WO2018147452A1 - スクリュー圧縮機 - Google Patents

スクリュー圧縮機 Download PDF

Info

Publication number
WO2018147452A1
WO2018147452A1 PCT/JP2018/004747 JP2018004747W WO2018147452A1 WO 2018147452 A1 WO2018147452 A1 WO 2018147452A1 JP 2018004747 W JP2018004747 W JP 2018004747W WO 2018147452 A1 WO2018147452 A1 WO 2018147452A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
oil supply
gate
oil
screw
Prior art date
Application number
PCT/JP2018/004747
Other languages
English (en)
French (fr)
Inventor
治則 宮村
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN201880010686.9A priority Critical patent/CN110446857B/zh
Priority to US16/484,796 priority patent/US20200003211A1/en
Priority to EP18750981.5A priority patent/EP3564532B1/en
Publication of WO2018147452A1 publication Critical patent/WO2018147452A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/48Rotary-piston pumps with non-parallel axes of movement of co-operating members
    • F04C18/50Rotary-piston pumps with non-parallel axes of movement of co-operating members the axes being arranged at an angle of 90 degrees
    • F04C18/52Rotary-piston pumps with non-parallel axes of movement of co-operating members the axes being arranged at an angle of 90 degrees of intermeshing engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/809Lubricant sump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation

Definitions

  • the present invention relates to a screw compressor.
  • a compressor for compressing a fluid such as refrigerant or air
  • a first rotor composed of a screw rotor having a spiral groove and a second rotor that meshes with the first rotor and rotates together with the first rotor.
  • a screw compressor provided with a rotor is used (see Patent Document 1 below).
  • a screw rotor as a first rotor is rotatably accommodated in a cylindrical wall, and a gate rotor as a second rotor is provided outside the cylindrical wall.
  • a part of the gate enters the inside of the cylindrical wall from an opening formed in the cylindrical wall and engages with the screw rotor, thereby rotating with the screw rotor.
  • a compression chamber is defined in the spiral groove by the cylindrical wall, the screw rotor, and the gate meshing with the cylindrical wall.
  • the present invention has been made in view of this point, and an object of the present invention is to provide a configuration capable of reliably supplying lubricating oil to each sliding surface with a small amount of oil supply in a screw compressor.
  • a first aspect of the present disclosure includes a first rotor (40) having a spiral groove (41) formed therein, and a first rotor that meshes with the first rotor (40) and rotates together with the first rotor (40).
  • a screw compressor that compresses fluid in the compression chamber (23), the first rotor (40) and the second rotor (50).
  • An oil supply passage (5) that is connected to an oil supply port (4) that opens at the sliding surface (3) of the rotor (40, 50) and supplies lubricating oil to the sliding surface (3) Is formed.
  • an oil supply passage (5) is formed in at least one rotor (40, 50) of the first rotor (40) and the second rotor (50) that mesh and rotate together.
  • the oil supply passage (5) is connected to an oil supply port (4) that opens in the sliding surface (3) of the rotor (40, 50) in which the oil supply passage (5) is formed.
  • the sliding of the rotor (40, 50) that rotates the oil filler port (4) is opened and lubricating oil is allowed to flow out to the sliding surface (3). Therefore, the lubricating oil that has flowed out of the oil filler opening (4) spreads quickly in the rotating rotor (40, 50), and the sliding surface (3) other than the sliding face (3) where the oil filler opening (4) is formed (3) ) Will be promptly supplied with lubricating oil.
  • the lubricating oil supplied to the rotor (40, 50) in which the oil supply passage (5) is formed is The oil quickly spreads to the other rotor (50, 40), and the lubricating oil is quickly supplied to the sliding surface (3) of the other rotor (50, 40).
  • the oil supply passage (5) is lubricated to supply the lubricating oil to the sliding surface (3) and to the sliding surface (3).
  • a switching mechanism (6) for switching to a non-oil supply state in which no oil is supplied is provided.
  • the oil supply passage (5) includes an oil supply state in which lubricating oil is supplied from the oil supply passage (5) to the sliding surface (3), and a sliding surface ( 3) It can be switched to a non-lubricated state where no lubricating oil is supplied.
  • the switching mechanism (6) is configured such that the rotational angle position of the rotor (40, 50) in which the oil supply passage (5) is formed is within a predetermined angular range.
  • the oil supply passage (5) is switched to the oil supply state by connecting the oil supply source (94c, 95c) for supplying lubricating oil to the oil supply passage (5) and the oil supply passage (5),
  • the oil supply passage (5) is cut off from the oil supply source (94c, 95c) and the oil supply passage (5). Is switched to the non-oil supply state.
  • the oil supply source (94c, 95c) and the oil supply passage (5 ) switches to the oil supply state, and the rotational angle position of the rotor (40, 50) is outside the predetermined angle range, the oil supply source (94c, 95c) and the oil supply The passage (5) is blocked and the oil supply passage (5) is switched to a non-oil supply state.
  • the first rotor (40) is freely rotatable on a cylindrical wall (30) constituting the rotor casing (30).
  • the second rotor (50) is formed in a gear shape having a plurality of flat gates (51), and is formed on the outer side of the cylindrical wall (30).
  • a part of the gate (51) provided in the cylindrical wall (30) enters the inside through the opening (39) and meshes with the screw rotor (40), whereby the screw rotor (40)
  • the oil supply passage (5) is formed in the gate (51) of the gate rotor (50), and the oil supply port (4) is connected to the gate (51).
  • the sliding surface that slides with the screw rotor (40) (3 ) Is a side surface filler opening (63b) that opens at the side surfaces (51a, 51b).
  • the screw compressor (1) is configured as a single screw compressor (1), and the gate rotor (50) meshes with the screw rotor (40) as the screw rotor (40) rotates. Rotates. Thereby, the position of the gate (51) changes in the spiral groove (41) of the screw rotor (40), the volume of the compression chamber (23) is gradually reduced, and the fluid is compressed. At this time, the lubricating oil in the oil supply passage (5) formed in the gate (51) of the gate rotor (50) is opened in the side surfaces (51a, 51b) that slide with the screw rotor (40) of the gate (51). Flows out from the side refueling port (63b).
  • the lubricating oil is supplied between the side surfaces (51a, 51b) of the gate (51) and the screw rotor (40), and the sliding surface (3) between them is lubricated or a gap between them.
  • the gap is sealed.
  • the lubricating oil supplied between the side surfaces (51a, 51b) of the gate (51) and the screw rotor (40) also adheres to the screw rotor (40) and is generated by the rotation of the screw rotor (40). Due to the centrifugal force, the screw rotor (40) spreads out to the outer peripheral side. Thereby, lubricating oil is supplied also to the clearance gap between a screw rotor (40) and a cylindrical wall (30), and the clearance gap between these is sealed.
  • the side surface filling port (63b) is opened at least on the rear side surface (51b) in the rotational direction of the gate (51).
  • the gear-shaped gate rotor (50) meshing with the screw rotor (40) is pushed by the groove side surface of the spiral groove (41) of the screw rotor (40) when the screw rotor (40) rotates.
  • the rear side surface (51b) in the rotational direction of the gate (51) is a sliding surface that slides reliably with the screw rotor (40) and is also a surface pressed by the screw rotor (40).
  • lubricating oil is directly supplied from the oil supply passage (5) to the rear side surface (51b) in the rotational direction of the gate (51).
  • the lubricating oil is surely provided between the rear side surface (51b) in the rotational direction of the gate (51) and the groove side surface of the spiral groove (41) of the screw rotor (40), which is likely to cause sliding wear. Supplied and the sliding surface (3) is lubricated.
  • the oil supply passage (5) is open at a front surface (51c) facing the compression chamber (23) of the gate (51). It is connected to the filler port (63c).
  • the gate (51) enters and exits the cylindrical wall (30) from the opening (39) by the rotation of the gate rotor (50).
  • a gap is usually formed between the front surface (51c) of the gate (51) and the cylindrical wall (30), but due to the thermal expansion of the gate rotor (50), the front surface (51c) of the gate (51) There is a risk of sliding with the cylindrical wall (30).
  • the gate rotor (23) outside the cylindrical wall (30) passes through the gap from the high-pressure compression chamber (23). It is necessary to seal the gap because there is a risk of leaking into the low-pressure space provided with 50).
  • the oil supply passageway (5) is also connected to the front oil supply port (63c) that opens to the front surface (51c) of the gate (51). Therefore, in the gate (51) of the gate rotor (50), the lubricating oil in the oil supply passage (5) faces not only the side surfaces (51a, 51b) sliding with the screw rotor (40) but also the compression chamber (23). Also supplied to the front surface (51c). As a result, the lubricating oil is supplied between the front surface (51c) of the gate (51) and the cylindrical wall (30), and the gap is sealed when the gap is lubricated or there is a gap between them. It will be.
  • the side surface oil supply port (63b) is less at a base side position than the radial center of the gate (51). One is also formed.
  • the lubricating oil in the oil supply passage (5) is located closer to the root side than the center in the radial direction on the side surfaces (51a, 51b) sliding with the screw rotor (40) of the gate (51). Supplied to the position. Since the gate rotor (50) rotates, the lubricating oil supplied to the position on the base side of the side surface (51a, 51b) of the gate (51) wets and spreads to the tip side of the gate (51) due to its centrifugal force. It becomes.
  • the support member (55) supports the gate rotor (50) from the back side opposite to the compression chamber (23).
  • An oil reservoir (50) to which lubricating oil is supplied is provided between the base side connecting portion (52) connecting the plurality of gates (51) of the gate rotor (50) and the support member (55). 62) is formed, the oil supply passage (5) extends in the radial direction of the gate (51), and the end on the base side is connected to the oil reservoir (62).
  • the oil supply passage (5) extends radially outward from the oil reservoir (62) on the base side with respect to the gate (51).
  • the oil supply passage (5) is formed in the first rotor (40), and the oil supply port (4) is The groove inner surface oil supply that opens in the groove inner surface (42) of the spiral groove (41) that constitutes the sliding surface (3) that slides with the second rotor (50) of the first rotor (40) Mouth (66d).
  • the oil supply passage (5) is formed in the first rotor (40), and the groove opens in the groove inner surface (42) of the spiral groove (41) of the first rotor (40).
  • the oil supply passage (5) is connected to the inner surface oil supply port (66d).
  • the lubricating oil is indirectly supplied to the groove inner surface (42) of the first rotor (40) by injecting the lubricating oil from the oil filler opening formed in the rotor casing. Unlike the above structure, the lubricating oil is directly applied from the groove inner surface oil supply port (66d) opening to the groove inner surface (42) of the first rotor (40) to the groove inner surface (42) serving as the sliding surface (3). Supplied.
  • the groove of the first rotor (40) that rotates the oil filler port (4) is allowed to flow out into the groove inner surface (42) by opening the inner surface (42). Therefore, the lubricating oil that has flowed out of the groove inner surface oil supply port (66d) quickly spreads by the centrifugal force in the rotating first rotor (40), and quickly reaches the sliding surface (3) other than the groove inner surface (42). Lubricating oil will be supplied.
  • the lubricating oil supplied to the groove inner surface (42) of the first rotor (40) also adheres to the second rotor (50) that meshes with the first rotor (40) and rotates.
  • the rotor (50) of the second rotor also quickly spreads by the centrifugal force, and the lubricating oil is quickly supplied to the sliding surface (3) of the second rotor (50).
  • the oil supply passage (5) is formed in the first rotor (40), and the oil supply port (4) is The outer peripheral surface oil supply that opens in the outer peripheral surface (43) of the first rotor (40) that constitutes the sliding surface (3) that slides with the rotor casing (30) of the first rotor (40).
  • the mouth (66c) is formed in the first rotor (40)
  • the oil supply port (4) is The outer peripheral surface oil supply that opens in the outer peripheral surface (43) of the first rotor (40) that constitutes the sliding surface (3) that slides with the rotor casing (30) of the first rotor (40).
  • the outer peripheral surface (43) of the first rotor (40) in which the spiral groove (41) is formed slides with the inner surface of the rotor casing (30) covering the outer periphery of the first rotor (40). It is necessary to perform lubrication so that the outer peripheral surface (43) of the first rotor (40) and the inner surface of the rotor casing (30) are not seized. On the other hand, when a gap is formed between the outer peripheral surface of the first rotor (40) and the inner surface of the rotor casing (30), it is necessary to seal so that high-pressure fluid does not leak to the low-pressure side.
  • an oil supply passage (5) is formed in the first rotor (40), and the outer peripheral surface (43) that slides with the rotor casing (30) of the first rotor (40) is provided.
  • the oil supply passage (5) is connected to the open outer peripheral surface oil supply port (66c).
  • the outer periphery of the first rotor (40) rotating the oil supply port (4) is different from the conventional configuration in which the lubricating oil is injected from the oil supply port formed in the non-rotating rotor casing.
  • the lubricating oil is allowed to flow out to the outer peripheral surface (43) by opening the surface (43). Therefore, the lubricating oil that has flowed out of the outer circumferential surface oil supply port (66c) spreads quickly in the rotating first rotor (40), and slides other than the outer peripheral surface (43) where the outer circumferential surface oil supply port (66c) is formed. Lubricating oil will be quickly supplied to the moving surface (3).
  • the lubricating oil supplied to the first rotor (40) is supplied to the second rotor (50). And the lubricating oil is quickly supplied to the sliding surface (3) of the second rotor (50).
  • the first rotor (40) is positioned closer to the rotation axis than the groove bottom surface (42c) of the spiral groove (41).
  • An oil reservoir (44) to which lubricating oil is supplied is formed, and the oil supply passage (5) extends from the oil reservoir (44) toward the outer peripheral side of the first rotor (40).
  • the oil supply passage (5) is formed from the oil reservoir (44) closer to the rotation axis than the groove bottom surface (42c) of the spiral groove (41) of the first rotor (40). It extends to the outer peripheral side of the rotor (40).
  • the lubricating oil flows from the oil reservoir (44) into the oil supply passage (5) due to the centrifugal force generated by the rotation of the first rotor (40), and is moved to the outer peripheral side of the first rotor (40). It flows toward and flows out from the fuel filler opening (4) and is supplied to the sliding surface (3) of the first rotor (40).
  • the oil supply passage (5) is formed in at least one of the first rotor (40) and the second rotor (50) that mesh with each other and rotate together.
  • the rotor (40, 50) rotating the oil filler port (4) The sliding surface (3) is opened and lubricating oil is allowed to flow out to the sliding surface (3). Therefore, the lubricating oil that has flowed out of the oil filler opening (4) spreads quickly in the rotating rotor (40, 50), and the sliding surface (3) other than the sliding face (3) where the oil filler opening (4) is formed (3) ) Can be quickly supplied with lubricating oil.
  • the lubricating oil supplied to the rotor (40, 50) in which the oil supply passage (5) is formed is The oil spreads quickly to the other rotor (50, 40), and the lubricating oil can be quickly supplied to the sliding surface (3) of the other rotor (50, 40).
  • the lubricating oil conveyance power and the rotation of the first and second rotors (40, 50) are as follows. Supplying a small amount of lubricating oil to at least one sliding surface (3) of the first rotor (40) and the second rotor (50) without increasing power and causing a decrease in compressor efficiency. To lubricate the sliding surfaces (3) of the first rotor (40) and the second rotor (50), or there is a gap between the sliding surface (3) and the sliding surface that slides. Sometimes the gap can be sealed.
  • the sliding surfaces (3) of the first rotor (40) and the second rotor (50) are seized and removed from the compression chamber even if the amount of oil supply is reduced. High-pressure fluid leakage can be suppressed. Therefore, according to the first aspect of the present disclosure, it is possible to improve the compressor efficiency by reducing the oil supply amount without reducing the reliability of the screw compressor (1).
  • the oil supply passage (5) is provided with an oil supply state in which lubricating oil is supplied from the oil supply passage (5) to the sliding surface (3), and from the oil supply passage (5).
  • the sliding surface (3) can be switched to a non-lubricated state where no lubricating oil is supplied. Therefore, when the sliding surface (3) of the rotor (40, 50) formed with the oil filler port (4) is not always slid, the sliding surface (3) does not slide and lubricates. When this is unnecessary, it is possible to switch to the non-lubrication state and stop the lubrication to the sliding surface (3). Therefore, according to the second aspect of the present disclosure, the lubricating oil can be reliably supplied to the sliding surface (3) of the rotor (40, 50) while reducing the amount of oil supply.
  • the oil supply source (94c, 95c) when the rotational angle position of the rotor (40, 50) in which the oil supply passage (5) is formed is within a predetermined angle range, the oil supply source (94c, 95c) When the oil supply passage (5) communicates and the oil supply passage (5) is switched to the oil supply state and the rotational angle position of the rotor (40, 50) is outside the predetermined angle range, the oil supply source (94c, 95c) and the oil supply passage (5) are cut off and the oil supply passage (5) is switched to the non-oil supply state.
  • the oil supply passage (5) is refueled while the rotor (40, 50) formed with the oil supply passage (5) is rotated once. It is possible to automatically switch between a state and a non-oil supply state.
  • the gate (51) of the gate rotor (50) has a side surface (51a, 51b) that slides on the screw rotor (40) that requires lubrication and sealing with lubricating oil.
  • An oil supply passage (5) for direct oil supply was formed. Therefore, by injecting into the spiral groove (41), the gate (50) and the screw rotor (40) can be supplied to the sliding surface (3) indirectly. 51) and lubricating oil can be reliably supplied to the sliding surface (3) between the screw rotor (40), and the gap can be lubricated or sealed when there is a gap between them. .
  • the lubricating oil supplied to the sliding surface (3) of the screw rotor (40) and the gate (51) in this way also adheres to the screw rotor (40), and the screw rotor (40) rotates. Due to the centrifugal force generated by the oil, the oil spreads to the outer periphery of the screw rotor (40), so that lubricating oil can also be supplied to the gap between the screw rotor (40) and the cylindrical wall (30). Can be sealed.
  • the conveying power of the lubricating oil and the rotational power of the screw rotor (40) are increased.
  • the seizure of the gate rotor (50) and the screw rotor (40) and the leakage of the high-pressure fluid from the compression chamber can be suppressed even if the amount of oil supply is reduced. Therefore, according to the fourth aspect of the present disclosure, it is possible to improve the compressor efficiency by reducing the amount of oil supplied without reducing the reliability of the single screw compressor (1).
  • the side surface filler opening (63b) of the oil supply passage (5) is opened at least on the rear side surface (51b) of the gate (51) in the rotational direction.
  • the side surface (51b) on the rear side of the rotation direction of the gate (51) is a sliding surface (3) that slides reliably with the screw rotor (40), and is also a surface pressed by the screw rotor (40).
  • a side oil supply port (63b) is opened on such a rear side surface (51b), and between the side surface (51b) and the groove side surface of the spiral groove (41).
  • the gap between them is lubricated or when there is a gap between them, the gap is sealed. be able to. Accordingly, seizure due to sliding of the gate (51) can be prevented, and the high pressure compression chamber (23) through the gap between the front surface (51c) of the gate (51) and the cylindrical wall (30) can be prevented. Fluid leakage to the low pressure space in which the gate rotor (50) outside the cylindrical wall (30) is provided can be suppressed.
  • the side surface oil supply port (63b) that opens to the side surface (51a, 51b) that slides with the screw rotor (40) of the gate (51) is provided on the gate (51). At least one was formed at a position closer to the root side than the center in the radial direction. In this way, by forming at least one side oil filler port (63b) at a position closer to the root side than the center in the radial direction of the gate (51), the gate (51) has a side surface (51a, 51b) on the base side. Lubricating oil can be supplied and can be easily spread to the tip side of the side surfaces (51a, 51b) of the gate (51) using centrifugal force. According to such a configuration, the amount of oil supply can be further reduced by minimizing the number of side surface oil supply ports (63b).
  • the oil sump (62) is provided between the support member (55) that supports the gate rotor (50) and the connecting portion (52) on the base side of the gate rotor (50).
  • the base end of the oil supply passage (5) of the gate (51) is connected to the oil reservoir (62). That is, the oil supply passage (5) extends radially outward from the oil reservoir (62) along the corresponding gate (51).
  • the lubricating oil can be supplied between the side surfaces (51a, 51b) of the gate (51) and the screw rotor (40) by utilizing the centrifugal force generated by the rotation of the gate rotor (50) with an easy configuration. .
  • the oil supply passage (5) is formed in the first rotor (40), and the oil supply passage (5) is formed in the spiral groove (41) of the first rotor (40). ) To the groove inner surface oil supply port (66d) that opens at the groove inner surface (42), thereby forming a groove that forms a sliding surface (3) from the groove inner surface oil supply port (66d) to the second rotor (50). Lubricating oil was supplied directly to the inner surface (42).
  • the groove inner surface oil supply port (66d) is opened to the groove inner surface (42) of the rotating first rotor (40) and the lubricating oil is allowed to flow out to the groove inner surface (42), the groove inner surface oil supply port ( The lubricating oil that has flowed out from 66d) spreads quickly in the rotating first rotor (40), and can be supplied quickly to the sliding surface (3) other than the groove inner surface (42). Furthermore, the lubricating oil supplied to the groove inner surface (42) of the first rotor (40) also adheres to the second rotor (50) that meshes with the first rotor (40) and rotates. Also in this rotor (50), since it spreads quickly by centrifugal force, the lubricating oil can be quickly supplied also to the sliding surface (3) of the second rotor (50).
  • the oil supply passage (5) is formed in the first rotor (40), and the oil supply passage (5) is formed in the rotor casing (30) of the first rotor (40).
  • the outer peripheral surface (43) that is the sliding surface (3) from the outer peripheral surface oil supply port (66c) by connecting to the outer peripheral surface oil supply port (66c) formed on the outer peripheral surface (43) that slides Lubricating oil was supplied directly. Therefore, the lubricating oil can be reliably supplied to the outer peripheral surface (43) of the first rotor (40) sliding with the inner surface of the rotor casing (30).
  • the first rotor (40) that rotates the oil filler port (4).
  • the outer peripheral surface (43) is opened and lubricating oil is allowed to flow out to the outer peripheral surface (43). Therefore, the lubricating oil that has flowed out of the outer peripheral surface oil supply port (66c) spreads quickly in the rotating first rotor (40), and the first rotor (40) in which the outer peripheral surface oil supply port (66c) is formed. Lubricating oil can be quickly supplied to the sliding surface (3) other than the outer peripheral surface (43).
  • the lubricating oil supplied to the first rotor (40) is supplied to the second rotor (50). And the lubricating oil can be quickly supplied also to the sliding surface (3) of the second rotor (50).
  • the oil reservoir (44) is formed at a position closer to the rotation axis than the groove bottom surface (42c) of the spiral groove (41) of the first rotor (40).
  • the root end of the passage (5) was connected to the oil sump (44). That is, the oil supply passage (5) extends from the oil reservoir (44) toward the outer peripheral side in the first rotor (40).
  • the lubricating oil can be supplied to the sliding surface (3) of the first rotor (40) using the centrifugal force generated by the rotation of the first rotor (40).
  • FIG. 1 is a diagram illustrating an overall schematic configuration of the screw compressor according to the first embodiment.
  • FIG. 2 is a longitudinal sectional view of the vicinity of the compression mechanism of the screw compressor.
  • FIG. 3 is a cross-sectional view of the vicinity of the compression mechanism of the screw compressor.
  • FIG. 4 is a perspective view showing the screw rotor and the gate rotor extracted from the screw compressor.
  • FIG. 5 is an enlarged view of the right portion of FIG.
  • FIG. 6 is a perspective view showing the support member shown in FIG.
  • FIG. 7 is a longitudinal sectional view schematically showing an enlarged portion where the gate rotor and the screw rotor mesh with each other.
  • FIG. 8 is a cross-sectional view of the gate of the gate rotor and the arm portion of the support member in the spiral groove of the screw rotor.
  • FIG. 9 is an enlarged view of the left portion of FIG. 10 (A) to (C) are plan views showing the operation of the compression mechanism of the single screw compressor, FIG. 10 (A) shows the suction stroke, FIG. 10 (B) shows the compression stroke, 10 (C) indicates the discharge stroke.
  • FIG. 11 is a cross-sectional view corresponding to FIG. 5 of the screw compressor according to the second embodiment.
  • FIG. 12 is a cross-sectional view corresponding to FIG. 9 of the screw compressor according to the second embodiment.
  • FIG. 13 is a longitudinal sectional view corresponding to FIG. 7 of the screw compressor according to the second embodiment.
  • 14 is a cross-sectional view taken along line XIV-XIV in FIGS.
  • FIG. 15 is a cross-sectional view of the vicinity of the compression mechanism of the screw compressor according to the third embodiment.
  • Embodiment 1 The screw compressor according to the first embodiment is provided in a refrigerant circuit that performs a refrigeration cycle and compresses refrigerant (fluid), and is a single screw compressor (1).
  • the compression mechanism (20) and the electric motor (15) for driving the compression mechanism (20) are accommodated in one casing (10).
  • the single screw compressor (1) is configured as a semi-hermetic type.
  • the casing (10) has an outer wall (17) formed in a horizontally long cylindrical shape.
  • the internal space of the casing (10) is partitioned into a low pressure space (S1) located on one end side in the longitudinal direction of the outer wall (17) and a high pressure space (S2) located on the other end side.
  • the casing (10) is provided with a suction pipe connection part (11) communicating with the low pressure space (S1) and a discharge pipe connection part (12) communicating with the high pressure space (S2).
  • the low-pressure gas refrigerant that has flowed from the evaporator of the refrigerant circuit included in the refrigeration apparatus such as a chiller system flows into the low-pressure space (S1) through the suction pipe connection (11).
  • the compressed high-pressure gas refrigerant discharged from the compression mechanism (20) to the high-pressure space (S2) is supplied to the condenser of the refrigerant circuit through the discharge pipe connection (12).
  • the electric motor (15) is disposed in the low pressure space (S1), and the compression mechanism (20) is disposed between the low pressure space (S1) and the high pressure space (S2). ing.
  • the drive shaft (21) of the compression mechanism (20) is connected to the electric motor (15).
  • the electric motor (15) of the single screw compressor (1) is connected to a commercial power source (not shown).
  • the electric motor (15) is supplied with alternating current from a commercial power source and rotates at a predetermined rotational speed.
  • an oil separator (16a) is arranged in the high-pressure space (S2).
  • the oil separator (16a) separates the lubricating oil from the refrigerant discharged from the compression mechanism (20).
  • An oil storage chamber (16b) for storing lubricating oil (lubricating oil) is formed below the oil separator (16a) in the high-pressure space (S2).
  • the lubricating oil separated from the refrigerant in the oil separator (16a) flows down and is stored in the oil storage chamber (16b).
  • the lubricating oil stored in the oil storage chamber (16b) is in a high pressure state substantially equal to the refrigerant discharge pressure.
  • the compression mechanism (20) includes a cylindrical wall (rotor casing) (30), one screw rotor (first rotor) (40), and the screw rotor (40). Two gate rotors (second rotor) (50) that mesh with each other.
  • the cylindrical wall (30) is a cylindrical wall having a thickness, and is formed integrally with the outer wall (17) of the casing (10) to constitute a part of the casing (10).
  • a screw rotor (40) is rotatably accommodated in the cylindrical wall (30).
  • a bearing holder (35) is fitted in the cylindrical wall (30) and on the high-pressure space (S2) side of the screw rotor (40).
  • the drive shaft (21) arranged coaxially with the screw rotor (40) is inserted into the screw rotor (40).
  • the screw rotor (40) and the drive shaft (21) are connected by a key (22).
  • the screw rotor (40) is driven to rotate by the electric motor (15) disposed on the suction side of the screw rotor (40) and rotates in the casing (10).
  • the drive shaft (21) is supported by a bearing holder (35) having one end held by the cylindrical wall (30) via a bearing (36), and the other end is connected to the electric motor (15).
  • the screw rotor (40) is a metal member formed in a substantially cylindrical shape.
  • the screw rotor (40) is rotatably fitted to the cylindrical wall (30).
  • the screw rotor (40) has an outer diameter set slightly smaller than the inner diameter of the cylindrical wall (30), and the outer peripheral surface (43) passes through the inner peripheral surface (30a) of the cylindrical wall (30) and an oil film of lubricating oil.
  • Slide. That is, the outer peripheral surface (43) of the screw rotor (40) is configured as a sliding surface (3) that slides with the inner peripheral surface (30a) of the cylindrical wall (30).
  • a plurality (six in this embodiment) of spiral grooves (41) extending spirally from one axial end to the other end of the screw rotor (40) are formed on the outer periphery of the screw rotor (40). ing.
  • Each screw groove (41) of the screw rotor (40) has a left end in FIG. 4 as a start end and a right end in the same figure as a termination. Further, the screw rotor (40) has a tapered left end (inhalation end) in the drawing. In the screw rotor (40) shown in FIG. 4, the start end of the spiral groove (41) opens at the left end face formed in a tapered surface, while the end of the spiral groove (41) opens at the right end face. Not.
  • the groove inner surface (42) of the spiral groove (41) includes a front groove side surface (42a) in the rotational direction of the screw rotor (40), a rear groove side surface (42b) in the rotational direction, and both groove side surfaces (42a, 42b) and a groove bottom surface (42c) connecting the bottoms.
  • each gate rotor (50) is a flat plate member made of resin.
  • Each gate rotor (50) has a plurality of (in this embodiment, 11) gates (51) formed in a rectangular flat plate shape, and a flat plate connection that connects the plurality of gates (51) on the root side. Part (52) and formed in a gear shape.
  • the two gate rotors (50) are arranged outside the cylindrical wall (30) so as to be axially symmetric with respect to the rotation axis of the screw rotor (40).
  • the rotation axis of each gate rotor (50) is in a plane perpendicular to the axis of the screw rotor (40).
  • Each gate rotor (50) is attached to a metal support member (55).
  • the support member (55) includes a base portion (56), an arm portion (57), and a shaft portion (58).
  • the base (56) is formed in a slightly thick disk shape.
  • the same number of arms (57) as the gates (51) of the gate rotor (50) (11 in this embodiment) are provided, and the arms (57) extend radially outward from the outer peripheral surface of the base (56). .
  • Each arm part (57) is in contact with the back surface of the corresponding gate (51), and supports the gate (51) from the back surface side.
  • the shaft portion (58) is formed in a rod shape and is connected to the central portion of the base portion (56).
  • the central axis of the shaft portion (58) coincides with the central axis of the base portion (56).
  • the shaft portion (58) is formed so as to pass through the central portion of the gate rotor (50) and be located on both the front side and the back side of the gate rotor (50).
  • the shaft portion (58) is such that the front shaft portion (58a) extending to the front surface side of the base portion (56) is longer than the rear shaft portion (58b) extending to the back surface side of the base portion (56). Is formed.
  • the support member (55) to which the gate rotor (50) is attached is accommodated in a gate rotor chamber (90) defined in the casing (10) adjacent to the cylindrical wall (30) (see FIG. 3). reference).
  • Each gate rotor chamber (90) communicates with the low pressure space (S1).
  • each gate rotor chamber (90) is provided with first and second bearing holders (94, 95) that constitute a part of the casing (10).
  • the first and second bearing holders (94, 95) each have a bottomed cylindrical tube portion (94a, 95a) and a flange portion (94b) formed around the base end of the tube portion (94a, 95a). 95b).
  • the cylindrical portions (94a, 95a) are inserted into the gate rotor chambers (90) from the openings of the casing (10), and the flange portions (94b, 95b) are the casings.
  • a bearing (92) is held at the tip of the cylindrical portion (94a) of the first bearing holder (94), and a bearing (93) is held at the tip of the cylindrical portion (95a) of the second bearing holder (95). ing.
  • the cylinder portion (94a) of the first bearing holder (94) is an oil reservoir (94c) that is supplied with lubricating oil to be supplied to the bearing (92) at the tip, and the inside of the second bearing holder (95) is In addition, an oil reservoir (95c) is provided in which lubricating oil for supplying to the bearing (93) at the tip is supplied and accumulated.
  • Each oil reservoir (94c, 95c) communicates with an oil storage chamber (16b) formed in the high-pressure space (S2) via a passage (not shown).
  • Each oil reservoir (94c, 95c) is supplied with high-pressure pressure lubricating oil from the oil storage chamber (16b) via the communication passage (not shown), and thereby accumulates, thereby sliding the bearing (93, 94). And the sliding portion is lubricated.
  • the support member (55) arranged on the right side of the screw rotor (40) in FIG. 3 and the support member (55) arranged on the left side are opposite to each other.
  • the right support member (55) in FIG. 3 has the front shaft portion (58a) positioned above the rear shaft portion (58b) (see FIG. 5).
  • the left support member (55) in FIG. 3 has the front shaft portion (58a) positioned below the rear shaft portion (58b) (see FIG. 9).
  • each support member (55) is rotatably supported by a second bearing holder (95) in each gate rotor chamber (90) via a bearing (93), and each support member (55
  • the rear shaft portion (58b) is rotatably supported by the first bearing holder (94) in each gate rotor chamber (90) via the bearing (92).
  • the casing (10) has an insertion opening (13) through which the integrally assembled gate rotor (50) and support member (55) can be inserted from the outside of the casing (10) into the gate rotor chamber (90). And a cover member (14) for closing the insertion opening (13).
  • each gate rotor chamber (90) communicates with the screw rotor housing chamber formed inside the cylindrical wall (30).
  • the assembled gate rotor (50) and support member (55) are arranged such that in each gate rotor chamber (90), the gate (51) enters the inside through the opening (39) of the cylindrical wall (30), and the screw rotor. (40) is provided at a position where it engages (enters the spiral groove (41)).
  • the end surface forming the opening (39) and the facing surface facing the front surface (51c) of the gate (51) on the compression chamber (23) side constitutes the sealing surface (39a). Yes.
  • the seal surface (39a) is a plane extending in the axial direction of the screw rotor (40) along the outer periphery of the screw rotor (40).
  • the distance between each gate rotor (50) and the sealing surface (39a) is extremely small (for example, 40 ⁇ m) so that the amount of leakage of the compressed fluid from the compression chamber (23) to the gate rotor chamber (90) becomes extremely small. The following is set.
  • the spiral groove (41) of the screw rotor (40) is open to the low pressure space (S1) at the suction side end, and this open part is the suction port (24) of the compression mechanism (20).
  • the single screw compressor (1) is provided with an unloading mechanism (70, 80) that adjusts the operating capacity by performing an unloading operation to return part of the gas being compressed to the low pressure side.
  • the unload mechanism (70, 80) includes a slide valve (70) and a slide valve drive mechanism (80).
  • the slide valve (70) is provided in the slide valve storage part (31). As shown in FIG. 2, the slide valve storage portion (31) is formed at two locations in the circumferential direction of the cylindrical wall (30).
  • the slide valve (70) is configured to be slidable in the axial direction of the cylindrical wall (30), and is inserted into the slide valve housing (31) with the outer peripheral surface (43) of the screw rotor (40). Face to face.
  • the moving end to the discharge side (right side in the figure) in FIG. 2 is the fully open moving end
  • the moving end to the suction side is the fully closed moving end.
  • a communication path (32) is formed outside the cylindrical wall (30).
  • One communication path (32) is formed corresponding to each slide valve storage part (31).
  • One end of the communication path (32) opens to the low-pressure space (S1), and the other end opens to the end on the suction side of the slide valve housing (31).
  • the axial gap (G) constitutes a bypass passage (33) for returning the refrigerant from the compression middle position of the compression chamber (23) to the low pressure space (S1) together with the communication passage (32).
  • one end of the bypass passage (33) communicates with the low pressure space (S1) on the suction side of the compression chamber (23), and the inner peripheral surface of the cylindrical wall (30) that is in the middle of compression of the compression chamber (23) The other end can be opened at (30a).
  • the slide valve (70) is configured so that the bypass opening adjusting portion (71) for adjusting the opening of the bypass passage (33), the cylindrical wall so as to communicate the compression chamber (23) and the high pressure space (S2).
  • a discharge opening adjusting portion (72) for adjusting the opening area of the discharge port (25) formed in (30) is provided.
  • the slide valve (70) is configured to be slidable in the axial direction of the screw rotor (40).
  • the discharge opening adjusting portion (72) of the slide valve (70) is configured to change the opening area of the discharge port (25) as the position of the slide valve (70) changes.
  • the slide valve drive mechanism (80) includes a cylinder tube (81), a piston (82) loaded in the cylinder tube (81), and an arm (83) connected to the piston rod (83) of the piston (82). 84), a connecting rod (85) for connecting the arm (84) and the slide valve (70), and the arm (84) in the right direction of FIG. 2 (direction in which the arm (84) is pulled away from the casing (10)). And a spring (86) for biasing.
  • the cylinder tube (81) and the piston (82) are components of a hydraulic cylinder (fluid pressure cylinder) (87).
  • the edge part on the opposite side to the said screw rotor (40) of the axial direction both ends of a bearing holder (35) is comprised as the said cylinder tube (81).
  • the hydraulic cylinder (87) is disposed on the opposite side of the screw rotor (40) across the bearing (36), and a bearing holder (35) holding the bearing (36) and the hydraulic cylinder (87) It is integrated.
  • a bearing chamber (C1) in which the bearing (36) is held and a cylinder chamber (C2) in which the piston (82) of the hydraulic cylinder (87) is stored are partitioned.
  • a partition plate (38) is provided inside the bearing holder (35).
  • the internal pressure of the left space of the piston (82) in the cylinder chamber (C2) (the space on the screw rotor (40) side of the piston (82)) is It is higher than the internal pressure of the right side space of (82) (the space on the arm (84) side of the piston (82)).
  • the slide valve drive mechanism (80) is configured to adjust the position of the slide valve (70) by adjusting the internal pressure in the right space of the piston (82) (ie, the gas pressure in the right space). ing. Therefore, although not shown, a passage for adjusting the pressure in the right space of the piston (82) is formed in the bearing holder (35).
  • the suction pressure of the compression mechanism (20) is applied to one of the axial end faces (the end face of the bypass opening adjustment section (71)) and the other of the slide valve (70).
  • the discharge pressure of the compression mechanism (20) acts on each.
  • a force in a direction to push the slide valve (70) toward the low pressure space (S1) always acts on the slide valve (70). Therefore, when the internal pressure of the left space and the right space of the piston (82) in the slide valve drive mechanism (80) is changed, the magnitude of the force in the direction of pulling the slide valve (70) back to the high pressure space (S2) side changes. As a result, the position of the slide valve (70) changes.
  • the single screw compressor (1) includes a side surface (51a, 51b) of the gate (51) and a sliding surface (3) of the gate rotor (50) and An oil supply mechanism (60) for supplying lubricating oil to the front surface (51c) is provided.
  • one oil supply mechanism (60) is provided for each of the two gate rotors (50).
  • the oil supply mechanism (60) for supplying oil to the sliding surface (3) of the right gate rotor (50) in FIG. 3 shown in FIG. 5 is referred to as “right oil supply mechanism (60)”.
  • the oil supply mechanism (60) for supplying oil to the sliding surface (3) of the left gate rotor (50) shown in FIG. 3 in an enlarged manner is referred to as “left oil supply mechanism (60)”.
  • the two oil supply mechanisms (60) have an in-shaft communication passage (61), an oil reservoir (62), and a plurality of gate oil supply passages (63) (oil supply passage (5)).
  • an in-shaft communication path (61) is formed inside the front shaft portion (58a).
  • the in-shaft communication path (61) has a vertical communication path (61a) and two horizontal communication paths (61b).
  • the vertical communication passage (61a) extends straight in the axial direction so as to penetrate the center portion from one end of the front shaft portion (58a) to the other end.
  • the two horizontal communication passages (61b) extend from the other end (base portion (56) side) of the vertical communication passage (61a) to the outside in the radial direction of the front shaft portion (58a), respectively, and the front shaft portion (58a) It is opened in the outer peripheral surface.
  • the oil sump (62) is formed between the base side connection part (52) of the gate rotor (50) and the base part (56) of the base side of the support member (55). Specifically, a space formed by the groove (62a) formed in the connecting portion (52) of the gate rotor (50) and the groove (62b) formed in the base (56) of the support member (55) is formed. An oil sump (62) is formed.
  • the groove (62a) on the gate rotor (50) side and the groove (62b) on the support member (55) side are each formed in an annular shape. As shown in FIG.
  • the groove (62b) formed in the base portion (56) of the support member (55) is formed in an annular shape so as to surround the outer periphery of the front shaft portion (58a), and the gate rotor (50). It is the groove
  • the two lateral communication paths (61b) of the in-shaft communication path (61) are open in the groove (62b).
  • the plurality of gate oil supply passages (63) are formed in the plurality of gates (51) of the gate rotor (50). In the present embodiment, gate oil supply passages (63) are formed in all eleven gates (51). Each gate oil supply passage (63) has a body part (53), a plurality of side branch parts (54), and a front branch part (59).
  • a radially extending groove (63a) is formed on the back side of each gate (51) of the gate rotor (50).
  • the groove (63a) is closed by the front surface of each arm portion (57) that supports each gate (51) from the back side.
  • the space in each groove (63a) blocked by the front surface of each arm portion (57) constitutes the main body portion (53) of the gate oil supply passage (63).
  • the main body portion (53) of each gate oil supply passage (63) extends in the radial direction from the root side to the tip side of each gate (51), and the end portion on the root side is connected to the gate rotor (50).
  • the plurality of side branch portions (54) are formed by holes extending in the circumferential direction of the gate rotor (50) in each main body portion (53), and the side surfaces of each gate (51). (51a, 51b) is connected to the side oil supply opening (63b) that opens.
  • the side surface oil supply port (63b) constitutes an oil supply port (4) that supplies lubricating oil to the side surfaces (51a, 51b) of each gate (51) that is the sliding surface (3).
  • four side branch portions (54) are formed on the front side in the rotation direction, and four side branch portions (54) are formed on the rear side.
  • each side surface oil supply port (63b) open in the front side surface (51a) of the rotation direction of each gate (51), and four side surface oil supply ports ( 63b) will open.
  • the four side surface oil supply ports (63b) formed on the front side surface (51a) and the four side surface oil supply ports (63b) formed on the rear side surface (51b) are provided at corresponding positions.
  • the four side surface oil supply ports (63b) are provided at substantially equal intervals from the base side to the tip side of each gate (51).
  • Each side oil supply port (63b) and each side branch (54) is lubricated in such an amount that an oil film is formed on the side surface (51a, 51b) of each gate (51), but does not scatter as oil droplets. It is formed in the hole diameter from which oil flows out.
  • the number of the side surface filling port (63b) and each side branching portion (54) is not limited to four, but may be smaller or larger than four. Also, depending on the number of holes, the hole diameter is changed to a size that allows an amount of lubricating oil to flow out so that an oil film is formed on the side surfaces (51a, 51b) of each gate (51) but does not scatter as oil droplets. It is preferable to do this.
  • each gate (51) the side surfaces (51a, 51b) that slide with the screw rotor (40) of each gate (51) are formed so that the central portion in the thickness direction is thick, and this thick central portion is
  • the seal lines (L1, L2) are in contact with the groove side surfaces (42a, 42b) of the spiral groove (41) of the screw rotor (40).
  • Each side oil supply port (63b) is formed to open on the side surface (51a, 51b) of each gate (51) in front of the seal line (L1, L2), that is, on the compression chamber (23) side. Has been.
  • each gate oil supply passage (63) is connected to a side oil supply port (63b) that opens on the side surface (51a, 51b) that slides with the screw rotor (40) of each gate (51). .
  • the front branch portion (59) has a thickness direction (gate rotor) extending from the groove (63 a) (main body portion (53)) extending in the radial direction of each gate (51). (50) extending in the direction parallel to the axial direction) and formed by a hole opened in the front surface (51c) and connected to the front oil supply port (63c) opened in the front surface (51c) of each gate (51). .
  • the front oil supply port (63c) constitutes an oil supply port (4) that supplies lubricating oil to the front surface (51c) of each gate (51) that is the sliding surface (3).
  • one front branch portion (59) is formed in each of the plurality of gates (51).
  • each front oil supply port (63c) will open to the front surface (51c) of each gate (51).
  • each front oil supply port (63c) is formed to open at a position closer to the inside than the center in the radial direction on the front surface (51c) of each gate (51).
  • Each front oil supply port (63c) and each front branching part (59) has an oil film formed on the front surface (51c) of each gate (51), while an amount of lubricating oil that does not scatter is discharged.
  • the hole diameter is formed.
  • the number of the front oil supply port (63c) and each front branching portion (59) is not limited to one, and a plurality of them may be provided.
  • each gate oil supply passage (63) is connected to the front oil supply port (63c) that opens at the front surface (51c) facing the compression chamber (23) of each gate (51).
  • a lubricating oil flow passage that branches into a plurality of portions toward the outlet is formed.
  • the inlet of the lubricating oil flow passage is opened in an oil reservoir (95c) of the second bearing holder (95) in which lubricating oil in a high pressure state is stored from the oil reservoir (16b).
  • an in-shaft communication path (61) is formed inside the rear shaft (58b).
  • the in-shaft communication path (61) has a vertical communication path (61a) and two horizontal communication paths (61b).
  • the vertical communication path (61a) extends straight in the axial direction so as to penetrate the center portion from one end of the rear shaft portion (58b) to the other end.
  • the two horizontal communication passages (61b) extend from the other end (base portion (56) side) of the vertical communication passage (61a) to the outside in the radial direction of the rear shaft portion (58b), respectively, and the rear shaft portion (58b) It is opened in the outer peripheral surface.
  • the oil sump (62) is formed between the base side connection part (52) of the gate rotor (50) and the base part (56) of the base side of the support member (55). Specifically, a space formed by the groove (62a) formed in the connecting portion (52) of the gate rotor (50) and the groove (62b) formed in the base (56) of the support member (55) is formed. An oil sump (62) is formed.
  • the groove (62a) on the gate rotor (50) side and the groove (62b) on the support member (55) side are each formed in an annular shape.
  • the groove (62b) formed in the base portion (56) of the support member (55) is formed in an annular shape so as to surround the outer periphery of the rear shaft portion (58b), and is a groove opened in the front surface facing the gate rotor (50). It is.
  • the two lateral communication paths (61b) of the in-shaft communication path (61) are open in the groove (62b). With such a configuration, the oil sump (62) communicates with the oil sump (94c) of the first bearing holder (94) above the rear shaft portion (58b) by the in-shaft communication passage (61).
  • the plurality of gate oil supply passages (63) are formed in the plurality of gates (51) of the gate rotor (50). In the present embodiment, gate oil supply passages (63) are formed in all eleven gates (51). Each gate oil supply passage (63) has a body part (53), a plurality of side branch parts (54), and a front branch part (59).
  • a radially extending groove (63a) is formed on the back side of each gate (51) of the gate rotor (50).
  • the groove (63a) is closed by the front surface of each arm portion (57) that supports each gate (51) from the back side.
  • the space in each groove (63a) closed by the front surface of each arm portion (57) constitutes the main body portion (53) of the gate oil supply passage (63).
  • the main body portion (53) of each gate oil supply passage (63) extends in the radial direction from the root side to the tip side of each gate (51), and the end portion on the root side is connected to the gate rotor (50).
  • the plurality of side branch portions (54) are formed by holes extending in the circumferential direction of the gate rotor (50) from the main body portion (53) of each gate (51).
  • the side oil supply port (63b) that opens on the side surface (51a, 51b) of (51) is connected.
  • the side surface oil supply port (63b) constitutes an oil supply port (4) that supplies lubricating oil to the side surfaces (51a, 51b) of each gate (51) that is the sliding surface (3).
  • four side branch portions (54) are formed on the front side in the rotation direction, and four side branch portions (54) are formed on the rear side.
  • each side surface oil supply port (63b) open in the front side surface (51a) of the rotation direction of each gate (51), and four side surface oil supply ports ( 63b) will open.
  • the four side surface oil supply ports (63b) formed on the front side surface (51a) and the four side surface oil supply ports (63b) formed on the rear side surface (51b) are provided at corresponding positions.
  • the four side surface oil supply ports (63b) are provided at substantially equal intervals from the base side to the tip side of each gate (51).
  • Each side oil supply port (63b) and each side branch (54) is lubricated in such an amount that an oil film is formed on the side surface (51a, 51b) of each gate (51), but does not scatter as oil droplets. It is formed in the hole diameter from which oil flows out.
  • the number of the side surface filling port (63b) and each side branching portion (54) is not limited to four, but may be smaller or larger than four. Also, depending on the number of holes, the hole diameter is changed to a size that allows an amount of lubricating oil to flow out so that an oil film is formed on the side surfaces (51a, 51b) of each gate (51) but does not scatter as oil droplets. It is preferable to do this.
  • each gate (51) the side surfaces (51a, 51b) that slide with the screw rotor (40) of each gate (51) are formed so that the central portion in the thickness direction is thick, and this thick central portion is
  • the seal lines (L1, L2) are in contact with the groove side surfaces (42a, 42b) of the spiral groove (41) of the screw rotor (40).
  • Each side oil supply port (63b) is formed to open on the side surface (51a, 51b) of each gate (51) in front of the seal line (L1, L2), that is, on the compression chamber (23) side. Has been.
  • each gate oil supply passage (63) is connected to a side oil supply port (63b) that opens on the side surface (51a, 51b) that slides with the screw rotor (40) of each gate (51). .
  • the front branch portion (59) is formed from the groove (63a) (main body portion (53)) extending in the radial direction of each gate (51) in the thickness direction (gate rotor (50)). Is formed by a hole that opens in the front surface (51c) and is connected to a front oil supply port (63c) that opens in the front surface (51c) of each gate (51).
  • the front oil supply port (63c) constitutes an oil supply port (4) that supplies lubricating oil to the front surface (51c) of each gate (51) that is the sliding surface (3).
  • one front branch portion (59) is formed in each of the plurality of gates (51).
  • each front oil supply port (63c) will open to the front surface (51c) of each gate (51).
  • each front oil supply port (63c) is formed to open at a position closer to the inside than the center in the radial direction on the front surface (51c) of each gate (51).
  • Each front oil supply port (63c) and each front branching part (59) has an oil film formed on the front surface (51c) of each gate (51), while an amount of lubricating oil that does not scatter is discharged.
  • the hole diameter is formed.
  • the number of the front oil supply port (63c) and each front branching portion (59) is not limited to one, and a plurality of them may be provided.
  • each gate oil supply passage (63) is connected to the front oil supply port (63c) that opens at the front surface (51c) facing the compression chamber (23) of each gate (51).
  • a lubricating oil flow passage that branches into a plurality of portions toward the outlet is formed.
  • the inlet of the lubricating oil flow passage is opened in an oil reservoir (94c) of the first bearing holder (94) in which lubricating oil in a high pressure state is accumulated from the oil reservoir (16b).
  • the compression chamber (23) with dots is in communication with the low-pressure space (S1).
  • the gate (51) of the gate rotor (50) located on the lower side of the drawing is engaged with the spiral groove (41) that partitions the compression chamber (23).
  • the screw rotor (40) rotates, the gate (51) relatively moves toward the end of the spiral groove (41) in the spiral groove (41), and accordingly, the volume of the compression chamber (23) increases. Expand gradually.
  • the low-pressure gas refrigerant in the low-pressure space (S1) is sucked into the compression chamber (23) through the suction port (24).
  • FIG. 10 (B) When the screw rotor (40) further rotates, the state shown in FIG. 10 (B) is obtained. In the figure, the compression chamber (23) to which dots are attached is completely closed. In this state, the spiral groove (41) partitioning the compression chamber (23) is engaged with the gate (51) of the gate rotor (50) located on the upper side of the figure, and the compression is performed by the gate (51). The chamber (23) is partitioned from the low-pressure space (S1). As the screw rotor (40) rotates, the gate (51) relatively moves toward the end of the spiral groove (41) in the spiral groove (41), and accordingly, the compression chamber (23) The volume gradually decreases. As a result, the low-pressure gas refrigerant in the compression chamber (23) is gradually compressed.
  • the capacity control of the compression mechanism (20) is performed using the slide valve (70).
  • the slide valve (70) in a state where the slide valve (70) is pushed most into the left side of FIG. 2, the slide valve (70) is located at the moving end on the fully closed side (suction side) The capacity of the compression mechanism (20) is maximized.
  • the tip surface of the slide valve (70) opens the axial gap (G), and a bypass passage (33) is formed on the inner peripheral surface of the cylindrical wall (30).
  • the lubricating oil supplied from the oil storage chamber (16b) to the oil reservoirs (94c, 95c) flows into the flow passage and flows toward the outlet.
  • the lubricating oil in the oil reservoir (94c, 95c) first flows into the longitudinal communication path (61a) of the in-shaft communication path (61) inside the front shaft portion (58a), and the longitudinal communication path From (61a), it flows into the two horizontal communication passages (61b) and eventually flows out into the oil sump (62) (see FIGS. 5, 6 and 9).
  • the lubricating oil that has reached the oil reservoir (62) extends radially from the oil reservoir (62) due to the driving force due to the pressure difference described above and the centrifugal force generated by the rotation of the gate rotor (50) and the support member (55). It flows into the plurality of gate oil supply passages (63) and flows outward in the radial direction in each gate oil supply passage (63) (see FIGS. 5 and 9).
  • the lubricating oil flowing through each gate oil supply passage (63) flows out from the plurality of side surface oil supply ports (63b) to the side surfaces (51a, 51b) of each gate (51) and from the front oil supply port (63c) to each gate (51). To the front (51c).
  • Lubricating oil flows out from the plurality of side surface filling ports (63b) of each gate (51) to the extent that an oil film is formed on the side surfaces (51a, 51b) of the gate (51).
  • Lubricating oil that has flowed out from the plurality of side surface oil supply ports (63b) spreads outwardly in the radial direction on the side surfaces (51a, 51b) of each gate (51) by centrifugal force, and each side surface (51a, 51b) An oil film is formed on the surface.
  • each side oil supply port (63b) is formed on the side surface (51a, 51b) of each gate (51) in the groove of the spiral groove (41) of the screw rotor (40) as shown in FIG. It is formed so as to open on the front side of the seal lines (L1, L2) contacting the side surfaces (42a, 42b), that is, on the compression chamber (23) side.
  • the gate (51) advances toward the compression chamber (23) in the spiral groove (41) of the screw rotor (40). Lubricating oil will be supplied to the front side of the seal lines (L1, L2) of the side surfaces (51a, 51b) of each gate (51).
  • each front oil supply port (63c) of each gate (51) wets and spreads outward in the radial direction on the front surface (51c) of each gate (51) by centrifugal force, and forms an oil film on the front surface (51c).
  • each front oil supply port (63c) is formed in the front surface (51c) of each gate (51) so as to open at a position closer to the inside than the radial center (see FIG. 7). ). Therefore, in the front surface (51c) of each gate (51), the lubricating oil that has flowed out from the front oil supply port (63c) spreads widely from the radially inner position to the outer position.
  • each gate (51) enters and exits the cylindrical wall (30) from the opening (39) of the cylindrical wall (30).
  • the lubricant oil flowing out from the front oil supply port (63c) spreads widely and spreads, so that the front surface (51c) of each gate (51) and the sealing surface (39a) of the cylindrical wall (30) facing it ) Is supplied with lubricating oil. Therefore, the sliding surface between the front surface (51c) of each gate (51) and the sealing surface (39a) of the cylindrical wall (30) is lubricated and sealed by the lubricating oil.
  • each gate (51) is suppressed, and the gas refrigerant in the high-pressure compression chamber (23) prevents the front surface (51c) of each gate (51) and the sealing surface (39a) of the cylindrical wall (30). Leakage into the gate rotor chamber (90) from the gap between them is suppressed.
  • the gate oil supply that directly supplies the gate (51) of the gate rotor (50) to the side surfaces (51a, 51b) that slide with the screw rotor (40) that needs to be lubricated and sealed with the lubricant.
  • the passage (63) was formed. Therefore, by injecting into the spiral groove (41), the gate (50) and the screw rotor (40) can be supplied to the sliding surface (3) indirectly. 51) and the lubricating oil can be reliably supplied to the sliding surface (3) between the screw rotor (40) and the space between them can be lubricated and sealed.
  • the lubricating oil supplied to the sliding surface (3) of the screw rotor (40) and the gate (51) in this way also adheres to the screw rotor (40), and the screw rotor (40) rotates. Due to the centrifugal force generated by the oil, the oil spreads to the outer periphery of the screw rotor (40), so that lubricating oil can also be supplied to the gap between the screw rotor (40) and the cylindrical wall (30). Can be sealed.
  • the compressor efficiency is reduced due to an increase in the conveying power of the lubricating oil and the rotational power of the screw rotor (40) as in the conventional configuration for supplying a large amount of lubricating oil. And by supplying a small amount of lubricating oil directly to the sliding surface (3) between the gate (51) and the screw rotor (40), and between the gate (51) and the screw rotor (40) and the screw rotor. Between (40) and the cylindrical wall (30) can be lubricated and sealed.
  • the side oil supply port (63b) that opens to the gate oil supply passage (63) of the gate (51) and the side surfaces (51a, 51b) that slide with the screw rotor (40) of the gate (51).
  • a front oil supply port (63c) that opens to the front surface (51c) of the gate (51). Therefore, in the gate (51) of the gate rotor (50), not only the side surfaces (51a, 51b) sliding with the screw rotor (40) but also the front surface (51c) facing the compression chamber (23) (63) lubricating oil can be supplied.
  • an oil sump (62) is formed between the support member (55) that supports the gate rotor (50) and the connecting portion (52) on the base side of the gate rotor (50),
  • the base end of the gate oil supply passage (63) of the gate (51) is connected to the oil reservoir (62). That is, the gate oil supply passage (63) extends radially outward from the oil reservoir (62) along the corresponding gate (51).
  • Embodiment 2 In the second embodiment, in the single screw compressor (1) of the first embodiment, the configurations of the oil supply mechanism (60) and the first and second bearing holders (94, 95) are partially changed to provide a gate rotor (50). The oil supply to the sliding surface (3) is configured to be intermittently performed as necessary.
  • the two oil supply mechanisms (60) include a plurality of in-shaft communication passages (61), a plurality of oil reservoirs (62), and a plurality of oil reservoirs (62), respectively. And a gate oil supply passage (63).
  • eleven in-shaft communication passages (61), oil sumps (62), and gate oil supply passages (63) are provided.
  • each in-axis communication path (61) has a vertical communication path (61a) and a horizontal communication path (61b), and is formed in an L shape.
  • the plurality of longitudinal communication paths (61a) extend straight in the axial direction so as to penetrate the outer peripheral portion from one end of the front shaft portion (58a) to the other end. ing.
  • the plurality of vertical communication passages (61a) are arranged in the axial direction so as to penetrate the outer peripheral portion from one end to the other end of the rear shaft portion (58b). It extends straight.
  • the plurality of horizontal communication paths (61b) are respectively connected to the front shaft portion (58a) from the other end (base (56) side) of each vertical communication path (61a). ) Extending outward in the radial direction and opening on the outer peripheral surface of the front shaft portion (58a).
  • the plurality of horizontal communication passages (61b) are respectively connected to the rear shaft portion from the other end (base (56) side) of each vertical communication passage (61a). It extends outward in the radial direction of (58b) and opens on the outer peripheral surface of the rear shaft portion (58b).
  • the in-shaft communication path (61) has the same number (11) as the gates (51) so as to correspond to the 11 gates (51) on a one-to-one basis. Book) only.
  • the eleven in-shaft communication passages (61) have the front shaft portion so that the eleven horizontal communication passages (61b) extend in the extending direction of the corresponding gate (51). (58a) or the rear shaft portion (58b) are provided at equal intervals in the circumferential direction.
  • a plurality of oil reservoirs (62) are formed between the base side connection portion (52) of the gate rotor (50) and the base side (56) of the support member (55).
  • it is formed by a plurality of grooves (62a) formed in the connecting portion (52) of the gate rotor (50) and a plurality of grooves (62b) formed in the base (56) of the support member (55).
  • the groove (62a) on the gate rotor (50) side and the groove (62b) on the support member (55) side have the same number (11) as the gate (51) so as to correspond to the 11 gates (51) on a one-to-one basis. ) Only formed.
  • the 11 grooves (62b) formed in the base (56) of the support member (55) are respectively formed on the front shaft portion (58a). It is a groove that extends radially outward from the outer peripheral surface and opens on the front surface facing the gate rotor (50).
  • the 11 grooves (62b) formed in the base (56) of the support member (55) are respectively connected to the rear shaft (58b). ) Extending outward in the radial direction from the outer peripheral surface and opening on the front surface facing the gate rotor (50).
  • the 11 lateral communication passages (61b) of the in-shaft communication passage (61) are opened in the corresponding grooves (62b).
  • each oil supply mechanism (60) the plurality of gate oil supply passages (63) are formed in the plurality of gates (51) of the gate rotor (50). Also in the second embodiment, the gate oil supply passage (63) is formed in all the eleven gates (51). In Embodiment 2, in each oil supply mechanism (60), the eleven gate oil supply passages (63) are formed so as to correspond to each of the eleven oil reservoirs (62) on a one-to-one basis.
  • Each gate oil supply passage (63) has a body part (53), a plurality of side branch parts (54), and a front branch part (59).
  • a groove (63a) extending in the radial direction is formed on the back side of each gate (51) of each gate rotor (50).
  • the groove (63a) formed in each gate (51) has a one-to-one correspondence with the 11 grooves (62a) formed in the connecting portion (52) of the gate rotor (50), and the corresponding groove (62a). And is integrally formed.
  • the groove (63a) formed in each gate (51) is closed by the front surface of each arm portion (57) that supports each gate (51) from the back side.
  • the space in each groove (63a) blocked by the front surface of each arm portion (57) constitutes the main body portion (53) of the gate oil supply passage (63).
  • each gate oil supply passage (63) extends in the radial direction from the root side to the tip side of each gate (51), and the end portion on the root side is connected to the gate rotor (50). ) Is connected to an oil sump (62) formed between the base-side connecting portion (52) and the base-side base portion (56) of the support member (55).
  • each oil supply mechanism (60) the plurality of side branch portions (54) are formed by holes extending from the main body portion (53) to the circumferential direction of the gate rotor (50) in each gate (51). It is formed and connected to the side surface oil supply port (63b) that is the oil supply port (4) that opens at the side surface (51a, 51b) of each gate (51). Also in the second embodiment, in each gate (51), four side branch portions (54) are formed on the front side in the rotation direction, and four side branch portions (54) are formed on the rear side. Yes.
  • each side surface oil supply openings (63b) open in the front side surface (51a) of the rotation direction of each gate (51), and four side surface oil supply in the rear side surface (51b).
  • the mouth (63b) will open.
  • the four side surface oil supply ports (63b) formed on the front side surface (51a) and the four side surface oil supply ports (63b) formed on the rear side surface (51b) are provided at corresponding positions.
  • the four side surface oil supply ports (63b) are provided at substantially equal intervals from the base side to the tip side of each gate (51).
  • Each side oil supply port (63b) and each side branch (54) is lubricated in such an amount that an oil film is formed on the side surface (51a, 51b) of each gate (51), but does not scatter as oil droplets. It is formed in the hole diameter from which oil flows out.
  • the number of the side surface filling port (63b) and each side branching portion (54) is not limited to four, but may be smaller or larger than four. Also, depending on the number of holes, the hole diameter is changed to a size that allows an amount of lubricating oil to flow out so that an oil film is formed on the side surfaces (51a, 51b) of each gate (51) but does not scatter as oil droplets. It is preferable to do this.
  • each gate (51) the side surfaces (51a, 51b) that slide with the screw rotor (40) of each gate (51) are formed so that the central portion in the thickness direction becomes thicker.
  • the thick central portion is a seal line (L1, L2) that comes into contact with the groove side surfaces (42a, 42b) of the spiral groove (41) of the screw rotor (40).
  • Each side oil supply port (63b) is formed to open on the side surface (51a, 51b) of each gate (51) in front of the seal line (L1, L2), that is, on the compression chamber (23) side. Has been.
  • each gate oil supply passage (63) has a side surface (51a, 51b) that slides with the screw rotor (40) of each gate (51). ) Is connected to the side oil filler opening (63b).
  • the front branch portion (59) has a groove (63 a) (main body portion (53)) extending in the radial direction of each gate (51).
  • An oil supply port (4) that is formed by a hole extending in the thickness direction (a direction parallel to the axial direction of the gate rotor (50)) and opening in the front surface (51c) and opening in the front surface (51c) of each gate (51) Is connected to the front oiling port (63c).
  • one front branching portion (59) is formed for each of the plurality of gates (51), whereby one front oil supply port (63c) is provided on the front surface (51c) of each gate (51). Will open.
  • each front surface oil supply opening (63c) is formed in the front surface (51c) of each gate (51) so that it may open in the position near the inner side rather than the center of radial direction.
  • each front oil supply port (63c) and each front branching portion (59) is formed with an oil film on the front surface (51c) of each gate (51) so that it does not scatter as oil droplets. It is formed in a hole diameter through which a sufficient amount of lubricating oil flows out.
  • the number of the front oil supply port (63c) and each front branching portion (59) is not limited to one, and a plurality of them may be provided.
  • each gate oil supply passage (63) is opened in the front surface (51c) facing the compression chamber (23) of each gate (51). Connected to the front oiling port (63c).
  • each oil supply mechanism (60) in each oil supply mechanism (60), the plurality of in-shaft communication paths (61) and the plurality of oil reservoirs (62) formed in the gate rotor (50) and the support member (55) A plurality of lubricating oil flow passages are formed by the plurality of gate oil supply passages (63).
  • the first and second bearing holders (94, 95) include a cylindrical portion (94a, 95a) having a bottomed cylindrical shape and the cylindrical portions (94a, 95a), respectively.
  • the cylindrical portion (94a, 95a) and the flange portion (94b, 95b) are configured in the same manner as in the first embodiment.
  • the closing portion (95d) of the second bearing holder (95) protrudes downward from the inner bottom surface of the cylindrical portion (95a), and the lower end is a support member.
  • a part of the in-shaft communication passages (11) of the 11 in-shaft communication passages (61) formed in the front shaft portion (58a) in contact with the upper surface of the front shaft portion (58a) of (55) 61) (the inlet of the longitudinal communication passage (61a)) is closed.
  • the closing portion (94d) of the first bearing holder (94) protrudes downward from the inner bottom surface of the cylindrical portion (94a), and the lower end is A part of the in-shaft communication among the 11 in-shaft communication paths (61) formed in the rear shaft portion (58b) in contact with the upper surface of the rear shaft portion (58b) of the support member (55).
  • the entrance of the passage (61) (the entrance of the longitudinal communication passage (61a)) is closed.
  • the closed portions (94d, 95d) of the bearing holders (194, 95) are the front shaft portion (58a) or the rear shaft portion ( Out of the 11 inlets (61a-1 to 61a-11) of the 11 in-shaft communication passages (61) formed in 58b), the four inlets on the screw rotor (40) side are not blocked, and the remaining seven inlets Is configured to block. Due to the closed portions (94d, 95d), the oil sumps (94c, 95c) formed in the first and second bearing holders (94, 95) are wide on the screw rotor (40) side and narrow on the opposite side. Is formed.
  • each in-shaft communication passage (61) rotates as each gate rotor (50) rotates, but the closed portions (94d, 95d) Is fixed in position and does not rotate. Therefore, the inlets (61a-1 to 61a-11) of the in-shaft communication path (61) closed by the closing portions (94d, 95d) differ depending on the rotation angle position of each gate rotor (50). .
  • each gate rotor (50) when the rotation angle position of each gate rotor (50) is the position shown in FIG. 14, the closing portions (94d, 95d) close the first inlet (61a-1) to the fourth inlet (61a-4). Without closing, the fifth inlet (61a-5) to the eleventh inlet (61a-11) are closed. As a result, the first inlet (61a-1) to the fourth inlet (61a-4) open to the respective oil reservoirs (94c, 95c).
  • each gate rotor (50) advances in the direction of the arrow, the closing portions (94d, 95d) are then connected to the first inlet (61a-1) to the third inlet (61a-3) and The fourth inlet (61a-4) to the tenth inlet (61a-10) are closed without closing the eleventh inlet (61a-11).
  • the first inlet (61a-1) to the third inlet (61a-3) and the eleventh inlet (61a-11) open to the oil reservoirs (94c, 95c).
  • each gate rotor (50) advances, the inlets (61a-1 to 61a) of the in-shaft communication path (61) closed by the closing portions (94d, 95d). -11) is changed in order.
  • the oil reservoir (94c, 95c), which is an oil supply source for supplying lubricating oil to the gate oil supply passage (63), and the gate oil supply passage (63) are blocked, and the gate oil supply passage (63) is connected to the gate rotor (50 ) Of the gate (51) constituting the sliding surface (3) in a non-oil supply state in which no lubricant is supplied to the side surfaces (51a, 51b) and the front surface (51c).
  • the lubricating oil in the oil reservoir (94c, 95c) flows into the in-shaft communication path (61) that opens to the oil reservoir (94c, 95c) without being closed by the closing portion (94d, 95d), Lubricating oil also flows into the oil reservoir (62) and the gate oil supply passage (63) that are sequentially connected to the in-shaft communication passage (61).
  • the in-shaft communication passage (61) and the oil reservoir (62) are individually connected to the plurality of gate oil supply passages (63).
  • a part of the inlets (61a-1 to 61a-11) of the plurality of in-shaft communication passages (61) is closed by the closing portions (94d, 95d), and along with the rotation of the gate rotor (50), The inlets (61a-1 to 61a-11) of the in-shaft communication passage (61) blocked by the blocking portions (94d, 95d) are changed.
  • the plurality of gate oil supply passages (63) communicate with the oil sump (94c, 95c) when the rotation angle position of the gate rotor (50) is in a predetermined angle range A1 to A11.
  • the oil reservoir (94c, 95c) is shut off.
  • the sliding surface (3) is in a non-lubricated state where no lubricating oil is supplied.
  • each oil supply mechanism (60) the plurality of in-shaft communication passages (61), the plurality of oil sumps (62), and the blocking portions (94d, 95d) are in the oil supply state of the gate oil supply passage (63) And a switching mechanism (6) for switching between the non-lubrication state.
  • the gate oil supply passage (63) is supplied with lubricating oil from the gate oil supply passage (63) to each sliding surface (3), and the gate oil supply. It can be switched to the non-lubricated state where no lubricating oil is supplied from the passage (63) to the sliding surface (3).
  • the sliding surface (3) of the gate rotor (50) in which the side oil supply port (63b) which is the oil supply port (4) and the front surface oil supply port (63c) are formed (in the second embodiment, the gate (51) If the side surface (51a, 51b) and front surface (51c) do not slide constantly, switch to the non-lubricated state when the sliding surface (3) does not slide and lubrication is unnecessary. Oil supply to the sliding surface (3) can be stopped. Therefore, according to the second embodiment, the lubricating oil can be reliably supplied to the sliding surface (3) of the gate rotor (50) while reducing the amount of oil supply.
  • the switching mechanism (6) includes a gate oil passage (63) formed in each gate (51), and a seal surface between the front surface (51c) of each gate (51) and the cylindrical wall (30). (39a) and when the side surfaces (51b, 51c) of each gate (51) and the groove inner surface (42) of the screw rotor (40) face each other, the oil supply state is established, and each gate (51) is cylindrical. When neither the wall (30) nor the screw rotor (40) is opposed, it is configured to be in a non-oil supply state. According to this configuration, when each gate (51) slides with the cylindrical wall (30) and the screw rotor (40), the sliding surface (3) can be lubricated and does not slide.
  • each gate (51) does not face the cylindrical wall (30) or the screw rotor (40), by not supplying lubricating oil from the gate oil supply passage (63) to the sliding surface (3), The amount of oil supply can be reduced.
  • the switching mechanism (6) causes the plurality of gate oil supply passages (63) to have the rotational angle positions of the gate rotor (50) respectively within the predetermined angular ranges A1 to A11. Is switched to an oil supply state that communicates with the oil reservoirs (94c, 95c) and supplies lubricating oil to the sliding surface (3), and the rotational angle position of the gate rotor (50) is within a predetermined angular range A1 to A11. When it is outside, the oil reservoir (94c, 95c) is shut off and the sliding surface (3) is switched to a non-oil supply state in which lubricating oil is not supplied. According to the second embodiment, with such an easy configuration, each gate oil supply passage (63) can be automatically switched between an oil supply state and a non-oil supply state while the gate rotor (50) rotates once. it can.
  • Embodiment 3 In the third embodiment, in the single screw compressor (1) of the first embodiment in the first embodiment, the oil supply mechanism (60) provided in the two gate rotors (50) is engaged with the two gate rotors (50). It is provided in the rotor (40).
  • the oil supply mechanism (60) is formed inside the screw rotor (40), and includes a plurality of axial passages (65) and a plurality of screw oil supply passages ( 66) (oil supply passage (5)).
  • the plurality of axial passages (65) are formed at positions closer to the rotational axis than the groove bottom surface (42c) of the spiral groove (41) of the screw rotor (40).
  • six axial passages (65) are formed and arranged at equal intervals on the outer peripheral side of the rotating shaft of the screw rotor (40).
  • Each axial passage (65) is formed by a hole extending in the rotational axis direction inside the screw rotor (40).
  • the discharge-side end portion (right end portion in FIG. 2) of each axial passage (65) opens to the discharge-side end surface (right end surface in FIG. 2) of the screw rotor (40).
  • the suction-side end portion left end portion in FIG.
  • each axial passage (65) does not reach the suction-side end surface (left end surface in FIG. 2) of the screw rotor (40).
  • the discharge-side end of each axial passage (65) is, for example, in a space where high-pressure lubricating oil that lubricates the bearing (36) of the bearing holder (35) that rotatably supports the drive shaft (21) accumulates. It is open. With such a configuration, lubricating oil in a high pressure state flows into the plurality of axial passages (65), and the plurality of axial passages (65) serve as oil reservoirs in which lubricating oil in the high pressure state is accumulated.
  • the plurality of screw oil supply passages (66) are formed so as to extend from each axial passage (65) toward the outer peripheral side of the screw rotor (40) one by one.
  • Each screw oil supply passage (66) has a main body portion (66a) and a plurality of side branch portions (66b).
  • each screw oil supply passage (66) is formed by a hole extending from each axial passage (65) toward the outer peripheral side of the screw rotor (40).
  • the main-body part (66a) of each screw oil supply path (66) is the helical outer peripheral surface formed between the helical groove (41) and the helical groove (41) of a screw rotor (40). It extends to (43) and opens at the outer peripheral surface (43). That is, the main body portion (66a) of each screw oil supply passage (66) is connected to the outer peripheral surface oil supply port (66c) which is an oil supply port (4) opened in the outer peripheral surface (43) of the screw rotor (40). .
  • the plurality of side branch portions (66b) are formed by holes extending from the main body portions (66a) toward the groove side surfaces (42a, 42b) of the spiral groove (41), and the groove side surfaces ( 42a, 42b) is connected to a groove side surface oil supply port (groove inner surface oil supply port) (66d), which is an oil supply port (4) that opens.
  • a groove side surface oil supply port groove inner surface oil supply port
  • two side branch portions (66b) are connected to the main body portion (66a) of each screw oil supply passage (66) on the front side and the rear side in the rotational direction.
  • At least two groove side surface oil supply ports (66d) are opened in the groove side surface (42a) on the front side in the rotational direction of the groove inner surface (42) of the spiral groove (41) of the screw rotor (40).
  • the two groove side surface oil supply ports (66d) are opened in the rear groove side surface (42b).
  • Each groove side surface oil supply port (66d) and each side branch (66b) form oil droplets while an oil film is formed on the groove side surface (42a, 42b) of the spiral groove (41) of the screw rotor (40).
  • the hole diameter is such that an amount of lubricating oil flows out so as not to scatter.
  • the number of the groove side surface oil supply ports (66d) and the side branch portions (66b) is not limited to two, and may be smaller or larger than two. Also, according to the number of the above-mentioned hole diameters, an oil film is formed on the groove side surface (42a, 42b) of the spiral groove (41) of the screw rotor (40), while the amount of lubricating oil does not scatter as oil droplets. It is preferable to change the size so that the amount of spilled out.
  • each screw oil supply passage (66) is connected to the groove side oil supply port (66d) that opens at the groove side surface (42a, 42b) of the spiral groove (41) of the screw rotor (40).
  • the screw oil supply passage (66) is preferably provided at a position where the groove side oil supply port (66d) opens in the compression chamber (23) during the suction stroke.
  • the screw oil supply passage (66) is provided at a position where the groove side oil supply port (66d) opens in the compression chamber (23) during the suction stroke, and the groove side oil supply port (66d) is further provided in the compression stroke. It is good also as providing in the position which opens in the compression chamber (23) in a middle and discharge stroke.
  • the oil supply mechanism (60) formed in the screw rotor (40) there are a plurality of lubricating oil flow passages branched into a plurality toward the outlet by the axial passage (65) and the screw oil supply passage (66). It is formed.
  • the flow path of the lubricating oil opens in a space where the lubricating oil in a high-pressure state where the bearing (36) is lubricated accumulates, and the outlet flows in the outer peripheral surface (43) and the groove side surface ( 42a and 42b).
  • the bearing (36) is moved by the pressure difference between the inlet and outlet of the lubricating oil flow passage formed by the axial passage (65) and the screw oil supply passage (66).
  • Lubricating oil in a high pressure state that is lubricated and accumulated in a predetermined space flows into the flow passage and flows toward the outlet.
  • the high-pressure pressure lubricating oil first flows into the axial passage (65) that forms the oil reservoir, and the driving force due to the pressure difference described above and the centrifugal force generated by the rotation of the screw rotor (40).
  • each screw oil supply passage (66) extending outward from the axial passage (65) and flows outward in each screw oil supply passage (66) (see FIG. 15).
  • the lubricating oil flowing through each screw oil supply passage (66) flows out from the outer peripheral surface oil supply port (66c) to the outer peripheral surface (43) of the screw rotor (40) and from the groove side oil supply port (66d) to the screw rotor (40). It flows out to the groove side surfaces (42a, 42b) of the spiral groove (41).
  • the outer peripheral surface (43) of the screw rotor (40) in which the spiral groove (41) is formed slides with the inner peripheral surface (30a) of the cylindrical wall (30) covering the outer periphery of the screw rotor (40). Therefore, it is necessary to lubricate the outer peripheral surface (43) of the screw rotor (40) and the inner peripheral surface (30a) of the cylindrical wall (30) so as not to seize.
  • the high pressure fluid should not leak to the low pressure side. Need to seal.
  • a screw oil supply passage (66) is formed in the screw rotor (40), and an outer peripheral surface oil supply port that opens at an outer peripheral surface (43) that slides with the cylindrical wall (30) of the screw rotor (40).
  • the screw oil supply passage (66) is connected to (66c).
  • the screw rotor (40) in which the lubricating oil in the screw oil supply passage (66) slides from the outer peripheral surface oil supply port (66c) to the inner peripheral surface (30a) of the cylindrical wall (30) (
  • the outer peripheral surface (43) flows out into the outer peripheral surface (43) of 40) and is lubricated or there is a gap between the outer peripheral surface (43) and the inner peripheral surface (30a) of the cylindrical wall (30). The gap is sealed.
  • the outer peripheral surface oil supply port (66c) which is the oil supply port (4) opens to the outer peripheral surface (43) of the rotating screw rotor (40). Therefore, the lubricating oil that has flowed out of the outer peripheral surface oil supply port (66c) spreads quickly in the rotating screw rotor (40) and slides other than the outer peripheral surface (43) on which the outer peripheral surface oil supply port (66c) is formed. In (3), the lubricating oil will be supplied promptly.
  • the screw oil passage (66) is formed in the screw rotor (40), and the inner surface oil supply port is opened at the groove inner surface (42) of the spiral groove (41) of the screw rotor (40).
  • the oil supply passage (5) is connected to the groove side oil supply port (66d).
  • the groove side surfaces (42a, 42b) are lubricated, or when there is a gap between the groove side surface (42a, 42b) and the sliding gate rotor (50), the gap is sealed.
  • the groove side surface (66) from the groove side oil supply port (66d) that opens to the groove side surface (42a, 42b) of the screw rotor (40) becomes the sliding surface (3). 42a, 42b) is directly supplied with lubricating oil.
  • the groove side surface oil supply port (66d) that is the oil supply port (4) opens to the groove side surfaces (42a, 42b) of the rotating screw rotor (40). Therefore, the lubricating oil that has flowed out of the groove side surface oil supply port (66d) quickly spreads by the centrifugal force in the rotating screw rotor (40), and quickly reaches the sliding surface (3) other than the groove side surface (42a, 42b). Lubricating oil will be supplied.
  • the lubricating oil supplied to the groove side surfaces (42a, 42b) of the screw rotor (40) also adheres to the gate rotor (50) that meshes with and rotates with the screw rotor (40), and the gate rotor (50) In this case as well, the wet and spread quickly due to the centrifugal force, and the lubricating oil is quickly supplied also to the sliding surface (3) of the gate rotor (50).
  • the screw oil supply passage which is the oil supply passage (5) to at least one of the screw rotor (40) and the gate rotor (50) which are meshed and rotated together.
  • (66) is formed, and the screw oil supply passage (66) is opened at the outer peripheral surface (43) and the groove side surfaces (42a, 42b) which are the sliding surfaces (3) of the screw rotor (40) (4 ) That is a sliding surface (3) from the outer surface oil supply port (66c) and the groove side oil supply port (66d) by connecting to the outer surface oil supply port (66c) and the groove side oil supply port (66d).
  • Lubricating oil was supplied directly to the surface (43) and the groove side surfaces (42a, 42b). Therefore, the screw is supplied with a small amount of oil compared to the conventional configuration in which the lubricant is indirectly supplied to the groove inner surface (42) of the screw rotor (40) by injecting the lubricant from the oil filler opening formed in the cylindrical wall. Lubricating oil can be reliably supplied to the outer peripheral surface (43) and the groove side surfaces (42a, 42b) which are the sliding surfaces (3) of the rotor (40).
  • the outer peripheral surface oil supply port (66c) that is the oil supply port (4) and the groove Lubricating oil is opened on the outer peripheral surface (43) and the groove side surfaces (42a, 42b) which are sliding surfaces (3) of the screw rotor (40) rotating the side oil supply port (66d). It is going to be leaked. Therefore, the lubricating oil that has flowed out of the outer peripheral surface oil supply port (66c) and the groove side surface oil supply port (66d) spreads quickly in the rotating screw rotor (40), and the outer peripheral surface (43) formed with the oil supply port (4).
  • the groove (42a, 42b) other than the sliding surface (3) can be quickly supplied with lubricating oil. Further, since the screw rotor (40) and the gate rotor (50) mesh with each other and rotate together, the lubricating oil supplied to the screw rotor (40) quickly spreads to the other gate rotor (50), and the Lubricating oil can be quickly supplied to the sliding surface (3) of the gate rotor (50).
  • the lubricating oil conveying power and the rotational power of the screw rotor (40) and the gate rotor (50) are increased as in the conventional configuration for supplying a large amount of lubricating oil.
  • the screw rotor (40) and the gate rotor (50) By supplying a small amount of lubricating oil to at least one sliding surface (3) of the screw rotor (40) and the gate rotor (50) without causing a decrease in compressor efficiency, the screw rotor (40) and When there is a gap between each sliding surface (3) of the gate rotor (50) or between the sliding surface (3) and the sliding surface, the gap can be sealed.
  • the third embodiment even if the amount of oil supply is reduced, the seizure of the sliding surfaces (3) of the screw rotor (40) and the gate rotor (50) and the leakage of high-pressure fluid from the compression chamber are suppressed. can do. Therefore, according to the third embodiment, it is possible to improve the compressor efficiency by reducing the oil supply amount without reducing the reliability of the screw compressor (1).
  • the axial passage (65) serving as an oil reservoir is formed at a position closer to the rotational axis than the groove bottom surface (42c) of the spiral groove (41) of the screw rotor (40), and the screw
  • the base end portion of the oil supply passage (66) is connected to the axial passage (65). That is, the screw oil supply passage (66) extends from the axial passage (65) toward the outer peripheral side in the screw rotor (40).
  • each oil supply port (4) (outer peripheral surface oil supply port (66c) and groove side surface oil supply port (66d)) and slides on the screw rotor (40) sliding surface (3) (outer peripheral surface (43) and To the groove side surfaces (42a, 42b)). That is, with a simple configuration, the lubricating oil is applied to the sliding surface (3) (outer peripheral surface (43) and groove side surfaces (42a, 42b) of the screw rotor (40) by utilizing the centrifugal force generated by the rotation of the screw rotor (40). ) Can be supplied.
  • the single screw compressor that is provided in the refrigerant circuit and compresses the refrigerant has been described.
  • the object (fluid) to be compressed is not limited to the refrigerant, and the compressor is not limited to the single screw compressor.
  • a twin screw compressor provided with a male rotor and a female rotor may be used, and a compressor provided with a female rotor on both sides of the male rotor may be used.
  • the front-side oil filler port (63c) is formed, but the front-surface oil filler port (63c) may not be formed.
  • the side surface oil supply port (63b) may be omitted, and the gate oil supply passage (63) may be connected only to the front surface oil supply port (63c).
  • the side oil supply port (63b) of the gate oil supply passage (63) is opened on both the front and rear side surfaces (51a, 51b) in the rotational direction of the gate (51). It was. However, the side oil supply port (63b) may be opened at least on the side surface (51b) on the rear side in the rotational direction of the gate (51), and on the front side surface (51b) in the rotational direction of the gate (51). You don't have to.
  • the side surface (51b) on the rear side of the rotation direction of the gate (51) is a sliding surface (3) that slides reliably with the screw rotor (40), and is also a surface pressed by the screw rotor (40).
  • the side oil supply port (63b) is opened on the rear side surface (51b), and the side surface (51b) and the groove side surface (42a, 42b) of the spiral groove (41) ), The sliding wear of the gate (51) and the screw rotor (40) can be prevented.
  • screw lubrication is applied to both the front and rear groove side surfaces (42a, 42b) in the rotational direction on the groove side surface (42a, 42b) of the spiral groove (41) of the screw rotor (40).
  • the groove side oil supply port (66d) of the passage (66) can be opened.
  • the groove side oil supply port (66d) may be opened at least on the groove side surface (42b) on the rear side in the rotational direction of the spiral groove (41), and the groove side surface on the front side in the rotational direction of the spiral groove (41) ( 42a) need not be opened.
  • the groove side surface (42b) on the rear side in the rotational direction of the spiral groove (41) is a sliding surface (3) that slides securely with the gate (51) of the gate rotor (50). Since it is also a surface that pushes the gate (51), there is a high risk of sliding wear.
  • the groove side oil supply port (66d) is provided on the groove side surface (42b) on the rear side of the spiral groove (41) in the rotational direction.
  • the four side surface filling ports (63b) are opened at substantially equal intervals from the base side to the tip side of each gate (51) on the side surfaces (51a, 51b) of the gate (51). It was. However, it is not always necessary to provide a plurality of side surface oil supply ports (63b) at equal intervals, and at least one side oil supply port (63b) may be formed at a position closer to the root side than the radial center of each gate (51). In this way, by forming at least one side oil supply port (63b) at the base side position relative to the radial center of the gate (51), the base side of the side face (51a, 51b) of the gate (51) is formed.
  • Lubricating oil can be supplied and can be easily spread to the tip side of the side surfaces (51a, 51b) of the gate (51) using centrifugal force. According to such a configuration, the amount of oil supply can be further reduced by minimizing the number of side surface oil supply ports (63b).
  • the two groove side surface oil supply ports (66d) are opened in the groove side surfaces (42a, 42b) of the spiral groove (41) of the screw rotor (40).
  • the spiral groove On the groove side surfaces (42a, 42b) of the spiral groove (41), the spiral groove ( It is sufficient to form at least one at a position near the groove bottom surface (42c) of 41). In this way, in the groove side surface (42a, 42b) of the spiral groove (41) of the screw rotor (40), the groove side oil supply port is located closer to the groove bottom surface (42c) of the spiral groove (41) than the outer peripheral surface (43).
  • lubricating oil is supplied to a position near the rotation axis on the groove side surface (42a, 42b) of the spiral groove (41), and the spiral groove (41 ) Groove side surfaces (42a, 42b) can be easily expanded to the outer peripheral surface (43) side. According to such a configuration, the amount of oil supply can be further reduced by minimizing the number of groove side surface oil supply ports (66d).
  • the oil supply mechanism (60) including the gate oil supply passage (63) is provided in both of the two gate rotors (50).
  • the oil supply mechanism (60) is provided on one of the gates. It is good also as providing only in a rotor (50).
  • the lubricating oil remains in the spiral groove (41), and the other gate It can also be used for lubrication and sealing of the sliding surface (3) between the rotor (50) and the screw rotor (40).
  • the gate oil supply passage (63) of the oil supply mechanism (60) is formed in all the gates (51) of the gate rotor (50), but the gate oil supply passage (63) May be formed on at least one gate (51), and more preferably on the adjacent gate (51) with the same number (6 in the above embodiment) as the number of spiral grooves (41) of the screw rotor (40). What is necessary is just to form. Adjust the amount of lubricating oil supplied from the gate oil supply passage (63) to the sliding surface (3) between the gate rotor (50) and screw rotor (40) by the number of side oil supply ports (63b) and the hole diameter. Therefore, it is possible to prevent seizure of the sliding surface (3) between the gate rotor (50) and the screw rotor (40) without forming the gate oil supply passage (63) in all the gates (51). is there.
  • the in-shaft communication passage (61) is formed inside the front shaft portion (58a), and the left-side oil supply mechanism (60)
  • the in-shaft communication passage (61) is formed inside the rear shaft portion (58b).
  • the position where the in-shaft communication path (61) is formed is not limited to that in the above embodiment.
  • the in-shaft communication passage (61) is formed inside the rear shaft portion (58b), and in the left oil supply mechanism (60), the in-shaft communication passage (61) It may be formed inside the shaft portion (58a), and the in-shaft communication passage (61) may be formed in the front shaft portion (58a) in both the oil supply mechanisms (60), and both the oil supply mechanisms (60)
  • the in-shaft communication passage (61) may be formed in the rear shaft portion (58b).
  • the screw oil supply passage (66) includes the outer peripheral surface oil supply port (66c) that opens to the outer peripheral surface (43) of the screw rotor (40) and the groove side surface (42a, 42b) of the spiral groove (41). ) was connected to the groove side oil filler opening (66d).
  • the screw oil supply passage (66) is not limited to the one connected to the outer peripheral surface oil supply port (66c) and the groove side surface oil supply port (66d).
  • the screw oil supply passage (66) may be connected to a groove bottom surface oil supply port that opens to the groove bottom surface (42c) of the spiral groove (41) of the screw rotor (40).
  • the screw oil supply passage (66) may be connected only to the outer peripheral surface oil supply port (66c) or only to the groove side surface oil supply port (66d).
  • the switching mechanism (6) of the second embodiment is not limited to the above-described configuration, and may be any configuration as long as the gate oil supply passage (63 can be switched between an oil supply state and a non-oil supply state. Furthermore, it is also possible to apply the switching mechanism (6) of the second embodiment to an oil supply mechanism (60) formed on the screw rotor (40) as in the third embodiment, in which case a plurality of shafts are used. What is necessary is just to provide the obstruction
  • the present invention is useful for screw compressors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

スクリュー圧縮機(1)において、スクリューロータ(40)及びゲートロータ(50)の少なくとも一方に、該ロータ(40,50)の摺動面(3)において開口する給油口(4)に接続され、潤滑油を該摺動面(3)に供給する給油通路(5)を形成する。

Description

スクリュー圧縮機
  本発明は、スクリュー圧縮機に関するものである。
  従来、冷媒や空気等の流体を圧縮する圧縮機として、螺旋溝が形成されたスクリューロータからなる第1のロータと、該第1のロータに噛み合って該第1のロータと共に回転する第2のロータとを備えたスクリュー圧縮機が用いられている(下記の特許文献1を参照)。
  特許文献1に開示されたシングルスクリュー圧縮機では、第1のロータとしてのスクリューロータは、円筒壁に回転自在に収容され、第2のロータとしてのゲートロータは、円筒壁の外側に設けられて一部のゲートが円筒壁に形成された開口から円筒壁の内部に進入してスクリューロータと噛み合うことにより、該スクリューロータと共に回転するように構成されている。このような円筒壁とスクリューロータとこれに噛み合うゲートとにより、螺旋溝内に圧縮室が区画される。スクリューロータが電動機に駆動されて回転すると、スクリューロータに噛み合うゲートが押されて2つのゲートロータが回転し、螺旋溝内においてゲートの位置が変わることにより、圧縮室の容積が減少して流体が圧縮される。
  ところで、上述した従来のスクリュー圧縮機では、円筒壁の所定の位置に形成された給油口からスクリューロータに向かって潤滑油をインジェクションすることにより、スクリューロータとゲート及びスクリューロータと円筒壁のように摺動する2つの部材の摺動面間に潤滑油を供給して各摺動面を潤滑する一方、2つの部材が摺動せずに該2つの部材の間に微小な隙間が形成される際にはこの隙間が潤滑油でシールされるようにしている。このような構成により、上記スクリュー圧縮機では、摺動面における摩耗や焼き付きを抑制すると共に、円筒壁とスクリューロータとゲートとによって区画される圧縮室内から高圧の流体が漏れるのを抑制している。
特開2009-197794号公報
  ところで、上記スクリュー圧縮機のように、円筒壁の所定の位置に形成された給油口からスクリューロータに向かって潤滑油をインジェクションする構成では、インジェクションする潤滑油量が少ないと、潤滑油が各摺動面に達しない場合があった。そのため、上記スクリュー圧縮機では、各摺動面に確実に潤滑油が供給されるように、潤滑油を大量にインジェクションする必要があった。
  しかしながら、スクリューロータの螺旋溝内に大量に潤滑油をインジェクションすると、各摺動面に潤滑油を確実に供給することができる一方、潤滑油の搬送に要する動力が増大する。また、スクリューロータの螺旋溝内に大量に潤滑油が供給されると、余分な潤滑油がスクリューロータの回転を阻害し、スクリューロータの回転に必要な動力が増大する。このような動力の増大は、スクリュー圧縮機の高速化や大型化が進むと、圧縮機効率の著しい低下を招くために問題となっていた。
  本発明は、かかる点に鑑みてなされたものであり、その目的は、スクリュー圧縮機において、少ない給油量で各摺動面に確実に潤滑油を供給可能な構成を提供することにある。
  本開示の第1の態様は、螺旋溝(41)が形成された第1のロータ(40)と、上記第1のロータ(40)と噛み合って該第1のロータ(40)と共に回転する第2のロータ(50)と、少なくとも上記第1のロータ(40)の外周を覆い、該第1のロータ(40)及び上記第2のロータ(50)と共に上記螺旋溝(41)内に圧縮室(23)を区画するロータケーシング(30)とを備え、上記圧縮室(23)において流体を圧縮するスクリュー圧縮機であって、上記第1のロータ(40)及び上記第2のロータ(50)の少なくとも一方に、該ロータ(40,50)の摺動面(3)において開口する給油口(4)に接続され、潤滑油を該摺動面(3)に供給する給油通路(5)が形成されている。
  本開示の第1の態様では、噛み合って共に回転する第1のロータ(40)及び第2のロータ(50)の少なくとも一方のロータ(40,50)に給油通路(5)が形成され、該給油通路(5)が形成されたロータ(40,50)の摺動面(3)において開口する給油口(4)に該給油通路(5)が接続されている。このような構成により、給油通路(5)が形成されたロータ(40,50)では、該給油通路(5)の潤滑油が給油口(4)から上記摺動面(3)に流出して該摺動面(3)が潤滑される又は該摺動面(3)と摺動する摺動面間に隙間があるときには該隙間がシールされる。
  また、本開示の第1の態様では、回転しないロータケーシングに形成された給油口から潤滑油をインジェクションする従来の構成と異なり、給油口(4)を回転するロータ(40,50)の摺動面(3)に開口させて潤滑油を該摺動面(3)に流出させることとしている。そのため、給油口(4)から流出した潤滑油は、回転するロータ(40,50)において速やかに濡れ拡がり、給油口(4)が形成された摺動面(3)以外の摺動面(3)にも速やかに潤滑油が供給されることとなる。また、第1のロータ(40)及び第2のロータ(50)は、互いに噛み合って共に回転するため、給油通路(5)が形成されたロータ(40,50)に供給された潤滑油は、他方のロータ(50,40)にも速やかに拡がり、他方のロータ(50,40)の摺動面(3)にも速やかに潤滑油が供給されることとなる。
  本開示の第2の態様は、上記第1の態様において、上記給油通路(5)を、上記摺動面(3)に潤滑油を供給する給油状態と、上記摺動面(3)に潤滑油を供給しない非給油状態とに切り換える切換機構(6)を備えている。
  本開示の第2の態様では、給油通路(5)が、該給油通路(5)から摺動面(3)へ潤滑油が供給される給油状態と、給油通路(5)から摺動面(3)へ潤滑油が供給されない非給油状態とに切り換え可能に構成されている。
  本開示の第3の態様は、上記第2の態様において、上記切換機構(6)は、上記給油通路(5)が形成された上記ロータ(40,50)の回転角度位置が所定の角度範囲にあるときに、上記給油通路(5)に潤滑油を供給する給油源(94c,95c)と該給油通路(5)とを連通させることによって該給油通路(5)を上記給油状態に切り換え、上記ロータ(40,50)の回転角度位置が上記所定の角度範囲外にあるときに、上記給油源(94c,95c)と上記給油通路(5)とを遮断することによって該給油通路(5)を上記非給油状態に切り換えるように構成されている。
  本開示の第3の態様では、上記給油通路(5)が形成されたロータ(40,50)の回転角度位置が所定の角度範囲にあるときには、給油源(94c,95c)と給油通路(5)とが連通して上記給油通路(5)が給油状態に切り換わり、上記ロータ(40,50)の回転角度位置が上記所定の角度範囲外にあるときには、給油源(94c,95c)と給油通路(5)とが遮断されて上記給油通路(5)が非給油状態に切り換わるように構成されている。
  本開示の第4の態様は、上記第1乃至第3のいずれか1つの態様において、上記第1のロータ(40)は、上記ロータケーシング(30)を構成する円筒壁(30)に回転自在に収容されたスクリューロータ(40)によって構成され、上記第2のロータ(50)は、複数の平板状のゲート(51)を有して歯車状に構成され、上記円筒壁(30)の外側に設けられて一部の上記ゲート(51)が該円筒壁(30)に形成された開口(39)から内部に進入して上記スクリューロータ(40)と噛み合うことにより、該スクリューロータ(40)と共に回転するゲートロータ(50)によって構成され、上記給油通路(5)は、上記ゲートロータ(50)の上記ゲート(51)に形成され、上記給油口(4)は、上記ゲート(51)の上記スクリューロータ(40)と摺動する上記摺動面(3)を構成する側面(51a,51b)において開口する側面給油口(63b)である。
  本開示の第4の態様では、スクリュー圧縮機(1)がシングルスクリュー圧縮機(1)に構成され、スクリューロータ(40)の回転に伴って該スクリューロータ(40)に噛み合うゲートロータ(50)が回転する。これにより、スクリューロータ(40)の螺旋溝(41)内においてゲート(51)の位置が変化し、圧縮室(23)の容積が徐々に小さくなって流体が圧縮される。このとき、ゲートロータ(50)のゲート(51)に形成された給油通路(5)の潤滑油が、該ゲート(51)のスクリューロータ(40)と摺動する側面(51a,51b)において開口する側面給油口(63b)から流出する。これにより、ゲート(51)の側面(51a,51b)とスクリューロータ(40)との間に潤滑油が供給され、これらの間の摺動面(3)が潤滑される又はこれらの間に隙間があるときには該隙間がシールされる。また、ゲート(51)の側面(51a,51b)とスクリューロータ(40)との間に供給された潤滑油は、スクリューロータ(40)にも付着し、該スクリューロータ(40)の回転によって生じる遠心力により、スクリューロータ(40)の外周側へ濡れ拡がる。これにより、スクリューロータ(40)と円筒壁(30)との隙間にも潤滑油が供給され、これらの間の隙間がシールされる。
  本開示の第5の態様は、上記第4の態様において、上記側面給油口(63b)は、上記ゲート(51)の少なくとも回転方向の後側の側面(51b)において開口している。
  ところで、スクリューロータ(40)に噛み合う歯車状のゲートロータ(50)は、スクリューロータ(40)が回転すると、ゲート(51)がスクリューロータ(40)の螺旋溝(41)の溝側面に押されることによって回転する。つまり、ゲート(51)の回転方向の後側の側面(51b)は、スクリューロータ(40)と確実に摺動する摺動面であり、スクリューロータ(40)によって押される面でもあるため、摺動摩耗が生じるおそれが高い。
  本開示の第5の態様では、このようなゲート(51)の回転方向の後側の側面(51b)に、給油通路(5)から直接的に潤滑油が供給される。これにより、摺動摩耗が生じるおそれの高いゲート(51)の回転方向の後側の側面(51b)とスクリューロータ(40)の螺旋溝(41)の溝側面との間に確実に潤滑油が供給され、摺動面(3)が潤滑される。
  本開示の第6の態様は、上記第4又は第5の態様において、上記給油通路(5)は、上記ゲート(51)の上記圧縮室(23)に面する前面(51c)において開口する前面給油口(63c)に接続されている。
  ところで、ゲートロータ(50)の回転によってゲート(51)は開口(39)から円筒壁(30)内に出入りする。ゲート(51)の前面(51c)と円筒壁(30)との間には、通常、隙間が形成されているが、ゲートロータ(50)の熱膨張によってゲート(51)の前面(51c)と円筒壁(30)とが摺動するおそれがある。一方、ゲート(51)の前面(51c)と円筒壁(30)との間に隙間を形成すると、この隙間を介して高圧の圧縮室(23)から円筒壁(30)の外側のゲートロータ(50)が設けられた低圧空間に漏れるおそれがあるため、隙間をシールする必要がある。
  本開示の第6の態様では、給油通路(5)を、ゲート(51)の前面(51c)に開口する前面給油口(63c)にも接続している。そのため、ゲートロータ(50)のゲート(51)において、給油通路(5)の潤滑油は、スクリューロータ(40)と摺動する側面(51a,51b)だけでなく、圧縮室(23)に面する前面(51c)にも供給される。これにより、ゲート(51)の前面(51c)と円筒壁(30)との間に潤滑油が供給され、これらの間が潤滑される又はこれらの間に隙間があるときには該隙間がシールされることとなる。
  本開示の第7の態様は、上記第4乃至第6のいずれか1つの態様において、上記側面給油口(63b)は、上記ゲート(51)の径方向の中央よりも根元側の位置に少なくも1つ形成されている。
  本開示の第7の態様では、給油通路(5)の潤滑油は、ゲート(51)のスクリューロータ(40)と摺動する側面(51a,51b)において、径方向の中央よりも根元側の位置に供給される。ゲートロータ(50)は回転するため、その遠心力により、ゲート(51)の側面(51a,51b)の根元側の位置に供給された潤滑油は、ゲート(51)の先端側に濡れ拡がることとなる。
  本開示の第8の態様は、上記第4乃至第7のいずれか1つの態様において、上記ゲートロータ(50)を上記圧縮室(23)とは逆の背面側から支持する支持部材(55)を備え、上記ゲートロータ(50)の上記複数のゲート(51)を連結する根元側の連結部(52)と上記支持部材(55)との間には、潤滑油が供給される油溜まり(62)が形成され、上記給油通路(5)は、上記ゲート(51)の径方向に延び、根元側の端部が上記油溜まり(62)に接続されている。
  本開示の第8の態様では、給油通路(5)は、ゲート(51)よりも根元側の油溜まり(62)から径方向外側向きに延びている。このような構成により、ゲートロータ(50)の回転によって生じる遠心力により、油溜まり(62)からゲート(51)に沿って延びる給油通路(5)に潤滑油が流入し、径方向の外側に向かって流れ、側面給油口(63b)から流出してゲート(51)の側面(51a,51b)とスクリューロータ(40)との間に供給される。
  本開示の第9の態様は、上記第1乃至第3のいずれか1つの態様において、上記給油通路(5)は、上記第1のロータ(40)に形成され、上記給油口(4)は、上記第1のロータ(40)の上記第2のロータ(50)と摺動する上記摺動面(3)を構成する上記螺旋溝(41)の溝内面(42)において開口する溝内面給油口(66d)である。
  本開示の第9の態様では、第1のロータ(40)に給油通路(5)が形成され、該第1のロータ(40)の螺旋溝(41)の溝内面(42)において開口する溝内面給油口(66d)に該給油通路(5)が接続されている。このような構成により、第1のロータ(40)では、該給油通路(5)の潤滑油が溝内面給油口(66d)から第2のロータ(50)と摺動する螺旋溝(41)の溝内面(42)に流出して該溝内面(42)が潤滑される又は該溝内面(42)と摺動する第2のロータ(50)との間に隙間があるときには該隙間がシールされる。つまり、本開示の第9の態様では、ロータケーシングに形成された給油口から潤滑油をインジェクションすることによって第1のロータ(40)の溝内面(42)に間接的に潤滑油を供給する従来の構成と異なり、第1のロータ(40)の溝内面(42)に開口する溝内面給油口(66d)から上記摺動面(3)となる溝内面(42)に直接的に潤滑油が供給される。
  また、本開示の第9の態様では、回転しないロータケーシングに形成された給油口から潤滑油をインジェクションする従来の構成と異なり、給油口(4)を回転する第1のロータ(40)の溝内面(42)に開口させて潤滑油を該溝内面(42)に流出させることとしている。そのため、溝内面給油口(66d)から流出した潤滑油は、回転する第1のロータ(40)において遠心力によって速やかに濡れ拡がり、溝内面(42)以外の摺動面(3)にも速やかに潤滑油が供給されることとなる。さらに、第1のロータ(40)の溝内面(42)に供給された潤滑油は、第1のロータ(40)に噛み合って回転する第2のロータ(50)にも付着し、該第2のロータ(50)においても遠心力によって速やかに濡れ拡がり、該第2のロータ(50)の摺動面(3)にも速やかに潤滑油が供給されることとなる。
  本開示の第10の態様は、上記第1乃至第3のいずれか1つの態様において、上記給油通路(5)は、上記第1のロータ(40)に形成され、上記給油口(4)は、上記第1のロータ(40)の上記ロータケーシング(30)と摺動する上記摺動面(3)を構成する上記第1のロータ(40)の外周面(43)において開口する外周面給油口(66c)である。
  ところで、螺旋溝(41)が形成された第1のロータ(40)の外周面(43)は、該第1のロータ(40)の外周を覆うロータケーシング(30)の内面と摺動するため、第1のロータ(40)の外周面(43)とロータケーシング(30)の内面とが焼き付かないように潤滑する必要がある。一方、第1のロータ(40)の外周面とロータケーシング(30)の内面との間に隙間が形成される場合には、高圧の流体が低圧側に漏れないようにシールする必要がある。
  本開示の第10の態様では、第1のロータ(40)に給油通路(5)が形成され、該第1のロータ(40)のロータケーシング(30)と摺動する外周面(43)において開口する外周面給油口(66c)に該給油通路(5)が接続されている。このような構成により、第1のロータ(40)では、該給油通路(5)の潤滑油が外周面給油口(66c)からロータケーシング(30)の内面と摺動する第1のロータ(40)の外周面(43)に流出して該外周面(43)が潤滑される又は該外周面(43)とロータケーシング(30)の内面との間に隙間があるときには該隙間がシールされる。
  また、本開示の第10の態様では、回転しないロータケーシングに形成された給油口から潤滑油をインジェクションする従来の構成と異なり、給油口(4)を回転する第1のロータ(40)の外周面(43)に開口させて潤滑油を該外周面(43)に流出させることとしている。そのため、外周面給油口(66c)から流出した潤滑油は、回転する第1のロータ(40)において速やかに濡れ拡がり、外周面給油口(66c)が形成された外周面(43)以外の摺動面(3)にも速やかに潤滑油が供給されることとなる。また、第1のロータ(40)及び第2のロータ(50)は、互いに噛み合って共に回転するため、第1のロータ(40)に供給された潤滑油は、第2のロータ(50)にも速やかに拡がり、第2のロータ(50)の摺動面(3)にも速やかに潤滑油が供給されることとなる。
  本開示の第11の態様は、上記第9又は第10の態様において、上記第1のロータ(40)には、上記螺旋溝(41)の溝底面(42c)よりも回転軸寄りの位置に、潤滑油が供給される油溜まり(44)が形成され、上記給油通路(5)は、上記油溜まり(44)から上記第1のロータ(40)の外周側に向かって延びている。
  本開示の第11の態様では、給油通路(5)は、第1のロータ(40)の螺旋溝(41)の溝底面(42c)よりも回転軸寄りの油溜まり(44)から第1のロータ(40)の外周側に延びている。このような構成により、第1のロータ(40)の回転によって生じる遠心力により、油溜まり(44)から給油通路(5)に潤滑油が流入し、第1のロータ(40)の外周側に向かって流れ、給油口(4)から流出して第1のロータ(40)の摺動面(3)に供給される。
  本開示の第1の態様によれば、噛み合って共に回転する第1のロータ(40)及び第2のロータ(50)の少なくとも一方のロータ(40,50)に給油通路(5)を形成し、該給油通路(5)を該ロータ(40,50)の摺動面(3)において開口する給油口(4)に接続することにより、該給油口(4)から上記摺動面(3)に直接的に潤滑油が供給されるようにした。そのため、ロータ(40,50)の該摺動面(3)に確実に潤滑油を供給することができる。
  また、本開示の第1の態様によれば、回転しないロータケーシングに形成された給油口から潤滑油をインジェクションする従来の構成と異なり、給油口(4)を回転するロータ(40,50)の摺動面(3)に開口させて潤滑油を該摺動面(3)に流出させることとしている。そのため、給油口(4)から流出した潤滑油は、回転するロータ(40,50)において速やかに濡れ拡がり、給油口(4)が形成された摺動面(3)以外の摺動面(3)にも速やかに潤滑油を供給することができる。また、第1のロータ(40)及び第2のロータ(50)は、互いに噛み合って共に回転するため、給油通路(5)が形成されたロータ(40,50)に供給された潤滑油は、他方のロータ(50,40)にも速やかに拡がり、他方のロータ(50,40)の摺動面(3)にも速やかに潤滑油を供給することができる。
  以上のように、本開示の第1の態様によれば、従来の大量の潤滑油を供給する構成のように、潤滑油の搬送動力及び第1及び第2のロータ(40,50)の回転動力を増大させて圧縮機効率の低下を招くことがなく、少量の潤滑油を第1のロータ(40)及び第2のロータ(50)の少なくとも一方の摺動面(3)に供給することによって、第1のロータ(40)及び第2のロータ(50)の各摺動面(3)を潤滑する又は該摺動面(3)と摺動する摺動面との間に隙間があるときには該隙間をシールすることができる。つまり、本開示の第1の態様によれば、給油量を低減しても第1のロータ(40)及び第2のロータ(50)の各摺動面(3)の焼き付きと圧縮室からの高圧流体の漏れとを抑制することができる。従って、本開示の第1の態様によれば、スクリュー圧縮機(1)の信頼性を低下させることなく給油量を低減することにより、圧縮機効率の向上を図ることができる。
  また、本開示の第2の態様によれば、給油通路(5)を、該給油通路(5)から摺動面(3)へ潤滑油が供給される給油状態と、給油通路(5)から摺動面(3)へ潤滑油が供給されない非給油状態とに切り換え可能に構成した。そのため、上記給油口(4)が形成されたロータ(40,50)の摺動面(3)が常時摺動するものではない場合に、該摺動面(3)が摺動せず、潤滑が不必要な際に、非給油状態に切り換えて該摺動面(3)への給油を停止することができる。従って、本開示の第2の態様によれば、給油量を低減しつつロータ(40,50)の摺動面(3)に確実に潤滑油を供給することができる。
  また、本開示の第3の態様によれば、上記給油通路(5)が形成されたロータ(40,50)の回転角度位置が所定の角度範囲にあるときには、給油源(94c,95c)と給油通路(5)とが連通して上記給油通路(5)が給油状態に切り換わり、上記ロータ(40,50)の回転角度位置が上記所定の角度範囲外にあるときには、給油源(94c,95c)と給油通路(5)とが遮断されて上記給油通路(5)が非給油状態に切り換わるように構成することとした。本開示の第3の態様によれば、このような容易な構成により、上記給油通路(5)が形成されたロータ(40,50)が1回転するうちに、上記給油通路(5)を給油状態と非給油状態とに自動的に切り換えることができる。
  また、本開示の第4の態様によれば、ゲートロータ(50)のゲート(51)に、潤滑油による潤滑及びシールが必要なスクリューロータ(40)と摺動する側面(51a,51b)に直接給油する給油通路(5)を形成することとした。そのため、螺旋溝(41)にインジェクションすることでゲートロータ(50)とスクリューロータ(40)との摺動面(3)に間接的に給油する従来の構成に比べて、少ない給油量でゲート(51)とスクリューロータ(40)との摺動面(3)に確実に潤滑油を供給することができ、これらの間を潤滑又はこれらの間に隙間があるときには該隙間をシールすることができる。また、このようにしてスクリューロータ(40)とゲート(51)との摺動面(3)に供給された潤滑油は、スクリューロータ(40)にも付着し、該スクリューロータ(40)の回転によって生じる遠心力により、スクリューロータ(40)の外周側へ濡れ拡がるため、スクリューロータ(40)と円筒壁(30)との隙間にも潤滑油を供給することができ、これらの間の隙間をシールすることができる。
  以上のように、本開示の第4の態様によれば、従来の大量の潤滑油を供給する構成のように、潤滑油の搬送動力及びスクリューロータ(40)の回転動力を増大させて圧縮機効率の低下を招くことがなく、少量の潤滑油をゲート(51)とスクリューロータ(40)との摺動面(3)に直接供給することによって、ゲート(51)とスクリューロータ(40)との間及びスクリューロータ(40)と円筒壁(30)との間を潤滑する又はこれらの間に隙間があるときには該隙間をシールすることができる。つまり、本開示の第4の態様によれば、給油量を低減してもゲートロータ(50)及びスクリューロータ(40)の焼き付きと圧縮室からの高圧流体の漏れとを抑制することができる。従って、本開示の第4の態様によれば、シングルスクリュー圧縮機(1)の信頼性を低下させることなく給油量を低減することにより、圧縮機効率の向上を図ることができる。
  また、本開示の第5の態様によれば、ゲート(51)の少なくとも回転方向の後側の側面(51b)に給油通路(5)の側面給油口(63b)を開口させることとした。ゲート(51)の回転方向の後側の側面(51b)は、スクリューロータ(40)と確実に摺動する摺動面(3)であり、スクリューロータ(40)によって押される面でもあるため、摺動摩耗が生じるおそれが高いが、このような後側の側面(51b)に側面給油口(63b)を開口させて、該側面(51b)と螺旋溝(41)の溝側面との間に潤滑油を確実に供給することにより、ゲート(51)とスクリューロータ(40)の摺動摩耗を防止することができる。
  また、本開示の第6の態様によれば、ゲート(51)の給油通路(5)を、ゲート(51)のスクリューロータ(40)と摺動する側面(51a,51b)に開口する側面給油口(63b)だけでなく、ゲート(51)の前面(51c)に開口する前面給油口(63c)にも接続することとした。そのため、ゲートロータ(50)のゲート(51)において、スクリューロータ(40)と摺動する側面(51a,51b)だけでなく、圧縮室(23)に面する前面(51c)にも給油通路(5)の潤滑油を供給することができる。これにより、ゲート(51)の前面(51c)と円筒壁(30)との間に潤滑油が供給されるため、これらの間を潤滑する又はこれらの間に隙間があるときには該隙間をシールすることができる。従って、ゲート(51)の摺動による焼き付きを防止することができると共に、ゲート(51)の前面(51c)と円筒壁(30)との間の隙間を介した高圧の圧縮室(23)から円筒壁(30)の外側のゲートロータ(50)が設けられた低圧空間への流体漏れを抑制することができる。
  また、本開示の第7の態様によれば、ゲート(51)のスクリューロータ(40)と摺動する側面(51a,51b)に開口する側面給油口(63b)を、該ゲート(51)の径方向の中央よりも根元側の位置に少なくとも1つ形成することとした。このようにゲート(51)の径方向の中央よりも根元側の位置に側面給油口(63b)を少なくも1つ形成することで、ゲート(51)の側面(51a,51b)の根元側に潤滑油を供給すると共に、遠心力を利用してゲート(51)の側面(51a,51b)の先端側に容易に拡げることができる。このような構成によれば、側面給油口(63b)の個数を最小限に抑えることで給油量をより低減することができる。
  また、本開示の第8の態様によれば、ゲートロータ(50)を支持する支持部材(55)とゲートロータ(50)の根元側の連結部(52)との間に油溜まり(62)を形成し、ゲート(51)の給油通路(5)の根元側の端部をこの油溜まり(62)に接続することとした。つまり、給油通路(5)は、油溜まり(62)から対応するゲート(51)に沿って径方向外側向きに延びている。このような構成により、ゲートロータ(50)が回転すると、その遠心力により、油溜まり(62)から潤滑油がゲート(51)の給油通路(5)に流入し、径方向の外側に向かって流れて、側面給油口(63b)から流出してゲート(51)の側面(51a,51b)とスクリューロータ(40)との間に供給される。つまり、容易な構成で、ゲートロータ(50)の回転による遠心力を利用して潤滑油をゲート(51)の側面(51a,51b)とスクリューロータ(40)との間に供給することができる。
  また、本開示の第9の態様によれば、第1のロータ(40)に給油通路(5)を形成し、該給油通路(5)を該第1のロータ(40)の螺旋溝(41)の溝内面(42)において開口する溝内面給油口(66d)に接続することにより、該溝内面給油口(66d)から第2のロータ(50)との摺動面(3)となる溝内面(42)に直接的に潤滑油が供給されるようにした。そのため、ロータケーシングに形成された給油口から潤滑油をインジェクションすることによって第1のロータ(40)の溝内面(42)に間接的に潤滑油を供給する従来の構成に比べて、少ない給油量で第1のロータ(40)の溝内面(42)に確実に潤滑油を供給することができる。また、溝内面給油口(66d)を回転する第1のロータ(40)の溝内面(42)に開口させて潤滑油を該溝内面(42)に流出させることとしたため、溝内面給油口(66d)から流出した潤滑油が、回転する第1のロータ(40)において速やかに濡れ拡がり、溝内面(42)以外の摺動面(3)にも速やかに潤滑油を供給することができる。さらに、第1のロータ(40)の溝内面(42)に供給された潤滑油は、第1のロータ(40)に噛み合って回転する第2のロータ(50)にも付着し、該第2のロータ(50)においても遠心力によって速やかに拡がるため、第2のロータ(50)の摺動面(3)にも速やかに潤滑油を供給することができる。
  また、本開示の第10の態様によれば、第1のロータ(40)に給油通路(5)を形成し、該給油通路(5)を該第1のロータ(40)のロータケーシング(30)と摺動する外周面(43)に形成された外周面給油口(66c)に接続することにより、該外周面給油口(66c)から上記摺動面(3)となる外周面(43)に直接的に潤滑油が供給されるようにした。そのため、ロータケーシング(30)の内面と摺動する第1のロータ(40)の外周面(43)に確実に潤滑油を供給することができる。
  また、本開示の第10の態様によれば、回転しないロータケーシングに形成された給油口から潤滑油をインジェクションする従来の構成と異なり、給油口(4)を回転する第1のロータ(40)の外周面(43)に開口させて潤滑油を該外周面(43)に流出させることとしている。そのため、外周面給油口(66c)から流出した潤滑油は、回転する第1のロータ(40)において速やかに濡れ拡がり、外周面給油口(66c)が形成された第1のロータ(40)の外周面(43)以外の摺動面(3)にも速やかに潤滑油を供給することができる。また、第1のロータ(40)及び第2のロータ(50)は、互いに噛み合って共に回転するため、第1のロータ(40)に供給された潤滑油は、第2のロータ(50)にも速やかに拡がり、第2のロータ(50)の摺動面(3)にも速やかに潤滑油を供給することができる。
  また、本開示の第11の態様によれば、第1のロータ(40)の螺旋溝(41)の溝底面(42c)よりも回転軸寄りの位置に油溜まり(44)を形成し、給油通路(5)の根元側の端部をこの油溜まり(44)に接続することとした。つまり、給油通路(5)は、第1のロータ(40)内において油溜まり(44)から外周側に向かって延びている。このような構成により、第1のロータ(40)が回転すると、その遠心力により、油溜まり(44)から潤滑油が給油通路(5)に流入し、第1のロータ(40)の外周側に向かって流れて、給油口(4)から流出して第1のロータ(40)の摺動面(3)に供給される。つまり、容易な構成で、第1のロータ(40)の回転による遠心力を利用して潤滑油を第1のロータ(40)の摺動面(3)に供給することができる。
図1は、実施形態1に係るスクリュー圧縮機の全体の概略構成を示す図である。 図2は、スクリュー圧縮機の圧縮機構付近の縦断面図である。 図3は、スクリュー圧縮機の圧縮機構付近の横断面図である。 図4は、スクリュー圧縮機のスクリューロータとゲートロータとを抜き出して示す斜視図である。 図5は、図3の右側部分の拡大図である。 図6は、図5の支持部材を抜き出して示す斜視図である。 図7は、ゲートロータとスクリューロータとの噛み合う部分を拡大して模式的に示す縦断面図である。 図8は、スクリューロータの螺旋溝内におけるゲートロータのゲート及び支持部材のアーム部の断面図である。 図9は、図3の左側部分の拡大図である。 図10(A)~(C)は、シングルスクリュー圧縮機の圧縮機構の動作を示す平面図であり、図10(A)は吸込行程を示し、図10(B)は圧縮行程を示し、図10(C)は吐出行程を示している。 図11は、実施形態2に係るスクリュー圧縮機の図5に対応する横断面図である。 図12は、実施形態2に係るスクリュー圧縮機の図9に対応する横断面図である。 図13は、実施形態2に係るスクリュー圧縮機の図7に対応する縦断面図である。 図14は、図11及び図12のXIV-XIV線の断面図である。 図15は、実施形態3に係るスクリュー圧縮機の圧縮機構付近の横断面図である。
  以下、本発明の実施形態を図面に基づいて詳細に説明する。
  《実施形態1》
  本実施形態1のスクリュー圧縮機は、冷凍サイクルを行う冷媒回路に設けられて冷媒(流体)を圧縮するためのものであり、シングルスクリュー圧縮機(1)である。
  図1に示すように、シングルスクリュー圧縮機(1)では、圧縮機構(20)とそれを駆動する電動機(15)とが1つのケーシング(10)に収容されている。このシングルスクリュー圧縮機(1)は、半密閉型に構成されている。
  ケーシング(10)は、横長の円筒状に形成された外壁部(17)を有している。ケーシング(10)の内部空間は、外壁部(17)の長手方向の一端側に位置する低圧空間(S1)と、他端側に位置する高圧空間(S2)とに仕切られている。ケーシング(10)には、低圧空間(S1)に連通する吸入管接続部(11)と、高圧空間(S2)に連通する吐出管接続部(12)とが設けられている。図示していないが、チラーシステム等の冷凍装置が有する冷媒回路の蒸発器から流れてきた低圧ガス冷媒が、吸入管接続部(11)を通って低圧空間(S1)へ流入する。また、圧縮機構(20)から高圧空間(S2)へ吐出された圧縮後の高圧ガス冷媒は、吐出管接続部(12)を通って冷媒回路の凝縮器へ供給される。
  ケーシング(10)の外壁部(17)内には、低圧空間(S1)に電動機(15)が配置され、低圧空間(S1)と高圧空間(S2)の間に圧縮機構(20)が配置されている。圧縮機構(20)の駆動軸(21)は、電動機(15)に連結されている。シングルスクリュー圧縮機(1)の電動機(15)は、商用電源(図示せず)に接続されている。電動機(15)は、商用電源から交流を供給されて所定の回転速度で回転する。
  また、ケーシング(10)の外壁部(17)内では、高圧空間(S2)に油分離器(16a)が配置されている。油分離器(16a)は、圧縮機構(20)から吐出された冷媒から潤滑油を分離する。高圧空間(S2)における油分離器(16a)の下方には、潤滑油(潤滑油)を貯留するための油貯留室(16b)が形成されている。油分離器(16a)において冷媒から分離された潤滑油は、下方へ流れ落ちて油貯留室(16b)に蓄えられる。該油貯留室(16b)に蓄えられた潤滑油は、冷媒の吐出圧力とほぼ等しく高圧圧力状態となっている。
  図2及び図3に示すように、圧縮機構(20)は、円筒壁(ロータケーシング)(30)と、1つのスクリューロータ(第1のロータ)(40)と、該スクリューロータ(40)に噛み合う2つのゲートロータ(第2のロータ)(50)とを備えている。
  円筒壁(30)は、円筒状の厚みのある壁であり、ケーシング(10)の外壁部(17)と一体に形成されてケーシング(10)の一部を構成している。円筒壁(30)内には、スクリューロータ(40)が回転自在に収容されている。また、円筒壁(30)の内部であって、スクリューロータ(40)の高圧空間(S2)側には、軸受ホルダ(35)が嵌め込まれている。
  スクリューロータ(40)には、スクリューロータ(40)と同軸上に配置された駆動軸(21)が挿通されている。スクリューロータ(40)と駆動軸(21)は、キー(22)によって連結されている。スクリューロータ(40)は、該スクリューロータ(40)の吸入側に配置された電動機(15)に回転駆動されてケーシング(10)内で回転する。駆動軸(21)は、一端が円筒壁(30)に保持された軸受ホルダ(35)に軸受(36)を介して支持され、他端が電動機(15)に連結されている。
  図4に示すように、スクリューロータ(40)は、概ね円柱状に形成された金属製の部材である。スクリューロータ(40)は、円筒壁(30)に回転自在に嵌合している。スクリューロータ(40)は、外径が円筒壁(30)の内径よりも若干小さく設定され、外周面(43)が円筒壁(30)の内周面(30a)と潤滑油の油膜を介して摺動する。つまり、スクリューロータ(40)の外周面(43)は、円筒壁(30)の内周面(30a)と摺動する摺動面(3)に構成されている。また、スクリューロータ(40)の外周部には、スクリューロータ(40)の軸方向の一端から他端へ向かって螺旋状に延びる螺旋溝(41)が複数(本実施形態では6本)形成されている。
  スクリューロータ(40)の各螺旋溝(41)は、図4における左側の端部が始端となり、同図における右側の端部が終端となっている。また、スクリューロータ(40)は、同図における左側の端部(吸入側の端部)がテーパー状に形成されている。図4に示すスクリューロータ(40)では、テーパー面状に形成されたその左側の端面に螺旋溝(41)の始端が開口する一方、その右側の端面に螺旋溝(41)の終端は開口していない。螺旋溝(41)の溝内面(42)は、スクリューロータ(40)の回転方向の前側の溝側面(42a)と、回転方向の後側の溝側面(42b)と、両溝側面(42a,42b)の底部を繋ぐ溝底面(42c)とによって構成されている。
  図3~図5及び図7~図9に示すように、各ゲートロータ(50)は、樹脂製の平板状部材である。各ゲートロータ(50)には、長方形の平板状に形成された複数(本実施形態では、11枚)のゲート(51)と、複数のゲート(51)を根元側で連結する平板状の連結部(52)とを有し、歯車状に形成されている。2つのゲートロータ(50)は、円筒壁(30)の外側に、スクリューロータ(40)の回転軸に対して軸対称となるように配置されている。各ゲートロータ(50)の回転軸は、スクリューロータ(40)の軸心に垂直な平面内にある。
  各ゲートロータ(50)は、金属製の支持部材(55)に取り付けられている。図6に示すように、支持部材(55)は、基部(56)とアーム部(57)と軸部(58)とを備えている。基部(56)は、やや肉厚の円板状に形成されている。アーム部(57)は、ゲートロータ(50)のゲート(51)と同数(本実施形態では11本)だけ設けられており、基部(56)の外周面から外側へ向かって放射状に延びている。各アーム部(57)は、対応するゲート(51)の背面に当接し、背面側からゲート(51)を支持している。軸部(58)は、棒状に形成されて基部(56)の中央部に連結されている。軸部(58)の中心軸は、基部(56)の中心軸と一致している。軸部(58)は、ゲートロータ(50)の中央部を貫通し、該ゲートロータ(50)の前面側と背面側の両側に位置するように形成されている。本実施形態では、軸部(58)は、基部(56)の前面側に延びる前軸部(58a)が、基部(56)の背面側に延びる後軸部(58b)よりも長くなるように形成されている。
  ゲートロータ(50)が取り付けられた支持部材(55)は、円筒壁(30)に隣接してケーシング(10)内に区画形成されたゲートロータ室(90)に収容されている(図3を参照)。各ゲートロータ室(90)は、低圧空間(S1)に連通している。
  また、図5及び図9に拡大して示すように、各ゲートロータ室(90)には、ケーシング(10)の一部を構成する第1及び第2軸受ホルダ(94,95)が設けられている。第1及び第2軸受ホルダ(94,95)は、それぞれ有底円筒状の筒部(94a,95a)と、該筒部(94a,95a)の基端の周囲に形成されたフランジ部(94b,95b)とを有している。第1及び第2軸受ホルダ(94,95)は、それぞれ筒部(94a,95a)がケーシング(10)の開口から各ゲートロータ室(90)に挿入され、フランジ部(94b,95b)がケーシング(10)の開口周りの部分に固定されている。第1軸受ホルダ(94)の筒部(94a)の先端には軸受(92)が保持され、第2軸受ホルダ(95)の筒部(95a)の先端には、軸受(93)が保持されている。
  第1軸受ホルダ(94)の筒部(94a)内は、先端の軸受(92)に供給するための潤滑油が供給されて溜まる油溜まり(94c)となり、第2軸受ホルダ(95)内は、先端の軸受(93)に供給するための潤滑油が供給されて溜まる油溜まり(95c)となっている。各油溜まり(94c,95c)は、高圧空間(S2)に形成された油貯留室(16b)に図示しない通路を介して連通している。各油溜まり(94c,95c)には、図示しない上記連通路を介して油貯留室(16b)から高圧圧力状態の潤滑油が供給されて溜まることにより、軸受(93,94)の摺動部に至り、該摺動部を潤滑する。
  図3におけるスクリューロータ(40)の右側に配置された支持部材(55)と左側に配置された支持部材(55)は、上下の向きが互いに反対向きになっている。具体的には、図3の右側の支持部材(55)は、前軸部(58a)が後軸部(58b)の上側に位置している(図5を参照)。一方、図3の左側の支持部材(55)は、前軸部(58a)が後軸部(58b)の下側に位置している(図9を参照)。各支持部材(55)の前軸部(58a)は、各ゲートロータ室(90)内の第2軸受ホルダ(95)に軸受(93)を介して回転自在に支持され、各支持部材(55)の後軸部(58b)は、各ゲートロータ室(90)内の第1軸受ホルダ(94)に軸受(92)を介して回転自在に支持されている。
  上記ケーシング(10)には、一体に組み立てたゲートロータ(50)及び支持部材(55)を上記ケーシング(10)の外部から上記ゲートロータ室(90)の内部へ挿入可能な挿入開口(13)と、該挿入開口(13)を閉塞するカバー部材(14)とが設けられている。
  また、円筒壁(30)には、各ゲートロータ室(90)と、円筒壁(30)の内部に形成されるスクリューロータ収容室とを連通させる開口(39)が貫通形成されている。そして、組み立てられたゲートロータ(50)及び支持部材(55)は、各ゲートロータ室(90)において、ゲート(51)が円筒壁(30)の開口(39)から内部に進入してスクリューロータ(40)に噛み合う(螺旋溝(41)に進入する)位置に設けられている。円筒壁(30)では、開口(39)を形成する端面であってゲート(51)の圧縮室(23)側の前面(51c)と対向する対向面が、シール面(39a)を構成している。このシール面(39a)は、スクリューロータ(40)の外周に沿ってスクリューロータ(40)の軸方向へ延びる平面である。各ゲートロータ(50)とシール面(39a)との距離は、圧縮室(23)の圧縮流体のゲートロータ室(90)への漏れ量が限りなく小さくなるように極めて小さい値(例えば、40μm以下)に設定されている。
  圧縮機構(20)では、円筒壁(30)の内周面(30a)と、スクリューロータ(40)の螺旋溝(41)を形成する溝内面(42)と、ゲートロータ(50)のゲート(51)の前面(51c)とによって囲まれた空間が流体を圧縮する圧縮室(23)になる。スクリューロータ(40)の螺旋溝(41)は、吸入側端部において低圧空間(S1)に開放しており、この開放部分が圧縮機構(20)の吸入ポート(24)になっている。
  [アンロード機構]
  シングルスクリュー圧縮機(1)には、圧縮途中のガスの一部を低圧側に戻すアンロード動作を行うことにより運転容量を調節するがアンロード機構(70,80)が設けられている。アンロード機構(70,80)は、スライドバルブ(70)とスライドバルブ駆動機構(80)とで構成されている。
  スライドバルブ(70)は、スライドバルブ収納部(31)内に設けられている。スライドバルブ収納部(31)は、図2に示すように、円筒壁(30)の周方向の2カ所に形成されている。スライドバルブ(70)は、円筒壁(30)の軸心方向にスライド可能に構成されており、スライドバルブ収納部(31)へ挿入された状態でスクリューロータ(40)の外周面(43)と対面する。スライドバルブ(70)は、図2の吐出側(図の右側)への移動端が全開側の移動端、吸入側への移動端が全閉側の移動端になっている。
  ケーシング(10)内には、円筒壁(30)の外側に連通路(32)が形成されている。連通路(32)は、各スライドバルブ収納部(31)に対応して1つずつ形成されている。連通路(32)は、その一端が低圧空間(S1)に開口し、その他端がスライドバルブ収納部(31)の吸入側の端部に開口している。
  スライドバルブ(70)が高圧空間(S2)寄り(図2における駆動軸(21)の軸方向を左右方向とした場合の右側寄り)へスライドすると、スライドバルブ収納部(31)の端面とスライドバルブ(70)のバイパス開度調整部(71)の端面との間に軸方向隙間(G)が形成される。この軸方向隙間(G)は、圧縮室(23)の圧縮途中位置から低圧空間(S1)へ冷媒を戻すためのバイパス通路(33)を、連通路(32)と共に構成している。つまり、バイパス通路(33)は、圧縮室(23)の吸入側である低圧空間(S1)に一端が連通し、圧縮室(23)の圧縮途中位置である円筒壁(30)の内周面(30a)に他端が開口可能となっている。スライドバルブ(70)を移動させてバイパス通路(33)の開度を変更すると、圧縮途中から低圧側へ戻る冷媒の流量が変化するので、圧縮機構(20)の容量が変化する。
  上記スライドバルブ(70)は、上記バイパス通路(33)の開度を調整するバイパス開度調整部(71)と、圧縮室(23)と高圧空間(S2)とを連通させるように上記円筒壁(30)に形成された吐出ポート(25)の開口面積を調整する吐出開口調整部(72)を備えている。上記スライドバルブ(70)は、上記スクリューロータ(40)の軸方向へスライド可能に構成されている。スライドバルブ(70)の吐出開口調整部(72)は、スライドバルブ(70)の位置が変化するのに伴って吐出ポート(25)の開口面積を変化させるように構成されている。
  スライドバルブ駆動機構(80)は、シリンダチューブ(81)と、該シリンダチューブ(81)内に装填されたピストン(82)と、該ピストン(82)のピストンロッド(83)に連結されたアーム(84)と、該アーム(84)とスライドバルブ(70)とを連結する連結ロッド(85)と、アーム(84)を図2の右方向(アーム(84)をケーシング(10)から引き離す方向)に付勢するスプリング(86)とを備えている。上記シリンダチューブ(81)とピストン(82)は、油圧シリンダ(流体圧シリンダ)(87)の構成部品である。また、本実施形態では、軸受ホルダ(35)の軸方向の両端部のうちの上記スクリューロータ(40)と反対側の端部が上記シリンダチューブ(81)として構成されている。そして、油圧シリンダ(87)が軸受(36)を挟んでスクリューロータ(40)の反対側に配置されるとともに、該軸受(36)を保持する軸受ホルダ(35)と油圧シリンダ(87)とが一体化されている。
  上記軸受ホルダ(35)の内部には、上記軸受(36)が保持される軸受室(C1)と上記油圧シリンダ(87)のピストン(82)が収納されるシリンダ室(C2)とを区画する仕切板(38)が設けられている。
  スライドバルブ駆動機構(80)では、図2の状態のとき、シリンダ室(C2)内のピストン(82)の左側空間(ピストン(82)のスクリューロータ(40)側の空間)の内圧が、ピストン(82)の右側空間(ピストン(82)のアーム(84)側の空間)の内圧よりも高くなっている。そして、スライドバルブ駆動機構(80)は、ピストン(82)の右側空間の内圧(即ち、右側空間内のガス圧)を調節することによって、スライドバルブ(70)の位置を調整するように構成されている。そのため、図示していないが、軸受ホルダ(35)には、ピストン(82)の右側空間の圧力を調整するための通路が形成されている。
  シングルスクリュー圧縮機(1)の運転中において、スライドバルブ(70)では、その軸方向の端面の一方(バイパス開度調整部(71)の端面)に圧縮機構(20)の吸入圧が、他方に圧縮機構(20)の吐出圧がそれぞれ作用する。このため、シングルスクリュー圧縮機(1)の運転中において、スライドバルブ(70)には、常にスライドバルブ(70)を低圧空間(S1)側へ押す方向の力が作用する。従って、スライドバルブ駆動機構(80)におけるピストン(82)の左側空間及び右側空間の内圧を変更すると、スライドバルブ(70)を高圧空間(S2)側へ引き戻す方向の力の大きさが変化し、その結果、スライドバルブ(70)の位置が変化する。
  [給油機構]
  図3,図5~図9に示すように、シングルスクリュー圧縮機(1)には、ゲートロータ(50)の摺動面(3)を構成するゲート(51)の側面(51a,51b)及び前面(51c)に潤滑油を供給する給油機構(60)が設けられている。本実施形態では、給油機構(60)は、2つのゲートロータ(50)に対し、一つずつ設けられている。以下、図5に拡大して示す図3の右側のゲートロータ(50)の摺動面(3)に給油する給油機構(60)を「右側の給油機構(60)」と呼び、図9に拡大して示す図3の左側のゲートロータ(50)の摺動面(3)に給油する給油機構(60)を「左側の給油機構(60)」と呼ぶ。2つの給油機構(60)は、軸内連通路(61)と油溜まり(62)と複数のゲート給油通路(63)(給油通路(5))とを有している。
  (右側の給油機構)
  図5及び図6に示す右側の給油機構(60)では、前軸部(58a)の内部に軸内連通路(61)が形成されている。該軸内連通路(61)は、縦連通路(61a)と2本の横連通路(61b)とを有している。縦連通路(61a)は、前軸部(58a)の一端から他端へ中心部を貫通するように軸方向に真っ直ぐ延びている。2本の横連通路(61b)は、該縦連通路(61a)の他端(基部(56)側)からそれぞれ前軸部(58a)の径方向の外側へ延び、前軸部(58a)の外周面において開口している。
  油溜まり(62)は、ゲートロータ(50)の根元側の連結部(52)と支持部材(55)の根元側の基部(56)との間に形成されている。具体的には、ゲートロータ(50)の連結部(52)に形成された溝(62a)と支持部材(55)の基部(56)に形成された溝(62b)とによって形成された空間が油溜まり(62)に構成されている。ゲートロータ(50)側の溝(62a)及び支持部材(55)側の溝(62b)は、それぞれ環状に形成されている。図6に示すように、支持部材(55)の基部(56)に形成された溝(62b)は、前軸部(58a)の外周を取り巻くように環状に形成され、ゲートロータ(50)と対向する前面に開口する溝である。上記軸内連通路(61)の2本の横連通路(61b)は、この溝(62b)内において開口している。このような構成により、油溜まり(62)は、軸内連通路(61)によって前軸部(58a)の上方の第2軸受ホルダ(95)の油溜まり(95c)と連通している。
  複数のゲート給油通路(63)は、ゲートロータ(50)の複数のゲート(51)に形成されている。本実施形態では、11本のゲート(51)の全てにゲート給油通路(63)が形成されている。各ゲート給油通路(63)は、本体部(53)と複数の側方分岐部(54)と前方分岐部(59)を有している。
  具体的には、図5に示すように、ゲートロータ(50)の各ゲート(51)の背面側には、径方向に延びる溝(63a)が形成されている。該溝(63a)は、各ゲート(51)を背面側から支持する各アーム部(57)の前面によって閉塞されている。この各アーム部(57)の前面によって閉塞された各溝(63a)内の空間が、ゲート給油通路(63)の本体部(53)を構成する。図7に示すように、各ゲート給油通路(63)の本体部(53)は、各ゲート(51)の根元側から先端側へ径方向に延び、根元側の端部が、ゲートロータ(50)の根元側の連結部(52)と支持部材(55)の根元側の基部(56)との間に形成された油溜まり(62)に接続されている。
  図7及び図8に示すように、複数の側方分岐部(54)は、各本体部(53)においてゲートロータ(50)の周方向に延びる孔によって形成され、各ゲート(51)の側面(51a,51b)において開口する側面給油口(63b)に接続されている。側面給油口(63b)は、摺動面(3)である各ゲート(51)の側面(51a,51b)に潤滑油を供給する給油口(4)を構成する。本実施形態では、各ゲート(51)において、回転方向の前側に4本の側方分岐部(54)が形成され、後側に4本の側方分岐部(54)が形成されている。これにより、本実施形態では、各ゲート(51)の回転方向の前側の側面(51a)に4つの側面給油口(63b)が開口し、後側の側面(51b)に4つの側面給油口(63b)が開口することとなる。前側の側面(51a)に形成された4つの側面給油口(63b)と後側の側面(51b)に形成された4つの側面給油口(63b)とは対応する位置に設けられている。各側面(51a,51b)において、4つの側面給油口(63b)は、各ゲート(51)の根元側から先端側へ略等間隔で設けられている。各側面給油口(63b)及び各側方分岐部(54)は、各ゲート(51)の側面(51a,51b)に油膜が形成される一方、油滴となって飛散しないような分量の潤滑油が流出する孔径に形成されている。
  なお、側面給油口(63b)及び各側方分岐部(54)の個数は、4つずつに限られず、4つより少なくてもよく多くてもよい。また、個数に応じて上記孔径を、各ゲート(51)の側面(51a,51b)に油膜が形成される一方、油滴となって飛散しないような分量の潤滑油が流出する大きさに変更するのが好ましい。
  また、図8に示すように、各ゲート(51)のスクリューロータ(40)と摺動する側面(51a,51b)は、厚み方向の中央部が分厚くなるように形成され、この分厚い中央部がスクリューロータ(40)の螺旋溝(41)の溝側面(42a,42b)に当接するシールライン(L1,L2)となっている。そして、各側面給油口(63b)は、各ゲート(51)の側面(51a,51b)において、シールライン(L1,L2)よりも前側、即ち、圧縮室(23)側において開口するように形成されている。
  このような構成により、各ゲート給油通路(63)は、各ゲート(51)のスクリューロータ(40)と摺動する側面(51a,51b)において開口する側面給油口(63b)に接続されている。
  また、図5、図7及び図8に示すように、前方分岐部(59)は、各ゲート(51)の径方向に延びる溝(63a)(本体部(53))から厚み方向(ゲートロータ(50)の軸方向に平行な方向)に延びて前面(51c)において開口する孔によって形成され、各ゲート(51)の前面(51c)において開口する前面給油口(63c)に接続されている。前面給油口(63c)は、摺動面(3)である各ゲート(51)の前面(51c)に潤滑油を供給する給油口(4)を構成する。本実施形態では、前方分岐部(59)は、複数のゲート(51)に1つずつ形成されている。これにより、本実施形態では、各ゲート(51)の前面(51c)に1つの前面給油口(63c)が開口することとなる。本実施形態では、各前面給油口(63c)は、各ゲート(51)の前面(51c)において、径方向の中央よりも内側寄りの位置において開口するように形成されている。各前面給油口(63c)及び各前方分岐部(59)は、各ゲート(51)の前面(51c)に油膜が形成される一方、油滴となって飛散しないような分量の潤滑油が流出する孔径に形成されている。なお、前面給油口(63c)及び各前方分岐部(59)の個数は、1つずつに限られず、複数設けてもよい。また、個数に応じて上記孔径を各ゲート(51)の前面(51c)に油膜が形成されるような大きさに変更するのが好ましい。
  このような構成により、各ゲート給油通路(63)は、各ゲート(51)の圧縮室(23)に面する前面(51c)において開口する前面給油口(63c)に接続されている。
  以上により、右側の給油機構(60)では、ゲートロータ(50)及び支持部材(55)に形成された軸内連通路(61)と油溜まり(62)と複数のゲート給油通路(63)とにより、出口に向かって複数に分岐する潤滑油の流通路が形成される。また、この潤滑油の流通路の入口は、油貯留室(16b)から高圧圧力状態の潤滑油が溜められる第2軸受ホルダ(95)の油溜まり(95c)において開口している。一方、上記潤滑油の流通路の出口を構成する複数の側面給油口(63b)及び前面給油口(63c)は、一部が圧縮室(23)において開口するものの、その多くは低圧空間(S1)に連通するゲートロータ室(90)において開口することとなる。よって、上記潤滑油の流通路の入口と出口の圧力差により、油溜まり(95c)の高圧圧力状態の潤滑油が流通路に流入し、出口に向かって流れ、各ゲート(51)の側面(51a,51b)及び前面(51c)に流出することとなる。
  (左側の給油機構)
  図9に示す左側の給油機構(60)では、後軸部(58b)の内部に軸内連通路(61)が形成されている。該軸内連通路(61)は、縦連通路(61a)と2本の横連通路(61b)とを有している。縦連通路(61a)は、後軸部(58b)の一端から他端へ中心部を貫通するように軸方向に真っ直ぐ延びている。2本の横連通路(61b)は、該縦連通路(61a)の他端(基部(56)側)からそれぞれ後軸部(58b)の径方向の外側へ延び、後軸部(58b)の外周面において開口している。
  油溜まり(62)は、ゲートロータ(50)の根元側の連結部(52)と支持部材(55)の根元側の基部(56)との間に形成されている。具体的には、ゲートロータ(50)の連結部(52)に形成された溝(62a)と支持部材(55)の基部(56)に形成された溝(62b)とによって形成された空間が油溜まり(62)に構成されている。ゲートロータ(50)側の溝(62a)及び支持部材(55)側の溝(62b)は、それぞれ環状に形成されている。支持部材(55)の基部(56)に形成された溝(62b)は、後軸部(58b)の外周を取り巻くように環状に形成され、ゲートロータ(50)と対向する前面に開口する溝である。上記軸内連通路(61)の2本の横連通路(61b)は、この溝(62b)内において開口している。このような構成により、油溜まり(62)は、軸内連通路(61)によって後軸部(58b)の上方の第1軸受ホルダ(94)の油溜まり(94c)と連通している。
  複数のゲート給油通路(63)は、ゲートロータ(50)の複数のゲート(51)に形成されている。本実施形態では、11本のゲート(51)の全てにゲート給油通路(63)が形成されている。各ゲート給油通路(63)は、本体部(53)と複数の側方分岐部(54)と前方分岐部(59)を有している。
  具体的には、図9に示すように、ゲートロータ(50)の各ゲート(51)の背面側には、径方向に延びる溝(63a)が形成されている。該溝(63a)は、各ゲート(51)を背面側から支持する各アーム部(57)の前面によって閉塞されている。この各アーム部(57)の前面によって閉塞された各溝(63a)内の空間がゲート給油通路(63)の本体部(53)を構成する。図7に示すように、各ゲート給油通路(63)の本体部(53)は、各ゲート(51)の根元側から先端側へ径方向に延び、根元側の端部が、ゲートロータ(50)の根元側の連結部(52)と支持部材(55)の根元側の基部(56)との間に形成された油溜まり(62)に接続されている。
  図7及び図8に示すように、複数の側方分岐部(54)は、各ゲート(51)の本体部(53)からゲートロータ(50)の周方向に延びる孔によって形成され、各ゲート(51)の側面(51a,51b)において開口する側面給油口(63b)に接続されている。側面給油口(63b)は、摺動面(3)である各ゲート(51)の側面(51a,51b)に潤滑油を供給する給油口(4)を構成する。本実施形態では、各ゲート(51)において、回転方向の前側に4本の側方分岐部(54)が形成され、後側に4本の側方分岐部(54)が形成されている。これにより、本実施形態では、各ゲート(51)の回転方向の前側の側面(51a)に4つの側面給油口(63b)が開口し、後側の側面(51b)に4つの側面給油口(63b)が開口することとなる。前側の側面(51a)に形成された4つの側面給油口(63b)と後側の側面(51b)に形成された4つの側面給油口(63b)とは対応する位置に設けられている。各側面(51a,51b)において、4つの側面給油口(63b)は、各ゲート(51)の根元側から先端側へ略等間隔で設けられている。各側面給油口(63b)及び各側方分岐部(54)は、各ゲート(51)の側面(51a,51b)に油膜が形成される一方、油滴となって飛散しないような分量の潤滑油が流出する孔径に形成されている。
  なお、側面給油口(63b)及び各側方分岐部(54)の個数は、4つずつに限られず、4つより少なくてもよく多くてもよい。また、個数に応じて上記孔径を、各ゲート(51)の側面(51a,51b)に油膜が形成される一方、油滴となって飛散しないような分量の潤滑油が流出する大きさに変更するのが好ましい。
  また、図8に示すように、各ゲート(51)のスクリューロータ(40)と摺動する側面(51a,51b)は、厚み方向の中央部が分厚くなるように形成され、この分厚い中央部がスクリューロータ(40)の螺旋溝(41)の溝側面(42a,42b)に当接するシールライン(L1,L2)となっている。そして、各側面給油口(63b)は、各ゲート(51)の側面(51a,51b)において、シールライン(L1,L2)よりも前側、即ち、圧縮室(23)側において開口するように形成されている。
  このような構成により、各ゲート給油通路(63)は、各ゲート(51)のスクリューロータ(40)と摺動する側面(51a,51b)において開口する側面給油口(63b)に接続されている。
  また、図7~図9に示すように、前方分岐部(59)は、各ゲート(51)の径方向に延びる溝(63a)(本体部(53))から厚み方向(ゲートロータ(50)の軸方向に平行な方向)に延びて前面(51c)において開口する孔によって形成され、各ゲート(51)の前面(51c)において開口する前面給油口(63c)に接続されている。前面給油口(63c)は、摺動面(3)である各ゲート(51)の前面(51c)に潤滑油を供給する給油口(4)を構成する。本実施形態では、前方分岐部(59)は、複数のゲート(51)に1つずつ形成されている。これにより、本実施形態では、各ゲート(51)の前面(51c)に1つの前面給油口(63c)が開口することとなる。本実施形態では、各前面給油口(63c)は、各ゲート(51)の前面(51c)において、径方向の中央よりも内側寄りの位置において開口するように形成されている。各前面給油口(63c)及び各前方分岐部(59)は、各ゲート(51)の前面(51c)に油膜が形成される一方、油滴となって飛散しないような分量の潤滑油が流出する孔径に形成されている。なお、前面給油口(63c)及び各前方分岐部(59)の個数は、1つずつに限られず、複数設けてもよい。また、個数に応じて上記孔径を各ゲート(51)の前面(51c)に油膜が形成されるような大きさに変更するのが好ましい。
  このような構成により、各ゲート給油通路(63)は、各ゲート(51)の圧縮室(23)に面する前面(51c)において開口する前面給油口(63c)に接続されている。
  以上により、左側の給油機構(60)では、ゲートロータ(50)及び支持部材(55)に形成された軸内連通路(61)と油溜まり(62)と複数のゲート給油通路(63)とにより、出口に向かって複数に分岐する潤滑油の流通路が形成される。また、この潤滑油の流通路の入口は、油貯留室(16b)から高圧圧力状態の潤滑油が溜められる第1軸受ホルダ(94)の油溜まり(94c)において開口している。一方、上記潤滑油の流通路の出口を構成する複数の側面給油口(63b)及び前面給油口(63c)は、一部が圧縮室(23)において開口するものの、その多くは低圧空間(S1)に連通するゲートロータ室(90)において開口することとなる。よって、上記潤滑油の流通路の入口と出口の圧力差により、油溜まり(95c)の高圧圧力状態の潤滑油が流通路に流入し、出口に向かって流れ、各ゲート(51)の側面(51a,51b)及び前面(51c)に流出することとなる。
  -運転動作-
  シングルスクリュー圧縮機(1)において電動機(15)を起動すると、駆動軸(21)の回転に伴ってスクリューロータ(40)が回転する。このスクリューロータ(40)の回転に伴ってゲートロータ(50)も回転し、圧縮機構(20)が吸入行程、圧縮行程及び吐出行程を繰り返す。ここでは、図10(A)~図10(C)においてドットを付した圧縮室(23)に着目して説明する。
  図10(A)において、ドットを付した圧縮室(23)は、低圧空間(S1)に連通している。この状態において、上記圧縮室(23)を区画する螺旋溝(41)には、同図の下側に位置するゲートロータ(50)のゲート(51)が噛み合わされている。スクリューロータ(40)が回転すると、このゲート(51)が螺旋溝(41)内において該螺旋溝(41)の終端へ向かって相対的に移動し、それに伴って圧縮室(23)の容積が次第に拡大する。その結果、低圧空間(S1)の低圧ガス冷媒が吸入ポート(24)を通じて圧縮室(23)へ吸い込まれる。
  スクリューロータ(40)が更に回転すると、図10(B)の状態となる。同図において、ドットを付した圧縮室(23)は、閉じきり状態となっている。この状態において、上記圧縮室(23)を区画する螺旋溝(41)には、同図の上側に位置するゲートロータ(50)のゲート(51)が噛み合わされ、このゲート(51)によって上記圧縮室(23)は低圧空間(S1)から仕切られている。そして、スクリューロータ(40)の回転に伴ってゲート(51)が螺旋溝(41)内において該螺旋溝(41)の終端へ向かって相対的に移動し、それに伴って圧縮室(23)の容積が次第に縮小する。その結果、圧縮室(23)内の低圧ガス冷媒が次第に圧縮されていく。
  スクリューロータ(40)が更に回転すると、図10(C)の状態となる。同図において、ドットを付した圧縮室(23)は、吐出ポート(25)を介して高圧空間(S2)と連通した状態となっている。この状態において、スクリューロータ(40)の回転に伴ってゲート(51)が螺旋溝(41)内において該螺旋溝(41)の終端へ向かって移動すると、圧縮されて高圧圧力状態となった冷媒ガス(高圧ガス冷媒)が圧縮室(23)から高圧空間(S2)へ押し出されてゆく。
  なお、上記の運転動作を行うときに、スライドバルブ(70)を用いて圧縮機構(20)の容量制御が行われる。具体的な説明は省略するが、スライドバルブ(70)が図2の左側へ最も押し込まれた状態では、スライドバルブ(70)が全閉側(吸入側)の移動端に位置することになり、圧縮機構(20)の容量が最大となる。スライドバルブ(70)が図3の右側へ退くと、スライドバルブ(70)の先端面が上記軸方向隙間(G)を開放し、円筒壁(30)の内周面にバイパス通路(33)が開口することになり、低圧空間(S1)から圧縮室(23)へ吸入された冷媒ガスは、その一部が圧縮行程途中の圧縮室(23)からバイパス通路(33)を通って低圧空間(S1)へ戻り、残りが最後まで圧縮されて高圧空間(S2)へ吐出されるので、圧縮機構(20)の容量が小さくなる。
  -給油動作-
  このようにして、スクリューロータ(40)及び2つのゲートロータ(50)が回転して圧縮室(23)において冷媒ガスが圧縮される際に、2つの給油機構(60)によって上記2つのゲートロータ(50)とスクリューロータ(40)との摺動面(3)に潤滑油が供給される。
  2つの給油機構(60)では、上述したように、軸内連通路(61)と油溜まり(62)と複数のゲート給油通路(63)とによって形成される潤滑油の流通路の入口と出口との圧力差により、油貯留室(16b)から各油溜まり(94c,95c)に供給された潤滑油が、該流通路に流入し、出口に向かって流れる。具体的には、油溜まり(94c,95c)の潤滑油は、まず、前軸部(58a)の内部の軸内連通路(61)の縦連通路(61a)に流入し、該縦連通路(61a)から2本の横連通路(61b)へ流れ、やがて油溜まり(62)に流出する(図5、図6及び図9を参照)。油溜まり(62)に至った潤滑油は、上述の圧力差による駆動力と、ゲートロータ(50)及び支持部材(55)の回転によって生じる遠心力とにより、油溜まり(62)から放射状に延びる複数のゲート給油通路(63)に流入し、各ゲート給油通路(63)において径方向外側向きに流れる(図5及び図9を参照)。各ゲート給油通路(63)を流れる潤滑油は、複数の側面給油口(63b)から各ゲート(51)の側面(51a,51b)に流出すると共に前面給油口(63c)から各ゲート(51)の前面(51c)に流出する。
  各ゲート(51)の複数の側面給油口(63b)からは、該ゲート(51)の側面(51a,51b)に油膜が形成される程度に潤滑油が流出する。複数の側面給油口(63b)から流出した潤滑油は、遠心力によって、各ゲート(51)の側面(51a,51b)において径方向の外側向きに濡れ拡がって該側面(51a,51b)のそれぞれに油膜を形成する。
  ところで、上述したように、各側面給油口(63b)は、図8に示すように、各ゲート(51)の側面(51a,51b)において、スクリューロータ(40)の螺旋溝(41)の溝側面(42a,42b)に当接するシールライン(L1,L2)よりも前側、即ち、圧縮室(23)側において開口するように形成されている。各側面給油口(63b)がこのような位置に設けられることにより、スクリューロータ(40)の螺旋溝(41)内においてゲート(51)は圧縮室(23)側に進むが、その進行方向において各ゲート(51)の側面(51a,51b)のシールライン(L1,L2)よりも前側に潤滑油が供給されることとなる。これにより、各ゲート(51)においてスクリューロータ(40)の螺旋溝(41)の溝側面(42a,42b)と摺動するシールライン(L1,L2)に確実に潤滑油が供給され、該シールライン(L1,L2)が潤滑されると共にシールされることとなる。これにより、高圧の圧縮室(23)のガス冷媒が、各ゲート(51)の側面(51a,51b)と円筒壁(30)の螺旋溝(41)を形成する溝側面(42a,42b)との間の隙間から低圧の圧縮室(23)へ漏れ出ない。
  このようにして、各側面給油口(63b)から各ゲート(51)の側面(51a,51b)に流出してスクリューロータ(40)との摺動面(3)に供給された潤滑油は、スクリューロータ(40)に付着し、スクリューロータ(40)の回転によって生じる遠心力によってスクリューロータの外周側へも濡れ拡がる。これにより、スクリューロータ(40)の螺旋溝(41)の間の外周面(43)に油膜が形成され、この外周面(43)と円筒壁(30)の内周面(30a)との間が潤滑されると共にシールされることとなる。これにより、スクリューロータ(40)の焼き付きが抑制されると共に、高圧の圧縮室(23)のガス冷媒が、スクリューロータ(40)の外周面(43)と円筒壁(30)の内周面(30a)との間の隙間から低圧の圧縮室(23)へ漏れ出るのが抑制される。
  一方、各ゲート(51)の前面給油口(63c)からは、該ゲート(51)の前面(51c)に油膜が形成される程度に潤滑油が流出する。前面給油口(63c)から流出した潤滑油は、遠心力により、各ゲート(51)の前面(51c)において径方向の外側向きに濡れ拡がって該前面(51c)に油膜を形成する。上述したように、各前面給油口(63c)は、各ゲート(51)の前面(51c)において、径方向の中央よりも内側寄りの位置において開口するように形成されている(図7を参照)。そのため、各ゲート(51)の前面(51c)において、前面給油口(63c)から流出した潤滑油は、径方向の内側寄りの位置から外側の位置まで広く濡れ拡がることとなる。
  ところで、ゲートロータ(50)の回転により、各ゲート(51)は、円筒壁(30)の開口(39)から円筒壁(30)内に出入りするが、上述のように、各ゲート(51)の前面(51c)において、前面給油口(63c)から流出した潤滑油が広く濡れ拡がることにより、各ゲート(51)の前面(51c)とこれに対向する円筒壁(30)のシール面(39a)との間に潤滑油が供給される。そのため、各ゲート(51)の前面(51c)と円筒壁(30)のシール面(39a)との間の摺動面が潤滑油によって潤滑されると共にシールされることとなる。これにより、各ゲート(51)の焼き付きが抑制されると共に、高圧の圧縮室(23)のガス冷媒が、各ゲート(51)の前面(51c)と円筒壁(30)のシール面(39a)との間の隙間からゲートロータ室(90)へ漏れ出るのが抑制される。
  -実施形態1の効果-
  本実施形態1によれば、ゲートロータ(50)のゲート(51)に、潤滑油による潤滑及びシールが必要なスクリューロータ(40)と摺動する側面(51a,51b)に直接給油するゲート給油通路(63)を形成することとした。そのため、螺旋溝(41)にインジェクションすることでゲートロータ(50)とスクリューロータ(40)との摺動面(3)に間接的に給油する従来の構成に比べて、少ない給油量でゲート(51)とスクリューロータ(40)との摺動面(3)に確実に潤滑油を供給することができ、これらの間を潤滑及びシールすることができる。また、このようにしてスクリューロータ(40)とゲート(51)との摺動面(3)に供給された潤滑油は、スクリューロータ(40)にも付着し、該スクリューロータ(40)の回転によって生じる遠心力により、スクリューロータ(40)の外周側へ濡れ拡がるため、スクリューロータ(40)と円筒壁(30)との隙間にも潤滑油を供給することができ、これらの間の隙間をシールすることができる。
  以上のように、本実施形態によれば、従来の大量の潤滑油を供給する構成のように、潤滑油の搬送動力及びスクリューロータ(40)の回転動力の増大による圧縮機効率の低下を招くことがなく、少量の潤滑油をゲート(51)とスクリューロータ(40)との摺動面(3)に直接供給することによって、ゲート(51)とスクリューロータ(40)との間及びスクリューロータ(40)と円筒壁(30)との間を潤滑及びシールすることができる。つまり、本実施形態によれば、給油量を低減してもゲートロータ(50)及びスクリューロータ(40)の摺動摩耗と圧縮室からの高圧流体の漏れとを抑制することができる。従って、本実施形態によれば、シングルスクリュー圧縮機(1)の信頼性を低下させることなく給油量を低減することにより、圧縮機効率の向上を図ることができる。
  また、本実施形態によれば、ゲート(51)のゲート給油通路(63)に、ゲート(51)のスクリューロータ(40)と摺動する側面(51a,51b)に開口する側面給油口(63b)だけでなく、ゲート(51)の前面(51c)に開口する前面給油口(63c)も設けることとした。そのため、ゲートロータ(50)のゲート(51)において、スクリューロータ(40)と摺動する側面(51a,51b)だけでなく、圧縮室(23)に面する前面(51c)にもゲート給油通路(63)の潤滑油を供給することができる。これにより、ゲート(51)の前面(51c)と円筒壁(30)との間に潤滑油が供給されるため、これらの間の摺動面を潤滑すると共にシールすることができる。従って、ゲート(51)の摺動による焼き付きを防止することができると共に、ゲート(51)の前面(51c)と円筒壁(30)との間の隙間を介した高圧の圧縮室(23)から円筒壁(30)の外側のゲートロータ(50)が設けられた低圧空間への流体漏れを抑制することができる。
  また、本実施形態によれば、ゲートロータ(50)を支持する支持部材(55)とゲートロータ(50)の根元側の連結部(52)との間に油溜まり(62)を形成し、ゲート(51)のゲート給油通路(63)の根元側の端部をこの油溜まり(62)に接続することとした。つまり、ゲート給油通路(63)は、油溜まり(62)から対応するゲート(51)に沿って径方向外側向きに延びている。このような構成により、ゲートロータ(50)が回転すると、その遠心力により、油溜まり(62)から潤滑油がゲート(51)のゲート給油通路(63)に流入し、径方向の外側に向かって流れて、側面給油口(63b)から流出する。つまり、容易な構成で、ゲートロータ(50)の回転による遠心力を利用して潤滑油を摺動面(3)に供給することができる。
  《実施形態2》
  実施形態2は、実施形態1のシングルスクリュー圧縮機(1)において、給油機構(60)と第1及び第2軸受ホルダ(94,95)の構成を一部変更して、ゲートロータ(50)の摺動面(3)への給油が必要に応じて間欠的に行われるように構成したものである。
  [給油機構]
  具体的には、図11及び図12に示すように、実施形態2では、2つの給油機構(60)が、それぞれ複数の軸内連通路(61)と複数の油溜まり(62)と複数のゲート給油通路(63)とを有している。なお、本実施形態2では、軸内連通路(61)と油溜まり(62)とゲート給油通路(63)とは、それぞれ11つずつ設けられている。
  図11に示すように、右側の給油機構(60)では、前軸部(58a)の内部に複数の軸内連通路(61)が形成されている。一方、図12に示すように、左側の給油機構(60)では、後軸部(58b)の内部に軸内連通路(61)が形成されている。各軸内連通路(61)は、縦連通路(61a)と横連通路(61b)とを有し、L字状に形成されている。
  図11に示すように、右側の給油機構(60)では、複数の縦連通路(61a)は、前軸部(58a)の一端から他端へ外周部を貫通するように軸方向に真っ直ぐ延びている。一方、図12に示すように、左側の給油機構(60)では、複数の縦連通路(61a)は、後軸部(58b)の一端から他端へ外周部を貫通するように軸方向に真っ直ぐ延びている。
  図11に示すように、右側の給油機構(60)では、複数の横連通路(61b)は、各縦連通路(61a)の他端(基部(56)側)からそれぞれ前軸部(58a)の径方向の外側へ延び、前軸部(58a)の外周面において開口している。一方、図12に示すように、左側の給油機構(60)では、複数の横連通路(61b)は、各縦連通路(61a)の他端(基部(56)側)からそれぞれ後軸部(58b)の径方向の外側へ延び、後軸部(58b)の外周面において開口している。
  このように、実施形態2では、各給油機構(60)において、軸内連通路(61)は、11枚のゲート(51)に一対一に対応するように、ゲート(51)と同数(11本)だけ形成されている。そして、各給油機構(60)において、11本の軸内連通路(61)は、11本の横連通路(61b)が対応するゲート(51)の延伸方向に向かって延びるように前軸部(58a)又は後軸部(58b)の周方向に等間隔に設けられている。
  各給油機構(60)において、複数の油溜まり(62)は、ゲートロータ(50)の根元側の連結部(52)と支持部材(55)の根元側の基部(56)との間に形成されている。具体的には、ゲートロータ(50)の連結部(52)に形成された複数の溝(62a)と支持部材(55)の基部(56)に形成された複数の溝(62b)とによって形成された複数の空間がそれぞれ油溜まり(62)に構成されている。ゲートロータ(50)側の溝(62a)及び支持部材(55)側の溝(62b)は、11枚のゲート(51)に一対一に対応するように、ゲート(51)と同数(11本)だけ形成されている。
  図11及び図13に示すように、右側の給油機構(60)では、支持部材(55)の基部(56)に形成された11本の溝(62b)は、それぞれ前軸部(58a)の外周面から径方向外側に延び、ゲートロータ(50)と対向する前面に開口する溝である。一方、図12及び図13に示すように、左側の給油機構(60)では、支持部材(55)の基部(56)に形成された11本の溝(62b)は、それぞれ後軸部(58b)の外周面から径方向外側に延び、ゲートロータ(50)と対向する前面に開口する溝である。各給油機構(60)において、上記軸内連通路(61)の11本の横連通路(61b)は、それぞれ対応する溝(62b)内において開口している。
  各給油機構(60)において、複数のゲート給油通路(63)は、ゲートロータ(50)の複数のゲート(51)に形成されている。本実施形態2においても、11本のゲート(51)の全てにゲート給油通路(63)が形成されている。実施形態2では、各給油機構(60)において、11本のゲート給油通路(63)は、11つの油溜まり(62)のそれぞれに一対一に対応するように形成されている。各ゲート給油通路(63)は、本体部(53)と複数の側方分岐部(54)と前方分岐部(59)を有している。
  具体的には、図11及び図12に示すように、各ゲートロータ(50)の各ゲート(51)の背面側には、径方向に延びる溝(63a)が形成されている。各ゲート(51)に形成された溝(63a)は、ゲートロータ(50)の連結部(52)に形成された11本の溝(62a)に一対一に対応し、対応する溝(62a)と一体に形成されている。各ゲート(51)に形成された溝(63a)は、各ゲート(51)を背面側から支持する各アーム部(57)の前面によって閉塞されている。この各アーム部(57)の前面によって閉塞された各溝(63a)内の空間が、ゲート給油通路(63)の本体部(53)を構成する。図13に示すように、各ゲート給油通路(63)の本体部(53)は、各ゲート(51)の根元側から先端側へ径方向に延び、根元側の端部が、ゲートロータ(50)の根元側の連結部(52)と支持部材(55)の根元側の基部(56)との間に形成された油溜まり(62)に接続されている。
  図13に示すように、各給油機構(60)において、複数の側方分岐部(54)は、各ゲート(51)において本体部(53)からゲートロータ(50)の周方向に延びる孔によって形成され、各ゲート(51)の側面(51a,51b)において開口する給油口(4)である側面給油口(63b)に接続されている。本実施形態2においても、各ゲート(51)において、回転方向の前側に4本の側方分岐部(54)が形成され、後側に4本の側方分岐部(54)が形成されている。これにより、本実施形態2においても、各ゲート(51)の回転方向の前側の側面(51a)に4つの側面給油口(63b)が開口し、後側の側面(51b)に4つの側面給油口(63b)が開口することとなる。前側の側面(51a)に形成された4つの側面給油口(63b)と後側の側面(51b)に形成された4つの側面給油口(63b)とは対応する位置に設けられている。各側面(51a,51b)において、4つの側面給油口(63b)は、各ゲート(51)の根元側から先端側へ略等間隔で設けられている。各側面給油口(63b)及び各側方分岐部(54)は、各ゲート(51)の側面(51a,51b)に油膜が形成される一方、油滴となって飛散しないような分量の潤滑油が流出する孔径に形成されている。
  なお、側面給油口(63b)及び各側方分岐部(54)の個数は、4つずつに限られず、4つより少なくてもよく多くてもよい。また、個数に応じて上記孔径を、各ゲート(51)の側面(51a,51b)に油膜が形成される一方、油滴となって飛散しないような分量の潤滑油が流出する大きさに変更するのが好ましい。
  また、本実施形態2においても、図8に示すように、各ゲート(51)のスクリューロータ(40)と摺動する側面(51a,51b)は、厚み方向の中央部が分厚くなるように形成され、この分厚い中央部がスクリューロータ(40)の螺旋溝(41)の溝側面(42a,42b)に当接するシールライン(L1,L2)となっている。そして、各側面給油口(63b)は、各ゲート(51)の側面(51a,51b)において、シールライン(L1,L2)よりも前側、即ち、圧縮室(23)側において開口するように形成されている。
  このような構成により、本実施形態2においても、各給油機構(60)において、各ゲート給油通路(63)は、各ゲート(51)のスクリューロータ(40)と摺動する側面(51a,51b)において開口する側面給油口(63b)に接続されている。
  また、本実施形態2においても、図11,12及び図8に示すように、前方分岐部(59)は、各ゲート(51)の径方向に延びる溝(63a)(本体部(53))から厚み方向(ゲートロータ(50)の軸方向に平行な方向)に延びて前面(51c)において開口する孔によって形成され、各ゲート(51)の前面(51c)において開口する給油口(4)である前面給油口(63c)に接続されている。本実施形態2においても、前方分岐部(59)は、複数のゲート(51)に1つずつ形成され、これにより、各ゲート(51)の前面(51c)に1つの前面給油口(63c)が開口することとなる。そして、各前面給油口(63c)は、各ゲート(51)の前面(51c)において、径方向の中央よりも内側寄りの位置において開口するように形成されている。本実施形態2においても、各前面給油口(63c)及び各前方分岐部(59)は、各ゲート(51)の前面(51c)に油膜が形成される一方、油滴となって飛散しないような分量の潤滑油が流出する孔径に形成されている。なお、前面給油口(63c)及び各前方分岐部(59)の個数は、1つずつに限られず、複数設けてもよい。また、個数に応じて上記孔径を各ゲート(51)の前面(51c)に油膜が形成されるような大きさに変更するのが好ましい。
  このような構成により、本実施形態2においても、各給油機構(60)において、各ゲート給油通路(63)は、各ゲート(51)の圧縮室(23)に面する前面(51c)において開口する前面給油口(63c)に接続されている。
  以上により、本実施形態2では、各給油機構(60)において、ゲートロータ(50)及び支持部材(55)に形成された複数の軸内連通路(61)と複数の油溜まり(62)と複数のゲート給油通路(63)とにより、複数の潤滑油の流通路が形成される。
  [軸受ホルダ]
  図11及び12に示すように、実施形態2では、第1及び第2軸受ホルダ(94,95)は、それぞれ有底円筒状の筒部(94a,95a)と、該筒部(94a,95a)の基端の周囲に形成されたフランジ部(94b,95b)と、閉塞部(94d,95d)とを有している。筒部(94a,95a)とフランジ部(94b,95b)とは、実施形態1と同様に構成されている。
  図11に示すように、右側の給油機構(60)では、第2軸受ホルダ(95)の閉塞部(95d)は、筒部(95a)の内側底面から下方に向かって突出し、下端が支持部材(55)の前軸部(58a)の上面に当接して該前軸部(58a)の内部に形成された11本の軸内連通路(61)のうちの一部の軸内連通路(61)の入口(縦連通路(61a)の入口)を閉塞している。一方、図12に示すように、左側の給油機構(60)では、第1軸受ホルダ(94)の閉塞部(94d)は、筒部(94a)の内側底面から下方に向かって突出し、下端が支持部材(55)の後軸部(58b)の上面に当接して該後軸部(58b)の内部に形成された11本の軸内連通路(61)のうちの一部の軸内連通路(61)の入口(縦連通路(61a)の入口)を閉塞している。
  本実施形態2では、図14に示すように、各給油機構(60)において、各軸受ホルダ(194,95)の閉塞部(94d,95d)は、前軸部(58a)又は後軸部(58b)に形成された11本の軸内連通路(61)の入口(61a-1~61a-11)のうち、スクリューロータ(40)側の4つの入口を閉塞せず、残りの7つの入口を閉塞するように構成されている。このような閉塞部(94d,95d)により、第1及び第2軸受ホルダ(94,95)内に形成される各油溜まり(94c,95c)は、スクリューロータ(40)側が広く、反対側が狭く形成されている。
  なお、各軸内連通路(61)が形成された前軸部(58a)又は後軸部(58b)は各ゲートロータ(50)の回転に伴って回転するが、閉塞部(94d,95d)は位置が固定されており、回転しない。そのため、各ゲートロータ(50)の回転角度位置に応じて、閉塞部(94d,95d)によって閉塞される軸内連通路(61)の入口(61a-1~61a-11)が異なることとなる。
  例えば、各ゲートロータ(50)の回転角度位置が図14に示す位置である場合、閉塞部(94d,95d)は、第1入口(61a-1)~第4入口(61a-4)を閉塞せず、第5入口(61a-5)~第11入口(61a-11)を閉塞する。これにより、第1入口(61a-1)~第4入口(61a-4)は、各油溜まり(94c,95c)に開口することとなる。そして、各ゲートロータ(50)の回転角度位置が矢印の方向に進むと、次に、閉塞部(94d,95d)は、第1入口(61a-1)~第3入口(61a-3)及び第11入口(61a-11)を閉塞せず、第4入口(61a-4)~第10入口(61a-10)を閉塞する。これにより、第1入口(61a-1)~第3入口(61a-3)及び第11入口(61a-11)が、各油溜まり(94c,95c)に開口することとなる。このように、本実施形態2では、各ゲートロータ(50)の回転角度位置が進むにつれて、閉塞部(94d,95d)によって閉塞される軸内連通路(61)の入口(61a-1~61a-11)が順に変更されるように構成されている。
  ところで、閉塞部(94d,95d)によって入口が閉塞された軸内連通路(61)は、各油溜まり(94c,95c)と遮断されるため、該油溜まり(94c,95c)の潤滑油が流入しない。そのため、入口が閉塞された軸内連通路(61)に順に接続される油溜まり(62)及びゲート給油通路(63)に潤滑油が流入しなくなる。つまり、ゲート給油通路(63)に潤滑油を供給する給油源である油溜まり(94c,95c)とゲート給油通路(63)とが遮断され、該ゲート給油通路(63)は、ゲートロータ(50)の摺動面(3)を構成するゲート(51)の側面(51a,51b)及び前面(51c)に潤滑油を供給しない非給油状態となる。一方、閉塞部(94d,95d)によって入口が閉塞されずに油溜まり(94c,95c)に開口する軸内連通路(61)には、油溜まり(94c,95c)の潤滑油が流入し、該軸内連通路(61)に順に接続される油溜まり(62)及びゲート給油通路(63)にも潤滑油が流入する。つまり、ゲート給油通路(63)に潤滑油を供給する給油源である油溜まり(94c,95c)とゲート給油通路(63)とが連通し、該ゲート給油通路(63)は、ゲートロータ(50)の摺動面(3)を構成するゲート(51)の側面(51a,51b)及び前面(51c)に潤滑油を供給する給油状態となる。
  以上のように、実施形態2では、各給油機構(60)において、軸内連通路(61)と油溜まり(62)とを、複数のゲート給油通路(63)に個別に接続されるように複数設けることとした。また、複数の軸内連通路(61)の入口(61a-1~61a-11)の一部を、閉塞部(94d,95d)によって閉塞すると共に、ゲートロータ(50)の回転に伴って、閉塞部(94d,95d)によって閉塞される軸内連通路(61)の入口(61a-1~61a-11)が変わるように構成することとした。このような構成により、複数のゲート給油通路(63)は、それぞれゲートロータ(50)の回転角度位置が所定の角度範囲A1~A11にあるときに、油溜まり(94c,95c)と連通して摺動面(3)に潤滑油を供給する給油状態となり、ゲートロータ(50)の回転角度位置が所定の角度範囲A1~A11外にあるときに、油溜まり(94c,95c)と遮断されて摺動面(3)に潤滑油を供給しない非給油状態となる。このような構成により、各給油機構(60)において、複数の軸内連通路(61)と複数の油溜まり(62)と閉塞部(94d,95d)は、ゲート給油通路(63)を給油状態と非給油状態とに切り換える切換機構(6)を構成する。
  -実施形態2の効果-
  以上のような構成により、実施形態2によれば、ゲート給油通路(63)を、該ゲート給油通路(63)から各摺動面(3)へ潤滑油が供給される給油状態と、ゲート給油通路(63)から摺動面(3)へ潤滑油が供給されない非給油状態とに切り換え可能に構成した。そのため、給油口(4)である側面給油口(63b)及び前面給油口(63c)が形成されたゲートロータ(50)の摺動面(3)(本実施形態2では、ゲート(51)の側面(51a,51b)及び前面(51c))が常時摺動するものではない場合に、該摺動面(3)が摺動せず、潤滑が不必要な際に、非給油状態に切り換えて該摺動面(3)への給油を停止することができる。従って、本実施形態2によれば、給油量を低減しつつゲートロータ(50)の摺動面(3)に確実に潤滑油を供給することができる。
  具体的には、例えば、切換機構(6)を、各ゲート(51)に形成されたゲート給油通路(63)が、各ゲート(51)の前面(51c)と円筒壁(30)のシール面(39a)とが対向する際及び各ゲート(51)の側面(51b,51c)とスクリューロータ(40)の溝内面(42)とが対向する際に給油状態となり、各ゲート(51)が円筒壁(30)ともスクリューロータ(40)にも対向しない際には非給油状態となるように構成する。このように構成によれば、各ゲート(51)が円筒壁(30)及びスクリューロータ(40)と摺動する際には、摺動面(3)を潤滑することができ、摺動せずにこれらの間に隙間がある場合には該隙間をシールすることができる。一方、各ゲート(51)が円筒壁(30)にもスクリューロータ(40)にも対向しない際には、ゲート給油通路(63)から摺動面(3)に潤滑油を供給しないことにより、給油量を低減することができる。
  また、本実施形態2によれば、上述したように、切換機構(6)により、複数のゲート給油通路(63)が、それぞれゲートロータ(50)の回転角度位置が所定の角度範囲A1~A11にあるときには、油溜まり(94c,95c)と連通して摺動面(3)に潤滑油を供給する給油状態に切り換わり、ゲートロータ(50)の回転角度位置が所定の角度範囲A1~A11外にあるときには、油溜まり(94c,95c)と遮断されて摺動面(3)に潤滑油を供給しない非給油状態に切り換わるように構成されている。本実施形態2によれば、このような容易な構成により、ゲートロータ(50)が1回転するうちに、各ゲート給油通路(63)を給油状態と非給油状態とに自動的に切り換えることができる。
  《実施形態3》
  実施形態3は、実施形態1で実施形態1のシングルスクリュー圧縮機(1)において、2つのゲートロータ(50)に設けていた給油機構(60)を、2つのゲートロータ(50)に噛み合うスクリューロータ(40)に設けたものである。
  [給油機構]
  具体的には、図15に示すように、実施形態3では、給油機構(60)は、スクリューロータ(40)の内部に形成され、複数の軸方向通路(65)と複数のスクリュー給油通路(66)(給油通路(5))とを有している。
  複数の軸方向通路(65)は、スクリューロータ(40)の螺旋溝(41)の溝底面(42c)よりも回転軸寄りの位置に形成されている。本実施形態3では、軸方向通路(65)は、6本形成され、スクリューロータ(40)の回転軸の外周側に等間隔に配置されている。各軸方向通路(65)は、スクリューロータ(40)の内部において回転軸方向に延びる孔によって形成されている。各軸方向通路(65)の吐出側端部(図2における右端部)は、スクリューロータ(40)の吐出側の端面(図2における右端面)に開口している。一方、各軸方向通路(65)の吸入側端部(図2における左端部)は、スクリューロータ(40)の吸入側の端面(図2における左端面)まで至らない。各軸方向通路(65)の吐出側端部は、例えば、駆動軸(21)を回転自在に支持する軸受ホルダ(35)の軸受(36)を潤滑した高圧圧力状態の潤滑油が溜まる空間に開口している。このような構成により、複数の軸方向通路(65)には、高圧圧力状態の潤滑油が流入し、複数の軸方向通路(65)は、高圧圧力状態の潤滑油が溜まる油溜まりとなる。
  複数のスクリュー給油通路(66)は、各軸方向通路(65)から少なくとも1本ずつスクリューロータ(40)の外周側に向かって延びるように形成されている。各スクリュー給油通路(66)は、本体部(66a)と複数の側方分岐部(66b)とを有している。
  具体的には、図15に示すように、各スクリュー給油通路(66)の本体部(66a)は、各軸方向通路(65)からスクリューロータ(40)の外周側に向かって延びる孔によって形成されている。本実施形態3では、各スクリュー給油通路(66)の本体部(66a)は、スクリューロータ(40)の螺旋溝(41)と螺旋溝(41)との間に形成される螺旋状の外周面(43)まで延び、該外周面(43)において開口している。つまり、各スクリュー給油通路(66)の本体部(66a)は、スクリューロータ(40)の外周面(43)において開口する給油口(4)である外周面給油口(66c)に接続されている。
  複数の側方分岐部(66b)は、各本体部(66a)から螺旋溝(41)の溝側面(42a,42b)に向かって延びる孔によって形成され、各螺旋溝(41)の溝側面(42a,42b)において開口する給油口(4)である溝側面給油口(溝内面給油口)(66d)に接続されている。本実施形態では、各スクリュー給油通路(66)の本体部(66a)に対し、回転方向の前側と後側とにそれぞれ2本ずつの側方分岐部(66b)が接続されている。これにより、本実施形態では、スクリューロータ(40)の螺旋溝(41)の溝内面(42)の回転方向の前側の溝側面(42a)に少なくとも2つの溝側面給油口(66d)が開口し、後側の溝側面(42b)に2つの溝側面給油口(66d)が開口することとなる。各溝側面給油口(66d)及び各側方分岐部(66b)は、スクリューロータ(40)の螺旋溝(41)の溝側面(42a,42b)に油膜が形成される一方、油滴となって飛散しないような分量の潤滑油が流出する孔径に形成されている。
  なお、溝側面給油口(66d)及び各側方分岐部(66b)の個数は、2つずつに限られず、2つより少なくてもよく多くてもよい。また、個数に応じて上記孔径を、スクリューロータ(40)の螺旋溝(41)の溝側面(42a,42b)に油膜が形成される一方、油滴となって飛散しないような分量の潤滑油が流出する大きさに変更するのが好ましい。
  このような構成により、各スクリュー給油通路(66)は、スクリューロータ(40)の螺旋溝(41)の溝側面(42a,42b)において開口する溝側面給油口(66d)に接続されている。
  なお、スクリュー給油通路(66)は、溝側面給油口(66d)が吸入行程中の圧縮室(23)において開口するような位置に設けることが好ましい。また、スクリュー給油通路(66)は、溝側面給油口(66d)が吸入行程中の圧縮室(23)において開口するような位置に設けた上、さらに、溝側面給油口(66d)が圧縮行程中及び吐出行程中の圧縮室(23)において開口するような位置に設けることとしてもよい。
  以上により、スクリューロータ(40)に形成された給油機構(60)では、軸方向通路(65)とスクリュー給油通路(66)とにより、出口に向かって複数に分岐する潤滑油の流通路が複数形成される。この潤滑油の流通路は、入口が、例えば、軸受(36)を潤滑した高圧圧力状態の潤滑油が溜まる空間において開口し、出口がスクリューロータ(40)の外周面(43)及び溝側面(42a,42b)において開口している。そのため、上記潤滑油の流通路では、入口と出口の圧力差により、入口付近の高圧圧力状態の潤滑油が流通路に流入し、出口に向かって流れ、スクリューロータ(40)の外周面(43)及び螺旋溝(41)の各溝側面(42a,42b)に流出することとなる。
  -運転動作-
  圧縮機構(20)における流体の圧縮動作については実施形態1と同様であるため、説明を省略する。以下では、実施形態1と異なる給油動作について説明する。
  -給油動作-
  スクリューロータ(40)及び2つのゲートロータ(50)が回転して圧縮室(23)において冷媒ガスが圧縮される際に、スクリューロータ(40)内に形成された給油機構(60)によって上記2つのゲートロータ(50)とスクリューロータ(40)との摺動面(3)に潤滑油が供給される。
  給油機構(60)では、上述したように、軸方向通路(65)とスクリュー給油通路(66)とによって形成される潤滑油の流通路の入口と出口との圧力差により、軸受(36)を潤滑して所定の空間に溜まる高圧圧力状態の潤滑油が、該流通路に流入し、出口に向かって流れる。具体的には、高圧圧力状態の潤滑油は、まず、油溜まりを構成する軸方向通路(65)に流入し、上述の圧力差による駆動力と、スクリューロータ(40)の回転によって生じる遠心力とにより、該軸方向通路(65)から外周側に延びる複数のスクリュー給油通路(66)に流入し、各スクリュー給油通路(66)において外側向きに流れる(図15を参照)。各スクリュー給油通路(66)を流れる潤滑油は、外周面給油口(66c)からスクリューロータ(40)の外周面(43)に流出すると共に溝側面給油口(66d)からスクリューロータ(40)の螺旋溝(41)の溝側面(42a,42b)に流出する。
  ところで、螺旋溝(41)が形成されたスクリューロータ(40)の外周面(43)は、該スクリューロータ(40)の外周を覆う円筒壁(30)の内周面(30a)と摺動するため、スクリューロータ(40)の外周面(43)と円筒壁(30)の内周面(30a)とが焼き付かないように潤滑する必要がある。一方、スクリューロータ(40)の外周面(43)と円筒壁(30)の内周面(30a)との間に隙間が形成される場合には、高圧の流体が低圧側に漏れないようにシールする必要がある。
  本実施形態3では、スクリューロータ(40)にスクリュー給油通路(66)が形成され、該スクリューロータ(40)の円筒壁(30)と摺動する外周面(43)において開口する外周面給油口(66c)に該スクリュー給油通路(66)が接続されている。このような構成により、スクリューロータ(40)では、スクリュー給油通路(66)の潤滑油が外周面給油口(66c)から円筒壁(30)の内周面(30a)と摺動するスクリューロータ(40)の外周面(43)に流出して該外周面(43)が潤滑される又は該外周面(43)と円筒壁(30)の内周面(30a)との間に隙間があるときには該隙間がシールされる。
  また、本実施形態3では、従来の構成と異なり、給油口(4)である外周面給油口(66c)が回転するスクリューロータ(40)の外周面(43)に開口している。そのため、外周面給油口(66c)から流出した潤滑油は、回転するスクリューロータ(40)において速やかに濡れ拡がり、外周面給油口(66c)が形成された外周面(43)以外の摺動面(3)にも速やかに潤滑油が供給されることとなる。また、スクリューロータ(40)及びゲートロータ(50)は、互いに噛み合って共に回転するため、スクリューロータ(40)に供給された潤滑油は、ゲートロータ(50)にも速やかに拡がり、ゲートロータ(50)の摺動面(3)にも速やかに潤滑油が供給されることとなる。
  また、本実施形態3では、スクリューロータ(40)にスクリュー給油通路(66)が形成され、該スクリューロータ(40)の螺旋溝(41)の溝内面(42)において開口する内面給油口である溝側面給油口(66d)に該給油通路(5)が接続されている。このような構成により、スクリューロータ(40)では、スクリュー給油通路(66)の潤滑油が溝側面給油口(66d)からゲートロータ(50)と摺動する螺旋溝(41)の溝側面(42a,42b)に流出して該溝側面(42a,42b)が潤滑される又は該溝側面(42a,42b)と摺動するゲートロータ(50)との間に隙間があるときには該隙間がシールされる。つまり、本実施形態3では、従来の構成と異なり、スクリューロータ(40)の溝側面(42a,42b)に開口する溝側面給油口(66d)から上記摺動面(3)となる溝側面(42a,42b)に直接的に潤滑油が供給される。
  また、本実施形態3では、従来の構成と異なり、給油口(4)である溝側面給油口(66d)が回転するスクリューロータ(40)の溝側面(42a,42b)に開口している。そのため、溝側面給油口(66d)から流出した潤滑油は、回転するスクリューロータ(40)において遠心力によって速やかに濡れ拡がり、溝側面(42a,42b)以外の摺動面(3)にも速やかに潤滑油が供給されることとなる。さらに、スクリューロータ(40)の溝側面(42a,42b)に供給された潤滑油は、スクリューロータ(40)に噛み合って共に回転するゲートロータ(50)にも付着し、該ゲートロータ(50)においても遠心力によって速やかに濡れ拡がり、該ゲートロータ(50)の摺動面(3)にも速やかに潤滑油が供給されることとなる。
  -実施形態3の効果-
  以上のような構成により、実施形態3によれば、噛み合って共に回転するスクリューロータ(40)及びゲートロータ(50)の少なくとも一方のスクリューロータ(40)に給油通路(5)であるスクリュー給油通路(66)を形成し、該スクリュー給油通路(66)を該スクリューロータ(40)の摺動面(3)である外周面(43)及び溝側面(42a,42b)において開口する給油口(4)である外周面給油口(66c)及び溝側面給油口(66d)に接続することにより、該外周面給油口(66c)及び溝側面給油口(66d)から摺動面(3)である外周面(43)及び溝側面(42a,42b)に直接的に潤滑油が供給されるようにした。そのため、円筒壁に形成された給油口から潤滑油をインジェクションすることによってスクリューロータ(40)の溝内面(42)に間接的に潤滑油を供給する従来の構成に比べて、少ない給油量でスクリューロータ(40)の摺動面(3)である外周面(43)及び溝側面(42a,42b)に確実に潤滑油を供給することができる。
  また、実施形態3によれば、回転しない円筒壁(30)に形成された給油口から潤滑油をインジェクションする従来の構成と異なり、給油口(4)である外周面給油口(66c)及び溝側面給油口(66d)を回転するスクリューロータ(40)の摺動面(3)である外周面(43)及び溝側面(42a,42b)に開口させて潤滑油を該摺動面(3)に流出させることとしている。そのため、外周面給油口(66c)及び溝側面給油口(66d)から流出した潤滑油は、回転するスクリューロータ(40)において速やかに濡れ拡がり、給油口(4)が形成された外周面(43)及び溝側面(42a,42b)以外の摺動面(3)にも速やかに潤滑油を供給することができる。また、スクリューロータ(40)及びゲートロータ(50)は、互いに噛み合って共に回転するため、スクリューロータ(40)に供給された潤滑油は、他方のゲートロータ(50)にも速やかに拡がり、該ゲートロータ(50)の摺動面(3)にも速やかに潤滑油を供給することができる。
  以上のように、本実施形態3によれば、従来の大量の潤滑油を供給する構成のように、潤滑油の搬送動力及びスクリューロータ(40)及びゲートロータ(50)の回転動力を増大させて圧縮機効率の低下を招くことがなく、少量の潤滑油をスクリューロータ(40)及びゲートロータ(50)の少なくとも一方の摺動面(3)に供給することによって、スクリューロータ(40)及びゲートロータ(50)の各摺動面(3)を潤滑する又は該摺動面(3)と摺動する摺動面との間に隙間があるときには該隙間をシールすることができる。つまり、本実施形態3によれば、給油量を低減してもスクリューロータ(40)及びゲートロータ(50)の各摺動面(3)の焼き付きと圧縮室からの高圧流体の漏れとを抑制することができる。従って、本実施形態3によれば、スクリュー圧縮機(1)の信頼性を低下させることなく給油量を低減することにより、圧縮機効率の向上を図ることができる。
  また、本実施形態3によれば、スクリューロータ(40)の螺旋溝(41)の溝底面(42c)よりも回転軸寄りの位置に油溜まりとなる軸方向通路(65)を形成し、スクリュー給油通路(66)の根元側の端部をこの軸方向通路(65)に接続することとした。つまり、スクリュー給油通路(66)は、スクリューロータ(40)内において軸方向通路(65)から外周側に向かって延びている。このような構成により、スクリューロータ(40)が回転すると、その遠心力により、軸方向通路(65)から潤滑油がスクリュー給油通路(66)に流入し、スクリューロータ(40)の外周側に向かって流れて、各給油口(4)(外周面給油口(66c)及び溝側面給油口(66d))から流出してスクリューロータ(40)の摺動面(3)(外周面(43)及び溝側面(42a,42b))に供給される。つまり、容易な構成で、スクリューロータ(40)の回転による遠心力を利用して潤滑油をスクリューロータ(40)の摺動面(3)(外周面(43)及び溝側面(42a,42b))に供給することができる。
  《その他の実施形態》
  上記実施形態1~3では、冷媒回路に設けられて冷媒を圧縮するシングルスクリュー圧縮機について説明したが、圧縮する対象(流体)は冷媒に限られず、圧縮機はシングルスクリュー圧縮機に限られない。雄ロータと雌ロータとを備えたツインスクリュー圧縮機でもよく、雄ロータの両側に雌ロータが設けられた圧縮機であってもよい。
  また、上記実施形態1,2では、前面給油口(63c)が形成されていたが、前面給油口(63c)は形成されていなくてもよい。また、逆に、側面給油口(63b)を省略し、ゲート給油通路(63)が前面給油口(63c)のみに接続されるものであってもよい。
  また、上記実施形態1,2では、ゲート(51)の回転方向の前側及び後側の両方の側面(51a,51b)にゲート給油通路(63)の側面給油口(63b)を開口させることとしていた。しかしながら、側面給油口(63b)は、ゲート(51)の少なくとも回転方向の後側の側面(51b)に開口させればよく、ゲート(51)の回転方向の前側の側面(51b)には開口させなくてもよい。ゲート(51)の回転方向の後側の側面(51b)は、スクリューロータ(40)と確実に摺動する摺動面(3)であり、スクリューロータ(40)によって押される面でもあるため、摺動摩耗が生じるおそれが高いが、このような後側の側面(51b)に側面給油口(63b)を開口させて、該側面(51b)と螺旋溝(41)の溝側面(42a,42b)との間に潤滑油を確実に供給することにより、ゲート(51)とスクリューロータ(40)の摺動摩耗を防止することができる。
  また同様に、上記実施形態3では、スクリューロータ(40)の螺旋溝(41)の溝側面(42a,42b)において回転方向の前側及び後側の両方の溝側面(42a,42b)にスクリュー給油通路(66)の溝側面給油口(66d)を開口指せることとしていた。しかしながら、溝側面給油口(66d)は、螺旋溝(41)の少なくとも回転方向の後側の溝側面(42b)に開口させればよく、螺旋溝(41)の回転方向の前側の溝側面(42a)に開口させなくてもよい。螺旋溝(41)の回転方向の後側の溝側面(42b)は、ゲートロータ(50)のゲート(51)と確実に摺動する摺動面(3)であり、ゲートロータ(50)のゲート(51)を押す面でもあるため、摺動摩耗が生じるおそれが高いが、このような螺旋溝(41)の回転方向の後側の溝側面(42b)に溝側面給油口(66d)を開口させて、該螺旋溝(41)の溝側面(42b)とゲートロータ(50)のゲート(51)との間に潤滑油を確実に供給することにより、ゲートロータ(50)のゲート(51)とスクリューロータ(40)の摺動摩耗を防止することができる。
  さらに、上記実施形態1,2では、ゲート(51)の側面(51a,51b)に、各ゲート(51)の根元側から先端側へ略等間隔で4つの側面給油口(63b)を開口させていた。しかしながら、側面給油口(63b)は、必ずしも等間隔で複数設ける必要はなく、各ゲート(51)の径方向の中央よりも根元側の位置に少なくとも1つ形成すればよい。このようにゲート(51)の径方向の中央よりも根元側の位置に側面給油口(63b)を少なくも1つ形成することにより、ゲート(51)の側面(51a,51b)の根元側に潤滑油を供給すると共に、遠心力を利用してゲート(51)の側面(51a,51b)の先端側に容易に拡げることができる。このような構成によれば、側面給油口(63b)の個数を最小限に抑えることで給油量をより低減することができる。
  また同様に、上記実施形態3では、スクリューロータ(40)の螺旋溝(41)の溝側面(42a,42b)に、2つの溝側面給油口(66d)を開口させていた。しかしながら、溝側面給油口(66d)は、必ずしも2つ設ける必要はなく、螺旋溝(41)の溝側面(42a,42b)において、スクリューロータ(40)の外周面(43)よりも螺旋溝(41)の溝底面(42c)寄りの位置に少なくも1つ形成すればよい。このようにスクリューロータ(40)の螺旋溝(41)の溝側面(42a,42b)において、外周面(43)よりも螺旋溝(41)の溝底面(42c)寄りの位置に溝側面給油口(66d)を少なくも1つ形成することにより、螺旋溝(41)の溝側面(42a,42b)において回転軸寄りの位置に潤滑油を供給すると共に、遠心力を利用して螺旋溝(41)の溝側面(42a,42b)の外周面(43)側に容易に拡げることができる。このような構成によれば、溝側面給油口(66d)の個数を最小限に抑えることで給油量をより低減することができる。
  また、上記実施形態1,2では、2つのゲートロータ(50)の両方にゲート給油通路(63)を備えた給油機構(60)を設けていたが、給油機構(60)は、一方のゲートロータ(50)のみに設けることとしてもよい。一方のゲートロータ(50)の給油機構(60)によって該ゲートロータ(50)とスクリューロータ(40)との摺動面(3)に潤滑油を供給することにより、スクリューロータ(40)の螺旋溝(41)の溝側面(42a,42b)に潤滑油が付着する。そのため、このスクリューロータ(40)の螺旋溝(41)の溝側面(42a,42b)に付着する潤滑油の量を調整することにより、螺旋溝(41)に潤滑油を残して、他方のゲートロータ(50)とスクリューロータ(40)との摺動面(3)の潤滑及びシールに利用することも可能である。
  さらに、上記実施形態1,2では、給油機構(60)のゲート給油通路(63)を、ゲートロータ(50)の全てのゲート(51)に形成していたが、ゲート給油通路(63)は、少なくとも1つのゲート(51)に形成すればよく、より好ましくは、スクリューロータ(40)の螺旋溝(41)の本数と同数(上記実施形態では、6つ)で隣り合うゲート(51)に形成すればよい。ゲート給油通路(63)からゲートロータ(50)とスクリューロータ(40)との摺動面(3)に供給される潤滑油の油量を側面給油口(63b)の個数及び孔径で調整することにより、ゲート給油通路(63)を全てのゲート(51)に形成しなくても、ゲートロータ(50)とスクリューロータ(40)との摺動面(3)の焼き付きを防止することは可能である。
  また、上記実施形態1,2では、図3における右側の給油機構(60)では、軸内連通路(61)を前軸部(58a)の内部に形成し、左側の給油機構(60)では、軸内連通路(61)を後軸部(58b)の内部に形成していた。しかしながら、軸内連通路(61)を形成する位置は上記実施形態のものに限られない。図3における右側の給油機構(60)において、軸内連通路(61)を後軸部(58b)の内部に形成し、左側の給油機構(60)において、軸内連通路(61)を前軸部(58a)の内部に形成してもよく、両方の給油機構(60)において軸内連通路(61)を前軸部(58a)に形成してもよく、両方の給油機構(60)において軸内連通路(61)を後軸部(58b)に形成してもよい。
  また、上記実施形態3では、スクリュー給油通路(66)は、スクリューロータ(40)の外周面(43)に開口する外周面給油口(66c)及び螺旋溝(41)の溝側面(42a,42b)に開口する溝側面給油口(66d)に接続されていた。しかしながら、スクリュー給油通路(66)は、外周面給油口(66c)及び溝側面給油口(66d)に接続されるものに限られない。例えば、スクリュー給油通路(66)は、スクリューロータ(40)の螺旋溝(41)の溝底面(42c)に開口する溝底面給油口に接続されるものであってもよい。さらに、スクリュー給油通路(66)は、外周面給油口(66c)のみ又は溝側面給油口(66d)のみに接続されるものであってもよい。
  また、上記実施形態2の切換機構(6)は、上述の構成に限られず、ゲート給油通路(63を、給油状態と非給油状態とに切り換えられるものであれば、いかなる構成であってもよい。さらに、上記実施形態2の切換機構(6)を、実施形態3のようなスクリューロータ(40)に形成された給油機構(60)に適用することも可能である。その場合、複数の軸方向通路(65)の吐出側端部が開口する高圧圧力状態の潤滑油が溜まる空間に、実施形態2のような閉塞部を設ければよい。
  なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
  以上説明したように、本発明は、スクリュー圧縮機について有用である。
      1   シングルスクリュー圧縮機(スクリュー圧縮機)
      3   摺動面
      4   給油口
      5   給油通路
      6   切換機構
     23   圧縮室
     30   円筒壁(ロータケーシング)
     39   開口
     40   スクリューロータ(第1のロータ)
     41   螺旋溝
     42   溝内面(摺動面)
     42a  溝側面(摺動面)
     42b  溝側面(摺動面)
     43   外周面(摺動面)
     50   ゲートロータ(第2のロータ)
     51   ゲート
     51a  前側の側面(側面、摺動面)
     51b  後側の側面(側面、摺動面)
     51c  前面(摺動面)
     52   連結部
     55   支持部材
     63   ゲート給油通路(給油通路)
     63b  側面給油口(給油口)
     63c  前面給油口(給油口)
     65   軸方向通路(油溜まり)
     66   スクリュー給油通路(給油通路)
     66c  外周面給油口(給油口)
     66d  溝側面給油口(給油口、溝内面給油口)

Claims (11)

  1.   螺旋溝(41)が形成された第1のロータ(40)と、
      上記第1のロータ(40)と噛み合って該第1のロータ(40)と共に回転する第2のロータ(50)と、
      少なくとも上記第1のロータ(40)の外周を覆い、該第1のロータ(40)及び上記第2のロータ(50)と共に上記螺旋溝(41)内に圧縮室(23)を区画するロータケーシング(30)とを備え、
      上記圧縮室(23)において流体を圧縮するスクリュー圧縮機であって、
      上記第1のロータ(40)及び上記第2のロータ(50)の少なくとも一方に、該ロータ(40,50)の摺動面(3)において開口する給油口(4)に接続され、潤滑油を該摺動面(3)に供給する給油通路(5)が形成されている
    ことを特徴とするスクリュー圧縮機。
  2.   請求項1において、
      上記給油通路(5)を、上記摺動面(3)に潤滑油を供給する給油状態と、上記摺動面(3)に潤滑油を供給しない非給油状態とに切り換える切換機構(6)を備えている
    ことを特徴とするスクリュー圧縮機。
  3.   請求項2において、
      上記切換機構(6)は、上記給油通路(5)が形成された上記ロータ(40,50)の回転角度位置が所定の角度範囲にあるときに、上記給油通路(5)に潤滑油を供給する給油源(94c,95c)と該給油通路(5)とを連通させることによって該給油通路(5)を上記給油状態に切り換え、上記ロータ(40,50)の回転角度位置が上記所定の角度範囲外にあるときに、上記給油源(94c,95c)と上記給油通路(5)とを遮断することによって該給油通路(5)を上記非給油状態に切り換えるように構成されている
    ことを特徴とするスクリュー圧縮機。
  4.   請求項1乃至3のいずれか1つにおいて、
      上記第1のロータ(40)は、上記ロータケーシング(30)を構成する円筒壁(30)に回転自在に収容されたスクリューロータ(40)によって構成され、
      上記第2のロータ(50)は、複数の平板状のゲート(51)を有して歯車状に構成され、上記円筒壁(30)の外側に設けられて一部の上記ゲート(51)が該円筒壁(30)に形成された開口(39)から内部に進入して上記スクリューロータ(40)と噛み合うことにより、該スクリューロータ(40)と共に回転するゲートロータ(50)によって構成され、
      上記給油通路(5)は、上記ゲートロータ(50)の上記ゲート(51)に形成され、
      上記給油口(4)は、上記ゲート(51)の上記スクリューロータ(40)と摺動する上記摺動面(3)を構成する側面(51a,51b)において開口する側面給油口(63b)である
    ことを特徴とするスクリュー圧縮機。
  5.   請求項4において、
      上記側面給油口(63b)は、上記ゲート(51)の少なくとも回転方向の後側の側面(51b)において開口している
    ことを特徴とするスクリュー圧縮機。
  6.   請求項4又は5において、
      上記給油通路(5)は、上記ゲート(51)の上記圧縮室(23)に面する前面(51c)において開口する前面給油口(63c)に接続されている
    ことを特徴とするスクリュー圧縮機。
  7.   請求項4乃至6のいずれか1つにおいて、
      上記側面給油口(63b)は、上記ゲート(51)の径方向の中央よりも根元側の位置に少なくも1つ形成されている
    ことを特徴とするスクリュー圧縮機。
  8.   請求項4乃至7のいずれか1つにおいて、
      上記ゲートロータ(50)を上記圧縮室(23)とは逆の背面側から支持する支持部材(55)を備え、
      上記ゲートロータ(50)の上記複数のゲート(51)を連結する根元側の連結部(52)と上記支持部材(55)との間には、潤滑油が供給される油溜まり(62)が形成され、
      上記給油通路(5)は、上記ゲート(51)の径方向に延び、根元側の端部が上記油溜まり(62)に接続されている
    ことを特徴とするスクリュー圧縮機。
  9.   請求項1乃至3のいずれか1つにおいて、
      上記給油通路(5)は、上記第1のロータ(40)に形成され、
      上記給油口(4)は、上記第1のロータ(40)の上記第2のロータ(50)と摺動する上記摺動面(3)を構成する上記螺旋溝(41)の溝内面(42)において開口する溝内面給油口(66d)である
    ことを特徴とするスクリュー圧縮機。
  10.   請求項1乃至3のいずれか1つにおいて、
      上記給油通路(5)は、上記第1のロータ(40)に形成され、
      上記給油口(4)は、上記第1のロータ(40)の上記ロータケーシング(30)と摺動する上記摺動面(3)を構成する上記第1のロータ(40)の外周面(43)において開口する外周面給油口(66c)である
    ことを特徴とするスクリュー圧縮機。
  11.   請求項9又は10において、
      上記第1のロータ(40)には、上記螺旋溝(41)の溝底面(42c)よりも回転軸寄りの位置に、潤滑油が供給される油溜まり(44)が形成され、
      上記給油通路(5)は、上記油溜まり(44)から上記第1のロータ(40)の外周側に向かって延びている
    ことを特徴とするスクリュー圧縮機。
PCT/JP2018/004747 2017-02-09 2018-02-09 スクリュー圧縮機 WO2018147452A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880010686.9A CN110446857B (zh) 2017-02-09 2018-02-09 螺杆压缩机
US16/484,796 US20200003211A1 (en) 2017-02-09 2018-02-09 Screw compressor
EP18750981.5A EP3564532B1 (en) 2017-02-09 2018-02-09 Screw compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017021955 2017-02-09
JP2017-021955 2017-02-09

Publications (1)

Publication Number Publication Date
WO2018147452A1 true WO2018147452A1 (ja) 2018-08-16

Family

ID=63107207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004747 WO2018147452A1 (ja) 2017-02-09 2018-02-09 スクリュー圧縮機

Country Status (4)

Country Link
US (1) US20200003211A1 (ja)
EP (1) EP3564532B1 (ja)
CN (1) CN110446857B (ja)
WO (1) WO2018147452A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11300124B2 (en) * 2017-03-21 2022-04-12 Daikin Industries, Ltd. Single-screw compressor with a gap adjuster mechanism
CN116608129B (zh) * 2023-07-19 2023-09-12 天津乐科节能科技有限公司 一种单螺杆压缩机啮合副的喷气结构

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB923042A (en) * 1960-06-22 1963-04-10 Fernand Zimmern Compressor
JPS50110109A (ja) * 1974-02-08 1975-08-29
JPS5670186U (ja) * 1979-11-02 1981-06-10
JPH025778A (ja) * 1987-12-03 1990-01-10 Bernard Zimmer 高圧下の流動体を処理する方法及びスクリュウ装置
JP2008127990A (ja) * 2006-11-16 2008-06-05 Hitachi Industrial Equipment Systems Co Ltd スクリュー圧縮機
JP2009174524A (ja) * 2007-12-28 2009-08-06 Daikin Ind Ltd シングルスクリュー圧縮機
JP2009197794A (ja) 2008-01-23 2009-09-03 Daikin Ind Ltd スクリュー圧縮機
JP2017015054A (ja) * 2015-07-06 2017-01-19 ダイキン工業株式会社 シングルスクリュー圧縮機

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3736079A (en) * 1972-03-29 1973-05-29 Ford Motor Co Lubricating oil flow control for a rotary compressor
SU1432270A2 (ru) * 1986-10-24 1988-10-23 Ленинградский технологический институт холодильной промышленности Однороторна винтова машина
WO1995018945A1 (en) * 1994-01-10 1995-07-13 Fresco Anthony N Cooling and sealing rotary screw compressors
CN105179236B (zh) * 2015-07-24 2017-05-24 宝鸡市博磊化工机械有限公司 一种高效耐用单螺杆压缩机

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB923042A (en) * 1960-06-22 1963-04-10 Fernand Zimmern Compressor
JPS50110109A (ja) * 1974-02-08 1975-08-29
JPS5670186U (ja) * 1979-11-02 1981-06-10
JPH025778A (ja) * 1987-12-03 1990-01-10 Bernard Zimmer 高圧下の流動体を処理する方法及びスクリュウ装置
JP2008127990A (ja) * 2006-11-16 2008-06-05 Hitachi Industrial Equipment Systems Co Ltd スクリュー圧縮機
JP2009174524A (ja) * 2007-12-28 2009-08-06 Daikin Ind Ltd シングルスクリュー圧縮機
JP2009197794A (ja) 2008-01-23 2009-09-03 Daikin Ind Ltd スクリュー圧縮機
JP2017015054A (ja) * 2015-07-06 2017-01-19 ダイキン工業株式会社 シングルスクリュー圧縮機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3564532A4

Also Published As

Publication number Publication date
EP3564532A4 (en) 2020-07-01
US20200003211A1 (en) 2020-01-02
EP3564532B1 (en) 2024-05-01
CN110446857B (zh) 2021-12-14
CN110446857A (zh) 2019-11-12
EP3564532A1 (en) 2019-11-06

Similar Documents

Publication Publication Date Title
JP5765379B2 (ja) スクロール圧縮機
EP1679441B1 (en) Scroll compressor
US20150030487A1 (en) Compressor
JP3731068B2 (ja) 回転式圧縮機
JP5170197B2 (ja) スクロール圧縮機
CN107304765B (zh) 在密封座中包括润滑槽的旋转泵
JP5880513B2 (ja) 圧縮機
CN115244302B (zh) 螺杆压缩机及制冷装置
WO2019044867A1 (ja) スクロール型圧縮機
WO2018147452A1 (ja) スクリュー圧縮機
WO2007077856A1 (ja) 圧縮機
JP7057532B2 (ja) スクロール圧縮機
CN107893758B (zh) 涡旋压缩机及具有其的空调器
CN111417784B (zh) 供液式螺杆压缩机
JP2006241993A (ja) スクロール型圧縮機
JP5660151B2 (ja) スクロール圧縮機
JP6685100B2 (ja) ロータリ圧縮機
JP7468428B2 (ja) スクロール型圧縮機
CN116906328B (zh) 一种一体式摆动转子式泵体组件
JP2019019678A (ja) スクリュー圧縮機
KR20130111159A (ko) 2단 압축기 유니트 및 이를 갖는 압축기 시스템
US20190316587A1 (en) Motor-operated compressor
JP2004190510A (ja) 気体圧縮機
JPH025919B2 (ja)
WO2020261558A1 (ja) スクロール圧縮機および冷凍サイクル装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18750981

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018750981

Country of ref document: EP

Effective date: 20190729

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP