WO2018146767A1 - Zero-crossing detection device - Google Patents

Zero-crossing detection device Download PDF

Info

Publication number
WO2018146767A1
WO2018146767A1 PCT/JP2017/004724 JP2017004724W WO2018146767A1 WO 2018146767 A1 WO2018146767 A1 WO 2018146767A1 JP 2017004724 W JP2017004724 W JP 2017004724W WO 2018146767 A1 WO2018146767 A1 WO 2018146767A1
Authority
WO
WIPO (PCT)
Prior art keywords
zero
integration
signal
cross
cross detection
Prior art date
Application number
PCT/JP2017/004724
Other languages
French (fr)
Japanese (ja)
Inventor
則和 万木
Original Assignee
理化工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 理化工業株式会社 filed Critical 理化工業株式会社
Priority to PCT/JP2017/004724 priority Critical patent/WO2018146767A1/en
Priority to CN201780083075.2A priority patent/CN110192113B/en
Priority to PCT/JP2017/031754 priority patent/WO2018146844A1/en
Priority to JP2018566744A priority patent/JP6792177B2/en
Publication of WO2018146767A1 publication Critical patent/WO2018146767A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/175Indicating the instants of passage of current or voltage through a given value, e.g. passage through zero

Definitions

  • This invention relates to a zero-cross detection device for detecting the position of a zero-cross of an AC signal.
  • Patent Document 1 discloses a zero-cross signal output device corresponding to such a problem.
  • Patent Document 1 has a problem that it is difficult to divert the same circuit to another application because a circuit dedicated to zero cross detection is used.
  • an object of the present invention is to provide a zero-cross detection device using a general-purpose input circuit that is not easily affected by noise and can be used for other purposes.
  • a zero-cross detector that detects the zero-cross position of the signal;
  • a zero-cross detection device comprising:
  • the zero cross detection unit selects two from the plurality of integration ranges, and detects the position of the zero cross of the AC signal based on an area difference that is a difference between integration values for the two selected integration ranges.
  • the zero-cross detection device according to claim 1.
  • (Configuration 4) 4. The zero-cross detection according to claim 2, wherein the zero-cross detection unit selects two of the integration ranges corresponding to the integration range in which at least one of the integration value and the area difference is maximum. apparatus.
  • the zero cross detection unit selects an arithmetic expression for zero cross detection of the AC signal based on at least one of the integral value or the area difference, and based on the selected arithmetic expression and the area difference. 5. The zero-cross detection device according to claim 2, wherein the zero-cross of the AC signal is detected.
  • (Configuration 7) An input process in which an AC signal is input to the input unit; An integral value calculating step for calculating an integral value of the AC signal for a plurality of integration ranges that are a period of 1 ⁇ 4 period or less of the AC signal; A zero-cross detecting step for detecting a zero-cross position of the alternating current signal based on the integral value; A zero-cross detection method comprising:
  • FIG. 1 is a schematic configuration diagram illustrating a zero-cross detection device 1 according to an embodiment of the present invention. It is a flowchart showing schematic operation
  • detection means that the position of the zero cross is calculated and uniquely determined, or the range where the zero cross exists is specified, and the same applies to the following.
  • FIG. 1 is a schematic configuration diagram of a zero-cross detection device 1 according to Embodiment 1 of the present invention.
  • the zero cross detection device 1 is a device that detects and outputs a zero cross of an input AC signal, and includes an input unit 110, an absolute value conversion unit 120, a VF conversion unit 130, and an MCU 200.
  • the MCU 200 includes a microcontroller unit and the like, and includes an integral value calculation unit 140, a recording unit 150, a zero cross detection unit 160, and an instruction unit 170.
  • the input unit 110 is a signal acquisition unit from an AC power source (not shown) or the like, and receives an AC signal.
  • the absolute value conversion unit 120 is configured by a full-wave rectification circuit or the like, and has a function of converting an AC signal input from the input unit 110 into an absolute value and outputting the absolute value.
  • the VF conversion unit 130 includes a VF converter (Voltage-to-Frequency converter) and the like, and has a function of converting the absolute value of the AC signal input from the absolute value conversion unit 120 into a pulse train and outputting it. .
  • the instructing unit 170 includes an integration start signal and an integration stop signal for instructing start and stop of integration processing of the integral value calculating unit 140 based on an integration range, integration number, and operation timing, which will be described later, set in advance, and a recording unit 150.
  • a recording instruction signal and a detection instruction signal to the zero-cross detector 160 are output.
  • the integration value calculation unit 140 is configured by a pulse counter or the like. Based on the integration start signal and the integration stop signal from the instruction unit 170, the integration value calculation unit 140 calculates the integration value of the pulse train input from the VF conversion unit 130, and It has a function of outputting an integral value.
  • the recording unit 150 is configured by a RAM or the like.
  • the recording unit 150 Based on a recording instruction signal from the instruction unit 170, the recording unit 150 records the integral value input from the integral value calculation unit 140 and outputs the recorded integral value.
  • the zero cross detection unit 160 is a calculation unit, and detects a zero cross of the alternating current signal input to the input unit 110 based on a plurality of integration values input from the recording unit 150 based on a detection instruction signal from the instruction unit 170. And a function of outputting the detection result.
  • step 410 an AC signal is input to the input unit 110 from an AC power source (not shown) or the like, converted to a predetermined signal level, this signal is output to the absolute value conversion unit 120, and the process proceeds to step 420.
  • the absolute value conversion unit 120 converts the input signal into an absolute value, outputs the converted signal to the VF conversion unit 130, and proceeds to step 430.
  • the VF conversion unit 130 converts the voltage of the input signal into a pulse signal having a frequency proportional to the voltage, outputs the pulse signal to the integral value calculation unit 140, and proceeds to step 440.
  • step 440 when the integration start signal is input from the instruction unit 170, the integral value calculation unit 140 counts the number of pulses of the pulse signal input from the VF conversion unit 130 until the integration stop signal is input. To calculate the integral value.
  • the calculated integration value is output to the recording unit 150.
  • the recording unit 150 records the integration value input from the integral value calculation unit 140.
  • step 450 the zero cross detection unit 160 detects the zero cross of the AC signal based on the detection instruction signal input from the instruction unit 170 and the integral value recorded in the recording unit 150. Details of the operation of the zero cross detector 160 will be described later.
  • step 460 the zero cross detection unit 160 outputs the detection result and ends the operation.
  • the instruction unit 170 outputs an integration start signal and an integration stop signal to the integration value calculation unit 140 based on the previously set integration range, number of integrations, and operation timing.
  • the “integration range” indicates a period from when the integration start signal is input to when the integration stop signal is input, and “operation timing” indicates the interval between the integration start signal and the next integration start signal.
  • the instruction unit 170 outputs an integration stop signal to the integral value calculation unit 140 and simultaneously outputs a recording instruction signal to the recording unit 150.
  • the instruction unit 170 repeats the output operation of the integration start signal, the integration stop signal, and the recording instruction signal for the number of integrations set in advance. Further, the integration value calculation unit 140 integrates the pulse signal input from the VF conversion unit 130 as a count value from when the integration start signal is input from the instruction unit 170 to when the integration stop signal is input, When the integration stop signal is input, the count value is output to the recording unit 150 as an integral value. The integration value calculation unit 140 resets the internal count value at the same time that the integration start signal is input from the instruction unit 170. Further, the integration value calculation unit 140 does not integrate the count value except after the integration start signal is input from the instruction unit 170 until the integration stop signal is input. When the recording instruction signal is input from the instruction unit 170, the recording unit 150 records the integration value input from the integral value calculation unit 140.
  • the “integration range” indicates a period from when the integration start signal is input to when the integration stop signal is input, and is a period of 1 ⁇ 4 cycle or less of the AC signal. Is also referred to.
  • the integral value is also referred to as “area”, and the same applies to the following.
  • the integration start signal the next integration start signal can be output immediately after the integration stop signal is output, and a plurality of integration values can be recorded continuously.
  • the timing at which the integration start signal is output in the first integration range serving as a detection reference among the plurality of integration values recorded in the recording unit 150 is simply referred to as “measurement start point”.
  • phase difference between ⁇ a and ⁇ b of the two integration ranges is determined as in Equation 1.
  • the possible value of the integration range ⁇ is determined as in the following formula 2.
  • the difference (area difference) between the integrated values Sa and Sb can be expressed as the following Equation 3.
  • Equation 5 an arithmetic expression for deriving ⁇ a from the area difference Sa ⁇ Sb can be obtained.
  • phase difference ⁇ a from the zero cross to the first integration range can be calculated by the area difference Sa ⁇ Sb. That is, the position of the zero cross can be uniquely determined based on the starting point of the first integration range.
  • step 450 in FIG. 2 is performed.
  • the values set in the instruction unit 170 include the integration range ⁇ of ⁇ / 4, the number of integrations of 4, the operation timing of ⁇ / 4 intervals, and the recording unit 150 having an AC signal of ⁇ / 4.
  • Four integral values corresponding to are continuously recorded.
  • the four integral values recorded in the recording unit 150 are S1 ′ to S4 ′, respectively, and the integral values normalized so that the amplitude of the AC signal is 1 are S1 to S4, respectively, and from zero cross to S1 To S4 are the phase differences from ⁇ 1 to ⁇ 4, respectively.
  • the AC signal is a sine wave having an amplitude of 1
  • the relationship between the phase difference ⁇ 1 from the zero cross to the measurement start point and the integration values S1 to S4 is as shown in FIG. Based on this characteristic, the range of application of Equation 5 is roughly divided into four to cover the range 0 ⁇ ⁇ 1 ⁇ ⁇ necessary for zero cross detection.
  • the range where S2 is maximum coincides with the range where ⁇ 1 is 0 ⁇ ⁇ 1 ⁇ ⁇ / 4.
  • ⁇ 1 is set to ⁇ a in Equation 5
  • S1 and S3 which are integral values having a phase difference of ⁇ / 2 in Sa and Sb
  • are set to ⁇ . May correspond to ⁇ / 4. Therefore, an arithmetic expression related to the phase difference ⁇ 1 from the zero cross to the measurement start point is expressed by the following formula 6.
  • Equation 5 is applied in the range of 0 ⁇ ⁇ 4 ⁇ ⁇ / 4. can do. Therefore, ⁇ 4, S4, and S2 may be associated with ⁇ a, Sa, and Sb in Formula 5, and ⁇ / 4 may be associated with ⁇ . Therefore, a mathematical expression such as Equation 7 is established.
  • Equation 9 a mathematical expression such as Equation 9 can be obtained.
  • Equation 11 a mathematical expression such as Equation 11 can be obtained.
  • the relationship between the integration values S1 ′ to S4 ′ recorded in the recording unit 150 in the actual operation and the integration values S1 to S4 used in the respective arithmetic expressions is based on a preset normalization coefficient Vm (an integration range Normalization can be performed using 1 ⁇ 2 of the integral value obtained when ⁇ is used.
  • Vm an integration range Normalization can be performed using 1 ⁇ 2 of the integral value obtained when ⁇ is used.
  • the integral value S1 it can be expressed by the equation (13).
  • the total value of the integration values S1 ′ to S4 ′ in the four consecutive integration ranges is equivalent to the integration value when the integration range is ⁇ . Therefore, for example, an equation for obtaining the normalized value of the area difference (S1 ⁇ S3) can be expressed as in Expression 14.
  • the zero cross is detected by judging the magnitude relationship between the integral values S1 to S4 or S1 ′ to S4 ′ (the target zero cross).
  • the phase difference from the measurement start point to the measurement start point can be calculated).
  • Equation 6 When the integral value having the maximum value is determined as S2 ′, Equation 6 is When the integral value having the maximum value is determined as S3 ′, Equation 12 is When it is determined that the integral value having the maximum value is S4 ′, the position of the zero cross is calculated by calculation using Equation 10.
  • ⁇ Zero cross detection result for actual AC signal> Using the zero-cross detection device 1 according to the first embodiment, zero-cross detection is performed on an AC signal that changes sinusoidally.
  • the frequency of the AC signal is 50 Hz
  • the integration time corresponding to the integration range ⁇ / 4 is 2.5 milliseconds.
  • the detection result is converted into an angle, and the angle is displayed in the range of 0.0 ° to 179.9 °.
  • FIG. 6 (1) to FIG. 6 (6) are based on the observation result of the AC signal input to the input unit 110 and the trigger signal synchronized with the timing of the measurement start point, and the integrated value S1 ′ recorded in each recording operation.
  • S4 ′ a preset normalization coefficient Vm, MAX that is the determination result of the integration range having the maximum value, and the phase difference ⁇ 1 from the zero cross that is the zero cross detection result to the measurement start point.
  • the phase difference ⁇ 1 from the zero cross that is the detection result to the measurement start point is almost the same as ⁇ 1 that can be read from the observation result.
  • the zero cross detection apparatus 1 of this Embodiment 1 is effective also in the alternating current signal with which the noise was superimposed.
  • the zero-cross detection device 1 is configured such that the zero-cross detection unit 160 detects the zero-cross using the integration value of the AC signal calculated by the integration value calculation unit 140. Even if a low-pass filter circuit or a comparator is not used for the input unit 110, a zero-cross detection device that is not easily affected by noise can be obtained. Further, the zero-cross detection device 1 according to the first embodiment is configured by the input unit 110, the absolute value conversion unit 120, the VF conversion unit 130, and the MCU 200, and these combinations can be used as a circuit configuration for acquiring an analog input value. It is effective and can be used regardless of direct current or alternating current.
  • the zero cross detection device 1 according to the first embodiment can be used for purposes other than the zero cross detection, and can be used as a general-purpose input circuit.
  • the zero-cross detection device 1 according to the first embodiment allows the zero-cross detection unit 160 to measure from the zero cross by using the maximum integral value and the corresponding arithmetic expression regardless of the timing at which the measurement start point is the AC signal.
  • the zero-cross detection device 1 Since the phase difference up to the start point can be calculated, it is possible to obtain a zero-cross detection device that can detect the position of the zero-cross even if the zero-cross detection operation is performed at an arbitrary timing.
  • the zero-cross detection device 1 according to the first embodiment is configured such that the zero-cross detection unit 160 outputs the detection result of the zero-cross based on the phase difference from the zero-cross to the measurement start point. It is possible to obtain a zero-cross detector that can determine the relative positional relationship between the two.
  • the zero-cross detection device 2 according to the second embodiment is the same as the zero-cross detection device 1 according to the first embodiment except that the zero-cross detection unit 260 is provided. Therefore, the description of the same configuration as that of the first embodiment is omitted.
  • the zero-cross detector 260 first determines which integral value from S1 ′ to S4 ′ is the smallest. Then, it is determined that there is a zero cross in the integration range where the integral value is minimum, and data corresponding to the integration range is output as a zero cross detection result.
  • the zero-cross detection device 2 is configured such that the zero-cross detection unit 260 can detect the zero-cross position without using an arithmetic expression using the same circuit configuration as that of the first embodiment. Therefore, it is possible to obtain a zero cross detection device that further reduces the calculation cost.
  • a detection method switching unit (not shown) selects a detection method according to necessity by switching to the zero-cross detection unit 160 when detailed zero-cross position detection is necessary, and switching to the zero-cross detection unit 260 otherwise. It becomes possible to do.
  • Each configuration in each embodiment may be configured in hardware by a dedicated circuit or the like, or may be realized in software on a general-purpose circuit such as a microcomputer.
  • the integration operation in each embodiment is realized by the VF conversion unit 130 and the integration value calculation unit 140, but may be realized by using a ⁇ AD converter or the like.
  • the operation is terminated after the process of step 460. However, as soon as step 460 is completed, the next step 410 may be started after a certain period of time.
  • the zero cross may be detected every time the necessary number of integration operations are completed, or at an appropriate interval. Zero cross detection may be performed by setting (for example, a 1-second cycle).
  • the zero cross detection unit 160 is configured to detect the zero cross based on the inverse sine function using the area difference as shown in Equation 5, but based on the inverse cosine function using the area difference. It is also possible to configure to detect zero crossing. In that case, the inverse cosine function corresponding to Equation 5 is as shown in Equation 15 below.
  • the zero cross detection unit 160 is configured to detect the zero cross by the arithmetic expression based on Expression 5, but the combination of the integration range, the number of integrations, and the operation timing can be easily changed. You may be comprised so that a zero cross may be detected based on the arithmetic expression transformed into the form which is easy to perform arithmetic. Such an arithmetic expression corresponding to Equation 5 is shown in Equation 16.
  • the coefficient ⁇ is ⁇ / 8.
  • the integration range is ⁇ / 6, the number of integrations is 6, and the operation timing is ⁇ .
  • the coefficient ⁇ is ⁇ / 6.
  • Equation 4 when the zero-cross detection principle is considered, the inverse sine function is obtained from Equation 4. However, after approximating Equation 4 as a periodic function, the area difference Sa ⁇ Sb is calculated. The zero cross may be detected based on an arithmetic expression for deriving ⁇ a.
  • An approximate expression corresponding to Expression 4 when the integration range is ⁇ / 4 is shown in Expression 17, and an arithmetic expression corresponding to Expression 5 is shown in Expression 18.
  • the integration range set in advance in the zero-crossing detection unit 160 is configured to be ⁇ / 4, but may be configured to set other values. Even when the range is 0 ⁇ ⁇ / 4, as in the description in FIG. 5, the calculation formula for calculating ⁇ 1 based on Equation 5 is derived by considering the phase difference between the integration ranges.
  • the value of the integration range is preferably a value obtained by dividing the phase difference ⁇ / 2 by an integer so that the integration operation can be carried out continuously (no break in the integration operation occurs).
  • ⁇ / 4 which is the upper limit value of the number 2 that defines the integral range, is particularly suitable.
  • the integration range set in advance in the zero cross detection unit 160 is configured to be ⁇ / 4.
  • the integration range is a range of ⁇ / 4 ⁇ ⁇ ⁇ / 2.
  • the calculation error is about 1 °
  • the calculation error is It is possible to detect a zero cross at about 5 °.
  • the integration range may partially overlap. Under such conditions, it is only necessary to configure the integral value calculation unit 140 so that the integral values can be calculated in parallel in a range where the integral ranges overlap.
  • the zero-cross detection unit 160 is configured to select the zero-cross detection calculation formula based on the range in which the integral value is maximum, but the zero-cross detection is performed based on the range in which the integral value is minimum. It may be configured to select an arithmetic expression. In the first embodiment, the zero-cross detection unit 160 is configured to select an arithmetic expression for zero-cross detection based on a range in which the integral value is maximum. However, an area difference of a combination necessary for the calculation is calculated in advance. In addition, the calculation formula for zero cross detection may be selected using the maximum or minimum area difference.
  • the zero-cross detection unit 160 may be configured to select an arithmetic expression based on the integral value or the size of the area difference.
  • the zero-cross detection unit 160 is configured to perform zero-cross detection using a predetermined arithmetic expression such as Equation 6, Equation 8, Equation 10, Equation 12, and the like. It may be configured to use a reference or the like. Further, the zero-cross detection unit 160 is configured to perform zero-cross detection using predetermined arithmetic expressions such as Expression 6, Expression 8, Expression 10, and Expression 12. However, from the viewpoint of calculation cost, the predetermined calculation expression is first-order. You may simplify to approximate expressions, such as a function.
  • ⁇ Difference in output data> when the zero cross detection unit 260 of the second embodiment determines that specific angle data, for example, S3 ′ is minimum, 67.5 ° is output, but for example, S3 ′ is minimum. If determined, 3 may be output, that is, data (such as an integer from 1 to 4) that can specify the integration range determined to be the minimum may be output. Further, although the integration range in the second embodiment is ⁇ / 4, the integration range may be reduced within a range that does not affect the determination of the magnitude of the integration value.

Abstract

In this zero-crossing detection device 1: an integral calculation unit 140 calculates integrals of an alternating-current signal, and records four integrals S1' to S4' in a recording unit 150; and a zero-crossing detection unit 160 determines the maximum value of said S1' to S4', and detects zero-crossings of the alternating-current signal by an arithmetic expression corresponding to the determination result. Thus, it is possible to provide a zero-crossing detection device that uses a general-purpose input circuit, and that is less likely to be affected by noise and can be used for other purposes.

