surface treatments include, for example, plasma treatments, corona treatments, dry treatments such as primer treatments, and chemical treatments such as alkali treatments including saponification treatments.
  • the separation layer 20 is formed on the substrate 90, and in the process of manufacturing the glucose sensor, the components including the electrode portions 40 formed on the carrier substrate 10 are separated from the carrier substrate 10. It is a layer formed in order to.
  • the separation layer 20 may cover and cover and insulate the electrode portion 40 formed thereon.
  • the material of the separation layer 20 is not particularly limited as long as the conditions for providing a certain level of peeling force are satisfied.
  • the separation layer 20 may be a polyimide polymer, a polyvinyl alcohol polymer, a polyamic acid polymer, a polyamide polymer, polyethylene Polymer, polystylene polymer, polynorbornene polymer, phenylmaleimide copolymer polymer, polyazobenzene polymer, polyphenylenephthalamide polymer , Polyester (polyester) polymer, polymethyl methacrylate (polymer) polymer, polyarylate (polymer) polymer, cinnamate (polymer) polymer, coumarin (coumarin) polymer, phthalimidine (phthalimidine) ) -Based polymer, chalcone-based polymer, aromatic acetylene-based polymer material may include one or more materials selected from the group consisting of Can be.
  • the peel force of the separation layer 20 is not particularly limited, but may be, for example, 0.001 to 1N / 25mm, preferably 0.005 to 0.2N / 25mm.
  • it can be easily peeled off from the carrier substrate 10 without residue, it is possible to reduce the curl (curl) and cracks due to the tension generated during peeling.
  • the thickness of the separation layer 20 is not particularly limited, but may be, for example, 10 to 1,000 nm, preferably 50 to 500 nm. When the said range is satisfied, peeling force is stabilized and a uniform pattern can be formed.
  • the protective layer 30 is formed on the separation layer 20 and covers and protects the electrode portion 40 together with the separation layer 20, and the separation layer 20 in the manufacturing process of forming the electrode portion 40. ) Is not exposed to an etchant for forming the electrode portion 40.
  • the protective layer 30 is an optional component that can be omitted as needed.
  • the protective layer 30 may be formed to cover at least a portion of the side surface of the separation layer 20.
  • the side of the separation layer 20 is an edge sidewall of the separation layer 20. In this manner, the side surface of the separation layer 20 may be minimized from being exposed to the etchant during the process of patterning the electrode unit 40 constituting the glucose sensor.
  • the protective layer 30 is preferably configured to cover all of the side surfaces of the separation layer 20.
  • a polymer known in the art may be used without limitation, for example, an organic insulating film may be applied, and among these, a curable composition including a polyol and a melamine curing agent. It may be formed as, but is not limited thereto.
  • polyol examples include, but are not limited to, polyether glycol derivatives, polyester glycol derivatives, polycaprolactone glycol derivatives, and the like.
  • melamine curing agents include methoxy methyl melamine derivatives, methyl melamine derivatives, butyl melamine derivatives, isobutoxy melamine derivatives and butoxy melamine Derivatives and the like, but are not limited thereto.
  • the protective layer 30 may be formed of an organic-inorganic hybrid curable composition, and when using an organic compound and an inorganic compound at the same time, it is preferable in that cracks generated during peeling may be reduced.
  • the organic compound the above-described components may be used, and the inorganic material may include silica-based nanoparticles, silicon-based nanoparticles, glass nanofibers, and the like, but is not limited thereto.
  • the electrode portion 40 may be formed on the substrate 90 while being spaced apart from the reference electrode portions 42 and 47 and the reference electrode portions 42 and 47 formed on the substrate 90. 48, 49, and at least one of the reference electrode parts 42, 47 and the sensing electrode parts 44, 46, 48, and 49 constituting the electrode part 40 is configured to have a mesh structure. .
  • the separation layer 20 and the protective layer 30 are sequentially formed on the substrate 90, and the reference electrode portions 42 and 47 and the sensing electrode portions 44 and 46 constituting the electrode portion 40 are sequentially formed. , 48 and 49 may be formed in the protective layer 30.
  • the reference electrode parts 42 and 47 and the sensing electrode parts 44, 46, 48, and 49 are electrically generated by the reaction between the substances constituting the glucose reaction part 60, which will be described later, and the glucose contained in the measurement target material. Detect the signal.
  • the material to be measured may be sweat, body fluid, etc. generated from the human body, but is not limited thereto.
  • At least one of the reference electrode parts 42 and 47 and the sensing electrode parts 44, 46, 48, and 49 constituting the electrode part 40 has a mesh structure.
  • the specific surface area is greatly increased, and thus the sensitivity to glucose is greatly increased.
  • the sensing electrode parts 44, 46, 48, and 49 may be configured to include one or more selected from the group consisting of Au, Ag, APC, and Pt.
  • the conductive oxide films 52 and 54 are formed in at least one of the upper region and the lower region of the electrode portion 40 to prevent oxidation of the electrode portion 40 in the atmosphere.
  • the electrode portion 40 may be prevented from coming into direct contact with the atmosphere. Since it is possible to prevent oxidation of the metal component constituting the above, the reliability of the sensing data, that is, the electrical signal detected by the electrode unit 40 is increased.
  • the conductive oxide films 52 and 54 may include at least one selected from the group consisting of indium tin oxide (ITO) and indium zinc oxide (IZO).
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • the glucose reaction part 60 is formed on a region including the electrode part 40 and is a component that reacts with glucose contained in the material to be measured.
  • the glucose reaction unit 60 may include glucose oxidase or glucose dehydrogenase.
  • glucose contained in the sample is oxidized by glucose oxidase or glucose dehydrogenase, and glucose oxidase or glucose dehydrogenase is reduced.
  • the electron transfer mediator oxidizes glucose oxidase or glucose dehydrogenase, and itself is reduced.
  • the reduced electron transfer mediator loses electrons at the electrode surface subjected to a constant voltage and is oxidized electrochemically again. Since the glucose concentration in the sample is proportional to the amount of current generated during the oxidation of the electron transfer medium, the glucose concentration can be measured by measuring the amount of current.
  • the protective film 80 is bonded to the electrode part 40 or the glucose reaction part 60 via the bonding agent 70.
  • This protective film 80 is an optional component that can be applied or excluded as needed.
  • FIG. 4 is a process flowchart of a glucose sensor manufacturing method according to an embodiment of the present invention
  • Figures 5 to 15 are exemplary process cross-sectional view of a glucose sensor manufacturing method according to an embodiment of the present invention.
  • a method of manufacturing a glucose sensor may include a separation layer forming step (S10), a protective layer forming step (S20), an electrode forming step (S30), and a conductive oxide film forming step ( S40), the glucose reaction unit forming step (S50), the protective film bonding step (S60), the carrier substrate separation step (S70) and the base film bonding step (S80).
  • a process of forming the separation layer 20 on the carrier substrate 10 is performed.
  • the carrier substrate 10 may be used without particular limitation as long as it provides a suitable strength so that the carrier substrate 10 can be fixed without being easily bent or twisted during the process and has little influence on heat or chemical treatment.
  • glass, quartz, silicon wafers, sus etc. may be used.
  • the separation layer 20 is a layer formed to peel components from the carrier substrate 10 including the electrode portion 40 formed on the carrier substrate 10 through a process described below.
  • the separation layer 20 may cover and cover and insulate the electrode portion 40 formed thereon.
  • the material of the separation layer 20 is not particularly limited as long as the conditions for providing a certain level of peeling force are satisfied.
  • the separation layer 20 may be a polyimide polymer, a polyvinyl alcohol polymer, a polyamic acid polymer, a polyamide polymer, polyethylene Polymer, polystylene polymer, polynorbornene polymer, phenylmaleimide copolymer polymer, polyazobenzene polymer, polyphenylenephthalamide polymer , Polyester (polyester) polymer, polymethyl methacrylate (polymer) polymer, polyarylate (polymer) polymer, cinnamate (polymer) polymer, coumarin (coumarin) polymer, phthalimidine (phthalimidine) ) -Based polymer, chalcone-based polymer, aromatic acetylene-based polymer material may include one or more materials selected from the group consisting of Can be.
  • the peel force of the separation layer 20 is not particularly limited, but may be, for example, 0.001 to 1N / 25mm, preferably 0.005 to 0.2N / 25mm.
  • it can be easily peeled off from the carrier substrate 10 without residue, it is possible to reduce the curl (curl) and cracks due to the tension generated during peeling.
  • the thickness of the separation layer 20 is not particularly limited, but may be, for example, 10 to 1,000 nm, preferably 50 to 500 nm. When the said range is satisfied, peeling force is stabilized and a uniform pattern can be formed.
  • a process of forming the protective layer 30 on the separation layer 20 is performed.
  • the protective layer 30 covers and protects the electrode unit 40 together with the separation layer 20, and the separation layer 20 is used for forming the electrode unit 40 in the manufacturing process of forming the electrode unit 40. It serves to prevent exposure to etchant.
  • the protective layer 30 is an optional component that can be omitted as needed.
  • the protective layer 30 may be formed to cover at least a portion of the side surface of the separation layer 20.
  • the side of the separation layer 20 is an edge sidewall of the separation layer 20. In this manner, the side surface of the separation layer 20 may be minimized from being exposed to the etchant during the process of patterning the electrode unit 40 constituting the glucose sensor.
  • the protective layer 30 is preferably configured to cover all of the side surfaces of the separation layer 20.
  • a polymer known in the art may be used without limitation, for example, an organic insulating film may be applied, and among these, a curable composition including a polyol and a melamine curing agent. It may be formed as, but is not limited thereto.
  • polyol examples include, but are not limited to, polyether glycol derivatives, polyester glycol derivatives, polycaprolactone glycol derivatives, and the like.
  • melamine curing agents include methoxy methyl melamine derivatives, methyl melamine derivatives, butyl melamine derivatives, isobutoxy melamine derivatives and butoxy melamine Derivatives and the like, but are not limited thereto.
  • the protective layer 30 may be formed of an organic-inorganic hybrid curable composition, and when using an organic compound and an inorganic compound at the same time, it is preferable in that cracks generated during peeling may be reduced.
  • the organic compound the above-described components may be used, and the inorganic material may include silica-based nanoparticles, silicon-based nanoparticles, glass nanofibers, and the like, but is not limited thereto.
  • the reference electrode portions 42 and 47 and the sensing electrode portions 44 spaced apart from the reference electrode portions 42 and 47 on the protective layer 30.
  • the process of forming the electrode unit 40 including the 46, 48, and 49 is performed.
  • at least one of the reference electrode parts 42 and 47 and the sensing electrode parts 44, 46, 48, and 49 constituting the electrode part 40 is configured to mesh.
  • a process of forming the conductive oxide films 52 and 54 in at least one of the upper region and the lower region of the electrode portion 40 is performed.
  • the electrode forming step S30 may be performed using a printing method to shorten the process time and reduce the cost, but the process method applicable to the electrode forming step S30 is not limited to the printing method. Do not.
  • the lower conductive oxide film 52 is formed on the protective layer 30, the electrode portion 40 having a mesh structure is formed on the lower conductive oxide film 52, and the mesh structure is formed.
  • the electrode and the oxide film forming method are not limited thereto.
  • FIG. 2 which shows an exemplary planar shape of the electrode portion 40
  • the reference electrode portions 42, 47 and the sensing electrode portions 44, 46, 48, 49 constituting the electrode portion 40 will be described later.
  • the material to be measured may be sweat, body fluid, etc. generated from the human body, but is not limited thereto.
  • At least one of the reference electrode parts 42 and 47 and the sensing electrode parts 44, 46, 48, and 49 constituting the electrode part 40 has a mesh structure.
  • the specific surface area is greatly increased, and thus the sensitivity to glucose is greatly increased.
  • the sensing electrode parts 44, 46, 48, and 49 may be configured to include one or more selected from the group consisting of Au, Ag, APC, and Pt.
  • the conductive oxide films 52 and 54 are formed in at least one of the upper region and the lower region of the electrode portion 40 to prevent oxidation of the electrode portion 40 in the atmosphere.
  • the electrode portion 40 may be prevented from coming into direct contact with the atmosphere. Since it is possible to prevent oxidation of the metal component constituting the above, the reliability of the sensing data, that is, the electrical signal detected by the electrode unit 40 is increased.
  • the conductive oxide films 52 and 54 may include at least one selected from the group consisting of indium tin oxide (ITO) and indium zinc oxide (IZO).
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • a process of forming the glucose reaction part 60 on a region including the electrode part 40 is performed.
  • the glucose reaction unit 60 is a component that reacts with glucose contained in the material to be measured.
  • the glucose reaction unit 60 may include glucose oxidase or glucose dehydrogenase.
  • glucose contained in the sample is oxidized by glucose oxidase or glucose dehydrogenase, and glucose oxidase or glucose dehydrogenase is reduced.
  • the electron transfer mediator oxidizes glucose oxidase or glucose dehydrogenase, and itself is reduced.
  • the reduced electron transfer mediator loses electrons at the electrode surface subjected to a constant voltage and is oxidized electrochemically again. Since the glucose concentration in the sample is proportional to the amount of current generated during the oxidation of the electron transfer medium, the glucose concentration can be measured by measuring the amount of current.
  • the protective film bonding step S60 a process of bonding the protective film 80 to which the adhesive 70 is applied to the electrode unit 40 is performed.
  • the protective film 80 may be bonded to the electrode portion 40 by a lamination method using a roll-to-roll.
  • the adhesive 70 may be a pressure sensitive adhesive (PSA) that reacts to an applied pressure, but is not limited thereto.
  • PSA pressure sensitive adhesive
  • a process of cutting the glucose sensor by a product unit is performed.
  • the carrier substrate separation step S70 a process of exposing the separation layer 20 by separating the carrier substrate 10 is performed.
  • the apparatus for delamination grips the protective film 80 from the separation layer 20 through a physical force in a state in which the protective film 80 is gripped. It can be configured to peel off and separate.
  • the base film bonding step S80 a process of bonding the base film 90 to the separation layer 20 is performed.
  • the base film 90 may be bonded to the separation layer 20 in a lamination manner using a roll-to-roll.
  • a glucose sensor that can significantly increase the sensitivity to glucose and its The manufacturing method is effective.
  • S70 carrier substrate separation step
  • S80 base film bonding step

