WO2018147008A1 - Substrate processing method and substrate processing device - Google Patents

Substrate processing method and substrate processing device Download PDF

Info

Publication number
WO2018147008A1
WO2018147008A1 PCT/JP2018/001012 JP2018001012W WO2018147008A1 WO 2018147008 A1 WO2018147008 A1 WO 2018147008A1 JP 2018001012 W JP2018001012 W JP 2018001012W WO 2018147008 A1 WO2018147008 A1 WO 2018147008A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
film
liquid
thickness
liquid film
Prior art date
Application number
PCT/JP2018/001012
Other languages
French (fr)
Japanese (ja)
Inventor
鮎美 樋口
晃久 岩▲崎▼
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Priority to CN201880008230.9A priority Critical patent/CN110214365B/en
Priority to KR1020197022292A priority patent/KR102301802B1/en
Publication of WO2018147008A1 publication Critical patent/WO2018147008A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02052Wet cleaning only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02307Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a liquid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/6715Apparatus for applying a liquid, a resin, an ink or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67276Production flow monitoring, e.g. for increasing throughput
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68764Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a movable susceptor, stage or support, others than those only rotating on their own vertical axis, e.g. susceptors on a rotating caroussel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions

Definitions

  • the present invention relates to a substrate processing method and a substrate processing apparatus for processing a substrate.
  • substrates to be processed include semiconductor wafers, substrates for liquid crystal display devices, substrates for FPD (Flat Panel Display) such as organic EL (Electroluminescence) display devices, substrates for optical disks, substrates for magnetic disks, and magneto-optical disks.
  • FPD Full Panel Display
  • Substrates such as a substrate, a photomask substrate, a ceramic substrate, and a solar cell substrate are included.
  • a cleaning process is performed to remove foreign substances from a substrate such as a semiconductor wafer or a glass substrate for liquid crystal display.
  • a back-end process BEOL: Back End the Line
  • a polymer that removes polymer residues generated by dry etching or ashing A removal step is performed.
  • a treatment liquid such as a polymer removal liquid is supplied to the surface of the substrate where the metal wiring (for example, copper wiring) is exposed.
  • the metal wiring on the substrate is oxidized by oxygen (dissolved oxygen) dissolved in the treatment liquid, and a metal oxide is formed. Since this metal oxide is corroded (etched) by the processing liquid, the quality of a device formed from this substrate may be deteriorated.
  • the etching amount of the metal wiring increases as the oxygen concentration in the processing liquid increases. Further, oxidation of the metal wiring on the substrate due to dissolved oxygen in the processing liquid can also occur in the processing of the substrate with a processing liquid other than the polymer removal liquid.
  • Patent Document 1 an inert gas is supplied between the substrate held by the spin chuck and the shielding plate facing the upper surface of the substrate, thereby preventing the atmosphere between the shielding plate and the substrate. It has been proposed to replace with an active gas. Thereby, since the oxygen concentration in the atmosphere around the substrate is reduced, the amount of oxygen dissolved in the processing liquid supplied onto the substrate is reduced.
  • the time required for substrate processing can be shortened and the throughput (the number of substrates processed per unit time) can be improved.
  • an object of the present invention is to provide a metal film resulting from oxygen in a processing solution without reducing the oxygen concentration in the atmosphere around the substrate in a configuration for processing a substrate having a surface with an exposed metal film. It is providing the substrate processing method and substrate processing apparatus which can suppress the oxidation of this.
  • a substrate holding step for horizontally holding a substrate having an upper surface with an exposed metal film, a substrate rotating step for rotating the substrate around a rotation axis along the vertical direction, and a deaeration A liquid film forming step of forming a liquid film of the processing liquid on the substrate by supplying a processing liquid to the upper surface of the substrate; and a thickness of the liquid film so that the thickness of the liquid film is 100 ⁇ m or more. And a film thickness adjusting step for adjusting the thickness.
  • the liquid film of the processing liquid is formed on the substrate in the liquid film forming step.
  • This liquid film covers the metal film exposed on the surface of the substrate.
  • the film thickness adjusting step the thickness of the liquid film formed on the substrate in the liquid film forming step is adjusted to be 100 ⁇ m or more. Therefore, the liquid film after adjustment is sufficiently thick.
  • the liquid film is sufficiently thick, it is possible to prevent oxygen dissolved in the treatment liquid from reaching the upper surface of the substrate by exposing the liquid film to the atmosphere around the substrate. Further, since the liquid film is sufficiently thick, the volume of the liquid film is sufficiently large. Therefore, it is possible to suppress an increase in the oxygen concentration in the liquid film due to the dissolution of oxygen in the processing liquid supplied to the upper surface of the substrate. Therefore, oxygen that reacts with the metal film is reduced, so that oxidation of the metal film can be suppressed.
  • the film thickness adjusting step includes a step of adjusting the thickness of the liquid film by controlling the rotation of the substrate so that the rotation speed of the substrate is 300 rpm or less.
  • the thickness of the liquid film is adjusted by controlling the rotation of the substrate so that the rotation speed of the substrate is 300 rpm or less.
  • the liquid film can be made sufficiently thick by controlling the rotation of the substrate so that the rotation speed of the substrate becomes sufficiently small (300 rpm or less). Therefore, oxidation of the metal film can be suppressed.
  • the film thickness adjusting step controls the supply amount of the treatment liquid so that the supply amount of the treatment liquid is 2.0 L / min or more. Including the step of adjusting.
  • the processing liquid scatters out of the substrate. For this reason, when the supply amount of the processing liquid decreases, the amount of the processing liquid on the substrate decreases. Thereby, the thickness of the liquid film may be insufficient.
  • the liquid film is made sufficiently thick by controlling the supply amount of the treatment liquid so that the supply amount of the treatment liquid is sufficiently increased (2.0 L / min or more). be able to. Therefore, oxidation of the metal film can be suppressed.
  • the liquid film forming step includes a step of forming the liquid film by supplying the processing liquid toward the rotation center of the upper surface of the substrate.
  • the said film thickness adjustment process includes the process of adjusting the thickness of the said liquid film by supplying gas toward the side position of the rotation center of the upper surface of the said board
  • the liquid film is formed by supplying the processing liquid toward the rotation center of the upper surface of the substrate.
  • the processing liquid When the processing liquid is supplied toward the center of rotation of the upper surface of the substrate, a position lateral to the center of rotation of the upper surface of the substrate (particularly from a position about 20 mm from the center of rotation of the upper surface of the substrate and the center of rotation of the upper surface of the substrate At a position of about 80 mm, the liquid film tends to be thick. On the other hand, the liquid film tends to be thin near the periphery of the upper surface of the substrate. That is, unevenness in the thickness of the liquid film tends to occur in the upper surface of the substrate.
  • a position on the side of the rotation center of the upper surface of the substrate (for example, a position between about 20 mm from the rotation center of the upper surface of the substrate and about 80 mm from the rotation center of the upper surface of the substrate).
  • the gas pushes the processing liquid toward the peripheral edge of the substrate, in addition to the centrifugal force, by supplying the gas toward the substrate).
  • the speed at which the processing liquid located at the side of the rotation center on the upper surface of the substrate moves toward the peripheral edge of the substrate is increased.
  • the thickness of the liquid film is reduced at a position on the side of the rotation center on the upper surface of the substrate, and the thickness of the liquid film is increased near the periphery of the upper surface of the substrate. Thereby, the unevenness of the thickness of the liquid film can be reduced.
  • the substrate processing method further includes a film thickness measuring step of measuring the thickness of the liquid film adjusted in the film thickness adjusting step.
  • the thickness of the liquid film adjusted in the film thickness adjustment process is measured. Therefore, it is possible to detect an abnormality in the substrate processing at an early stage such that the thickness of the liquid film deviates from the intended value in the film thickness adjustment step.
  • the film thickness adjusting step includes a step of adjusting the thickness of the liquid film based on the thickness of the liquid film measured in the film thickness measuring step.
  • the thickness of the liquid film is adjusted based on the thickness of the liquid film measured in the film thickness measuring step. Therefore, in the film thickness adjustment step, the thickness of the liquid film can be adjusted with high accuracy.
  • the present invention further includes a substrate holding unit that horizontally holds a substrate having an upper surface from which the metal film is exposed, a substrate rotating unit that rotates the substrate around a rotation axis along the vertical direction, and a degassed processing liquid.
  • a substrate processing apparatus including a processing liquid supply unit that supplies an upper surface of the substrate, and a controller that controls the substrate holding unit, the substrate rotation unit, and the processing liquid supply unit.
  • the controller holds the substrate on the substrate holding unit, rotates the substrate around the rotation axis, and supplies the processing liquid to the upper surface of the substrate. And a liquid film forming step of forming a liquid film of the processing liquid on the substrate and a film thickness adjusting step of adjusting the thickness of the liquid film so that the thickness of the liquid film is 100 ⁇ m or more. Is programmed to do so.
  • a liquid film of the processing liquid is formed on the substrate.
  • This liquid film covers the metal film exposed on the surface of the substrate.
  • the thickness of the liquid film formed on the substrate in the liquid film forming step is adjusted to be 100 ⁇ m or more. Therefore, the liquid film after adjustment is sufficiently thick.
  • the liquid film is sufficiently thick, it is possible to prevent oxygen dissolved in the treatment liquid from reaching the upper surface of the substrate by exposing the liquid film to the atmosphere around the substrate. Further, since the liquid film is sufficiently thick, the volume of the liquid film is sufficiently large. Therefore, it is possible to suppress an increase in the oxygen concentration in the liquid film due to the dissolution of oxygen in the processing liquid supplied to the upper surface of the substrate. Therefore, oxygen that reacts with the metal film is reduced, so that oxidation of the metal film can be suppressed.
  • the film thickness adjusting step includes a step of adjusting the thickness of the liquid film by controlling the rotation of the substrate so that the rotation speed of the substrate is 300 rpm or less.
  • the rotation of the substrate is controlled so that the rotation speed of the substrate becomes sufficiently small (300 rpm or less). Therefore, the liquid film can be made sufficiently thick. Therefore, oxidation of the metal film can be suppressed.
  • the film thickness adjusting step controls the supply amount of the treatment liquid so that the supply amount of the treatment liquid is 2.0 L / min or more. Including the step of adjusting.
  • the supply amount of the treatment liquid is controlled so that the supply amount of the treatment liquid is sufficiently increased (2.0 L / min or more). Therefore, the liquid film can be made sufficiently thick. Therefore, oxidation of the metal film can be suppressed.
  • the liquid film forming step includes a step of forming the liquid film by supplying the processing liquid toward the rotation center of the upper surface of the substrate.
  • the said film thickness adjustment process includes the process of adjusting the thickness of the said liquid film by supplying gas toward the side position of the rotation center of the upper surface of the said board
  • the liquid film is formed by supplying the processing liquid toward the rotation center of the upper surface of the substrate.
  • the film thickness adjustment step toward a position on the side of the rotation center of the upper surface of the substrate (for example, a position between 20 mm from the rotation center of the upper surface of the substrate and 80 mm from the rotation center of the upper surface of the substrate). Gas is supplied.
  • a force for the gas to push the treatment liquid toward the peripheral side of the substrate acts on the treatment liquid at a position on the side of the rotation center on the upper surface of the substrate.
  • the speed at which the processing liquid located at the side of the rotation center on the upper surface of the substrate moves toward the peripheral edge of the substrate is increased. Therefore, the thickness of the liquid film is reduced at a position on the side of the rotation center on the upper surface of the substrate, and the thickness of the liquid film is increased near the periphery of the upper surface of the substrate. Thereby, the unevenness of the thickness of the liquid film can be reduced.
  • the substrate processing apparatus further includes a film thickness measuring unit capable of measuring the thickness of the liquid film.
  • the said controller performs the film thickness measurement process which measures the thickness of the said liquid film adjusted in the said film thickness adjustment process by controlling the said film thickness measurement unit.
  • the thickness of the liquid film adjusted in the film thickness adjustment process is measured. Therefore, it is possible to detect an abnormality in the substrate processing at an early stage such that the thickness of the liquid film deviates from the intended value in the film thickness adjustment step.
  • the film thickness adjusting step includes a step of adjusting the thickness of the liquid film based on the thickness of the liquid film measured in the film thickness measuring step.
  • the thickness of the liquid film is adjusted based on the thickness of the liquid film measured in the film thickness measuring step. Therefore, in the film thickness adjustment step, the thickness of the liquid film can be adjusted with high accuracy.
  • FIG. 1 is an illustrative plan view for explaining an internal layout of a substrate processing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram for explaining a configuration example of a processing unit provided in the substrate processing apparatus.
  • FIG. 3 is a block diagram for explaining an electrical configuration of a main part of the substrate processing apparatus.
  • FIG. 4 is a cross-sectional view for explaining an example of a surface state of a substrate processed by the substrate processing apparatus.
  • FIG. 5 is a flowchart for explaining an example of substrate processing by the substrate processing apparatus.
  • FIG. 6 is a schematic cross-sectional view for explaining the state of the chemical treatment (S2 in FIG. 5).
  • FIG. 1 is an illustrative plan view for explaining an internal layout of a substrate processing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram for explaining a configuration example of a processing unit provided in the substrate processing apparatus.
  • FIG. 3 is a block diagram for explaining an electrical configuration of a main
  • FIG. 7 is a graph showing the results of measuring the change in the thickness of the hydrofluoric acid liquid film due to the change in the rotation speed of the substrate.
  • FIG. 8 is a graph showing the results of measuring the change in the etching amount of the Cu film due to the change in the thickness of the liquid film of hydrofluoric acid.
  • FIG. 1 is an illustrative plan view for explaining an internal layout of a substrate processing apparatus 1 according to an embodiment of the present invention.
  • the substrate processing apparatus 1 is a single wafer processing apparatus that processes substrates W such as silicon wafers one by one.
  • the substrate W is a disk-shaped substrate.
  • the substrate processing apparatus 1 has a load on which a plurality of processing units 2 for processing a substrate W with a processing solution such as a chemical solution or a rinsing solution, and a carrier C for storing a plurality of substrates W processed by the processing unit 2 are placed. It includes a port LP, transfer robots IR and CR that transfer the substrate W between the load port LP and the processing unit 2, and a controller 3 that controls the substrate processing apparatus 1.
  • the transfer robot IR transfers the substrate W between the carrier C and the transfer robot CR.
  • the transfer robot CR transfers the substrate W between the transfer robot IR and the processing unit 2.
  • the plurality of processing units 2 have the same configuration, for example.
  • FIG. 2 is a schematic diagram for explaining a configuration example of the processing unit 2.
  • the processing unit 2 includes a spin chuck 5 that rotates the substrate W around a vertical rotation axis A1 that passes through the center of the substrate W while holding a single substrate W in a horizontal posture, and a cylindrical shape that surrounds the spin chuck 5. Cup 6.
  • the processing unit 2 includes a chemical solution supply unit 7 that supplies a chemical solution to the upper surface (front surface) of the substrate W, and a rinse solution supply unit 8 that supplies a rinse solution such as deionized water (DIW) to the upper surface of the substrate W.
  • a gas supply unit 9 for supplying a gas such as nitrogen (N 2 ) gas to the upper surface of the substrate W, and a film thickness measuring unit 10 for measuring the thickness of a liquid film such as a processing liquid formed on the substrate W.
  • N 2 nitrogen
  • the processing unit 2 further includes a chamber 14 (see FIG. 1) that accommodates the cup 6.
  • a chamber 14 In the chamber 14, an entrance (not shown) for carrying the substrate W into the chamber 14 and carrying the substrate W out of the chamber 14 is formed.
  • the chamber 14 is provided with a shutter unit (not shown) that opens and closes the entrance.
  • the spin chuck 5 includes a chuck pin 20, a spin base 21, a rotating shaft 22, and an electric motor 23.
  • the rotation shaft 22 extends in the vertical direction along the rotation axis A1. The upper end of the rotation shaft 22 is coupled to the center of the lower surface of the spin base 21.
  • the spin base 21 has a disk shape along the horizontal direction.
  • a plurality of chuck pins 20 are arranged at intervals in the circumferential direction on the peripheral edge of the upper surface of the spin base 21.
  • the spin base 21 and the chuck pin 20 are included in a substrate holding unit that holds the substrate W horizontally.
  • the substrate holding unit is also called a substrate holder.
  • the electric motor 23 gives a rotational force to the rotary shaft 22.
  • the rotating shaft 22 is rotated by the electric motor 23, the substrate W is rotated around the rotating axis A1.
  • the electric motor 23 is included in a substrate rotation unit that rotates the substrate W around the rotation axis A1.
  • the chemical solution supply unit 7 includes a chemical solution nozzle 30 for supplying a chemical solution to the upper surface of the substrate W, and a chemical solution supply pipe 31 coupled to the chemical solution nozzle 30.
  • a chemical solution such as hydrofluoric acid (hydrogen fluoride water: HF) is supplied to the chemical solution supply pipe 31 from a chemical solution supply source.
  • hydrofluoric acid hydrogen fluoride water: HF
  • the chemical liquid supply unit 7 further includes a chemical liquid supply valve 32, a chemical liquid flow rate adjustment valve 33, and a chemical liquid deaeration unit 34 interposed in the chemical liquid supply pipe 31.
  • the chemical liquid degassing unit 34 may be an inert gas bubbling chemical liquid cabinet.
  • the chemical liquid supply valve 32 opens and closes the flow path of the chemical liquid.
  • the chemical flow rate adjusting valve 33 adjusts the flow rate of the chemical solution in the chemical solution supply pipe 31 according to the opening degree.
  • the chemical liquid degassing unit 34 removes oxygen from the chemical liquid supplied to the chemical liquid supply pipe 31 from the chemical liquid supply source.
  • the chemical solution is not limited to hydrofluoric acid, but sulfuric acid, acetic acid, nitric acid, hydrochloric acid, hydrofluoric acid, buffered hydrofluoric acid (BHF), dilute hydrofluoric acid (DHF), aqueous ammonia, hydrogen peroxide, organic acid (for example, citric acid) , Oxalic acid, etc.), an organic alkali (for example, TMAH: tetramethylammonium hydroxide, etc.), a surfactant, and a liquid containing at least one of a corrosion inhibitor.
  • Examples of the chemical solution in which these are mixed include SPM (sulfuric acid hydrogen peroxide solution mixture), SC1 (ammonia hydrogen peroxide solution mixture), SC2 (hydrochloric acid hydrogen peroxide solution mixture), and the like.
  • the chemical nozzle 30 is moved by the chemical nozzle moving unit 35 in the vertical direction (direction parallel to the rotation axis A1) and in the horizontal direction (direction perpendicular to the rotation axis A1).
  • the chemical nozzle 30 can move between the center position and the retracted position by moving in the horizontal direction.
  • the chemical nozzle 30 faces the rotation center C1 on the upper surface of the substrate W.
  • the chemical liquid nozzle 30 does not face the upper surface of the substrate W when it is located at the retracted position.
  • the chemical liquid nozzle 30 When the chemical liquid nozzle 30 is located at the retracted position, it may be located outside the cup 6 in a plan view.
  • the rotation center C1 on the upper surface of the substrate W is a position intersecting the rotation axis A1 on the upper surface of the substrate W.
  • the chemical nozzle 30 may be a fixed nozzle.
  • the rinse liquid supply unit 8 includes a rinse liquid nozzle 40 that supplies a rinse liquid to the upper surface of the substrate W, and a rinse liquid supply pipe 41 that is coupled to the rinse liquid nozzle 40.
  • the rinse liquid supply pipe 41 is supplied with a rinse liquid such as DIW from a rinse liquid supply source.
  • the rinse liquid supply unit 8 further includes a rinse liquid supply valve 42, a rinse liquid flow rate adjustment valve 43, and a rinse liquid deaeration unit 44 interposed in the rinse liquid supply pipe 41.
  • the rinse liquid supply valve 42 opens and closes the flow path of the rinse liquid.
  • the rinse liquid flow rate adjustment valve 43 adjusts the flow rate of the rinse liquid in the rinse liquid supply pipe 41 according to the opening degree.
  • the rinse liquid deaeration unit 44 removes oxygen from the rinse liquid supplied to the rinse liquid supply pipe 41 from the rinse liquid supply source.
  • the rinse liquid nozzle 40 is a fixed nozzle. Unlike the present embodiment, the rinse liquid nozzle 40 may be a moving nozzle that can move in the horizontal direction and the vertical direction.
  • the rinse liquid is not limited to DIW, but is carbonated water, electrolytic ion water, ozone water, hydrochloric acid water having a diluted concentration (for example, about 10 to 100 ppm), alkaline ion water containing ammonia, or reduced water (hydrogen water). May be.
  • the gas supply unit 9 includes a gas nozzle 50, a gas supply pipe 51, a gas supply valve 52, and a gas flow rate adjustment valve 53.
  • the gas nozzle 50 supplies a gas such as nitrogen (N 2 ) gas to the central region of the upper surface of the substrate W.
  • the gas supply pipe 51 is coupled to the gas nozzle 50.
  • the gas supply valve 52 is interposed in the gas supply pipe 51 and opens and closes the gas flow path.
  • the gas flow rate adjusting valve 53 is interposed in the gas supply pipe 51 and adjusts the flow rate of the gas in the gas supply pipe 51 according to the opening degree.
  • a gas such as nitrogen gas is supplied to the gas supply pipe 51 from a gas supply source.
  • the gas supplied from the gas supply source to the gas supply pipe 51 is preferably an inert gas such as nitrogen gas.
  • the inert gas is not limited to nitrogen gas, but is inert to the upper surface and pattern of the substrate W.
  • Examples of the inert gas include noble gases such as argon in addition to nitrogen gas.
  • the gas nozzle 50 is moved in the vertical direction and the horizontal direction by the gas nozzle moving unit 55.