Description

ゼロクロス検出装置Zero cross detector
 この発明は、交流信号のゼロクロスの位置を検出するゼロクロス検出装置に関するものである。 This invention relates to a zero-cross detection device for detecting the position of a zero-cross of an AC signal.
 従来から、電力制御において、負荷電源との同期をとるために、交流電源の各サイクルのゼロ電圧と交差する点、すなわち、ゼロクロスを検出することが行われている。ゼロクロスの検出には、フォトカプラを使用して電源電圧等の交流信号からトリガ信号を発生させる回路が用いられることが多い。しかし、このような回路では、交流信号に大きなノイズが重畳している場合に、ゼロクロスを誤検出してしまうという課題があり、ノイズ対策として低域通過フィルタ(LPF)回路やヒステリシス特性を持った比較器(コンパレータ)を使用する等の工夫を行う必要があった。特許文献1にはこのような課題に対応するゼロクロス信号出力装置が開示されている。 Conventionally, in power control, in order to synchronize with a load power supply, a point where the zero voltage of each cycle of the AC power supply crosses, that is, a zero cross is detected. A circuit that generates a trigger signal from an AC signal such as a power supply voltage using a photocoupler is often used to detect zero crossing. However, in such a circuit, there is a problem that a zero cross is erroneously detected when a large noise is superimposed on an AC signal, and a low-pass filter (LPF) circuit or a hysteresis characteristic is provided as a noise countermeasure. It was necessary to devise such as using a comparator. Patent Document 1 discloses a zero-cross signal output device corresponding to such a problem.
特開2004-328869号公報JP 2004-328869 A
 しかし、特許文献1が開示する技術では、ゼロクロス検出専用の回路を用いるため、同じ回路を別の用途に転用することが難しいという課題があった。 However, the technique disclosed in Patent Document 1 has a problem that it is difficult to divert the same circuit to another application because a circuit dedicated to zero cross detection is used.
 本発明は、上記の点に鑑み、ノイズの影響を受けにくく、他の用途にも転用できる、汎用的な入力回路を用いたゼロクロス検出装置を提供することを目的とする。 In view of the above points, an object of the present invention is to provide a zero-cross detection device using a general-purpose input circuit that is not easily affected by noise and can be used for other purposes.
  (構成1)
 交流信号が入力される入力部と、前記交流信号の1/4周期以下の期間である複数の積分範囲について前記交流信号の積分値を算出する積分値算出部と、前記積分値に基づき前記交流信号のゼロクロスの位置を検出するゼロクロス検出部と、
 を備えることを特徴とするゼロクロス検出装置。
(Configuration 1)
An input unit to which an AC signal is input, an integration value calculation unit that calculates an integration value of the AC signal for a plurality of integration ranges that are periods of ¼ period or less of the AC signal, and the AC based on the integration value A zero-cross detector that detects the zero-cross position of the signal;
A zero-cross detection device comprising:
  (構成2)
 前記ゼロクロス検出部が、前記複数の積分範囲から2つを選択し、当該選択された2つの積分範囲についての積分値の差分である面積差に基づき、前記交流信号のゼロクロスの位置を検出することを特徴とする請求項1に記載のゼロクロス検出装置。
(Configuration 2)
The zero cross detection unit selects two from the plurality of integration ranges, and detects the position of the zero cross of the AC signal based on an area difference that is a difference between integration values for the two selected integration ranges. The zero-cross detection device according to claim 1.
  (構成3)
 前記選択された2つの積分範囲の開始点同士の位相差がπ/2となることを特徴とする請求項2に記載のゼロクロス検出装置。
(Configuration 3)
The zero cross detection apparatus according to claim 2, wherein a phase difference between the start points of the two selected integration ranges is π / 2.
  (構成4)
 前記ゼロクロス検出部が、前記積分値又は前記面積差の少なくとも何れかが最大となる前記積分範囲に対応する2つの前記積分範囲を選択することを特徴とする請求項2又は3に記載のゼロクロス検出装置。
(Configuration 4)
4. The zero-cross detection according to claim 2, wherein the zero-cross detection unit selects two of the integration ranges corresponding to the integration range in which at least one of the integration value and the area difference is maximum. apparatus.
  (構成5)
 前記ゼロクロス検出部が、前記積分値又は前記面積差の少なくとも何れかに基づき、前記交流信号のゼロクロス検出のための演算式を選択し、当該選択された演算式と、前記面積差と、に基づき前記交流信号のゼロクロスを検出することを特徴とする請求項2から4の何れかに記載のゼロクロス検出装置。
(Configuration 5)
The zero cross detection unit selects an arithmetic expression for zero cross detection of the AC signal based on at least one of the integral value or the area difference, and based on the selected arithmetic expression and the area difference. 5. The zero-cross detection device according to claim 2, wherein the zero-cross of the AC signal is detected.
  (構成6)
 前記ゼロクロス検出部が、前記積分値が最小となる積分範囲の中に前記交流信号のゼロクロスがあると検出することを特徴とする請求項1に記載のゼロクロス検出装置。
(Configuration 6)
The zero-cross detection device according to claim 1, wherein the zero-cross detection unit detects that there is a zero-cross of the AC signal in an integration range in which the integral value is minimum.
  (構成7)
 入力部に交流信号が入力される入力工程と、
 積分値算出部が、前記交流信号の1/4周期以下の期間である複数の積分範囲について前記交流信号の積分値を算出する積分値算出工程と、
 ゼロクロス検出部が、前記積分値に基づき前記交流信号のゼロクロスの位置を検出するゼロクロス検出工程と、
 を備えることを特徴とするゼロクロス検出方法。
(Configuration 7)
An input process in which an AC signal is input to the input unit;
An integral value calculating step for calculating an integral value of the AC signal for a plurality of integration ranges that are a period of ¼ period or less of the AC signal;
A zero-cross detecting step for detecting a zero-cross position of the alternating current signal based on the integral value;
A zero-cross detection method comprising:
 本発明によれば、ノイズの影響を受けにくく、他の用途にも転用できる、汎用的な入力回路を用いたゼロクロス検出装置を提供することができる。 According to the present invention, it is possible to provide a zero-cross detection device using a general-purpose input circuit that is not easily affected by noise and can be used for other purposes.
本発明に係る実施形態のゼロクロス検出装置1を示す概略構成図である。1 is a schematic configuration diagram illustrating a zero-cross detection device 1 according to an embodiment of the present invention. 本発明に係る実施形態のゼロクロス検出装置1の概略動作を表すフロー図である。It is a flowchart showing schematic operation | movement of the zero cross detection apparatus 1 of embodiment which concerns on this invention. 本発明に係るゼロクロスの検出原理を説明するための概念図である。It is a conceptual diagram for demonstrating the detection principle of the zero crossing which concerns on this invention. 本発明に係る実施形態において、正規化された積分値とゼロクロスの位置の関係の理論値を示した図である。In embodiment which concerns on this invention, it is the figure which showed the theoretical value of the relationship between the normalized integrated value and the position of a zero cross. 本発明に係る実施形態のゼロクロス検出部160で使用する演算式の導出方法を説明するための概念図である。It is a conceptual diagram for demonstrating the derivation method of the computing equation used in the zero crossing detection part 160 of embodiment which concerns on this invention. 本発明に係る実施形態のゼロクロス検出装置1を用いて実際にゼロクロス検出を行った結果を示した図である。It is the figure which showed the result of having actually performed the zero cross detection using the zero cross detection apparatus 1 of embodiment which concerns on this invention.
 以下、この発明を実施するための形態について、添付の図面にしたがって説明する。
 ここで、「検出」とは、ゼロクロスの位置を演算し、一意に決定するという意味、又はゼロクロスの存在する範囲を特定するという意味を有し、以下においても同様である。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described with reference to the accompanying drawings.
Here, “detection” means that the position of the zero cross is calculated and uniquely determined, or the range where the zero cross exists is specified, and the same applies to the following.
<実施形態1>
 図1は、この発明の実施形態1によるゼロクロス検出装置1の概略構成図である。
 ゼロクロス検出装置1は、入力された交流信号のゼロクロスを検出し、出力する装置であり、入力部110と、絶対値変換部120と、VF変換部130とMCU200と、を備える。
 MCU200はマイクロコントローラユニット等で構成され、積分値算出部140と、記録部150と、ゼロクロス検出部160と、指示部170と、を備える。
<Embodiment 1>
FIG. 1 is a schematic configuration diagram of a zero-cross detection device 1 according to Embodiment 1 of the present invention.
The zero cross detection device 1 is a device that detects and outputs a zero cross of an input AC signal, and includes an input unit 110, an absolute value conversion unit 120, a VF conversion unit 130, and an MCU 200.
The MCU 200 includes a microcontroller unit and the like, and includes an integral value calculation unit 140, a recording unit 150, a zero cross detection unit 160, and an instruction unit 170.
 入力部110は、交流電源(不図示)等からの信号取得手段であり、交流信号が入力される。
 絶対値変換部120は、全波整流回路等により構成されており、入力部110から入力された交流信号を絶対値に変換して出力する機能を有する。
 VF変換部130は、VF変換器(Voltage-to-Frequency変換器)等により構成されており、絶対値変換部120から入力された交流信号の絶対値をパルス列に変換し、出力する機能を有する。
 指示部170は、事前に設定された後述する積分範囲、積分回数及び動作タイミングに基づき、積分値算出部140の積分処理の開始及び停止を指示する積分開始信号及び積分停止信号と、記録部150への記録指示信号と、ゼロクロス検出部160への検出指示信号と、を出力する機能を有する。
 積分値算出部140は、パルスカウンタ等により構成されており、指示部170からの積分開始信号及び積分停止信号に基づき、VF変換部130から入力されたパルス列の積分値を算出する機能及び、この積分値を出力する機能を有する。
 記録部150は、RAM等により構成されており、指示部170からの記録指示信号に基づき、積分値算出部140から入力された積分値を記録する機能及び、この記録した積分値を出力する機能を有する。
 ゼロクロス検出部160は、演算手段であり、指示部170からの検出指示信号に基づき、記録部150から入力された複数の積分値に基づき、入力部110に入力された交流信号のゼロクロスを検出する機能及び、この検出結果を出力する機能を有する。
The input unit 110 is a signal acquisition unit from an AC power source (not shown) or the like, and receives an AC signal.
The absolute value conversion unit 120 is configured by a full-wave rectification circuit or the like, and has a function of converting an AC signal input from the input unit 110 into an absolute value and outputting the absolute value.
The VF conversion unit 130 includes a VF converter (Voltage-to-Frequency converter) and the like, and has a function of converting the absolute value of the AC signal input from the absolute value conversion unit 120 into a pulse train and outputting it. .
The instructing unit 170 includes an integration start signal and an integration stop signal for instructing start and stop of integration processing of the integral value calculating unit 140 based on an integration range, integration number, and operation timing, which will be described later, set in advance, and a recording unit 150. A recording instruction signal and a detection instruction signal to the zero-cross detector 160 are output.