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

본 발명은 글루코스 센서 및 그 제조방법에 관한 것이다. 본 발명에 따른 글루코스 센서는 기판, 상기 기판 상에 형성된 기준 전극부 및 상기 기준 전극부와 이격된 상태로 상기 기판 상에 형성된 감지 전극부를 포함하는 전극부 및 상기 전극부를 포함하는 영역 상에 형성된 글루코스 반응부를 포함하고, 상기 전극부를 구성하는 기준 전극부와 감지 전극부 중에서 적어도 하나는 메쉬(mesh) 구조를 갖는다. 본 발명에 따르면, 메쉬 구조를 갖는 전극을 적용하여 전극의 비표면적을 증가시킴으로써 글루코스에 대한 감지 민감도를 현저하게 높이고, 금속 전극의 상부 영역과 하부 영역 중에서 적어도 한 영역에 도전성 산화막을 형성하여 금속 전극의 산화를 방지함으로써 센서의 감지 성능의 열화를 방지할 수 있다.

Description

글루코스 센서 및 그 제조방법
본 발명은 글루코스 센서 및 그 제조방법에 관한 것이다. 보다 구체적으로, 본 발명은 메쉬(mesh) 구조를 갖는 전극을 적용하여 전극의 비표면적(specific surface area)을 증가시킴으로써 글루코스에 대한 감지 민감도를 현저하게 높이고, 금속 전극의 상부 영역과 하부 영역 중에서 적어도 한 영역에 도전성 산화막을 형성하여 금속 전극의 산화를 방지함으로써 감지 성능의 열화를 방지할 수 있는 글루코스 센서 및 그 제조방법에 관한 것이다.
글루코스(glucose)는 대부분 유기체의 광범위한 영양 공급원이며, 에너지 공급, 탄소 저장, 생합성 및 탄소 골격 및 세포벽 형성의 기초적인 역할을 수행하는 성분으로서, 전위차 또는 전류 측정을 통해 글루코스의 농도를 측정하는 글루코스 센서에 대한 연구가 활발히 수행되고 있다.
글루코스 센서에 대한 대부분의 연구들은 글루코스의 글루코노락톤 (gluconolactone)으로의 산화를 촉진하는 글루코스 산화효소(glucose oxidase) 또는 글루코스 탈수소효소와 같은 효소의 고정에 기반을 두고 있다.
한편, 이러한 글루코스 센서의 성능을 높이기 위해서는 구성요소인 전극의 비표면적을 증가시켜 글루코스에 대한 감응도를 높여야 하지만, 현재까지는 이를 위한 효율적인 구조가 제시되지 않고 있다.
또한, 종래의 글루코스 센서를 구성하는 금속 전극이 대기중에 노출되어 산화됨으로써, 글루코스 센서의 감지 성능이 저하되는 문제점이 있다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 대한민국 등록특허공보 제10-1107506호(등록일자: 2012년 01월 12일, 명칭: 이산화티타늄-그래핀 복합체가 구비된 글루코스 센서)
본 발명은 메쉬(mesh) 구조를 갖는 전극을 적용하여 전극의 비표면적(specific surface area)을 증가시킴으로써, 글루코스에 대한 감지 민감도를 현저하게 높일 수 있는 글루코스 센서 및 그 제조방법을 제공하는 것을 기술적 과제로 한다.
또한, 본 발명은 금속 전극의 상부 영역과 하부 영역 중에서 적어도 한 영역에 도전성 산화막을 형성하여 금속 전극의 산화를 방지함으로써, 감지 성능의 열화를 방지할 수 있는 글루코스 센서 및 그 제조방법을 제공하는 것을 기술적 과제로 한다.
이러한 기술적 과제를 해결하기 위한 본 발명에 따른 글루코스 센서는 기판, 상기 기판 상에 형성된 기준 전극부 및 상기 기준 전극부와 이격된 상태로 상기 기판 상에 형성된 감지 전극부를 포함하는 전극부 및 상기 전극부를 포함하는 영역 상에 형성된 글루코스 반응부를 포함하고, 상기 전극부를 구성하는 기준 전극부와 감지 전극부 중에서 적어도 하나는 메쉬(mesh) 구조를 갖는다.
본 발명에 따른 글루코스 센서는 상기 전극부의 상부 영역과 하부 영역 중에서 적어도 한 영역에 형성된 도전성 산화막을 더 포함하는 것을 특징으로 한다.
본 발명에 따른 글루코스 센서에 있어서, 상기 도전성 산화막은 ITO(Indium Tin Oxide), IZO(Indium Zinc Oxide)로 이루어진 군에서 선택된 하나 이상을 포함하는 것을 특징으로 한다.
본 발명에 따른 글루코스 센서에 있어서, 상기 감지 전극부는 Au, Ag, APC, Pt로 이루어진 군에서 선택된 하나 이상을 포함하는 것을 특징으로 한다.
본 발명에 따른 글루코스 센서에 있어서, 상기 글루코스 반응부는 글루코스 산화효소 또는 글루코스 탈수소효소를 포함하는 것을 특징으로 한다.
본 발명에 따른 글루코스 센서는 상기 기판과 상기 전극부 사이에 형성된 분리층을 더 포함하는 것을 특징으로 한다.
본 발명에 따른 글루코스 센서는 상기 분리층과 상기 전극부 사이에 형성된 보호층을 더 포함하는 것을 특징으로 한다.
본 발명에 따른 글루코스 센서에 있어서, 상기 기판은 플렉서블 특성을 갖는 기재 필름인 것을 특징으로 한다.
본 발명에 따른 글루코스 센서 제조방법은 캐리어 기판 상에 분리층을 형성하는 분리층 형성단계, 상기 분리층 상에 기준 전극부 및 상기 기준 전극부와 이격된 감지 전극부를 포함하는 전극부를 형성하는 전극 형성단계, 상기 전극부를 포함하는 영역 상에 글루코스 반응부를 형성하는 글루코스 반응부 형성단계, 상기 캐리어 기판을 분리하여 상기 분리층을 노출시키는 캐리어기판 분리단계 및 상기 분리층에 기재 필름을 접합하는 기재필름 접합단계를 포함하고, 상기 전극 형성단계에서는, 상기 전극부를 구성하는 기준 전극부와 감지 전극부 중에서 적어도 하나를 메쉬(mesh) 구조화한다.
본 발명에 따른 글루코스 센서 제조방법에 있어서, 상기 전극부는 Au, Ag, APC, Pt로 이루어진 군에서 선택된 하나 이상을 포함하는 단일층 또는 복층 구조를 갖는 것을 특징으로 한다.
본 발명에 따른 글루코스 센서 제조방법은 상기 전극부의 상부 영역과 하부 영역 중에서 적어도 한 영역에 도전성 산화막을 형성하는 도전성 산화막 형성단계를 더 포함하는 것을 특징으로 한다.
본 발명에 따른 글루코스 센서 제조방법에 있어서, 상기 도전성 산화막은 ITO(Indium Tin Oxide), IZO(Indium Zinc Oxide)로 이루어진 군에서 선택된 하나 이상을 포함하는 것을 특징으로 한다.
본 발명에 따른 글루코스 센서 제조방법에 있어서, 상기 글루코스 반응부는 글루코스 산화효소 또는 글루코스 탈수소효소를 포함하는 것을 특징으로 한다.
본 발명에 따른 글루코스 센서 제조방법은 상기 전극 형성단계 이전에, 상기 분리층과 상기 전극부 사이에 보호층을 형성하는 보호층 형성단계를 더 포함하는 것을 특징으로 한다.
본 발명에 따른 글루코스 센서 제조방법에 있어서, 상기 보호층은 상기 분리층의 측벽을 둘러싸도록 형성되는 것을 특징으로 한다.
본 발명에 따른 글루코스 센서 제조방법은 상기 캐리어기판 분리단계 이전에, 상기 전극부에 접합제가 도포된 보호 필름을 접합하는 보호필름 접합단계를 더 포함하는 것을 특징으로 한다.
본 발명에 따른 글루코스 센서 제조방법에 있어서, 상기 접합제는 압력 감응 접합제인 것을 특징으로 한다.
본 발명에 따른 글루코스 센서 제조방법에 있어서, 상기 캐리어기판 분리단계에서는, 상기 보호 필름을 그립(grip)한 상태에서 상기 캐리어 기판에 물리력을 인가하여 상기 캐리어 기판을 분리하는 것을 특징으로 한다.
본 발명에 따른 글루코스 센서 제조방법에 있어서, 상기 보호필름 접합단계에서는, 상기 보호 필름을 롤투롤(Roll-To-Roll)을 이용한 라미네이션(Lamination) 방식으로 상기 전극부에 접합하는 것을 특징으로 한다.
본 발명에 따른 글루코스 센서 제조방법에 있어서, 상기 기재필름 접합단계에서는, 상기 기재 필름을 롤투롤을 이용한 라미네이션 방식으로 상기 분리층에 접합하는 것을 특징으로 한다.
본 발명에 따르면, 메쉬(mesh) 구조를 갖는 전극을 적용하여 전극의 비표면적(specific surface area)을 증가시킴으로써, 글루코스에 대한 감지 민감도를 현저하게 높일 수 있는 글루코스 센서 및 그 제조방법이 제공되는 효과가 있다.
또한, 금속 전극의 상부 영역과 하부 영역 중에서 적어도 한 영역에 도전성 산화막을 형성하여 금속 전극의 산화를 방지함으로써, 감지 성능의 열화를 방지할 수 있는 글루코스 센서 및 그 제조방법이 제공되는 효과가 있다.
도 1은 본 발명의 일 실시 예에 따른 글루코스 센서의 단면도이고,
도 2는 본 발명의 일 실시 예에 따른 글루코스 센서를 구성하는 전극부가 2 전극 구조를 갖는 경우의 예시적인 평면 형상을 나타내는 도면이고,
도 3은 본 발명의 일 실시 예에 따른 글루코스 센서를 구성하는 전극부가 3 전극 구조를 갖는 경우의 예시적인 평면 형상을 나타내는 도면이고,
도 4는 본 발명의 일 실시 예에 따른 글루코스 센서 제조방법의 공정 순서도이고,
도 5 내지 도 15는 본 발명의 일 실시 예에 따른 글루코스 센서 제조방법의 예시적인 공정 단면도들이다.
본 명세서에 개시되어 있는 본 발명의 개념에 따른 실시 예들에 대해서 특정한 구조적 또는 기능적 설명은 단지 본 발명의 개념에 따른 실시 예들을 설명하기 위한 목적으로 예시된 것으로서, 본 발명의 개념에 따른 실시 예들은 다양한 형태들로 실시될 수 있으며 본 명세서에 설명된 실시 예들에 한정되지 않는다.
본 발명의 개념에 따른 실시 예들은 다양한 변경들을 가할 수 있고 여러 가지 형태들을 가질 수 있으므로 실시 예들을 도면에 예시하고 본 명세서에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명의 개념에 따른 실시 예들을 특정한 개시 형태들에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물, 또는 대체물을 포함한다.
제1 또는 제2 등의 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만, 예컨대 본 발명의 개념에 따른 권리 범위로부터 벗어나지 않은 채, 제1 구성 요소는 제2 구성 요소로 명명될 수 있고 유사하게 제2구성 요소는 제1구성 요소로도 명명될 수 있다.
어떤 구성 요소가 다른 구성 요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성 요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성 요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성 요소가 다른 구성 요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는 중간에 다른 구성 요소가 존재하지 않는 것으로 이해되어야 할 것이다. 구성 요소들 간의 관계를 설명하는 다른 표현들, 즉 "~사이에"와 "바로 ~사이에" 또는 "~에 이웃하는"과 "~에 직접 이웃하는" 등도 마찬가지로 해석되어야 한다.
본 명세서에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로서, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 본 명세서에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 나타낸다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 갖는 것으로 해석되어야 하며, 본 명세서에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하에서는, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다.
도 1은 본 발명의 일 실시 예에 따른 글루코스 센서의 단면도이고, 도 2는 본 발명의 일 실시 예에 따른 글루코스 센서를 구성하는 전극부가 2 전극 구조를 갖는 경우의 예시적인 평면 형상을 나타내는 도면이고, 도 3은 본 발명의 일 실시 예에 따른 글루코스 센서를 구성하는 전극부가 3 전극 구조를 갖는 경우의 예시적인 평면 형상을 나타내는 도면이다.
도 1 내지 도 3을 참조하면, 본 발명의 일 실시 예에 따른 글루코스 센서는 기판(90), 분리층(20), 보호층(30), 전극부(40), 도전성 산화막(52, 54), 글루코스 반응부(60) 및 보호 필름(80)을 포함한다.
기판(90)은 글루코스 센서를 구성하는 구성요소들의 구조적인 기지(base)를 제공하는 기능을 한다.
예를 들어, 기판(90)은 플렉서블 특성을 갖는 기재 필름(90)일 수 있으며, 구체적인 예로는, 폴리에틸렌테레프탈레이트, 폴리에틸렌이소프탈레이트, 폴리에틸렌나프탈레이트, 폴리부틸렌테레프탈레이트 등의 폴리에스테르계 수지; 디아세틸셀룰로오스, 트리아세틸셀룰로오스 등의 셀룰로오스계 수지; 폴리카보네이트계 수지; 폴리메틸(메타)아크릴레이트, 폴리에틸(메타)아크릴레이트 등의 아크릴계 수지; 폴리스티렌, 아크릴로니트릴-스티렌 공중합체 등의 스티렌계 수지; 폴리에틸렌, 폴리프로필렌, 시클로계 또는 노보넨 구조를 갖는 폴리올레핀, 에틸렌-프로필렌 공중합체 등의 폴리올레핀계 수지; 염화비닐계 수지; 나일론, 방향족 폴리아미드 등의 아미드계 수지; 이미드계 수지; 폴리에테르술폰계 수지; 술폰계 수지; 폴리에테르에테르케톤계 수지; 황화 폴리페닐렌계 수지; 비닐알코올계 수지; 염화비닐리덴계 수지; 비닐부티랄계 수지; 알릴레이트계 수지; 폴리옥시메틸렌계 수지; 에폭시계 수지 등과 같은 열가소성 수지로 구성된 필름을 들 수 있으며, 상기 열가소성 수지의 블렌드물로 구성된 필름도 사용할 수 있다. 또한, (메타)아크릴계, 우레탄계, 아크릴우레탄계, 에폭시계, 실리콘계 등의 열경화성 수지 또는 자외선 경화형 수지로 된 필름을 이용할 수도 있다. 이와 같은 투명 광학 필름의 두께는 적절히 결정될 수 있지만, 일반적으로는 강도나 취급성 등의 작업성, 박층성 등을 고려하여, 1 ∼ 500㎛로 결정될 수 있다. 특히 1 ∼ 300㎛가 바람직하고, 5 ∼ 200㎛가 보다 바람직하다.
이러한 기재 필름(90)은 적절한 1종 이상의 첨가제가 함유된 것일 수도 있다. 첨가제로는, 예컨대 자외선흡수제, 산화방지제, 윤활제, 가소제, 이형제, 착색방지제, 난연제, 핵제, 대전방지제, 안료, 착색제 등을 들 수 있다. 기재 필름(90)은 필름의 일면 또는 양면에 하드코팅층, 반사방지층, 가스배리어층과 같은 다양한 기능성층을 포함하는 구조일 수 있으며, 기능성층은 전술한 것으로 한정되는 것은 아니며, 용도에 따라 다양한 기능성층을 포함할 수 있다.
