WO2018145520A1 - 子网划分方法和装置 - Google Patents

子网划分方法和装置 Download PDF

Info

Publication number
WO2018145520A1
WO2018145520A1 PCT/CN2017/117478 CN2017117478W WO2018145520A1 WO 2018145520 A1 WO2018145520 A1 WO 2018145520A1 CN 2017117478 W CN2017117478 W CN 2017117478W WO 2018145520 A1 WO2018145520 A1 WO 2018145520A1
Authority
WO
WIPO (PCT)
Prior art keywords
site
link
information
network
subset
Prior art date
Application number
PCT/CN2017/117478
Other languages
English (en)
French (fr)
Inventor
王秀龙
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2018145520A1 publication Critical patent/WO2018145520A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools

Definitions

  • This document relates to, but is not limited to, the field of microwave communication technology, and in particular to a method and apparatus for subnetting.
  • an embodiment of the present invention provides a subnet division method and apparatus for improving the efficiency of large-scale subnet frequency planning.
  • a method for subnetting comprising:
  • the sub-sets are separately combined with the site network to configure subnets.
  • a subnet dividing device comprising:
  • a site depth determining module configured to determine a site depth of the site according to the site information and the link information
  • a site network determining module configured to determine a site network according to a parity of the site depth
  • the link subset determining module is configured to determine a link subset according to the number of frequency bands included in the source microwave network, where each link subset corresponds to one frequency band;
  • the subnet configuration module is configured to combine the link subset with the site network to configure a subnet.
  • One or more non-transitory computer readable storage media storing computer executable instructions, which when executed by one or more processors, cause the one or more processors to perform the following steps :
  • the sub-sets are separately combined with the site network to configure subnets.
  • the above subnet division method and device use the frequency band as a basis for dividing the link subnet, and each subnet corresponds to one frequency band, which makes the coupling between the subnets disappear after the subnet is divided, and also reduces the subnet of each subnet.
  • Intensiveness and complexity The subnetting method ensures the independence of each subnet, so that each subnet can perform frequency planning independently and in parallel, and after the subnet frequency planning is completed, a whole network can be simply synthesized without other adjustments. This achieves efficient parallel frequency planning for multi-band large-scale microwave networks.
  • the party The method greatly reduces the complexity and difficulty of the frequency planning of each subnet, and the subsequent combination does not need to be adjusted after the whole network, thereby greatly improving the efficiency of frequency planning in the microwave network planning, and saving the microwave network. Frequency planning time of the entire network.
  • 1 is a flow chart of a subnet division method in an embodiment
  • FIG. 2 is a schematic diagram of a site network in an embodiment
  • FIG. 3 is a schematic diagram of a source microwave link in an embodiment
  • 4A, 4B and 4C are schematic views of three subnets in one embodiment
  • FIG. 5 is a schematic diagram of a site network combined with three link subsets into three independent subnets in one embodiment
  • FIG. 6 is a flow chart of a method for determining a site network according to parity of a site depth in one embodiment
  • FIG. 7 is a flowchart of a method for configuring a subnet by combining a subset of links with a site network in an embodiment
  • FIG. 8 is a flowchart of a method for determining a site depth of a site according to site information and link information in an embodiment
  • FIG. 9 is a flowchart of a method for calculating a logical distance from a station to a corresponding root node according to site information and link information in an embodiment
  • FIG. 10 is a schematic flow chart of a method for subnetting in an embodiment
  • Figure 11 is a block diagram showing the structure of a subnet dividing device in an embodiment
  • FIG. 12 is a structural block diagram of a site network determining module in an embodiment
  • FIG. 13 is a structural block diagram of a subnet configuration module in an embodiment
  • Figure 14 is a block diagram showing the structure of a site depth determining module in one embodiment.
  • Subnets of large-scale microwave networks can be divided by regions. Although the division can perform the frequency planning of the entire network in parallel according to the subnet, there are still two major problems. First, the complexity of the subnet is high, and second, there is interference. The above two points will significantly reduce the efficiency of large-scale microwave network subnet frequency planning and time, which reduces the superiority of parallel frequency planning.
  • a subnetting method is proposed, which can be applied to a terminal or a server, and includes the following steps:
  • Step 102 Obtain site information and link information in the source microwave network.
  • the site information includes a site identifier ID, a site coordinate, and a root node information, where the root node information is used to indicate whether the current site is a root node.
  • the link information includes link connection relationships and site information, coordinate information, link band information, device configuration, antenna configuration, and link distance at both ends of each hopping microwave link.
  • Site information and link information corresponding to the active microwave network are pre-stored in the terminal or the server. To divide the subnet, the site information and link information in the source microwave network are first obtained from the terminal or the server.
  • Step 104 Determine the site depth of the site according to the site information and the link information.
  • the site depth of the site is determined according to the root node information in the site information and the link connection in the link information.
  • all the root nodes in the microwave network are obtained according to the root node information in the site information, and then the logical distance of each site to the corresponding root node is calculated according to the link connection relationship with the root node as a starting point.
  • the site depth of the site is then determined based on the logical distance of each site to the corresponding root node.
  • the logical distance refers to the number of hops of a microwave station to reach the root node of the convergence, regardless of its physical distance.
  • the site depth of the root node is first defined as 0, and then the site depth connected to the root node through the 1-hop microwave link is defined as 1 and is connected to the root node through the 2-hop microwave link.
  • the site depth is defined as 2
  • the site depth to connect to the root node through the 3-hop microwave link is defined as 3, and so on, until all sites are traversed.
  • all the root nodes in the microwave network are first obtained according to the root node information in the site information, and then the root link node is used as a starting point to generate a microwave link tree according to the link connection relationship, and each root node is generated correspondingly.
  • a microwave link tree If there is a root node of the loop, it becomes a tree topology by interrupting the one-hop microwave on the ring.
  • each microwave link tree is traversed in turn, and the site depth of the root node is defined as 0, and the site depth of the node on the primary branch is defined as 1, the second level The site depth on the fork is defined as 2, and so on, until it traverses to all leaf node sites.
  • step 106 the site network is determined according to the parity of the site depth.
  • the frequency in order to match the frequency configuration of the digital microwave link, the frequency is reasonably utilized without causing unnecessary mutual interference.
  • the station needs to be set to a low station according to the parity of the site depth of each station.
  • high stations divide all low station sites into low station subsets, and divide all high station sites into high station subsets.
  • the low station subset and the high station subset need to be hierarchically combined into a complete site network S in a visually distinguishable manner.
  • 2 is a schematic diagram of a site network in an embodiment in which different shapes represent sites of different types (ie, low stations and high stations).
  • the low station and the high station are generally divided according to the parity of the depth of the station.
  • all stations whose site depth can be divisible by 2 are regarded as a subset of the site A, and the site whose site depth cannot be divisible by 2 is used as another A subset of sites B.
  • the subset A of the station is defined as a low station subset
  • the subset of the website B is defined as a high station subset.
  • site subset A may also be defined as a high station subset
  • site subset B is defined as a low station subset.
  • duplex communication means that both communication parties can send and receive information to each other.
  • Frequency division duplex communication means that for one side of duplex communication, the transmission information and the reception information are performed through different frequencies. Therefore, the division of the high and low stations facilitates the subsequent implementation of frequency division duplex communication, that is, for the same link, the frequency used from the low station to the high station is different from the frequency used from the high station to the low station.
  • Step 108 Determine a subset of the links according to the number of frequency bands included in the source microwave network, where each subset of links corresponds to one frequency band.
  • the number of frequency bands X included in the source microwave network is obtained, and the number of frequency bands X in the entire source microwave network is divided into the entire microwave network as the number of link subsets, that is, the microwave network is subnetted according to the frequency band.
  • the division of the microwave link in the same frequency band into a subset of links, that is, each link subset contains only a single frequency band of the microwave link.
  • X is a positive integer greater than one.
  • the number of bands X is the quantity available to negotiate with the operator at the beginning of the microwave project.
  • the microwave link generally divides the frequency band according to the link distance. For example, the 1-3km uses the 23GHz frequency band.
  • 3-10km uses the 15GHz frequency band, etc., so in the subnetting based on the area, there will be links of different distances in one area, and there will be different frequency bands intertwined, coupled in the area subnet, there are different frequency bands.
  • the roads are intertwined, so if there are still two big problems in subnetting according to the area, one is that the subnet has substantially no change in network density and internal link coupling compared to the whole network. There is no significant drop; second, the coupling before the subnet is not eliminated. After the subnet frequency planning is completed, there are also several coupled microwave links between the subnets.
  • the subnet is divided based on the frequency band, and each subnet has a unique frequency band, which does not need to consider the coupling between the subnets, and also reduces the density and complexity of each subnet, which is beneficial to parallel. Frequency planning to improve the efficiency of frequency planning.
  • step 110 the link subset is separately combined with the site network to configure the subnet.
  • each link subset is combined with the site network, and combined into X.
  • a separate subnet containing high and low station information each subnet has no coupling related to frequency planning before other subnets.
  • X is the number of bands and is a positive integer greater than one.
  • the site information of the two ends of the hops of the hops in the link sub-set is obtained. ". Then, the site corresponding to the target site information in the site network is obtained according to the target site information, and finally, the discovered sites are combined with the links in the link subset to be combined into corresponding independent subnets.
  • the sub-band division based on the frequency band is advantageous for reducing the density and complexity of each subnet, as shown in FIG. 3, which is a schematic diagram of the source microwave link, and FIG. 4A, FIG. 4B and FIG. 4C are link subsets.
  • the three independent subnets combined with the site network clearly show that the density and complexity of each subnet is greatly reduced.
  • the source microwave network includes three frequency bands
  • the site network S is respectively combined with three link subsets.
  • 3 separate subnets As shown in FIG. 5, assuming that the source microwave network includes three frequency bands, it will be divided into three link subsets, and the site network S is respectively combined with three link subsets. Combined into 3 separate subnets. Among them, different shapes (circles and rectangles) in the site network S represent low stations and high stations, respectively.
  • the subnet thus combined contains the distinguishable high and low station information. Subsequent subnets can ensure the correct matching of the frequency division duplex channel and the station according to the high and low station information.
  • each subnet corresponds to one frequency band, which makes the coupling between the subnets disappear after subnetting, and also reduces each subnet.
  • the subnetting method ensures the independence of each subnet, so that each subnet can perform frequency planning independently and in parallel, and after the subnet frequency planning is completed, a whole network can be simply synthesized without other adjustments.
  • This achieves efficient parallel frequency planning for multi-band large-scale microwave networks.
  • this method greatly reduces the complexity and difficulty of the frequency planning of each subnet, and the subsequent combination does not need to be adjusted after the whole network, thereby greatly improving the microwave network. Plan the efficiency of frequency planning and save the frequency planning time of the entire network of the microwave network.
  • the step of determining a site network based on the parity of the site depth includes:
  • step 106A the stations are classified according to the parity of the site depth, and are divided into a low station subset and a high station subset.
  • the frequency is reasonably utilized without causing unnecessary mutual interference.
  • the site is divided into low station and high station according to the parity of the site depth.
  • the site is classified according to the result of the site depth data of the site divided by 2, and the site that can be divisible by 2 is called a low station, and is uniformly classified into a low station subset, and the site that cannot be divisible by 2 is called a high station, unified Classified as a high station subset.
  • the naming of the high station subset and the low station subset are interchangeable.
  • step 106B the stations in the low station subset and the high station subset are marked in a distinguishable manner and combined into a site network.
  • the low station subset and the high station subset need to be hierarchically combined into a complete site network S in a visually distinguishable manner.
  • visual distinguishability refers to the fact that the stations in the low station subset and the stations in the high station subset are presented with different visual effects, such as different shapes, sizes, colors and other visual characteristics.
  • hierarchical refers to two different subsets of sites that can be displayed at the same level, or can be displayed and edited separately at different levels, maintaining the relative independence of the subset.
  • the low station subset and the high station subset are then combined into a complete site network.
  • the different shapes in Figure 2 represent different types of sites, respectively.
  • the steps of configuring a subnet by combining a subset of links with a site network respectively include:
  • Step 110A Obtain target site information at both ends of each hopping microwave link in the link subset.
  • each link subset retains its own link information, where the link information includes site information, coordinate positions, and coordinate positions at both ends of each hopping microwave link.
  • the link band information the site information of the two ends of the hops in the link sub-group is obtained.
  • the acquired site information is called the target site information.
  • Step 110B Obtain a target site corresponding to the target site information in the site network according to the target site information.
  • the target site information includes information such as the target site ID and the target site coordinates, and the site information of each site is also included in the site network, so that the target site information in the obtained link subset can be
  • the site corresponding to the target site information in the site network is acquired, and the site corresponding to the target site information is referred to as a "target site" for the purpose of distinguishing. Since the sites in the site network are divided into low-station and high-station, and marked in a distinguishable form, in order to be able to reflect the above information in the subnet, it is necessary to first find the corresponding target site in the site network, which is convenient for subsequent It is combined with a subset of links as separate subnets.
  • Step 110C Combine the target sites with the links corresponding to the link subsets, and combine them into corresponding subnets.
  • the acquired site corresponds to the link subset.
  • the links are combined and combined into corresponding subnets.
  • 4A, 4B and 4C are schematic views of the combined subnets, respectively.
  • Each subnet contains information of the high and low stations, and the black solid dots and the hollow dots in the figure represent the low station and the high station, respectively.
  • the step 104 of determining the site depth of the site based on the site information and the link information includes:
  • Step 104A Calculate the logical distance from the site to the corresponding root node according to the site information and the link information. from.
  • the object of the study is a point-to-point digital microwave network, which is based on "hop" as the basic unit, and is connected to two sites at both ends, and is called “jump” from one end to the other.
  • the logical distance refers to the number of hops of a microwave station to reach the root node of the convergence, regardless of its physical distance.
  • the root node is a subset of the site and is a microwave link service aggregation site in the microwave network.
  • the root node can be an optical transmission site (the microwave service is aggregated through optical transmission) or a BSC (Base station controller base station in the wireless network). Controller) / RNC (Radio Network Controller) or core network point, in short, a service aggregation site.
  • the terminal first obtains all the root nodes in the microwave network according to the root node information in the site information, and then generates a microwave link tree by using the root node as a starting point, where each root node corresponds to Generate a microwave link tree. If there is a root node of the loop, it becomes a tree topology by interrupting the one-hop microwave on the ring. Finally, each microwave link tree is traversed in turn to obtain the logical distance from each station to the corresponding root node.
  • Step 104B determining the site depth of the site according to the logical distance from the site to the root node.
  • the site depth is calculated to facilitate the subsequent location of each hopping microwave link in the entire network according to the depth of the site.
  • the logical distance of each site to the root node is calculated by taking the root node as a starting point, and then the logical distance is taken as the site depth of each site.
  • the terminal defines a site depth of the root node as 0, and then defines a site depth connected to the root node by using a 1-hop microwave link as 1, and connects to the root node through a 2-hop microwave link.
  • the site depth is defined as 2, the site depth connected to the root node through a 3-hop microwave link is defined as 3, and so on.
  • a microwave network often includes multiple root nodes. Therefore, all the root nodes need to be obtained first, and then a microwave link tree is generated in the order of the root node starting from the link information. Each root node generates a microwave chain correspondingly.
  • each microwave link tree traverses each microwave link tree in turn, and of course, can traverse multiple microwave link trees in parallel, and the logical distance from the site to the root node on the primary branch for any microwave link tree Set to 1 hop microwave, the logical distance from the site to the root node on the secondary fork is 2 hops microwave, the logical distance from the site to the root node on the third-level fork is 3 hops microwave, and so on, until traversed to The logical distance of all sites in the microwave link tree to the root node.
  • the site depth of the root node is defined as 0, the site depth connected to the root node through the 1-hop microwave link is defined as 1, and the site depth connected to the root node through the 2-hop microwave link is defined as 2, analogy.
  • the step 104A of calculating the logical distance of the site to the corresponding root node based on the site information and the link information includes:
  • Step 902 Acquire all root nodes according to root node information in the site information.
  • the site information of each site includes root node information, where the root node information is used to indicate whether the corresponding site is a root node. So all root nodes can be found based on the root node information.
  • Step 904 Generate a microwave link tree in the order that the root node is the starting point, where each root node generates a microwave link tree.
  • the root node is used as a starting point, and the number of links is generated according to the link information in the microwave network, that is, the link connection information, and each root node generates a unique microwave chain correspondingly.
  • the road tree for the root node where the loop exists, interrupts the one-hop microwave on the ring to make it a tree topology.
  • step 906 the logical distance of each station to the corresponding root node is calculated by traversing each microwave link tree.
  • the logical distance of each station to the corresponding root node is calculated by traversing each microwave link tree.
  • each of the microwave link trees is traversed in sequence, and the logical distance from the site to the root node on the primary branch is 1 hop microwave, and the logical distance from the site to the root node on the secondary branch is 2 hop microwave. And so on, until the logical distance from all stations to the root node in the microwave link tree is traversed.
  • the terminal divides the source microwave network into a site set and a link set, wherein the site set includes site information, the link set includes link information (001), and then all root nodes are found according to the root node information in the site information, and combined
  • the connection relationship in the link information generates a microwave link tree (002), and then the site depth (003) of each site is calculated by traversing the microwave link tree, and then the site is divided according to the parity of the site depth.
  • Site subset A and site subset B are divided into a low station subset and a high station subset (004), and then the site subset A and the site subset B are marked and combined into a complete visually distinguishable manner.
  • Site network Network S (005), on the other hand, the terminal divides the link set into X link subsets according to the number of frequency bands X included in the source microwave network, each frequency band corresponds to a link subset (006), and finally X The link subsets are respectively combined with the site network S, and are combined into X independent subnets (007) including distinguishable high and low station information. Subsequent frequency planning can be performed on X subnets in parallel. After the subnet frequency planning is completed, a whole network can be simply synthesized without other adjustments (008), thus realizing efficient parallel frequency of multi-band large-scale microwave network. planning.
  • a subnetting device comprising:
  • the obtaining module 1102 is configured to obtain site information and link information in the source microwave network.
  • the site depth determination module 1104 is configured to determine the site depth of the site based on the site information and the link information.
  • the site network determination module 1106 is configured to determine the site network based on the parity of the site depth.
  • the link subset determining module 1108 is configured to determine a subset of the links according to the number of frequency bands included in the source microwave network, and each subset of links corresponds to one frequency band.
  • the subnet configuration module 1110 is configured to combine the link subsets with the site network to configure the subnets.
  • the site network determining module 1106 includes:
  • Classification module 1106A is configured to classify the sites into low station subsets and high station subsets based on the parity of the site depth.
  • the combining module 1106B is arranged to mark the stations in the low station subset and the high station subset in a distinguishable manner and combine them into a site network.
  • the subnet configuration module 1110 includes:
  • the target site information obtaining module 1110A is configured to acquire target site information at both ends of each hopping microwave link in the link subset.
  • the target site obtaining module 1110B is configured to acquire a target site corresponding to the target site information in the site network according to the target site information.
  • the module 1110C is configured to perform the link corresponding to the target site and the link subset respectively. Combined, combined into corresponding subnets.
  • the site depth determination module 1104 includes:
  • the logical distance calculation unit 1104A is configured to calculate the logical distance of the site to the corresponding root node based on the site information and the link information.
  • the site depth determining unit 1104B is configured to determine the site depth of the site based on the logical distance of the site to the corresponding root node.
  • the logical distance calculation unit 1104A is further configured to acquire all the root nodes according to the root node information in the site information, and generate a microwave link tree according to the link information starting from the root node, wherein each The root node generates a microwave link tree correspondingly, and calculates the logical distance between each station and the corresponding root node by traversing each microwave link tree.
  • the embodiment of the invention further provides a computer readable storage medium storing computer executable instructions, which are implemented by the processor to implement the method described in the foregoing embodiments.
  • Computer storage medium includes volatile and nonvolatile, implemented in any method or technology for storing information, such as computer readable instructions, data structures, program modules, or other data. , removable and non-removable media.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disc (DVD) or other optical disc storage, magnetic cartridge, magnetic tape, magnetic disk storage or other magnetic storage device, or may Used to store the desired information and Any other medium that can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules or other data in a modulated data signal, such as a carrier wave or other transport mechanism, and can include any information delivery media.
  • a modulated data signal such as a carrier wave or other transport mechanism
  • the embodiment of the invention greatly reduces the complexity and difficulty of the frequency planning of each subnet, and the subsequent combination does not need to be adjusted after the whole network, thereby greatly improving the efficiency of frequency planning in the microwave network planning, and saving The frequency planning time of the whole network of the microwave network.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

一种子网划分方法和装置,所述方法包括:获取源微波网络中的站点信息和链路信息(102),根据站点信息和链路信息确定站点的站点深度(104),根据站点深度的奇偶性确定站点网络(106),根据所述源微波网络包含的频段数确定链路子集,每个链路子集对应一个频段(108),将链路子集分别与站点网络进行结合配置子网(110)。

Description

子网划分方法和装置 技术领域
本文涉及但不限于微波通信技术领域,特别是涉及一种子网划分方法和装置。
背景技术
在目前的通信领域,点对点数字微波通信是一种重要的传输方式,是很多移动通信网络的回传网的重要一部分。网络规划工作是建设数字微波通信网络的一个关键步骤之一,而微波网络的频率规划又是微波网络规划的重要组成部分。对于大规模的微波网络来说,划分为若干个子网并行地进行频率规划对于整体网络规划工作效率的提高和时间的节省是至关重要的,如何有效的对大规模微波网络划分子网是一个切实的问题。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
基于此,本发明实施例提供一种提高大规模子网频率规划效率的子网划分方法和装置。
一种子网划分方法,所述方法包括:
获取源微波网络中的站点信息和链路信息;
根据所述站点信息和所述链路信息确定站点的站点深度;
根据所述站点深度的奇偶性确定站点网络;
根据所述源微波网络包含的频段数确定链路子集,每个链路子集对应一个频段;
将链路子集分别与所述站点网络进行结合配置子网。
一种子网划分装置,所述装置包括:
获取模块,设置为获取源微波网络中的站点信息和链路信息;
站点深度确定模块,设置为根据所述站点信息和所述链路信息确定站点的站点深度;
站点网络确定模块,设置为根据所述站点深度的奇偶性确定站点网络;
链路子集确定模块,设置为根据所述源微波网络包含的频段数确定链路子集,每个链路子集对应一个频段;
子网配置模块,设置为将链路子集分别与所述站点网络进行结合配置子网。
一个或多个存储有计算机可执行指令的非易失性计算机可读存储介质,所述计算机可执行指令被一个或多个处理器执行时,可使得所述一个或多个处理器执行以下步骤:
获取源微波网络中的站点信息和链路信息;
根据所述站点信息和所述链路信息确定站点的站点深度;
根据所述站点深度的奇偶性确定站点网络;
根据所述源微波网络包含的频段数确定链路子集,每个链路子集对应一个频段;
将链路子集分别与所述站点网络进行结合配置子网。
上述子网划分方法和装置,通过将频段作为链路子网的划分依据,每个子网对应一个频段,这使得子网划分后,子网之间的耦合消失,同时也降低了每个子网的密集程度和复杂度。该子网划分的方法保证了每个子网的独立性,使得后续每个子网可以独立并行地进行频率规划,且子网频率规划完成后又可以简单地合成一个整网而不需要做其他调整,这样就实现了多频段大规模微波网络的高效并行频率规划。与基于区域的子网划分方法相比,该方 法极大的降低了每个子网频率规划的复杂度和难度,且后续结合为全网后不再需要进行调整,从而极大的提高了微波网络规划中频率规划的效率,并节省了微波网络整网的频率规划时间。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为一个实施例中子网划分方法流程图;
图2为一个实施例中站点网络的示意图;
图3为一个实施例中源微波链路的示意图;
图4A、4B和4C为一个实施例中三个子网的示意图;
图5为一个实施例中站点网络分别与3个链路子集组合为3个独立子网的示意图;
图6为一个实施例中根据站点深度的奇偶性确定站点网络的方法流程图;
图7为一个实施例中将链路子集分别与站点网络进行结合配置子网的方法流程图;
图8为一个实施例中根据站点信息和链路信息确定站点的站点深度的方法流程图;
图9为一个实施例中根据站点信息和链路信息计算站点到对应根节点的逻辑距离的方法流程图;
图10为一个实施例中子网划分方法的流程示意图;
图11为一个实施例中子网划分装置的结构框图;
图12为一个实施例中站点网络确定模块的结构框图;
图13为一个实施例中子网配置模块的结构框图;
图14为一个实施例中站点深度确定模块的结构框图。
本发明的实施方式
大规模微波网络的子网可以按照区域来划分。这样划分虽然可以按照子网并行进行整网的频率规划,但是仍然存在两个大的问题,一是子网的复杂度高,二是存在干扰。以上两点会使得大规模微波网络子网频率规划的效率显著的下降和时间的延长,降低了并行频率规划的优越性。
如图1所示,在一个实施例中,提出了一种子网划分方法,该方法可应用于终端或服务器中,包括以下步骤:
步骤102,获取源微波网络中的站点信息和链路信息。
在本实施例中,站点信息包括站点标识ID、站点坐标和根节点信息,其中,根节点信息用于标注当前站点是否为根节点。链路信息包括链路连接关系以及每一跳微波链路两端的站点信息、坐标信息、链路频段信息、设备配置、天线配置、链路距离。终端或服务器中预先存储有源微波网络对应的站点信息和链路信息,为了进行子网的划分,首先从终端或服务器中获取源微波网络中的站点信息和链路信息。
步骤104,根据站点信息和链路信息确定站点的站点深度。
在本实施例中,在获取到源微波网络的站点信息和链路信息后,根据该站点信息中的根节点信息和链路信息中的链路连接来确定站点的站点深度。在一个实施例中,首先,根据站点信息中的根节点信息获取到微波网络中所有的根节点,然后根据链路连接关系以根节点为起始点计算每个站点到对应根节点的逻辑距离,然后根据每个站点到对应根节点的逻辑距离确定站点的站点深度。其中,逻辑距离是指一个微波站点经过多少跳微波达到汇聚的根节点,与其物理距离无关。可选地,先将根节点的站点深度定义为0,然后以此为基准,将通过1跳微波链路连接到根节点的站点深度定义为1,将通过2跳微波链路连接到根节点的站点深度定义为2,将通过3跳微波链路连接到根节点的站点深度定义为3,以此类推,直到遍历完所有的站点。
在另一个实施例中,首先根据站点信息中的根节点信息获取到微波网络中所有的根节点,然后根据链路连接关系以根节点作为起始点生成微波链路树,每个根节点对应生成一棵微波链路树。若存在环路的根节点,通过中断环上的一跳微波使其成为树状拓扑。最后依次遍历每一棵微波链路树,将根节点的站点深度定义为0,一级分叉上的节点的站点深度定义为1,二级分 叉上的站点深度定义为2,以此类推,直到遍历到所有的叶子节点站点。
步骤106,根据站点深度的奇偶性确定站点网络。
在本实施例中,为了配合数字微波链路的频率配置,使得频率得到合理的利用且不造成不必要的相互干扰,首先,需要根据每个站点的站点深度的奇偶性将站点设置为低站和高站,将所有低站的站点划分为低站子集,将所有高站的站点划分为高站子集。为了便于后续根据高低站信息进行频率的规划,需要将低站子集和高站子集以视觉可区分的方式分层次组合为一个完整的站点网络S。如图2所示为一个实施例中站点网络的示意图,图中不同的形状分别代表不同类型(即低站和高站)的站点。低站和高站一般是根据站点深度的奇偶性来划分的,在一个实施例中,将所有站点深度能够被2整除的站点作为一个站点子集A,站点深度不能被2整除的站点作为另一个站点子集B。根据微波网络的要求定义站点子集A为低站子集,定义站点子集B为高站子集。在另一个实施例中,也可以将站点子集A定义为高站子集,站点子集B定义为低站子集。通过将站点分为高低站便于后续在链路分层的时候通过站点深度将每一跳微波链路两端站点的高低站信息提取出来,就可以根据该高低站信息判断每一跳链路的站点在整网中的位置。进一步的,通过高低站的定义便于后续实现频分双工通信。其中,双工通信是指通信双方彼此既可以发送信息也可以接收信息,频分双工通信是指对双工通信的一方来说,发送信息和接收信息是通过不同的频率来进行的。所以高低站的划分便于后续实现频分双工通信,即对于同一链路,从低站到高站使用的频率与从高站到低站使用的频率不同。
步骤108,根据源微波网络包含的频段数确定链路子集,每个链路子集对应一个频段。
在本实施例中,首先,获取源微波网络中包含的频段数X,将整个源微波网络中的频段数量X作为链路子集的数量划分整个微波网络,即根据频段对微波网络进行子网的划分,将同一频段的微波链路划分为一个链路子集,即每个链路子集中仅包含唯一的一个频段的微波链路。其中,X为大于1的正整数。频段数X是在微波项目开始阶段与运营商协商好的可用的数量。微波链路一般是按照链路距离来划分频段,比如,1-3km用23GHz频段, 3-10km用15GHz频段等,所以基于区域的子网划分中,一个区域中会有不同距离的链路,也就会有不同的频段交织在一起,耦合在区域子网内部,存在不同频段链路的互相交织,因此如果按照区域划分子网仍然存在两个大的问题,一是子网相对于整网来说,网络密度和内部链路耦合性基本上没有变化即子网的网络复杂度没有明显下降;二是子网之前的耦合性没有消除,子网频率规划完成后,还要处理几个子网之间有耦合的微波链路。而本实施例中,基于频段进行子网的划分,每个子网都唯一对应一个频段,不需要考虑子网之间的耦合,同时也降低了每个子网的密集程度和复杂度,有利于并行进行频率的规划,提高频率规划的效率。
步骤110,将链路子集分别与站点网络进行结合配置子网。
在本实施例中,在根据源微波网络包含的频段数X将源微波网络的链路划分为X个链路子集后,分别将每个链路子集与站点网络进行结合,组合为X个包含了高低站信息的独立子网,每个子网与其他子网之前不存在频率规划相关的耦合性。其中,X为频段数,为大于1的正整数。可选地,首先,获取链路子集中每一跳微波链路两端的站点信息,为了便于区分,将获取到链路子集中的每一跳微波链路两端的站点信息称为“目标站点信息”。然后根据该目标站点信息获取站点网络中与目标站点信息对应的站点,最后,将查找到的站点分别与链路子集中的链路进行结合,组合为对应的独立子网。在本实施例中,基于频段的子网划分有利于降低每个子网的密集程度和复杂度,如图3所示是源微波链路的示意图,如图4A、4B和4C是链路子集与站点网络(参考图2)组合成的3个独立子网,显然可见每个子网的密集程度和复杂度大幅度降低了。在一个具体的实施例中,如图5所示,假设源微波网络包含有3个频段,那么将分为三个链路子集,通过将站点网络S分别与3个链路子集结合,组合为3个独立的子网。其中,站点网络S中的不同形状(圆形和矩形)分别代表了低站和高站。这样组合得到的子网包含了可区分的高低站信息。后续每个子网根据高低站信息能确保频分双工的波道与站点的正确匹配。
在本实施例中,通过将频段作为链路子网的划分依据,每个子网对应一个频段,这使得子网划分后,子网之间的耦合消失,同时也降低了每个子网 的密集程度和复杂度。该子网划分的方法保证了每个子网的独立性,使得后续每个子网可以独立并行地进行频率规划,且子网频率规划完成后又可以简单地合成一个整网而不需要做其他调整,这样就实现了多频段大规模微波网络的高效并行频率规划。与基于区域的子网划分方法相比,该方法极大的降低了每个子网频率规划的复杂度和难度,且后续结合为全网后不再需要进行调整,从而极大的提高了微波网络规划中频率规划的效率,并节省了微波网络整网的频率规划时间。
如图6所示,在一个实施例中,根据站点深度的奇偶性确定站点网络的步骤包括:
步骤106A,根据站点深度的奇偶性将站点进行分类,分为低站子集和高站子集。
在本实施例中,为了能够配合数字微波链路的频率配置,使得频率得到合理的利用,且不造成不必要的相互干扰。在确定了每个站点的站点深度后,根据站点深度的奇偶性将站点划分为低站和高站两类。可选地,根据站点的站点深度数据除2的结果对站点进行分类,能被2整除的站点称为低站,统一归为低站子集,不能被2整除的站点称为高站,统一归为高站子集。在另一实施例中,高站子集和低站子集的命名是可以互换的。
步骤106B,将低站子集和高站子集中的站点以可区分的方式进行标记,并组合为站点网络。
在本实施例中,为了便于后续根据高低站信息进行频率的规划,需要将低站子集和高站子集以视觉可区分的方式分层次组合为一个完整的站点网络S。其中,视觉可区分指的是低站子集中的站点和高站子集中的站点以不同的视觉效果呈现,比如不同的形状、大小、颜色等视觉特性。其中,分层次是指两个不同的站点子集可以在同一层次显示,也可以分别在不同的层次显示和分别编辑,保持了子集的相对独立性。然后将低站子集和高站子集组合为完整的站点网络。如图2中不同的形状分别代表不同类型的站点。
如图7所示,在一个实施例中,将链路子集分别与站点网络进行结合配置子网的步骤包括:
步骤110A,获取链路子集中每一跳微波链路两端的目标站点信息。
在本实施例中,在将微波网络中的链路按照频段划分为若干个链路子集后,为了最终获取子网的划分,还需要将链路子集分别与站点网络进行结合。可选地,链路划分为若干个链路子集后,每个链路子集都保留有自己的链路信息,该链路信息包括每一跳微波链路两端的站点信息、坐标位置、链路频段信息等,首先获取到链路子集中每一跳微波链路两端的站点信息,为了便于区分,这里的获取到的站点信息称为“目标站点信息”,在本实施例中,需要获取链路子集中包含的所有站点信息,便于后续在站点网络中查找到对应的站点,然后组合为子网。
步骤110B,根据目标站点信息获取站点网络中与目标站点信息对应的目标站点。
在本实施例中,目标站点信息包括了目标站点ID、目标站点坐标等信息,在站点网络中也包含了每一个站点的站点信息,所以根据获取到的链路子集中的目标站点信息就可以获取到站点网络中与该目标站点信息对应的站点,为了便于区分,将与目标站点信息对应的站点成为“目标站点”。由于站点网络中的站点分成了低站和高站,并且以可区分的形式进行标记,为了能够在子网中也体现以上信息,所以需要先在站点网络中查找到对应的目标站点,便于后续与链路子集分别结合为独立的子网。
步骤110C,将目标站点分别与链路子集中对应的链路进行结合,组合为对应的子网。
在本实施例中,为了能够在子网中包含有高低站的信息,在站点网络中获取到与链路子集中的链路对应的目标站点后,将获取到的站点与链路子集中对应的链路进行结合,组合为对应的子网。图4A、4B和4C分别是组合后的子网的示意图,每个子网都包含了高低站的信息,图中黑色实心圆点和空心圆点分别表示低站和高站。
如图8所示,在一个实施例中,根据站点信息和链路信息确定站点的站点深度的步骤104包括:
步骤104A,根据站点信息和链路信息计算站点到对应根节点的逻辑距 离。
在本实施例中,研究的对象是点对点数字微波网络,其是以“跳”为基本单位的,连接的是两端的两个站点,从一端到另一端称为“跳”。逻辑距离是指一个微波站点经过多少跳微波达到汇聚的根节点,与其物理距离无关。根节点是站点中的一个子集,是微波网络中微波链路业务汇聚站点,根节点可以是光传输站点(微波业务通过光传输汇聚),也可以是无线网络中的BSC(Base station controller基站控制器)/RNC(Radio Network Controller无线网络控制器)或者核心网络点,总之就是业务汇聚站点。可选地,首先,终端根据站点信息中的根节点信息获取到微波网络中所有的根节点,然后将链路集中的链路以根节点作为起始点生成微波链路树,每个根节点对应生成一棵微波链路树。若存在环路的根节点,通过中断环上的一跳微波使其成为树状拓扑。最后依次遍历每一棵微波链路树获取每个站点到对应根节点的逻辑距离。
步骤104B,根据站点到根节点的逻辑距离确定站点的站点深度。在本实施例中,站点深度的计算是为了便于后续根据该站点深度就可以获取每一跳微波链路在整网中的位置。通过以根节点作为起始点来计算每个站点到该根节点的逻辑距离,然后将逻辑距离作为每个站点的站点深度。可选地,在一个实施例中,终端将根节点的站点深度定义为0,然后将通过1跳微波链路连接到根节点的站点深度定义为1,通过2跳微波链路连接到根节点的站点深度定义为2,通过3跳微波链路连接到根节点的站点深度定义为3,以此类推。一个微波网络中往往包括多个根节点,所以首先需要获取到所有的根节点,然后根据链路信息以根节点为起始点的顺序生成微波链路树,每个根节点对应生成一棵微波链路树,之后依次遍历每一棵微波链路树,当然也可以并行地遍历多棵微波链路树,针对任一棵微波链路树,将一级分叉上的站点到根节点的逻辑距离设定为1跳微波,二级分叉上的站点到根节点的逻辑距离为2跳微波,三级分叉上的站点到根节点的逻辑距离为3跳微波,以此类推,直到遍历到该微波链路树中所有站点到根节点的逻辑距离。之后,再将根节点的站点深度定义为0,将通过1跳微波链路连接到根节点的站点深度定义为1,通过2跳微波链路连接到根节点的站点深度定义为2,以此 类推。
如图9所示,在一个实施例中,根据站点信息和链路信息计算站点到对应根节点的逻辑距离的步骤104A包括:
步骤902,根据站点信息中的根节点信息获取所有的根节点。
在本实施例中,每一个站点的站点信息中包括根节点信息,其中,根节点信息用于标注对应的站点是否为根节点。所以根据根节点信息就可以找到所有的根节点。
步骤904,根据链路信息以根节点为起始点的顺序生成微波链路树,其中,每个根节点对应生成一棵微波链路树。
在本实施例中,找到所有的根节点后,将根节点作为起始点,根据微波网络中的链路信息即链路连接信息生成链路数,每个根节点对应生成唯一一棵微波链路树,对于存在环路的根节点,中断环上的一跳微波使其成为树状拓扑。
步骤906,通过遍历每一棵微波链路树计算每个站点到对应根节点的逻辑距离。
在本实施例中,生成链路树后,通过遍历每一棵微波链路树来计算每个站点到对应根节点的逻辑距离。可选地,依次遍历每一棵微波链路树,一级分叉上的站点到根节点的逻辑距离为1跳微波,二级分叉上的站点到根节点的逻辑距离为2跳微波,以此类推,直到遍历到该微波链路树中所有站点到根节点的逻辑距离。
如图10所示,在一个实施例中,为了便于本方案更好的理解,结合图10所示的方案示意图进行说明。首先,终端将源微波网络分为了站点集和链路集,其中站点集包括站点信息、链路集包括链路信息(001),然后根据站点信息中的根节点信息找到所有的根节点,结合链路信息中的连接关系生成了一个个微波链路树(002),之后通过遍历微波链路树计算得到的每个站点的站点深度(003),继而根据站点深度的奇偶性将站点分为了站点子集A和站点子集B,即分为了低站子集和高站子集(004),然后将站点子集A和站点子集B以视觉可区分的方式进行标记并组合为完整的站点网 络S(005),另一方面,终端根据源微波网络中包含的频段数X将链路集分为了X个链路子集,每一个频段对应一个链路子集(006),最后将X个链路子集分别与站点网络S进行结合,组合为了X个包括了可区分高低站信息的独立子网(007)。后续就可以并行的对X个子网进行频率规划,子网频率规划完成后可以简单地合成一个整网而不需要做其他调整(008),这样就实现了多频段大规模微波网络的高效并行频率规划。
如图11所示,在一个实施例中,提出了一种子网划分装置,该装置包括:
获取模块1102,设置为获取源微波网络中的站点信息和链路信息。
站点深度确定模块1104,设置为根据站点信息和链路信息确定站点的站点深度。
站点网络确定模块1106,设置为根据站点深度的奇偶性确定站点网络。
链路子集确定模块1108,设置为根据源微波网络包含的频段数确定链路子集,每个链路子集对应一个频段。
子网配置模块1110,设置为将链路子集分别与站点网络进行结合配置子网。
如图12所示,在一个实施例中,站点网络确定模块1106包括:
分类模块1106A,设置为根据站点深度的奇偶性将站点进行分类,分为低站子集和高站子集。
组合模块1106B,设置为将低站子集和高站子集中的站点以可区分的方式进行标记,并组合为站点网络。
如图13所示,在一个实施例中,子网配置模块1110包括:
目标站点信息获取模块1110A,设置为获取链路子集中每一跳微波链路两端的目标站点信息。
目标站点获取模块1110B,设置为根据目标站点信息获取站点网络中与目标站点信息对应的目标站点。
结合模块1110C,设置为将目标站点分别与链路子集中对应的链路进行 结合,组合为对应的子网。
如图14所示,在一个实施例中,站点深度确定模块1104包括:
逻辑距离计算单元1104A,设置为根据站点信息和链路信息计算站点到对应根节点的逻辑距离。
站点深度确定单元1104B,设置为根据站点到对应根节点的逻辑距离确定站点的站点深度。
在一个实施例中,逻辑距离计算单元1104A还设置为根据站点信息中的根节点信息获取所有的根节点,根据链路信息以根节点为起始点的顺序生成微波链路树,其中,每个根节点对应生成一棵微波链路树,通过遍历每一棵微波链路树计算每个站点到对应根节点的逻辑距离。
本发明实施例还提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现上述实施例所述的方法。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理单元的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些组件或所有组件可以被实施为由处理器,如数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并 且可以被计算机访问的任何其他的介质。此外,本领域技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
工业实用性
本发明实施例极大的降低了每个子网频率规划的复杂度和难度,且后续结合为全网后不再需要进行调整,从而极大的提高了微波网络规划中频率规划的效率,并节省了微波网络整网的频率规划时间。

Claims (11)

  1. 一种子网划分方法,所述方法包括:
    获取源微波网络中的站点信息和链路信息(102);
    根据所述站点信息和所述链路信息确定站点的站点深度(104);
    根据所述站点深度的奇偶性确定站点网络(106);
    根据所述源微波网络包含的频段数确定链路子集,每个链路子集对应一个频段(108);
    将链路子集分别与所述站点网络进行结合配置子网(110)。
  2. 根据权利要求1所述的方法,其中,所述根据所述站点深度的奇偶性确定站点网络(106)的步骤包括:
    根据站点深度的奇偶性将站点进行分类,分为低站子集和高站子集(106A);
    将所述低站子集和高站子集中的站点以可区分的方式进行标记,并组合为站点网络(106B)。
  3. 根据权利要求1所述的方法,其中,所述将链路子集分别与所述站点网络进行结合配置子网(110)的步骤包括:
    获取链路子集中每一跳微波链路两端的目标站点信息(110A);
    根据所述目标站点信息获取所述站点网络中与所述目标站点信息对应的目标站点(110B);
    将所述目标站点分别与所述链路子集中对应的链路进行结合,组合为对应的子网(110C)。
  4. 根据权利要求1所述的方法,其中,所述根据所述站点信息和所述链路信息确定站点的站点深度(104)的步骤包括:
    根据所述站点信息和所述链路信息计算站点到对应根节点的逻辑距离(104A);
    根据所述站点到对应根节点的逻辑距离确定站点的站点深度(104B)。
  5. 根据权利要求4所述的方法,其中,所述根据所述站点信息和所述链路信息计算每个站点到对应根节点的逻辑距离(104A)的步骤包括:
    根据所述站点信息中的根节点信息获取所有的根节点(902);
    根据所述链路信息以根节点为起始点的顺序生成微波链路树,其中,每个根节点对应生成一棵微波链路树(904);
    通过遍历每一棵微波链路树计算每个站点到对应根节点的逻辑距离(906)。
  6. 一种子网划分装置,所述装置包括:
    获取模块(1102),设置为获取源微波网络中的站点信息和链路信息;
    站点深度确定模块(1104),设置为根据所述站点信息和所述链路信息确定站点的站点深度;
    站点网络确定模块(1106),设置为根据所述站点深度的奇偶性确定站点网络;
    链路子集确定模块(1108),设置为根据所述源微波网络包含的频段数确定链路子集,每个链路子集对应一个频段;
    子网配置模块(1110),设置为将链路子集分别与所述站点网络进行结合配置子网。
  7. 根据权利要求6所述的装置,其中,所述站点网络确定模块(1106)包括:
    分类模块(1106A),设置为根据站点深度的奇偶性将站点进行分类,分为低站子集和高站子集;
    组合模块(1106B),设置为将所述低站子集和高站子集中的站点以可区分的方式进行标记,并组合为站点网络。
  8. 根据权利要求6所述的装置,其中,所述子网配置模块(1110)包括:
    目标站点信息获取模块(1110A),设置为获取链路子集中每一跳微波链路两端的目标站点信息;
    目标站点获取模块(1110B),设置为根据所述目标站点信息获取所述站点网络中与所述目标站点信息对应的目标站点;
    结合模块(1110C),设置为将所述目标站点分别与所述链路子集中对应的链路进行结合,组合为对应的子网。
  9. 根据权利要求6所述的装置,其中,所述站点深度确定模块(1104)包括:
    逻辑距离计算单元(1104A),设置为根据所述站点信息和所述链路信息计算站点到对应根节点的逻辑距离;
    站点深度确定单元(1104B),设置为根据所述站点到对应根节点的逻辑距离确定站点的站点深度。
  10. 根据权利要求9所述的装置,其中,
    所述逻辑距离计算单元(1104A),还设置为根据所述站点信息中的根节点信息获取所有的根节点,根据所述链路信息以根节点为起始点的顺序生成微波链路树,其中,每个根节点对应生成一棵微波链路树,通过遍历每一棵微波链路树计算每个站点到对应根节点的逻辑距离。
  11. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现权利要求1至5中任一项所述的方法。
PCT/CN2017/117478 2017-02-09 2017-12-20 子网划分方法和装置 WO2018145520A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710071855.7A CN108419245B (zh) 2017-02-09 2017-02-09 子网划分方法和装置
CN201710071855.7 2017-02-09

Publications (1)

Publication Number Publication Date
WO2018145520A1 true WO2018145520A1 (zh) 2018-08-16

Family

ID=63107188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/117478 WO2018145520A1 (zh) 2017-02-09 2017-12-20 子网划分方法和装置

Country Status (2)

Country Link
CN (1) CN108419245B (zh)
WO (1) WO2018145520A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200267568A1 (en) * 2019-02-20 2020-08-20 Commscope Technologies Llc Frequency planning for a communication system
CN111695223A (zh) * 2020-06-11 2020-09-22 Ut斯达康通讯有限公司 一种网络拓扑布局方法及系统
WO2023131307A1 (zh) * 2022-01-10 2023-07-13 中兴通讯股份有限公司 微波网络根节点查询方法及装置、微波系统和存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090010164A1 (en) * 2007-06-28 2009-01-08 Nec (China) Co., Ltd. Method and apparatus for assigning channels for a multi-radio wireless mesh network
US20090310478A1 (en) * 2008-06-11 2009-12-17 Samsung Electronics Co., Ltd. Apparatus and method for allocating subchannels and controlling interference in ofdma systems
CN102870447A (zh) * 2012-06-26 2013-01-09 华为技术有限公司 微波网络规划的方法及装置
CN103563423A (zh) * 2013-05-24 2014-02-05 华为技术有限公司 一种无线通信方法及频率分配装置
CN103596181A (zh) * 2013-08-23 2014-02-19 上海交通大学 认知无线电网络中基于拓扑控制的频谱资源分配方法
CN104202747A (zh) * 2014-04-17 2014-12-10 中兴通讯股份有限公司 一种频谱管理的方法、设备和系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7433332B2 (en) * 2003-04-30 2008-10-07 Skypipes Wireless, Inc. Managed microcell wireless mesh network architecture
CN102355730A (zh) * 2011-06-30 2012-02-15 哈尔滨工业大学 认知无线电中基于系统收益的频谱分配方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090010164A1 (en) * 2007-06-28 2009-01-08 Nec (China) Co., Ltd. Method and apparatus for assigning channels for a multi-radio wireless mesh network
US20090310478A1 (en) * 2008-06-11 2009-12-17 Samsung Electronics Co., Ltd. Apparatus and method for allocating subchannels and controlling interference in ofdma systems
CN102870447A (zh) * 2012-06-26 2013-01-09 华为技术有限公司 微波网络规划的方法及装置
CN103563423A (zh) * 2013-05-24 2014-02-05 华为技术有限公司 一种无线通信方法及频率分配装置
CN103596181A (zh) * 2013-08-23 2014-02-19 上海交通大学 认知无线电网络中基于拓扑控制的频谱资源分配方法
CN104202747A (zh) * 2014-04-17 2014-12-10 中兴通讯股份有限公司 一种频谱管理的方法、设备和系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200267568A1 (en) * 2019-02-20 2020-08-20 Commscope Technologies Llc Frequency planning for a communication system
US11533633B2 (en) * 2019-02-20 2022-12-20 Commscope Technologies Llc Frequency planning for a communication system
CN111695223A (zh) * 2020-06-11 2020-09-22 Ut斯达康通讯有限公司 一种网络拓扑布局方法及系统
CN111695223B (zh) * 2020-06-11 2023-03-03 Ut斯达康通讯有限公司 一种网络拓扑布局方法及系统
WO2023131307A1 (zh) * 2022-01-10 2023-07-13 中兴通讯股份有限公司 微波网络根节点查询方法及装置、微波系统和存储介质

Also Published As

Publication number Publication date
CN108419245B (zh) 2021-11-12
CN108419245A (zh) 2018-08-17

Similar Documents

Publication Publication Date Title
TWI737938B (zh) 在無線通訊網路中經由次頻帶進行通訊的方法、裝置及電腦可讀取媒體
WO2021057232A1 (zh) 信号传输方法及装置
Yacoub Foundations of mobile radio engineering
WO2018145520A1 (zh) 子网划分方法和装置
Gandhi et al. Minimizing broadcast latency and redundancy in ad hoc networks
US20190281614A1 (en) Systems and methods of communicating via sub-bands in wireless communication networks
JP2022095933A (ja) ランダムアクセス方法及び装置
US20190028247A1 (en) Channel transmission method, apparatus, and system for nb-iot
EP3097721B1 (en) Methods and apparatuses for coordinating resource scheduling between wireless networks
JP2021503845A (ja) 通信方法および通信デバイス
US20200366452A1 (en) Channel transmission method, and related products
TW201916709A (zh) 配置anr的方法、終端設備、基地台和核心網路設備
CA3055098C (en) Data transmission method and device
CN104519549A (zh) 业务接入方法、用户设备和无线控制器
WO2016197899A1 (zh) 基于子帧偏移的载波聚合方法和基站
KR20200079545A (ko) 리소스 구성 방법 및 장치 및 컴퓨터 저장 매체
WO2017193338A1 (zh) 传输系统信息的方法、基站和终端
US12101661B2 (en) Method and apparatus for relay operation in wireless communication system
Coutinho et al. A novel location-based content distribution protocol for vehicular named-data networks
JP2021515430A (ja) Bwpの周波数ホッピング設定方法及びネットワーク装置、端末
CN110831104A (zh) 一种线型拓扑无线自组网网络路由方法
CN110858801B (zh) 一种信息接收和发送方法及装置
WO2019084842A1 (zh) 无线通信方法和设备
TW201919359A (zh) 無線通訊方法、網路設備和終端設備
CN104780610A (zh) 一种基于终端直通通信的资源分配方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17896233

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17896233

Country of ref document: EP

Kind code of ref document: A1