  • the gas nozzle 50 can move between a central position and a retracted position by moving in the horizontal direction.
  • the gas nozzle 50 faces the rotation center C1 on the upper surface of the substrate W.
  • the gas nozzle 50 does not face the upper surface of the substrate W when positioned at the retracted position.
  • the gas nozzle moving unit 55 includes, for example, a rotating shaft 56 extending in the vertical direction, a nozzle arm 57 coupled to the rotating shaft 56 and extending horizontally, and an arm driving mechanism 58 that drives the nozzle arm 57.
  • the arm drive mechanism 58 swings the nozzle arm 57 horizontally by rotating the rotation shaft 56 around a vertical rotation axis.
  • the arm drive mechanism 58 moves the nozzle arm 57 up and down by moving the rotating shaft 56 up and down along the vertical direction.
  • the arm drive mechanism 58 includes, for example, a ball screw mechanism (not shown) and an electric motor (not shown) that applies a driving force thereto.
  • the film thickness measuring unit 10 is a device for measuring the thickness of a liquid film such as a chemical solution by a non-contact method.
  • the non-contact method include an infrared absorption method and an optical interference method.
  • the film thickness measuring unit 10 includes a film thickness probe 60 having a light emitting part and a light receiving part, a film thickness measuring instrument 61 having a light source and a light measuring part, and an optical fiber connection for connecting the film thickness probe 60 and the film thickness measuring instrument 61. Line 62.
  • the film thickness probe 60 is attached to the nozzle arm 57. Therefore, the film thickness probe 60 can move in the horizontal direction and the vertical direction together with the gas nozzle 50.
  • FIG. 3 is a block diagram for explaining the electrical configuration of the main part of the substrate processing apparatus 1.
  • the controller 3 includes a microcomputer and controls a control target provided in the substrate processing apparatus 1 according to a predetermined control program. More specifically, the controller 3 includes a processor (CPU) 3A and a memory 3B in which a control program is stored, and the processor 3A executes the control program to execute various controls for substrate processing. Is configured to do.
  • the controller 3 controls operations of the transport robot IR, CR, the electric motor 23, the nozzle moving units 35, 55, the film thickness measuring device 61, the valves 32, 33, 42, 43, 52, 53, and the like.
  • FIG. 4 is a cross-sectional view for explaining an example of the surface state of the substrate W processed by the substrate processing apparatus 1.
  • the substrate W carried into the substrate processing apparatus 1 has, for example, a polymer residue (residue after dry etching or ashing) attached to the surface, and the metal film 70 (metal pattern) is exposed. It is a semiconductor wafer.
  • the metal film 70 may be a single film of copper, tungsten, or other metal, or may be a multilayer film in which a plurality of metal films are stacked.
  • the multilayer film may be a laminated film including a copper film and a CoWP (cobalt-tungsten-phosphorus) film laminated on the copper film, for example.
  • the CoWP film is a cap film for preventing diffusion.
  • an interlayer insulating film 72 is formed on the surface of the substrate W.
  • a lower wiring groove 73 is formed by digging from the upper surface.
  • a copper wiring 74 is embedded in the lower wiring groove 73.
  • the copper wiring 74 is included in the metal film 70.
  • a low dielectric constant insulating film 76 as an example of a film to be processed is laminated via an etch stopper film 75.
  • an upper wiring groove 77 is formed by digging from the upper surface thereof.
  • a via hole 78 reaching the surface of the copper wiring 74 from the bottom surface of the upper wiring groove 77 is formed in the low dielectric constant insulating film 76. Copper is buried in the upper wiring groove 77 and the via hole 78 in a lump.
  • the upper wiring trench 77 and the via hole 78 are subjected to a dry etching process after a hard mask is formed on the low dielectric constant insulating film 76, and a portion exposed from the hard mask in the low dielectric constant insulating film 76 is removed. Is formed. After the upper wiring trench 77 and the via hole 78 are formed, an ashing process is performed, and the unnecessary hard mask is removed from the low dielectric constant insulating film 76.
  • a reaction product (polymer residue) containing components of the low dielectric constant insulating film 76 and the hard mask includes the surface of the low dielectric constant insulating film 76 (the inner surfaces of the upper wiring trench 77 and the via hole 78). )). Therefore, after ashing, a polymer removal step is performed in which a polymer removal solution is supplied to the surface of the substrate W to remove polymer residues from the surface of the low dielectric constant insulating film 76.
  • a polymer removal solution is supplied to the surface of the substrate W to remove polymer residues from the surface of the low dielectric constant insulating film 76.
  • FIG. 5 is a flowchart for explaining an example of substrate processing by the substrate processing apparatus 1.
  • substrate loading S1
  • chemical processing S2
  • rinsing processing S3
  • drying processing S4
  • substrate unloading S5
  • the ashed substrate W is loaded into the processing unit 2 from the carrier C by the transfer robots IR and CR, and transferred to the spin chuck 5 (S1). Thereafter, the substrate W is horizontally held by the chuck pins 20 with an interval upward from the upper surface of the spin base 21 until it is carried out by the transfer robot CR (substrate holding step).
  • the electric motor 23 rotates the spin base 21.
  • the substrate W held horizontally by the chuck pins 20 rotates (substrate rotation process).
  • the chemical nozzle moving unit 35 arranges the chemical nozzle 30 at a chemical processing position above the substrate W.
  • the chemical solution supply valve 32 is opened. Accordingly, the chemical liquid is discharged (supplied) from the chemical liquid nozzle 30 toward the upper surface of the substrate W in the rotating state. Since the chemical solution nozzle 30 is located at the chemical solution processing position, the chemical solution discharged from the chemical solution nozzle 30 is deposited on the rotation center C1 on the upper surface of the substrate W. The supplied chemical solution spreads over the entire upper surface of the substrate W by centrifugal force. Thereby, the upper surface of the substrate W is treated with the chemical solution.
  • the DIW rinse process (S3) is performed after the chemical solution process (S2) for a predetermined time.
  • the chemical solution is removed from the substrate W by replacing the chemical solution on the substrate W with DIW.
  • the chemical solution supply valve 32 is closed and the rinse solution supply valve 42 is opened.
  • the rinse liquid is supplied (discharged) from the rinse liquid nozzle 40 toward the upper surface of the substrate W.
  • the rinse liquid discharged from the rinse liquid nozzle 40 is deposited on the center of the upper surface of the substrate W.
  • DIW supplied onto the substrate W spreads over the entire upper surface of the substrate W by centrifugal force.
  • the chemical solution on the substrate W is washed away by the DIW.
  • the chemical nozzle moving unit 35 retracts the chemical nozzle 30 from above the substrate W to the side of the cup 6.
  • the rinse liquid supply valve 42 is closed. Then, the electric motor 23 rotates the substrate W at a high rotational speed (for example, 3000 rpm) faster than the rotational speed of the chemical liquid processing (S2) and the rinsing liquid processing (S3) substrate W. Thereby, a large centrifugal force acts on the rinsing liquid on the substrate W, and the rinsing liquid on the substrate W is shaken off around the substrate W. In this way, the rinse liquid is removed from the substrate W, and the substrate W is dried. When a predetermined time elapses after the high-speed rotation of the substrate W is started, the electric motor 23 stops the rotation of the substrate W by the spin base 21.
  • a high rotational speed for example, 3000 rpm
  • the electric motor 23 stops the rotation of the substrate W by the spin base 21.
  • the transfer robot CR enters the processing unit 2, picks up the processed substrate W from the spin chuck 5, and carries it out of the processing unit 2 (S 5).
  • the substrate W is transferred from the transfer robot CR to the transfer robot IR, and is stored in the carrier C by the transfer robot IR.
  • FIG. 6 is a schematic cross-sectional view for explaining the state of the chemical treatment (S2 in FIG. 5).
  • the chemical solution 80 is formed on the substrate W by supplying the chemical solution to the upper surface of the substrate W (liquid film forming step).
  • the electric motor 23 controls the rotation of the substrate W with the liquid film 80 formed on the substrate W (rotation control step). Specifically, the rotation of the substrate W is preferably controlled so that the rotation speed of the substrate W is 10 rpm or more and 300 rpm or less. The rotation speed of the substrate W is more preferably 10 rpm or more and 200 rpm or less. The rotation speed of the substrate W is more preferably 10 rpm or more and 100 rpm or less.
  • the supply of the chemical liquid from the chemical liquid nozzle 30 is controlled by adjusting the opening of the chemical liquid flow rate adjustment valve 33 in a state where the liquid film 80 is formed on the substrate W (chemical liquid amount control step).
  • the supply of the chemical solution from the chemical solution nozzle 30 is preferably controlled so that the supply amount (supply flow rate) is 500 mL / min or more and 10 L / min or less.
  • the supply amount of the chemical solution from the chemical solution nozzle 30 is more preferably 2.0 L / min or more and 10 L / min or less.
  • a plurality (2, 3) of chemical liquid nozzles 30 may be provided.
  • the thickness T of the liquid film 80 is adjusted so that the thickness T of the liquid film 80 is 100 ⁇ m or more and 1 cm or less (film thickness adjusting step).
  • the thickness T of the liquid film 80 is the width of the liquid film 80 in the vertical direction.
  • the thickness T of the liquid film 80 is preferably 200 ⁇ m or more and 1 cm or less.
  • the thickness T of the liquid film 80 is more preferably 300 ⁇ m or more and 1 cm or less.
  • the liquid film 80 does not need to cover the entire top surface of the substrate W, and may cover at least the region where the metal film 70 is exposed on the top surface of the substrate W.
  • the gas supply valve 52 may be opened. Thereby, gas, such as nitrogen gas, is supplied toward the upper surface of the board
  • gas such as nitrogen gas
  • the side of the rotation center C1 on the upper surface of the substrate W is a first position P1 that is 20 mm away from the rotation center C1 of the upper surface of the substrate W and a second position P2 that is 80 mm away from the rotation center C1 of the upper surface of the substrate W. It is an area including the position between.
  • the first position P1 and the second position P2 are also included. Therefore, gas is blown from the gas nozzle 50 toward the side of the rotation center C1 on the upper surface of the substrate W.
  • the amount of gas supplied from the gas nozzle 50 is adjusted by adjusting the opening of the gas flow rate adjustment valve 53.
  • the amount of gas supplied from the gas nozzle 50 is preferably 5 L / min or more and 50 L / min or less.
  • the supply amount of gas from the gas nozzle 50 is more preferably 5 L / min.
  • the thickness T of the liquid film 80 adjusted in the film thickness forming process may be measured by the film thickness measuring unit 10 (film thickness measuring process). Based on the measured thickness T of the liquid film 80, the supply of the chemical solution and the rotation of the substrate W may be controlled. Thereby, the thickness T of the liquid film 80 can be adjusted based on the measured thickness T of the liquid film 80. That is, the thickness T of the liquid film 80 can be adjusted (controlled) in real time.
  • a warning display may be displayed on an operation panel (not shown) for operating the substrate processing apparatus 1.
  • the case where the measured thickness T of the liquid film 80 is different from the intended value is, for example, the case where the measured thickness T of the liquid film 80 is smaller than 100 ⁇ m.
  • the gas nozzle moving unit 55 may move the film thickness probe 60 together with the gas nozzle 50 in the horizontal direction. Thereby, the thickness T of the liquid film 80 at each position on the substrate W can be measured.
  • a hydrofluoric acid liquid film 80 was formed on the rotating substrate W, and the thickness T of the liquid film 80 was measured. And the upper surface of the board
  • a wafer having a radius of 150 mm was used as the substrate W.
  • This experiment was conducted for each of a plurality of rotational speeds (200 rpm, 400 rpm, 600 rpm, 800 rpm and 1000 rpm).
  • the measurement of the thickness T of the liquid film 80 at each rotation speed was performed at a plurality of locations at different distances from the rotation center C1.
  • the thickness T of the liquid film 80 formed on the rotating substrate W was measured in a state where nitrogen gas was not blown onto the upper surface (liquid film 80) of the substrate W.
  • the concentration of hydrogen fluoride in the hydrofluoric acid used in this experiment was 0.05% by weight.
  • the temperature of hydrofluoric acid used in this experiment was 24 ° C.
  • the measurement of the thickness T of the liquid film 80 was performed under the condition that the supply amount of hydrofluoric acid was 2.0 L / min.
  • the measurement of the etching amount of the Cu film was performed under both conditions when the supply amount of hydrofluoric acid was 0.5 L / min and when the supply amount of hydrofluoric acid was 2.0 L / min.
  • FIG. 7 is a graph showing the result of measuring the change in the thickness T of the hydrofluoric acid liquid film 80 due to the change in the rotation speed of the substrate W.
  • the horizontal axis represents the distance from the rotation center C1 of the upper surface of the substrate W
  • the vertical axis represents the thickness of the liquid film 80 at a point located at a predetermined distance from the rotation center C1 of the upper surface of the substrate W.
  • FIG. 7 shows measurement results at each rotational speed, and approximate curves derived from the measurement results at a plurality of locations are shown for each rotational speed.
  • the thickness T of the liquid film 80 becomes smaller than 100 ⁇ m depending on the distance from the rotation center C1 on the upper surface of the substrate W.
  • the thickness T of the liquid film 80 exceeded 100 ⁇ m regardless of the distance from the rotation center C1 on the upper surface of the substrate W.
  • the thickness T of the liquid film 80 at a position where the distance from the rotation center C1 on the upper surface of the substrate W was about 50 mm was about 260 ⁇ m.
  • the thickness T of the liquid film 80 at a position where the distance from the rotation center C1 on the upper surface of the substrate W was about 50 mm was less than 100 ⁇ m.
  • the thickness T of the liquid film 80 at a position where the distance from the rotation center C1 on the upper surface of the substrate W was about 145 mm was about 120 ⁇ m.
  • the thickness T of the liquid film 80 at a position where the distance from the rotation center C1 on the upper surface of the substrate W was about 145 mm was less than 100 ⁇ m.
  • the two-dot chain line graph shown in FIG. 7 simulates the thickness T of the liquid film 80 when the substrate W is rotated at 200 rpm while nitrogen gas is blown onto the upper surface (liquid film 80) of the substrate W by a computer. It is a result.
  • the supply amount of nitrogen gas is set to 10 L / min, and the position at which the nitrogen gas is blown is set to the side of the rotation center C1 on the upper surface of the substrate W (position where the distance from the rotation center C1 is approximately 20 mm to 80 mm). Yes.
  • the thickness T of the liquid film 80 is reduced and the distance from the rotation center C1 is reduced at the position where the nitrogen gas is blown, that is, the position from the rotation center C1 is approximately 20 mm to 80 mm. At a position of approximately 80 mm to 145 mm, the thickness T of the liquid film 80 was increased.
  • the thickness T of the liquid film 80 at a position where the distance from the rotation center C1 on the upper surface of the substrate W is about 50 mm has been reduced from about 260 ⁇ m to about 220 ⁇ m. Then, the thickness T of the liquid film 80 at a position where the distance from the rotation center C1 of the upper surface of the substrate W is about 145 mm is increased from about 120 ⁇ m to about 170 ⁇ m.
  • FIG. 8 is a graph showing the result of measuring the change in the etching amount of the Cu film due to the change in the thickness T of the liquid film 80 of hydrofluoric acid.
  • the thickness of the portion lost in the Cu film is shown as the etching amount of the Cu film.
  • the measurement of the thickness T of the liquid film 80 and the measurement of the etching amount of the Cu film were performed at four locations with different distances from the rotation center C1.
  • the horizontal axis represents the thickness T of the hydrofluoric acid liquid film 80
  • the vertical axis represents the etching amount of the Cu film at the position where the thickness T of the liquid film 80 was measured.
  • the measurement data is not distinguished by the rotation speed of the substrate W, the measurement location, etc., but is distinguished by the supply amount of hydrofluoric acid.
  • the measurement result when the supply amount of hydrofluoric acid is 0.5 L / min and the measurement result when the supply amount of hydrofluoric acid is 2.0 L / min are separately shown.
  • the measurement result when hydrofluoric acid is supplied at 0.5 L / min is indicated by “ ⁇ ”.
  • the measurement result when hydrofluoric acid is supplied at 2.0 L / min is indicated by “ ⁇ ”.
  • the etching amount of the Cu film was 1 nm to 7 nm (see the left side of the broken line in FIG. 8).
  • the etching amount of the Cu film was about 1 nm in any measurement result (see the right side of the broken line in FIG. 8).
  • the etching amount of the Cu film can be sufficiently suppressed when the thickness T of the liquid film 80 is 100 ⁇ m or more.
  • the reason why the Cu film lost about 1 nm even when the thickness T of the liquid film 80 is 100 ⁇ m or more is that the copper oxide formed by the reaction between the dissolved oxygen in the hydrofluoric acid and the Cu film is etched by the hydrofluoric acid. This is probably due to another factor.
  • a liquid film 80 of a chemical solution such as hydrofluoric acid is formed on the substrate W.
  • the liquid film 80 covers the metal film 70 exposed on the upper surface of the substrate W.
  • the thickness of the liquid film 80 is adjusted to be 100 ⁇ m or more. Therefore, the adjusted liquid film 80 is sufficiently thick.
  • the liquid film 80 is sufficiently thick, it is possible to prevent oxygen dissolved in the chemical solution from reaching the upper surface of the substrate W when the liquid film 80 is exposed to the atmosphere around the substrate W. Further, since the liquid film 80 is sufficiently thick, the volume of the liquid film 80 is sufficiently large. Therefore, it is possible to suppress an increase in the oxygen concentration in the liquid film 80 due to the dissolution of oxygen in the chemical solution supplied to the upper surface of the substrate W. Therefore, since oxygen that reacts with the metal film 70 is reduced, oxidation of the metal film 70 can be suppressed.
  • the thickness T of the liquid film 80 is adjusted by controlling the rotation of the substrate W so that the rotation speed of the substrate W is 300 rpm or less.
  • Centrifugal force acts on the liquid film 80 formed on the rotating substrate W. For this reason, when the rotation speed of the substrate W increases, the amount of the chemical solution splashed out of the substrate W due to the centrifugal force increases and the amount of the chemical solution on the substrate W decreases. As a result, the thickness T of the liquid film 80 may be insufficient.
  • the liquid film 80 can be made sufficiently thick by controlling the rotation of the substrate W so that the rotation speed of the substrate W becomes sufficiently small (300 rpm or less). Therefore, the oxidation of the metal film 70 can be suppressed.
  • the thickness T of the liquid film 80 is adjusted by controlling the supply amount of the chemical solution so that the supply amount of the chemical solution is 2.0 L / min or more. .
  • the chemical liquid scatters out of the substrate W when the centrifugal force acts on the liquid film 80 formed on the substrate W in the rotating state. Therefore, when the supply amount of the chemical solution decreases, the amount of the chemical solution on the substrate W decreases. As a result, the thickness T of the liquid film 80 may be insufficient.
  • the liquid film 80 is made sufficiently thick by controlling the supply amount of the treatment liquid so that the supply amount of the chemical liquid is sufficiently increased (2.0 L / min or more). be able to. Therefore, the oxidation of the metal film 70 can be suppressed.
  • the liquid film 80 is formed by supplying the chemical solution toward the rotation center C1 on the upper surface of the substrate W.
  • the liquid film 80 tends to be thick.
  • the liquid film 80 tends to be thin near the periphery of the upper surface of the substrate W. That is, unevenness in the thickness T of the liquid film 80 tends to occur in the upper surface of the substrate W. If unevenness occurs in the thickness T of the liquid film 80, it is necessary to excessively reduce the rotation speed of the substrate W or excessively increase the supply amount of the chemical solution.
  • the position on the side of the rotation center C1 on the upper surface of the substrate W (in particular, the position about 20 mm from the rotation center C1 on the upper surface of the substrate W and the rotation center C1 on the upper surface of the substrate W Gas toward the peripheral edge of the substrate W in addition to the centrifugal force in addition to the chemical solution at the side of the rotation center C1 on the upper surface of the substrate W. Can exert a force to push out the chemical solution. As a result, the speed at which the chemical solution located at the side of the rotation center C1 on the upper surface of the substrate W moves to the peripheral side of the substrate W is increased.
  • the thickness T of the liquid film 80 is reduced at the position on the side of the rotation center C1 on the upper surface of the substrate W, and the thickness T of the liquid film 80 is increased near the periphery of the upper surface of the substrate W. Thereby, the unevenness of the thickness T of the liquid film 80 can be reduced.
  • the thickness T of the liquid film 80 adjusted in the film thickness adjustment process is measured. Therefore, substrate processing abnormalities such as the thickness T of the liquid film 80 deviating from the intended value in the film thickness adjusting step can be detected at an early stage.
  • the thickness T of the liquid film 80 is adjusted based on the thickness T of the liquid film 80 measured in the film thickness measurement step. Therefore, the thickness T of the liquid film 80 can be accurately adjusted in the film thickness adjusting step.
  • the shielding plate 11 since it is not necessary to replace the atmosphere around the substrate W with an inert gas or the like, the shielding plate 11 (see the two-dot chain line in FIG. 2) having the facing surface 11a facing the substrate W is provided. There is no need. Therefore, it is easy to utilize the space in the chamber 14.
  • the substrate in the chemical treatment (S2 in FIG. 5).
  • the shielding plate 11 closes to the substrate W in order to replace the atmosphere around the upper surface of W with an inert gas.
  • the horizontal movement of the moving nozzles such as the chemical nozzle 30 and the gas nozzle 50 of the present embodiment is not hindered by the blocking plate 11. Therefore, compared with the processing unit configured to replace the atmosphere around the upper surface of the substrate W with an inert gas, the processing unit 2 improves the degree of freedom of the configuration of each member.
  • the liquid film forming step and the film thickness adjusting step may be executed in the DIW rinsing processing (S3) similarly to the chemical processing (S2). .
  • the film thickness measurement unit 10 is provided. However, unlike the above-described embodiment, the film thickness measurement unit 10 may not be provided.
  • the film thickness probe 60 of the film thickness measuring unit 10 is configured to move together with the gas nozzle 50 by the gas nozzle moving unit 55.
  • a nozzle moving unit different from the gas nozzle moving unit 55 may be provided.
  • the film thickness probe 60 may be configured to be moved in the horizontal direction and the vertical direction by the nozzle moving unit.
  • Substrate processing device 3 Controller 7: Chemical solution supply unit 8: Rinse solution supply unit 10: Film thickness measuring unit 20: Chuck pin (substrate holding unit) 21: Spin base (substrate holding unit) 23: Electric motor (substrate rotation unit) 70: Metal film 80: Liquid film A1: Rotation axis C1: Rotation center T: Thickness W: Substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

