WO2018146733A1 - 生成プログラム、異常判定装置、及び生成方法 - Google Patents

生成プログラム、異常判定装置、及び生成方法 Download PDF

Info

Publication number
WO2018146733A1
WO2018146733A1 PCT/JP2017/004458 JP2017004458W WO2018146733A1 WO 2018146733 A1 WO2018146733 A1 WO 2018146733A1 JP 2017004458 W JP2017004458 W JP 2017004458W WO 2018146733 A1 WO2018146733 A1 WO 2018146733A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
peak
abnormality
region
determination
Prior art date
Application number
PCT/JP2017/004458
Other languages
English (en)
French (fr)
Inventor
琢也 西野
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP2018566678A priority Critical patent/JP6699763B2/ja
Priority to PCT/JP2017/004458 priority patent/WO2018146733A1/ja
Publication of WO2018146733A1 publication Critical patent/WO2018146733A1/ja
Priority to US16/524,800 priority patent/US20190353563A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/02Gearings; Transmission mechanisms
    • G01M13/028Acoustic or vibration analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • G01M99/005Testing of complete machines, e.g. washing-machines or mobile phones
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring

Definitions

  • the present invention relates to a generation program, an abnormality determination device, and a generation method.
  • a technology has been developed for measuring vibration of a monitoring target device including rotating parts such as a motor with a sensor and detecting an abnormality of the monitoring target device from the measured vibration data.
  • the monitoring target device may be, for example, an air conditioner, an air conditioner, a semiconductor manufacturing device, a vacuum pump, or a centrifuge.
  • vibration may occur in the monitoring target device due to a factor other than the vibration caused by the rotation of the rotating component to be detected for abnormality.
  • a pipe that allows fluid to pass through the monitoring target apparatus may be provided, and vibration may occur due to the fluid passing through the pipe.
  • vibrations generated by factors other than the vibrations caused by the rotation of the rotating parts may lead to erroneous detection of abnormalities in the monitoring target device.
  • an object of the present invention is to improve the accuracy of detecting an abnormality of a monitoring target device.
  • the generation program to be executed by the abnormality determination device includes a setting process and a generation process.
  • the setting process in the frequency spectrum for each step, the determination region is set so as to exclude the region of the frequency component in which the vibration waveform in the step before the change in the step and the step after the change match within a predetermined error range.
  • the frequency spectrum for each process is acquired from vibration data in which vibrations of a monitoring target apparatus that executes a plurality of processes in a predetermined order using rotating parts are detected by a sensor.
  • generate produces
  • FIG. 1 is a diagram illustrating an exemplary anomaly detection system.
  • FIG. It is a figure which illustrates extraction of the feature-value from vibration data. It is a figure which illustrates the variation of the feature-value at the time of performing a plurality of processes. It is a figure which illustrates the detection of the change of the process using a feature-value, and abnormality. It is a figure which illustrates the block configuration of the abnormality determination apparatus which concerns on some embodiment. It is a figure explaining the peak of the harmonic of the rotation frequency buried in the peak which does not depend on rotation of a rotation component, and noise. It is a figure which illustrates accumulation of peak intensity, and selection of a peak. It is a figure which illustrates a coherence spectrum and a cross spectrum.
  • FIG. 1 is a diagram illustrating an exemplary abnormality detection system 100.
  • the abnormality detection system 100 includes, for example, a monitoring target device 101, a relay device 102, an abnormality determination device 103, a management device 104, and a terminal 105.
  • the monitoring target device 101 may be, for example, a device including a rotating part such as a motor, and may be an air conditioner, an air conditioner, a semiconductor manufacturing device, a vacuum pump, a centrifuge, or the like.
  • the monitoring target device 101 may include a sensor 110 that detects vibration of the monitoring target device 101 such as an acceleration sensor and a displacement sensor.
  • the sensor 110 notifies the abnormality determination device 103 of vibration data related to the detected vibration, for example, via a relay device 102 such as a gateway by wireless communication.
  • the sensor 110 may measure, for example, data related to vibration of the monitoring target device 101 (hereinafter, sometimes referred to as vibration data).
  • the vibration data may include, for example, a vibration component corresponding to the rotation speed of the rotating component (for example, rpm: revolution per minute) and a vibration component of a harmonic thereof.
  • the abnormality determination device 103 detects an abnormality of the monitoring target device 101 based on the notified vibration data and notifies the management device 104 of the abnormality, for example.
  • the management apparatus 104 for example, in response to a notification of an abnormality, an administrator or the like visualizes the situation, predicts when maintenance of the monitoring target apparatus 101 is recommended, analyzes a failure location, and the like. Then, according to the situation, an instruction is issued to the terminal 105 or the monitoring target device 101 held by the user or the worker.
  • the instruction may be, for example, an instruction such as replacement of parts, advance ordering of parts, and emergency stop of the monitoring target device 101.
  • the user or worker may perform work such as replacement of parts or ordering in accordance with the instruction notified to the terminal 105.
  • the monitoring target apparatus 101 may stop urgently upon receiving an emergency stop instruction.
  • FIG. 2 is a diagram illustrating extraction of feature amounts from vibration data.
  • a frequency spectrum (FIG. 2B) is obtained by converting vibration data (FIG. 2A) from the time domain to the frequency domain by Fourier transform.
  • the feature amount can be obtained from the frequency spectrum by integrating the intensity in a predetermined frequency range of the frequency spectrum.
  • FIG. 2C the intensity summation of 1 to 10 kHz of the frequency spectrum obtained from the vibration data of the predetermined period detected by the sensor 110 and the intensity summation of all frequency bands are extracted as feature amounts. An example is shown.
  • the frequency range used for feature amount extraction may be set to an arbitrary range.
  • a frequency range defined by the International Organization for Standardization (ISO) is a frequency range used for feature amount extraction. May be used as Then, for example, when the monitoring target apparatus 101 is operating normally, the feature amount is acquired and learned, and a threshold value is set according to the learned feature amount. As a result, it is possible to determine that there is an abnormality when the feature amount fluctuates beyond the threshold during operation of the monitoring target device 101.
  • FIG. 3 is a diagram illustrating the variation of the feature amount when a plurality of steps are executed.
  • an arrow 301 indicates a process switching timing.
  • the feature amount varies with the process switching.
  • the conditions of each process may vary depending on the production plan or the like. For example, the time for executing each process varies. Therefore, there is a situation where it is difficult to set the process switching timing according to time.
  • the order of the processes to be performed is often fixed even if the time for performing the processes varies. Therefore, for example, by maintaining the order of processes and the feature quantities in each process, it is possible to detect process switching and abnormality of the monitoring target device 101 from the fluctuation of the feature quantities.
  • FIG. 4 is a diagram illustrating an example of process switching and abnormality detection using feature quantities.
  • vibration data is acquired from the sensor 110 while the monitoring target device 101 is operating normally, and a feature amount in a predetermined frequency region at the time of process switching is learned from the frequency spectrum of the vibration data.
  • a plurality of frequency ranges may be set and a plurality of feature amounts may be acquired.
  • a threshold value is set based on the feature-value obtained by learning. For example, in FIG. 4A, two feature amounts, feature amount 1 and feature amount 2, are shown, and threshold value 1 and threshold value 2 are set for feature amount 1 and feature amount 2, respectively. Yes. Then, as shown in FIG.
  • the vibration data in which the feature value indicates a normal value before switching the process is out of the normal value of the process.
  • the deviated feature value exceeds the threshold and changes to the normal value of the feature value of the next process, it is determined that the fluctuation of the vibration data is caused by the process switching. be able to.
  • the feature value 2 indicates a normal value of the feature value of the next process, but the feature value 1 is below the threshold value 1, and the feature value of the next process is It is far from the normal value. Therefore, in FIG. 4B, it can be determined that the process is not abnormal but the process is switched. In this manner, using the feature amount extracted from the vibration data, it is possible to detect process switching and abnormality of the monitoring target device 101.
  • a large vibration occurs for a short period of time, and a peak corresponding to the vibration appears in the frequency spectrum.
  • a signal intensity in an arbitrary predetermined frequency range is used as a feature amount in a situation where such an abnormal peak is occurring, if the abnormal peak enters that region, the feature amount is The value may vary to a value similar to the feature amount of the process.
  • the rotation frequency for each process is determined from vibration data obtained by measuring the vibration of the monitoring target apparatus 101 with a sensor. And the peak position of its harmonics. Then, based on the identified rotational frequency and the position and intensity of the harmonic peak, a plurality of determination criteria are generated for each step.
  • the plurality of determination criteria may be, for example, the presence / absence of a peak and the intensity of the peak in a plurality of frequency regions set around each of the rotation frequency and the harmonic frequency in each step.
  • the frequency spectrum of the vibration data notified from the sensor includes peaks in a plurality of frequency regions set as a plurality of determination criteria corresponding to a certain process, and the peak intensity is also set as a determination criterion. It is assumed that it is within a predetermined error range from the peak intensity. In this case, it can be determined that a corresponding process is being executed.
  • the frequency spectrum of the vibration data notified from the sensor no longer includes a peak in at least one frequency region of a plurality of frequency regions set as a plurality of determination criteria corresponding to a certain process.
  • the frequency spectrum based on the vibration data from the sensor includes peaks in a plurality of frequency regions set as a plurality of determination criteria for the next step in a predetermined order, and the intensity of the peak is also a determination criterion for the next step. It is assumed that it is within a predetermined error range from the peak intensity. In this case, it can be determined that the monitoring target device 101 has switched the process.
  • a frequency spectrum based on vibration data from a sensor does not include a peak in at least one frequency region of a plurality of frequency regions set as a plurality of determination criteria for the next step in a predetermined order. Therefore, for example, unlike the above-described case where anomaly is detected using feature values obtained from the same arbitrary predetermined frequency region before and after the change point, the rotation frequency corresponding to the process and its harmonic peak position are set. Since the abnormality is determined based on the abnormality, it is possible to detect the abnormality with high accuracy.
  • peaks exist in a plurality of frequency regions corresponding to the rotation frequency corresponding to the process and each of the harmonic peaks in the frequency spectrum of the vibration data measured by the sensor. Even in that case, it is determined whether or not the peak intensity of the peaks existing in the plurality of frequency regions is approximately the same magnitude as the peak intensity acquired in a state where the monitoring target device 101 is operating normally, If the peak intensity is different, it is determined as abnormal. Therefore, for example, even if an abnormal peak occurs overlapping the rotational frequency or its harmonic peak, the abnormality can be detected from a peak intensity value different from that in the normal state. Therefore, according to the technique developed by the inventor of the present application, it is possible to detect an abnormality of the monitoring target device 101 with high accuracy.
  • the vibration waveform detected by the sensor 110 includes a peak that does not depend on the rotation of the rotating component, apart from the rotation frequency that depends on the rotation of the rotating component and the peak of its harmonics.
  • a peak that does not depend on the rotation of the rotating component may cause erroneous detection of abnormality. For example, if a peak that does not depend on the rotation of the rotating part is picked up as a harmonic peak that depends on the rotation of the rotating part, the peak of the harmonic and the peak frequency or peak that does not depend on the rotation of the rotating part. It may be determined as abnormal due to a difference in intensity. As a result, an abnormality may be erroneously detected.
  • the peak of harmonics may include a level peak that is buried in noise.
  • the position of the peak may be shifted or the intensity variation may be increased, and an abnormality may be erroneously detected. Therefore, further improvement in detection accuracy of abnormality is desired.
  • a frequency region including a peak that does not depend on the rotation of the rotating component is specified, and the abnormality is detected by excluding that region. Therefore, it is possible to detect an abnormality without being affected by a peak that does not depend on the rotation of the rotating component.
  • a frequency region including a peak with a large peak intensity is extracted, and a feature amount regarding the rotational frequency and the harmonic peak is obtained in that region. Therefore, for example, it is possible to suppress erroneous determination of an abnormality using a peak of a harmonic of a rotational frequency at a level buried in a noise component, and to improve abnormality detection accuracy.
  • the first embodiment will be described below.
  • FIG. 5 is a diagram illustrating a block configuration of the abnormality determination device 103 according to some embodiments.
  • the abnormality determination device 103 includes a control unit 501 and a storage unit 502, for example.
  • the control unit 501 operates as, for example, a setting unit 511 and a generation unit 512.
  • the storage unit 502 stores information such as abnormality determination reference information 1300 and feature amount information 1400, which will be described later. Details of these units and details of information stored in the storage unit 502 will be described later.
  • FIG. 6 is a diagram for explaining a peak that does not depend on the rotation of a rotating component and a peak of a harmonic of a rotation frequency that is buried in noise.
  • 6A is a vibration spectrum in the process A
  • FIG. 6B is a vibration spectrum after the process A is shifted to the process B.
  • FIG. 6 As shown in FIG. 6, the rotation frequency depending on the rotation of the rotating component and the peak of its harmonics (for example, the 3rd harmonic, the 5th harmonic, and the 8th harmonic) peak due to the fluctuation of the rotation speed due to the process change. The position of is shifted.
  • the peak that does not depend on the rotation of the rotating component may be, for example, vibration generated due to a factor different from the rotation of the rotating component that is an abnormality detection target.
  • the vibration is caused by fluid flowing through a pipe or the like.
  • the monitoring target apparatus 101 may be provided with a pipe for passing a refrigerant for cooling the apparatus, and vibration may occur when the refrigerant is passed through the pipe.
  • the generated vibration is not caused by the rotation of the rotating component, the frequency component of the vibration generated when the refrigerant is passed through the pipe does not change even if the rotating frequency of the rotating component is shifted (varied). .
  • self-excited vibration and forced vibration are known as vibration classifications.
  • Vibration that vibrates at a frequency specific to each machine is roughly classified into self-excited vibration.
  • Self-excited vibration is natural vibration that occurs when a forced external force from outside does not always work, and vibrates at the natural frequency of each machine. Appears as a unique peak due to composition. And since it does not depend on the number of rotations of the rotating parts, the peak position does not vary even if the number of rotations of the rotating parts varies.
  • Examples of self-excited vibrations include cases where pipe vibration continues to occur due to temporarily generated external force, such as external force when water passes through the pump water pipe, or when a natural frequency is generated in semiconductor manufacturing equipment, etc. The case where it vibrates with the natural frequency which depends on the conditions of a machine housing by the external force at the time of passage is mentioned.
  • forced vibration is vibration caused by a forced excitation force.
  • a frequency proportional to an externally applied force such as rotation of a rotating component is shown. Therefore, for example, the vibration frequency changes due to fluctuations in the rotational speed of the rotating component, and the excitation force and the response frequency coincide.
  • frequency components that change due to fluctuations in the rotation frequency of a rotating component that accompany process changes in the monitoring target device are roughly classified into forced vibrations.
  • a frequency region including a self-excited vibration component is specified in order to accurately estimate a variation in forced vibration due to a process change.
  • Equation 1 f is the frequency to be examined for waveform fluctuations.
  • Wxx and Wyy are the power spectra of vibration data of process X: x (t) and vibration data of process Y: y (t), respectively.
  • Wxy is a cross spectrum of vibration data of process X: x (t) and vibration data of process Y: y (t).
  • the coherence function indicates a value of 1 if, for example, the vibration waveform at the frequency f of the vibration data: x (t) and the vibration data: y (t) completely match.
  • the coherence function shows a value of 0 if there is no relationship between the vibration waveform at the frequency f of vibration data: x (t) and vibration data: y (t), for example.
  • the cross spectrum Wxy (f) has a Fourier transform of vibration data: x (t) and vibration data: y (t) as X (f) and Y (f), and a conjugate complex number of X (f) is X *. Assuming (f), it is expressed by Equation 2.
  • the cross spectrum is an average of two vibration data: x (t) and vibration data: y (t), which are multiplied by certain frequency components.
  • the fact that the cross spectrum shows a large value at a certain frequency means that the correlation between the frequency components of the two vibration data is large at that frequency, and the magnitude of both components is also large. Yes.
  • the self-excited vibration vibrates at a specific frequency, it is estimated that the vibration waveform does not change even before and after the process change. Therefore, if the value of the coherence function is approximately 1 at a certain frequency in the vibration data before the process change and the vibration data after the process change, it can be estimated that the peak at that frequency is a peak of self-excited vibration. Therefore, by calculating a coherence function for each frequency included in the spectrum and specifying a frequency region showing a value equal to or higher than a predetermined threshold, a region including a self-excited vibration peak can be specified.
