WO2018143838A1 - Ionizing radiation converter with cross-linked structure and its fabrication method - Google Patents

Ionizing radiation converter with cross-linked structure and its fabrication method Download PDF

Info

Publication number
WO2018143838A1
WO2018143838A1 PCT/RU2017/000663 RU2017000663W WO2018143838A1 WO 2018143838 A1 WO2018143838 A1 WO 2018143838A1 RU 2017000663 W RU2017000663 W RU 2017000663W WO 2018143838 A1 WO2018143838 A1 WO 2018143838A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
conductivity type
junction
horizontal
doped
Prior art date
Application number
PCT/RU2017/000663
Other languages
English (en)
French (fr)
Inventor
Viktor Nikolaevich Murashev
Sergej Aleksandrovich LEGOTIN
Andrej Andreevich KRASNOV
Sergej Ivanovich DIDENKO
Kseniya Andreevna KUZ'MINA
Mariya Vladimirovna SINEVA
Original Assignee
National University Of Science And Technology "Misis"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Of Science And Technology "Misis" filed Critical National University Of Science And Technology "Misis"
Priority to JP2019541228A priority Critical patent/JP2020507073A/ja
Priority to KR1020197024967A priority patent/KR102595089B1/ko
Priority to DE112017006974.2T priority patent/DE112017006974T5/de
Priority to CN201780089174.1A priority patent/CN110494929A/zh
Priority to EA201900377A priority patent/EA201900377A1/ru
Publication of WO2018143838A1 publication Critical patent/WO2018143838A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21HOBTAINING ENERGY FROM RADIOACTIVE SOURCES; APPLICATIONS OF RADIATION FROM RADIOACTIVE SOURCES, NOT OTHERWISE PROVIDED FOR; UTILISING COSMIC RADIATION
    • G21H1/00Arrangements for obtaining electrical energy from radioactive sources, e.g. from radioactive isotopes, nuclear or atomic batteries
    • G21H1/06Cells wherein radiation is applied to the junction of different semiconductor materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Definitions

  • This invention relates to converters of ionizing radiation energy to electricity (EMF) and can be used in drone aviation, highly explosive areas, e.g. in mines, in nighttime indicators located in difficultly accessible areas, in medicine (cardiac pacemakers) etc.
  • EMF ionizing radiation energy to electricity
  • Disadvantages of the structure are the relatively small volume of the irradiated semiconducting material due to the small irradiated surface area and the limited penetration depth of ionizing beta radiation (less than 25 ⁇ ) the short minority carrier charge lifetime due to the structural defects during vanadium doping of the working area.
  • the surface of the microchannel walls as well as the front and rear surfaces of semiconductor wafer have microtextures, almost the entire semiconductor wafer surface except its side surface comprises a doped layer forming a p-n junction and a diode structure, doped layer is covered with a radioactive semiconductor layer acting as a current collecting contact in to the diode structure and is a beta radiation source, the doped layer and the bottom layer replicate the shape of the textured surface, and the contact to the base region of the semiconductor wafer is located on the side surface.
  • Disadvantages of the semiconductor converter are the complex technology of its production and filling of the penetrating channels with solid- state radioactive isotopes. Low quality of the textured surface of penetrating channels and hence intense leakage that do not allow achieving high specific power of the converter.
  • the prototype of the first object of this invention is a 3D structure of a semiconductor beta-voltaic converter, transforming radiation to electricity (US 20080199736, publ. 21.08.2008) wherein at the top surface of a low-doped n (p) conductivity type semiconductor wafer vertical are located channels, the surfaces of which comprise heavily doped p + ⁇ n + ) regions forming vertical p-n junctions with the semiconductor wafer, the channels are filled with conducting radioactive isotope material forming the electrode, i.e. anode (cathode) of the converter diode, and the bottom wafer surface a horizontal heavily doped n + (p + ) contact layer is located the surface of which a metallic electrode of anode (cathode) is situated .
  • the prototype of the second subject of this invention is the method of fabricating a 3D structure of a semiconductor diode used as a beta-voltaic converter of the beta radiation of 63 Ni isotope to electricity (US 20080199736, publ. 21.08.2008) which comprises the formation of a horizontal heavily doped n + (p + ) conductivity type layer on the bottom surface of a low-doped n (p) conductivity type wafer, the formation of vertical channels by etching the top surface of the semiconductor wafer, doping of the channel wall surfaces, the deposition of radioactive isotope metal for electrode, i.e.
  • anode onto the top surface of the wafer and into the channels, and the deposition of a metal layer for electrode, i.e. anode (cathode), onto the bottom surface of the wafer.
  • a metal layer for electrode i.e. anode (cathode) onto the bottom surface of the wafer.
  • Disadvantages of the known method are the complex and insufficiently reproducible technology of synthesizing p-n junctions in the channels reducing the efficiency of the converter and, most importantly, a high level of dark current (I D ) of the bulk p-n junction dramatically reducing the idle voltage (Ui d ) of the converter and hence the maximum output power (P max ) because
  • the technical result of the first subject of this invention is an increase in the energy E u per unit volume of the converter due to the large emitting surface of the radioactive isotope (S em ) and hence the area of the bulk p-n junction (S pn>b ).
  • the design of the ionizing radiation converter with cross-linked structure comprises a weakly doped n(p) conductivity type semiconductor wafer the bulk of which comprises vertical channels one end of which is connected to the wafer surface, and the channel wall surfaces comprise heavily doped p + ⁇ n + ) conductivity type regions forming vertical p-n junctions with the semiconductor wafer.
  • the channels are filled with conducting radioactive isotope material forming the electrode, i.e. anode (cathode), of the converter diode and the bottom surface of the wafer comprises a horizontal heavily doped n + (p + ) conductivity type layer the surface of which comprises a metallic electrode, i.e. anode (cathode), of the converter.
  • conducting radioactive isotope material forming the electrode, i.e. anode (cathode) of the converter diode and the bottom surface of the wafer comprises a horizontal heavily doped n + (p + ) conductivity type layer the surface of which comprises a metallic electrode, i.e. anode (cathode), of the converter.
  • the top surface of the wafer comprises a horizontal heavily doped p + (n + ) conductivity type region forming a horizontal p-n junction.
  • the surfaces of the vertical channels are low-doped and have the n(p) conductivity type, wherein one end of each of the vertical channels is connected to the bottom wafer surface and the other end, i.e. the bottom of each of the vertical channels is at a distance from the top surface of the wafer, the distance being greater than the total depth of the horizontal p-n junction in the space charge region formed by it.
  • the technical result of the second subject of this invention includes a simplification of the converter fabrication technology.
  • the fabrication method comprises the formation of a horizontal heavily doped n + (p + ) conductivity type layer on the bottom surface of a low-doped n (p) conductivity type wafer, the formation of vertical channels by etching the top surface of the semiconductor wafer, doping of the channel wall surfaces, the deposition of radioactive isotope metal for electrode, i.e. anode (cathode), onto the top surface of the wafer and into the channels, and the deposition of a metal layer for electrode, i.e. anode (cathode), onto the bottom surface of the wafer.
  • the vertical channels are formed by etching the bottom surfaces of the low-doped n(p) conductivity type wafer, following which the channel wall surfaces are doped with a donor (acceptor) impurity and a horizontal p-n junction is formed on the top surface of the wafer by doping with an acceptor (donor) impurity.
  • FIG. 1 shows a section of the converter structure for the first structure example
  • Fig. 2 shows a bottom view of the converter structure for the first structure example
  • Fig. 3 shows a section of the converter structure for the second structure example
  • Fig. 4 shows a bottom view of the converter structure for the second structure example.
  • the design of the converter of this invention comprises a low-doped n(p) conductivity type semiconductor wafer (1), the bottom surface of the wafer comprises an n + (p + ) conductivity type contact layer (2), the wafer bulk comprises vertical channels (3) wherein one end of each of the vertical channels is connected to the bottom wafer surface, the top wafer surface comprises an n + (p + ) conductivity type region (4) of a horizontal p-n junction wherein the region forms a space charge region (5) with the wafer, the surface of the n + (p + ) conductivity type region comprises metallic radioactive isotope forming the anode (6) of the diode, and the bottom wafer surface and the channels comprise metallic radioactive isotope forming the cathode (7).
  • the operation principle of the converter of this invention is based on the ionization of the semiconducting material (e.g. silicon) by beta radiation of isotopes, e.g. nickel, tritium, strontium, cobalt etc..
  • the electron/hole pairs forming due to the irradiation are separated by the field of the p-n junction in the space charge region and produce a difference of potentials between the p + and n regions of the converter (the photovoltaic EMF). Simultaneously, part of the electron/hole pairs can alternatively be accumulated by the field of the p-n junction in the quasi-neutral region at the diffusion length distance.
  • Embodiments of the Invention Different examples of beta converter design are possible that differ in their technical parameters.
  • the converter shown in Figs. 1&2 has the highest unit power but is quite expensive due to the large quantity of nickel in the channels.
  • the converter shown in Figs. 3&4 requires far smaller quantity of 63 Ni and is therefore cheaper while having a lower unit power.
  • the isotope source can be selected, for example, as 63 Ni having a long half decay time of 50 years and emitting electron radiation with an average energy of 17 keV and a maximum energy of 64 keV which bears almost no hazard for health. This electron energy is lower than the defect formation energy in silicon which is 160 keV.
  • the absorption depth of electrons with an average energy of 17 keV in silicon is approx. 3.0 ⁇ ; for 90% absorption this depth is 12 ⁇ ⁇ ⁇ .
  • the radiation source can be not necessarily a beta radiation source but alternatively an alpha radiation
  • the fabrication method of the converter of this invention comprises the following sequence of process steps.
  • the leakage current of the equal area p-n junction formed in the channel is three orders of magnitude greater:
  • is the thermal potential and I sc is the short circuit current generated by the radioactive radiation.
  • the converter power is determined by the following relationship:
  • P max . p i is 1.7 nW
  • P max.b is 0.08 nW.
  • the technical advantage of this invention are an increase in the unit power and the efficiency of the converter and a simplification and a lower price of its technology.
  • the ionization current receiver is a horizontal (not vertical) p-n junction having a relatively small area (S p-n , nsi ) located on a high quality polished top surface of the wafer, this minimizing the dark current and increasing the idle voltage and hence the unit power of the converter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Light Receiving Elements (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Dc-Dc Converters (AREA)
PCT/RU2017/000663 2017-01-31 2017-09-11 Ionizing radiation converter with cross-linked structure and its fabrication method WO2018143838A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019541228A JP2020507073A (ja) 2017-01-31 2017-09-11 架橋構造を有する電離放射線コンバータおよびその製造方法
KR1020197024967A KR102595089B1 (ko) 2017-01-31 2017-09-11 가교 구조의 이온화 방사선 변환기 및 이의 제조 방법
DE112017006974.2T DE112017006974T5 (de) 2017-01-31 2017-09-11 Konverter für ionisierende Strahlung mit einer Netzstruktur sowie Verfahren zu seiner Herstellung
CN201780089174.1A CN110494929A (zh) 2017-01-31 2017-09-11 具有交联结构的电离辐射转换器及其制造方法
EA201900377A EA201900377A1 (ru) 2017-01-31 2017-09-11 Преобразователь ионизирующих излучений с сетчатой объемной структурой и способ его изготовления