The integration value calculation unit 140 is configured by a pulse counter or the like. Based on the integration start signal and the integration stop signal from the instruction unit 170, the integration value calculation unit 140 calculates the integration value of the pulse train input from the VF conversion unit 130, and It has a function of outputting an integral value.
The recording unit 150 is configured by a RAM or the like. Based on a recording instruction signal from the instruction unit 170, the recording unit 150 records the integral value input from the integral value calculation unit 140 and outputs the recorded integral value. Have
The zero cross detection unit 160 is a calculation unit, and detects a zero cross of the alternating current signal input to the input unit 110 based on a plurality of integration values input from the recording unit 150 based on a detection instruction signal from the instruction unit 170. And a function of outputting the detection result.
<動作>
 次に、図2のフローチャートを参照しつつ、実施形態1のゼロクロス検出装置1による、ゼロクロスの検出動作について説明する。
<Operation>
Next, the zero cross detection operation by the zero cross detection apparatus 1 of the first embodiment will be described with reference to the flowchart of FIG.
 まず、ステップ410において、交流電源(不図示)等から入力部110へ交流信号が入力され、所定の信号レベルに変換し、この信号を絶対値変換部120へと出力し、ステップ420へと移行する。
 ステップ420において、絶対値変換部120は入力された信号を絶対値に変換し、この変換した信号をVF変換部130へと出力しステップ430へと移行する。
 ステップ430において、VF変換部130は入力された信号の電圧を電圧に比例した周波数を有するパルス信号に変換し、積分値算出部140へと出力しステップ440へと移行する。
First, in step 410, an AC signal is input to the input unit 110 from an AC power source (not shown) or the like, converted to a predetermined signal level, this signal is output to the absolute value conversion unit 120, and the process proceeds to step 420. To do.
In step 420, the absolute value conversion unit 120 converts the input signal into an absolute value, outputs the converted signal to the VF conversion unit 130, and proceeds to step 430.
In step 430, the VF conversion unit 130 converts the voltage of the input signal into a pulse signal having a frequency proportional to the voltage, outputs the pulse signal to the integral value calculation unit 140, and proceeds to step 440.
 ステップ440において、積分値算出部140は、指示部170から積分開始信号が入力されると、積分停止信号が入力されるまでの間、VF変換部130から入力されたパルス信号のパルス数をカウントすることで積分値を算出する。そして、指示部170から積分停止信号が入力されると、算出した積分値を記録部150へと出力する。
 そして記録部150は指示部170より記録指示信号が入力されると、積分値算出部140から入力された積分値を記録する。
 なお、図示していないが、ステップ430及びステップ440の一連の動作については積分回数だけ繰り返される。
 積分動作及び記録動作の詳細については後述する。
In step 440, when the integration start signal is input from the instruction unit 170, the integral value calculation unit 140 counts the number of pulses of the pulse signal input from the VF conversion unit 130 until the integration stop signal is input. To calculate the integral value. When an integration stop signal is input from the instruction unit 170, the calculated integration value is output to the recording unit 150.
When the recording instruction signal is input from the instruction unit 170, the recording unit 150 records the integration value input from the integral value calculation unit 140.
Although not shown, the series of operations in step 430 and step 440 are repeated for the number of integrations.
Details of the integration operation and the recording operation will be described later.
 そして、ステップ450において、ゼロクロス検出部160は、指示部170より入力された検出指示信号と、記録部150に記録された積分値に基づき、交流信号のゼロクロスを検出する。
 ゼロクロス検出部160の動作詳細については後述する。
 そしてステップ460において、ゼロクロス検出部160は、検出結果を出力し、動作を終了する。
In step 450, the zero cross detection unit 160 detects the zero cross of the AC signal based on the detection instruction signal input from the instruction unit 170 and the integral value recorded in the recording unit 150.
Details of the operation of the zero cross detector 160 will be described later.
In step 460, the zero cross detection unit 160 outputs the detection result and ends the operation.
<積分動作及び記録動作>
 以下、指示部170と、積分値算出部140における積分値算出動作及び記録部150における記録動作につき説明する。
 指示部170は、事前に設定された積分範囲、積分回数及び動作タイミングに基づき、積分開始信号及び積分停止信号を積分値算出部140へ出力する。
 なお、「積分範囲」とは、積分開始信号が入力されてから、積分停止信号が入力されるまでの期間を表し、「動作タイミング」とは、積分開始信号と次の積分開始信号の間隔を表す。
 また、指示部170は、積分値算出部140へ積分停止信号を出力すると同時に、記録部150へ記録指示信号を出力する。
 また、指示部170はこれらの積分開始信号及び積分停止信号、記録指示信号の出力操作を事前に設定された積分回数だけ繰り返す。
 また、積分値算出部140は、指示部170より積分開始信号が入力されてから、積分停止信号が入力されるまでの間、VF変換部130より入力されたパルス信号をカウント値として積算し、積分停止信号が入力されるとカウント値を積分値として記録部150へ出力する。なお、積分値算出部140は、指示部170より積分開始信号が入力されると同時に、内部のカウント値をリセットする。
 また、積分値算出部140は、指示部170より積分開始信号が入力されてから、積分停止信号が入力されるまでの間以外は、カウント値の積算は行わない。
 記録部150は、指示部170より記録指示信号が入力されると、積分値算出部140より入力される積分値を記録する。
<Integration operation and recording operation>
Hereinafter, the integral value calculation operation in the instruction unit 170, the integral value calculation unit 140, and the recording operation in the recording unit 150 will be described.
The instruction unit 170 outputs an integration start signal and an integration stop signal to the integration value calculation unit 140 based on the previously set integration range, number of integrations, and operation timing.
The “integration range” indicates a period from when the integration start signal is input to when the integration stop signal is input, and “operation timing” indicates the interval between the integration start signal and the next integration start signal. To express.
The instruction unit 170 outputs an integration stop signal to the integral value calculation unit 140 and simultaneously outputs a recording instruction signal to the recording unit 150.
The instruction unit 170 repeats the output operation of the integration start signal, the integration stop signal, and the recording instruction signal for the number of integrations set in advance.
Further, the integration value calculation unit 140 integrates the pulse signal input from the VF conversion unit 130 as a count value from when the integration start signal is input from the instruction unit 170 to when the integration stop signal is input, When the integration stop signal is input, the count value is output to the recording unit 150 as an integral value. The integration value calculation unit 140 resets the internal count value at the same time that the integration start signal is input from the instruction unit 170.
Further, the integration value calculation unit 140 does not integrate the count value except after the integration start signal is input from the instruction unit 170 until the integration stop signal is input.
When the recording instruction signal is input from the instruction unit 170, the recording unit 150 records the integration value input from the integral value calculation unit 140.
 「積分範囲」とは上述の通り、積分開始信号が入力されてから積分停止信号が入力されるまでの期間のことを表し、交流信号の1/4周期以下の期間であり、以下、「γ」とも称する。
 また、積分値のことを「面積」とも称し、以下においても同様である。
 なお、積分開始信号については、積分停止信号が出力された後、すぐに次の積分開始信号を出力することもでき、連続して複数の積分値を記録することが可能である。
 以下、記録部150に記録された複数の積分値のうち、検出の基準となる最初の積分範囲において積分開始信号が出力されるタイミングのことを、単に「計測開始点」と称する。
As described above, the “integration range” indicates a period from when the integration start signal is input to when the integration stop signal is input, and is a period of ¼ cycle or less of the AC signal. Is also referred to.
The integral value is also referred to as “area”, and the same applies to the following.
Regarding the integration start signal, the next integration start signal can be output immediately after the integration stop signal is output, and a plurality of integration values can be recorded continuously.
Hereinafter, the timing at which the integration start signal is output in the first integration range serving as a detection reference among the plurality of integration values recorded in the recording unit 150 is simply referred to as “measurement start point”.
<ゼロクロスの検出原理>
 ここで、ゼロクロスの検出原理を説明する。
 まず、振幅1の正弦波の絶対値を取った波形において、図3に示すような2つの積分範囲を考える。
<Zero-cross detection principle>
Here, the detection principle of zero crossing will be described.
First, two integration ranges as shown in FIG. 3 are considered in a waveform obtained by taking an absolute value of a sine wave having an amplitude of 1.
 ここで、2つの積分範囲のθaとθbの位相差を数1のように定める。 Here, the phase difference between θa and θb of the two integration ranges is determined as in Equation 1.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 また、積分範囲γの取りうる値を下記の数2のように定める。 Also, the possible value of the integration range γ is determined as in the following formula 2.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 このとき、θaの範囲を0≦θa≦π/4とすると、積分値SaとSbの差(面積差)は以下の数3のように表すことができる。 At this time, assuming that the range of θa is 0 ≦ θa ≦ π / 4, the difference (area difference) between the integrated values Sa and Sb can be expressed as the following Equation 3.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 さらに、θaに関して式をまとめると、θaと面積差Sa-Sbの関係式(数4)が得られる。 Further, when formulas relating to θa are summarized, a relational expression (formula 4) between θa and area difference Sa−Sb is obtained.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 この数4の逆正弦関数を求めることで、面積差Sa-Sbからθaを導出する演算式(数5)を得ることができる。 By obtaining the inverse sine function of Equation 4, an arithmetic expression (Equation 5) for deriving θa from the area difference Sa−Sb can be obtained.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 このように、ゼロクロスから最初の積分範囲までの位相差θaを、面積差Sa-Sbによって算出することができる。つまり、最初の積分範囲の開始点を基準として、ゼロクロスの位置を一意に定めることができる。 Thus, the phase difference θa from the zero cross to the first integration range can be calculated by the area difference Sa−Sb. That is, the position of the zero cross can be uniquely determined based on the starting point of the first integration range.
 上記のゼロクロスと面積差の関係を表す数5を、本実施形態1に適用することで、図2中のステップ450におけるゼロクロスの検出動作が実施される。 2 is applied to the first embodiment, the zero cross detection operation in step 450 in FIG. 2 is performed.
<実施形態1への検出原理の適用>
 以下、数5を本実施形態1に適用した場合の、計測開始点の直近かつ手前にあるゼロクロスから計測開始点までの位相差を算出する演算式について説明する。
 なお、実施形態1において指示部170に設定される値は、積分範囲γがπ/4、積分回数が4、動作タイミングがπ/4間隔であり、記録部150には交流信号のπ/4に対応する積分値が連続して4つ記録されることになる。記録部150に記録される4つの積分値を、それぞれS1’からS4’とし、そこから交流信号の振幅が1となるように正規化された積分値を、それぞれS1からS4とし、ゼロクロスからS1からS4までの位相差をそれぞれθ1からθ4とする。
 ところで、交流信号が振幅1の正弦波の場合の、ゼロクロスから計測開始点までの位相差θ1と、積分値S1からS4の関係は、図4(1)のようになる。この特性をもとに、数5の適用範囲を4つに大別し、ゼロクロス検出に必要な範囲0≦θ1≦πを網羅する。
<Application of Detection Principle to Embodiment 1>
Hereinafter, an arithmetic expression for calculating the phase difference from the zero cross closest to the measurement start point to the measurement start point when Equation 5 is applied to the first embodiment will be described.
In the first embodiment, the values set in the instruction unit 170 include the integration range γ of π / 4, the number of integrations of 4, the operation timing of π / 4 intervals, and the recording unit 150 having an AC signal of π / 4. Four integral values corresponding to are continuously recorded. The four integral values recorded in the recording unit 150 are S1 ′ to S4 ′, respectively, and the integral values normalized so that the amplitude of the AC signal is 1 are S1 to S4, respectively, and from zero cross to S1 To S4 are the phase differences from θ1 to θ4, respectively.
Incidentally, when the AC signal is a sine wave having an amplitude of 1, the relationship between the phase difference θ1 from the zero cross to the measurement start point and the integration values S1 to S4 is as shown in FIG. Based on this characteristic, the range of application of Equation 5 is roughly divided into four to cover the range 0 ≦ θ1 ≦ π necessary for zero cross detection.
 まず、図4(2)においてS2が最大となる範囲は、θ1が0≦θ1≦π/4の範囲と一致する。つまり、この範囲における演算式を求めるには、数5のθaにはθ1を、SaとSbには積分範囲の位相差がπ/2の関係にある積分値であるS1とS3を、γにはπ/4を対応させればよい。故に、ゼロクロスから計測開始点までの位相差θ1に関する演算式は、以下の数6のようになる。 First, in FIG. 4B, the range where S2 is maximum coincides with the range where θ1 is 0 ≦ θ1 ≦ π / 4. In other words, in order to obtain an arithmetic expression in this range, θ1 is set to θa in Equation 5, S1 and S3, which are integral values having a phase difference of π / 2 in Sa and Sb, and γ are set to γ. May correspond to π / 4. Therefore, an arithmetic expression related to the phase difference θ1 from the zero cross to the measurement start point is expressed by the following formula 6.
Figure JPOXMLDOC01-appb-M000006
 次に、図4(2)においてS1が最大となる範囲は、π/4≦θ1≦π/2と一致する。このとき、図5(1)のS4と図5(2)のS4のように、それぞれのS4が図形的に相似の関係となるため、0≦θ4≦π/4の範囲として数5を適用することができる。よって、数5のθa、Sa、Sbには、それぞれθ4、S4、S2を、γにはπ/4を対応させればよい。故に、数7のような数式が成立する。
Figure JPOXMLDOC01-appb-M000006
Next, in FIG. 4B, the range in which S1 is maximum coincides with π / 4 ≦ θ1 ≦ π / 2. At this time, as S4 in FIG. 5 (1) and S4 in FIG. 5 (2) are similar in relation to each other, Equation 5 is applied in the range of 0 ≦ θ4 ≦ π / 4. can do. Therefore, θ4, S4, and S2 may be associated with θa, Sa, and Sb in Formula 5, and π / 4 may be associated with γ. Therefore, a mathematical expression such as Equation 7 is established.
Figure JPOXMLDOC01-appb-M000007
 そして、θ1とθ4の位相差π/4を考慮すると、ゼロクロスから計測開始点までの位相差θ1に関する演算式、数8を得ることができる。
Figure JPOXMLDOC01-appb-M000007
Then, when the phase difference π / 4 between θ1 and θ4 is taken into consideration, an arithmetic expression relating to the phase difference θ1 from the zero cross to the measurement start point, Equation 8, can be obtained.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 同様に、図4(2)においてS4が最大となるπ/2≦θ1≦3π/4の範囲においては、0≦θ3≦π/4の範囲で、数5のθa、Sa、Sbにそれぞれθ3、S3、S1を、γにπ/4を対応させて適用すればよい。故に、数9のような数式を得ることができる。 Similarly, in the range of π / 2 ≦ θ1 ≦ 3π / 4 where S4 is maximum in FIG. 4 (2), in the range of 0 ≦ θ3 ≦ π / 4, θ3 of Equation 5 is set to θ3. , S3, S1 may be applied with γ corresponding to π / 4. Therefore, a mathematical expression such as Equation 9 can be obtained.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 そして、θ1とθ3の位相差2π/4を考慮すると、ゼロクロスから計測開始点までの位相差θ1に関する演算式、数10を得ることができる。 Then, when the phase difference 2π / 4 between θ1 and θ3 is taken into consideration, an arithmetic expression relating to the phase difference θ1 from the zero cross to the measurement start point, Formula 10, can be obtained.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 同様に、図4(2)においてS3が最大となる3π/4≦θ1≦πの範囲においては、0≦θ2≦π/4の範囲で、数5のθa、Sa、Sbにそれぞれθ2、S2、S4を、γにπ/4を対応させて適用すればよい。故に、数11のような数式を得ることができる。 Similarly, in the range of 3π / 4 ≦ θ1 ≦ π in which S3 is the maximum in FIG. 4B, θ2 and S2 are respectively set in θa, Sa, and Sb of Formula 5 in the range of 0 ≦ θ2 ≦ π / 4. , S4 may be applied with γ corresponding to π / 4. Therefore, a mathematical expression such as Equation 11 can be obtained.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 そして、θ1とθ2の位相差3π/4を考慮すると、ゼロクロスから計測開始点までの位相差θ1に関する演算式、数12を得ることができる。 Then, when the phase difference 3π / 4 between θ1 and θ2 is taken into consideration, an arithmetic expression relating to the phase difference θ1 from the zero cross to the measurement start point, Equation 12, can be obtained.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 また、実際の動作で記録部150に記録された積分値S1’からS4’と、各演算式で用いる積分値S1からS4との関係は、事前に設定された正規化係数Vm(積分範囲をπとしたときに得られる積分値の1/2)を用いて正規化することができる。例えば、積分値S1の場合、数13の式で表すことができる。 In addition, the relationship between the integration values S1 ′ to S4 ′ recorded in the recording unit 150 in the actual operation and the integration values S1 to S4 used in the respective arithmetic expressions is based on a preset normalization coefficient Vm (an integration range Normalization can be performed using ½ of the integral value obtained when π is used. For example, in the case of the integral value S1, it can be expressed by the equation (13).
Figure JPOXMLDOC01-appb-M000013
 なお、本実施形態1においては、連続する4つの積分範囲の積分値S1’からS4’の合計値が、積分範囲をπとした場合の積分値と等価である。よって、例えば面積差の正規化値(S1-S3)を求める式を、数14のように表すことができる。
Figure JPOXMLDOC01-appb-M000013
In the first embodiment, the total value of the integration values S1 ′ to S4 ′ in the four consecutive integration ranges is equivalent to the integration value when the integration range is π. Therefore, for example, an equation for obtaining the normalized value of the area difference (S1−S3) can be expressed as in Expression 14.
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 このように、入力される交流信号のどのタイミングに計測開始点があったとしても、積分値S1からS4又はS1’からS4’の大小関係を判断することで、ゼロクロスを検出(対象となるゼロクロスから計測開始点までの位相差を算出)することができる。 Thus, no matter what timing of the input AC signal the measurement start point is, the zero cross is detected by judging the magnitude relationship between the integral values S1 to S4 or S1 ′ to S4 ′ (the target zero cross). The phase difference from the measurement start point to the measurement start point can be calculated).
<ゼロクロス検出部160の動作>
 以下、ステップ460における、ゼロクロス検出部160における動作の詳細について説明する。
 まず、記録部150に記録された積分値S1’からS4’のうち、最大値を有する積分値を判断する。
 次に、記録された積分値S1’からS4’を、事前に設定された正規化係数Vmを用いて正規化し、S1からS4を算出する。
 そして、
 最大値を有する積分値がS1’と判断された場合は数8を、
 最大値を有する積分値がS2’と判断された場合は数6を、
 最大値を有する積分値がS3’と判断された場合は数12を、
 最大値を有する積分値がS4’と判断された場合は数10を用いて、ゼロクロスの位置を演算により算出する。
<Operation of Zero Cross Detection Unit 160>
Hereinafter, the details of the operation in the zero cross detection unit 160 in step 460 will be described.
First, the integral value having the maximum value among the integral values S1 ′ to S4 ′ recorded in the recording unit 150 is determined.
Next, the recorded integral values S1 ′ to S4 ′ are normalized using a preset normalization coefficient Vm, and S1 to S4 are calculated.
And
When the integral value having the maximum value is determined to be S1 ′, Equation 8 is used.
When the integral value having the maximum value is determined as S2 ′, Equation 6 is
When the integral value having the maximum value is determined as S3 ′, Equation 12 is
When it is determined that the integral value having the maximum value is S4 ′, the position of the zero cross is calculated by calculation using Equation 10.
<実際の交流信号に対するゼロクロス検出結果>
 本実施形態1のゼロクロス検出装置1を用いて、正弦的な変化をする交流信号に対してゼロクロスの検出を行った。
 なお、交流信号の周波数を50Hzとした場合、積分範囲π/4に対応する積分時間は2.5ミリ秒となる。
 なお、本実施形態1のゼロクロス検出装置1においては、検出結果が角度に換算され、0.0°から179.9°の範囲で角度表示されるようになっている。
<Zero cross detection result for actual AC signal>
Using the zero-cross detection device 1 according to the first embodiment, zero-cross detection is performed on an AC signal that changes sinusoidally.
When the frequency of the AC signal is 50 Hz, the integration time corresponding to the integration range π / 4 is 2.5 milliseconds.
In the zero cross detection device 1 of the first embodiment, the detection result is converted into an angle, and the angle is displayed in the range of 0.0 ° to 179.9 °.
 図6(1)~図6(6)は、入力部110に入力される交流信号及び計測開始点のタイミングに同期したトリガ信号の観測結果と、各記録動作で記録された積分値S1’からS4’、事前に設定された正規化係数Vm、最大値を有する積分範囲の判断結果であるMAX、及びゼロクロス検出結果であるゼロクロスから計測開始点までの位相差θ1を表す。 6 (1) to FIG. 6 (6) are based on the observation result of the AC signal input to the input unit 110 and the trigger signal synchronized with the timing of the measurement start point, and the integrated value S1 ′ recorded in each recording operation. S4 ′, a preset normalization coefficient Vm, MAX that is the determination result of the integration range having the maximum value, and the phase difference θ1 from the zero cross that is the zero cross detection result to the measurement start point.