A substrate processing method comprising: a substrate holding step of horizontally holding a substrate having an upper surface on which a metal film is exposed; a substrate rotating step of rotating the substrate about a rotating axis along a vertical direction; a liquid film forming step of forming, by supplying a degassed processing liquid onto the upper surface of the substrate, a liquid film of the processing liquid on the substrate; and a film thickness adjusting step of adjusting a thickness of the liquid film so that the thickness of the liquid film becomes 100 μm or more.

Description

基板処理方法および基板処理装置Substrate processing method and substrate processing apparatus
 この発明は、基板を処理する基板処理方法および基板処理装置に関する。処理対象になる基板には、たとえば、半導体ウエハ、液晶表示装置用基板、有機EL(Electroluminescence)表示装置等のFPD(Flat Panel Display)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、フォトマスク用基板、セラミック基板、太陽電池用基板等の基板が含まれる。 The present invention relates to a substrate processing method and a substrate processing apparatus for processing a substrate. Examples of substrates to be processed include semiconductor wafers, substrates for liquid crystal display devices, substrates for FPD (Flat Panel Display) such as organic EL (Electroluminescence) display devices, substrates for optical disks, substrates for magnetic disks, and magneto-optical disks. Substrates such as a substrate, a photomask substrate, a ceramic substrate, and a solar cell substrate are included.
 半導体装置や液晶表示装置などの製造工程では、半導体ウエハや液晶表示用ガラス基板などの基板から異物を除去する洗浄工程が行われる。たとえば、トランジスタやキャパシタなどのデバイスが作り込まれた半導体ウエハの表面に多層配線を形成するバックエンドプロセス(BEOL:Back End of the Line)では、ドライエッチングやアッシングによって発生したポリマー残渣を除去するポリマー除去工程が行われる。 In the manufacturing process of a semiconductor device, a liquid crystal display device, etc., a cleaning process is performed to remove foreign substances from a substrate such as a semiconductor wafer or a glass substrate for liquid crystal display. For example, in a back-end process (BEOL: Back End the Line) in which multilayer wiring is formed on the surface of a semiconductor wafer on which devices such as transistors and capacitors are built, a polymer that removes polymer residues generated by dry etching or ashing A removal step is performed.
 ポリマー除去工程では、金属配線(たとえば、銅配線)が露出した基板の表面にポリマー除去液などの処理液が供給される。ところが、酸素濃度が比較的高い処理液が基板に供給されると、処理液に溶解している酸素(溶存酸素)により基板上の金属配線が酸化され、金属酸化物が形成される。この金属酸化物は処理液によって腐食(エッチング)されるので、この基板から作成されるデバイスの品質が低下するおそれがある。金属配線のエッチング量は、処理液中の酸素濃度の増加に伴って増加する。また、処理液中の溶存酸素による基板上の金属配線の酸化は、ポリマー除去液以外の処理液による基板の処理においても発生し得る。 In the polymer removal step, a treatment liquid such as a polymer removal liquid is supplied to the surface of the substrate where the metal wiring (for example, copper wiring) is exposed. However, when a treatment liquid having a relatively high oxygen concentration is supplied to the substrate, the metal wiring on the substrate is oxidized by oxygen (dissolved oxygen) dissolved in the treatment liquid, and a metal oxide is formed. Since this metal oxide is corroded (etched) by the processing liquid, the quality of a device formed from this substrate may be deteriorated. The etching amount of the metal wiring increases as the oxygen concentration in the processing liquid increases. Further, oxidation of the metal wiring on the substrate due to dissolved oxygen in the processing liquid can also occur in the processing of the substrate with a processing liquid other than the polymer removal liquid.
 そこで、下記特許文献1には、スピンチャックに保持された基板と、基板の上面に対向する遮断板との間に不活性ガスを供給することによって、遮断板と基板との間の雰囲気を不活性ガスによって置換することが提案されている。これにより、基板の周囲の雰囲気中の酸素濃度が低減されるので、基板上に供給された処理液に溶解する酸素の量が低減される。 Therefore, in Patent Document 1 below, an inert gas is supplied between the substrate held by the spin chuck and the shielding plate facing the upper surface of the substrate, thereby preventing the atmosphere between the shielding plate and the substrate. It has been proposed to replace with an active gas. Thereby, since the oxygen concentration in the atmosphere around the substrate is reduced, the amount of oxygen dissolved in the processing liquid supplied onto the substrate is reduced.
特開2013-77595号公報JP 2013-77595 A
 不活性ガスによる雰囲気の置換を省略することができれば、基板の処理に要する時間が短縮され、スループット(単位時間当たりの基板の処理枚数)を向上させることができる。 If the replacement of the atmosphere with an inert gas can be omitted, the time required for substrate processing can be shortened and the throughput (the number of substrates processed per unit time) can be improved.
 そこで、この発明の1つの目的は、金属膜が露出した表面を有する基板を処理する構成において、基板の周囲の雰囲気中の酸素濃度を低減することなく、処理液中の酸素に起因する金属膜の酸化を抑制できる基板処理方法および基板処理装置を提供することである。 Accordingly, an object of the present invention is to provide a metal film resulting from oxygen in a processing solution without reducing the oxygen concentration in the atmosphere around the substrate in a configuration for processing a substrate having a surface with an exposed metal film. It is providing the substrate processing method and substrate processing apparatus which can suppress the oxidation of this.
 この発明の一実施形態は、金属膜が露出した上面を有する基板を水平に保持する基板保持工程と、鉛直方向に沿う回転軸線のまわりに前記基板を回転させる基板回転工程と、脱気された処理液を前記基板の上面に供給することによって、前記基板上に前記処理液の液膜を形成する液膜形成工程と、前記液膜の厚さが100μm以上となるように前記液膜の厚さを調整する膜厚調整工程とを含む、基板処理方法を提供する。 In one embodiment of the present invention, a substrate holding step for horizontally holding a substrate having an upper surface with an exposed metal film, a substrate rotating step for rotating the substrate around a rotation axis along the vertical direction, and a deaeration A liquid film forming step of forming a liquid film of the processing liquid on the substrate by supplying a processing liquid to the upper surface of the substrate; and a thickness of the liquid film so that the thickness of the liquid film is 100 μm or more. And a film thickness adjusting step for adjusting the thickness.
 この方法によれば、液膜形成工程では、基板上に処理液の液膜が形成される。この液膜によって、基板の表面に露出した金属膜が覆われる。膜厚調整工程では、液膜形成工程で基板上に形成された液膜の厚さは、100μm以上となるように調整される。そのため、調整後の液膜は充分に厚い。 According to this method, the liquid film of the processing liquid is formed on the substrate in the liquid film forming step. This liquid film covers the metal film exposed on the surface of the substrate. In the film thickness adjusting step, the thickness of the liquid film formed on the substrate in the liquid film forming step is adjusted to be 100 μm or more. Therefore, the liquid film after adjustment is sufficiently thick.
 液膜が充分に厚いため、液膜が基板の周囲の雰囲気に晒されることによって処理液に溶解した酸素が、基板の上面に到達するのを抑制することができる。また、液膜が充分に厚いため、液膜の体積も充分に大きい。そのため、基板の上面に供給された処理液に酸素が溶解することに起因して液膜中の酸素濃度が上昇するのを抑制することができる。したがって、金属膜と反応する酸素が低減されるので、金属膜の酸化を抑制することができる。 Since the liquid film is sufficiently thick, it is possible to prevent oxygen dissolved in the treatment liquid from reaching the upper surface of the substrate by exposing the liquid film to the atmosphere around the substrate. Further, since the liquid film is sufficiently thick, the volume of the liquid film is sufficiently large. Therefore, it is possible to suppress an increase in the oxygen concentration in the liquid film due to the dissolution of oxygen in the processing liquid supplied to the upper surface of the substrate. Therefore, oxygen that reacts with the metal film is reduced, so that oxidation of the metal film can be suppressed.
 よって、基板の周囲の雰囲気中の酸素濃度を低減することなく、処理液中の酸素に起因する金属膜の酸化を抑制することができる。 Therefore, oxidation of the metal film due to oxygen in the treatment liquid can be suppressed without reducing the oxygen concentration in the atmosphere around the substrate.
 この発明の一実施形態では、前記膜厚調整工程が、前記基板の回転速度が300rpm以下となるように前記基板の回転を制御することによって、前記液膜の厚さを調整する工程を含む。 In one embodiment of the present invention, the film thickness adjusting step includes a step of adjusting the thickness of the liquid film by controlling the rotation of the substrate so that the rotation speed of the substrate is 300 rpm or less.
 この方法によれば、膜厚調整工程では、基板の回転速度が300rpm以下となるように基板の回転が制御されることによって、液膜の厚さが調整される。 According to this method, in the film thickness adjustment step, the thickness of the liquid film is adjusted by controlling the rotation of the substrate so that the rotation speed of the substrate is 300 rpm or less.
 回転状態の基板上に形成された液膜には、遠心力が作用する。そのため、基板の回転速度が大きくなると、遠心力によって基板外へ飛び散る処理液の量が増え、基板上の処理液の量が減る。これにより、液膜の厚さが不充分となるおそれがある。そこで、膜厚調整工程において、基板の回転速度が充分に小さくなるように(300rpm以下となるように)基板の回転を制御することによって、液膜を充分に厚くすることができる。したがって、金属膜の酸化を抑制することができる。 Centrifugal force acts on the liquid film formed on the rotating substrate. For this reason, when the rotation speed of the substrate increases, the amount of the processing liquid splashed out of the substrate due to the centrifugal force increases, and the amount of the processing liquid on the substrate decreases. Thereby, the thickness of the liquid film may be insufficient. Therefore, in the film thickness adjustment step, the liquid film can be made sufficiently thick by controlling the rotation of the substrate so that the rotation speed of the substrate becomes sufficiently small (300 rpm or less). Therefore, oxidation of the metal film can be suppressed.
 この発明の一実施形態では、前記膜厚調整工程が、前記処理液の供給量が2.0L/min以上となるように前記処理液の供給量を制御することによって、前記液膜の厚さを調整する工程を含む。 In one embodiment of the present invention, the film thickness adjusting step controls the supply amount of the treatment liquid so that the supply amount of the treatment liquid is 2.0 L / min or more. Including the step of adjusting.
 前述したように、回転状態の基板上に形成された液膜に遠心力が作用することによって、処理液が基板外へ飛び散る。そのため、処理液の供給量が少なくなると、基板上の処理液の量が減る。これにより、液膜の厚さが不充分となるおそれがある。 As described above, when the centrifugal force acts on the liquid film formed on the rotating substrate, the processing liquid scatters out of the substrate. For this reason, when the supply amount of the processing liquid decreases, the amount of the processing liquid on the substrate decreases. Thereby, the thickness of the liquid film may be insufficient.
 そこで、膜厚調整工程において、処理液の供給量が充分に多くなるように(2.0L/min以上となるように)処理液の供給量を制御することによって、液膜を充分に厚くすることができる。したがって、金属膜の酸化を抑制することができる。 Therefore, in the film thickness adjusting step, the liquid film is made sufficiently thick by controlling the supply amount of the treatment liquid so that the supply amount of the treatment liquid is sufficiently increased (2.0 L / min or more). be able to. Therefore, oxidation of the metal film can be suppressed.
 この発明の一実施形態では、前記液膜形成工程が、前記基板の上面の回転中心に向けて前記処理液を供給することによって、前記液膜を形成する工程を含む。そして、前記膜厚調整工程が、前記基板の上面の回転中心の側方の位置に向けて気体を供給することによって、前記液膜の厚さを調整する工程を含む。 In one embodiment of the present invention, the liquid film forming step includes a step of forming the liquid film by supplying the processing liquid toward the rotation center of the upper surface of the substrate. And the said film thickness adjustment process includes the process of adjusting the thickness of the said liquid film by supplying gas toward the side position of the rotation center of the upper surface of the said board | substrate.
 この方法によれば、液膜形成工程では、基板の上面の回転中心に向けて処理液を供給することによって、液膜が形成される。 According to this method, in the liquid film formation step, the liquid film is formed by supplying the processing liquid toward the rotation center of the upper surface of the substrate.
 基板の上面の回転中心に向けて処理液が供給された場合、基板の上面の回転中心の側方の位置(特に、基板の上面の回転中心から約20mmの位置と基板の上面の回転中心から約80mmの位置)では、液膜が厚くなりやすい。その一方で、基板の上面の周縁付近では、液膜が薄くなりやすい。つまり、基板の上面内において液膜の厚さにむらが生じやすい。 When the processing liquid is supplied toward the center of rotation of the upper surface of the substrate, a position lateral to the center of rotation of the upper surface of the substrate (particularly from a position about 20 mm from the center of rotation of the upper surface of the substrate and the center of rotation of the upper surface of the substrate At a position of about 80 mm, the liquid film tends to be thick. On the other hand, the liquid film tends to be thin near the periphery of the upper surface of the substrate. That is, unevenness in the thickness of the liquid film tends to occur in the upper surface of the substrate.
 そこで、膜厚調整工程において、基板の上面の回転中心の側方の位置(たとえば、基板の上面の回転中心から約20mmの位置と基板の上面の回転中心から約80mmの位置との間の位置)に向けて気体を供給することによって、基板の上面の回転中心の側方の位置にある処理液に、遠心力に加えて、基板の周縁側に向けて気体が処理液を押し出す力を作用させることができる。これにより、基板の上面の回転中心の側方の位置にある処理液が基板の周縁側へ移動する速度が増大される。そのため、基板の上面の回転中心の側方の位置において液膜の厚さが低減され、基板の上面の周縁付近において液膜の厚さが増大される。これにより、液膜の厚さのむらを低減することができる。 Therefore, in the film thickness adjustment step, a position on the side of the rotation center of the upper surface of the substrate (for example, a position between about 20 mm from the rotation center of the upper surface of the substrate and about 80 mm from the rotation center of the upper surface of the substrate). In addition to centrifugal force, the gas pushes the processing liquid toward the peripheral edge of the substrate, in addition to the centrifugal force, by supplying the gas toward the substrate). Can be made. As a result, the speed at which the processing liquid located at the side of the rotation center on the upper surface of the substrate moves toward the peripheral edge of the substrate is increased. Therefore, the thickness of the liquid film is reduced at a position on the side of the rotation center on the upper surface of the substrate, and the thickness of the liquid film is increased near the periphery of the upper surface of the substrate. Thereby, the unevenness of the thickness of the liquid film can be reduced.
 この発明の一実施形態では、前記基板処理方法が、前記膜厚調整工程において調整された前記液膜の厚さを測定する膜厚測定工程をさらに含む。 In one embodiment of the present invention, the substrate processing method further includes a film thickness measuring step of measuring the thickness of the liquid film adjusted in the film thickness adjusting step.
 この方法によれば、膜厚測定工程において、膜厚調整工程で調整された液膜の厚さが測定される。そのため、膜厚調整工程において液膜の厚さが意図した値からずれるなどの、基板処理の異常を早期に検知することができる。 According to this method, in the film thickness measurement process, the thickness of the liquid film adjusted in the film thickness adjustment process is measured. Therefore, it is possible to detect an abnormality in the substrate processing at an early stage such that the thickness of the liquid film deviates from the intended value in the film thickness adjustment step.
 この発明の一実施形態では、前記膜厚調整工程が、前記膜厚測定工程で測定された前記液膜の厚さに基づいて前記液膜の厚さを調整する工程を含む。 In one embodiment of the present invention, the film thickness adjusting step includes a step of adjusting the thickness of the liquid film based on the thickness of the liquid film measured in the film thickness measuring step.
 この方法によれば、膜厚調整工程では、膜厚測定工程で測定された液膜の厚さに基づいて液膜の厚さが調整される。そのため、膜厚調整工程において、液膜の厚さを精度良く調整することができる。 According to this method, in the film thickness adjusting step, the thickness of the liquid film is adjusted based on the thickness of the liquid film measured in the film thickness measuring step. Therefore, in the film thickness adjustment step, the thickness of the liquid film can be adjusted with high accuracy.
 この発明はさらに、金属膜が露出した上面を有する基板を水平に保持する基板保持ユニットと、鉛直方向に沿う回転軸線のまわりに前記基板を回転させる基板回転ユニットと、脱気された処理液を前記基板の上面に供給する処理液供給ユニットと、前記基板保持ユニット、前記基板回転ユニットおよび前記処理液供給ユニットを制御するコントローラとを含む基板処理装置を提供する。 The present invention further includes a substrate holding unit that horizontally holds a substrate having an upper surface from which the metal film is exposed, a substrate rotating unit that rotates the substrate around a rotation axis along the vertical direction, and a degassed processing liquid. There is provided a substrate processing apparatus including a processing liquid supply unit that supplies an upper surface of the substrate, and a controller that controls the substrate holding unit, the substrate rotation unit, and the processing liquid supply unit.
 そして、前記コントローラは、前記基板保持ユニットに前記基板を保持させる基板保持工程と、前記回転軸線のまわりに前記基板を回転させる基板回転工程と、前記処理液を前記基板の上面に供給することによって、前記基板上に前記処理液の液膜を形成する液膜形成工程と、前記液膜の厚さが100μm以上となるように前記液膜の厚さを調整する膜厚調整工程とを実行するようにプログラムされている。 The controller holds the substrate on the substrate holding unit, rotates the substrate around the rotation axis, and supplies the processing liquid to the upper surface of the substrate. And a liquid film forming step of forming a liquid film of the processing liquid on the substrate and a film thickness adjusting step of adjusting the thickness of the liquid film so that the thickness of the liquid film is 100 μm or more. Is programmed to do so.
 この構成によれば、液膜形成工程では、基板上に処理液の液膜が形成される。この液膜によって、基板の表面に露出した金属膜が覆われる。膜厚調整工程では、液膜形成工程で基板上に形成された液膜の厚さは、100μm以上となるように調整される。そのため、調整後の液膜は充分に厚い。 According to this configuration, in the liquid film forming step, a liquid film of the processing liquid is formed on the substrate. This liquid film covers the metal film exposed on the surface of the substrate. In the film thickness adjusting step, the thickness of the liquid film formed on the substrate in the liquid film forming step is adjusted to be 100 μm or more. Therefore, the liquid film after adjustment is sufficiently thick.
 液膜が充分に厚いため、液膜が基板の周囲の雰囲気に晒されることによって処理液に溶解した酸素が、基板の上面に到達するのを抑制することができる。また、液膜が充分に厚いため、液膜の体積も充分に大きい。そのため、基板の上面に供給された処理液に酸素が溶解することに起因して液膜中の酸素濃度が上昇するのを抑制することができる。したがって、金属膜と反応する酸素が低減されるので、金属膜の酸化を抑制することができる。 Since the liquid film is sufficiently thick, it is possible to prevent oxygen dissolved in the treatment liquid from reaching the upper surface of the substrate by exposing the liquid film to the atmosphere around the substrate. Further, since the liquid film is sufficiently thick, the volume of the liquid film is sufficiently large. Therefore, it is possible to suppress an increase in the oxygen concentration in the liquid film due to the dissolution of oxygen in the processing liquid supplied to the upper surface of the substrate. Therefore, oxygen that reacts with the metal film is reduced, so that oxidation of the metal film can be suppressed.
 よって、基板の周囲の雰囲気中の酸素濃度を低減することなく、処理液中の酸素に起因する金属膜の酸化を抑制することができる。 Therefore, oxidation of the metal film due to oxygen in the treatment liquid can be suppressed without reducing the oxygen concentration in the atmosphere around the substrate.
 この発明の一実施形態では、前記膜厚調整工程が、前記基板の回転速度が300rpm以下となるように前記基板の回転を制御することによって、前記液膜の厚さを調整する工程を含む。 In one embodiment of the present invention, the film thickness adjusting step includes a step of adjusting the thickness of the liquid film by controlling the rotation of the substrate so that the rotation speed of the substrate is 300 rpm or less.
 この構成によれば、膜厚調整工程において、基板の回転速度が充分に小さくなるように(300rpm以下となるように)基板の回転が制御される。そのため、液膜を充分に厚くすることができる。したがって、金属膜の酸化を抑制することができる。 According to this configuration, in the film thickness adjustment process, the rotation of the substrate is controlled so that the rotation speed of the substrate becomes sufficiently small (300 rpm or less). Therefore, the liquid film can be made sufficiently thick. Therefore, oxidation of the metal film can be suppressed.
 この発明の一実施形態では、前記膜厚調整工程が、前記処理液の供給量が2.0L/min以上となるように前記処理液の供給量を制御することによって、前記液膜の厚さを調整する工程を含む。 In one embodiment of the present invention, the film thickness adjusting step controls the supply amount of the treatment liquid so that the supply amount of the treatment liquid is 2.0 L / min or more. Including the step of adjusting.
 この構成によれば、膜厚調整工程において、処理液の供給量が充分に多くなるように(2.0L/min以上となるように)処理液の供給量が制御される。そのため、液膜を充分に厚くすることができる。したがって、金属膜の酸化を抑制することができる。 According to this configuration, in the film thickness adjustment process, the supply amount of the treatment liquid is controlled so that the supply amount of the treatment liquid is sufficiently increased (2.0 L / min or more). Therefore, the liquid film can be made sufficiently thick. Therefore, oxidation of the metal film can be suppressed.
 この発明の一実施形態では、前記液膜形成工程が、前記基板の上面の回転中心に向けて前記処理液を供給することによって、前記液膜を形成する工程を含む。そして、前記膜厚調整工程が、前記基板の上面の回転中心の側方の位置に向けて気体を供給することによって、前記液膜の厚さを調整する工程を含む。 In one embodiment of the present invention, the liquid film forming step includes a step of forming the liquid film by supplying the processing liquid toward the rotation center of the upper surface of the substrate. And the said film thickness adjustment process includes the process of adjusting the thickness of the said liquid film by supplying gas toward the side position of the rotation center of the upper surface of the said board | substrate.
 この構成によれば、液膜形成工程では、基板の上面の回転中心に向けて処理液を供給することによって、液膜が形成される。膜厚調整工程では、基板の上面の回転中心の側方の位置(たとえば、基板の上面の回転中心から20mmの位置と基板の上面の回転中心から80mmの位置との間の位置)に向けて気体が供給される。これにより、基板の上面の回転中心の側方の位置にある処理液には、遠心力に加えて、基板の周縁側に向けて気体が処理液を押し出す力が作用する。これにより、基板の上面の回転中心の側方の位置にある処理液が基板の周縁側へ移動する速度が増大される。そのため、基板の上面の回転中心の側方の位置において液膜の厚さが低減され、基板の上面の周縁付近において液膜の厚さが増大される。これにより、液膜の厚さのむらを低減することができる。 According to this configuration, in the liquid film forming step, the liquid film is formed by supplying the processing liquid toward the rotation center of the upper surface of the substrate. In the film thickness adjustment step, toward a position on the side of the rotation center of the upper surface of the substrate (for example, a position between 20 mm from the rotation center of the upper surface of the substrate and 80 mm from the rotation center of the upper surface of the substrate). Gas is supplied. As a result, in addition to the centrifugal force, a force for the gas to push the treatment liquid toward the peripheral side of the substrate acts on the treatment liquid at a position on the side of the rotation center on the upper surface of the substrate. As a result, the speed at which the processing liquid located at the side of the rotation center on the upper surface of the substrate moves toward the peripheral edge of the substrate is increased. Therefore, the thickness of the liquid film is reduced at a position on the side of the rotation center on the upper surface of the substrate, and the thickness of the liquid film is increased near the periphery of the upper surface of the substrate. Thereby, the unevenness of the thickness of the liquid film can be reduced.
 この発明の一実施形態では、前記基板処理装置が、前記液膜の厚さを測定可能な膜厚測定ユニットをさらに含む。そして、前記コントローラが、前記膜厚測定ユニットを制御することによって、前記膜厚調整工程において調整された前記液膜の厚さを測定する膜厚測定工程を実行する。 In one embodiment of the present invention, the substrate processing apparatus further includes a film thickness measuring unit capable of measuring the thickness of the liquid film. And the said controller performs the film thickness measurement process which measures the thickness of the said liquid film adjusted in the said film thickness adjustment process by controlling the said film thickness measurement unit.
 この構成によれば、膜厚測定工程において、膜厚調整工程で調整された液膜の厚さが測定される。そのため、膜厚調整工程において液膜の厚さが意図した値からずれるなどの、基板処理の異常を早期に検知することができる。 According to this configuration, in the film thickness measurement process, the thickness of the liquid film adjusted in the film thickness adjustment process is measured. Therefore, it is possible to detect an abnormality in the substrate processing at an early stage such that the thickness of the liquid film deviates from the intended value in the film thickness adjustment step.
 この発明の一実施形態では、前記膜厚調整工程が、前記膜厚測定工程で測定された前記液膜の厚さに基づいて前記液膜の厚さを調整する工程を含む。 In one embodiment of the present invention, the film thickness adjusting step includes a step of adjusting the thickness of the liquid film based on the thickness of the liquid film measured in the film thickness measuring step.
 この構成によれば、膜厚調整工程では、膜厚測定工程で測定された液膜の厚さに基づいて液膜の厚さが調整される。そのため、膜厚調整工程において、液膜の厚さを精度良く調整することができる。 According to this configuration, in the film thickness adjusting step, the thickness of the liquid film is adjusted based on the thickness of the liquid film measured in the film thickness measuring step. Therefore, in the film thickness adjustment step, the thickness of the liquid film can be adjusted with high accuracy.
 本発明における上述の、またはさらに他の目的、特徴および効果は、添付図面を参照して次に述べる実施形態の説明により明らかにされる。 The above-described or other objects, features, and effects of the present invention will be clarified by the following description of embodiments with reference to the accompanying drawings.
図1は、この発明の一実施形態に係る基板処理装置の内部のレイアウトを説明するための図解的な平面図である。FIG. 1 is an illustrative plan view for explaining an internal layout of a substrate processing apparatus according to an embodiment of the present invention. 図2は、前記基板処理装置に備えられた処理ユニットの構成例を説明するための模式図である。FIG. 2 is a schematic diagram for explaining a configuration example of a processing unit provided in the substrate processing apparatus. 図3は、前記基板処理装置の主要部の電気的構成を説明するためのブロック図である。FIG. 3 is a block diagram for explaining an electrical configuration of a main part of the substrate processing apparatus. 図4は、前記基板処理装置によって処理される基板の表面状態の一例を説明するための断面図である。FIG. 4 is a cross-sectional view for explaining an example of a surface state of a substrate processed by the substrate processing apparatus. 図5は、前記基板処理装置による基板処理の一例を説明するための流れ図である。FIG. 5 is a flowchart for explaining an example of substrate processing by the substrate processing apparatus. 図6は、薬液処理(図5のS2)の様子を説明するための図解的な断面図である。FIG. 6 is a schematic cross-sectional view for explaining the state of the chemical treatment (S2 in FIG. 5). 図7は、基板の回転速度の変化によるフッ酸の液膜の厚さの変化を測定した結果を示したグラフである。FIG. 7 is a graph showing the results of measuring the change in the thickness of the hydrofluoric acid liquid film due to the change in the rotation speed of the substrate. 図8は、フッ酸の液膜の厚さの変化によるCu膜のエッチング量の変化を測定した結果を示したグラフである。FIG. 8 is a graph showing the results of measuring the change in the etching amount of the Cu film due to the change in the thickness of the liquid film of hydrofluoric acid.
 図1は、この発明の一実施形態に係る基板処理装置1の内部のレイアウトを説明するための図解的な平面図である。 FIG. 1 is an illustrative plan view for explaining an internal layout of a substrate processing apparatus 1 according to an embodiment of the present invention.
 基板処理装置1は、シリコンウエハなどの基板Wを一枚ずつ処理する枚葉式の装置である。この実施形態では、基板Wは、円板状の基板である。基板処理装置1は、薬液やリンス液などの処理液で基板Wを処理する複数の処理ユニット2と、処理ユニット2で処理される複数枚の基板Wを収容するキャリヤCが載置されるロードポートLPと、ロードポートLPと処理ユニット2との間で基板Wを搬送する搬送ロボットIRおよびCRと、基板処理装置1を制御するコントローラ3とを含む。搬送ロボットIRは、キャリヤCと搬送ロボットCRとの間で基板Wを搬送する。搬送ロボットCRは、搬送ロボットIRと処理ユニット2との間で基板Wを搬送する。複数の処理ユニット2は、たとえば、同様の構成を有している。 The substrate processing apparatus 1 is a single wafer processing apparatus that processes substrates W such as silicon wafers one by one. In this embodiment, the substrate W is a disk-shaped substrate. The substrate processing apparatus 1 has a load on which a plurality of processing units 2 for processing a substrate W with a processing solution such as a chemical solution or a rinsing solution, and a carrier C for storing a plurality of substrates W processed by the processing unit 2 are placed. It includes a port LP, transfer robots IR and CR that transfer the substrate W between the load port LP and the processing unit 2, and a controller 3 that controls the substrate processing apparatus 1. The transfer robot IR transfers the substrate W between the carrier C and the transfer robot CR. The transfer robot CR transfers the substrate W between the transfer robot IR and the processing unit 2. The plurality of processing units 2 have the same configuration, for example.
 図2は、処理ユニット2の構成例を説明するための模式図である。 FIG. 2 is a schematic diagram for explaining a configuration example of the processing unit 2.
 処理ユニット2は、一枚の基板Wを水平な姿勢で保持しながら基板Wの中央部を通る鉛直な回転軸線A1まわりに基板Wを回転させるスピンチャック5と、スピンチャック5を取り囲む筒状のカップ6とを含む。処理ユニット2は、基板Wの上面(表面)に薬液を供給する薬液供給ユニット7と、基板Wの上面に脱イオン水(Deionized Water:DIW)などのリンス液を供給するリンス液供給ユニット8と、基板Wの上面に窒素(N)ガスなどの気体を供給する気体供給ユニット9と、基板W上に形成された処理液などの液膜の厚さを測定する膜厚測定ユニット10とをさらに含む。 The processing unit 2 includes a spin chuck 5 that rotates the substrate W around a vertical rotation axis A1 that passes through the center of the substrate W while holding a single substrate W in a horizontal posture, and a cylindrical shape that surrounds the spin chuck 5. Cup 6. The processing unit 2 includes a chemical solution supply unit 7 that supplies a chemical solution to the upper surface (front surface) of the substrate W, and a rinse solution supply unit 8 that supplies a rinse solution such as deionized water (DIW) to the upper surface of the substrate W. A gas supply unit 9 for supplying a gas such as nitrogen (N 2 ) gas to the upper surface of the substrate W, and a film thickness measuring unit 10 for measuring the thickness of a liquid film such as a processing liquid formed on the substrate W. In addition.
 処理ユニット2は、カップ6を収容するチャンバ14(図1参照)をさらに含む。チャンバ14には、チャンバ14内に基板Wを搬入したり、チャンバ14内から基板Wを搬出したりするための出入口(図示せず)が形成されている。チャンバ14には、この出入口を開閉するシャッタユニット(図示せず)が備えられている。 The processing unit 2 further includes a chamber 14 (see FIG. 1) that accommodates the cup 6. In the chamber 14, an entrance (not shown) for carrying the substrate W into the chamber 14 and carrying the substrate W out of the chamber 14 is formed. The chamber 14 is provided with a shutter unit (not shown) that opens and closes the entrance.
 スピンチャック5は、チャックピン20と、スピンベース21と、回転軸22と、電動モータ23とを含む。回転軸22は、回転軸線A1に沿って鉛直方向に延びている。回転軸22の上端は、スピンベース21の下面中央に結合されている。 The spin chuck 5 includes a chuck pin 20, a spin base 21, a rotating shaft 22, and an electric motor 23. The rotation shaft 22 extends in the vertical direction along the rotation axis A1. The upper end of the rotation shaft 22 is coupled to the center of the lower surface of the spin base 21.
 スピンベース21は、水平方向に沿う円盤形状を有している。スピンベース21の上面の周縁部に、複数のチャックピン20が周方向に間隔を空けて配置されている。スピンベース21およびチャックピン20は、基板Wを水平に保持する基板保持ユニットに含まれる。基板保持ユニットは、基板ホルダともいう。 The spin base 21 has a disk shape along the horizontal direction. A plurality of chuck pins 20 are arranged at intervals in the circumferential direction on the peripheral edge of the upper surface of the spin base 21. The spin base 21 and the chuck pin 20 are included in a substrate holding unit that holds the substrate W horizontally. The substrate holding unit is also called a substrate holder.
 電動モータ23は、回転軸22に回転力を与える。電動モータ23によって回転軸22が回転されることにより、基板Wが回転軸線A1のまわりに回転される。電動モータ23は、基板Wを回転軸線A1のまわりに回転させる基板回転ユニットに含まれる。 The electric motor 23 gives a rotational force to the rotary shaft 22. When the rotating shaft 22 is rotated by the electric motor 23, the substrate W is rotated around the rotating axis A1. The electric motor 23 is included in a substrate rotation unit that rotates the substrate W around the rotation axis A1.
 薬液供給ユニット7は、基板Wの上面に薬液を供給する薬液ノズル30と、薬液ノズル30に結合された薬液供給管31とを含む。薬液供給管31には、薬液供給源から、フッ酸(フッ化水素水:HF)などの薬液が供給されている。 The chemical solution supply unit 7 includes a chemical solution nozzle 30 for supplying a chemical solution to the upper surface of the substrate W, and a chemical solution supply pipe 31 coupled to the chemical solution nozzle 30. A chemical solution such as hydrofluoric acid (hydrogen fluoride water: HF) is supplied to the chemical solution supply pipe 31 from a chemical solution supply source.
 薬液供給ユニット7は、薬液供給管31に介装された薬液供給バルブ32、薬液流量調整バルブ33および薬液脱気ユニット34をさらに含む。なお、薬液脱気ユニット34は、不活性ガスバブリング薬液キャビネットでもよい。薬液供給バルブ32は、薬液の流路を開閉する。薬液流量調整バルブ33は、その開度に応じて薬液供給管31内の薬液の流量を調整する。薬液脱気ユニット34は、薬液供給源から薬液供給管31に供給された薬液から酸素を除去する。 The chemical liquid supply unit 7 further includes a chemical liquid supply valve 32, a chemical liquid flow rate adjustment valve 33, and a chemical liquid deaeration unit 34 interposed in the chemical liquid supply pipe 31. The chemical liquid degassing unit 34 may be an inert gas bubbling chemical liquid cabinet. The chemical liquid supply valve 32 opens and closes the flow path of the chemical liquid. The chemical flow rate adjusting valve 33 adjusts the flow rate of the chemical solution in the chemical solution supply pipe 31 according to the opening degree. The chemical liquid degassing unit 34 removes oxygen from the chemical liquid supplied to the chemical liquid supply pipe 31 from the chemical liquid supply source.
 薬液は、フッ酸に限られず、硫酸、酢酸、硝酸、塩酸、フッ酸、バッファードフッ酸(BHF)、希フッ酸(DHF)、アンモニア水、過酸化水素水、有機酸(たとえば、クエン酸、蓚酸等)、有機アルカリ(たとえば、TMAH:テトラメチルアンモニウムハイドロオキサイドなど)、界面活性剤、腐食防止剤のうちの少なくとも1つを含む液であってもよい。これらを混合した薬液の例としては、SPM(硫酸過酸化水素水混合液)、SC1(アンモニア過酸化水素水混合液)、SC2(塩酸過酸化水素水混合液)などが挙げられる。 The chemical solution is not limited to hydrofluoric acid, but sulfuric acid, acetic acid, nitric acid, hydrochloric acid, hydrofluoric acid, buffered hydrofluoric acid (BHF), dilute hydrofluoric acid (DHF), aqueous ammonia, hydrogen peroxide, organic acid (for example, citric acid) , Oxalic acid, etc.), an organic alkali (for example, TMAH: tetramethylammonium hydroxide, etc.), a surfactant, and a liquid containing at least one of a corrosion inhibitor. Examples of the chemical solution in which these are mixed include SPM (sulfuric acid hydrogen peroxide solution mixture), SC1 (ammonia hydrogen peroxide solution mixture), SC2 (hydrochloric acid hydrogen peroxide solution mixture), and the like.
 薬液ノズル30は、薬液ノズル移動ユニット35によって、鉛直方向(回転軸線A1と平行な方向)および水平方向(回転軸線A1に垂直な方向)に移動される。薬液ノズル30は、水平方向への移動によって、中央位置と、退避位置との間で移動することができる。薬液ノズル30は、中央位置に位置するとき、基板Wの上面の回転中心C1に対向する。薬液ノズル30は、退避位置に位置するとき、基板Wの上面に対向しない。薬液ノズル30は、退避位置に位置するとき、平面視においてカップ6の外方に位置してもよい。 The chemical nozzle 30 is moved by the chemical nozzle moving unit 35 in the vertical direction (direction parallel to the rotation axis A1) and in the horizontal direction (direction perpendicular to the rotation axis A1). The chemical nozzle 30 can move between the center position and the retracted position by moving in the horizontal direction. When the chemical nozzle 30 is located at the center position, the chemical nozzle 30 faces the rotation center C1 on the upper surface of the substrate W. The chemical liquid nozzle 30 does not face the upper surface of the substrate W when it is located at the retracted position. When the chemical liquid nozzle 30 is located at the retracted position, it may be located outside the cup 6 in a plan view.
 基板Wの上面の回転中心C1は、基板Wの上面における回転軸線A1との交差位置である。本実施形態とは異なり、薬液ノズル30は、固定ノズルであってもよい。 The rotation center C1 on the upper surface of the substrate W is a position intersecting the rotation axis A1 on the upper surface of the substrate W. Unlike the present embodiment, the chemical nozzle 30 may be a fixed nozzle.
 リンス液供給ユニット8は、基板Wの上面にリンス液を供給するリンス液ノズル40と、リンス液ノズル40に結合されたリンス液供給管41とを含む。リンス液供給管41には、リンス液供給源から、DIWなどのリンス液が供給されている。 The rinse liquid supply unit 8 includes a rinse liquid nozzle 40 that supplies a rinse liquid to the upper surface of the substrate W, and a rinse liquid supply pipe 41 that is coupled to the rinse liquid nozzle 40. The rinse liquid supply pipe 41 is supplied with a rinse liquid such as DIW from a rinse liquid supply source.
 リンス液供給ユニット8は、リンス液供給管41に介装されたリンス液供給バルブ42、リンス液流量調整バルブ43およびリンス液脱気ユニット44をさらに含む。リンス液供給バルブ42は、リンス液の流路を開閉する。リンス液流量調整バルブ43は、その開度に応じてリンス液供給管41内のリンス液の流量を調整する。リンス液脱気ユニット44は、リンス液供給源からリンス液供給管41に供給されたリンス液から酸素を除去する。 The rinse liquid supply unit 8 further includes a rinse liquid supply valve 42, a rinse liquid flow rate adjustment valve 43, and a rinse liquid deaeration unit 44 interposed in the rinse liquid supply pipe 41. The rinse liquid supply valve 42 opens and closes the flow path of the rinse liquid. The rinse liquid flow rate adjustment valve 43 adjusts the flow rate of the rinse liquid in the rinse liquid supply pipe 41 according to the opening degree. The rinse liquid deaeration unit 44 removes oxygen from the rinse liquid supplied to the rinse liquid supply pipe 41 from the rinse liquid supply source.
 リンス液ノズル40は、固定ノズルである。本実施形態とは異なり、リンス液ノズル40は、水平方向および鉛直方向に移動可能な移動ノズルであってもよい。 The rinse liquid nozzle 40 is a fixed nozzle. Unlike the present embodiment, the rinse liquid nozzle 40 may be a moving nozzle that can move in the horizontal direction and the vertical direction.
 リンス液とは、DIWに限られず、炭酸水、電解イオン水、オゾン水、希釈濃度(たとえば、10~100ppm程度)の塩酸水、アンモニアなどを含むアルカリイオン水、還元水(水素水)であってもよい。 The rinse liquid is not limited to DIW, but is carbonated water, electrolytic ion water, ozone water, hydrochloric acid water having a diluted concentration (for example, about 10 to 100 ppm), alkaline ion water containing ammonia, or reduced water (hydrogen water). May be.
 気体供給ユニット9は、気体ノズル50と、気体供給管51と、気体供給バルブ52と、気体流量調整バルブ53とを含む。気体ノズル50は、基板Wの上面の中央領域に窒素(N)ガスなどの気体を供給する。気体供給管51は、気体ノズル50に結合されている。気体供給バルブ52は、気体供給管51に介装され、気体の流路を開閉する。気体流量調整バルブ53は、気体供給管51に介装され、その開度に応じて気体供給管51内の気体の流量を調整する。気体供給管51には、気体供給源から、窒素ガスなどの気体が供給されている。 The gas supply unit 9 includes a gas nozzle 50, a gas supply pipe 51, a gas supply valve 52, and a gas flow rate adjustment valve 53. The gas nozzle 50 supplies a gas such as nitrogen (N 2 ) gas to the central region of the upper surface of the substrate W. The gas supply pipe 51 is coupled to the gas nozzle 50. The gas supply valve 52 is interposed in the gas supply pipe 51 and opens and closes the gas flow path. The gas flow rate adjusting valve 53 is interposed in the gas supply pipe 51 and adjusts the flow rate of the gas in the gas supply pipe 51 according to the opening degree. A gas such as nitrogen gas is supplied to the gas supply pipe 51 from a gas supply source.
 気体供給源から気体供給管51に供給される気体としては、窒素ガスなどの不活性ガスが好ましい。不活性ガスは、窒素ガスに限らず、基板Wの上面およびパターンに対して不活性なガスである。不活性ガスの例としては、窒素ガス以外に、アルゴンなどの希ガス類が挙げられる。 The gas supplied from the gas supply source to the gas supply pipe 51 is preferably an inert gas such as nitrogen gas. The inert gas is not limited to nitrogen gas, but is inert to the upper surface and pattern of the substrate W. Examples of the inert gas include noble gases such as argon in addition to nitrogen gas.
 気体ノズル50は、気体ノズル移動ユニット55によって、鉛直方向および水平方向に移動される。気体ノズル50は、水平方向への移動によって、中央位置と、退避位置との間で移動することができる。気体ノズル50は、中央位置に位置するとき、基板Wの上面の回転中心C1に対向する。気体ノズル50は、退避位置に位置するとき、基板Wの上面に対向しない。 The gas nozzle 50 is moved in the vertical direction and the horizontal direction by the gas nozzle moving unit 55. The gas nozzle 50 can move between a central position and a retracted position by moving in the horizontal direction. When the gas nozzle 50 is located at the center position, the gas nozzle 50 faces the rotation center C1 on the upper surface of the substrate W. The gas nozzle 50 does not face the upper surface of the substrate W when positioned at the retracted position.
 気体ノズル移動ユニット55は、たとえば、鉛直方向に沿う回動軸56と、回動軸56に結合されて水平に延びるノズルアーム57と、ノズルアーム57を駆動するアーム駆動機構58とを含む。アーム駆動機構58は、回動軸56を鉛直な回動軸線のまわりに回動させることによってノズルアーム57を水平に揺動させる。アーム駆動機構58は、回動軸56を鉛直方向に沿って昇降させることによってノズルアーム57を上下動させる。アーム駆動機構58は、たとえば、ボールねじ機構(図示せず)と、それに駆動力を与える電動モータ(図示せず)とを含む。 The gas nozzle moving unit 55 includes, for example, a rotating shaft 56 extending in the vertical direction, a nozzle arm 57 coupled to the rotating shaft 56 and extending horizontally, and an arm driving mechanism 58 that drives the nozzle arm 57. The arm drive mechanism 58 swings the nozzle arm 57 horizontally by rotating the rotation shaft 56 around a vertical rotation axis. The arm drive mechanism 58 moves the nozzle arm 57 up and down by moving the rotating shaft 56 up and down along the vertical direction. The arm drive mechanism 58 includes, for example, a ball screw mechanism (not shown) and an electric motor (not shown) that applies a driving force thereto.
 膜厚測定ユニット10は、薬液などの液膜の厚さを、非接触な方法で測定するための装置である。非接触な方法としては、たとえば、赤外線吸収法や光干渉法などが挙げられる。 The film thickness measuring unit 10 is a device for measuring the thickness of a liquid film such as a chemical solution by a non-contact method. Examples of the non-contact method include an infrared absorption method and an optical interference method.
 膜厚測定ユニット10は、発光部および受光部を有する膜厚プローブ60と、光源および測光部を有する膜厚測定器61と、膜厚プローブ60および膜厚測定器61を連結する光ファイバーなどの接続線62とを含む。膜厚プローブ60は、ノズルアーム57に取り付けられている。そのため、膜厚プローブ60は、気体ノズル50とともに水平方向および鉛直方向に移動可能である。 The film thickness measuring unit 10 includes a film thickness probe 60 having a light emitting part and a light receiving part, a film thickness measuring instrument 61 having a light source and a light measuring part, and an optical fiber connection for connecting the film thickness probe 60 and the film thickness measuring instrument 61. Line 62. The film thickness probe 60 is attached to the nozzle arm 57. Therefore, the film thickness probe 60 can move in the horizontal direction and the vertical direction together with the gas nozzle 50.