  • the predetermined threshold a value that is statistically superior can be used, and for example, a value in the range of 0.95 to 1.0 can be used. In one example, the predetermined threshold may be 0.98.
  • the peak of the harmonic may include a level peak that is buried in noise.
  • the region where the fourth and seventh harmonics of the rotation frequency are located is buried in noise and no peak is detected.
  • the proportion of the noise component is large and the abnormality may be erroneously detected. Therefore, in the embodiment described below, a peak with high intensity is extracted from a plurality of peaks included in the spectrum. It should be noted that a peak with high intensity has a high contribution to the entire peak waveform, and thus it is estimated that there is a large amount of information related to abnormality detection.
  • FIG. 7 is a diagram illustrating peak intensity accumulation and peak selection.
  • FIG. 7A is a graph showing the ratio of the accumulated value obtained by accumulating the peak power in the descending order of the peak intensity to the total spectrum power. As shown in FIG. 7A, it can be seen that only a peak having a high peak intensity has most of the power of the entire spectrum.
  • FIG. 7B is a table showing the ratio of the accumulated value of the selected peak to the power of the entire spectrum.
  • the peak frequencies are arranged in order from the higher intensity side, and the ratio of the cumulative value when the peak power is accumulated to the total spectrum power is registered in association with each other.
  • a value of 60% to 90% may be used as the threshold value of the cumulative intensity for selecting the peak, and may be 70% or 80%, for example.
  • the upper peak is selected from the frequency of 49 Hz in FIG. 7B.
  • a peak having a high peak intensity can be selected from the cross spectrum.
  • a peak having a high peak intensity may be extracted by selecting a predetermined number of peaks from the side having a higher peak intensity from the spectrum before and after the process change.
  • FIG. 8 is a diagram illustrating a coherence spectrum and a cross spectrum.
  • FIG. 8A illustrates a coherence spectrum.
  • the value of the coherence function is around 1 at around 120 Hz. Therefore, in the coherence spectrum of FIG. 8A, it can be determined that the frequency region near 120 Hz where the value of the coherence function indicates a value near 1 is a region including a peak based on self-excited vibration. Further, it is estimated that the other frequency regions do not include a peak based on self-excited vibration. Therefore, the control unit 501 sets a determination region by excluding a frequency region near 120 Hz from the entire region of the spectrum.
  • control unit 501 selects a peak having a high peak intensity in the determination region with reference to the cross spectrum in FIG. 8B (arrow in FIG. 8B).
  • the frequency region near 120 Hz has a high peak in the cross spectrum. However, since it is considered as a component of self-excited vibration and is excluded from the determination region, the peak in the frequency region near 120 Hz is not selected.
  • a peak having a high peak intensity is selected from a determination region excluding a frequency region including self-excited vibration. Therefore, it is possible to suppress erroneous determination caused by the peak of self-excited vibration. Further, a peak having a high peak intensity is extracted from the peaks of forced vibration included in the determination region excluding the frequency region including the self-excited vibration, and is used for detecting an abnormality of the monitoring target device 101. Therefore, it is possible to suppress erroneous detection of abnormality by using a peak buried in noise for determination of abnormality detection. Therefore, according to the abnormality detection process according to the embodiment, it is possible to improve the abnormality detection accuracy.
  • FIG. 9 is a diagram illustrating the operation flow of the determination area specifying process for detecting an abnormality of the monitoring target device 101 according to the embodiment described above.
  • the control unit 501 may start the operation flow of FIG. 9 when an instruction to execute a determination area specifying process for detecting an abnormality of the monitoring target device 101 is input.
  • vibration data at the time of execution of all of the plurality of steps has been acquired from the sensor 110 in a state where the monitoring target device 101 has already been normally operated at the start of the operation flow.
  • a change point that is a process switching timing is also specified from the vibration data.
  • the change point may be specified, for example, by monitoring the change of the feature value using the intensity sum of a predetermined frequency range of the frequency spectrum of the vibration data as the feature value.
  • step 901 (hereinafter, “step” is described as “S”, for example, expressed as S901)
  • the control unit 501 performs vibration data before the change point and vibration data after the change point at each change point. Each is Fourier transformed to obtain a frequency spectrum.
  • the change point is, for example, a point in time when a process is changed in a plurality of processes executed by the monitoring target device 101.
  • control unit 501 evaluates the degree of coincidence of waveforms at each frequency included in the frequency spectrum before and after the change point of each process. For example, the control unit 501 may evaluate the degree of coincidence of the waveforms at the respective frequencies by calculating the coherence function ⁇ 2 (f) of Equation 1 above.
  • step S903 the control unit 501 determines whether or not the waveform matching degree is high for each frequency included in the spectrum. For example, when evaluating the degree of coincidence of waveforms using a coherence function, the control unit 501 may determine that the degree of coincidence of waveforms is high if ⁇ 2 (f) of the coherence function is equal to or greater than a predetermined threshold. The flow proceeds to S904. In S904, for example, the control unit 501 sets the determination region by excluding the frequency region determined to have a high degree of coincidence in S903 from the entire frequency region of the spectrum.
  • the control unit 501 indicates that the degree of coincidence between the waveforms of the frequency components in the vibration data before the change of the process and the vibration data after the change. You may judge that it is low.
  • the control unit 501 includes the determined frequency with a low waveform matching degree in the determination region, and the flow proceeds to S905.
  • a determination region is set by excluding regions including frequency components with a high degree of waveform matching before and after the process change from the entire spectrum. It's okay.
  • the control unit 501 executes a process of extracting a peak having a high peak intensity from the two spectra before and after the process change in the determination region from which the region including the frequency component having a high waveform matching degree is excluded.
  • a technique for extracting a peak having a high peak intensity it is conceivable to use a cross spectrum, and the following S905 to S908 exemplify processing when a cross spectrum is used.
  • the control unit 501 calculates a cross spectrum of the two spectra before and after the process change. When the coherence function is used in S903, since the cross spectrum has already been calculated, the control unit 501 may use the calculated cross spectrum.
  • the control unit 501 extracts peaks included in the determination region from the cross spectrum, and rearranges the extracted peaks in order of intensity.
  • the control unit 501 selects a peak from the side having the highest peak intensity among the peaks included in the determination region.
  • the control unit 501 calculates the accumulated intensity by accumulating the intensity of the selected peak, and the accumulated value obtained by accumulating the intensity of the selected peak with respect to all accumulated values obtained by accumulating the entire peak intensity of the cross spectrum. It is determined whether or not the ratio occupied by exceeds a predetermined ratio. If the accumulated value does not exceed the predetermined ratio with respect to all accumulated values (No in S908), the flow returns to S907 and the next peak is selected.
  • step S909 the control unit 501 resets the peak frequency region selected until the accumulated power value exceeds a predetermined ratio as a determination region and records it in the storage unit 502, and the operation flow ends.
  • the control unit 501 excludes, from the determination region, a frequency region that includes frequency components whose waveforms match within a predetermined error range in the vibration data before and after the process change. .
  • the frequency components whose waveforms match within a predetermined error range are considered to be vibration components due to self-excited vibration, and are vibrations that occur independently of the rotation of the rotating component that is the monitoring target of the abnormality. Presumed. For this reason, it is possible to detect an abnormality without being affected by self-excited vibration by excluding the frequency component region in which the waveforms match within a predetermined error range from the determination region.
  • a frequency region including a peak having a higher peak intensity is extracted in the determination region excluding the self-excited vibration component, and the determination region is further narrowed. This is because it can be estimated that a peak having a high peak intensity has important data related to vibration. On the other hand, by extracting a frequency region including a peak having a high peak intensity, it is possible to suppress erroneous determination of an abnormality due to a small peak that is buried in noise.
  • the control unit 501 specifies the rotation frequency of the rotating component and its harmonic peak, and sets a determination criterion for detecting an abnormality. To do. Then, the control unit 501 detects an abnormality of the monitoring target device 101 using a determination criterion for detecting the set abnormality.
  • a process for setting a criterion for detecting an abnormality will be described.
  • FIG. 10 is a diagram illustrating the search for the rotation frequency of the rotating component according to the embodiment and the peak of the harmonic of the rotation frequency.
  • the procedure of searching for the rotation frequency of the rotating component and the peak of the harmonic of the rotation frequency in each process executed by the control unit 501 will be exemplified.
  • the control unit 501 searches for and specifies the peak of the rotation frequency of each process from the frequency spectrum in each process of the vibration data measured by the sensor 110 (for example, the process in FIG. 10A). 1 fr rA and step 2 frB are specified).
  • the control unit 501 may specify a rotation frequency peak by performing a peak search from the low frequency side and detecting a peak that is equal to or greater than a predetermined threshold.
  • the control unit 501 determines the initial search position of the harmonic peak based on the rotational frequency corresponding to the detected process. For example, the control unit 501 estimates the harmonic peak position by multiplying the rotation frequency by an integer. Then, the control unit 501 determines a peak position included in the determination region determined in the above-described operation flow of FIG. 9 among the estimated harmonic peak positions as an initial search position for searching for harmonics (FIG. 10 (a) dashed arrow).
  • the control unit 501 acquires the intensity sum by expanding the frequency range from the initial search position within the determination region determined in the operation flow of FIG. 9 described above, for example, and the slope of the changing intensity sum is maximal.
  • the position that becomes the value is specified as the peak position of the harmonic.
  • the frequency range for expanding the search range can be set as follows, for example.
  • the control unit 501 may set a search range corresponding to each harmonic peak according to the resolution of the frequency spectrum. For example, when the rotational frequency specified in the above (1) is 100 Hz and the resolution of the frequency spectrum is 1 Hz, the rotational frequency: 100 Hz is actually a resolution in the range of 99.5 Hz to 100.4 Hz.
  • the error according to is included. For example, in the case of the second harmonic, this frequency error falls within a narrow frequency range of 199 to 200.8 Hz, but in the case of the 50th harmonic, the error is wide from 4975 Hz to 5020 Hz. The frequency range.
  • the control unit 501 sets the frequency range obtained by multiplying the error range corresponding to the resolution of the frequency spectrum by the order of the harmonics as the upper limit of the search range. Then, the control unit 501 may perform a search while expanding the search range to a range that is within the upper limit of the search range from the initial search position and within the determination region (FIG. 10B).
  • the upper limit of the search range is, for example, a width of 199 Hz to 200.8 Hz in the case of the second harmonic, and 4975 Hz to 5020 Hz in the case of the 50th harmonic, and a width of 45 Hz, for example. , May be set.
  • control unit 501 may specify the rotation frequency and the peak of the harmonic of the rotation frequency in the determination region.
  • FIG. 11 is a diagram exemplifying an operation flow of the specifying process of the rotation frequency and the harmonic peak of the rotating component according to the embodiment.
  • the control unit 501 may start the operation flow of FIG. 11 when an instruction to execute a specific process is input from the user.
  • vibration data at the time of execution of all of the plurality of processes is already acquired from the sensor 110 at the start of the operation flow in a state where the monitoring target device 101 is normally operated.
  • a change point that is a process switching timing is also specified from the vibration data.
  • the change point may be specified, for example, by monitoring the change of the feature value using the intensity sum of a predetermined frequency range of the frequency spectrum of the vibration data as the feature value.
  • control unit 501 obtains a frequency spectrum by Fourier transforming each of the vibration data before the change point and the vibration data after the change point at each change point.
  • control unit 501 searches the frequency spectrum before and after the change point for each change point from the low frequency side and includes a peak having a value larger than a predetermined threshold in the monitoring target apparatus 101. Specified as the rotation frequency of the rotating component.
  • the control unit 501 executes a determination area specifying process.
  • the control unit 501 may execute the operation flow of FIG. 9 in the determination area specifying process, for example.
  • the determination region specifying process sets a determination region that is a frequency region excluding the self-excited vibration component and is set to a frequency region including a peak with high peak intensity.
  • step S1104 the control unit 501 searches for an initial search position and a peak position for searching for a harmonic peak of the rotation frequency based on the rotation frequency specified by the frequency spectrum before and after the change point for each change point.
  • An error range indicating an upper limit and a lower limit of the search range is specified.
  • the control unit 501 estimates the harmonic peak position by multiplying the rotation frequency by an integer, and among the estimated harmonic peak positions, the peak position included in the determination region determined in the operation flow of FIG. 9 described above. May be used as an initial search position for searching for harmonics.
  • control unit 501 may use the frequency range obtained by multiplying the error range based on the resolution of the frequency spectrum by the harmonic order as the error range indicating the upper limit and the lower limit of the search range. For example, when the rotation frequency specified in S1102 is 100 Hz and the resolution of the frequency spectrum is 1 Hz, the range corresponding to the resolution is actually 99.5 Hz to 100.4 Hz for the rotation frequency: 100 Hz. May contain errors. For example, when the harmonic is a second-order harmonic, the control unit 501 doubles the error range and searches for the peak of the second-order harmonic in the range of 199 Hz to 200.8 Hz. May be set as the error range.
  • the error range corresponding to the resolution such as 99.5 Hz to 100.4 Hz, is multiplied by 50, and 4975 Hz to 5020 Hz is set as the upper limit error range for searching for the peak of the 50th harmonic. May be set.
  • control unit 501 uses the predetermined frequency region around the initial search position including the initial search position set for each harmonic in the frequency spectrum before and after the change point of each change point as a search range.
  • the search for the peak position of is started.
  • the predetermined frequency region may be a range narrower than the error range set in S1104, for example.
  • control unit 501 extends the search range by a predetermined frequency. Note that when the processing of S1106 is executed first after the operation flow of FIG. 11 is started, the frequency range expansion in S1106 may not be executed. Further, the search range may be extended gradually, for example, within the determination region determined in the operation flow of FIG. 9 and within the error range set in S1104.
  • step S1107 the control unit 501 obtains the sum of the peak intensities (integrated values) within the expanded search range, and determines whether or not the slope of the sum of the intensity according to the expansion of the search range includes a maximum value.
  • the flow returns to S1106, the search range is expanded, and the process is repeated.
  • the local maximum value is included in S1107 (YES in S1107), the flow proceeds to S1108.
  • control unit 501 specifies, for each change point, the position of the maximum value for each harmonic specified in S1106 before and after the change point as the peak position of the harmonic, and the harmonics thereof. Get the intensity of the wave peak.
  • control unit 501 stores, for example, peak information including the rotation frequency before and after the change point specified in S1102, the peak position before and after the change point of each harmonic peak specified in S1107, and the intensity thereof. And the operation flow ends.
  • FIG. 12 is a diagram illustrating an operation flow of the generation process of the abnormality determination criterion information 1300 according to the embodiment.
  • the control unit 501 may start the operation flow of FIG. 12 when an instruction to execute the generation process of the abnormality determination criterion information 1300 is input from the user. Details of the abnormality determination criterion information 1300 will be described later with reference to FIG.
  • the control unit 501 reads the plurality of past peak information recorded in the storage unit 502 by executing the operation flow of FIG. 11 a plurality of times for a plurality of steps executed in a predetermined order.
  • the control unit 501 determines the rotation frequency and harmonic peak position and intensity before and after each change point from the rotation frequency and harmonic peak position and intensity before and after each change point included in each of the read peak information.
  • the representative value and the error range of the representative value are calculated.
  • the control unit 501 acquires the rotation frequency before and after the change point and the peak position and intensity of the harmonic from each peak information, calculates an average value for each peak position and peak intensity, and uses them as representative values. It's okay.
  • the standard deviation may be used as the error range of the representative value.
  • the representative value is not limited to the average value, and may be other statistical values such as a maximum value, a minimum value, a median value, and a mode value.
  • the error range is not limited to the standard deviation. For example, for each peak position and peak intensity, a range from the maximum value to the minimum value for the process obtained from each peak information is set as the error range. May be.