 それぞれの条件において、ゼロクロスから計測開始点までの位相差θ1と観測結果から読み取れるθ1はほぼ一致し、演算式のいずれの適用範囲においても、計測開始点とゼロクロスの位置関係を検出できていることがわかる。 Under each condition, the phase difference θ1 from the zero cross to the measurement start point and θ1 that can be read from the observation result are almost the same, and the positional relationship between the measurement start point and the zero cross can be detected in any application range of the arithmetic expression. I understand.
<ノイズ重畳信号への適用>
 次に、本実施形態1のゼロクロス検出装置1におけるノイズの影響を確認するために、従来方式において誤検知の可能性があるノイズ重畳信号に対してゼロクロスの検出を行った。ここでは、交流信号として周波数50Hzの正弦波に、正弦波の振幅の5%に相当するランダムノイズと、正弦波の振幅の100%に相当する周期的なスパイクノイズを重畳した交流信号を用いた。
 図6(7)に、入力部110に入力される交流信号及び計測開始点のタイミングに同期したトリガ信号の観測結果と、各記録動作で記録された積分値S1’からS4’、事前に設定された正規化係数Vm、最大値を有する積分範囲の判断結果であるMAX、及びゼロクロス検出結果であるゼロクロスから計測開始点までの位相差θ1を表す。
<Application to noise superimposed signal>
Next, in order to confirm the influence of noise in the zero-crossing detection apparatus 1 of the first embodiment, zero-crossing detection is performed on a noise superimposed signal that may be erroneously detected in the conventional method. Here, an AC signal in which random noise corresponding to 5% of the amplitude of the sine wave and periodic spike noise corresponding to 100% of the amplitude of the sine wave are superimposed on a sine wave having a frequency of 50 Hz is used as the AC signal. .
In FIG. 6 (7), the AC signal input to the input unit 110 and the observation result of the trigger signal synchronized with the timing of the measurement start point and the integral values S1 ′ to S4 ′ recorded in each recording operation are set in advance. The normalized normalization coefficient Vm, the MAX that is the determination result of the integration range having the maximum value, and the phase difference θ1 from the zero cross that is the zero cross detection result to the measurement start point are represented.
 検出結果であるゼロクロスから計測開始点までの位相差θ1は、観測結果から読み取れるθ1とほぼ一致する。このように、本実施形態1のゼロクロス検出装置1は、ノイズの重畳した交流信号においても有効であることがわかる。 The phase difference θ1 from the zero cross that is the detection result to the measurement start point is almost the same as θ1 that can be read from the observation result. Thus, it turns out that the zero cross detection apparatus 1 of this Embodiment 1 is effective also in the alternating current signal with which the noise was superimposed.
 以上のように、本実施形態1のゼロクロス検出装置1は、ゼロクロス検出部160が積分値算出部140にて算出された交流信号の積分値を用いてゼロクロスを検出するように構成されているため、入力部110に低域通過フィルタ回路や比較器等を用いなくても、ノイズの影響を受けにくいゼロクロス検出装置を得ることができる。
 また、本実施形態1のゼロクロス検出装置1は、入力部110、絶対値変換部120及びVF変換部130及びMCU200によって構成され、これらの組み合わせは、アナログ入力値を取得するための回路構成としても有効であり、直流、交流に関わらず利用可能である。また、シャント抵抗等で電圧値に変換して取り込めば、電圧値のほか電流値を計測することも可能である。つまり、本実施形態1のゼロクロス検出装置1は、ゼロクロス検出以外の用途にも転用でき、汎用的な入力回路として使用することができる。
 また、本実施形態1のゼロクロス検出装置1は、ゼロクロス検出部160が、計測開始点が交流信号のどのタイミングにあったとしても、最大となる積分値と、対応する演算式により、ゼロクロスから計測開始点までの位相差を算出可能に構成されているため、任意のタイミングでゼロクロスの検出動作を行ったとしてもゼロクロスの位置を検出可能なゼロクロス検出装置を得ることができる。
 また、本実施形態1のゼロクロス検出装置1は、ゼロクロス検出部160が、ゼロクロスの検出結果をゼロクロスから計測開始点までの位相差により出力するように構成されているため、ゼロクロスの計測開始点からの相対的な位置関係が判別可能なゼロクロス検出装置を得ることができる。
As described above, the zero-cross detection device 1 according to the first embodiment is configured such that the zero-cross detection unit 160 detects the zero-cross using the integration value of the AC signal calculated by the integration value calculation unit 140. Even if a low-pass filter circuit or a comparator is not used for the input unit 110, a zero-cross detection device that is not easily affected by noise can be obtained.
Further, the zero-cross detection device 1 according to the first embodiment is configured by the input unit 110, the absolute value conversion unit 120, the VF conversion unit 130, and the MCU 200, and these combinations can be used as a circuit configuration for acquiring an analog input value. It is effective and can be used regardless of direct current or alternating current. In addition, if converted into a voltage value with a shunt resistor or the like and taken in, it is possible to measure a current value in addition to the voltage value. That is, the zero cross detection device 1 according to the first embodiment can be used for purposes other than the zero cross detection, and can be used as a general-purpose input circuit.
In addition, the zero-cross detection device 1 according to the first embodiment allows the zero-cross detection unit 160 to measure from the zero cross by using the maximum integral value and the corresponding arithmetic expression regardless of the timing at which the measurement start point is the AC signal. Since the phase difference up to the start point can be calculated, it is possible to obtain a zero-cross detection device that can detect the position of the zero-cross even if the zero-cross detection operation is performed at an arbitrary timing.
In addition, the zero-cross detection device 1 according to the first embodiment is configured such that the zero-cross detection unit 160 outputs the detection result of the zero-cross based on the phase difference from the zero-cross to the measurement start point. It is possible to obtain a zero-cross detector that can determine the relative positional relationship between the two.
<実施形態2>
<積分値の大きさによるゼロクロスの検出>
 本実施形態2におけるゼロクロス検出装置2は、ゼロクロス検出部260を備える点以外については実施形態1におけるゼロクロス検出装置1と同様であるため、実施形態1と同様の構成については説明を省略する。
 ゼロクロス検出部260は、まずS1’からS4’のどの積分値が最小であるかを判断する。そして、積分値が最小となる積分範囲の中にゼロクロスがあると判断し、その積分範囲に対応するデータを、ゼロクロスの検出結果を出力する。
 例えば、S3’が最小であると判断した場合には、67.5°(S3’の中央にゼロクロス点があると仮定した場合の、ゼロクロスから計測開始点までの目安となる位相差θ1)を出力する。
<Embodiment 2>
<Detection of zero cross based on the magnitude of the integral value>
The zero-cross detection device 2 according to the second embodiment is the same as the zero-cross detection device 1 according to the first embodiment except that the zero-cross detection unit 260 is provided. Therefore, the description of the same configuration as that of the first embodiment is omitted.
The zero-cross detector 260 first determines which integral value from S1 ′ to S4 ′ is the smallest. Then, it is determined that there is a zero cross in the integration range where the integral value is minimum, and data corresponding to the integration range is output as a zero cross detection result.
For example, when it is determined that S3 ′ is the minimum, 67.5 ° (the phase difference θ1 serving as a guideline from the zero cross to the measurement start point when it is assumed that there is a zero cross point in the center of S3 ′). Output.
 以上のように、本実施形態2におけるゼロクロス検出装置2は、実施形態1と同様の回路構成を用いて、ゼロクロス検出部260が演算式を使用せずにゼロクロス位置を検出できるように構成されているため、より演算コストを抑えたゼロクロス検出装置を得ることができる。
 また、検出方法切り換え部(不図示)により、詳細なゼロクロス位置の検出が必要な場合はゼロクロス検出部160に、そうでない場合はゼロクロス検出部260に切り替えることで、必要に応じた検出方法を選択することが可能となる。
As described above, the zero-cross detection device 2 according to the second embodiment is configured such that the zero-cross detection unit 260 can detect the zero-cross position without using an arithmetic expression using the same circuit configuration as that of the first embodiment. Therefore, it is possible to obtain a zero cross detection device that further reduces the calculation cost.
In addition, a detection method switching unit (not shown) selects a detection method according to necessity by switching to the zero-cross detection unit 160 when detailed zero-cross position detection is necessary, and switching to the zero-cross detection unit 260 otherwise. It becomes possible to do.
 各実施形態における各構成は、それぞれ専用回路等でハード的に構成されるものであってもよいし、マイコン等の汎用的な回路上でソフトウェア的に実現されるものであってもよい。
 また、各実施形態における積分動作は、VF変換部130と積分値算出部140によって実現されているが、ΔΣAD変換器等を用いて実現してもよい。
 また、各実施形態において、ステップ460の処理のあとで動作を終了するとしていたが、ステップ460が完了し次第、一定の時間を置いて次のステップ410を開始してもよい。
 また、常時入力される交流信号に対して、積分動作と記録動作を連続して行う中で、必要な回数の積分動作が完了する度に、ゼロクロスの検出を行ってもよいし、適当なインターバル(例えば1秒周期)を設定してゼロクロスの検出を行ってもよい。
Each configuration in each embodiment may be configured in hardware by a dedicated circuit or the like, or may be realized in software on a general-purpose circuit such as a microcomputer.
In addition, the integration operation in each embodiment is realized by the VF conversion unit 130 and the integration value calculation unit 140, but may be realized by using a ΔΣ AD converter or the like.
In each embodiment, the operation is terminated after the process of step 460. However, as soon as step 460 is completed, the next step 410 may be started after a certain period of time.
In addition, while continuously performing the integration operation and the recording operation for the AC signal that is always input, the zero cross may be detected every time the necessary number of integration operations are completed, or at an appropriate interval. Zero cross detection may be performed by setting (for example, a 1-second cycle).
<数5の別解>
 また、実施形態1においてはゼロクロス検出部160が数5のように面積差を用いた逆正弦関数に基づいてゼロクロスを検出するように構成されていたが、面積差を用いた逆余弦関数に基づいてゼロクロスを検出するように構成することも可能である。その場合、数5に対応する逆余弦関数は以下の数15のようになる。
<Another solution of Formula 5>
In the first embodiment, the zero cross detection unit 160 is configured to detect the zero cross based on the inverse sine function using the area difference as shown in Equation 5, but based on the inverse cosine function using the area difference. It is also possible to configure to detect zero crossing. In that case, the inverse cosine function corresponding to Equation 5 is as shown in Equation 15 below.
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
<演算式の変形例1>
 また、実施形態1においてはゼロクロス検出部160が数5に基づく演算式によりゼロクロスを検出するように構成されていたが、積分範囲、積分回数及び動作タイミングの組み合わせを容易に変更に対応できるよう、算術し易い形に変形した演算式に基づいてゼロクロスを検出するように構成されていてもよい。そのような、数5に対応する演算式を数16に示す。
<Modification Example 1 of the Expression>
Further, in the first embodiment, the zero cross detection unit 160 is configured to detect the zero cross by the arithmetic expression based on Expression 5, but the combination of the integration range, the number of integrations, and the operation timing can be easily changed. You may be comprised so that a zero cross may be detected based on the arithmetic expression transformed into the form which is easy to perform arithmetic. Such an arithmetic expression corresponding to Equation 5 is shown in Equation 16.
Figure JPOXMLDOC01-appb-M000016
 例えば、積分範囲がπ/4、積分回数が4、動作タイミングがπ/4間隔の組み合わせでは係数αがπ/8となり、例えば、積分範囲がπ/6、積分回数が6、動作タイミングがπ/6間隔の組み合わせでは係数αがπ/6となる。
 以上のような演算式を用いると、共通の数式における係数αの変更を行うだけで、積分範囲及、積分回数及び動作タイミングの組み合わせを容易に変更可能なゼロクロス検出装置を得ることができる。
Figure JPOXMLDOC01-appb-M000016
For example, when the integration range is π / 4, the number of integrations is 4, and the operation timing is π / 4 interval, the coefficient α is π / 8. For example, the integration range is π / 6, the number of integrations is 6, and the operation timing is π. In the combination of / 6 intervals, the coefficient α is π / 6.
By using the arithmetic expression as described above, it is possible to obtain a zero-cross detection device that can easily change the combination of the integration range, the number of integrations, and the operation timing by simply changing the coefficient α in the common mathematical expression.
<演算式の変形例2>
 また、実施形態1においては、ゼロクロスの検出原理を考える際に、数4から逆正弦関数を求めるように構成されていたが、数4を周期関数として近似した上で、面積差Sa-Sbからθaを導出する演算式に基づいてゼロクロスを検出するように構成されていてもよい。積分範囲がπ/4のときの数4に対応する近似式を数17に、数5に対応する演算式を数18に示す。
<Modification 2 of the arithmetic expression>
In the first embodiment, when the zero-cross detection principle is considered, the inverse sine function is obtained from Equation 4. However, after approximating Equation 4 as a periodic function, the area difference Sa−Sb is calculated. The zero cross may be detected based on an arithmetic expression for deriving θa. An approximate expression corresponding to Expression 4 when the integration range is π / 4 is shown in Expression 17, and an arithmetic expression corresponding to Expression 5 is shown in Expression 18.
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
<積分範囲>
 また、実施形態1において、ゼロクロス検出部160に事前に設定された積分範囲がπ/4であるように構成されていたが、その他の値が設定されるように構成されていてもよく、積分範囲が0<γ<π/4の場合であっても、図5における説明と同様に、積分範囲同士の位相差を考慮することで、数5に基づきθ1を算出する演算式を導出することが可能であるが、積分範囲の値としては、積分動作を連続して実施できる(積分動作の切れ目が発生しない)、位相差π/2を整数で割った数が好適である。また、積分範囲が大きいほど積分値の分解能が向上するため、積分範囲を定めた数2の上限値であるπ/4が特に好適である。
 また、実施形態1においては、ゼロクロス検出部160に事前に設定された積分範囲がπ/4であるように構成されていたが、積分範囲がπ/4<γ≦π/2の範囲であっても、図5における説明と同様に積分範囲同士の位相差を考慮し、数5に基づくθ1を算出する演算式を用意することで、θ1を算出することが可能である。その場合、積分範囲がπ/2に近づくにつれ、演算結果に多少の誤差は発生するものの、大まかなゼロクロス検出を目的とした用途には一定の効果が見込める。例えば、積分範囲をπ/3、動作タイミングをπ/4とした場合でも、演算誤差が1°程度で、さらに積分範囲をπ/2、動作タイミングをπ/4とした場合でも、演算誤差が5°程度でゼロクロスを検出することが可能である。
 なお、積分範囲と、動作タイミングの組み合わせによっては、積分範囲が部分的に重なってしまう場合がある。そのような条件においては、積分範囲が重なっている範囲において、それぞれの積分値を並行して算出が可能となるように、積分値算出部140が構成されていればよい。
<Integration range>
In the first embodiment, the integration range set in advance in the zero-crossing detection unit 160 is configured to be π / 4, but may be configured to set other values. Even when the range is 0 <γ <π / 4, as in the description in FIG. 5, the calculation formula for calculating θ1 based on Equation 5 is derived by considering the phase difference between the integration ranges. However, the value of the integration range is preferably a value obtained by dividing the phase difference π / 2 by an integer so that the integration operation can be carried out continuously (no break in the integration operation occurs). Further, since the resolution of the integral value is improved as the integral range is larger, π / 4, which is the upper limit value of the number 2 that defines the integral range, is particularly suitable.
In the first embodiment, the integration range set in advance in the zero cross detection unit 160 is configured to be π / 4. However, the integration range is a range of π / 4 <γ ≦ π / 2. However, it is possible to calculate θ1 by preparing an arithmetic expression for calculating θ1 based on Equation 5 in consideration of the phase difference between the integration ranges as in the description in FIG. In this case, as the integration range approaches π / 2, a slight error occurs in the calculation result, but a certain effect can be expected for the purpose of rough zero-cross detection. For example, even when the integration range is π / 3 and the operation timing is π / 4, the calculation error is about 1 °, and even when the integration range is π / 2 and the operation timing is π / 4, the calculation error is It is possible to detect a zero cross at about 5 °.
Depending on the combination of the integration range and the operation timing, the integration range may partially overlap. Under such conditions, it is only necessary to configure the integral value calculation unit 140 so that the integral values can be calculated in parallel in a range where the integral ranges overlap.
<演算式の選択方法>
 また、実施形態1において、ゼロクロス検出部160が、積分値が最大となる範囲に基づきゼロクロス検出の演算式を選択するように構成されていたが、積分値が最小となる範囲に基づきゼロクロス検出の演算式を選択するように構成されていてもよい。
 また、実施形態1において、ゼロクロス検出部160は、積分値が最大となる範囲に基づき、ゼロクロス検出の演算式を選択するように構成されていたが、演算に必要な組み合わせの面積差をあらかじめ算出し、最大又は最小となる面積差を用いてゼロクロス検出の演算式を選択するように構成されていてもよい。
 これは、特定の積分値が最大もしくは最小となる範囲と、特定の面積差が最大もしくは最小となる範囲の組み合わせは、原理的に同じになるためである。
 また、最大又は最小となる積分値が2つ存在する場合は、どちらの演算式を選択してもよい。また、面積差についても同様である。
 このように、ゼロクロス検出部160は、積分値又は面積差の大きさで演算式を選択するように構成されていればよい。
<Selecting the formula>
In the first embodiment, the zero-cross detection unit 160 is configured to select the zero-cross detection calculation formula based on the range in which the integral value is maximum, but the zero-cross detection is performed based on the range in which the integral value is minimum. It may be configured to select an arithmetic expression.
In the first embodiment, the zero-cross detection unit 160 is configured to select an arithmetic expression for zero-cross detection based on a range in which the integral value is maximum. However, an area difference of a combination necessary for the calculation is calculated in advance. In addition, the calculation formula for zero cross detection may be selected using the maximum or minimum area difference.
This is because the combination of the range in which the specific integral value is maximum or minimum and the range in which the specific area difference is maximum or minimum are the same in principle.
In addition, when there are two integral values that are maximum or minimum, either arithmetic expression may be selected. The same applies to the area difference.
As described above, the zero-cross detection unit 160 may be configured to select an arithmetic expression based on the integral value or the size of the area difference.
<演算式のテーブル化、近似式化>
 また、ゼロクロス検出部160は、数6、数8、数10、数12等の所定の演算式によりゼロクロス検出を行うように構成されていたが、演算コストの観点から、演算結果の引き当てにテーブル参照等を用いるように構成されていてもよい。
 また、ゼロクロス検出部160は、数6、数8、数10、数12等の所定の演算式によりゼロクロス検出を行うように構成されていたが、演算コストの観点から、所定の演算式を一次関数等の近似式に簡略化してもよい。
<Table of arithmetic expressions, approximation formula>
In addition, the zero-cross detection unit 160 is configured to perform zero-cross detection using a predetermined arithmetic expression such as Equation 6, Equation 8, Equation 10, Equation 12, and the like. It may be configured to use a reference or the like.
Further, the zero-cross detection unit 160 is configured to perform zero-cross detection using predetermined arithmetic expressions such as Expression 6, Expression 8, Expression 10, and Expression 12. However, from the viewpoint of calculation cost, the predetermined calculation expression is first-order. You may simplify to approximate expressions, such as a function.
<出力データの違い>
 また、実施形態2のゼロクロス検出部260が具体的な角度データ、例えば、S3’が最小であると判断した場合には67.5°を出力するとしたが、例えば、S3’が最小であると判断された場合には3を、即ち、最小であると判断した積分範囲を特定できるデータ(1から4の整数等)を出力するようにしてもよい。
 また、実施形態2における積分範囲はπ/4としたが、積分値の大小判断に影響の無い範囲で積分範囲を小さくしてもよい。
<Difference in output data>
In addition, when the zero cross detection unit 260 of the second embodiment determines that specific angle data, for example, S3 ′ is minimum, 67.5 ° is output, but for example, S3 ′ is minimum. If determined, 3 may be output, that is, data (such as an integer from 1 to 4) that can specify the integration range determined to be the minimum may be output.
Further, although the integration range in the second embodiment is π / 4, the integration range may be reduced within a range that does not affect the determination of the magnitude of the integration value.
 以上、実施形態を参照して本発明を説明したが、本発明は上述した実施形態に限定されるものではない。本発明の構成及び動作については、本発明の趣旨を逸脱しない範囲において、当業者が理解しうる様々な変更を行うことができる。 The present invention has been described above with reference to the embodiments, but the present invention is not limited to the above-described embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and operation of the present invention without departing from the spirit of the present invention.
1、2…ゼロクロス検出装置
110…入力部
120…絶対値変換部
130…VF変換部
140…積分値算出部
150…記録部
160、260…ゼロクロス検出部
170…指示部
200…MCU
DESCRIPTION OF SYMBOLS 1, 2 ... Zero cross detection apparatus 110 ... Input part 120 ... Absolute value conversion part 130 ... VF conversion part 140 ... Integral value calculation part 150 ... Recording part 160, 260 ... Zero cross detection part 170 ... Instruction part 200 ... MCU