 図3は、基板処理装置1の主要部の電気的構成を説明するためのブロック図である。コントローラ3は、マイクロコンピュータを備えており、所定の制御プログラムに従って、基板処理装置1に備えられた制御対象を制御する。より具体的には、コントローラ3は、プロセッサ(CPU)3Aと、制御プログラムが格納されたメモリ3Bとを含み、プロセッサ3Aが制御プログラムを実行することによって、基板処理のための様々な制御を実行するように構成されている。とくに、コントローラ3は、搬送ロボットIR,CR、電動モータ23、ノズル移動ユニット35,55、膜厚測定器61およびバルブ類32,33,42,43,52,53などの動作を制御する。 FIG. 3 is a block diagram for explaining the electrical configuration of the main part of the substrate processing apparatus 1. The controller 3 includes a microcomputer and controls a control target provided in the substrate processing apparatus 1 according to a predetermined control program. More specifically, the controller 3 includes a processor (CPU) 3A and a memory 3B in which a control program is stored, and the processor 3A executes the control program to execute various controls for substrate processing. Is configured to do. In particular, the controller 3 controls operations of the transport robot IR, CR, the electric motor 23, the nozzle moving units 35, 55, the film thickness measuring device 61, the valves 32, 33, 42, 43, 52, 53, and the like.
 図4は、基板処理装置1によって処理される基板Wの表面状態の一例を説明するための断面図である。 FIG. 4 is a cross-sectional view for explaining an example of the surface state of the substrate W processed by the substrate processing apparatus 1.
 以下に説明するように、基板処理装置1に搬入される基板Wは、たとえば、表面にポリマー残渣(ドライエッチングやアッシング後の残渣)が付着しており、金属膜70(金属パターン)が露出した半導体ウエハである。 As will be described below, the substrate W carried into the substrate processing apparatus 1 has, for example, a polymer residue (residue after dry etching or ashing) attached to the surface, and the metal film 70 (metal pattern) is exposed. It is a semiconductor wafer.
 金属膜70は、銅やタングステンその他の金属の単膜であってもよいし、複数の金属膜を積層した多層膜であってもよい。多層膜は、たとえば、銅膜と、この銅膜上に積層されたCoWP(cobalt-tungsten- phosphorus)膜とを含む積層膜であってもよい。CoWP膜は、拡散防止のためのキャップ膜である。 The metal film 70 may be a single film of copper, tungsten, or other metal, or may be a multilayer film in which a plurality of metal films are stacked. The multilayer film may be a laminated film including a copper film and a CoWP (cobalt-tungsten-phosphorus) film laminated on the copper film, for example. The CoWP film is a cap film for preventing diffusion.
 図4に示すように、基板Wの表面上には、層間絶縁膜72が形成されている。層間絶縁膜72には、下配線溝73がその上面から掘り下げて形成されている。下配線溝73には、銅配線74が埋設されている。銅配線74は、金属膜70に含まれる。層間絶縁膜72上には、エッチストッパ膜75を介して、被加工膜の一例としての低誘電率絶縁膜76が積層されている。低誘電率絶縁膜76には、上配線溝77がその上面から掘り下げて形成されている。さらに、低誘電率絶縁膜76には、上配線溝77の底面から銅配線74の表面に達するヴィアホール78が形成されている。上配線溝77およびヴィアホール78には、銅が一括して埋め込まれる。 As shown in FIG. 4, an interlayer insulating film 72 is formed on the surface of the substrate W. In the interlayer insulating film 72, a lower wiring groove 73 is formed by digging from the upper surface. A copper wiring 74 is embedded in the lower wiring groove 73. The copper wiring 74 is included in the metal film 70. On the interlayer insulating film 72, a low dielectric constant insulating film 76 as an example of a film to be processed is laminated via an etch stopper film 75. In the low dielectric constant insulating film 76, an upper wiring groove 77 is formed by digging from the upper surface thereof. Furthermore, a via hole 78 reaching the surface of the copper wiring 74 from the bottom surface of the upper wiring groove 77 is formed in the low dielectric constant insulating film 76. Copper is buried in the upper wiring groove 77 and the via hole 78 in a lump.
 上配線溝77およびヴィアホール78は、低誘電率絶縁膜76上にハードマスクが形成された後、ドライエッチング処理が行われ、低誘電率絶縁膜76におけるハードマスクから露出した部分が除去されることにより形成される。上配線溝77およびヴィアホール78が形成された後、アッシング処理が行われ、不要となったハードマスクが低誘電率絶縁膜76上から除去される。 The upper wiring trench 77 and the via hole 78 are subjected to a dry etching process after a hard mask is formed on the low dielectric constant insulating film 76, and a portion exposed from the hard mask in the low dielectric constant insulating film 76 is removed. Is formed. After the upper wiring trench 77 and the via hole 78 are formed, an ashing process is performed, and the unnecessary hard mask is removed from the low dielectric constant insulating film 76.
 ドライエッチング時およびアッシング時には、低誘電率絶縁膜76やハードマスクの成分を含む反応生成物(ポリマー残渣)が、低誘電率絶縁膜76の表面(上配線溝77およびヴィアホール78の内面を含む。)などに付着する。そのため、アッシング後には、基板Wの表面にポリマー除去液を供給して、低誘電率絶縁膜76の表面からポリマー残渣を除去するポリマー除去工程が行われる。以下では、このような基板Wの表面からポリマー残渣を除去する処理例について説明する。 At the time of dry etching and ashing, a reaction product (polymer residue) containing components of the low dielectric constant insulating film 76 and the hard mask includes the surface of the low dielectric constant insulating film 76 (the inner surfaces of the upper wiring trench 77 and the via hole 78). )). Therefore, after ashing, a polymer removal step is performed in which a polymer removal solution is supplied to the surface of the substrate W to remove polymer residues from the surface of the low dielectric constant insulating film 76. Below, the process example which removes a polymer residue from the surface of such a board | substrate W is demonstrated.
 図5は、基板処理装置1による基板処理の一例を説明するための流れ図である。基板処理装置1による基板処理では、コントローラ3によって作成された処理スケジュールに基づいて、たとえば、図5に示すように、基板搬入(S1)、薬液処理(S2)、リンス処理(S3)、乾燥処理(S4)および基板搬出(S5)がこの順番で実行される。 FIG. 5 is a flowchart for explaining an example of substrate processing by the substrate processing apparatus 1. In the substrate processing by the substrate processing apparatus 1, based on the processing schedule created by the controller 3, for example, as shown in FIG. 5, substrate loading (S1), chemical processing (S2), rinsing processing (S3), and drying processing are performed. (S4) and substrate unloading (S5) are executed in this order.
 基板処理では、まず、アッシング後の基板Wが、搬送ロボットIR,CRによってキャリヤCから処理ユニット2に搬入され、スピンチャック5に渡される(S1)。この後、基板Wは、搬送ロボットCRによって搬出されるまでの間、チャックピン20によって、スピンベース21の上面から上方に間隔を空けて水平に保持される(基板保持工程)。 In the substrate processing, first, the ashed substrate W is loaded into the processing unit 2 from the carrier C by the transfer robots IR and CR, and transferred to the spin chuck 5 (S1). Thereafter, the substrate W is horizontally held by the chuck pins 20 with an interval upward from the upper surface of the spin base 21 until it is carried out by the transfer robot CR (substrate holding step).
 次に、搬送ロボットCRが処理ユニット2外に退避した後、薬液処理(S2)が開始される。 Next, after the transfer robot CR has retreated from the processing unit 2, the chemical processing (S2) is started.
 電動モータ23は、スピンベース21を回転させる。これにより、チャックピン20に水平に保持された基板Wが回転する(基板回転工程)。その一方で、薬液ノズル移動ユニット35は、薬液ノズル30を基板Wの上方の薬液処理位置に配置する。 The electric motor 23 rotates the spin base 21. As a result, the substrate W held horizontally by the chuck pins 20 rotates (substrate rotation process). On the other hand, the chemical nozzle moving unit 35 arranges the chemical nozzle 30 at a chemical processing position above the substrate W.
 そして、薬液供給バルブ32が開かれる。これにより、回転状態の基板Wの上面に向けて、薬液ノズル30から薬液が吐出(供給)される。薬液ノズル30が薬液処理位置に位置するので、薬液ノズル30から吐出される薬液が基板Wの上面の回転中心C1に着液する。供給された薬液は遠心力によって基板Wの上面の全体に行き渡る。これにより、基板Wの上面が薬液によって処理される。 Then, the chemical solution supply valve 32 is opened. Accordingly, the chemical liquid is discharged (supplied) from the chemical liquid nozzle 30 toward the upper surface of the substrate W in the rotating state. Since the chemical solution nozzle 30 is located at the chemical solution processing position, the chemical solution discharged from the chemical solution nozzle 30 is deposited on the rotation center C1 on the upper surface of the substrate W. The supplied chemical solution spreads over the entire upper surface of the substrate W by centrifugal force. Thereby, the upper surface of the substrate W is treated with the chemical solution.
 次に、一定時間の薬液処理(S2)の後、DIWリンス処理(S3)が実行される。DIWリンス処理(S3)では、基板W上の薬液をDIWに置換することにより、基板W上から薬液が排除される。 Next, the DIW rinse process (S3) is performed after the chemical solution process (S2) for a predetermined time. In the DIW rinse process (S3), the chemical solution is removed from the substrate W by replacing the chemical solution on the substrate W with DIW.
 具体的には、薬液供給バルブ32が閉じられ、リンス液供給バルブ42が開かれる。これにより、リンス液ノズル40から基板Wの上面に向けてリンス液が供給(吐出)される。リンス液ノズル40から吐出されたリンス液は、基板Wの上面の中央部に着液する。基板W上に供給されたDIWは遠心力によって基板Wの上面の全体に行き渡る。このDIWによって基板W上の薬液が洗い流される。この間に、薬液ノズル移動ユニット35が、薬液ノズル30を基板Wの上方からカップ6の側方へと退避させる。 Specifically, the chemical solution supply valve 32 is closed and the rinse solution supply valve 42 is opened. Thus, the rinse liquid is supplied (discharged) from the rinse liquid nozzle 40 toward the upper surface of the substrate W. The rinse liquid discharged from the rinse liquid nozzle 40 is deposited on the center of the upper surface of the substrate W. DIW supplied onto the substrate W spreads over the entire upper surface of the substrate W by centrifugal force. The chemical solution on the substrate W is washed away by the DIW. During this time, the chemical nozzle moving unit 35 retracts the chemical nozzle 30 from above the substrate W to the side of the cup 6.
 次に、基板Wを乾燥させる乾燥処理(S4)が行われる。 Next, a drying process (S4) for drying the substrate W is performed.
 具体的には、リンス液供給バルブ42が閉じられる。そして、電動モータ23が、薬液処理(S2)およびリンス液処理(S3)基板Wの回転速度よりも速い高回転速度(たとえば3000rpm)で基板Wを回転させる。これにより、大きな遠心力が基板W上のリンス液に作用し、基板W上のリンス液が基板Wの周囲に振り切られる。このようにして、基板Wからリンス液が除去され、基板Wが乾燥する。そして、基板Wの高速回転が開始されてから所定時間が経過すると、電動モータ23が、スピンベース21による基板Wの回転を停止させる。 Specifically, the rinse liquid supply valve 42 is closed. Then, the electric motor 23 rotates the substrate W at a high rotational speed (for example, 3000 rpm) faster than the rotational speed of the chemical liquid processing (S2) and the rinsing liquid processing (S3) substrate W. Thereby, a large centrifugal force acts on the rinsing liquid on the substrate W, and the rinsing liquid on the substrate W is shaken off around the substrate W. In this way, the rinse liquid is removed from the substrate W, and the substrate W is dried. When a predetermined time elapses after the high-speed rotation of the substrate W is started, the electric motor 23 stops the rotation of the substrate W by the spin base 21.
 その後、搬送ロボットCRが、処理ユニット2に進入して、スピンチャック5から処理済みの基板Wをすくい取って、処理ユニット2外へと搬出する(S5)。その基板Wは、搬送ロボットCRから搬送ロボットIRへと渡され、搬送ロボットIRによって、キャリヤCに収納される。 Thereafter, the transfer robot CR enters the processing unit 2, picks up the processed substrate W from the spin chuck 5, and carries it out of the processing unit 2 (S 5). The substrate W is transferred from the transfer robot CR to the transfer robot IR, and is stored in the carrier C by the transfer robot IR.
 次に、薬液処理(図5のS2)の詳細について説明する。 Next, the details of the chemical treatment (S2 in FIG. 5) will be described.
 図6は、薬液処理(図5のS2)の様子を説明するための図解的な断面図である。薬液処理(図5のS2)では、基板Wの上面に薬液が供給されることによって、基板W上に薬液の液膜80が形成される(液膜形成工程)。 FIG. 6 is a schematic cross-sectional view for explaining the state of the chemical treatment (S2 in FIG. 5). In the chemical treatment (S2 in FIG. 5), the chemical solution 80 is formed on the substrate W by supplying the chemical solution to the upper surface of the substrate W (liquid film forming step).
 電動モータ23は、基板W上に液膜80が形成された状態で、基板Wの回転を制御する(回転制御工程)。具体的には、基板Wの回転速度が10rpm以上で、かつ、300rpm以下となるように基板Wの回転が制御されることが好ましい。基板Wの回転速度は、10rpm以上で、かつ、200rpm以下であることが一層好ましい。基板Wの回転速度は、10rpm以上で、かつ、100rpm以下であることがより一層好ましい。 The electric motor 23 controls the rotation of the substrate W with the liquid film 80 formed on the substrate W (rotation control step). Specifically, the rotation of the substrate W is preferably controlled so that the rotation speed of the substrate W is 10 rpm or more and 300 rpm or less. The rotation speed of the substrate W is more preferably 10 rpm or more and 200 rpm or less. The rotation speed of the substrate W is more preferably 10 rpm or more and 100 rpm or less.
 また、基板W上に液膜80が形成された状態で、薬液流量調整バルブ33の開度が調整されることによって、薬液ノズル30からの薬液の供給が制御される(薬液量制御工程)。具体的には、薬液ノズル30からの薬液の供給量(供給流量)は500mL/min以上で、かつ、10L/min以下となるように薬液の供給が制御されることが好ましい。薬液ノズル30からの薬液の供給量は、2.0L/min以上で、かつ、10L/min以下であることが一層好ましい。薬液の供給量は、大流量であるほど液膜80を厚くすることができるため、薬液の供給量はできるだけ大きいことが好ましい。薬液の供給量を充分に確保するために、薬液ノズル30が複数(2、3個)設けられていてもよい。 Further, the supply of the chemical liquid from the chemical liquid nozzle 30 is controlled by adjusting the opening of the chemical liquid flow rate adjustment valve 33 in a state where the liquid film 80 is formed on the substrate W (chemical liquid amount control step). Specifically, the supply of the chemical solution from the chemical solution nozzle 30 is preferably controlled so that the supply amount (supply flow rate) is 500 mL / min or more and 10 L / min or less. The supply amount of the chemical solution from the chemical solution nozzle 30 is more preferably 2.0 L / min or more and 10 L / min or less. The larger the flow rate of the chemical solution, the thicker the liquid film 80 is. Therefore, it is preferable that the supply amount of the chemical solution is as large as possible. In order to ensure a sufficient supply amount of the chemical liquid, a plurality (2, 3) of chemical liquid nozzles 30 may be provided.
 このように、基板Wの回転や薬液の供給が制御される。これにより、液膜80の厚さTが、100μm以上で、かつ、1cm以下となるように、液膜80の厚さTが調整される(膜厚調整工程)。液膜80の厚さTとは、鉛直方向における液膜80の幅である。液膜80の厚さTは、200μm以上で、かつ、1cm以下であることが好ましい。液膜80の厚さTは、300μm以上で、かつ、1cm以下であることが一層好ましい。液膜80は、基板Wの上面の全体を覆っている必要はなく、少なくとも基板Wの上面において金属膜70が露出された領域を覆っていればよい。 Thus, the rotation of the substrate W and the supply of the chemical solution are controlled. Thereby, the thickness T of the liquid film 80 is adjusted so that the thickness T of the liquid film 80 is 100 μm or more and 1 cm or less (film thickness adjusting step). The thickness T of the liquid film 80 is the width of the liquid film 80 in the vertical direction. The thickness T of the liquid film 80 is preferably 200 μm or more and 1 cm or less. The thickness T of the liquid film 80 is more preferably 300 μm or more and 1 cm or less. The liquid film 80 does not need to cover the entire top surface of the substrate W, and may cover at least the region where the metal film 70 is exposed on the top surface of the substrate W.
 膜厚調整工程において、気体供給バルブ52が開かれてもよい。これにより、窒素ガスなどの気体が、気体ノズル50から基板Wの上面に向けて供給される(気体供給工程)。このとき、気体ノズル50は、基板Wの上面の回転中心C1の側方の位置に気体を吹き付け可能な位置に配置されている。 In the film thickness adjustment process, the gas supply valve 52 may be opened. Thereby, gas, such as nitrogen gas, is supplied toward the upper surface of the board | substrate W from the gas nozzle 50 (gas supply process). At this time, the gas nozzle 50 is disposed at a position where gas can be blown to a position on the side of the rotation center C1 on the upper surface of the substrate W.
 基板Wの上面の回転中心C1の側方とは、基板Wの上面の回転中心C1から20mm離れた第1位置P1と、基板Wの上面の回転中心C1から80mm離れた第2位置P2との間の位置を含む領域である。基板Wの上面の回転中心C1の側方には、第1位置P1および第2位置P2も含まれる。そのため、気体ノズル50から基板Wの上面の回転中心C1の側方に向けて、気体が吹き付けられる。 The side of the rotation center C1 on the upper surface of the substrate W is a first position P1 that is 20 mm away from the rotation center C1 of the upper surface of the substrate W and a second position P2 that is 80 mm away from the rotation center C1 of the upper surface of the substrate W. It is an area including the position between. On the side of the rotation center C1 on the upper surface of the substrate W, the first position P1 and the second position P2 are also included. Therefore, gas is blown from the gas nozzle 50 toward the side of the rotation center C1 on the upper surface of the substrate W.
 気体供給工程において、気体流量調整バルブ53の開度が調整されることによって、気体ノズル50からの気体の供給量が調整される。気体ノズル50からの気体の供給量は、5L/min以上で、かつ、50L/min以下であることが好ましい。気体ノズル50からの気体の供給量は、5L/minであることが一層好ましい。 In the gas supply step, the amount of gas supplied from the gas nozzle 50 is adjusted by adjusting the opening of the gas flow rate adjustment valve 53. The amount of gas supplied from the gas nozzle 50 is preferably 5 L / min or more and 50 L / min or less. The supply amount of gas from the gas nozzle 50 is more preferably 5 L / min.
 膜厚形成工程において調整された液膜80の厚さTが、膜厚測定ユニット10によって測定されてもよい(膜厚測定工程)。測定された液膜80の厚さTに基づいて、薬液の供給や基板Wの回転を制御してもよい。これにより、測定された液膜80の厚さTに基づいて、液膜80の厚さTを調整することができる。つまり、液膜80の厚さTをリアルタイムで調整(制御)することができる。 The thickness T of the liquid film 80 adjusted in the film thickness forming process may be measured by the film thickness measuring unit 10 (film thickness measuring process). Based on the measured thickness T of the liquid film 80, the supply of the chemical solution and the rotation of the substrate W may be controlled. Thereby, the thickness T of the liquid film 80 can be adjusted based on the measured thickness T of the liquid film 80. That is, the thickness T of the liquid film 80 can be adjusted (controlled) in real time.
 測定された液膜80の厚さTが意図していた値と異なる場合には、基板処理装置1を操作する操作パネル(図示せず)などに警告表示が表示されてもよい。測定された液膜80の厚さTが意図していた値と異なる場合とは、たとえば、測定された液膜80の厚さTが100μmよりも小さい場合である。 When the measured thickness T of the liquid film 80 is different from the intended value, a warning display may be displayed on an operation panel (not shown) for operating the substrate processing apparatus 1. The case where the measured thickness T of the liquid film 80 is different from the intended value is, for example, the case where the measured thickness T of the liquid film 80 is smaller than 100 μm.
 気体ノズル移動ユニット55が、気体ノズル50とともに膜厚プローブ60を水平方向に移動させてもよい。これにより、基板W上の各位置における液膜80の厚さTが測定可能である。 The gas nozzle moving unit 55 may move the film thickness probe 60 together with the gas nozzle 50 in the horizontal direction. Thereby, the thickness T of the liquid film 80 at each position on the substrate W can be measured.
 以下では、後述する図7および図8を用いて、薬液処理(図5のS2)においてフッ酸を用いて基板Wを処理した場合の金属膜70(Cu膜)の腐食量(エッチング量)を測定するために行った実験の結果について説明する。 Hereinafter, the corrosion amount (etching amount) of the metal film 70 (Cu film) when the substrate W is processed using hydrofluoric acid in the chemical solution processing (S2 in FIG. 5) will be described with reference to FIGS. The results of experiments conducted for measurement will be described.
 具体的には、回転状態の基板W上にフッ酸の液膜80を形成し、液膜80の厚さTを測定した。そして、液膜80を基板W上で1分間保持することによって基板Wの上面を処理し、その後、Cu膜のエッチング量を測定した。 Specifically, a hydrofluoric acid liquid film 80 was formed on the rotating substrate W, and the thickness T of the liquid film 80 was measured. And the upper surface of the board | substrate W was processed by hold | maintaining the liquid film 80 on the board | substrate W for 1 minute, and the etching amount of Cu film | membrane was measured after that.
 この実験では、半径が150mmのウエハが基板Wとして使用された。この実験は、複数の回転速度(200rpm、400rpm、600rpm、800rpmおよび1000rpm)のそれぞれについて行われた。各回転速度における液膜80の厚さTの測定は、回転中心C1からの距離が異なる複数箇所において行われた。回転する基板Wに形成された液膜80の厚さTの測定は、基板Wの上面(液膜80)に窒素ガスを吹き付けない状態で行われた。この実験で用いられたフッ酸中のフッ化水素の濃度は、0.05重量%であった。この実験で用いられたフッ酸の温度は、24℃であった。 In this experiment, a wafer having a radius of 150 mm was used as the substrate W. This experiment was conducted for each of a plurality of rotational speeds (200 rpm, 400 rpm, 600 rpm, 800 rpm and 1000 rpm). The measurement of the thickness T of the liquid film 80 at each rotation speed was performed at a plurality of locations at different distances from the rotation center C1. The thickness T of the liquid film 80 formed on the rotating substrate W was measured in a state where nitrogen gas was not blown onto the upper surface (liquid film 80) of the substrate W. The concentration of hydrogen fluoride in the hydrofluoric acid used in this experiment was 0.05% by weight. The temperature of hydrofluoric acid used in this experiment was 24 ° C.
 液膜80の厚さTの測定は、フッ酸の供給量が2.0L/minである条件で行われた。Cu膜のエッチング量の測定は、フッ酸の供給量を0.5L/minとしたときと、フッ酸の供給量を2.0L/minとしたときとの両方の条件で行われた。 The measurement of the thickness T of the liquid film 80 was performed under the condition that the supply amount of hydrofluoric acid was 2.0 L / min. The measurement of the etching amount of the Cu film was performed under both conditions when the supply amount of hydrofluoric acid was 0.5 L / min and when the supply amount of hydrofluoric acid was 2.0 L / min.
 図7は、基板Wの回転速度の変化によるフッ酸の液膜80の厚さTの変化を測定した結果を示したグラフである。 FIG. 7 is a graph showing the result of measuring the change in the thickness T of the hydrofluoric acid liquid film 80 due to the change in the rotation speed of the substrate W.