  • control unit 501 In S1203, the control unit 501 generates and stores abnormality determination reference information 1300 for each change point from the rotation frequency before and after the change point calculated in S1202, the representative value for the peak position and intensity of the harmonics, and the error range. This operation flow is terminated.
  • FIG. 13 is a diagram illustrating the abnormality determination criterion information 1300 according to the embodiment.
  • the abnormality determination criterion information 1300 in FIG. 13 is, for example, abnormality determination criterion information 1300 for the change point 1 that is the first change point in a plurality of steps executed in a predetermined order.
  • an entry about the rotation frequency or harmonic detected in the determination area is registered.
  • the entry includes a peak position before or after the change point and a peak intensity in association with the rotation frequency or harmonic frequency detected in the determination region.
  • the abnormality determination reference information 1300 also includes information on an error range with respect to the peak position and peak intensity. As described in the operation flow of FIG.
  • the determination region is set to a region excluding the self-excited vibration component and a frequency region including a peak having a high peak intensity.
  • the vibration generated due to the rotation of the rotating component may change the peak intensity before and after the process change.
  • one spectrum may have a high peak
  • the other spectrum may have a low peak.
  • the other low peak area may not be extracted as a determination area. In this way, an entry having a value only on one side is registered in the abnormality criterion information 1300, including information about a certain harmonic peak before the change, but not including the information on the harmonic peak after the change. It may be.
  • control unit 501 can acquire, for example, the rotation frequency of each step executed in a predetermined order, the position of the peak of the harmonic, and the intensity in the determination region.
  • the error range with respect to the position and intensity can also be acquired.
  • FIG. 14 is a diagram illustrating feature amount information 1400.
  • the feature amount information 1400 an entry including a feature amount corresponding to each of a plurality of steps executed by the monitoring target device 101 is registered.
  • the entry may include one or more feature amounts.
  • the intensity sum of a predetermined frequency region in the frequency spectrum obtained from the vibration data detected by the sensor 110 may be used as the feature amount.
  • the frequency range used as the feature amount may be set to an arbitrary range. For example, the frequency range defined by the International Organization for Standardization may be used as the feature amount.
  • a frequency used as a feature amount in a predetermined region that does not include the error range of the rotation frequency and the harmonic frequency thereof corresponding to the process specified in the abnormality determination reference information 1300 A range may be set.
  • the number of revolutions may be controlled by synthesizing harmonic waveforms using an inverter to generate a distorted wave, and when the harmonics are synthesized, the synthesized harmonic waveform is a frequency spectrum. This is because it appears as a huge peak.
  • the frequency range of the feature amount is set as described above, the peak based on the harmonics synthesized by the inverter or the like is not included in the feature amount. Therefore, it can suppress that the change of the intensity sum by the peak based on abnormality is buried in the peak based on the harmonic synthesized using an inverter or the like.
  • FIG. 15 is a diagram illustrating an operation flow of the abnormality detection process according to the embodiment.
  • the control unit 501 of the abnormality determination device 103 may start the abnormality detection process in FIG. 15 when, for example, an instruction to start abnormality detection of the monitoring target device 101 is input.
  • the control unit 501 confirms the position of the current process. For example, process order information indicating the execution order of a plurality of processes executed by the monitoring target apparatus 101 may be stored in the storage unit 502 of the abnormality determination apparatus 103. Further, the storage unit 502 may store process information indicating a process being executed, and the control unit 501 detects that the process executed by the monitoring target device 101 has shifted to the next process. The process information may be updated to information indicating the migration destination process. In step S ⁇ b> 1501, the control unit 501 may confirm the position of the current process by referring to the process information stored in the storage unit 502. In the operation flow of FIG.
  • control unit 501 sets the current process as the first process. Determination may be made, and information indicating the first process may be recorded in the process information.
  • step S1502 the control unit 501 determines from the abnormality determination reference information 1300 corresponding to the change point from the current process to the next process, the rotation frequency in the current process before the change point and the subsequent process after the change point, and the peak of the harmonic.
  • the position and intensity are acquired along with their respective error ranges.
  • step S1503 the control unit 501 acquires the latest vibration data from the sensor 110 provided in the monitoring target device 101.
  • the control unit 501 determines whether the frequency spectrum of the acquired vibration data is within an error range of a plurality of peak positions corresponding to the rotation frequency for the current process acquired from the abnormality determination reference information 1300 or its harmonics. judge. That is, when the error range is the standard deviation, the control unit 501 determines whether the frequency spectrum of the vibration data includes a peak within the standard deviation range from a plurality of peak positions with respect to the rotation frequency for the current process or its harmonics. Determine whether.
  • the frequency spectrum of the acquired vibration data does not include a peak in at least one error range of a plurality of peak positions corresponding to the rotation frequency or its harmonics with respect to the current process of the abnormality determination reference information 1300 (NO in S1504), flow Advances to S1505.
  • the frequency spectrum indicates that the frequency spectrum for the current process indicated in the process information is abnormal.
  • the control unit 501 determines whether or not the frequency spectrum of the acquired vibration data is within an error range of a plurality of peak positions corresponding to the rotation frequency for the next step acquired from the abnormality determination reference information 1300 or its harmonics. Determine. That is, when the error range is a standard deviation, the control unit 501 determines whether the frequency spectrum of the vibration data includes a peak in the range of the standard deviation from a plurality of peak positions for the rotation frequency or its harmonics for the next step. Determine whether or not. If the frequency spectrum of the acquired vibration data does not include a peak in at least one error range of a plurality of peak positions for the next step acquired from the abnormality determination reference information 1300 (S1505 is NO), the flow proceeds to S1506. In S1506, the control unit 501 outputs information indicating abnormality, and the operation flow returns to S1501.
  • step S ⁇ b> 1507 the control unit 501 determines that the intensity of the peak of the frequency spectrum included in the error range of the plurality of peak positions with respect to the current process is the intensity error with respect to the rotation frequency of the current process of the abnormality determination reference information 1300 or its harmonics. It is determined whether it is within the range.
  • the peak intensity of the frequency spectrum is not within the error range of the intensity of the current process rotation frequency or its harmonics in the abnormality determination criterion information 1300 (NO in S1507), the peak corresponding to the current process rotation frequency or its harmonics is displayed. Abnormal peaks are thought to overlap. Therefore, the flow proceeds to S1506, and the control unit 501 outputs information indicating abnormality.
  • the intensity of the peak of the frequency spectrum is within the error range of the intensity with respect to the rotational frequency of the current process or its harmonics (S1507 is YES)
  • the flow proceeds to S1508.
  • step S1508 the control unit 501 compares the feature amount according to the current process acquired from the feature amount information 1400 with the feature amount obtained from the same frequency range of the frequency spectrum of the vibration data, and the feature amount has a predetermined error range. It is determined whether or not it fluctuates beyond.
  • the frequency region for acquiring the feature value used for the determination is set to a region not including the rotational frequency of the current process and the peak of its harmonics and registered in the feature value information 1400, for example, an inverter. Thus, it is possible to detect anomalies without being affected by the harmonics synthesized.
  • the control unit 501 determines that the intensity of the peak of the frequency spectrum included in the error range of the plurality of peak positions for the next process is the intensity for the rotation frequency of the next process of the abnormality determination reference information 1300 or its harmonics. It is determined whether it is within the error range.
  • the flow proceeds to S1506, and the control unit 501 outputs information indicating abnormality.
  • the intensity of the peak of the frequency spectrum is within the error range of the intensity with respect to the rotational frequency of the next process or its harmonic (S1510 is YES)
  • the flow proceeds to S1511.
  • step S1511 the control unit 501 compares the feature amount according to the next step acquired from the feature amount information 1400 with the feature amount obtained from the same frequency range of the frequency spectrum of the vibration data, and the feature amount has a predetermined error. Determine whether it is fluctuating beyond the range.
  • the frequency region for acquiring the feature value used for the determination is set, for example, in a region that does not include the rotation frequency of the next process and its harmonic peak, and is registered in the feature value information 1400, so that an inverter or the like is obtained. Thus, it is possible to detect anomalies without being affected by the harmonics synthesized.
  • step S1512 the control unit 501 determines that the monitoring target apparatus 101 is operating normally, but has shifted to the next process, updates the process information to information indicating the next process, and the flow proceeds to step S1501. Return.
  • the control unit 501 performs an abnormality based on a plurality of determination criteria for each process generated based on the rotation frequency of the rotating component for each process and the harmonic frequency thereof.
  • the determination criterion is a region where the self-excited vibration component is removed and a determination region set in a frequency region including a peak having a high peak intensity. Search for and set peaks. Therefore, it is possible to suppress erroneous determination of abnormality caused by self-excited vibration that is not related to the behavior of the rotating component.
  • a frequency region including a peak having a higher peak intensity is extracted in the determination region excluding the self-excited vibration component, and the determination region is further narrowed. This is because a peak with a high peak intensity is estimated to have important data related to vibration.
  • by extracting a frequency region including a peak with high peak intensity it is possible to suppress erroneous determination of abnormality due to a small level peak that is buried in noise.
  • the rotational frequency and its harmonic peak position are searched in the determination region, and the searched rotational frequency and its harmonic peak are searched.
  • the determination is made by generating the abnormality determination reference information 1300 from the position and intensity of the. For example, in comparison with the case where the determination is performed using the feature amount obtained by setting an arbitrary frequency region fixedly, the determination is made based on the rotational frequency of the rotating component and the position and intensity of the peak of the harmonic. Therefore, it is possible to distinguish between process switching and occurrence of abnormality with high accuracy.
  • the control unit 501 detects that the frequency spectrum of the vibration data from the sensor 110 includes a peak in the peripheral region of the rotation frequency of the rotating component corresponding to the current process and its harmonic frequency. In this case, the control unit 501 can determine that the current process is continuously executed. After that, if a peak is no longer detected in one of the surrounding areas of the rotation frequency and the harmonic frequency corresponding to the current process, a peak is generated in the surrounding area of the rotation frequency and the harmonic frequency corresponding to the next process. It is determined whether or not it is included. For example, when a peak is included in the peripheral region of the rotation frequency and the harmonic frequency of the next process, the control unit 501 can determine that the process is switched. On the other hand, if a peak is not detected in at least one peripheral region of the peripheral region of the rotation frequency and the harmonic frequency corresponding to the next step, it can be determined that there is an abnormality.
  • the control unit 501 compares the peak intensity and then compares the peak intensity. Is within the error range of the normal peak intensity. If the peak intensity deviates beyond the predetermined error range from the peak intensity of the normal rotation frequency and its harmonic frequency, the abnormal peak is the current process rotation frequency or its harmonic frequency peak. It is thought that it is generated by overlapping. Therefore, the control unit 501 can also determine that there is an abnormality in this case.
  • the peak intensity is compared next, and the peak intensity is the next step. It is determined whether it is within the error range of the normal peak intensity. Therefore, it is possible to quickly detect an abnormality that has occurred at the same time as switching to the next process.
  • each determination region is set as a frequency region for extracting a feature amount of each process to generate feature amount information 1400, and an abnormality is detected based on the feature amount information 1400. It is done. Also in this case, the feature amount included in the feature amount information 1400 does not include a feature amount derived from a peak based on self-excited vibration, and the feature amount is based on a peak with strong peak intensity among forced vibrations. Therefore, it is possible to detect an abnormality with high accuracy.
  • the abnormality determination reference information 1300 is generated for each change point, and the abnormality determination reference information 1300 includes information about the rotation frequency and harmonics before and after the change point. Illustrated. However, the embodiment is not limited to this.
  • the abnormality determination reference information 1300 may include information about the rotation frequency generated for each step and its harmonics as shown in FIG.
  • the control unit 501 may manage the abnormality determination reference information 1300 generated for each process as a single piece of abnormality determination reference information.
  • control unit 501 operates as the setting unit 511, for example.
  • control unit 501 operates as the generation unit 512, for example.
  • the embodiment has been exemplified, but the embodiment is not limited to this.
  • the above-described operation flow is an example, and the embodiment is not limited to this. If possible, the operation flow may be executed by changing the order of processing, may include additional processing, or some processing may be omitted.
  • the processes of S1502 and S1503 in FIG. Further, S1509 in FIG. 15 may be omitted.
  • FIG. 17 is a diagram illustrating a hardware configuration of a computer 1700 for realizing the abnormality determination device 103 according to the embodiment.
  • a hardware configuration for realizing the abnormality determination device 103 in FIG. 17 includes, for example, a processor 1701, a memory 1702, a storage device 1703, a reading device 1704, a communication interface 1706, and an input / output interface 1707. Note that the processor 1701, the memory 1702, the storage device 1703, the reading device 1704, the communication interface 1706, and the input / output interface 1707 are connected to each other via a bus 1708, for example.
  • the processor 1701 may be, for example, a single processor, a multiprocessor, or a multicore.
  • the processor 1701 provides a part or all of the functions of the control unit 501 described above by executing, for example, a program describing the procedure of the operation flow described above using the memory 1702.
  • the processor 1701 may operate as the setting unit 511 and the generation unit 512 by executing, for example, a program describing the procedure of the above-described operation flow using the memory 1702.
  • the storage unit 502 includes, for example, a memory 1702, a storage device 1703, and a removable storage medium 1705.
  • the storage device 1703 of the abnormality determination device 103 stores, for example, abnormality determination reference information 1300, feature amount information 1400, and the like.
  • the memory 1702 is, for example, a semiconductor memory, and may include a RAM area and a ROM area.
  • the storage device 1703 is, for example, a hard disk, a semiconductor memory such as a flash memory, or an external storage device.
  • RAM is an abbreviation for Random Access Memory.
  • ROM is an abbreviation for Read Only Memory.
  • the reading device 1704 accesses the removable storage medium 1705 in accordance with instructions from the processor 1701.
  • the detachable storage medium 1705 includes, for example, a semiconductor device (USB memory or the like), a medium to / from which information is input / output by a magnetic action (magnetic disk or the like), a medium to / from which information is input / output by an optical action (CD-ROM, For example, a DVD).
  • USB is an abbreviation for Universal Serial Bus.
  • CD is an abbreviation for Compact Disc.
  • DVD is an abbreviation for Digital Versatile Disk.
  • the communication interface 1706 transmits and receives data via the network 1720 in accordance with instructions from the processor 1701.
  • the processor 1701 may acquire vibration data measured by the sensor 110 from the relay apparatus 102 via the communication interface 1706.
  • the input / output interface 1707 may be an interface between an input device and an output device, for example.
  • the input device is, for example, a device such as a keyboard or a mouse that receives an instruction from the user.
  • the output device is a display device such as a display and an audio device such as a speaker.
  • Each program according to the embodiment is provided to the abnormality determination device 103 in the following form, for example. (1) Installed in advance in the storage device 1703. (2) Provided by the removable storage medium 1705. (3) Provided from the program server 1730.
  • the hardware configuration of the computer 1700 for realizing the abnormality determination device 103 described with reference to FIG. 17 is an exemplification, and the embodiment is not limited thereto.
  • some or all of the functions of the above-described functional units may be implemented as hardware such as FPGA and SoC.
  • FPGA is an abbreviation for Field Programmable Gate Array.
  • SoC is an abbreviation for System-on-a-chip.
  • the abnormality determination device 103 is provided separately from the monitoring target device 101 and the monitoring target device 101 exchanges data with the abnormality determination device 103 via the relay device 102 is described.
  • the embodiment is not limited to this.
  • some or all of the functions of the monitoring target device 101 and the abnormality determination device 103 may be arranged in another device (for example, a terminal held by the user of the monitoring target device 101), and further includes another device. But you can.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Acoustics & Sound (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

一実施形態は、監視対象装置の異常の検出精度を向上させる。一実施形態に係る異常判定装置に実行させる生成プログラムは、設定する処理と、生成する処理を含む。設定する処理は、各工程ごとの周波数スペクトルにおいて、工程における変更前の工程と変更後の工程で振動の波形が所定の誤差範囲内で一致する周波数成分の領域を除くように判定領域を設定する。各工程ごとの周波数スペクトルは、回転する部品を用いて所定の順序で複数の工程を実行する監視対象装置の振動をセンサで検出した振動データから取得される。生成する処理は、判定領域において検出された周波数スペクトルのピークに基づいて監視対象装置の異常の判定に用いる周波数領域を示す異常判定基準情報を生成する。

Description

生成プログラム、異常判定装置、及び生成方法
 本発明は、生成プログラム、異常判定装置、及び生成方法に関する。
 モータなどの回転する回転部品を備える監視対象装置の振動をセンサで計測し、計測した振動データから監視対象装置の異常を検出するための技術が開発されている。なお、監視対象装置は、例えば、エアコンディショナー、空調機、半導体製造装置、真空ポンプ、遠心機などであってよい。
特開平6-201452号公報 特開平6-221909号公報 特開2013-88431号公報
 しかしながら、例えば、異常を検出する対象の回転部品の回転に起因する振動とは別の要因で監視対象装置に振動が発生することがある。例えば、監視対象装置の温度を調節するために、監視対象装置に流体を通す配管が備えられていることがあり、流体が配管を通ることに起因して振動が発生することがある。そして、この様な回転部品の回転に起因する振動とは別の要因で発生する振動が、監視対象装置の異常の誤検出を導くことがある。
 1つの側面では、本発明は、監視対象装置の異常の検出精度を向上させることを目的とする。
 本発明の一つの態様の異常判定装置に実行させる生成プログラムは、設定する処理と、生成する処理を含む。設定する処理は、各工程ごとの周波数スペクトルにおいて、工程における変更前の工程と変更後の工程で振動の波形が所定の誤差範囲内で一致する周波数成分の領域を除くように判定領域を設定する。各工程ごとの周波数スペクトルは、回転する部品を用いて所定の順序で複数の工程を実行する監視対象装置の振動をセンサで検出した振動データから取得される。生成する処理は、判定領域において検出された周波数スペクトルのピークに基づいて監視対象装置の異常の判定に用いる周波数領域を示す異常判定基準情報を生成する。
 監視対象装置の異常の検出精度が向上する。
例示的な異常検出システムを示す図である。 振動データからの特徴量の抽出を例示する図である。 複数の工程を実行した場合の特徴量の変動を例示する図である。 特徴量を用いた工程の切り替えと異常との検出を例示する図である。 いくつかの実施形態に係る異常判定装置のブロック構成を例示する図である。 回転部品の回転に依存しないピーク及びノイズに埋もれる回転周波数の高調波のピークについて説明する図である。 ピーク強度の累積とピークの選択とを例示する図である。 コヒーレンススペクトルとクロススペクトルとを例示する図である。 実施形態に係る監視対象装置の異常検出のための判定領域特定処理の動作フローを例示する図である。 実施形態に係る回転部品の回転周波数と、その回転周波数の高調波のピークの探索について例示する図である。 実施形態に係る回転部品の回転周波数と高調波のピークの特定処理の動作フローを例示する図である。 実施形態に係る異常判定基準情報の生成処理の動作フローを例示する図である。 実施形態に係る異常判定基準情報を例示する図である。 特徴量情報を例示する図である。 実施形態に係る異常検出処理の動作フローを例示する図である。 実施形態に係る異常判定基準情報の別の例を示す図である。 実施形態に係る異常判定装置を実現するためのコンピュータのハードウェア構成を例示する図である。
 以下、図面を参照しながら、本発明のいくつかの実施形態について詳細に説明する。なお、複数の図面において対応する要素には同一の符号を付す。
 図1は、例示的な異常検出システム100を示す図である。異常検出システム100は、例えば、監視対象装置101と、中継装置102と、異常判定装置103と、管理装置104と、端末105とを含む。監視対象装置101は、例えば、モータなどの回転部品を含む機器であってよく、エアコンディショナー、空調機、半導体製造装置、真空ポンプ、遠心機などであってよい。監視対象装置101には、例えば、加速度センサ、及び変位センサなどの監視対象装置101の振動を検出するセンサ110が備えられていてよい。そして、センサ110は、検出した振動に関する振動データを、例えば、無線通信によりゲートウェイなどの中継装置102を介して異常判定装置103に通知する。なお、センサ110は、例えば、監視対象装置101の振動に関するデータ(以降、振動データと呼ぶことがある)を計測してよい。振動データには、例えば、回転部品の回転速度(例えば、rpm:revolution per minute)と対応する振動成分と、その高調波の振動成分とが含まれていてよい。
 異常判定装置103は、例えば、通知された振動データに基づいて、監視対象装置101の異常を検出し、管理装置104に異常を通知する。管理装置104では、例えば、管理者などが異常の通知に応じて、状況の可視化、監視対象装置101の整備が推奨される時期の予測、故障個所の解析などを行う。そして、状況に応じて、ユーザや作業者が保持する端末105や監視対象装置101に指示を出す。指示は、例えば、部品の交換、部品の事前発注、及び監視対象装置101の緊急停止等の指示であってよい。ユーザや作業者は、端末105に通知されてきた指示に従って、部品の交換や発注などの作業を行ってよい。また、監視対象装置101は、例えば、緊急停止指示を受けると、緊急停止してよい。
 また、監視対象装置101の異常の検出に用いられる振動データはデータ量が多いため、振動データからの異常の検出は、例えば、振動データをフーリエ変換して得られた周波数スペクトルから特徴量を抽出し、抽出した特徴量を用いて実行されることがある。図2は、振動データからの特徴量の抽出を例示する図である。図2に示す様に、例えば、振動データ(図2(a))を時間領域からフーリエ変換により周波数領域に変換することで周波数スペクトル(図2(b))が得られる。そして、例えば、周波数スペクトルの所定の周波数範囲の強度を積算するなどして周波数スペクトルから特徴量を得ることができる。例えば、図2(c)には、センサ110で検出された所定期間の振動データから得られた周波数スペクトルの1kHz~10kHzまでの強度総和と、全周波数帯域の強度総和とを特徴量として抽出した例が示されている。
 なお、特徴量の抽出に用いる周波数範囲は、任意の範囲に設定されてよく、例えば、国際標準化機構(ISO:International Organization for Standardization)で規定されている周波数範囲が特徴量の抽出に用いる周波数範囲として用いられてよい。そして、例えば、監視対象装置101が正常に動作している際に特徴量を取得して学習し、学習した特徴量に応じて閾値を設定する。それにより、監視対象装置101の稼働中に閾値を超えて特徴量が変動した場合に異常と判定することが可能である。
 また、例えば、半導体製造装置等などの監視対象装置101では、作動中に作動条件を変更して複数の工程が実行されることがある。図3は、複数の工程を実行した場合の特徴量の変動を例示する図である。図3において、矢印301は、工程の切り替えのタイミングを示しており、図3に示す様に、工程の切り替えとともに特徴量が変動している。
 なお、監視対象装置101によるこの様な複数の工程の実行では、生産計画などにより各工程の条件が変動する場合があり、例えば、各工程を実行する時間は様々である。そのため、予め時間によって工程の切り替えタイミングを設定しておくことが難しい状況がある。しかしながら、監視対象装置101によるこの様な複数の工程の実行では、工程を実施する時間は様々であったとしても、実施される工程の順序は固定されている場合が多い。そのため、例えば、工程の順番と、各工程での特徴量を保持しておくことで、特徴量の変動から、工程の切り替えや、監視対象装置101の異常を検出することが可能である。
 図4は、特徴量を用いた工程の切り替えと異常との検出を例示する図である。例えば、正常に監視対象装置101が動作している状態でセンサ110から振動データを取得し、振動データの周波数スペクトルから、工程の切り替え時の所定の周波数領域における特徴量を学習する。なお、複数の周波数範囲を設定し、複数の特徴量が取得されてもよい。そして、学習により得られた特徴量に基づいて閾値を設定する。例えば、図4(a)では、特徴量1と特徴量2の2つの特徴量が示されており、また、特徴量1及び特徴量2のそれぞれに対して閾値1と閾値2が設定されている。そして、図4(a)に示す様に、例えば、工程の切り替え前に特徴量が正常な値を示していた振動データが、その工程の正常な値から外れたとする。この場合にも、外れた先の特徴量が、閾値を超えて次の工程の特徴量の正常な値に変動していれば、振動データの変動は工程の切り替えに起因するものだと判定することができる。一方、例えば、図4(b)では、特徴量2は、次の工程の特徴量の正常な値を示しているが、特徴量1は閾値1を下回っており、次の工程の特徴量の正常な値から大きく外れている。そのため、図4(b)は、工程の切り替えではなく、異常と判定することができる。この様に、振動データから抽出した特徴量を用いて、工程の切り替えや、監視対象装置101の異常を検出することができる。
 しかし、例えば、堆積物などが監視対象装置101に落下したりして外部から衝撃が加わった場合に短期間の大振動が生じ、その振動と対応するピークが周波数スペクトルにも現れる。そして、例えば、この様な異常なピークが発生している状況で任意の所定の周波数範囲の信号強度を特徴量として用いた場合、その領域に異常なピークが入ってしまうと、特徴量が次の工程の特徴量と類似する値に変動してしまうことがある。そして、異常が発生しているにもかかわらず、次の工程への切り替えによる変動で正常であると誤判定してしまう恐れがある。そのため、例えば、この様な場合にも、高い精度で監視対象装置101の異常を検出することのできる技術が望まれている。そして、高い精度で監視対象装置101の異常を検出するために、本願の発明者は、以下の手法を開発している。
 まず、回転部品を用いて所定の順序で複数の工程を実行する監視対象装置101を正常に動作させた状態で、監視対象装置101の振動をセンサで計測した振動データから各工程ごとの回転周波数とその高調波のピーク位置とを特定する。そして、特定した回転周波数と、その高調波のピークの位置と強度に基づいて、各工程ごとに複数の判定基準を生成する。複数の判定基準は、例えば、各工程での回転周波数とその高調波の周波数とのそれぞれの周りに設定された複数の周波数領域におけるピークの有無とピークの強度であってよい。
 そして、例えば、センサから通知された振動データの周波数スペクトルが、或る工程と対応する複数の判定基準として設定された複数の周波数領域にピークを含み、且つ、そのピーク強度も判定基準として設定されたピーク強度から所定の誤差範囲内にあるとする。この場合、対応する或る工程を実行中であると判定できる。
 また、例えば、その後に、センサから通知された振動データの周波数スペクトルが、或る工程と対応する複数の判定基準として設定された複数の周波数領域の少なくとも1つの周波数領域でピークを含まなくなったとする。この場合に、センサからの振動データに基づく周波数スペクトルが、所定の順序における次の工程の複数の判定基準として設定された複数の周波数領域にピークを含み、ピークの強度も次の工程の判定基準のピーク強度から所定の誤差範囲内にあるとする。この場合、監視対象装置101が工程を切り替えたと判定することができる。
 一方、例えば、センサからの振動データに基づく周波数スペクトルが、所定の順序における次の工程の複数の判定基準として設定された複数の周波数領域の少なくとも1つの周波数領域でピークを含まない場合、異常と判定することができる。従って、例えば、変化点の前と後で同じ任意の所定の周波数領域から得られた特徴量を用いて異常を検出する上述の場合と異なり、工程に応じた回転周波数とその高調波ピーク位置に基づいて異常を判定するため、高い精度で異常を検出することが可能になる。
 また、更に、センサで計測した振動データの周波数スペクトルにおいて、工程に応じた回転周波数とその高調波のピークのそれぞれとに対応する複数の周波数領域にピークが存在していたとする。その場合にも、複数の周波数領域に存在するピークのピーク強度が、監視対象装置101が正常に動作している状態で取得されたピーク強度とおおよそ同じ大きさであるか否かを判定し、ピーク強度の大きさが異なれば異常と判定する。そのため、例えば、回転周波数やその高調波のピークに重なって異常のピークが発生したとしても、正常時と異なるピーク強度の値から、異常を検出することができる。従って、本願の発明者が開発した手法によれば、高い精度で監視対象装置101の異常を検出することが可能になる。
 しかしながら、実際にはセンサ110で検出される振動の波形には、回転部品の回転に依存する回転周波数とその高調波のピークとは別に、回転部品の回転に依存しないピークが混在していることがある。そして、回転部品の回転に依存しないピークが異常の誤検出の原因になることがある。例えば、回転部品の回転に依存しないピークを、回転部品の回転に依存する高調波のピークとして拾ってしまった場合、本来の高調波のピークと、回転部品の回転に依存しないピークの周波数やピーク強度が異なるなどに起因して異常と判定してしまうことがある。その結果、異常を誤検出してしまうことがある。
 また、高調波のピークに、ノイズに埋もれてしまうレベルのピークが含まれている場合もある。この場合、実際の高調波のピークに対してノイズ成分が占める割合が大きいため、ピークの位置がズレたり、強度のばらつきが大きくなり、異常を誤検出してしまうことがある。そのため、更なる異常の検出精度の向上が望まれている。
 以下で述べる実施形態では、回転部品の回転に依存しないピークを含む周波数領域を特定し、その領域を除外して異常の検出を行う。そのため、回転部品の回転に依存しないピークに影響されずに異常の検出を行うことができる。
 また、以下で述べる実施形態では、ピーク強度の大きなピークを含む周波数領域を抽出し、その領域で回転周波数とその高調波のピークに関する特徴量の取得を行う。そのため、例えば、ノイズ成分に埋もれてしまうレベルの回転周波数の高調波のピークを判定に用いて異常を誤判定してしまうことを抑制でき、異常の検出精度を向上させることができる。以下、第1の実施形態を説明する。
 <第1の実施形態>
 図5は、いくつかの実施形態に係る異常判定装置103のブロック構成を例示する図である。異常判定装置103は、例えば、制御部501及び記憶部502を含んでいる。制御部501は、例えば設定部511及び生成部512などとして動作する。記憶部502は、例えば、後述する異常判定基準情報1300、及び特徴量情報1400などの情報を記憶している。これらの各部の詳細及び記憶部502に格納されている情報の詳細については後述する。 
 図6は、回転部品の回転に依存しないピーク及びノイズに埋もれる回転周波数の高調波のピークについて説明する図である。図6(a)は、工程Aにおける振動のスペクトルであり、図6(b)は、工程Aから工程Bに移行した後の振動のスペクトルである。図6に示す様に、回転部品の回転に依存する回転周波数とその高調波のピーク(例えば、3倍波、5倍波、及び8倍波)は、工程の変更による回転数の変動でピークの位置がシフトしている。一方で、回転部品の回転に依存しないピークがあり、このピークは工程の変更前後でシフトしていない。なお、回転部品の回転に依存しないピークは、例えば、異常の検出対象の回転部品の回転とは別の要因により生成される振動であってよく、一例では、配管等を流れる流体によって引き起こされる振動があげられる。例えば、監視対象装置101には、装置を冷却するための冷媒を通す配管が備えられていてよく、配管に冷媒を通す際に振動が発生することがある。この場合、発生する振動は、回転部品の回転に起因するものではないため、配管に冷媒を通す際に生じる振動の周波数成分は、回転部品の回転周波数がシフト(変動)したとしても、変化しない。
 ここで、振動の分類には、自励振動と強制振動とが知られている。例えば、松下らの定義によれば、各機械特有の周波数で振動する振動は自励振動に大別される。自励振動は、外部からの強制的な外力が常に働いていないにも関わらず振動する場合に生じる固有振動であり、各機械の固有振動数で振動し、パワースペクトルにおいて機械の筐体サイズや構成等で固有のピークとして表れる。そして、回転部品の回転数等に依存しないため、回転部品の回転数が変動してもピークの位置が変動しない。自励振動の例としては、ポンプの水配管への水通過時の外力等、一時的に生じる外力を契機として配管振動が継続して固有振動数が生じる場合や、半導体製造装置等に気体の通過時の外力によって機械筐体の条件に依存する固有振動数で振動する場合などが挙げられる。
 一方、強制振動は、強制加振力によって引き起こされる振動である。例えば、回転部品の回転などの外部から与えられる力に比例する周波数を示す。従って、例えば、回転部品の回転数の変動によって振動の周波数が変わり、加振力と応答周波数は一致する。例えば、監視対象装置の工程変更に伴う回転部品の回転周波数の変動に起因して変化する周波数成分は、強制振動に大別される。
 そして、以下で述べる実施形態では、例えば、自励振動の存在下で、工程変更による強制振動の変動分を正確に推定するために、自励振動の成分を含む周波数領域を特定する。
 [自励振動成分の領域特定]
 上述のように、自励振動は、例えば、工程の変更前と変更後で回転部品の回転周波数が変動しても、振動の周波数が変化しない。そのため、例えば、振動のパワースペクトルに含まれるそれぞれの周波数において、工程の変更前後で波形の変動を調べたとする。この場合に、波形の変動が所定の誤差範囲内に収まる領域は、自励振動の成分が含まれていると考えられる。そして、振動のパワースペクトルに含まれるそれぞれの周波数において、工程の変更前後で波形の変動の度合いを調べる一つの手法として、コヒーレンス関数γ(f)を用いることが考えられる。コヒーレンス関数γ(f)は、例えば、以下の式1で表される。
Figure JPOXMLDOC01-appb-M000001
 式1において、fは、波形の変動を調べる対象の周波数である。また、WxxとWyyはそれぞれ工程Xの振動データ:x(t)と、工程Yの振動データ:y(t)のパワースペクトルである。Wxyは工程Xの振動データ:x(t)と工程Yの振動データ:y(t)のクロススペクトルである。
 コヒーレンス関数は、例えば、振動データ:x(t)と振動データ:y(t)の周波数fにおける振動の波形が完全に一致していれば、値1を示す。一方、コヒーレンス関数は、例えば、振動データ:x(t)と振動データ:y(t)の周波数fにおける振動の波形がまったく関係がなければ、値0を示す。
 また、クロススペクトルWxy(f)は、振動データ:x(t)と振動データ:y(t)のフーリエ変換をX(f)とY(f)とし、X(f)の共役複素数をX(f)とすると、式2で表される。
Figure JPOXMLDOC01-appb-M000002
 クロススペクトルは2つの振動データ:x(t)及び振動データ:y(t)のスペクトルの或る周波数成分どうしを掛合わせたうえで平均したものである。クロススペクトルが、或る周波数で大きな値を示しているということは、その周波数においては2つの振動データの周波数成分どうしの相関が大きい上に、両者の成分の大きさも大きいということを意味している。
 上述のように、自励振動は、固有の周波数で振動しているため、工程の変更前後でも振動の波形は変化しないことが推定される。従って、工程の変更前の振動データと工程の変更後の振動データの或る周波数においてコヒーレンス関数の値がおおよそ1ならば、その周波数におけるピークは自励振動のピークであることが推定できる。そのため、スペクトルに含まれる各周波数についてコヒーレンス関数を計算し、所定の閾値以上の値を示す周波数領域を特定することで、自励振動のピークが含まれる領域を特定することができる。なお、所定の閾値としては、統計的に優位であることが示される値を用いることができ、例えば、0.95から1.0の範囲の値を用いることができる。一例では、所定の閾値は0.98であってよい。
 また、上述のように、高調波のピークに、ノイズに埋もれてしまうレベルのピークが含まれている場合がある。例えば、図6(a)及び図6(b)において、回転周波数の4倍波や7倍波が位置する領域は、ノイズに埋もれておりピークが検出されていない。このような場合、ノイズに埋もれてしまうレベルの高調波のピークを監視対象装置101の異常の判定に用いようとしてもノイズ成分が占める割合が大きく異常を誤検出してしまうことがある。そこで、以下で述べる実施形態では、スペクトルに含まれる複数のピークの内から強度の高いピークを抽出する。なお、強度の高いピークは、ピーク波形全体への寄与度が高いため、異常の検出に関する情報量も多いことが推定される。
 [強度の高いピークの特定]
 工程の変更前と変更後のスペクトルに含まれる複数のピークの内から強度の高いピークを抽出する1つの手法として、クロススペクトルを用いることが考えられる。上述のように、クロススペクトルにおいて、或る周波数で大きな値を示しているということは、その周波数においては2つの振動データの周波数成分どうしの相関が大きい上に、両者の成分の大きさも大きいということを意味している。そのため、クロススペクトルにおいて、ピーク強度が上位のピークを抽出することで、工程の変更前のスペクトルと変更後のスペクトルに含まれる複数のピークの内から相対的に強度の高いピークを抽出することができる。
 ピーク強度の高いピークの抽出は、一例では、ピーク強度の高い側から順にピークを選択し、選択したピークのパワー(強度和)を累積してゆき、パワーの累積値がスペクトル全体のパワーに占める割合が所定の閾値を越えるまで選択を実行することが考えられる。図7は、ピーク強度の累積とピークの選択とを例示する図である。図7(a)は、ピーク強度の大きい順にピークのパワーを累積していった累積値がスペクトル全体のパワーに占める割合をグラフで表している。図7(a)に示す様に、ピーク強度の大きいピークだけでスペクトル全体のパワーの大部分のパワーを有していることが分かる。また図7(b)は、選択したピークの累積値がスペクトル全体のパワーに占める割合を表すテーブルである。図7(b)では、強度の大きい側から順にピークの周波数が並べられており、また、そのピークのパワーを累積した場合の累積値がスペクトル全体のパワーに占める割合が対応付けて登録されている。ピークを選択する累積強度の閾値としては、例えば、60%から90%の値が用いられてよく、一例では、70%や80%であってよい。例えば、累積強度の閾値として60%を用いた場合には、図7(b)の周波数:49Hzから上の段のピークが選択される。例えば、以上のようにして、クロススペクトルからピーク強度の高いピークを選択することができる。なお、別の実施形態では、ピーク強度が大きい側から所定の数のピークを工程の変更前と変更後のスペクトルから選択することで、ピーク強度の高いピークが抽出されてもよい。
 図8は、コヒーレンススペクトルとクロススペクトルとを例示する図である。図8(a)は、コヒーレンススペクトルを例示している。図8(a)において、120Hz付近でコヒーレンス関数の値が1付近の値を示している。従って、図8(a)のコヒーレンススペクトルにおいてコヒーレンス関数の値が1付近の値を示す120Hz付近の周波数領域は、自励振動に基づくピークを含む領域だと判定できる。また、その他の周波数領域には、自励振動に基づくピークが含まれていないことが推定される。そのため、制御部501は、スペクトルの全領域から120Hz付近の周波数領域を除いて、判定領域を設定する。
 続いて、制御部501は、図8(b)のクロススペクトルを参照し、判定領域において、ピーク強度の高いピークを選択する(図8(b)の矢印)。なお、120Hz付近の周波数領域は、クロススペクトルにおいて高いピークを有しているが、自励振動の成分と考えられ判定領域から除かれているため、120Hz付近の周波数領域のピークは選択されない。
 以上で述べた様に、実施形態によれば自励振動が含まれる周波数領域を除いた判定領域から、ピーク強度の高いピークを選択する。そのため、自励振動のピークに起因する誤判定を抑制することができる。また、自励振動が含まれる周波数領域を除いた判定領域に含まれる強制振動のピークのうちでピーク強度の高いピークを抽出して、監視対象装置101の異常検出に用いている。そのため、ノイズに埋もれてしまうピークを異常検出の判定に用いて異常を誤検出してしまうことを抑制できる。従って、実施形態に係る異常検出処理によれば、異常の検出精度を向上させることが可能である。
 図9は、以上で述べた、実施形態に係る監視対象装置101の異常検出のための判定領域特定処理の動作フローを例示する図である。例えば、制御部501は、監視対象装置101の異常検出のための判定領域特定処理の実行指示が入力されると、図9の動作フローを開始してよい。なお、図9の例では、動作フローの開始時点で既に監視対象装置101を正常に動作させた状態で複数の工程の全ての実行時の振動データがセンサ110から取得されているものとする。また、工程の切り替えタイミングである変化点も振動データから特定されているものとする。変化点は、例えば、振動データの周波数スペクトルの所定の周波数範囲の強度和を特徴量として用い、特徴量の変化を監視することで特定されていてよい。
 ステップ901(以降、ステップを“S”と記載し、例えば、S901と表記する)において制御部501は、各変化点において、変化点の前の振動データと、変化点の後の振動データとのそれぞれをフーリエ変換して周波数スペクトルを得る。なお、変化点は、例えば、監視対象装置101で実行する複数の工程において工程が変更される時点である。
 S902において制御部501は、各工程の変化点前後の周波数スペクトルに含まれる各周波数において、波形の一致度合いを評価する。例えば、制御部501は、上記式1のコヒーレンス関数γ(f)を計算することで、それぞれの周波数における波形の一致度合いを評価してよい。
 S903において制御部501は、スペクトルに含まれるそれぞれの周波数毎に、波形の一致度合いが高いか否かを判定する。例えば、波形の一致度合いをコヒーレンス関数で評価する場合、制御部501は、コヒーレンス関数のγ2(f)が所定の閾値以上であれば、波形の一致度合いが高いと判定してよく、この場合、フローはS904に進む。S904において制御部501は、例えば、スペクトルの全周波数領域からS903で一致度が高いと判定された周波数領域を除いて判定領域を設定する。一方、例えば、コヒーレンス関数のγ2(f)が所定の閾値未満である場合、制御部501は、工程の変更前の振動データと変更後の振動データにおいて、その周波数成分の波形の一致度合いが低いと判定してよい。この場合、制御部501は、波形の一致度が低い判定された周波数を判定領域に含めて、フローはS905に進む。S903~S904の処理を、スペクトルに含まれるそれぞれの周波数において計算することで、スペクトルの全体から工程の変更前後で、波形の一致度合いが高い周波数成分を含む領域が除外された判定領域が設定されてよい。
 続いて、制御部501は、波形の一致度合いが高い周波数成分を含む領域が除かれた判定領域において、工程の変更前後の2つのスペクトルからピーク強度が大きいピークを抽出する処理を実行する。ピーク強度が大きいピークを抽出する手法の一例として、クロススペクトルを用いることが考えられ、以下のS905~S908ではクロススペクトルを用いる場合の処理を例示する。S905において制御部501は、工程の変更前後の2つのスペクトルのクロススペクトルを計算する。なお、S903でコヒーレンス関数を用いた場合には、クロススペクトルは既に計算されているため、制御部501は、その計算結果のクロススペクトルを用いてもよい。
 S906において制御部501は、クロススペクトルから判定領域に含まれるピークを抽出し、抽出したピークを強度順に並べ替える。S907において制御部501は、判定領域に含まれるピークのうちで、ピーク強度が大きい側からピークを選択する。S908において制御部501は、選択されたピークの強度を累積して累積強度を算出し、クロススペクトルの全体のピーク強度を累積した全累積値に対して、選択したピークの強度を累積した累積値が占める割合が所定の割合を越えたか否かを判定する。累積値が全累積値に対して所定の割合を越えていない場合(S908がNo)、フローはS907に戻り、次のピークの選択を行う。一方、累積値が全累積値に対して所定の割合を越えた場合(S908がYes)、フローはS909に進む。S909において制御部501は、パワー累積値が所定の割合を越えるまでに選択されたピークの周波数領域を判定領域に再設定して記憶部502に記録し、本動作フローは終了する。
 以上で述べた様に、制御部501は、工程の変更前と変更後の振動データにおいて、波形が所定の誤差範囲内で一致している周波数成分を含む周波数領域を、判定領域から除いている。波形が所定の誤差範囲内で一致している周波数成分は、自励振動に起因した振動成分であると考えられ、異常の監視対象である回転部品の回転とは無関係に起きた振動であると推定される。そのため、波形が所定の誤差範囲内で一致している周波数成分の領域を判定領域から除くことで、自励振動による影響を受けずに異常を検出することが可能となる。
 また、上記の動作フローでは、自励振動の成分を除いた判定領域において、更にピーク強度の高いピークを含む周波数領域を抽出し、判定領域を更に狭めている。これは、ピーク強度の高いピークは、それだけ振動に関する重要なデータを有していることが推定できるためである。また一方で、ピーク強度の高いピークを含む周波数領域を抽出することで、ノイズに埋もれてしまうレベルの小さなピークに起因して異常を誤判定してしまうことを抑制することが可能である。
 <第2の実施形態>
 続いて、図10から図16を参照して、上述の図9の動作フローで決定される判定領域を利用する異常の検出について例示する第2の実施形態を説明する。第2の実施形態では、第1の実施形態で決定される判定領域において、制御部501は、回転部品の回転周波数とその高調波のピークを特定し、異常を検出するための判定基準を設定する。そして、制御部501は、設定した異常を検出するための判定基準を用いて監視対象装置101の異常を検出する。まず、図10から図14を参照して、異常を検出するための判定基準を設定する処理について述べる。
 図10は、実施形態に係る回転部品の回転周波数と、その回転周波数の高調波のピークの探索について例示する図である。以下、制御部501が実行する各工程での回転部品の回転周波数と、その回転周波数の高調波のピークの探索の手順を例示する。
 (手順1)制御部501は、例えば、センサ110で計測された振動データの各工程における周波数スペクトルから、各工程の回転周波数のピークを探索し、特定する(例えば、図10(a)において工程1のfrAや工程2のfrBを特定する)。例えば、制御部501は、低周波側からピークサーチを行い、所定の閾値以上のピークを検出することで回転周波数のピークを特定してよい。
 (手順2)制御部501は、例えば、検出した工程に応じた回転周波数を基に、高調波のピークの初期探索位置を決定する。例えば、制御部501は、回転周波数を整数倍することで、高調波のピーク位置を推定する。そして、制御部501は、推定した高調波のピーク位置のうち上述の図9の動作フローで決定した判定領域に含まれるピーク位置を、高調波を探索するための初期探索位置として決定する(図10(a)の破線矢印)。
 (手順3)制御部501は、例えば、初期探索位置から周波数範囲を、上述の図9の動作フローで決定した判定領域内で広げて強度総和の取得を行い、変化する強度総和の傾きが極大値となる位置を高調波のピーク位置として特定する。
 なお、探索の幅を広げる周波数範囲は、例えば、以下のように設定できる。例えば、制御部501は、周波数スペクトルの分解能に応じて、各高調波のピークと対応する探索範囲を設定してよい。例えば、上記(1)で特定した回転周波数が100Hzであり、また、周波数スペクトルの分解能が1Hzである場合、実際には、回転周波数:100Hzは、99.5Hz~100.4Hzなどの範囲で分解能に応じた誤差を含む。そして、例えば、2次の高調波の場合には、この周波数の誤差は199Hz~200.8Hzで狭い周波数範囲の誤差に収まるが、50次の高調波の場合、4975Hz~5020Hzで、広い幅の周波数範囲となる。そこで、制御部501は、例えば、周波数スペクトルの分解能に応じた誤差範囲に、高調波の次数を掛けて得られた周波数範囲を探索範囲の上限として設定する。そして、制御部501は、初期探索位置から探索範囲の上限の範囲内であり、且つ、判定領域内である範囲まで探索範囲を広げながら探索を行ってよい(図10(b))。探索範囲の上限は、例えば、上記の例では、2次の高調波の場合は、199Hz~200.8Hzの幅、及び50次の高調波の場合は4975Hz~5020Hzで、45Hzの幅というように、設定されてよい。
 以上のようにして、制御部501は、回転周波数と、その回転周波数の高調波のピークを判定領域において特定してよい。
 図11は、実施形態に係る回転部品の回転周波数と高調波のピークの特定処理の動作フローを例示する図である。例えば、制御部501は、ユーザから特定処理の実行指示が入力されると、図11の動作フローを開始してよい。なお、図11の例では、監視対象装置101を正常に動作させた状態で複数の工程の全ての実行時の振動データが動作フローの開始時点で既にセンサ110から取得されているものとする。また、工程の切り替えタイミングである変化点も振動データから特定されているものとする。変化点は、例えば、振動データの周波数スペクトルの所定の周波数範囲の強度和を特徴量として用い、特徴量の変化を監視することで特定されていてよい。
 S1101において制御部501は、各変化点において、変化点の前の振動データと、変化点の後の振動データとのそれぞれをフーリエ変換して周波数スペクトルを得る。
 S1102において制御部501は、各変化点について、変化点の前と後のそれぞれの周波数スペクトルを、低周波数側からサーチして所定の閾値よりも大きい値を有するピークを監視対象装置101に備えられた回転部品の回転周波数として特定する。
 S1103において制御部501は、判定領域特定処理を実行する。なお、制御部501は、判定領域特定処理において例えば、図9の動作フローを実行してよい。また、この場合に、S1101において変化点前後のスペクトルを取得済みであるため、制御部501は、S901の処理については実行しなくてもよい。判定領域特定処理により上述のように、自励振動の成分を除いた周波数領域であり、且つ、ピーク強度の高いピークを含む周波数領域に設定された判定領域が特定される。
 S1104において制御部501は、各変化点について変化点の前と後の周波数スペクトルで特定した回転周波数に基づき、回転周波数の高調波のピークを探索するための初期探索位置と、ピーク位置を探索する探索範囲の上限及び下限を示す誤差範囲とを特定する。例えば、制御部501は、回転周波数を整数倍することで高調波のピーク位置を推定し、推定した高調波のピーク位置のうち上述の図9の動作フローで決定した判定領域に含まれるピーク位置を、高調波を探索するための初期探索位置として用いてよい。
 また、制御部501は、周波数スペクトルの分解能に基づく誤差範囲に、高調波の次数を掛けて得られた周波数範囲を探索範囲の上限及び下限を示す誤差範囲として用いてよい。例えば、S1102で特定された回転周波数が100Hzであり、また、周波数スペクトルの分解能が1Hzである場合、実際には、回転周波数:100Hzには、99.5Hz~100.4Hzなど分解能に応じた範囲で誤差が含まれている可能性がある。そして、例えば、高調波が2次の高調波である場合には、制御部501は、この誤差範囲を2倍して199Hz~200.8Hzの範囲を2次の高調波のピークを探索する上限の誤差範囲として設定してよい。また、例えば、50次の高調波の場合、99.5Hz~100.4Hzなど分解能に応じた誤差範囲を50倍して4975Hz~5020Hzを50次の高調波のピークを探索する上限の誤差範囲として設定してよい。
 S1105において制御部501は、各変化点の変化点前後の周波数スペクトルにおいて、各高調波に対して設定された初期探索位置を含む、初期探索位置の周りの所定の周波数領域を探索範囲として高調波のピークの位置の探索を開始する。所定の周波数領域は、例えば、S1104で設定された誤差範囲よりも狭い範囲であってよい。
 S1106において制御部501は、探索範囲を所定周波数だけ拡張する。なお、図11の動作フローを開始してからS1106の処理を最初に実行する場合、S1106における周波数範囲の拡張は実行されなくてもよい。また、探索範囲の拡張は、例えば、上述の図9の動作フローで決定した判定領域内であり、且つ、S1104で設定した誤差範囲内まで徐々に拡張されてよい。
 S1107において制御部501は、拡張後の探索範囲内でのピークの強度総和(積分値)を求め、探索範囲の拡張に応じた強度総和の傾きが極大値を含むか否かを判定する。S1107において極大値を含まない場合(S1107がNO)、フローはS1106に戻り、探索範囲を拡張して処理を繰り返す。一方、S1107にて極大値を含む場合(S1107がYES)、フローはS1108に進む。
 S1108において制御部501は、各変化点について、変化点の前と後のそれぞれにおいてS1106で特定された各高調波に対する極大値の位置を、その高調波のピーク位置として特定し、また、その高調波のピークの強度を取得する。
 S1108において制御部501は、例えば、S1102で特定した変化点前後の回転周波数、及びS1107で特定した各高調波のピークの変化点前後のピーク位置と、その強度とを含むピーク情報を記憶部502に記録し、本動作フローは終了する。
 続いて、図11の動作フローで記憶部502に記録された各高調波のピークの変化点前後のピーク位置と、その強度とを含むピーク情報を用いた異常判定基準情報1300の生成処理について述べる。図12は、実施形態に係る異常判定基準情報1300の生成処理の動作フローを例示する図である。例えば、制御部501は、ユーザから異常判定基準情報1300の生成処理の実行指示が入力されると、図12の動作フローを開始してよい。なお、異常判定基準情報1300の詳細については、図13を参照して後述する。
 S1201において制御部501は、所定の順序で実行される複数の工程に対して図11の動作フローを複数回実行して記憶部502に記録した過去の複数のピーク情報を読み出す。S1202において制御部501は、読み出したピーク情報のそれぞれに含まれる各変化点前後の回転周波数と高調波のピーク位置と強度とから、各変化点前後の回転周波数と高調波のピーク位置及び強度の代表値と、代表値の誤差範囲とを算出する。例えば、制御部501は、変化点の前後の回転周波数と高調波のピーク位置及び強度とを、各ピーク情報から取得し、ピーク位置とピーク強度のそれぞれについて平均値を算出して代表値として用いてよい。また、その標準偏差を代表値の誤差範囲として用いてよい。なお、代表値は、平均値に限定されるものではなく、例えば、最大値、最小値、中央値、及び最頻値などのその他の統計値であってもよい。また、誤差範囲も、標準偏差に限定されるものではなく、例えば、ピーク位置とピーク強度のそれぞれについて、各ピーク情報から得られた工程に対する最大値から最小値までの範囲を誤差範囲として設定してもよい。
 S1203において制御部501は、S1202で算出した変化点の前後の回転周波数と高調波のピーク位置及び強度に対する代表値と誤差範囲とから、各変化点毎に異常判定基準情報1300を生成して記憶部502に記憶し、本動作フローは終了する。
 図13は、実施形態に係る異常判定基準情報1300を例示する図である。図13の異常判定基準情報1300は、例えば、所定の順序で実行される複数の工程における1つ目の変化点である変化点1に対する異常判定基準情報1300である。異常判定基準情報1300には、判定領域で検出された回転周波数又は高調波についてのエントリが登録されている。例えば、エントリは、判定領域で検出された回転周波数又は高調波の周波数と対応付けて、変化点の前、又は変化点の後のピーク位置と、ピーク強度とを含む。また、異常判定基準情報1300は、ピーク位置とピーク強度に対する誤差範囲の情報も含む。図9の動作フローで述べた様に、判定領域は、自励振動の成分を除いた領域で、且つ、ピーク強度の高いピークを含む周波数領域に設定されている。なお、回転部品の回転に起因して生成される振動は、工程の変更前後で、ピークの強度が変わり得る。例えば、一方のスペクトルでは高いピークであったのに、他方のスペクトルでは低いピークとなることもあり得、この場合、他方の低いピークの領域は判定領域として抽出されなくてよい。この様に、変更前では或る高調波のピークの情報を含むが、変更後ではその高調波のピークの情報を含まないといった一方にのみに値を有するエントリが異常判定基準情報1300に登録されていてもよい。
 以上のようにして制御部501は、例えば、所定の順序で実行される各工程の回転周波数と、その高調波のピークの位置と、強度とを判定領域において取得することができ、また、ピークの位置と、強度に対する誤差範囲も取得することができる。
 続いて、実施形態に係る監視対象装置101の異常検出処理について説明する。
 図14は、特徴量情報1400を例示する図である。特徴量情報1400は、監視対象装置101が実行する複数の工程のそれぞれの工程に対応する特徴量を含むエントリが登録されている。なお、エントリには、1つ以上の特徴量が含まれていてよい。例えば、図2(c)で例示したように、センサ110で検出された振動データから得られた周波数スペクトルにおける、所定の周波数領域の強度総和が特徴量として用いられてよい。特徴量として用いる周波数範囲は、任意の範囲に設定されてよく、例えば、国際標準化機構で規定されている周波数範囲が特徴量として用いられてよい。或いは、別の実施形態では、異常判定基準情報1300で特定されている工程と対応する回転周波数の誤差範囲とその高調波の周波数の誤差範囲とを含まない所定の領域に、特徴量として用いる周波数範囲が設定されてもよい。これは、例えば、インバータを用いて高調波の波形を合成してひずみ波を生成することで回転数が制御されることがあり、高調波を合成した場合、合成した高調波の波形が周波数スペクトルにおいて巨大なピークとしてでてしまうためである。例えば、上述のように特徴量の周波数範囲を設定した場合、インバータなどで合成された高調波に基づくピークが特徴量に含まれない。そのため、異常に基づくピークによる強度和の変化がインバータなどを使用して合成された高調波に基づくピークに埋もれてしまうことを抑制できる。
 図15は、実施形態に係る異常検出処理の動作フローを例示する図である。異常判定装置103の制御部501は、例えば、監視対象装置101の異常の検出の開始指示が入力されると、図15の異常検出処理を開始してよい。
 S1501において制御部501は、現工程の位置を確認する。例えば、異常判定装置103の記憶部502には監視対象装置101が実行する複数の工程の実行順序を示す工程順序情報が記憶されていてよい。また、記憶部502には、実行中の工程を示す工程情報が記憶されていてよく、制御部501は、監視対象装置101が実行する工程が次の工程に移行したのを検出する度に、工程情報を移行先の工程を示す情報に更新してよい。そして、S1501では制御部501は、記憶部502に記憶されている工程情報を参照することで現工程の位置を確認してよい。なお、図15の動作フローにおいて、S1501の処理を初めて実行する場合には、工程情報に工程を示す情報が記録されていなくてよく、この場合、制御部501は、現工程を最初の工程と判定してよく、工程情報に最初の工程を示す情報を記録してよい。
 S1502において制御部501は、現工程から次の工程への変化点に対応する異常判定基準情報1300から、変化点の前の現工程と後の次工程での回転周波数、及びその高調波のピーク位置と強度を、それぞれの誤差範囲とともに取得する。
 S1503において制御部501は、監視対象装置101に備えられているセンサ110から最新の振動データを取得する。S1504において制御部501は、取得した振動データの周波数スペクトルが、異常判定基準情報1300から取得した現工程に対する回転周波数又はその高調波と対応する複数のピーク位置の誤差範囲内であるか否かを判定する。即ち、誤差範囲が標準偏差である場合には、制御部501は、振動データの周波数スペクトルが、現工程に対する回転周波数又はその高調波に対する複数のピーク位置から標準偏差の範囲にピークを含むか否かを判定する。取得した振動データの周波数スペクトルが、異常判定基準情報1300の現工程に対する回転周波数又はその高調波に対応する複数のピーク位置の少なくとも1つの誤差範囲においてピークを含まない場合(S1504がNO)、フローはS1505に進む。なお、この場合、周波数スペクトルは、工程情報に示される現工程に対する周波数スペクトルとしては異常であることを示している。
 S1505において制御部501は、取得した振動データの周波数スペクトルが、異常判定基準情報1300から取得した次の工程に対する回転周波数又はその高調波と対応する複数のピーク位置の誤差範囲内であるか否かを判定する。即ち、誤差範囲が標準偏差である場合には、制御部501は、振動データの周波数スペクトルが、次の工程に対する回転周波数又はその高調波に対する複数のピーク位置から標準偏差の範囲にピークを含むか否かを判定する。取得した振動データの周波数スペクトルが、異常判定基準情報1300から取得した次の工程に対する複数のピーク位置の少なくとも1つの誤差範囲においてピークを含まない場合(S1505がNO)、フローはS1506に進む。S1506において制御部501は、異常を示す情報を出力し、動作フローはS1501に戻る。
 また、S1504において振動データの周波数スペクトルが、異常判定基準情報1300から取得した現在の工程の回転周波数又はその高調波に対する複数のピーク位置の誤差範囲内にピークを含む場合(S1504がYES)、フローはS1507に進む。S1507において制御部501は、現工程に対する複数のピーク位置の誤差範囲内に含まれていた周波数スペクトルのピークの強度が、異常判定基準情報1300の現工程の回転周波数又はその高調波に対する強度の誤差範囲内であるか否かを判定する。周波数スペクトルのピーク強度が、異常判定基準情報1300の現工程の回転周波数又はその高調波に対する強度の誤差範囲内でない場合(S1507がNO)、現工程の回転周波数又はその高調波と対応するピークに異常なピークが重なっていると考えられる。そのため、フローはS1506に進み、制御部501は、異常示す情報を出力する。一方、周波数スペクトルのピークの強度が、現工程の回転周波数又はその高調波に対する強度の誤差範囲内である場合(S1507がYES)、フローはS1508に進む。
 S1508において制御部501は、特徴量情報1400から取得した現工程に応じた特徴量と、振動データの周波数スペクトルの同じ周波数範囲から得られた特長量とを比較し、特徴量が所定の誤差範囲を超えて変動しているか否かを判定する。なお、判定に用いる特徴量を取得する周波数領域を、例えば、現工程の回転周波数と、その高調波のピークを含まない領域に設定し、特徴量情報1400に登録しておくことで、インバータなどにより合成された高調波の影響を受けずに異常検出が可能である。そして、特徴量が所定の誤差範囲を超えて変動している場合(S1508がYES)、現工程の回転周波数又はその高調波に対するピーク位置以外の領域で異常に基づくピークが発生していると考えられる。そのため、フローはS1506に進み、制御部501は、異常示す情報を出力する。一方、特徴量が所定の誤差範囲を超えて変動していない場合(S1508がNO)、フローはS1509に進み、正常に現工程を継続中と判定し、フローはS1501に戻る。
 また、S1505において振動データの周波数スペクトルが、異常判定基準情報1300から取得した次の工程の回転周波数又はその高調波に対する複数のピーク位置の誤差範囲内にピークを含む場合(S1505がYES)、フローはS1510に進む。S1510において制御部501は、次の工程に対する複数のピーク位置の誤差範囲内に含まれていた周波数スペクトルのピークの強度が、異常判定基準情報1300の次の工程の回転周波数又はその高調波に対する強度の誤差範囲内であるか否かを判定する。周波数スペクトルのピークの強度が、次の工程の回転周波数又はその高調波に対する強度の誤差範囲内でない場合(S1510がNO)、次の工程の回転周波数又はその高調波と対応するピークに、異常に基づくピークが重なって発生していると考えられる。そのため、フローはS1506に進み、制御部501は、異常示す情報を出力する。一方、周波数スペクトルのピークの強度が、次の工程の回転周波数又はその高調波に対する強度の誤差範囲内である場合(S1510がYES)、フローはS1511に進む。
 S1511において制御部501は、特徴量情報1400から取得した次の工程に応じた特徴量と、振動データの周波数スペクトルの同じ周波数範囲から得られた特長量とを比較し、特徴量が所定の誤差範囲を超えて変動しているか否かを判定する。なお、判定に用いる特徴量を取得する周波数領域を、例えば、次工程の回転周波数と、その高調波のピークを含まない領域に設定し、特徴量情報1400に登録しておくことで、インバータなどにより合成された高調波の影響を受けずに異常検出が可能である。特徴量が所定の誤差範囲を超えて変動している場合(S1511がYES)、次の工程の回転周波数又はその高調波に対するピーク位置以外の領域で異常に基づくピークが発生していると考えられる。そのため、フローはS1506に進み、制御部501は、異常示す情報を出力する。一方、特徴量が所定の誤差範囲を超えて変動していない場合(S1511がNO)、フローはS1512に進む。S1512において制御部501は、監視対象装置101は正常に動作しているが、次の工程への移行が発生したと判定し、工程情報を次の工程を示す情報に更新し、フローはS1501に戻る。
 以上で述べた様に、実施形態によれば制御部501は、各工程ごとの回転部品の回転周波数とその高調波の周波数とに基づき生成された各工程に対する複数の判定基準に基づいて異常を検出する。判定基準は、図9の動作フローで述べた様に、自励振動の成分を除いた領域で、且つ、ピーク強度の高いピークを含む周波数領域に設定された判定領域において、回転周波数と高調波のピークを探索し、設定されている。そのため、回転部品の挙動とは関係の薄い自励振動に起因する異常の誤判定を抑制することができる。
 また、上記の動作フローでは、自励振動の成分を除いた判定領域において、更にピーク強度の高いピークを含む周波数領域を抽出し、判定領域を更に狭めている。これは、ピーク強度の高いピークは、それだけ振動に関する重要なデータを有していることが推定されるためである。また一方で、ピーク強度の高いピークを含む周波数領域を抽出することで、ノイズに埋もれてしまうレベルの小さなピークに起因して異常を誤判定してしまうことを抑制することが可能になる。
 なお、第2の実施形態では図9の動作フローで判定領域を設定した後、判定領域内で回転周波数とその高調波のピークの位置を探索し、探索された回転周波数とその高調波のピークの位置と強度から異常判定基準情報1300を生成して判定を行っている。例えば、任意の周波数領域を固定的に設定して得た特徴量を用いて判定を行う場合と比較して、回転部品の回転周波数とその高調波のピークの位置と強度とに基づいて判定を行うため、高い精度で工程の切り替えと、異常の発生とを区別することが可能となる。
 例えば、制御部501は、センサ110からの振動データの周波数スペクトルが、現工程と対応する回転部品の回転周波数とその高調波の周波数の周辺領域にピークが含まれることを検出したとする。この場合、制御部501は、現工程が継続して実行されていると判定することができる。その後、現工程と対応する回転周波数とその高調波の周波数の周辺領域のいずれかでピークが検出されなくなった場合、次の工程と対応する回転周波数とその高調波の周波数の周辺領域にピークが含まれるか否かを判定する。そして、例えば、次の工程の回転周波数とその高調波の周波数の周辺領域にピークが含まれる場合には、制御部501は、工程の切り替えであると判定することができる。一方、次の工程と対応する回転周波数とその高調波の周波数の周辺領域の少なくとも1つの周辺領域でピークが検出されなかった場合、異常と判定することができる。
 また、例えば、上記の実施形態では制御部501は、振動データの周波数スペクトルが現工程の回転周波数とその高調波の周波数の周辺領域にピークを含む場合、次にピーク強度を比較し、ピーク強度が正常なピーク強度の誤差範囲内に収まっているかを判定する。そして、ピーク強度が、正常時の回転周波数とその高調波の周波数のピーク強度から所定の誤差範囲を超えて外れていた場合、異常なピークが現工程の回転周波数又はその高調波の周波数のピークに重なって発生していると考えられる。そのため、制御部501は、この場合も異常と判定することができる。
 また、上述の実施形態では、振動データの周波数スペクトルが、次の工程の回転周波数とその高調波の周波数の周辺領域にピークを含む場合、次にピーク強度を比較し、ピーク強度が次の工程の正常なピーク強度の誤差範囲内に収まっているか否かを判定する。そのため、工程の次の工程への切り替えと同時期に、発生した異常を迅速に検出することができる。
 なお、実施形態はこれに限定されるものではなく、図9の動作フローで設定した判定領域を用いて、その他の手法で判定基準が設定されてもよい。例えば、別の実施形態では、判定領域のそれぞれを各工程の特徴量を抽出する周波数領域として設定して特徴量情報1400を生成して、特徴量情報1400に基づいて異常を検出することも考えられる。この場合にも、特徴量情報1400に含まれる特徴量には、自励振動に基づくピーク由来の特徴量が含まれておらず、また、強制振動のうちピーク強度の強いピークに基づいて特徴量が生成されるため、高い精度で異常を検出することが可能となる。
 なお、上述の実施形態では、各変化点毎に異常判定基準情報1300が生成されており、異常判定基準情報1300が、変化点の前と後の回転周波数及び高調波についての情報を含む場合を例示している。しかしながら、実施形態はこれに限定されるものではない。例えば、異常判定基準情報1300は、図16に示すように、各工程ごとに生成された回転周波数とその高調波についての情報を含むようにしてもよい。また更に、制御部501は、各工程ごとに生成された異常判定基準情報1300を一まとめにして、1つの異常判定基準情報として管理してもよい。
 上述の実施形態において、例えば、図9及び図11の動作フローでは、制御部501は、例えば、設定部511として動作する。また、図12の動作フローでは、制御部501は、例えば、生成部512として動作する。
 以上において、実施形態を例示したが、実施形態はこれに限定されるものではない。例えば、上述の動作フローは例示であり、実施形態はこれに限定されるものではない。可能な場合には、動作フローは、処理の順番を変更して実行されてもよく、別に更なる処理を含んでもよく、又は、一部の処理が省略されてもよい。例えば、図15のS1502とS1503の処理は順序を入れ替えて実行してもよい。また、図15のS1509は省略されてもよい。
 図17は、実施形態に係る異常判定装置103を実現するためのコンピュータ1700のハードウェア構成を例示する図である。図17の異常判定装置103を実現するためのハードウェア構成は、例えば、プロセッサ1701、メモリ1702、記憶装置1703、読取装置1704、通信インタフェース1706、及び入出力インタフェース1707を備える。なお、プロセッサ1701、メモリ1702、記憶装置1703、読取装置1704、通信インタフェース1706、入出力インタフェース1707は、例えば、バス1708を介して互いに接続されている。
 プロセッサ1701は、例えば、シングルプロセッサであっても、マルチプロセッサやマルチコアであってもよい。プロセッサ1701は、メモリ1702を利用して例えば上述の動作フローの手順を記述したプログラムを実行することにより、上述した制御部501の一部または全部の機能を提供する。例えば、プロセッサ1701は、メモリ1702を利用して例えば上述の動作フローの手順を記述したプログラムを実行することにより、設定部511及び生成部512として動作してよい。また、上述の記憶部502は、例えばメモリ1702、記憶装置1703、及び着脱可能記憶媒体1705を含んでいる。異常判定装置103の記憶装置1703には、例えば、異常判定基準情報1300、特徴量情報1400などが格納されている。
 メモリ1702は、例えば半導体メモリであり、RAM領域及びROM領域を含んでいてよい。記憶装置1703は、例えばハードディスク、フラッシュメモリ等の半導体メモリ、又は外部記憶装置である。なお、RAMは、Random Access Memoryの略称である。また、ROMは、Read Only Memoryの略称である。
 読取装置1704は、プロセッサ1701の指示に従って着脱可能記憶媒体1705にアクセスする。着脱可能記憶媒体1705は、例えば、半導体デバイス(USBメモリ等)、磁気的作用により情報が入出力される媒体(磁気ディスク等)、光学的作用により情報が入出力される媒体(CD-ROM、DVD等)などにより実現される。なお、USBは、Universal Serial Busの略称である。CDは、Compact Discの略称である。DVDは、Digital Versatile Diskの略称である。
 通信インタフェース1706は、プロセッサ1701の指示に従ってネットワーク1720を介してデータを送受信する。例えば、プロセッサ1701は、通信インタフェース1706介して中継装置102からセンサ110で計測された振動データを取得してよい。入出力インタフェース1707は、例えば、入力装置及び出力装置との間のインタフェースであってよい。入力装置は、例えばユーザからの指示を受け付けるキーボードやマウスなどのデバイスである。出力装置は、例えばディスプレーなどの表示装置、及びスピーカなどの音声装置である。
 実施形態に係る各プログラムは、例えば、下記の形態で異常判定装置103に提供される。
(1)記憶装置1703に予めインストールされている。
(2)着脱可能記憶媒体1705により提供される。
(3)プログラムサーバ1730から提供される。 
 なお、図17を参照して述べた異常判定装置103を実現するためのコンピュータ1700のハードウェア構成は、例示であり、実施形態はこれに限定されるものではない。例えば、上述の機能部の一部または全部の機能がFPGA及びSoCなどによるハードウェアとして実装されてもよい。なお、FPGAは、Field Programmable Gate Arrayの略称である。SoCは、System-on-a-chipの略称である。
 また、上述の実施形態では、監視対象装置101とは別に異常判定装置103が備えられ、中継装置102を介して監視対象装置101が異常判定装置103とデータをやり取りする例を述べている。しかしながら、実施形態はこれに限定されるものではない。例えば、監視対象装置101や異常判定装置103の一部又は全部の機能が別の装置(例えば、監視対象装置101のユーザが保持ずる端末など)に配置されてもよく、更に別の装置を含んでもよい。
 以上において、いくつかの実施形態が説明される。しかしながら、実施形態は上記の実施形態に限定されるものではなく、上述の実施形態の各種変形形態及び代替形態を包含するものとして理解されるべきである。例えば、各種実施形態は、その趣旨及び範囲を逸脱しない範囲で構成要素を変形して具体化できることが理解されよう。また、前述した実施形態に開示されている複数の構成要素を適宜組み合わせることにより、種々の実施形態が実施され得ることが理解されよう。更には、実施形態に示される全構成要素からいくつかの構成要素を削除して又は置換して、或いは実施形態に示される構成要素にいくつかの構成要素を追加して種々の実施形態が実施され得ることが当業者には理解されよう。
100   異常検出システム
101   監視対象装置
102   中継装置
103   異常判定装置
104   管理装置
105   端末
110   センサ
501   制御部
502   記憶部
511   設定部
512   生成部
1700  コンピュータ
1701  プロセッサ
1702  メモリ
1703  記憶装置
1704  読取装置
1705  着脱可能記憶媒体
1706  通信インタフェース
1707  入出力インタフェース
1708  バス
1720  ネットワーク
1730  プログラムサーバ

Claims (7)

  1.  回転する部品を用いて所定の順序で複数の工程を実行する監視対象装置の振動をセンサで検出した振動データから取得された各工程ごとの周波数スペクトルにおいて、前記工程における変更前の工程と変更後の工程で前記振動の波形が所定の誤差範囲内で一致する周波数成分の領域を除くように判定領域を設定し、
     前記判定領域において検出された周波数スペクトルのピークに基づいて前記監視対象装置の異常の判定に用いる周波数領域を示す異常判定基準情報を生成する、
     処理を異常判定装置に実行させる生成プログラム。
  2.  更に、前記判定領域で検出された周波数スペルトルのピークのうち、ピークの強度が高い側がから所定の条件を満たさなくなるまでピークを選択し、選択されたピークに基づいて前記監視対象装置の異常の判定に用いる周波数領域を示す前記異常判定基準情報を生成する、
     処理を異常判定装置に実行させる請求項1に記載の生成プログラム。
  3.  前記異常判定基準情報には、前記複数の工程の各工程ごとに、前記選択されたピークと対応する複数の周波数領域と、前記複数の周波数領域のそれぞれに対応づけられたピーク強度とが登録されており、
     前記異常判定基準情報に登録されている前記複数の工程の各工程ごとの前記複数の周波数領域と、前記複数の周波数領域のそれぞれに対応づけられたピーク強度とに基づいて、前記監視対象装置の異常を判定する処理を異常判定装置に更に実行させる請求項2に記載の生成プログラム。
  4.  前記異常を判定する処理は、
      前記センサで計測された前記振動データを変換して得られた前記周波数スペクトルが、前記異常判定基準情報において前記複数の工程のうちの第1の工程と対応付けられている前記複数の周波数領域にピークを含むことを検出した後、前記第1の工程と対応する前記複数の周波数領域の少なくとも1つの周波数領域でピークが検出されなくなった場合、前記周波数スペクトルが、前記第1の工程の次に実施される第2の工程と対応する前記複数の周波数領域にピークを含むか否かを判定し、
      前記周波数スペクトルが、前記第2の工程と対応する前記複数の周波数領域の少なくとも1つの周波数領域でピークを含まない場合、異常を示す情報を出力する、
     処理を含む、ことを特徴とする請求項3に記載の生成プログラム。
  5.  前記異常を判定する処理は、
      前記センサで計測された前記振動データを変換して得られた前記周波数スペクトルが、前記異常判定基準情報に登録されている前記第1の工程と対応する前記複数の周波数領域にピークを含むことを検出した場合、前記第1の工程と対応する前記複数の周波数領域に含まれるピークの強度が、前記第1の工程と対応する前記複数の周波数領域のそれぞれに対応付けられたピーク強度から所定の誤差範囲内でなければ、異常を示す情報を出力する、
     処理を含む、請求項4に記載の生成プログラム。
  6.  回転する部品を用いて所定の順序で複数の工程を実行する監視対象装置の振動をセンサで検出した振動データから取得された各工程ごとの周波数スペクトルにおいて、前記工程における変更前の工程と変更後の工程で前記振動の波形が所定の誤差範囲内で一致する周波数成分の領域を除くように判定領域を設定する設定部と、
     前記判定領域において検出された周波数スペクトルのピークに基づいて前記監視対象装置の異常の判定に用いる周波数領域を示す異常判定基準情報を生成する生成部と
     を含む、異常判定装置。
  7.  回転する部品を用いて所定の順序で複数の工程を実行する監視対象装置の振動をセンサで検出した振動データから取得された各工程ごとの周波数スペクトルにおいて、前記工程における変更前の工程と変更後の工程で前記振動の波形が所定の誤差範囲内で一致する周波数成分の領域を除くように判定領域を設定し、
     前記判定領域において検出された周波数スペクトルのピークに基づいて前記監視対象装置の異常の判定に用いる周波数領域を示す異常判定基準情報を生成する、
     ことを含む、異常判定装置が実行する生成方法。
PCT/JP2017/004458 2017-02-07 2017-02-07 生成プログラム、異常判定装置、及び生成方法 WO2018146733A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018566678A JP6699763B2 (ja) 2017-02-07 2017-02-07 生成プログラム、異常判定装置、及び生成方法
PCT/JP2017/004458 WO2018146733A1 (ja) 2017-02-07 2017-02-07 生成プログラム、異常判定装置、及び生成方法
US16/524,800 US20190353563A1 (en) 2017-02-07 2019-07-29 Generation program, abnormality determination apparatus, and generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/004458 WO2018146733A1 (ja) 2017-02-07 2017-02-07 生成プログラム、異常判定装置、及び生成方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/524,800 Continuation US20190353563A1 (en) 2017-02-07 2019-07-29 Generation program, abnormality determination apparatus, and generation method

Publications (1)

Publication Number Publication Date
WO2018146733A1 true WO2018146733A1 (ja) 2018-08-16

Family

ID=63107283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004458 WO2018146733A1 (ja) 2017-02-07 2017-02-07 生成プログラム、異常判定装置、及び生成方法

Country Status (3)

Country Link
US (1) US20190353563A1 (ja)
JP (1) JP6699763B2 (ja)
WO (1) WO2018146733A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200048743A (ko) * 2018-10-30 2020-05-08 한국전력공사 플랜트 공정 제어루프의 오실레이션 진단 방법 및 이를 이용한 오실레이션 진단 장치
JP2020134310A (ja) * 2019-02-20 2020-08-31 株式会社竹田技研 振動分析装置、振動分析方法及びプログラム
CN112673327A (zh) * 2018-12-20 2021-04-16 欧姆龙株式会社 控制装置及程序
JPWO2020157818A1 (ja) * 2019-01-29 2021-11-18 Primetals Technologies Japan株式会社 診断装置及びこれを備えた設備並びに診断方法
DE112021003871T5 (de) 2020-07-21 2023-05-11 Fanuc Corporation Anomalitätsdetektionsvorrichtung

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020041455A (ja) * 2018-09-07 2020-03-19 株式会社島津製作所 ポンプ監視装置および真空ポンプ
JP2022100163A (ja) * 2020-12-23 2022-07-05 トヨタ自動車株式会社 音源推定サーバ、音源推定システム、音源推定装置、音源推定方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1183618A (ja) * 1997-09-04 1999-03-26 Toshiba Corp 音響監視装置
US20130013138A1 (en) * 2011-07-06 2013-01-10 Yinghui Lu System and method for predicting mechanical failure of a motor
WO2015068446A1 (ja) * 2013-11-08 2015-05-14 三菱電機株式会社 異常音診断装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI112972B (fi) * 1998-07-15 2004-02-13 Abb Research Ltd Laakerin kunnon arviointi
JP3829924B2 (ja) * 2001-10-23 2006-10-04 日本精工株式会社 評価装置
JP4935157B2 (ja) * 2006-04-07 2012-05-23 日本精工株式会社 異常診断装置および異常診断方法
JP6423693B2 (ja) * 2014-11-19 2018-11-14 日置電機株式会社 測定データ処理装置および測定データ処理方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1183618A (ja) * 1997-09-04 1999-03-26 Toshiba Corp 音響監視装置
US20130013138A1 (en) * 2011-07-06 2013-01-10 Yinghui Lu System and method for predicting mechanical failure of a motor
WO2015068446A1 (ja) * 2013-11-08 2015-05-14 三菱電機株式会社 異常音診断装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200048743A (ko) * 2018-10-30 2020-05-08 한국전력공사 플랜트 공정 제어루프의 오실레이션 진단 방법 및 이를 이용한 오실레이션 진단 장치
KR102560570B1 (ko) 2018-10-30 2023-07-28 한국전력공사 플랜트 공정 제어루프의 오실레이션 진단 방법 및 이를 이용한 오실레이션 진단 장치
CN112673327A (zh) * 2018-12-20 2021-04-16 欧姆龙株式会社 控制装置及程序
US11782431B2 (en) 2018-12-20 2023-10-10 Omron Corporation Control device and non-transitory computer-readable recording medium recording program
CN112673327B (zh) * 2018-12-20 2023-10-24 欧姆龙株式会社 控制装置及计算机可读取的存储介质
JPWO2020157818A1 (ja) * 2019-01-29 2021-11-18 Primetals Technologies Japan株式会社 診断装置及びこれを備えた設備並びに診断方法
JP7077426B2 (ja) 2019-01-29 2022-05-30 Primetals Technologies Japan株式会社 診断装置及びこれを備えた設備並びに診断方法
JP2020134310A (ja) * 2019-02-20 2020-08-31 株式会社竹田技研 振動分析装置、振動分析方法及びプログラム
DE112021003871T5 (de) 2020-07-21 2023-05-11 Fanuc Corporation Anomalitätsdetektionsvorrichtung

Also Published As

Publication number Publication date
JP6699763B2 (ja) 2020-05-27
JPWO2018146733A1 (ja) 2019-11-07
US20190353563A1 (en) 2019-11-21

Similar Documents

Publication Publication Date Title
WO2018146733A1 (ja) 生成プログラム、異常判定装置、及び生成方法
JP6642717B2 (ja) 異常検出プログラム、異常検出装置、及び異常検出方法
Mehrjou et al. Rotor fault condition monitoring techniques for squirrel-cage induction machine—A review
US20230080171A1 (en) Systems and methods for monitoring of mechanical and electrical machines
US10310016B2 (en) Method for the diagnostics of electromechanical system based on impedance analysis
CN110419012B (zh) 诊断设备、诊断系统、诊断方法和程序
US10267860B2 (en) Fault detection in induction machines
KR101718251B1 (ko) 회전 블레이드 강건성 모니터링 방법 및 시스템
JP6371236B2 (ja) 予兆診断システム、予兆診断方法及び予兆診断装置
JP5733913B2 (ja) 回転機械系の異常診断方法
JP6291161B2 (ja) ロータ異常の検出
JP6514239B2 (ja) 機械診断装置および機械診断方法
CN105866250B (zh) 基于振动的通风机叶片裂纹识别方法
JP6945371B2 (ja) 回転機システムの診断装置、電力変換装置、回転機システム、および回転機システムの診断方法
EP2538183A2 (en) Vibration severity analysis apparatus and method for rotating machinery
JP7196954B2 (ja) 異常予兆検出方法
US11340141B2 (en) Exception-based route plan generation
US11463032B2 (en) Detecting rotor anomalies by determining vibration trends during transient speed operation
EP4012527A1 (en) Method for determining an estimate of a shaft's angular position and measurement arrangement therefore
US20240126251A1 (en) System And Method For Motor Eccentricity Level Prediction Using Topological Data Analysis
Iglesias Martínez Development of algorithms of statistical signal processing for the detection and pattern recognitionin time series. Application to the diagnosis of electrical machines and to the features extraction in Actigraphy signals
Edomwandekhoe Modeling and fault diagnosis of broken rotor bar faults in induction motors
CN118192500A (zh) 基于plc控制的设备的诊断方法、装置和电子设备、介质
Schmidt et al. Towards prognostics for gearboxes operating under time-varying operating conditions: a frequency band identification approach

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17895658

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018566678

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17895658

Country of ref document: EP

Kind code of ref document: A1