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2017103167A RU2659618C1 (ru) 2017-01-31 2017-01-31 Преобразователь ионизирующих излучений с сетчатой объемной структурой и способ его изготовления
RU2017103167 2017-01-31

Publications (1)

Publication Number Publication Date
WO2018143838A1 true WO2018143838A1 (en) 2018-08-09

Family

ID=62815832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2017/000663 WO2018143838A1 (en) 2017-01-31 2017-09-11 Ionizing radiation converter with cross-linked structure and its fabrication method

Country Status (7)

Country Link
JP (1) JP2020507073A (ja)
KR (1) KR102595089B1 (ja)
CN (1) CN110494929A (ja)
DE (1) DE112017006974T5 (ja)
EA (1) EA201900377A1 (ja)
RU (1) RU2659618C1 (ja)
WO (1) WO2018143838A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113223743B (zh) * 2021-05-08 2023-10-20 西北核技术研究所 一种基于微孔阵列准直器的α放射源核电池
CN114203330B (zh) * 2021-12-13 2024-09-10 中国核动力研究设计院 一种超薄镍-63辐射源及其制备方法、应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080199736A1 (en) * 2007-02-16 2008-08-21 Gadeken Larry L Apparatus for generating electrical current from radioactive material and method of making same
US7939986B2 (en) * 2005-08-25 2011-05-10 Cornell Research Foundation, Inc. Betavoltaic cell
RU2605783C1 (ru) * 2015-08-10 2016-12-27 федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Тольяттинский государственный университет Планарный высоковольтный фото- и бетавольтаический преобразователь и способ его изготовления
RU2608311C2 (ru) * 2015-05-14 2017-01-17 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Преобразователь оптических и радиационных излучений и способ его изготовления
RU2608313C2 (ru) * 2015-05-14 2017-01-17 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Высоковольтный преобразователь ионизирующих излучений и способ его изготовления

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01125988A (ja) * 1987-11-11 1989-05-18 Hitachi Ltd 太陽電池素子の製造方法
US5642014A (en) * 1995-09-27 1997-06-24 Lucent Technologies Inc. Self-powered device
US20040154656A1 (en) * 2003-02-10 2004-08-12 Science & Technology Corporation @ Unm Nuclear radiation fueled power cells
US7138701B2 (en) * 2003-10-02 2006-11-21 International Business Machines Corporation Electrostatic discharge protection networks for triple well semiconductor devices
CN100414719C (zh) * 2005-10-24 2008-08-27 西北工业大学 微电池及其制作方法
US20100071751A1 (en) * 2008-09-22 2010-03-25 Electronics And Telecommunications Research Institute Photo-induced metal-insulator-transition material complex for solar cell, solar cell and solar cell module comprising the same
RU2452060C2 (ru) * 2010-05-27 2012-05-27 Виталий Викторович Заддэ Полупроводниковый преобразователь бета-излучения в электроэнергию
KR20120071241A (ko) * 2010-12-22 2012-07-02 한국전자통신연구원 베타소스로부터 전류를 생성하는 적층형 베타전지 및 그 제작방법
CN102354540B (zh) 2011-10-19 2013-08-14 西安电子科技大学 I层钒掺杂的pin型核电池及其制作方法
US10699820B2 (en) * 2013-03-15 2020-06-30 Lawrence Livermore National Security, Llc Three dimensional radioisotope battery and methods of making the same
RU2539109C1 (ru) * 2013-09-26 2015-01-10 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Многопереходный кремниевый монокристаллический преобразователь оптических и радиационных излучений
CN104051050A (zh) * 2014-06-29 2014-09-17 西安电子科技大学 并联式PIN型α辐照电池及其制备方法
CN105448376B (zh) * 2015-11-16 2017-11-03 长安大学 采用α放射源的碳化硅肖特基结型同位素电池及其制造方法
RU168184U1 (ru) * 2016-04-22 2017-01-23 Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный аэрокосмический университет имени академика М.Ф. Решетнева" (СибГАУ) Планарный преобразователь ионизирующих излучений с накопительным конденсатором

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7939986B2 (en) * 2005-08-25 2011-05-10 Cornell Research Foundation, Inc. Betavoltaic cell
US20080199736A1 (en) * 2007-02-16 2008-08-21 Gadeken Larry L Apparatus for generating electrical current from radioactive material and method of making same
RU2608311C2 (ru) * 2015-05-14 2017-01-17 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Преобразователь оптических и радиационных излучений и способ его изготовления
RU2608313C2 (ru) * 2015-05-14 2017-01-17 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Высоковольтный преобразователь ионизирующих излучений и способ его изготовления
RU2605783C1 (ru) * 2015-08-10 2016-12-27 федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Тольяттинский государственный университет Планарный высоковольтный фото- и бетавольтаический преобразователь и способ его изготовления

Also Published As

Publication number Publication date
KR20190109495A (ko) 2019-09-25
RU2659618C1 (ru) 2018-07-03
JP2020507073A (ja) 2020-03-05
CN110494929A (zh) 2019-11-22
DE112017006974T5 (de) 2019-10-17
EA201900377A1 (ru) 2019-12-30
KR102595089B1 (ko) 2023-10-26

Similar Documents

Publication Publication Date Title
Bormashov et al. High power density nuclear battery prototype based on diamond Schottky diodes
US8866152B2 (en) Betavoltaic apparatus and method
US6774531B1 (en) Apparatus and method for generating electrical current from the nuclear decay process of a radioactive material
US7939986B2 (en) Betavoltaic cell
US6949865B2 (en) Apparatus and method for generating electrical current from the nuclear decay process of a radioactive material
CN101599308B (zh) 具有保护环结构的微型核电池及其制作方法
Tang et al. Optimization design and analysis of Si-63 Ni betavoltaic battery
JPH09127298A (ja) 自己電力源デバイス
US8937360B1 (en) Beta voltaic semiconductor diode fabricated from a radioisotope
US20170358377A1 (en) Series and/or Parallel Connected Alpha, Beta, and Gamma Voltaic Cell Devices
WO2018143838A1 (en) Ionizing radiation converter with cross-linked structure and its fabrication method
Duggirala et al. 3D silicon betavoltaics microfabricated using a self-aligned process for 5 milliwatt/cc average, 5 year lifetime microbatteries
KR101617307B1 (ko) 베타 전지 및 이의 제조방법
Krasnov et al. Optimization of energy conversion efficiency betavoltaic element based on silicon
RU168184U1 (ru) Планарный преобразователь ионизирующих излучений с накопительным конденсатором
CN104051046A (zh) 夹心串联式PIN结构β辐照电池及其制备方法
CN104051043B (zh) 3D式PIN结构α辐照电池及其制备方法
RU2608313C2 (ru) Высоковольтный преобразователь ионизирующих излучений и способ его изготовления
CN104134480A (zh) 夹心并联式PIN型β辐照电池及其制备方法
EA042001B1 (ru) Преобразователь ионизирующих излучений с сетчатой объемной структурой и способ его изготовления
RU2608311C2 (ru) Преобразователь оптических и радиационных излучений и способ его изготовления
RU2605783C1 (ru) Планарный высоковольтный фото- и бетавольтаический преобразователь и способ его изготовления
RU2599274C1 (ru) Планарный преобразователь ионизирующих излучений и способ его изготовления
US9018721B1 (en) Beta voltaic semiconductor photodiode fabricated from a radioisotope
KR20160098915A (ko) 수직형 베타전지 구조체 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17894833

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019541228

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197024967

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17894833

Country of ref document: EP

Kind code of ref document: A1