Claims (7)

  1.  交流信号が入力される入力部と、前記交流信号の1/4周期以下の期間である複数の積分範囲について前記交流信号の積分値を算出する積分値算出部と、前記積分値に基づき前記交流信号のゼロクロスの位置を検出するゼロクロス検出部と、
     を備えることを特徴とするゼロクロス検出装置。
    An input unit to which an AC signal is input, an integration value calculation unit that calculates an integration value of the AC signal for a plurality of integration ranges that are periods of ¼ period or less of the AC signal, and the AC based on the integration value A zero-cross detector that detects the zero-cross position of the signal;
    A zero-cross detection device comprising:
  2.  前記ゼロクロス検出部が、前記複数の積分範囲から2つを選択し、当該選択された2つの積分範囲についての積分値の差分である面積差に基づき、前記交流信号のゼロクロスの位置を検出することを特徴とする請求項1に記載のゼロクロス検出装置。 The zero cross detection unit selects two from the plurality of integration ranges, and detects the position of the zero cross of the AC signal based on an area difference that is a difference between integration values for the two selected integration ranges. The zero-cross detection device according to claim 1.
  3.  前記選択された2つの積分範囲の開始点同士の位相差がπ/2となることを特徴とする請求項2に記載のゼロクロス検出装置。 The zero-cross detection device according to claim 2, wherein a phase difference between the start points of the two selected integration ranges is π / 2.
  4.  前記ゼロクロス検出部が、前記積分値又は前記面積差の少なくとも何れかが最大となる前記積分範囲に対応する2つの前記積分範囲を選択することを特徴とする請求項2又は3に記載のゼロクロス検出装置。 4. The zero-cross detection according to claim 2, wherein the zero-cross detection unit selects two of the integration ranges corresponding to the integration range in which at least one of the integration value and the area difference is maximum. apparatus.
  5.  前記ゼロクロス検出部が、前記積分値又は前記面積差の少なくとも何れかに基づき、前記交流信号のゼロクロス検出のための演算式を選択し、当該選択された演算式と、前記面積差と、に基づき前記交流信号のゼロクロスを検出することを特徴とする請求項2から4の何れかに記載のゼロクロス検出装置。 The zero cross detection unit selects an arithmetic expression for zero cross detection of the AC signal based on at least one of the integral value or the area difference, and based on the selected arithmetic expression and the area difference. 5. The zero-cross detection device according to claim 2, wherein the zero-cross of the AC signal is detected.
  6.  前記ゼロクロス検出部が、前記積分値が最小となる積分範囲の中に前記交流信号のゼロクロスがあると検出することを特徴とする請求項1に記載のゼロクロス検出装置。 The zero-cross detection device according to claim 1, wherein the zero-cross detection unit detects that there is a zero-cross of the AC signal in an integration range in which the integral value is minimum.
  7.  入力部に交流信号が入力される入力工程と、
     積分値算出部が、前記交流信号の1/4周期以下の期間である複数の積分範囲について前記交流信号の積分値を算出する積分値算出工程と、
     ゼロクロス検出部が、前記積分値に基づき前記交流信号のゼロクロスの位置を検出するゼロクロス検出工程と、
     を備えることを特徴とするゼロクロス検出方法。
    An input process in which an AC signal is input to the input unit;
    An integral value calculating step for calculating an integral value of the AC signal for a plurality of integration ranges that are a period of ¼ period or less of the AC signal;
    A zero-cross detecting step for detecting a zero-cross position of the alternating current signal based on the integral value;
    A zero-cross detection method comprising:
PCT/JP2017/004724 2017-02-09 2017-02-09 Zero-crossing detection device WO2018146767A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2017/004724 WO2018146767A1 (en) 2017-02-09 2017-02-09 Zero-crossing detection device
CN201780083075.2A CN110192113B (en) 2017-02-09 2017-09-04 Zero-crossing detection device and zero-crossing detection method
PCT/JP2017/031754 WO2018146844A1 (en) 2017-02-09 2017-09-04 Zero-crossing detection device and zero-crossing detection method
JP2018566744A JP6792177B2 (en) 2017-02-09 2017-09-04 Zero cross detection device and zero cross detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/004724 WO2018146767A1 (en) 2017-02-09 2017-02-09 Zero-crossing detection device