 図7のグラフでは、横軸を、基板Wの上面の回転中心C1からの距離とし、縦軸を、基板Wの上面の回転中心C1から所定の距離に位置する点における液膜80の厚さTとしている。図7には、各回転速度における測定結果が図示されており、複数箇所での測定結果から導かれた近似曲線が回転速度毎に図示されている。 In the graph of FIG. 7, the horizontal axis represents the distance from the rotation center C1 of the upper surface of the substrate W, and the vertical axis represents the thickness of the liquid film 80 at a point located at a predetermined distance from the rotation center C1 of the upper surface of the substrate W. T. FIG. 7 shows measurement results at each rotational speed, and approximate curves derived from the measurement results at a plurality of locations are shown for each rotational speed.
 図7に示すように、回転速度が400rpm以上である場合、基板Wの上面の回転中心C1からの距離によっては、液膜80の厚さTが100μmよりも小さくなった。一方、回転速度が200rpmである場合、基板Wの上面の回転中心C1からの距離にかかわらず、液膜80の厚さTが100μmを超えていた。 As shown in FIG. 7, when the rotation speed is 400 rpm or more, the thickness T of the liquid film 80 becomes smaller than 100 μm depending on the distance from the rotation center C1 on the upper surface of the substrate W. On the other hand, when the rotation speed was 200 rpm, the thickness T of the liquid film 80 exceeded 100 μm regardless of the distance from the rotation center C1 on the upper surface of the substrate W.
 具体的には、基板Wを200rpmで回転させた場合、基板Wの上面の回転中心C1からの距離が約50mmの位置における液膜80の厚さTは約260μmであった。一方、基板Wを1000rpmで回転させた場合、基板Wの上面の回転中心C1からの距離が約50mmの位置における液膜80の厚さTが、100μmを下回っていた。 Specifically, when the substrate W was rotated at 200 rpm, the thickness T of the liquid film 80 at a position where the distance from the rotation center C1 on the upper surface of the substrate W was about 50 mm was about 260 μm. On the other hand, when the substrate W was rotated at 1000 rpm, the thickness T of the liquid film 80 at a position where the distance from the rotation center C1 on the upper surface of the substrate W was about 50 mm was less than 100 μm.
 基板Wを200rpmで回転させた場合、基板Wの上面の回転中心C1からの距離が約145mmの位置における液膜80の厚さTは約120μmであった。一方、基板Wを400rpm以上の回転速度で回転させた場合において、基板Wの上面の回転中心C1からの距離が約145mmの位置における液膜80の厚さTは100μmを下回っていた。 When the substrate W was rotated at 200 rpm, the thickness T of the liquid film 80 at a position where the distance from the rotation center C1 on the upper surface of the substrate W was about 145 mm was about 120 μm. On the other hand, when the substrate W was rotated at a rotation speed of 400 rpm or more, the thickness T of the liquid film 80 at a position where the distance from the rotation center C1 on the upper surface of the substrate W was about 145 mm was less than 100 μm.
 図7に示す二点鎖線のグラフは、基板Wの上面(液膜80)に窒素ガスを吹き付けた状態で基板Wを200rpmで回転させたときの液膜80の厚さTをコンピュータでシミュレーションした結果である。このシミュレーションでは、窒素ガスの供給量を、10L/minとし、窒素ガスを吹き付ける位置を、基板Wの上面の回転中心C1の側方(回転中心C1からの距離がおおよそ20mm~80mmの位置)としている。 The two-dot chain line graph shown in FIG. 7 simulates the thickness T of the liquid film 80 when the substrate W is rotated at 200 rpm while nitrogen gas is blown onto the upper surface (liquid film 80) of the substrate W by a computer. It is a result. In this simulation, the supply amount of nitrogen gas is set to 10 L / min, and the position at which the nitrogen gas is blown is set to the side of the rotation center C1 on the upper surface of the substrate W (position where the distance from the rotation center C1 is approximately 20 mm to 80 mm). Yes.
 このシミュレーションの結果によると、窒素ガスが吹き付けられた位置、すなわち、回転中心C1からの距離がおおよそ20mm~80mmの位置では、液膜80の厚さTが低減され、回転中心C1からの距離がおおよそ80mm~145mmの位置では、液膜80の厚さTが増大された。 According to the result of this simulation, the thickness T of the liquid film 80 is reduced and the distance from the rotation center C1 is reduced at the position where the nitrogen gas is blown, that is, the position from the rotation center C1 is approximately 20 mm to 80 mm. At a position of approximately 80 mm to 145 mm, the thickness T of the liquid film 80 was increased.
 詳しくは、基板Wの上面の回転中心C1からの距離が約50mmの位置における液膜80の厚さTが、約260μmから約220μmに低減された。そして、基板Wの上面の回転中心C1からの距離が約145mmの位置における液膜80の厚さTが、約120μmから約170μmに増大された。 Specifically, the thickness T of the liquid film 80 at a position where the distance from the rotation center C1 on the upper surface of the substrate W is about 50 mm has been reduced from about 260 μm to about 220 μm. Then, the thickness T of the liquid film 80 at a position where the distance from the rotation center C1 of the upper surface of the substrate W is about 145 mm is increased from about 120 μm to about 170 μm.
 図8は、フッ酸の液膜80の厚さTの変化によるCu膜のエッチング量の変化を測定した結果を示したグラフである。 FIG. 8 is a graph showing the result of measuring the change in the etching amount of the Cu film due to the change in the thickness T of the liquid film 80 of hydrofluoric acid.
 図8を参照して、Cu膜において損失した部分の厚さを、Cu膜のエッチング量として示している。液膜80の厚さTの測定およびCu膜のエッチング量の測定は、回転中心C1からの距離が異なる4箇所で行われた。図8では、横軸を、フッ酸の液膜80の厚さTとし、縦軸を、液膜80の厚さTを測定した位置におけるCu膜のエッチング量としている。 Referring to FIG. 8, the thickness of the portion lost in the Cu film is shown as the etching amount of the Cu film. The measurement of the thickness T of the liquid film 80 and the measurement of the etching amount of the Cu film were performed at four locations with different distances from the rotation center C1. In FIG. 8, the horizontal axis represents the thickness T of the hydrofluoric acid liquid film 80, and the vertical axis represents the etching amount of the Cu film at the position where the thickness T of the liquid film 80 was measured.
 図8では、測定データは、基板Wの回転速度および測定箇所などでは区別されておらず、フッ酸の供給量で区別されている。フッ酸の供給量を0.5L/minとしたときの測定結果と、フッ酸の供給量を2.0L/minとしたときの測定結果とを別々に示している。0.5L/minでフッ酸を供給したときの測定結果が「□」で示されている。2.0L/minでフッ酸を供給したときの測定結果が「◆」で示されている。 In FIG. 8, the measurement data is not distinguished by the rotation speed of the substrate W, the measurement location, etc., but is distinguished by the supply amount of hydrofluoric acid. The measurement result when the supply amount of hydrofluoric acid is 0.5 L / min and the measurement result when the supply amount of hydrofluoric acid is 2.0 L / min are separately shown. The measurement result when hydrofluoric acid is supplied at 0.5 L / min is indicated by “□”. The measurement result when hydrofluoric acid is supplied at 2.0 L / min is indicated by “♦”.
 図8に示すように、液膜80の厚さTが100μmよりも小さいときは、Cu膜のエッチング量が1nm~7nmであった(図8の破線よりも左側を参照)。これに対して、液膜80の厚さTが100μm以上であるときは、いずれの測定結果においても、Cu膜のエッチング量が約1nmであった(図8の破線よりも右側を参照)。 As shown in FIG. 8, when the thickness T of the liquid film 80 is smaller than 100 μm, the etching amount of the Cu film was 1 nm to 7 nm (see the left side of the broken line in FIG. 8). On the other hand, when the thickness T of the liquid film 80 was 100 μm or more, the etching amount of the Cu film was about 1 nm in any measurement result (see the right side of the broken line in FIG. 8).
 この実験から、液膜80の厚さTが100μm以上であれば、Cu膜のエッチング量を充分に抑制できることが推察される。 From this experiment, it is presumed that the etching amount of the Cu film can be sufficiently suppressed when the thickness T of the liquid film 80 is 100 μm or more.
 液膜80の厚さTが100μm以上であるときにもCu膜が約1nm損失した理由は、フッ酸中の溶存酸素とCu膜とが反応して形成された酸化銅がフッ酸によってエッチングされたことに起因するのではなく、別の要因によるものと考えられる。 The reason why the Cu film lost about 1 nm even when the thickness T of the liquid film 80 is 100 μm or more is that the copper oxide formed by the reaction between the dissolved oxygen in the hydrofluoric acid and the Cu film is etched by the hydrofluoric acid. This is probably due to another factor.
 本実施形態によれば、液膜形成工程では、基板W上にフッ酸などの薬液の液膜80が形成される。この液膜80によって、基板Wの上面に露出した金属膜70が覆われる。膜厚調整工程では、液膜80の厚さが100μm以上となるように調整される。そのため、調整後の液膜80は充分に厚い。 According to the present embodiment, in the liquid film forming step, a liquid film 80 of a chemical solution such as hydrofluoric acid is formed on the substrate W. The liquid film 80 covers the metal film 70 exposed on the upper surface of the substrate W. In the film thickness adjusting step, the thickness of the liquid film 80 is adjusted to be 100 μm or more. Therefore, the adjusted liquid film 80 is sufficiently thick.
 液膜80が充分に厚いため、液膜80が基板Wの周囲の雰囲気に晒されることによって薬液に溶解した酸素が、基板Wの上面に到達するのを抑制することができる。また、液膜80が充分に厚いため、液膜80の体積も充分に大きい。そのため、基板Wの上面に供給された薬液に酸素が溶解することに起因して液膜80中の酸素濃度が上昇するのを抑制することができる。したがって、金属膜と70反応する酸素が低減されるので、金属膜70の酸化を抑制することができる。 Since the liquid film 80 is sufficiently thick, it is possible to prevent oxygen dissolved in the chemical solution from reaching the upper surface of the substrate W when the liquid film 80 is exposed to the atmosphere around the substrate W. Further, since the liquid film 80 is sufficiently thick, the volume of the liquid film 80 is sufficiently large. Therefore, it is possible to suppress an increase in the oxygen concentration in the liquid film 80 due to the dissolution of oxygen in the chemical solution supplied to the upper surface of the substrate W. Therefore, since oxygen that reacts with the metal film 70 is reduced, oxidation of the metal film 70 can be suppressed.
 よって、基板Wの周囲の雰囲気中の酸素濃度を低減することなく、薬液中の酸素に起因する金属膜70の酸化を抑制することができる。 Therefore, oxidation of the metal film 70 due to oxygen in the chemical solution can be suppressed without reducing the oxygen concentration in the atmosphere around the substrate W.
 本実施形態によれば、膜厚調整工程では、基板Wの回転速度が300rpm以下となるように基板Wの回転が制御されることによって、液膜80の厚さTが調整される。 According to this embodiment, in the film thickness adjustment step, the thickness T of the liquid film 80 is adjusted by controlling the rotation of the substrate W so that the rotation speed of the substrate W is 300 rpm or less.
 回転状態の基板W上に形成された液膜80には、遠心力が作用する。そのため、基板Wの回転速度が大きくなると、遠心力によって基板W外へ飛び散る薬液の量が増え、基板W上の薬液の量が減る。これにより、液膜80の厚さTが不充分となるおそれがある。 Centrifugal force acts on the liquid film 80 formed on the rotating substrate W. For this reason, when the rotation speed of the substrate W increases, the amount of the chemical solution splashed out of the substrate W due to the centrifugal force increases and the amount of the chemical solution on the substrate W decreases. As a result, the thickness T of the liquid film 80 may be insufficient.
 そこで、膜厚調整工程において、基板Wの回転速度が充分小さくなるように(300rpm以下となるように)基板Wの回転を制御することによって、液膜80を充分に厚くすることができる。したがって、金属膜70の酸化を抑制することができる。 Therefore, in the film thickness adjustment step, the liquid film 80 can be made sufficiently thick by controlling the rotation of the substrate W so that the rotation speed of the substrate W becomes sufficiently small (300 rpm or less). Therefore, the oxidation of the metal film 70 can be suppressed.
 本実施形態によれば、膜厚調整工程では、薬液の供給量が2.0L/min以上となるように薬液の供給量が制御されることによって、液膜80の厚さTが調整される。 According to the present embodiment, in the film thickness adjustment step, the thickness T of the liquid film 80 is adjusted by controlling the supply amount of the chemical solution so that the supply amount of the chemical solution is 2.0 L / min or more. .
 前述したように、回転状態の基板W上に形成された液膜80に遠心力が作用することによって、薬液が基板W外へ飛び散る。そのため、薬液の供給量が少なくなると、基板W上の薬液の量が減る。これにより、液膜80の厚さTが不充分となるおそれがある。 As described above, the chemical liquid scatters out of the substrate W when the centrifugal force acts on the liquid film 80 formed on the substrate W in the rotating state. Therefore, when the supply amount of the chemical solution decreases, the amount of the chemical solution on the substrate W decreases. As a result, the thickness T of the liquid film 80 may be insufficient.
 そこで、膜厚調整工程において、薬液の供給量が充分に多くなるように(2.0L/min以上となるように)処理液の供給量を制御することによって、液膜80を充分に厚くすることができる。したがって、金属膜70の酸化を抑制することができる。 Therefore, in the film thickness adjustment step, the liquid film 80 is made sufficiently thick by controlling the supply amount of the treatment liquid so that the supply amount of the chemical liquid is sufficiently increased (2.0 L / min or more). be able to. Therefore, the oxidation of the metal film 70 can be suppressed.
 本実施形態によれば、液膜形成工程では、基板Wの上面の回転中心C1に向けて薬液を供給することによって、液膜80が形成される。 According to the present embodiment, in the liquid film forming step, the liquid film 80 is formed by supplying the chemical solution toward the rotation center C1 on the upper surface of the substrate W.
 基板Wの上面の回転中心C1に向けて薬液が供給された場合、基板Wの上面の回転中心C1の側方の位置(特に、基板の上面の回転中心C1から約20mmの位置と基板Wの上面の回転中心C1から約80mmの位置)では、液膜80が厚くなりやすい。その一方で、基板Wの上面の周縁付近では、液膜80が薄くなりやすい。つまり、基板Wの上面内において液膜80の厚さTにむらが生じやすい。液膜80の厚さTにむらが生じると、基板Wの回転速度を過剰に低下させたり、薬液の供給量を過剰に増大させたりする必要がある。 When the chemical solution is supplied toward the rotation center C1 on the upper surface of the substrate W, the position on the side of the rotation center C1 on the upper surface of the substrate W (in particular, the position about 20 mm from the rotation center C1 on the upper surface of the substrate W At a position of about 80 mm from the rotation center C1 on the upper surface, the liquid film 80 tends to be thick. On the other hand, the liquid film 80 tends to be thin near the periphery of the upper surface of the substrate W. That is, unevenness in the thickness T of the liquid film 80 tends to occur in the upper surface of the substrate W. If unevenness occurs in the thickness T of the liquid film 80, it is necessary to excessively reduce the rotation speed of the substrate W or excessively increase the supply amount of the chemical solution.
 そこで、膜厚調整工程において、基板Wの上面の回転中心C1の側方の位置(特に、基板Wの上面の回転中心C1から約20mmの位置と基板Wの上面の回転中心C1から約80mmの位置との間の位置)に向けて気体を供給することによって、基板Wの上面の回転中心C1の側方の位置にある薬液に、遠心力に加えて、基板Wの周縁側に向けて気体が薬液を押し出す力を作用させることができる。これにより、基板Wの上面の回転中心C1の側方の位置にある薬液が基板Wの周縁側へ移動する速度が増大される。そのため、基板Wの上面の回転中心C1の側方の位置において液膜80の厚さTが低減され、基板Wの上面の周縁付近において液膜80の厚さTが増大される。これにより、液膜80の厚さTのむらを低減することができる。 Therefore, in the film thickness adjustment step, the position on the side of the rotation center C1 on the upper surface of the substrate W (in particular, the position about 20 mm from the rotation center C1 on the upper surface of the substrate W and the rotation center C1 on the upper surface of the substrate W Gas toward the peripheral edge of the substrate W in addition to the centrifugal force in addition to the chemical solution at the side of the rotation center C1 on the upper surface of the substrate W. Can exert a force to push out the chemical solution. As a result, the speed at which the chemical solution located at the side of the rotation center C1 on the upper surface of the substrate W moves to the peripheral side of the substrate W is increased. Therefore, the thickness T of the liquid film 80 is reduced at the position on the side of the rotation center C1 on the upper surface of the substrate W, and the thickness T of the liquid film 80 is increased near the periphery of the upper surface of the substrate W. Thereby, the unevenness of the thickness T of the liquid film 80 can be reduced.
 本実施形態によれば、膜厚測定工程において、膜厚調整工程で調整された液膜80の厚さTが測定される。そのため、膜厚調整工程において液膜80の厚さTが意図した値からずれるなどの、基板処理の異常を早期に検知することができる。 According to this embodiment, in the film thickness measurement process, the thickness T of the liquid film 80 adjusted in the film thickness adjustment process is measured. Therefore, substrate processing abnormalities such as the thickness T of the liquid film 80 deviating from the intended value in the film thickness adjusting step can be detected at an early stage.
 本実施形態によれば、膜厚調整工程では、膜厚測定工程で測定された液膜80の厚さTに基づいて、液膜80の厚さTが調整される。そのため、膜厚調整工程において、液膜80の厚さTを精度良く調整することができる。 According to the present embodiment, in the film thickness adjustment step, the thickness T of the liquid film 80 is adjusted based on the thickness T of the liquid film 80 measured in the film thickness measurement step. Therefore, the thickness T of the liquid film 80 can be accurately adjusted in the film thickness adjusting step.
 本実施形態によれば、基板Wの周囲の雰囲気を不活性ガスなどで置換する必要がないため、基板Wと対向する対向面11aを有する遮断板11(図2の二点鎖線参照)を設ける必要がない。そのため、チャンバ14内のスペースを活用しやすい。 According to the present embodiment, since it is not necessary to replace the atmosphere around the substrate W with an inert gas or the like, the shielding plate 11 (see the two-dot chain line in FIG. 2) having the facing surface 11a facing the substrate W is provided. There is no need. Therefore, it is easy to utilize the space in the chamber 14.
 本実施形態とは異なり、基板Wと対向する対向面11aを有する遮断板11(図2の二点鎖線参照)が設けられている場合であっても、薬液処理(図5のS2)において基板Wの上面の周囲の雰囲気を不活性ガスで置換するために遮断板11を基板Wに近接させる必要がない。ましてや、基板Wと対向面11aとの間の空間への外部の雰囲気の進入を防ぐために、鉛直方向に延びる筒状部を遮断板11に設ける必要がない。そのため、本実施形態の薬液ノズル30や気体ノズル50のような移動ノズルの水平移動が、遮断板11によって妨げられることがない。よって、不活性ガスによる基板Wの上面の周囲の雰囲気の置換を行う構成の処理ユニットと比較して、処理ユニット2では、各部材の構成の自由度が向上される。 Unlike this embodiment, even in the case where the blocking plate 11 (see the two-dot chain line in FIG. 2) having the facing surface 11a facing the substrate W is provided, the substrate in the chemical treatment (S2 in FIG. 5). There is no need to place the shielding plate 11 close to the substrate W in order to replace the atmosphere around the upper surface of W with an inert gas. Furthermore, in order to prevent the external atmosphere from entering the space between the substrate W and the facing surface 11a, it is not necessary to provide the blocking plate 11 with a cylindrical portion extending in the vertical direction. Therefore, the horizontal movement of the moving nozzles such as the chemical nozzle 30 and the gas nozzle 50 of the present embodiment is not hindered by the blocking plate 11. Therefore, compared with the processing unit configured to replace the atmosphere around the upper surface of the substrate W with an inert gas, the processing unit 2 improves the degree of freedom of the configuration of each member.
 この発明は、以上に説明した実施形態に限定されるものではなく、さらに他の形態で実施することができる。 The present invention is not limited to the embodiment described above, and can be implemented in other forms.
 たとえば、上述の実施形態の基板処理装置1による基板処理とは異なり、薬液処理(S2)と同様に、DIWリンス処理(S3)において、液膜形成工程および膜厚調整工程が実行されてもよい。 For example, unlike the substrate processing by the substrate processing apparatus 1 of the above-described embodiment, the liquid film forming step and the film thickness adjusting step may be executed in the DIW rinsing processing (S3) similarly to the chemical processing (S2). .
 上述の実施形態では、膜厚測定ユニット10が設けられていたが、上述の実施形態とは異なり、膜厚測定ユニット10が設けられていない場合も有り得る。 In the above-described embodiment, the film thickness measurement unit 10 is provided. However, unlike the above-described embodiment, the film thickness measurement unit 10 may not be provided.
 上述の実施形態では、膜厚測定ユニット10の膜厚プローブ60は、気体ノズル移動ユニット55によって、気体ノズル50とともに移動するように構成されていた。しかし、上述の実施形態とは異なり、気体ノズル移動ユニット55とは別のノズル移動ユニットが設けられていてもよい。そして、膜厚プローブ60は、当該ノズル移動ユニットによって水平方向および鉛直方向に移動されるように構成されていてもよい。 In the above-described embodiment, the film thickness probe 60 of the film thickness measuring unit 10 is configured to move together with the gas nozzle 50 by the gas nozzle moving unit 55. However, unlike the above-described embodiment, a nozzle moving unit different from the gas nozzle moving unit 55 may be provided. The film thickness probe 60 may be configured to be moved in the horizontal direction and the vertical direction by the nozzle moving unit.
 本発明の実施形態について詳細に説明してきたが、これらは本発明の技術的内容を明らかにするために用いられた具体例に過ぎず、本発明はこれらの具体例に限定して解釈されるべきではなく、本発明の範囲は添付の請求の範囲によってのみ限定される。 Although the embodiments of the present invention have been described in detail, these are merely specific examples used to clarify the technical contents of the present invention, and the present invention is construed to be limited to these specific examples. Rather, the scope of the present invention is limited only by the accompanying claims.
 この出願は、2017年2月9日に日本国特許庁に提出された特願2017-022153号に対応しており、この出願の全開示はここに引用により組み込まれるものとする。 This application corresponds to Japanese Patent Application No. 2017-022153 filed with the Japan Patent Office on February 9, 2017, the entire disclosure of which is incorporated herein by reference.
1    :基板処理装置
3    :コントローラ
7    :薬液供給ユニット
8    :リンス液供給ユニット
10   :膜厚測定ユニット
20   :チャックピン(基板保持ユニット)
21   :スピンベース(基板保持ユニット)
23   :電動モータ(基板回転ユニット)
70   :金属膜
80   :液膜
A1   :回転軸線
C1   :回転中心
T    :厚さ
W    :基板
1: Substrate processing device 3: Controller 7: Chemical solution supply unit 8: Rinse solution supply unit 10: Film thickness measuring unit 20: Chuck pin (substrate holding unit)
21: Spin base (substrate holding unit)
23: Electric motor (substrate rotation unit)
70: Metal film 80: Liquid film A1: Rotation axis C1: Rotation center T: Thickness W: Substrate

Claims (14)

  1.  金属膜が露出した上面を有する基板を水平に保持する基板保持工程と、
     鉛直方向に沿う回転軸線のまわりに前記基板を回転させる基板回転工程と、
     脱気された処理液を前記基板の上面に供給することによって、前記基板上に前記処理液の液膜を形成する液膜形成工程と、
     前記液膜の厚さが100μm以上となるように前記液膜の厚さを調整する膜厚調整工程とを含む、基板処理方法。
    A substrate holding step for horizontally holding a substrate having an upper surface from which the metal film is exposed;
    A substrate rotation step of rotating the substrate around a rotation axis along the vertical direction;
    A liquid film forming step of forming a liquid film of the processing liquid on the substrate by supplying the degassed processing liquid to the upper surface of the substrate;
    And a film thickness adjusting step of adjusting the thickness of the liquid film so that the thickness of the liquid film is 100 μm or more.
  2.  前記膜厚調整工程が、前記基板の回転速度が300rpm以下となるように前記基板の回転を制御することによって、前記液膜の厚さを調整する工程を含む、請求項1に記載の基板処理方法。 The substrate processing according to claim 1, wherein the film thickness adjusting step includes a step of adjusting the thickness of the liquid film by controlling the rotation of the substrate so that the rotation speed of the substrate is 300 rpm or less. Method.
  3.  前記膜厚調整工程が、前記処理液の供給量が2.0L/min以上となるように前記処理液の供給量を制御することによって、前記液膜の厚さを調整する工程を含む、請求項1または2に記載の基板処理方法。 The film thickness adjusting step includes a step of adjusting the thickness of the liquid film by controlling the supply amount of the treatment liquid so that the supply amount of the treatment liquid is 2.0 L / min or more. Item 3. A substrate processing method according to Item 1 or 2.
  4.  前記液膜形成工程が、前記基板の上面の回転中心に向けて前記処理液を供給することによって、前記液膜を形成する工程を含み、
     前記膜厚調整工程が、前記基板の上面の回転中心の側方の位置に向けて気体を供給することによって、前記液膜の厚さを調整する工程を含む、請求項1~3のいずれか一項に記載の基板処理方法。
    The liquid film forming step includes the step of forming the liquid film by supplying the processing liquid toward the rotation center of the upper surface of the substrate,
    The film thickness adjusting step includes a step of adjusting the thickness of the liquid film by supplying a gas toward a position on a side of the center of rotation of the upper surface of the substrate. The substrate processing method according to one item.
  5.  前記基板の上面の回転中心の側方の位置が、前記基板の上面の回転中心から20mm離れた位置と前記基板の上面の回転中心から80mm離れた位置との間の位置を含む、請求項4に記載の基板処理方法。 5. The lateral position of the rotation center of the upper surface of the substrate includes a position between a position 20 mm away from the rotation center of the upper surface of the substrate and a position 80 mm away from the rotation center of the upper surface of the substrate. The substrate processing method as described in 2. above.
  6.  前記膜厚調整工程において調整された前記液膜の厚さを測定する膜厚測定工程をさらに含む、請求項1~5のいずれか一項に記載の基板処理方法。 The substrate processing method according to any one of claims 1 to 5, further comprising a film thickness measuring step of measuring the thickness of the liquid film adjusted in the film thickness adjusting step.
  7.  前記膜厚調整工程が、前記膜厚測定工程で測定された前記液膜の厚さに基づいて前記液膜の厚さを調整する工程を含む、請求項6に記載の基板処理方法。 The substrate processing method according to claim 6, wherein the film thickness adjusting step includes a step of adjusting the thickness of the liquid film based on the thickness of the liquid film measured in the film thickness measuring step.
  8.  金属膜が露出した上面を有する基板を水平に保持する基板保持ユニットと、
     鉛直方向に沿う回転軸線のまわりに前記基板を回転させる基板回転ユニットと、
     脱気された処理液を前記基板の上面に供給する処理液供給ユニットと、
     前記基板保持ユニット、前記基板回転ユニットおよび前記処理液供給ユニットを制御するコントローラとを含み、
     前記コントローラが、前記基板保持ユニットに前記基板を保持させる基板保持工程と、前記回転軸線のまわりに前記基板を回転させる基板回転工程と、前記処理液を前記基板の上面に供給することによって、前記基板上に前記処理液の液膜を形成する液膜形成工程と、前記液膜の厚さが100μm以上となるように前記液膜の厚さを調整する膜厚調整工程とを実行するようにプログラムされている基板処理装置。
    A substrate holding unit for horizontally holding a substrate having an upper surface from which the metal film is exposed;
    A substrate rotating unit for rotating the substrate around a rotation axis along the vertical direction;
    A treatment liquid supply unit for supplying the degassed treatment liquid to the upper surface of the substrate;
    A controller for controlling the substrate holding unit, the substrate rotating unit, and the processing liquid supply unit,
    The controller holding the substrate on the substrate holding unit; a substrate rotating step for rotating the substrate around the rotation axis; and supplying the processing liquid to the upper surface of the substrate. A liquid film forming step of forming a liquid film of the treatment liquid on the substrate, and a film thickness adjusting step of adjusting the thickness of the liquid film so that the thickness of the liquid film is 100 μm or more. Programmed substrate processing equipment.
  9.  前記膜厚調整工程が、前記基板の回転速度が300rpm以下となるように前記基板の回転を制御することによって、前記液膜の厚さを調整する工程を含む、請求項8に記載の基板処理装置。 The substrate processing according to claim 8, wherein the film thickness adjusting step includes a step of adjusting the thickness of the liquid film by controlling the rotation of the substrate so that the rotation speed of the substrate is 300 rpm or less. apparatus.
  10.  前記膜厚調整工程が、前記処理液の供給量が2.0L/min以上となるように前記処理液の供給量を制御することによって、前記液膜の厚さを調整する工程を含む、請求項8または9に記載の基板処理装置。 The film thickness adjusting step includes a step of adjusting the thickness of the liquid film by controlling the supply amount of the treatment liquid so that the supply amount of the treatment liquid is 2.0 L / min or more. Item 10. The substrate processing apparatus according to Item 8 or 9.
  11.  前記液膜形成工程が、前記基板の上面の回転中心に向けて前記処理液を供給することによって、前記液膜を形成する工程を含み、
     前記膜厚調整工程が、前記基板の上面の回転中心の側方の位置に向けて気体を供給することによって、前記液膜の厚さを調整する工程を含む、請求項8~10のいずれか一項に記載の基板処理装置。
    The liquid film forming step includes the step of forming the liquid film by supplying the processing liquid toward the rotation center of the upper surface of the substrate,
    The film thickness adjusting step includes a step of adjusting the thickness of the liquid film by supplying a gas toward a position on a side of the center of rotation of the upper surface of the substrate. The substrate processing apparatus according to one item.
  12.  前記基板の上面の回転中心の側方の位置が、前記基板の上面の回転中心から20mm離れた位置と前記基板の上面の回転中心から80mm離れた位置との間の位置を含む、請求項11に記載の基板処理装置。 The position on the side of the rotation center of the upper surface of the substrate includes a position between a position that is 20 mm away from the rotation center of the upper surface of the substrate and a position that is 80 mm away from the rotation center of the upper surface of the substrate. 2. The substrate processing apparatus according to 1.
  13.  前記液膜の厚さを測定可能な膜厚測定ユニットをさらに含み、
     前記コントローラが、前記膜厚測定ユニットを制御することによって、前記膜厚調整工程において調整された前記液膜の厚さを測定する膜厚測定工程を実行するようにプログラムされている、請求項8~12のいずれか一項に記載の基板処理装置。
    Further comprising a film thickness measuring unit capable of measuring the thickness of the liquid film,
    The controller is programmed to execute a film thickness measurement step of measuring the thickness of the liquid film adjusted in the film thickness adjustment step by controlling the film thickness measurement unit. The substrate processing apparatus according to any one of claims 12 to 12.
  14.  前記膜厚調整工程が、前記膜厚測定工程で測定された前記液膜の厚さに基づいて前記液膜の厚さを調整する工程を含む、請求項13に記載の基板処理装置。 The substrate processing apparatus according to claim 13, wherein the film thickness adjusting step includes a step of adjusting the thickness of the liquid film based on the thickness of the liquid film measured in the film thickness measuring step.
PCT/JP2018/001012 2017-02-09 2018-01-16 Substrate processing method and substrate processing device WO2018147008A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880008230.9A CN110214365B (en) 2017-02-09 2018-01-16 Substrate processing method and substrate processing apparatus
KR1020197022292A KR102301802B1 (en) 2017-02-09 2018-01-16 Substrate processing method and substrate processing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-022153 2017-02-09
JP2017022153A JP6814653B2 (en) 2017-02-09 2017-02-09 Substrate processing method and substrate processing equipment

Publications (1)

Publication Number Publication Date
WO2018147008A1 true WO2018147008A1 (en) 2018-08-16

Family

ID=63108164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001012 WO2018147008A1 (en) 2017-02-09 2018-01-16 Substrate processing method and substrate processing device

Country Status (5)

Country Link
JP (1) JP6814653B2 (en)
KR (1) KR102301802B1 (en)
CN (1) CN110214365B (en)
TW (1) TWI736735B (en)
WO (1) WO2018147008A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102276005B1 (en) * 2018-08-29 2021-07-14 세메스 주식회사 Method and apparatus for treating substrate
KR102331260B1 (en) * 2019-12-27 2021-11-26 세메스 주식회사 Method and apparatus for treating substrate
TW202406634A (en) * 2022-04-28 2024-02-16 日商東京威力科創股份有限公司 Substrate processing device and substrate processing method
CN115138632B (en) * 2022-08-31 2022-12-09 中国船舶重工集团公司第七0七研究所 Surface treatment method for improving Q value of quartz harmonic oscillator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0555137A (en) * 1991-08-23 1993-03-05 Toshiba Corp Processor for semiconductor substrate
JP2009212407A (en) * 2008-03-06 2009-09-17 Dainippon Screen Mfg Co Ltd Method and apparatus for processing substrate
JP2010056218A (en) * 2008-08-27 2010-03-11 Dainippon Screen Mfg Co Ltd Substrate processing apparatus, and substrate processing method
JP2010062259A (en) * 2008-09-02 2010-03-18 Shibaura Mechatronics Corp Substrate processing apparatus and substrate processing method
JP2013077625A (en) * 2011-09-29 2013-04-25 Dainippon Screen Mfg Co Ltd Substrate processing apparatus and substrate processing method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050026455A1 (en) * 2003-05-30 2005-02-03 Satomi Hamada Substrate processing apparatus and substrate processing method
US20050023149A1 (en) * 2003-06-05 2005-02-03 Tsutomu Nakada Plating apparatus, plating method and substrate processing apparatus
US20050208774A1 (en) * 2004-01-08 2005-09-22 Akira Fukunaga Wet processing method and processing apparatus of substrate
JP2005217282A (en) * 2004-01-30 2005-08-11 Tokyo Electron Ltd Method and apparatus for forming coating film
JP5188216B2 (en) * 2007-07-30 2013-04-24 大日本スクリーン製造株式会社 Substrate processing apparatus and substrate processing method
JP5920867B2 (en) 2011-09-29 2016-05-18 株式会社Screenホールディングス Substrate processing apparatus and substrate processing method
JP5837829B2 (en) * 2012-01-11 2015-12-24 株式会社Screenホールディングス Substrate processing method and substrate processing apparatus
CN103295936B (en) * 2012-02-29 2016-01-13 斯克林集团公司 Substrate board treatment and substrate processing method using same
JP6203098B2 (en) * 2013-03-29 2017-09-27 芝浦メカトロニクス株式会社 Substrate processing apparatus and substrate processing method
JP6436455B2 (en) * 2013-10-16 2018-12-12 須賀 唯知 Substrate surface treatment apparatus and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0555137A (en) * 1991-08-23 1993-03-05 Toshiba Corp Processor for semiconductor substrate
JP2009212407A (en) * 2008-03-06 2009-09-17 Dainippon Screen Mfg Co Ltd Method and apparatus for processing substrate
JP2010056218A (en) * 2008-08-27 2010-03-11 Dainippon Screen Mfg Co Ltd Substrate processing apparatus, and substrate processing method
JP2010062259A (en) * 2008-09-02 2010-03-18 Shibaura Mechatronics Corp Substrate processing apparatus and substrate processing method
JP2013077625A (en) * 2011-09-29 2013-04-25 Dainippon Screen Mfg Co Ltd Substrate processing apparatus and substrate processing method

Also Published As

Publication number Publication date
CN110214365B (en) 2023-06-06
TW201834296A (en) 2018-09-16
JP6814653B2 (en) 2021-01-20
CN110214365A (en) 2019-09-06
KR20190099518A (en) 2019-08-27
KR102301802B1 (en) 2021-09-14
TWI736735B (en) 2021-08-21
JP2018129432A (en) 2018-08-16

Similar Documents

Publication Publication Date Title
WO2018147008A1 (en) Substrate processing method and substrate processing device
US20180012754A1 (en) Wet etching method, substrate liquid processing apparatus, and storage medium
US20230256479A1 (en) Substrate processing method and substrate processing device
WO2019171670A1 (en) Substrate treatment method and substrate treatment device
JP6945314B2 (en) Board processing equipment
KR102544412B1 (en) Substrate processing method and substrate processing apparatus
CN108028195B (en) Substrate processing method, substrate processing apparatus, and storage medium
JP2019125660A (en) Substrate processing method and substrate processing apparatus
JP6331189B2 (en) Substrate processing equipment
TWI809652B (en) Substrate processing method and substrate processing apparatus
JP7265390B2 (en) SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD
KR20220002532A (en) Substrate processing apparatus, substrate processing method, and computer-readable storage medium
JP2007324610A (en) Device and method for substrate processing
JP7504421B2 (en) Substrate Processing Equipment
JP7446181B2 (en) Substrate processing method and substrate processing apparatus
TWI845047B (en) Substrate processing method
TWI795990B (en) Substrate processing method and substrate processing apparatus
US20230005762A1 (en) Substrate drying device and substrate drying method
CN116438633A (en) Substrate processing apparatus, substrate processing method, and computer-readable recording medium
JP2022050234A (en) Substrate processing device and substrate processing method
TW202406634A (en) Substrate processing device and substrate processing method
JP2022035122A (en) Substrate processing device and substrate processing method
CN118231287A (en) Substrate processing apparatus and semiconductor manufacturing device including the same
TW202345227A (en) Substrate processing method
JP2022124070A (en) Substrate processing device and machining method of cylindrical guard

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18752044

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197022292

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18752044

Country of ref document: EP

Kind code of ref document: A1