또한, 필요에 따라 기재 필름(90)은 표면 처리된 것일 수 있다. 이러한 표면 처리로는 플라즈마(plasma) 처리, 코로나(corona) 처리, 프라이머(primer) 처리 등의 건식 처리, 검화 처리를 포함하는 알칼리 처리 등의 화학 처리 등을 들 수 있다.
분리층(20)은 기판(90) 상에 형성되어 있으며, 글루코스 센서를 제조하는 과정에서, 캐리어 기판(10)에 형성한 전극부(40)를 포함하는 구성요소들을 캐리어 기판(10)으로부터 박리하기 위해 형성되는 층이다. 분리층(20)은 상부에 형성되는 전극부(40)를 감싸서 피복하고 이를 절연시키는 기능을 아울러 수행할 수 있다.
예를 들어, 일정 수준의 박리력을 제공하는 조건을 충족시키면 분리층(20)의 소재는 특별히 한정되지 않는다. 예를 들어, 분리층(20)은 폴리이미드(polyimide)계 고분자, 폴리비닐알코올(poly vinyl alcohol)계 고분자, 폴리아믹산(polyamic acid)계 고분자, 폴리아미드(polyamide)계 고분자, 폴리에틸렌(polyethylene)계 고분자, 폴리스타일렌(polystylene)계 고분자, 폴리노보넨(polynorbornene)계 고분자, 페닐말레이미드 공중합체(phenylmaleimide copolymer)계 고분자, 폴리아조벤젠(polyazobenzene)계 고분자, 폴리페닐렌프탈아미드(polyphenylenephthalamide)계 고분자, 폴리에스테르(polyester)계 고분자, 폴리메틸 메타크릴레이트(polymethyl methacrylate)계 고분자, 폴리아릴레이트(polyarylate)계 고분자, 신나메이트(cinnamate)계 고분자, 쿠마린(coumarin)계 고분자, 프탈리미딘(phthalimidine)계 고분자, 칼콘(chalcone)계 고분자, 방향족 아세틸렌계(aromatic acetylene) 고분자 물질로 이루어진 군에서 선택된 하나 이상의 물질을 포함할 수 있다.
분리층(20)의 박리력은 특별히 한정되지 않으나, 예를 들어, 0.001 내지 1N/25mm일 수 있으며, 바람직하게는 0.005 내지 0.2N/25mm일 수 있다. 상기 범위를 만족하는 경우, 글루코스 센서의 제조공정에서, 캐리어 기판(10)으로부터 잔여물 없이 용이하게 박리될 수 있으며, 박리시 발생하는 장력에 의한 컬(curl) 및 크랙을 저감할 수 있다.
분리층(20)의 두께는 특별히 한정되지 않으나, 예를 들어, 10 내지 1,000nm일 수 있으며, 바람직하게는 50 내지 500nm일 수 있다. 상기 범위를 만족하는 경우, 박리력이 안정되고, 균일한 패턴을 형성할 수 있다.
보호층(30)은 분리층(20) 상에 형성되어 있으며, 분리층(20)과 함께 전극부(40)를 피복하여 보호하며, 전극부(40)를 형성하는 제조 과정에서 분리층(20)이 전극부(40) 형성을 위한 에천트(etchant)에 노출되지 않도록 하는 기능을 수행한다. 보호층(30)은 필요에 따라 생략될 수 있는 선택적인 구성요소이다.
예를 들어, 보호층(30)은 분리층(20)의 측면의 적어도 일부 영역을 덮도록 형성될 수 있다. 분리층(20)의 측면은 분리층(20)의 가장자리 측벽이다. 이와 같이 구성하면, 글루코스 센서를 구성하는 전극부(40)에 대한 패터닝 등의 공정 중에 분리층(20)의 측면이 에천트 등에 노출되는 것을 최소화할 수 있다. 분리층(20)의 측면 노출을 완전히 차단한다는 측면에서, 보호층(30)이 분리층(20)의 측면 전부를 덮도록 구성하는 것이 바람직하다.
보호층(30)의 소재로는 당 기술분야에 공지된 고분자가 제한없이 사용될 수 있으며, 예를 들면 유기 절연막이 적용될 수 있으며, 그 중에서도 폴리올(polyol) 및 멜라민(melamine) 경화제를 포함하는 경화성 조성물로 형성된 것일 수 있으나, 이에 한정되는 것은 아니다.
폴리올의 구체적인 종류로는 폴리에테르 글리콜(polyether glycol) 유도체, 폴리에스테르 글리콜(polyester glycol) 유도체, 폴리카프로락톤 글리콜(polycaprolactone glycol) 유도체 등을 들 수 있으나, 이에 한정되는 것은 아니다.
멜라민 경화제의 구체적인 종류로는 메톡시 메틸 멜라민(methoxy methyl melamine) 유도체, 메틸 멜라민(methyl melamine) 유도체, 부틸 멜라민(butyl melamine) 유도체, 이소부톡시 멜라민(isobutoxy melamine) 유도체 및 부톡시 멜라민(butoxy melamine) 유도체 등을 들 수 있으나, 이에 한정되는 것은 아니다.
다른 예로, 보호층(30)은 유무기 하이브리드 경화성 조성물로 형성될 수 있으며, 유기 화합물과 무기 화합물을 동시에 사용하는 경우, 박리시 발생하는 크랙(crack)을 저감할 수 있다는 점에서 바람직하다.
유기 화합물로는 전술한 성분이 사용될 수 있고, 무기물로는 실리카계 나노 입자, 실리콘계 나노 입자, 유리 나노 섬유 등을 들 수 있으나, 이에 한정되는 것은 아니다.
전극부(40)는 기판(90) 상에 형성된 기준 전극부(42, 47) 및 기준 전극부(42, 47)와 이격된 상태로 기판(90) 상에 형성된 감지 전극부(44, 46, 48, 49)를 포함하며, 전극부(40)를 구성하는 기준 전극부(42, 47)와 감지 전극부(44, 46, 48, 49) 중에서 적어도 하나는 메쉬(mesh) 구조를 갖도록 구성된다.
보다 구체적으로, 기판(90)에는 분리층(20), 보호층(30)이 순차적으로 형성되고, 전극부(40)를 구성하는 기준 전극부(42, 47)와 감지 전극부(44, 46, 48, 49)는 보호층(30)에 형성될 수 있다.
기준 전극부(42, 47)와 감지 전극부(44, 46, 48, 49)는 후술하는 글루코스 반응부(60)를 구성하는 물질과 측정 대상 물질에 포함되어 있는 글루코스의 반응에 의해 발생된 전기적 신호를 감지한다. 예를 들어, 측정 대상 물질은 인체로부터 생성된 땀, 체액 등일 수 있으나, 이에 한정되지는 않는다.
본 발명의 일 실시 예에 따르면, 전극부(40)를 구성하는 기준 전극부(42, 47)와 감지 전극부(44, 46, 48, 49) 중에서 적어도 하나는 메쉬(mesh) 구조를 갖기 때문에, 비표면적(specific surface area)이 크게 증가하며, 이에 따라 글루코스에 대한 감지 민감도가 크게 높아진다.
예를 들어, 감지 전극부(44, 46, 48, 49)는 Au, Ag, APC, Pt로 이루어진 군에서 선택된 하나 이상을 포함하도록 구성될 수 있다.
도전성 산화막(52, 54)은 전극부(40)의 상부 영역과 하부 영역 중에서 적어도 한 영역에 형성되어 있으며, 대기 중에서의 전극부(40)의 산화를 방지한다.
보다 구체적으로, 전극부(40)의 상부 영역과 하부 영역 중에서 적어도 한 영역에 도전성 산화막(52, 54)을 형성하면, 전극부(40)가 대기와 직접 접촉하는 것을 방지하여 전극부(40)를 구성하는 금속 성분의 산화를 방지할 수 있기 때문에, 감지 데이터 즉, 전극부(40)에 의해 감지되는 전기적 신호의 신뢰성이 높아진다.