Publications (1)

Publication Number Publication Date
WO2018146767A1 true WO2018146767A1 (en) 2018-08-16

Family

ID=63107291

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2017/004724 WO2018146767A1 (en) 2017-02-09 2017-02-09 Zero-crossing detection device
PCT/JP2017/031754 WO2018146844A1 (en) 2017-02-09 2017-09-04 Zero-crossing detection device and zero-crossing detection method

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031754 WO2018146844A1 (en) 2017-02-09 2017-09-04 Zero-crossing detection device and zero-crossing detection method

Country Status (3)

Country Link
JP (1) JP6792177B2 (en)
CN (1) CN110192113B (en)
WO (2) WO2018146767A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113203891B (en) * 2021-06-04 2022-11-25 无锡和晶智能科技有限公司 Detection device and method for double zero-crossing points of refrigerator controller

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59200521A (en) * 1983-04-27 1984-11-13 Yaskawa Electric Mfg Co Ltd Detecting method of zero cross point of sine wave signal
JPH05322941A (en) * 1992-05-20 1993-12-07 Mitsubishi Electric Corp Adjusting method for ac measuring apparatus
JPH07509051A (en) * 1991-12-13 1995-10-05 ザ、ダウ、ケミカル、カンパニー High-speed power analysis device
JPH1010163A (en) * 1996-06-20 1998-01-16 Yokogawa Electric Corp Effective voltage value measuring apparatus
JP2006258698A (en) * 2005-03-18 2006-09-28 Yokogawa Electric Corp Zero cross detection circuit
JP2007232571A (en) * 2006-03-01 2007-09-13 Hioki Ee Corp Effective value arithmetic circuit and measuring device of voltage or the like
JP2012154764A (en) * 2011-01-26 2012-08-16 Hioki Ee Corp Measurement device and measurement method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE516437C2 (en) * 2000-06-07 2002-01-15 Abb Ab Method, apparatus, apparatus and use, computer program with computer product for predicting a zero passage of an AC
CN102645576B (en) * 2012-05-17 2014-11-12 合肥工业大学 Device and method for detecting zero crossing point of inductive current
JP6057876B2 (en) * 2013-11-18 2017-01-11 東芝三菱電機産業システム株式会社 Power converter
JP6173234B2 (en) * 2014-02-19 2017-08-02 株式会社日立製作所 Power supply device and parallel power supply system
CN105116218B (en) * 2015-07-15 2018-11-02 厦门大学 Power circuit current harmonics detection method based on input Observer Theory
CN204964613U (en) * 2015-09-06 2016-01-13 艾德克斯电子(南京)有限公司 Zero -cross detection circuit

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59200521A (en) * 1983-04-27 1984-11-13 Yaskawa Electric Mfg Co Ltd Detecting method of zero cross point of sine wave signal
JPH07509051A (en) * 1991-12-13 1995-10-05 ザ、ダウ、ケミカル、カンパニー High-speed power analysis device
JPH05322941A (en) * 1992-05-20 1993-12-07 Mitsubishi Electric Corp Adjusting method for ac measuring apparatus
JPH1010163A (en) * 1996-06-20 1998-01-16 Yokogawa Electric Corp Effective voltage value measuring apparatus
JP2006258698A (en) * 2005-03-18 2006-09-28 Yokogawa Electric Corp Zero cross detection circuit
JP2007232571A (en) * 2006-03-01 2007-09-13 Hioki Ee Corp Effective value arithmetic circuit and measuring device of voltage or the like
JP2012154764A (en) * 2011-01-26 2012-08-16 Hioki Ee Corp Measurement device and measurement method

Also Published As

Publication number Publication date
CN110192113A (en) 2019-08-30
JPWO2018146844A1 (en) 2019-11-07
WO2018146844A1 (en) 2018-08-16
JP6792177B2 (en) 2020-11-25
CN110192113B (en) 2021-03-12

Similar Documents

Publication Publication Date Title
JP5901832B2 (en) Determination device, determination method, and program
JP2006058232A5 (en)
JP2016161332A (en) Temperature detector and rotation angle detector
CN110289799B (en) Resolver management device, resolver management method, and resolver system
WO2018146767A1 (en) Zero-crossing detection device
KR101834526B1 (en) Apparatus for compensating output signal of magnetic encoder
JP5281126B2 (en) Angle detection method by resolver
JP2017053813A (en) Zero-cross time point detector of ac power supply waveform
JP5228128B1 (en) Signal generation device, measurement device, leakage detection device, and signal generation method
JP2011101548A (en) Motor simulator
JP2013024766A (en) Motor speed detecting device and motor control device
JP6162060B2 (en) Motor rotation angle detection device
WO2015067390A1 (en) A resolver system with fault detection
JP2015169631A (en) resolver error correction structure, resolver and resolver error correction method
JP2006025550A (en) Frequency detection device and distributed power supply device
JP2010117234A (en) Measuring apparatus
JP2007114190A (en) Leakage current resistance fraction detection method and device for it
JP3092100B2 (en) Position detector with error correction function
JP5060168B2 (en) Rotational vibration phase detection apparatus and method
JP6152806B2 (en) Biological information measurement method
JP2015210227A (en) Magnetic encoder fitting diagnostic method
WO2020003834A1 (en) Position detection device
RU2534376C2 (en) Determination of initial phase of oscillation of nonsinusoidal intermittent electric signal harmonic
JP2011163838A (en) Measuring apparatus and measuring method
JP6450559B2 (en) Measuring apparatus, measuring method and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17895607

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17895607

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP