WO2018147550A1 - 전기분해모듈, 이를 포함하는 전기분해수 생성장치 및 전기분해수 생성장치의 운전방법 - Google Patents
전기분해모듈, 이를 포함하는 전기분해수 생성장치 및 전기분해수 생성장치의 운전방법 Download PDFInfo
- Publication number
- WO2018147550A1 WO2018147550A1 PCT/KR2017/015554 KR2017015554W WO2018147550A1 WO 2018147550 A1 WO2018147550 A1 WO 2018147550A1 KR 2017015554 W KR2017015554 W KR 2017015554W WO 2018147550 A1 WO2018147550 A1 WO 2018147550A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- water
- electrolysis
- separator
- electrolyzed
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/66—Treatment of water, waste water, or sewage by neutralisation; pH adjustment
Definitions
- the present invention relates to an electrolysis module, an electrolysis water generating apparatus including the same, and an operating method of the electrolysis water generating apparatus.
- sterilization is the killing of an organism in a short time by applying physical and chemical stimuli to the microorganism.
- sterilization in which the subject is completely aseptic, and disinfection, reaching an almost aseptic state.
- Sterilization is caused by mechanical breakdown of cells, strong denaturation of proteins, and inactivation of enzymes.
- Physical sterilization provides a physical environment in which germs are sterilized by using drying, sunlight, ultraviolet rays, radiation, and the like, on the object.
- Chemical sterilization provides a chemical environment in which germs can be sterilized using sterilizing agents, sterilizing gases, and the like.
- Sodium hypochlorite sterilization method is a method of injecting commercially available sodium hypochlorite (NaOCl) and a method of directly generated by electrolysis in the field used.
- the electrolysis method is used by diluting sodium hypochlorite by using an electrolysis method from chlorinated water or saline added with sodium chloride.
- this conventional electrolysis method has a problem in that it is difficult to obtain acidic and alkaline water at the same time.
- the present invention is to solve the above problems, an object of the present invention is to provide an electrolysis module that can obtain acidic and alkaline water at the same time, an electrolysis water generating device comprising the same and an operating method of the electrolysis water generating device.
- An object of the present invention in the electrolysis module, comprising at least one decomposition unit, the decomposition unit, the separation membrane having a pore through which electrons and ions can pass; A first electrode on the first surface of the separator; And a second electrode disposed on a second surface of the separator, wherein the first electrode and the second electrode are porous, and raw water, which is an electrolysis target, is in contact with the first electrode and the second electrode along the separator.
- the first electrolysis water electrolyzed at the first electrode and the second electrolysis water electrolyzed at the second electrode are achieved by being discharged separately.
- the first electrode and the second electrode may be in the form of a mesh and may have a plate shape.
- the raw water may move in contact with the first electrode and the second electrode in a lamina flow.
- the decomposition unit further includes a support, the separation membrane is fixed to the support, the raw water may be supplied to the first electrode and the second electrode through the support.
- the decomposition unit includes: a first application electrode electrically connected to the first electrode;
- the display device may further include a second application electrode electrically connected to the second electrode.
- the disassembly unit may be provided in plurality, and further include a separator plate disposed between adjacent disassembly units.
- the separator is made of Teflon material and the pore size may be 0.2um to 0.4um.
- the object of the present invention is a raw water supply;
- An electrolysis module receiving raw water from the raw water supply unit and separating and generating acidic and alkaline water through electrolysis; It includes an external supply for supplying the generated acidic and alkaline water to the outside, it is achieved by an electrolysis water generating device including a raw water supply, an electrolysis module and a control unit for controlling the external supply.
- the raw water supplied to the electrolysis module may be brine.
- the apparatus may further include an additional raw water supply unit for adjusting at least one of residual chlorine concentration and pH of the acidic water discharged from the electrolysis module.
- the external supply unit may include a flow path switching valve for changing a flow direction of the acidic water and the alkaline water, and the control unit may link the change of polarity of the power applied to the electrolysis module with the flow path switching valve driving.
- An object of the present invention is a method of operating an electrolytic water generating device, the electrolytic water generating device, raw water supply unit; Receiving an raw water from the raw water supply unit and including an electrolysis module that separates and generates acidic and alkaline water through electrolysis, and generating acidic and alkaline water in the electrolytic decomposition module; Discharging the acidic water to the outside through a first pipe and discharging the alkaline water to the outside through a second pipe; Changing a power supply polarity of the electrolysis module; Discharging the acidic water to the outside through the second pipe for a predetermined time when the power polarity is changed; And changing the power polarity of the electrolysis module again and then discharging the acidic water through the first pipe.
- the alkaline water may be discharged to the outside through the first pipe.
- an electrolysis module for obtaining acidic and alkaline water at the same time, an electrolysis water generating apparatus including the same, and an operation method of the electrolysis water generating apparatus.
- FIG. 1 is a block diagram of an electrolysis water generating device according to a first embodiment of the present invention
- Figure 2 shows a control structure of the electrolysis water generating device according to the first embodiment of the present invention
- FIG. 3 is a perspective view of an electrolysis module according to a first embodiment of the present invention
- FIG. 4 shows the flow of electrolysis water in the electrolysis module according to the first embodiment of the present invention
- FIG. 5 is an exploded perspective view of a decomposition unit in the electrolysis module according to the first embodiment of the present invention
- FIG. 6 is a cross-sectional view of a decomposition unit in the electrolysis module according to the first embodiment of the present invention
- FIG. 9 is a configuration diagram of an electrolysis water generating apparatus according to a second embodiment of the present invention.
- Figure 10 shows the change in the composition of the electrolyzed water according to the pH.
- FIGS. 1 and 2 An electrolysis water generating apparatus according to a first embodiment of the present invention will be described with reference to FIGS. 1 and 2.
- FIG. 1 is a block diagram of an electrolysis water generating apparatus according to a first embodiment of the present invention
- Figure 2 shows a control structure of the electrolytic water generating apparatus according to the first embodiment of the present invention.
- the electrolyzed water generator 1 includes a raw water supply unit 10, an electrolysis module 20, an external supply unit 30, an additional raw water supply unit 40, a control unit 50, a power supply unit 60, and a display unit 65. Include.
- the electrolyzed water generator 1 includes various measuring instruments, which include a timer 71, a pH meter 72, a chlorine concentration sensor 73, a temperature sensor 74, a flow meter 75 and a level sensor. (76). The number and location of the instruments can be adjusted appropriately and some instruments may not be used.
- tap water is used as a raw water supply source, and thus the raw water itself has a constant water pressure, so that a separate pump is not used.
- other embodiments may use separate pumps.
- the raw water supply unit 10 includes a salt water tank 110, a salt water pipe 111, a valve 112, a pipe 121, and a valve 122.
- the brine supply from the brine tank 110 to the pipe 121 may be made using a water head difference or using a separate pump.
- the configuration for supplying the brine may vary, and may be omitted in other embodiments.
- the configuration for supplying the brine may comprise a salt tank, in which case the overall size of the device may be reduced.
- the use of a salt tank makes it possible to produce a large amount of electrolyzed water in one salt replenishment, thus facilitating management. If a salt tank is used, the raw water passes through the salt tank so that the saturated salt water is always discharged from the salt tank.
- the electrolysis module 20 produces electrolysis water by electrolyzing supplied raw water, a detailed configuration of which will be described later.
- the electrolyzed water produced in the electrolysis module 20 is acidic water and alkaline water, and the acidic water and the alkaline water are simultaneously produced and separated from the electrolysis module 20 and discharged.
- the external supply unit 30 supplies acidic water and alkaline water supplied from the electrolysis module 20 to the user for use.
- the external supply unit 30 includes a pipe 311 and a valve 312 for supplying acidic water, and includes a pipe 321 and a valve 322 for supplying alkaline water.
- Each of the pipes 311 and 321 uses a flow path switching valve 313 and 323 and connecting pipes 331 and 332 to change the movement paths of the acidic water and the alkaline water.
- the supply pipe is connected to the connection pipes 331 and 332 between the flow path switching valves 313 and 323 and the pipes 311 and 321.
- the flow path switching valves 313 and 323 and the connection pipes 331 and 332 are for supplying the acidic portion and the alkaline water at a predetermined position even in the backwash mode of the electrolysis module 20. Detailed operations will be described later.
- the additional raw water supply unit 40 connects the raw water supply source and the acidic water pipe 311, and includes a pipe 411 and a valve 412. Additional raw water supply unit 40 is used to adjust the pH and / or chlorine concentration of the acidic water. In another embodiment, the additional raw water supply unit 40 may receive raw water from a separate raw water source, or may be connected to the alkaline water pipe 321.
- the controller 50 controls the valves 112, 122, 312, 322, 412, the power supply unit 60, the display unit 65 and the flow path based on the measured values obtained from various measuring instruments to obtain the desired amount and the desired quality of the acidic water and alkali.
- the selector valves 313 and 323 are controlled.
- the valves 112, 122, 312, 322, 412 may be on or off valves or valves with opening degrees.
- the valve may be added or omitted and some may be pressure reducing valves or needle valves. It can also have a check valve function.
- the electrolysis water generating apparatus 1 may further include a configuration for safety, for example, a flow sensor for determining whether raw water is supplied.
- FIG 3 is a perspective view of an electrolysis module according to a first embodiment of the present invention
- Figure 4 shows the flow of electrolysis water in the electrolysis module according to the first embodiment of the present invention
- Figure 5 is a first embodiment of the present invention 1 is an exploded perspective view of a decomposition unit in an electrolysis module according to an embodiment
- FIG. 6 is a cross-sectional view of the decomposition unit in an electrolysis module according to the first embodiment of the present invention
- FIGS. 7A and 7B are part A of FIG. It is enlarged.
- the electrolysis module 20 includes a decomposition unit 210, a separator plate 220, and a case 230.
- the decomposition unit 210 and the separator plate 220 are accommodated in the case 230.
- the case 230 has a cylindrical shape as a whole and an inlet hole 231 is formed at a lower portion thereof, and two outlet holes 232 and 233 are formed at an upper portion thereof.
- Raw water is introduced from the raw water supply unit 10 into the inlet hole 231, and acidic water and alkaline water are separated into the outlet holes 232 and 233, and are supplied to the external supply unit 30.
- Disassembly unit 210 is provided in plurality and the separating plate 220 is disposed between the adjacent disassembly unit 210.
- the acidic water and the alkaline water are separated and generated, and the acidic portion and the alkaline water generated in each decomposition unit 210 are discharged to the outside without being mixed with each other.
- the number of decomposition units 210 is not limited, and only one may be used. When using a single disassembly unit 210, the separator plate 220 may be omitted.
- the decomposition unit 210 includes a support 211, a separator 212, a first electrode 213, a second electrode 214, and application electrodes 215 and 216.
- the support 211 has a disc shape having an empty center, and the separator 212 is coupled to the support 211. Although not shown in the drawing, the support 211 is provided with raw water and discharged to the electrodes 213 and 214, and the electrolyzed electrolyzed water is separated and discharged to the outside.
- the separation membrane 212 allows ions or electrons to pass through to prevent the passage of water and to conduct electricity to both sides of the separation membrane 212.
- the separator 212 may have a pore size of 0.1 ⁇ m to 0.6 ⁇ m, 0.2 ⁇ m to 0.6 ⁇ m, and 0.2 ⁇ m to 0.4 ⁇ m.
- the separator 212 may be made of Teflon, but is not limited thereto.
- the first electrode 213 is disposed on one surface of the separator 212, and the second electrode 214 is positioned on the other surface.
- Each electrode 213, 214 is in the form of a plate mesh.
- the electrodes 213 and 214 may be variously modified without being limited to a mesh form as long as it is a porous form through which water can flow.
- the electrodes 213 and 214 may be in the form of coating a precious metal on titanium, but is not limited thereto.
- the thickness of the meshes 213 and 214 may be 0.1 ⁇ m to 2 ⁇ m, 0.2 ⁇ m to 1 ⁇ m, or 0.5 ⁇ m to 1.0 ⁇ m.
- Applied electrodes 215 and 216 are positioned on the electrodes 213 and 214, and applied electrodes 215 and 216 are electrically connected to the electrodes 213 and 214.
- Each electrode 213 and 214 may be in surface contact with the separator 212.
- the applying electrodes 215 and 216, the electrodes 213 and 214, and the separator 212 may be in contact with each other, in which case the movement of the electrodes 213 and 214 is limited.
- the electrolysis process in the electrolysis module 20 is as follows.
- Electrolysis is initiated by applying power of different polarities to the electrodes 213 and 214 through the applying electrodes 215 and 216.
- raw water is supplied along the separator 212. That is, the raw water flows through the electrodes 213 and 214 (parallel) and is converted into electrolytic water. Since the electrodes 213 and 214 are in the form of a mesh, the movement of the raw water and the electrolytic water proceeds smoothly.
- the flow of raw water passing through the electrodes 213 and 214 is a lamina flow. Since the raw water flows through the lamina flow and the separator 212 has a very small pore, the mixing of the electrolyzed water between the two electrodes 213 and 214 is substantially not generated or is very insignificant. The raw water is electrolyzed while passing through the electrodes 213 and 214 in the plate direction.
- the raw water is supplied to the electrolysis module 20 through the raw water supply unit 10.
- the raw water supply unit 10 may supply tap water, fresh water, or brine to the electrolysis module 20.
- the electrolysis module 20 separates and generates acidic water and alkaline water through electrolysis.
- the generated acidic water and alkaline water are supplied to the user (use) through the external supply unit 30.
- the pH of the acidic water may be 5.0 to 6.5, 5.5 to 6.0, 5.5 to 6.5 or 6.0 to 6.5.
- the residual chlorine concentration of acidic water may be 5ppm to 40ppm, 10ppm to 40ppm, 10ppm to 30ppm or 10ppm to 20ppm.
- hypochlorite (HOCl) and hydrogen (H 2 ) are produced as the chlorine molecule, which is a coordinating form of anion, chlorine ion, is oxidized again.
- hypochlorous acid is further decomposed into hydrogen ions (H +) and different chlorine ions (HCl-).
- hypochlorite ions combine with sodium separated from sodium chloride to form sodium hypochlorite (NaOCl).
- the electrolyzed brine equilibrates under certain conditions and consists of hydrogen, sodium hypochlorite, hypochlorous acid, and hypochlorite ions.
- sodium hypochlorite and hypochlorous acid have a disinfecting effect, but since hypochlorous acid exhibits about 70 times as sterilizing effect as sodium hypochlorite, the ratio of hypochlorous acid should be increased to improve the sterilizing power.
- hypochlorous acid and hypochlorite ions may have a different composition ratio depending on the hydrogen ion concentration (pH) as shown in FIG. 8. Looking at Figure 10, the production of residual chlorine, hypochlorous acid, and sodium hypochlorite varies depending on pH.
- hypochlorous acid is produced by combining hydrogen ions (H +) and hypochlorite ions (OCl ⁇ ), and has a maximum bactericidal power when the pH is 4.3 to 5.9.
- H + hydrogen ions
- OCl ⁇ hypochlorite ions
- the present invention manages the pH of the acidic water to be 5.0 to 6.5, 5.5 to 6.0, 5.5 to 6.5 or 6.0 to 6.5.
- the pH of the acidic water can be easily adjusted. As a result, it is possible to supply acidic water at a pH at which hypochlorous acid having high sterilizing power is generated, thereby lowering the chlorine content of the acidic water and reducing the amount of salt to brine.
- the pH of the alkaline water can be controlled to 10 or more, 11 or 12 or more.
- Additional raw water supply unit 40 is used to adjust the pH and / or residual chlorine concentration of the acidic water.
- Acidic water supplied according to the present invention can be used for sterilization in homes and restaurants.
- Alkaline water can be used in agriculture. If necessary, acidic water and / or alkaline water may be stored and used in a separate tank, and in particular, alkaline water may be stored and used in a separate tank.
- the controller 40 changes the polarity of the power applied to the both electrodes 213 and 214 under a certain condition, for example, after a certain operation time.
- the outlet of the acidic water and the alkaline water discharged from the electrolysis module 20 may be changed.
- the flow path switching valves (313, 323) and the connecting pipes (331, 332) by using a change in the movement path of the acidic water and alkaline water so that the external supply unit 30 supplies the acidic water and alkaline water at a certain position.
- the polarity of the power supply of the electrolysis module 20 when the polarity of the power supply of the electrolysis module 20 is changed to prevent the mixing of the acidic water and the alkaline water, it is discharged without using the acidic water and the alkaline water for a predetermined time, for example, 3 seconds to 5 minutes. can do. During discharge, the route of acidic and alkaline water can change or remain the same.
- the power supply polarity of the electrolysis module 20 is changed again to supply acidic water and alkaline water, or the changed power supply polarity of the electrolysis module 20 may be maintained and acidic water and alkaline water may be supplied.
- the external supply unit 30 supplies the acidic water and the alkaline water at a predetermined position.
- the movement path may be changed to discharge both the acidic water and the alkaline water through the alkaline water pipe 321 for a predetermined time. After that, the power supply polarity is changed again and the moving path is changed to supply acidic water and alkaline water at a constant position.
- This method can be applied where the temporary pH change is acceptable, either by not using alkaline water for a separate use or by storing and using alkaline water in a tank.
- the controller 50 may stop the generation of the sterilizing water by controlling the power supply unit 60 or the like.
- the controller 50 may clean the electrolysis module 20 by supplying only water without supplying an electrolyte when it is not used for a long time through a timer 71 or the like, and the electrolysis module 20 is operated for a predetermined time or more.
- the display unit 65 may notify the outside of the replacement time.
- the display unit 65 may be a warning lamp and / or a warning sound using an LED, or may be notified through a separate display device.
- 8A to 8C show different forms of the electrodes 213 and 214.
- the electrodes 213 and 214 maintain a mesh-like plate shape and have a convex embossing shape.
- the embossing form is to make the flow of raw water more smooth. 8A to 8C, the mesh type is omitted.
- Embossing may be formed scattered throughout the electrodes 213 and 214 as shown in FIG. 8A, or may be formed in a predetermined direction as shown in FIGS. 8B and 8C.
- the direction of formation of the valleys by embossing is parallel to the flow direction of the raw water.
- the direction of formation of the valleys by embossing is a constant angle, for example, perpendicular to the flow direction of the raw water.
- the size of the embossing may be provided in various ways in the same electrode (213, 214).
- only one of the electrodes 213 and 214 may have an embossed form or may have a different embossed form.
- FIG. 9 is a device for generating electrolyzed water according to a second embodiment of the present invention.
- the difference from the first embodiment is that the flow path switching valve 323 and the connection pipe 331 are not provided. Accordingly, the acidic water may be discharged to the outside through both pipes 311 and 321, but the alkaline water may be discharged to the outside only through the alkaline water pipe 321.
- the moving path when the power supply polarity of the electrolysis module 20 changes, the moving path may be changed to discharge both the acidic water and the alkaline water to the alkaline water pipe 321 for a predetermined time. After that, change the polarity of the power supply again and change the movement path to supply acidic water and alkaline water at a certain position.
- acidic water can be used as sterilized water containing hypochlorous acid.
- Alkaline water can be discharged.
- acidic water having a pH of 4 or less and alkaline water having a pH of 11 or more may come out.
- the obtained acidic and alkaline water may be used in agriculture.
- Acidic water and alkaline water were manufactured using the electrolysis water generating apparatus 1 demonstrated above.
- the brine flow rate saturated brine was 7.2 ml / min
- the tap water flow rate was 1,000 ml / min
- the current was 5 A
- the voltage was 4.8 V
- the result of using four decomposition units was acid water (pH 3.75, chlorine residue concentration 58 ppm) and Alkaline water (pH 11.86, brine residue concentration 3 ppm or less) was obtained.
- the flow rate of tap water was 1,000 ml / min, the current was 5A, the voltage was 20.2V, and four decomposition units were used to obtain acidic water (pH 4.2) and alkaline water (pH 11 or higher).
- acid water and alkaline water of desired quality can be obtained by changing tap water usage, changing current / voltage, and supplying additional raw water.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
Abstract
본 발명은 전기분해모듈, 이를 포함하는 전기분해수 생성장치 및 전기분해수 생성장치의 운전방법에 관한 것이다. 본 발명에 따른 전기분해모듈은 적어도 한 개의 분해유닛을 포함하며, 상기 분해유닛은, 전자 및 이온을 통과시킬 수 있는 포어를 가지고 있는 분리막과; 상기 분리막의 제1면에 위치하는 제1전극과; 상기 분리막의 제2면에 위치하는 제2전극을 포함하며, 상기 제1전극과 상기 제2전극은 다공성이며, 전기분해 대상인 원수는 상기 분리막을 따라 상기 제1전극 및 상기 제2전극과 접촉하면서 이동하며, 상기 제1전극에서 전기분해된 제1전기분해수와 상기 제2전극에서 전기분해된 제2전기분해수는 분리되어 배출된다.
Description
본 발명은 전기분해모듈, 이를 포함하는 전기분해수 생성장치 및 전기분해수 생성장치의 운전방법에 관한 것이다.
일반적으로, 살균(殺菌, sterilization)은 미생물에 물리적, 화학적 자극을 가하여 단시간 내에 멸살(滅殺)시키는 일이다. 정도에 따라, 대상을 완전히 무균상태로 하는 멸균과 거의 무균상태에 이르도록 하는 소독으로 구별한다. 살균은 균체의 기계적 파괴, 단백질의 강한 변성(變性), 효소의 비활성화(非活性化) 등에 의하며, 방법으로는 물리적인 것과 화학적인 것이 있다. 물리적인 살균은 대상 물체에 건조, 일광조사, 자외선, 및 방사선 등을 사용하여 균이 멸균되는 물리적 환경을 제공한다. 화학적인 살균은 살균제, 살균 가스 등을 사용하여 균을 멸균시킬 수 있는 화학적 환경을 제공한다.
차아염소산나트륨 살균법은 시판되는 차아염소산나트륨(NaOCl)을 주입하는 방법과 현장에서 전기분해로 직접 발생시켜 사용하는 방법이 있다.
시판되는 차아염소산나트륨은 기 설정되어 있는 농도를 유지하면서 운반 차량으로 저류 탱크에 저장하여 사용한다. 그러나 이 방법은, 장기간 보장에 의해 살균력이 저하되는 것이 방지되도록 부속 장치로 기포발생 장치가 필요한 문제가 있다.
전기 분해 방법은 염소 소독된 물 또는 염화나트륨이 첨가된 염수로부터 전기 분해 방법을 이용하여 차아염소산나트륨을 생성시켜 희석 사용한다.
그러나 이러한 종래의 전기 분해 방법은 산성수와 알칼리수를 동시에 얻기 어려운 문제가 있다.
본 발명은 상기한 문제점을 해결하기 위한 것으로서, 산성수와 알칼리수를 동시에 얻을 수 있는 전기분해모듈, 이를 포함하는 전기분해수 생성장치 및 전기분해수 생성장치의 운전방법을 제공하는 것을 목적으로 한다.
상기 본 발명의 목적은, 전기분해모듈에 있어서, 적어도 한 개의 분해유닛을 포함하며, 상기 분해유닛은, 전자 및 이온을 통과시킬 수 있는 포어를 가지고 있는 분리막과; 상기 분리막의 제1면에 위치하는 제1전극과; 상기 분리막의 제2면에 위치하는 제2전극을 포함하며, 상기 제1전극과 상기 제2전극은 다공성이며, 전기분해 대상인 원수는 상기 분리막을 따라 상기 제1전극 및 상기 제2전극과 접촉하면서 이동하며, 상기 제1전극에서 전기분해된 제1전기분해수와 상기 제2전극에서 전기분해된 제2전기분해수는 분리되어 배출되는 것에 의해 달성된다.
상기 제1전극 및 상기 제2전극은 메시 형태이며 판상일 수 있다.
상기 원수는 라미나 흐름으로 상기 제1전극 및 상기 제2전극과 접촉하면서 이동할 수 있다.
상기 분해유닛은 지지체를 더 포함하며, 상기 분리막은 상기 지지체에 고정되어 있으며, 상기 원수는 상기 지지체를 통해 상기 제1전극 및 상기 제2전극으로 공급될 수 있다.
상기 분해유닛은, 상기 제1전극과 전기적으로 연결되어 있는 제1인가전극과; 상기 제2전극과 전기적으로 연결되어 있는 제2인가전극을 더 포함할 수 있다.
상기 분해유닛은 복수개로 마련되며, 인접한 분해유닛 사이에 위치하는 분리판을 더 포함할 수 있다.
상기 분리막은 테프론 재질이며 포어크기는 0.2um 내지 0.4um일 수 있다.
상기 본 발명의 목적은 원수공급부; 상기 원수공급부로부터 원수를 공급받으며 전기분해를 통해 산성수와 알칼리수를 분리 생성하는 전기분해모듈과; 상기 생성된 산성수와 알칼리수를 외부로 공급하는 외부공급부를 포함하며, 상기 원수공급부, 전기분해모듈 및 상기 외부공급부를 제어하는 제어부를 포함하는 전기분해수 생성장치에 의해 달성된다.
상기 전기분해모듈에 공급되는 원수는 염수일 수 있다.
상기 전기분해모듈에서 배출된 상기 산성수의 잔류염소농도 및 pH 중 적어도 어느 하나를 조절하기 위한 추가원수공급부를 더 포함할 수 있다.
상기 외부공급부는 상기 산성수와 상기 알칼리수의 흐름방향을 변경하는 유로전환밸브를 포함하며, 상기 제어부는 상기 전기분해모듈에 가해지는 전원의 극성변화와 상기 유로전환밸브 구동을 연동시킬 수 있다.
상기 본 발명의 목적은 전기분해수 생성장치의 운전방법에 있어서, 상기 전기분해수 생성장치는, 원수공급부; 상기 원수공급부로부터 원수를 공급받으며 전기분해를 통해 산성수와 알칼리수를 분리 생성하는 전기분해모듈을 포함하며, 상기 전해분해모듈에서 산성수와 알칼리수를 생성하는 단계와; 상기 산성수를 제1배관을 통해 외부로 배출하고 상기 알칼리수를 제2배관을 통해 외부로 배출하는 단계와; 상기 전기분해모듈의 전원 극성을 변화시키는 단계와; 상기 전원 극성 변화 시에 상기 산성수를 일정시간 동안 상기 제2배관을 통해 외부로 배출하는 단계와; 상기 전기분해모듈의 전원 극성을 다시 변화시킨 후 상기 산성수를 상기 제1배관을 통해 배출하는 단계를 포함하는 것에 의해 달성된다.
전원 극성 변화 시에 상기 알칼리수는 상기 제1배관을 통해 외부로 배출될 수 있다.
본 발명에 따르면 산성수와 알칼리수를 동시에 얻을 수 있는 전기분해모듈, 이를 포함하는 전기분해수 생성장치 및 전기분해수 생성장치의 운전방법이 제공된다.
도 1은 본 발명의 제1실시예에 따른 전기분해수 생성장치의 구성도이고,
도 2는 본 발명의 제1실시예에 따른 전기분해수 생성장치의 제어구조를 나타낸 것이고,
도 3은 본 발명의 제1실시예에 따른 전기분해모듈의 사시도이고,
도 4는 본 발명의 제1실시예에 따른 전기분해모듈에서 전기분해수 흐름을 나타낸 것이고,
도 5는 본 발명의 제1실시예에 따른 전기분해모듈에서 분해유닛의 분해사시도이고,
도 6은 본 발명의 제1실시예에 따른 전기분해모듈에서 분해유닛의 단면도이고,
도 7a 및 도 7b는 도 6의 A 부분을 확대한 것이고,
도 8a 내지 도 8c는 본 발명의 제1실시예에 따른 전기분해모듈에서 전극의 다른 형태를 나타낸 것이고,
도 9는 본 발명의 제2실시예에 따른 전기분해수 생성장치의 구성도이고,
도 10은 pH에 따른 전기분해수의 성분변화를 나타낸 것이다.
이하, 첨부된 도면을 참조하여, 본 발명에 따른 전기분해수 생성장치에 대해 상세히 설명한다.
도 1 및 도 2를 참조하여 본 발명의 제1실시예에 따른 전기분해수 생성장치를 설명한다.
도 1은 본 발명의 제1실시예에 따른 전기분해수 생성장치의 구성도이고, 도 2는 본 발명의 제1실시예에 따른 전기분해수 생성장치의 제어구조를 나타낸 것이다.
전기분해수 생성장치(1)는 원수공급부(10), 전기분해모듈(20), 외부공급부(30), 추가원수공급부(40), 제어부(50), 전원부(60) 및 표시부(65)를 포함한다. 이외에 전기분해수 생성장치(1)는 각종 계측기를 포함하는데, 계측기로는 타이머(71), pH미터(72), 염소농도센서(73), 온도센서(74), 유량계(75) 및 레벨센서(76)를 포함한다. 계측기의 개수 및 설치 위치는 적절하게 조절될 수 있으며, 일부 계측기는 사용하지 않을 수도 있다.
본 실시예에서는 원수공급원으로서 수돗물을 사용하며 이에 따라 원수자체가 일정한 수압을 가지고 있어 별도의 펌프를 사용하지 않는다. 그러나 다른 실시예에서는 별도의 펌프를 사용할 수 있다.
원수 공급부(10)는 염수탱크(110), 염수배관(111), 밸브(112), 배관(121) 및 밸브(122)를 포함한다.
염수탱크(110)에서 배관(121)으로의 염수공급은 수두차를 이용하거나 별도의 펌프를 이용하여 이루어질 수 있다.
염수를 공급하기 위한 구성은 다양하게 변화할 수 있으며, 다른 실시예에서는 생략될 수도 있다. 염수를 공급하기 위한 구성은 소금탱크를 포함할 수 있으며, 이 경우 전체 장치의 크기를 감소시킬 수 있다. 또한, 소금탱크를 사용하면, 한 번의 소금 보충으로 많은 전기분해수를 제조할 수 있어 관리가 용이해진다. 소금탱크를 사용할 경우에는 원수가 소금탱크를 지나가도록 하여 소금탱크로부터는 항상 포화상태의 염수가 배출되도록 할 수 있다.
전기분해모듈(20)은 공급받은 원수를 전기분해하여 전기분해수를 제조하며, 자세한 구성은 후술한다. 전기분해모듈(20)에서 제조하는 전기분해수는 산성수와 알칼리수이며, 산성수와 알칼리수는 동시에 제조되고 전기분해모듈(20)로부터 분리되어 배출된다.
외부공급부(30)는 전기분해모듈(20)로부터 공급받은 산성수와 알칼리수를 사용자가 사용할 수 있게 외부로 공급한다. 외부공급부(30)는 산성수 공급을 위한 배관(311)과 밸브(312)를 포함하며 알칼리수 공급을 위한 배관(321) 및 밸브(322)를 포함한다.
각 배관(311, 321)에는 유로전환밸브(313, 323) 및 연결 배관(331, 332)을 이용하여 산성수와 알칼리수의 이동경로를 변경하여 외부공급부(30)에서는 산성수와 알칼리수를 일정한 위치에서 공급하게 된다.가 위치하고 있으며, 유로전환밸브(313, 323)와 배관(311, 321)사이에는 연결배관(331, 332)이 위치한다. 유로전환밸브(313, 323) 및 연결배관(331, 332)은 전기분해모듈(20)의 역세척 모드에서도 산성부와 알칼리수를 일정한 위치에서 공급하기 위한 것으로 자세한 동작은 후술한다.
추가원수공급부(40)는 원수공급원과 산성수 배관(311)을 연결하며, 배관(411)과 밸브(412)를 포함한다. 추가원수공급부(40)는 산성수의 pH 및/또는 염소농도를 조절하기 위해 사용된다. 다른 실시예에서 추가원수공급부(40)는 별도의 원수 소스로부터 원수를 공급받거나, 알칼리수 배관(321)에도 연결될 수 있다.
제어부(50)는 산성수와 알칼리를 원하는 양과 원하는 품질로 얻기 위해 각종 계측기로부터 얻은 계측값을 기초로 밸브(112, 122, 312, 322, 412), 전원부(60), 표시부(65) 및 유로전환밸브(313, 323)를 제어한다.
밸브(112, 122, 312, 322, 412)는 온오프 밸브 또는 개도가 조절되는 밸브일 수 있다. 밸브는 추가 또는 생략될 수 있으며 일부는 감압밸브나 니들밸브일 수 있다. 또한 체크밸브 기능을 가지고 있을 수 있다.
도시하지는 않았지만 전기분해수 생성장치(1)는 안전을 위한 구성, 예를 들어 원수가 공급되는지 여부를 판단하는 플로우 센서 등을 더 포함할 수 있다.
이하 도 3 내지 도 7b을 참조하여 본 발명의 제1실시예에 따른 전기분해모듈에 대해 설명한다.
도 3은 본 발명의 제1실시예에 따른 전기분해모듈의 사시도이고, 도 4는 본 발명의 제1실시예에 따른 전기분해모듈에서 전기분해수 흐름을 나타낸 것이고, 도 5는 본 발명의 제1실시예에 따른 전기분해모듈에서 분해유닛의 분해사시도이고, 도 6은 본 발명의 제1실시예에 따른 전기분해모듈에서 분해유닛의 단면도이고, 도 7a 및 도 7b는 도 6의 A 부분을 확대한 것이다.
전기분해모듈(20)은 분해유닛(210), 분리판(220) 및 케이스(230)를 포함한다. 분해유닛(210)과 분리판(220)은 케이스(230) 내에 수용되어 있다.
케이스(230)는 전체적으로 원통형상이며 하부에 유입공(231)이 형성되어 있으며 상부에 2개의 유출공(232, 233)이 형성되어 있다. 유입공(231)으로는 원수공급부(10)으로부터 원수가 유입되며 유출공(232, 233)으로는 산성수와 알칼리수가 분리되어 외부공급부(30)로 공급된다.
분해유닛(210)은 복수개로 마련되며 인접한 분해유닛(210) 사이에는 분리판(220)이 배치된다. 각 분해유닛(210)에서는 도 4와 같이 산성수와 알칼리수가 분리되어 생성되며 각 분해유닛(210)에서 생성된 산성부와 알칼리수는 서로 혼합되지 않은 상태로 외부로 배출된다. 분해유닛(210)의 개수는 제한되지 않으며, 하나만 사용될 수도 있다. 단일 분해유닛(210)을 사용하는 경우 분리판(220)은 생략될 수 있다.
분해유닛(210)은 지지체(211), 분리막(212), 제1전극(213), 제2전극(214) 및 인가전극(215, 216)을 포함한다.
지지체(211)는 가운데가 빈 원판 형상을 가지고 있으며, 분리막(212)이 지지체(211)에 결합되어 있다. 도시하지는 않았지만 지지체(211) 내부에는 원수를 공급받아 전극(213, 214)으로 배출하고 전기분해된 전기분해수를 분리하여 외부로 배출하는 구성이 형성되어 있다.
분리막(212)은 물의 통과는 억제하면서 분리막(212) 양 측의 통전이 가능하도록 이온이나 전자는 통과시킨다. 구체적으로 분리막(212)은 포어크기가 0.1um 내지 0.6um, 0.2um 내지 0.6um, 0.2um 내지 0.4um일 수 있다. 분리막(212)은 테프론 재질로 만들어 질 수 있으나 이에 한정되지 않는다.
분리막(212)의 일면에는 제1전극(213)이 위치하고 타면에는 제2전극(214)이 위치한다. 각 전극(213, 214)은 판상의 메쉬형태이다. 전극(213, 214)은 내부에서 물이 흐를 수 있는 다공성 형태이면 메쉬형태에 한정되지 않고 다양하게 변형될 수 있다. 전극(213, 214)은 티타늄에 귀금속을 코팅한 형태일 수 있으나 이에 한정되지 않는다. 메쉬형태인 전극(213, 214)의 굵기는 0.1um 내지 2um, 0.2 내지 1um 또는 0.5um 내지 1.0um일 수 있다.
각 전극(213, 214)의 상부에는 인가전극(215, 216)이 위치하며 인가전극(215, 216)은 각 전극(213, 214)에 전기적으로 연결되어 있다.
각 전극(213, 214)은 분리막(212)에 면접촉할 수 있다. 인가전극(215, 216), 각 전극(213, 214) 및 분리막(212)은 서로 접촉되어 있을 수 있으며, 이 경우 각 전극(213, 214)의 움직임은 제한된다.
전기분해모듈(20)에서의 전기분해 과정을 설명하면 다음과 같다.
인가전극(215, 216)을 통해 각 전극(213, 214)에 서로 다른 극성의 전원을 가하면 전기분해가 개시된다.
이 과정에서 원수는 분리막(212)을 따라 공급된다. 즉, 원수는 각 전극(213, 214)을 거치면서(평행하게) 흐르면서 전기분해수로 전환되는데, 전극(213, 214)이 메쉬 형태이기 때문에 원수 내지 전기분해수의 이동은 원활하게 진행된다.
이 때 전극(213, 214)을 통과하는 원수의 흐름은 라미나 흐름이다. 원수가 라미나 흐름으로 흐르며 분리막(212)은 포어가 매우 작기 때문에 양 전극(213, 214)간의 전해분해수의 혼합은 실질적으로 발생하지 않거나 매우 미미하다. 원수는 전극(213, 214)을 판상방향으로 통과하면서 전기분해된다.
이상 설명한 전기분해수 생성장치(1)의 운전방법에 대해 설명하면 다음과 같다.
먼저 원수공급부(10)를 통해 원수를 전기분해모듈(20)에 공급한다. 원수공급부(10)는 수돗물, 민물 또는 염수를 전기분해모듈(20)에 공급할 수 있다.
이후 전기분해모듈(20)에서 전기분해를 통해 산성수와 알칼리수를 분리생성한다. 생성된 산성수와 알칼리수는 외부공급부(30)를 통해 사용자(사용처)로 공급된다.
산성수의 pH는 5.0 내지 6.5, 5.5 내지 6.0, 5.5 내지 6.5 또는 6.0 내지 6.5일 수 있다. 염수를 사용하는 경우 산성수의 잔류염소농도는 5ppm 내지 40ppm, 10ppm 내지 40ppm, 10ppm 내지 30ppm 또는 10ppm 내지 20ppm일 수 있다.
염수를 전기 분해하면 나트륨과 염소 이온으로 분해되며, 음이온인 염소 이온의 배위 결합 형태인 염소 분자가 다시 산화되면서 차아염소산(HOCl), 수소(H2)가 생성된다. 여기서, 차아염소산은 다시 수소 이온(H+)과 더불어 차이염소산이온(HCl-)으로 분해되는데, 후에 차아염소산이온은 염화 나트륨에서 분리된 나트륨과 결합하여 차아염소산나트륨(NaOCl)을 형성하게 된다.
결국 전기 분해된 염수는 일정한 조건에서 평형을 이루며 수소, 차아염소산나트륨, 차아염소산, 차아염소산 이온으로 구성된다. 여기서, 차아염소산나트륨과 차아염소산은 모두 소독 효과를 가지고 있으나, 차아염소산이 차아염소산나트륨에 비하여 약 70배의 살균효과를 나타내기 때문에 살균력을 개선하기 위해서는 차아염소산의 비율을 증가시켜야 한다.
그러나 차아염소산과 차아염소산이온은 도 8과 같이 수소이온농도(pH)에 의해 구성비율이 달라질 수 있다. 도 10을 살펴보면 pH에 따라 잔류 염소, 차아염소산, 그리고 차아염소산나트륨의 생산량이 달라진다.
즉, 차아염소산(HOCl)은 수소 이온(H+)과 차아염소산이온(OCl-)이 결합되어 생성되는 것으로 pH가 4.3 내지 5.9 일 때 최대의 살균력을 가진다. pH가 낮은 경우에는 염소에서 전기분해가 이루어지지 않고, pH가 높은 경우에는 차아염소산이온이 나트륨과 결합되어 차아염소산나트륨이 생성된다.
한편, pH가 4.0 이하이면 염소가스 발생할 수 있기 때문에 본 발명에서는 산성수의 pH를 5.0 내지 6.5, 5.5 내지 6.0, 5.5 내지 6.5 또는 6.0 내지 6.5가 되도록 관리한다.
본 발명에서는 분리막(211) 등의 구성을 통해 산성수와 알칼리수를 분리하여 생산하기 때문에 산성수의 pH를 용이하게 조절할 수 있다. 이에 의해 살균력이 높은 차아염소산이 생성되는 pH의 산성수를 공급할 수 있으며, 이에 의해 산성수의 염소함량을 낮추고 소금 내지 염수의 사용량도 감소시킬 수 있다.
알칼리수의 pH는 10이상, 11이상 또는 12이상으로 관리될 수 있다.
추가원수공급부(40)는 산성수의 pH 및/또는 잔류염소농도를 조절하기 위해 사용된다.
본 발명에 따라 공급되는 산성수는 가정이나 식당 등에서 살균용도로 사용할 수 있다. 알칼리수는 농업분야에 사용될 수 있다. 필요에 따라 산성수 및/또는 알칼리수는 별도의 탱크에 저장 후 사용할 수 있으며, 특히 알칼리수의 경우 별도의 탱크에 저장 후 사용할 수 있다.
이상의 전기분해수 생성 시 제1전극(213) 및 제2전극(214)에 동일한 극성의 전원이 지속적으로 인가되면 음극에는 이물질이 쌓이고 양극은 손상이 발생하는 문제가 생긴다. 따라서 제어부(40)는 일정한 조건에서, 예를 들어 일정한 운전시간이 지난 후에 양 전극(213, 214)에 가해지는 전원의 극성을 변경한다.
극성이 변경되면 전기분해모듈(20)에서 배출되는 산성수와 알칼리수의 출구가 바뀌도록 운전할 수 있다. 이때 유로전환밸브(313, 323) 및 연결 배관(331, 332)을 이용하여 산성수와 알칼리수의 이동경로를 변경하여 외부공급부(30)에서는 산성수와 알칼리수를 일정한 위치에서 공급하게 된다.
다른 실시예에서는 산성수와 알칼리수의 혼합을 방지하기 위해 전기분해모듈(20)의 전원 극성이 변화하면, 일정시간 동안, 예를 들어, 3초 내지 5분 동안 산성수와 알칼리수를 사용하지 않고 배출할 수 있다. 배출 시 산성수와 알칼리수의 이동경로는 변화하거나 그대로 유지될 수 있다.
이후 전기분해모듈(20)의 전원 극성을 다시 변화시켜 산성수와 알칼리수를 공급하거나 계속하여 전기분해모듈(20)의 변화된 전원 극성을 유지하고 산성수와 알칼리수를 공급할 수 있다. 이때 유로전환밸브(313, 323) 및 연결 배관(331, 332)을 이용하여 외부공급부(30)에서는 산성수와 알칼리수를 일정한 위치에서 공급한다.
또 다른 실시예에서는 전기분해모듈(20)의 전원 극성이 변화하면, 이동경로를 변화시켜 일정시간 동안 알칼리수 배관(321)을 통해 산성수와 알칼리수 모두를 배출할 수 있다. 이후 다시 전원 극성을 변화시키고 이동경로를 변화시켜 산성수와 알칼리수를 일정한 위치에서 공급한다. 이 방법은 알칼리수를 별도의 용도로 사용하지 않거나, 알칼리수를 탱크에 저장 후 사용하여 일시적인 pH변화는 수용가능한 경우에 적용될 수 있다.
제어부(50)는 유량계(75) 등을 통해 용수 공급 및/또는 염수 공급이 중단되거나 부족하다고 판단되면 전원부(60)등을 제어하여 살균수 생성을 중단시킬 수 있다. 또한, 제어부(50)는 타이머(71) 등을 통해 장기간 사용되지 않을 경우 전해질 공급없이 용수만 공급하여 전기분해모듈(20)을 세척할 수 있으며, 전기분해모듈(20)이 일정 시간 이상 가동된 경우 표시부(65)를 통해 외부에 교체시기를 알릴 수 있다. 표시부(65)는 LED 등을 이용한 경고램프 및/또는 경고음일 수 있으며, 별도의 디스플레이 장치를 통해 알릴 수도 있다.
도 8a 내지 도 8c는 전극(213, 214)의 다른 형태를 나타낸 것이다.
전극(213, 214)은 메시 타입의 판상 형태를 유지하고 있으며, 올록볼록한 엠보싱 형태를 가지고 있다. 엠보싱 형태는 원수의 흐름을 더욱 원활하게 하기 위함이다. 도 8a 내지 도 8c에서는 메시 타입임은 도시를 생략하였다.
엠보싱은 도 8a와 같이 전극(213, 214) 전체에 산점되어 형성되어 있거나, 도 8b 및 도 8c와 같이 일정한 방향으로 형성되어 있을 수 있다. 도 8b에서는 엠보싱에 의한 골의 형성방향이 원수의 흐름방향과 평행한 경우이며, 도 8c에서는 엠보싱에 의한 골의 형성방향이 원수의 흐름방향과 일정한 각도, 예를 들어 수직인 경우이다. 엠보싱의 크기는 동일 전극(213, 214) 내에서도 다양하게 마련될 수 있다.
다른 실시예에서 전극(213, 214) 중 어느 하나만 엠보싱 형태를 가지거나 서로 다른 엠보싱 형태를 가질 수도 있다.
도 9는 본 발명의 제2실시예에 따른 전기분해수 생성장치이다.
제1실시예와의 차이점은 유로전환밸브(323) 및 연결 배관(331)이 설치되어 있지 않은 것이다. 이에 따라 산성수는 양 배관(311, 321)을 통해 외부로 배출가능하지만 알칼리수는 알칼리수 배관(321)을 통해서만 외부로 배출될 수 있다.
제2실시예에서 전기분해모듈(20)의 전원 극성이 변화 시에는 이동경로를 변화시켜 일정시간 동안 산성수와 알칼리수를 모두 알칼리수 배관(321)으로 배출할 수 있다. 이후 전원 극성을 다시 변화시키고 이동경로를 변화시켜 산성수와 알칼리수를 일정한 위치에서 공급한다.
본 발명에서 염수를 사용할 경우에는 산성수는 차아염소산을 포함하고 있는 살균수로 사용할 수 있다. 알칼리수는 배출 처리될 수 있다.
염수를 사용하지 않는 경우에는 pH가 4이하인 산성수와 pH가 11이상인 알칼리수가 나올 수 있는데, 얻어진 산성수와 알칼리수는 농업분야에서 활용될 수 있다.
이상 설명한 전기분해수 생성장치(1)를 이용하여 산성수와 알칼리수를 제조하였다.
염수유량(포화 염수)은 7.2ml/min, 수돗물 유량은 1,000ml/min, 전류는 5A, 전압은 4.8V를 사용하고 4개의 분해유닛을 사용한 결과 산성수(pH 3.75, 염소잔류농도 58ppm)와 알칼리수(pH 11.86, 염수잔류농도 3ppm 이하)를 얻었다.
염수/수돗물 사용량 변경, 전류/전압 변경 및 추가 원수 공급 등을 통해 원하는 품질의 산성수와 알칼리수를 얻을 수 있다.
다음으로 염수를 사용하지 않고, 수돗물 유량은 1,000ml/min, 전류는 5A, 전압은 20.2V를 사용하고 4개의 분해유닛을 사용한 결과 산성수(pH 4.2)와 알칼리수(pH 11이상)를 얻었다.
염수를 사용하지 않는 경우에도 수돗물 사용량 변경, 전류/전압 변경 및 추가 원수 공급 등을 통해 원하는 품질의 산성수와 알칼리수를 얻을 수 있다.
본 발명은 첨부된 도면에 도시된 일 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 수 있을 것이다. 따라서, 본 발명의 진정한 보호 범위는 첨부된 청구 범위에 의해서만 정해져야 할 것이다.
Claims (16)
- 전기분해모듈에 있어서,적어도 한 개의 분해유닛을 포함하며,상기 분해유닛은,전자 및 이온을 통과시킬 수 있는 포어를 가지고 있는 분리막과;상기 분리막의 제1면에 위치하는 제1전극과;상기 분리막의 제2면에 위치하는 제2전극을 포함하며,상기 제1전극과 상기 제2전극은 다공성이며,전기분해 대상인 원수는 상기 분리막을 따라 상기 제1전극 및 상기 제2전극과 접촉하면서 이동하며,상기 제1전극에서 전기분해된 제1전기분해수와 상기 제2전극에서 전기분해된 제2전기분해수는 분리되어 배출되는 전기분해모듈.
- 제1항에 있어서,상기 제1전극 및 상기 제2전극은 메시 형태이며 판상인 것을 특징으로 하는 전기분해모듈.
- 제2항에 있어서,상기 제1전극 및 상기 제2전극의 표면은 엠보싱 형태인 것을 특징으로 하는 전기분해모듈.
- 제1항에 있어서,상기 원수는 라미나 흐름으로 상기 제1전극 및 상기 제2전극과 접촉하면서 이동하는 것을 특징으로 하는 전기분해모듈.
- 제1항에 있어서,상기 분해유닛은 지지체를 더 포함하며,상기 분리막은 상기 지지체에 고정되어 있으며,상기 원수는 상기 지지체를 통해 상기 제1전극 및 상기 제2전극으로 공급되는 것을 특징으로 하는 전기분해모듈.
- 제1항에 있어서,상기 분해유닛은,상기 제1전극과 전기적으로 연결되어 있는 제1인가전극과;상기 제2전극과 전기적으로 연결되어 있는 제2인가전극을 더 포함하는 것을 특징으로 하는 전기분해모듈.
- 제1항에 있어서,상기 분해유닛은 복수개로 마련되며,인접한 분해유닛 사이에 위치하는 분리판을 더 포함하는 것을 특징으로 하는 전기분해모듈.
- 제1항에 있어서,상기 분리막은 테프론 재질이며 포어크기는 0.2um 내지 0.4um인 것을 특징으로 하는 전기분해모듈.
- 원수공급부;상기 원수공급부로부터 원수를 공급받으며 전기분해를 통해 산성수와 알칼리수를 분리 생성하는 전기분해모듈과;상기 생성된 산성수와 알칼리수를 외부로 공급하는 외부공급부를 포함하며,상기 원수공급부, 전기분해모듈 및 상기 외부공급부를 제어하는 제어부를 포함하는 전기분해수 생성장치.
- 제9항에 있어서,상기 전기분해모듈은,적어도 한 개의 분해유닛을 포함하며,상기 분해유닛은,전자 및 이온을 통과시킬 수 있는 포어를 가지고 있는 분리막과;상기 분리막의 제1면에 위치하는 제1전극과;상기 분리막의 제2면에 위치하는 제2전극을 포함하며,상기 제1전극과 상기 제2전극은 다공성이며,전기분해 대상인 원수는 상기 분리막을 따라 상기 제1전극 및 상기 제2전극과 접촉하면서 이동하며,상기 제1전극에서 전기분해된 제1전기분해수와 상기 제2전극에서 전기분해된 제2전기분해수는 분리되어 배출되는 것을 특징으로 하는 전기분해수 생성장치.
- 제10항에 있어서,상기 전기분해모듈에 공급되는 원수는 염수인 것을 특징으로 하는 전기분해수 생성장치.
- 제10항에 있어서,상기 전기분해모듈에서 배출된 상기 산성수의 잔류염소농도 및 pH 중 적어도 어느 하나를 조절하기 위한 추가원수공급부를 더 포함하는 것을 특징으로 하는 전기분해수 생성장치.
- 제10항에 있어서,상기 외부공급부는 상기 산성수와 상기 알칼리수의 흐름방향을 변경하는 유로전환밸브를 포함하며,상기 제어부는 상기 전기분해모듈에 가해지는 전원의 극성변화와 상기 유로전환밸브 구동을 연동시키는 것을 특징으로 하는 전기분해수 생성장치.
- 전기분해수 생성장치의 운전방법에 있어서,상기 전기분해수 생성장치는,원수공급부;상기 원수공급부로부터 원수를 공급받으며 전기분해를 통해 산성수와 알칼리수를 분리 생성하는 전기분해모듈을 포함하며,상기 전해분해모듈에서 산성수와 알칼리수를 생성하는 단계와;상기 산성수를 제1배관을 통해 외부로 배출하고 상기 알칼리수를 제2배관을 통해 외부로 배출하는 단계와;상기 전기분해모듈의 전원 극성을 변화시키는 단계와;상기 전원 극성 변화 시에 상기 산성수를 일정시간 동안 상기 제2배관을 통해 외부로 배출하는 단계와;상기 전기분해모듈의 전원 극성을 다시 변화시킨 후 상기 산성수를 상기 제1배관을 통해 배출하는 단계를 포함하는 운전방법.
- 제14항에 있어서,상기 전기분해모듈은,적어도 한 개의 분해유닛을 포함하며,상기 분해유닛은,전자 및 이온을 통과시킬 수 있는 포어를 가지고 있는 분리막과;상기 분리막의 제1면에 위치하는 제1전극과;상기 분리막의 제2면에 위치하는 제2전극을 포함하며,상기 제1전극과 상기 제2전극은 다공성이며,전기분해 대상인 원수는 상기 분리막을 따라 상기 제1전극 및 상기 제2전극과 접촉하면서 이동하며,상기 제1전극에서 전기분해된 제1전기분해수와 상기 제2전극에서 전기분해된 제2전기분해수는 분리되어 배출되는 것을 특징으로 하는 운전방법.
- 제15항에 있어서,전원 극성 변화 시에 상기 알칼리수는 상기 제1배관을 통해 외부로 배출되는 것을 특징으로 하는 운전방법.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019543758A JP2020506051A (ja) | 2017-02-08 | 2017-12-27 | 電気分解モジュール、これを含む電気分解水生成装置及び電気分解水生成装置の運転方法 |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2017-0017610 | 2017-02-08 | ||
KR1020170017611A KR101866762B1 (ko) | 2017-02-08 | 2017-02-08 | 전기분해수 생성장치 |
KR1020170017610A KR101855906B1 (ko) | 2017-02-08 | 2017-02-08 | 전기분해모듈 |
KR10-2017-0017611 | 2017-02-08 | ||
KR1020170165807A KR20190066255A (ko) | 2017-12-05 | 2017-12-05 | 전기분해수 생성장치의 운전방법 |
KR10-2017-0165807 | 2017-12-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018147550A1 true WO2018147550A1 (ko) | 2018-08-16 |
Family
ID=63107236
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/015554 WO2018147550A1 (ko) | 2017-02-08 | 2017-12-27 | 전기분해모듈, 이를 포함하는 전기분해수 생성장치 및 전기분해수 생성장치의 운전방법 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2020506051A (ko) |
WO (1) | WO2018147550A1 (ko) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100979028B1 (ko) * | 2003-09-29 | 2010-08-30 | 주식회사 포스코 | 폐수 또는 염수의 축전 탈이온화용 분리막 및 이를 이용한폐수 또는 염수의 이온제거방법 |
KR20110117401A (ko) * | 2010-04-21 | 2011-10-27 | 오영민 | 복합 생성 모듈을 이용한 살균수 생성 장치 및 그 방법 |
KR20120019317A (ko) * | 2010-08-25 | 2012-03-06 | 주식회사 동양 | 세퍼레이터를 포함한 무격막 전해조 및 이를 포함하는 전해수 시스템 |
KR101370129B1 (ko) * | 2013-09-24 | 2014-03-26 | (주)이노게이트 | 용존 수소농도 조절기능을 갖는 수소환원수 제조장치 |
KR20140069703A (ko) * | 2012-11-29 | 2014-06-10 | 주식회사 한국정품인증원 | 전해살균수를 이용한 수처리 장치 |
KR20160010904A (ko) * | 2014-07-18 | 2016-01-29 | 코웨이 주식회사 | 미생물 감지 장치, 이를 갖는 수처리 장치 및 그 방법 |
KR20160123954A (ko) * | 2015-10-28 | 2016-10-26 | 주식회사 파이노 | 기능수 생성모듈 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03270784A (ja) * | 1990-03-22 | 1991-12-02 | Nippon Intetsuku Kk | 隔膜構造体 |
JPH10286571A (ja) * | 1997-04-16 | 1998-10-27 | Permelec Electrode Ltd | 酸性水及びアルカリ水製造用電解槽 |
JP3113645B2 (ja) * | 1999-03-01 | 2000-12-04 | ファースト・オーシャン株式会社 | 電解水製造法 |
JP2001073177A (ja) * | 1999-09-03 | 2001-03-21 | Hoshizaki Electric Co Ltd | 電解水生成装置 |
JP3711501B2 (ja) * | 2002-12-27 | 2005-11-02 | 飛島建設株式会社 | 電気分解を用いる水改質ユニット |
JP4677993B2 (ja) * | 2007-01-23 | 2011-04-27 | パナソニック電工株式会社 | 電解水生成装置 |
JP2013071103A (ja) * | 2011-09-29 | 2013-04-22 | Aqua Eco Kk | 電解水生成装置及び電解水生成方法 |
JP6190427B2 (ja) * | 2015-07-14 | 2017-08-30 | 株式会社日本トリム | 電解槽及び電解水生成装置 |
-
2017
- 2017-12-27 JP JP2019543758A patent/JP2020506051A/ja active Pending
- 2017-12-27 WO PCT/KR2017/015554 patent/WO2018147550A1/ko active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100979028B1 (ko) * | 2003-09-29 | 2010-08-30 | 주식회사 포스코 | 폐수 또는 염수의 축전 탈이온화용 분리막 및 이를 이용한폐수 또는 염수의 이온제거방법 |
KR20110117401A (ko) * | 2010-04-21 | 2011-10-27 | 오영민 | 복합 생성 모듈을 이용한 살균수 생성 장치 및 그 방법 |
KR20120019317A (ko) * | 2010-08-25 | 2012-03-06 | 주식회사 동양 | 세퍼레이터를 포함한 무격막 전해조 및 이를 포함하는 전해수 시스템 |
KR20140069703A (ko) * | 2012-11-29 | 2014-06-10 | 주식회사 한국정품인증원 | 전해살균수를 이용한 수처리 장치 |
KR101370129B1 (ko) * | 2013-09-24 | 2014-03-26 | (주)이노게이트 | 용존 수소농도 조절기능을 갖는 수소환원수 제조장치 |
KR20160010904A (ko) * | 2014-07-18 | 2016-01-29 | 코웨이 주식회사 | 미생물 감지 장치, 이를 갖는 수처리 장치 및 그 방법 |
KR20160123954A (ko) * | 2015-10-28 | 2016-10-26 | 주식회사 파이노 | 기능수 생성모듈 |
Also Published As
Publication number | Publication date |
---|---|
JP2020506051A (ja) | 2020-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5316740A (en) | Electrolytic cell for generating sterilization solutions having increased ozone content | |
KR100479644B1 (ko) | 전기분해장치와 이를 이용한 전기분해수 생성장치,이온수기 및 용존산소 정수기 | |
WO2010133153A1 (en) | Electrolysis device for preparation of hypochlorous water | |
US20070017801A1 (en) | High electric field electrolysis cell | |
MXPA03007923A (es) | Metodo y aparato para producir agua potencial oxidativa reductiva positiva y negativa. | |
EP0216413A2 (en) | A process and an apparatus for the preparation of a disinfectant for water, such as drinking- or swimming-water | |
JP2002524256A (ja) | 脱臭及び洗浄処理用途の水を製造する装置及び方法 | |
JP2002336856A (ja) | 電解水製造装置、及び電解水の製造方法 | |
CA2233615A1 (en) | Apparatus and method for water purification | |
CN103951020A (zh) | 健康饮水机 | |
KR100634760B1 (ko) | 과전위전극 전해셀을 이용한 살균산화수 제조장치 | |
KR101191480B1 (ko) | 세퍼레이터를 포함한 무격막 전해조 및 이를 포함하는 전해수 시스템 | |
CN1332890C (zh) | 通过产生活性氯来消毒水供给系统中的水的电解装置和方法 | |
KR100533710B1 (ko) | 전해수 제조장치 | |
WO2018147550A1 (ko) | 전기분해모듈, 이를 포함하는 전기분해수 생성장치 및 전기분해수 생성장치의 운전방법 | |
JPH10128331A (ja) | 殺菌水製造装置及び殺菌水製造方法 | |
KR20050022496A (ko) | 전해수 제조장치 | |
KR100754274B1 (ko) | 사이클론형 전기분해용 전해조 | |
KR20160002488U (ko) | 전기분해를 이용한 살균수 생성장치 | |
KR20130108906A (ko) | 메쉬전극을 포함하는 차아염소산나트륨 발생장치 | |
KR101130073B1 (ko) | 약산성수의 제조장치 | |
JP3568290B2 (ja) | 電解水生成装置 | |
WO2022215903A1 (ko) | 전해수 제조 장치 | |
JPH0970581A (ja) | イオン水生成装置 | |
KR102616273B1 (ko) | 전해수 제조 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17896174 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019543758 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17896174 Country of ref document: EP Kind code of ref document: A1 |