예를 들어, 도전성 산화막(52, 54)은 ITO(Indium Tin Oxide), IZO(Indium Zinc Oxide)로 이루어진 군에서 선택된 하나 이상을 포함할 수 있다.
글루코스 반응부(60)는 전극부(40)를 포함하는 영역 상에 형성되어 있으며, 측정 대상 물질에 포함되어 있는 글루코스와 반응하는 구성요소이다.
예를 들어, 글루코스 반응부(60)는 글루코스 산화효소 또는 글루코스 탈수소효소를 포함할 수 있다.
글루코스 반응부(60)에서의 반응 및 전극부(40)의 신호 감지 원리를 예시적으로 설명하면 다음과 같다.
측정 대상 물질인 시료를 글루코스 센서에 주입하면, 시료에 포함되어 있는 글루코스가 글루코스 산화효소 또는 글루코스 탈수소효소에 의하여 산화되고, 글루코스 산화효소 또는 글루코스 탈수소효소는 환원된다. 이때, 전자전달매개체는 글루코스 산화효소 또는 글루코스 탈수소효소를 산화시키고, 자신은 환원된다. 환원된 전자전달매개체는 일정 전압이 가해진 전극 표면에서 전자를 잃고 전기화학적으로 다시 산화된다. 시료 내의 글루코스 농도는 전자전달매개체가 산화되는 과정에서 발생되는 전류량에 비례하므로, 이 전류량을 측정함으로써 글루코스 농도를 측정할 수 있다.
보호 필름(80)은 접합제(70)를 매개로 전극부(40) 또는 글루코스 반응부(60)에 접합되어 있다. 이러한 보호 필름(80)은 필요에 따라 적용되거나 배제될 수 있는 선택적인 구성요소이다.
도 4는 본 발명의 일 실시 예에 따른 글루코스 센서 제조방법의 공정 순서도이고, 도 5 내지 도 15는 본 발명의 일 실시 예에 따른 글루코스 센서 제조방법의 예시적인 공정 단면도들이다.
도 4 내지 도 15를 참조하면, 본 발명의 일 실시 예에 따른 글루코스 센서 제조방법은 분리층 형성단계(S10), 보호층 형성단계(S20), 전극 형성단계(S30), 도전성 산화막 형성단계(S40), 글루코스 반응부 형성단계(S50), 보호필름 접합단계(S60), 캐리어기판 분리단계(S70) 및 기재필름 접합단계(S80)를 포함한다.
도 5를 참조하면, 분리층 형성단계(S10)에서는, 캐리어 기판(10) 상에 분리층(20)을 형성하는 과정이 수행된다.
예를 들어, 캐리어 기판(10)으로는 공정 중에 쉽게 휘거나 뒤틀리지 않고 고정될 수 있도록 적정 강도를 제공하며 열이나 화학 처리에 영향이 거의 없는 재료라면 특별한 제한이 없이 사용될 수 있다. 예를 들면 유리, 석영, 실리콘 웨이퍼, 서스(SUS) 등이 사용될 수 있다.
분리층(20)은 후술하는 공정을 통해 캐리어 기판(10)에 형성한 전극부(40)를 포함하는 구성요소들을 캐리어 기판(10)으로부터 박리하기 위해 형성되는 층이다. 분리층(20)은 상부에 형성되는 전극부(40)를 감싸서 피복하고 이를 절연시키는 기능을 아울러 수행할 수 있다.
예를 들어, 일정 수준의 박리력을 제공하는 조건을 충족시키면 분리층(20)의 소재는 특별히 한정되지 않는다. 예를 들어, 분리층(20)은 폴리이미드(polyimide)계 고분자, 폴리비닐알코올(poly vinyl alcohol)계 고분자, 폴리아믹산(polyamic acid)계 고분자, 폴리아미드(polyamide)계 고분자, 폴리에틸렌(polyethylene)계 고분자, 폴리스타일렌(polystylene)계 고분자, 폴리노보넨(polynorbornene)계 고분자, 페닐말레이미드 공중합체(phenylmaleimide copolymer)계 고분자, 폴리아조벤젠(polyazobenzene)계 고분자, 폴리페닐렌프탈아미드(polyphenylenephthalamide)계 고분자, 폴리에스테르(polyester)계 고분자, 폴리메틸 메타크릴레이트(polymethyl methacrylate)계 고분자, 폴리아릴레이트(polyarylate)계 고분자, 신나메이트(cinnamate)계 고분자, 쿠마린(coumarin)계 고분자, 프탈리미딘(phthalimidine)계 고분자, 칼콘(chalcone)계 고분자, 방향족 아세틸렌계(aromatic acetylene) 고분자 물질로 이루어진 군에서 선택된 하나 이상의 물질을 포함할 수 있다.
분리층(20)의 박리력은 특별히 한정되지 않으나, 예를 들어, 0.001 내지 1N/25mm일 수 있으며, 바람직하게는 0.005 내지 0.2N/25mm일 수 있다. 상기 범위를 만족하는 경우, 글루코스 센서의 제조공정에서, 캐리어 기판(10)으로부터 잔여물 없이 용이하게 박리될 수 있으며, 박리시 발생하는 장력에 의한 컬(curl) 및 크랙을 저감할 수 있다.
분리층(20)의 두께는 특별히 한정되지 않으나, 예를 들어, 10 내지 1,000nm일 수 있으며, 바람직하게는 50 내지 500nm일 수 있다. 상기 범위를 만족하는 경우, 박리력이 안정되고, 균일한 패턴을 형성할 수 있다.
도 6을 참조하면, 보호층 형성단계(S20)에서는, 분리층(20) 상에 보호층(30)을 형성하는 과정이 수행된다.
보호층(30)은 분리층(20)과 함께 전극부(40)를 피복하여 보호하며, 전극부(40)를 형성하는 제조 과정에서 분리층(20)이 전극부(40) 형성을 위한 에천트(etchant)에 노출되지 않도록 하는 기능을 수행한다. 보호층(30)은 필요에 따라 생략될 수 있는 선택적인 구성요소이다.
예를 들어, 보호층(30)은 분리층(20)의 측면의 적어도 일부 영역을 덮도록 형성될 수 있다. 분리층(20)의 측면은 분리층(20)의 가장자리 측벽이다. 이와 같이 구성하면, 글루코스 센서를 구성하는 전극부(40)에 대한 패터닝 등의 공정 중에 분리층(20)의 측면이 에천트 등에 노출되는 것을 최소화할 수 있다. 분리층(20)의 측면 노출을 완전히 차단한다는 측면에서, 보호층(30)이 분리층(20)의 측면 전부를 덮도록 구성하는 것이 바람직하다.
보호층(30)의 소재로는 당 기술분야에 공지된 고분자가 제한없이 사용될 수 있으며, 예를 들면 유기 절연막이 적용될 수 있으며, 그 중에서도 폴리올(polyol) 및 멜라민(melamine) 경화제를 포함하는 경화성 조성물로 형성된 것일 수 있으나, 이에 한정되는 것은 아니다.
폴리올의 구체적인 종류로는 폴리에테르 글리콜(polyether glycol) 유도체, 폴리에스테르 글리콜(polyester glycol) 유도체, 폴리카프로락톤 글리콜(polycaprolactone glycol) 유도체 등을 들 수 있으나, 이에 한정되는 것은 아니다.
멜라민 경화제의 구체적인 종류로는 메톡시 메틸 멜라민(methoxy methyl melamine) 유도체, 메틸 멜라민(methyl melamine) 유도체, 부틸 멜라민(butyl melamine) 유도체, 이소부톡시 멜라민(isobutoxy melamine) 유도체 및 부톡시 멜라민(butoxy melamine) 유도체 등을 들 수 있으나, 이에 한정되는 것은 아니다.
다른 예로, 보호층(30)은 유무기 하이브리드 경화성 조성물로 형성될 수 있으며, 유기 화합물과 무기 화합물을 동시에 사용하는 경우, 박리시 발생하는 크랙(crack)을 저감할 수 있다는 점에서 바람직하다.
유기 화합물로는 전술한 성분이 사용될 수 있고, 무기물로는 실리카계 나노 입자, 실리콘계 나노 입자, 유리 나노 섬유 등을 들 수 있으나, 이에 한정되는 것은 아니다.
도 7 내지 도 10을 참조하면, 전극 형성단계(S30)에서는, 보호층(30) 상에 기준 전극부(42, 47) 및 이 기준 전극부(42, 47)와 이격된 감지 전극부(44, 46, 48, 49)를 포함하는 전극부(40)를 형성하는 과정이 수행된다. 전극 형성단계(S30)에서는, 전극부(40)를 구성하는 기준 전극부(42, 47)와 감지 전극부(44, 46, 48, 49) 중에서 적어도 하나를 메쉬(mesh) 구조화하도록 구성된다. 또한, 도전성 산화막 형성단계(S40)에서는, 전극부(40)의 상부 영역과 하부 영역 중에서 적어도 한 영역에 도전성 산화막(52, 54)을 형성하는 과정이 수행된다. 예를 들어, 이러한 전극 형성단계(S30)는 인쇄법을 이용하여 수행됨으로써 공정 시간을 단축하고 비용을 저감할 수 있으나, 전극 형성단계(S30)에 적용될 수 있는 공정 방식이 인쇄법에 한정되지는 않는다.
도 7 내지 도 10에 개시된 예에 따르면, 보호층(30) 상에 하부 도전성 산화막(52)을 형성하고, 하부 도전성 산화막(52) 상에 메쉬 구조의 전극부(40)를 형성하고, 메쉬 구조의 전극부(40) 상에 상부 도전성 산화막(54)을 형성하는 3층 구조가 예시되어 있지만, 전극과 산화막 형성 방식이 이에 한정되지는 않는다. 예를 들어, 산화막이 전극부(40)의 하부 영역 즉, 보호층(30) 상에만 형성되거나, 전극부(40)의 상부 영역 즉, 전극부(40) 상에만 형성되는 2층 구조가 적용 가능하다.
전극부(40)의 예시적인 평면 형상을 나타내는 도 2를 추가적으로 참조하면, 전극부(40)를 구성하는 기준 전극부(42, 47)와 감지 전극부(44, 46, 48, 49)는 후술하는 글루코스 반응부(60)를 구성하는 물질과 측정 대상 물질에 포함되어 있는 글루코스의 반응에 의해 발생된 전기적 신호를 감지한다. 예를 들어, 측정 대상 물질은 인체로부터 생성된 땀, 체액 등일 수 있으나, 이에 한정되지는 않는다.
본 발명의 일 실시 예에 따르면, 전극부(40)를 구성하는 기준 전극부(42, 47)와 감지 전극부(44, 46, 48, 49) 중에서 적어도 하나는 메쉬(mesh) 구조를 갖기 때문에, 비표면적(specific surface area)이 크게 증가하며, 이에 따라 글루코스에 대한 감지 민감도가 크게 높아진다.
예를 들어, 감지 전극부(44, 46, 48, 49)는 Au, Ag, APC, Pt로 이루어진 군에서 선택된 하나 이상을 포함하도록 구성될 수 있다.
도전성 산화막(52, 54)은 전극부(40)의 상부 영역과 하부 영역 중에서 적어도 한 영역에 형성되어 있으며, 대기 중에서의 전극부(40)의 산화를 방지한다.
보다 구체적으로, 전극부(40)의 상부 영역과 하부 영역 중에서 적어도 한 영역에 도전성 산화막(52, 54)을 형성하면, 전극부(40)가 대기와 직접 접촉하는 것을 방지하여 전극부(40)를 구성하는 금속 성분의 산화를 방지할 수 있기 때문에, 감지 데이터 즉, 전극부(40)에 의해 감지되는 전기적 신호의 신뢰성이 높아진다.
예를 들어, 도전성 산화막(52, 54)은 ITO(Indium Tin Oxide), IZO(Indium Zinc Oxide)로 이루어진 군에서 선택된 하나 이상을 포함할 수 있다.
도 11을 참조하면, 글루코스 반응부 형성단계(S50)에서는, 전극부(40)를 포함하는 영역 상에 글루코스 반응부(60)를 형성하는 과정이 수행된다.
글루코스 반응부(60)는 측정 대상 물질에 포함되어 있는 글루코스와 반응하는 구성요소이다.
예를 들어, 글루코스 반응부(60)는 글루코스 산화효소 또는 글루코스 탈수소효소를 포함할 수 있다.
글루코스 반응부(60)에서의 반응 및 전극부(40)의 신호 감지 원리를 예시적으로 설명하면 다음과 같다.
측정 대상 물질인 시료를 글루코스 센서에 주입하면, 시료에 포함되어 있는 글루코스가 글루코스 산화효소 또는 글루코스 탈수소효소에 의하여 산화되고, 글루코스 산화효소 또는 글루코스 탈수소효소는 환원된다. 이때, 전자전달매개체는 글루코스 산화효소 또는 글루코스 탈수소효소를 산화시키고, 자신은 환원된다. 환원된 전자전달매개체는 일정 전압이 가해진 전극 표면에서 전자를 잃고 전기화학적으로 다시 산화된다. 시료 내의 글루코스 농도는 전자전달매개체가 산화되는 과정에서 발생되는 전류량에 비례하므로, 이 전류량을 측정함으로써 글루코스 농도를 측정할 수 있다.
도 12를 참조하면, 보호필름 접합단계(S60)에서는, 접합제(70)가 도포된 보호 필름(80)을 전극부(40)에 접합하는 과정이 수행된다.
예를 들어, 보호 필름(80)은 롤투롤(Roll-To-Roll)을 이용한 라미네이션(Lamination) 방식으로 전극부(40)에 접합될 수 있다.
또한, 예를 들어, 접합제(70)는 인가되는 압력에 반응하는 압력 감응 접합제(Pressure Sensitive Adhesive, PSA)일 수 있으나, 이에 한정되지는 않는다.
도 13을 참조하면, 글루코스 센서를 제품 단위로 커팅(cutting)하는 과정이 수행된다.
도 14를 참조하면, 캐리어기판 분리단계(S70)에서는, 캐리어 기판(10)을 분리하여 분리층(20)을 노출시키는 과정이 수행된다.
예를 들어, 캐리어기판 분리단계(S70)에서는, 디라미네이션(Delamination)을 위한 기구물이 보호 필름(80)을 그립(grip)한 상태에서 물리력을 통해 캐리어 기판(10)을 분리층(20)으로부터 박리하여 분리하도록 구성될 수 있다.
도 15를 참조하면, 기재필름 접합단계(S80)에서는, 분리층(20)에 기재 필름(90)을 접합하는 과정이 수행된다.
예를 들어, 기재 필름(90)은 롤투롤을 이용한 라미네이션 방식으로 분리층(20)에 접합될 수 있다.
이상에서 상세히 설명한 바와 같이 본 발명에 따르면, 메쉬(mesh) 구조를 갖는 전극을 적용하여 전극의 비표면적(specific surface area)을 증가시킴으로써, 글루코스에 대한 감지 민감도를 현저하게 높일 수 있는 글루코스 센서 및 그 제조방법이 제공되는 효과가 있다.
또한, 금속 전극의 상부 영역과 하부 영역 중에서 적어도 한 영역에 도전성 산화막을 형성하여 금속 전극의 산화를 방지함으로써, 감지 성능의 열화를 방지할 수 있는 글루코스 센서 및 그 제조방법이 제공되는 효과가 있다.
[부호의 설명]
10: 캐리어 기판, 20: 분리층
30: 보호층, 40: 전극부
42, 47: 기준 전극부, 44, 46, 48, 49: 감지 전극부
52, 54: 도전성 산화막, 60: 글루코스 반응부
70: 접합제
80: 보호 필름, 90: 기판, 기재 필름
S10: 분리층 형성단계, S20: 보호층 형성단계
S30: 전극 형성단계, S40: 도전성 산화막 형성단계
S50: 글루코스 반응부 형성단계, S60: 보호필름 접합단계
S70: 캐리어기판 분리단계, S80: 기재필름 접합단계

Claims (20)

  1. 기판;
    상기 기판 상에 형성된 기준 전극부 및 상기 기준 전극부와 이격된 상태로 상기 기판 상에 형성된 감지 전극부를 포함하는 전극부; 및
    상기 전극부를 포함하는 영역 상에 형성된 글루코스 반응부를 포함하고,
    상기 전극부를 구성하는 기준 전극부와 감지 전극부 중에서 적어도 하나는 메쉬(mesh) 구조를 갖는, 글루코스 센서.
  2. 제1항에 있어서,
    상기 전극부의 상부 영역과 하부 영역 중에서 적어도 한 영역에 형성된 도전성 산화막을 더 포함하는 것을 특징으로 하는, 글루코스 센서.
  3. 제2항에 있어서,
    상기 도전성 산화막은 ITO(Indium Tin Oxide), IZO(Indium Zinc Oxide)로 이루어진 군에서 선택된 하나 이상을 포함하는 것을 특징으로 하는, 글루코스 센서.
  4. 제1항에 있어서,
    상기 감지 전극부는 Au, Ag, APC, Pt로 이루어진 군에서 선택된 하나 이상을 포함하는 것을 특징으로 하는, 글루코스 센서.
  5. 제1항에 있어서,
    상기 글루코스 반응부는 글루코스 산화효소 또는 글루코스 탈수소효소를 포함하는 것을 특징으로 하는, 글루코스 센서.
  6. 제1항에 있어서,
    상기 기판과 상기 전극부 사이에 형성된 분리층을 더 포함하는 것을 특징으로 하는, 글루코스 센서.
  7. 제6항에 있어서,
    상기 분리층과 상기 전극부 사이에 형성된 보호층을 더 포함하는 것을 특징으로 하는, 글루코스 센서.
  8. 제1항에 있어서,
    상기 기판은 플렉서블 특성을 갖는 기재 필름인 것을 특징으로 하는, 글루코스 센서.
  9. 캐리어 기판 상에 분리층을 형성하는 분리층 형성단계;
    상기 분리층 상에 기준 전극부 및 상기 기준 전극부와 이격된 감지 전극부를 포함하는 전극부를 형성하는 전극 형성단계;
    상기 전극부를 포함하는 영역 상에 글루코스 반응부를 형성하는 글루코스 반응부 형성단계;
    상기 캐리어 기판을 분리하여 상기 분리층을 노출시키는 캐리어기판 분리단계; 및
    상기 분리층에 기재 필름을 접합하는 기재필름 접합단계를 포함하고,
    상기 전극 형성단계에서는,
    상기 전극부를 구성하는 기준 전극부와 감지 전극부 중에서 적어도 하나를 메쉬(mesh) 구조화하는, 글루코스 센서 제조방법.
  10. 제9항에 있어서,
    상기 전극부는 Au, Ag, APC, Pt로 이루어진 군에서 선택된 하나 이상을 포함하는 단일층 또는 복층 구조를 갖는 것을 특징으로 하는, 글루코스 센서 제조방법.
  11. 제9항에 있어서,
    상기 전극부의 상부 영역과 하부 영역 중에서 적어도 한 영역에 도전성 산화막을 형성하는 도전성 산화막 형성단계를 더 포함하는 것을 특징으로 하는, 글루코스 센서 제조방법.
  12. 제11항에 있어서,
    상기 도전성 산화막은 ITO(Indium Tin Oxide), IZO(Indium Zinc Oxide)로 이루어진 군에서 선택된 하나 이상을 포함하는 것을 특징으로 하는, 글루코스 센서 제조방법.
  13. 제9항에 있어서,
    상기 글루코스 반응부는 글루코스 산화효소 또는 글루코스 탈수소효소를 포함하는 것을 특징으로 하는, 글루코스 센서 제조방법.
  14. 제9항에 있어서,
    상기 전극 형성단계 이전에,
    상기 분리층과 상기 전극부 사이에 보호층을 형성하는 보호층 형성단계를 더 포함하는 것을 특징으로 하는, 글루코스 센서 제조방법.
  15. 제14항에 있어서,
    상기 보호층은 상기 분리층의 측벽을 둘러싸도록 형성되는 것을 특징으로 하는, 글루코스 센서 제조방법.
  16. 제9항에 있어서,
    상기 캐리어기판 분리단계 이전에,
    상기 전극부에 접합제가 도포된 보호 필름을 접합하는 보호필름 접합단계를 더 포함하는 것을 특징으로 하는, 글루코스 센서 제조방법.
  17. 제16항에 있어서,
    상기 접합제는 압력 감응 접합제인 것을 특징으로 하는, 글루코스 센서 제조방법.
  18. 제16항에 있어서,
    상기 캐리어기판 분리단계에서는,
    상기 보호 필름을 그립(grip)한 상태에서 상기 캐리어 기판에 물리력을 인가하여 상기 캐리어 기판을 분리하는 것을 특징으로 하는, 글루코스 센서 제조방법.
  19. 제16항에 있어서,
    상기 보호필름 접합단계에서는,
    상기 보호 필름을 롤투롤(Roll-To-Roll)을 이용한 라미네이션(Lamination) 방식으로 상기 전극부에 접합하는 것을 특징으로 하는, 글루코스 센서 제조방법.
  20. 제9항에 있어서,
    상기 기재필름 접합단계에서는,
    상기 기재 필름을 롤투롤을 이용한 라미네이션 방식으로 상기 분리층에 접합하는 것을 특징으로 하는, 글루코스 센서 제조방법.
PCT/KR2018/001581 2017-02-10 2018-02-06 글루코스 센서 및 그 제조방법 WO2018147619A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0018510 2017-02-10
KR1020170018510A KR102621669B1 (ko) 2017-02-10 2017-02-10 글루코스 센서 및 그 제조방법

Publications (1)

Publication Number Publication Date
WO2018147619A1 true WO2018147619A1 (ko) 2018-08-16

Family

ID=63106872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/001581 WO2018147619A1 (ko) 2017-02-10 2018-02-06 글루코스 센서 및 그 제조방법

Country Status (2)

Country Link
KR (1) KR102621669B1 (ko)
WO (1) WO2018147619A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021221395A1 (ko) * 2020-04-28 2021-11-04 동우 화인켐 주식회사 바이오 센서 및 그의 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008046001A (ja) * 2006-08-16 2008-02-28 National Institute Of Advanced Industrial & Technology センサ用電極体、それを用いたセンサ及びセンシングシステム、並びにセンサ用電極体の製造方法
US20090312615A1 (en) * 2005-11-10 2009-12-17 Andreas Caduff Device for Determining the Glucose Level in Body Tissue
KR20150096342A (ko) * 2014-02-14 2015-08-24 에프. 호프만-라 로슈 아게 적어도 하나의 분석 디바이스의 제조를 위한 프로세스 및 제조 디바이스
KR20160107085A (ko) * 2015-03-03 2016-09-13 한국과학기술원 그루브 슬릿 그루브 구조를 갖는 포도당 검출 플라즈모닉 바이오센서
KR20160146514A (ko) * 2015-06-12 2016-12-21 서울대학교산학협력단 글루코오스 조절 시스템, 상기 글루코오스 조절 시스템의 형성 방법, 및 상기 글루코오스 조절 시스템을 이용한 글루코오스 조절 방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101107506B1 (ko) 2011-09-08 2012-01-31 한국지질자원연구원 이산화티타늄-그래핀 복합체가 구비된 글루코스 센서
CN105102972A (zh) * 2013-01-11 2015-11-25 东北大学 唾液葡萄糖监测系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090312615A1 (en) * 2005-11-10 2009-12-17 Andreas Caduff Device for Determining the Glucose Level in Body Tissue
JP2008046001A (ja) * 2006-08-16 2008-02-28 National Institute Of Advanced Industrial & Technology センサ用電極体、それを用いたセンサ及びセンシングシステム、並びにセンサ用電極体の製造方法
KR20150096342A (ko) * 2014-02-14 2015-08-24 에프. 호프만-라 로슈 아게 적어도 하나의 분석 디바이스의 제조를 위한 프로세스 및 제조 디바이스
KR20160107085A (ko) * 2015-03-03 2016-09-13 한국과학기술원 그루브 슬릿 그루브 구조를 갖는 포도당 검출 플라즈모닉 바이오센서
KR20160146514A (ko) * 2015-06-12 2016-12-21 서울대학교산학협력단 글루코오스 조절 시스템, 상기 글루코오스 조절 시스템의 형성 방법, 및 상기 글루코오스 조절 시스템을 이용한 글루코오스 조절 방법

Also Published As

Publication number Publication date
KR102621669B1 (ko) 2024-01-05
KR20180092601A (ko) 2018-08-20

Similar Documents

Publication Publication Date Title
WO2014109619A1 (ko) 자가점착 필름을 이용한 그래핀의 전사 방법
US20120223455A1 (en) Method for manufacturing thin-film substrate
WO2013062246A1 (ko) 그라핀층을 포함하는 가스 배리어 필름, 이를 포함하는 플렉시블 기판 및 그 제조방법
WO2014137065A1 (ko) 광학적 특성 및 내스크래치성이 우수한 비산 방지 필름 및 그 제조 방법
WO2015020412A1 (ko) 점착 필름 및 이를 이용한 유기전자장치의 제조방법
WO2011087301A2 (ko) 기체 및 수분 차단용 그래핀 보호막, 이의 형성 방법 및 그의 용도
WO2012008683A2 (ko) 플렉서블 전자소자의 제조방법, 플렉서블 전자소자 및 플렉서블 기판
WO2015102459A1 (ko) 진공 열처리를 이용한 그래핀 전사방법 및 그래핀 전사 장치
JP2009026880A (ja) 半導体装置の製造方法
WO2017188683A1 (ko) 터치센서 일체형 컬러필터 및 그 제조 방법
WO2015174756A1 (ko) 인쇄층이 형성된 터치 스크린 패널용 커버 윈도우 및 터치 스크린 패널용 커버 윈도우에 인쇄층을 형성하는 방법
WO2016106797A1 (zh) 一种柔性有机发光显示器及其制作方法
WO2018147619A1 (ko) 글루코스 센서 및 그 제조방법
WO2020105953A1 (ko) 폴더블 백플레이트 필름 및 폴더블 백플레이트 필름의 제조방법
WO2017052177A1 (ko) 필름 터치 센서 및 그 제조 방법
WO2020009294A1 (ko) Uv led를 이용한 가스센서
WO2019059496A1 (ko) 글루코스 센서
WO2019045232A1 (ko) 글루코스 센서 및 그 제조방법
WO2011149317A2 (ko) 수분 및/또는 산소 투과 방지를 위한 유연성 유/무기 복합 보호막, 그의 제조방법, 및 상기 유연성 유/무기 복합 보호막을 포함하는 전자소자
WO2019083246A2 (ko) 광학 필름, 광학 필름 제조 방법 및 유기 발광 전자 장치 제조 방법
WO2017188553A1 (ko) 발열체
WO2019164111A1 (ko) 글루코스 센서
WO2019212159A1 (ko) 글루코스 센서
WO2016099044A1 (ko) 터치 센서 모듈 및 이의 제조 방법
WO2017018621A1 (ko) 압력 센서, 그 제조 방법, 및 이를 이용한 관리 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18751709

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18751709

Country of ref document: EP

Kind code of ref document: A1