WO2018143491A1 - 피가열부재 통합관리 시스템과 이의 제어방법 - Google Patents

피가열부재 통합관리 시스템과 이의 제어방법 Download PDF

Info

Publication number
WO2018143491A1
WO2018143491A1 PCT/KR2017/001086 KR2017001086W WO2018143491A1 WO 2018143491 A1 WO2018143491 A1 WO 2018143491A1 KR 2017001086 W KR2017001086 W KR 2017001086W WO 2018143491 A1 WO2018143491 A1 WO 2018143491A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
heated
unit
cable
resistance value
Prior art date
Application number
PCT/KR2017/001086
Other languages
English (en)
French (fr)
Inventor
박성재
Original Assignee
박성재
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박성재 filed Critical 박성재
Priority to PCT/KR2017/001086 priority Critical patent/WO2018143491A1/ko
Priority to JP2019536504A priority patent/JP7038126B2/ja
Priority to US16/477,192 priority patent/US11940218B2/en
Priority to KR1020187008106A priority patent/KR101942805B1/ko
Priority to PCT/KR2018/001207 priority patent/WO2018143616A1/ko
Priority to CN201880008046.4A priority patent/CN110199168B/zh
Priority to EP18747325.1A priority patent/EP3553442B1/en
Publication of WO2018143491A1 publication Critical patent/WO2018143491A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/04Blast furnaces with special refractories
    • C21B7/06Linings for furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/44Refractory linings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/20Investigating the presence of flaws

Definitions

  • the present invention relates to a heating member integrated management system and a control method thereof, and more specifically, to immediately recognize the state of the member to be heated, which can be effectively managed according to the damaged state of the member to be heated.
  • the integrated integrated management system and control method thereof is a heating member integrated management system and a control method thereof.
  • refractory materials such as refractory bricks and castables may be installed in an industrial furnace such as a heating furnace, a heat treatment furnace, a firing furnace, a blast furnace, and the like used in a steelmaking process.
  • the refractory material may be exposed for a long time in a high temperature situation as the process using the industrial furnace, in this case, the refractory is damaged by thermal shock.
  • the refractory since the refractory is installed inside the industrial furnace, there is a problem that it is difficult to immediately determine whether the refractory is damaged.
  • the refractory has a problem that it is difficult to determine the damage location and the degree of damage due to thermal shock.
  • the damaged refractory affects the industrial furnace during the process, causes defects in the manufactured product, and adversely affects the quality of the product.
  • damaged refractory causes separation inside the industrial furnace.
  • the waste water flows out through the area where the refractory is separated, so that the damaged refractory causes a loss of heat in the industrial furnace, damage to external equipment, safety accidents of field workers, and the like.
  • An object of the present invention is to solve the problems in the prior art, the integrated member of the heating member management system and its control that can immediately grasp the state of the member to be heated to effectively manage the member to be heated according to the damaged state of the member to be heated In providing a method.
  • the integrated member to be managed management system integrated management of the heating member for integrated management of the damaged state of the heating member to be heated by the hot melt.
  • a system comprising: a cable module having at least a portion inserted into an interior of a member to be heated; A measurement module disposed outside the member to be heated and measuring a resistance value generated by the cable module; Integrated management to identify the damaged state of the member to be heated by the melt based on the resistance value measured in the measurement module, to display the damaged state of the member to be heated, and to generate management information for the member to be heated module; And a local terminal configured to receive management information about the member to be heated from the integrated management module, wherein the resistance value is changed as the cable module is damaged while the member to be heated is damaged by the melt.
  • the integrated management module derives the insertion position of the damaged cable module in response to the changed resistance value, and grasps the distance in which the melt penetrates into the heated member through the insertion position of the damaged cable
  • the cable module may include a plurality of first unit cables spaced apart from each other; And a plurality of second unit cables spaced apart from each other in an intersecting state with the first unit cable, wherein the measurement module is coupled in a 1: 1 correspondence with the first unit cable in the first unit cable.
  • a first unit measuring unit measuring a resistance value generated;
  • a second unit measuring unit coupled to the second unit cable in a one-to-one correspondence and measuring a resistance value generated in the second unit cable, wherein the integrated management module is damaged by the melt.
  • the position of the first unit cable and the second unit cable determines the damage position of the member to be heated on a plane perpendicular to the thickness direction of the member to be heated.
  • a fixed resistance unit having a predetermined resistance value is connected between the cable module and the measurement module.
  • the heating member the through-hole in the thickness direction of the member to be heated; is formed through, the through-hole, to supply bubbles to the melt in the state in which the residual measuring block damaged by the melt is embedded And a bubbling plug; and the cable module includes a magino wire mesh module installed inside the residual measurement block in response to a replacement time of the bubbling plug.
  • the cable module may include: a remaining information mesh module installed inside the heated member along a thickness direction of the heated member from a boundary between the heated member and the melt; And spaced apart from the boundary of the member to be heated in the remaining information mesh module along the thickness direction of the member to be heated, and installed inside the member to be heated in response to the replacement time of the member to be heated.
  • a route mesh module wherein the measurement module comprises: a residual information measurement module configured to measure a resistance value generated by the residual information mesh module; And a magino line measurement module for measuring a resistance value generated by the magino line mesh module.
  • the measurement module the resistance sensing unit for measuring the resistance value generated in the cable module; And a data transmitter for transmitting the resistance value measured by the resistance sensing unit to the integrated management module.
  • the integrated management module includes a data receiver configured to receive a resistance value transmitted from the data transmitter.
  • a data analysis unit for determining a damage state of the member to be heated by calculating a resistance value received by the data receiver;
  • a data output unit configured to monitor a damage state of the member to be heated identified by the data analysis unit;
  • a management instruction unit configured to generate management information about the member to be heated based on the damage state of the member to be heated determined by the data analyzer and transmit the management information to the local terminal.
  • the control method of the integrated heating member management system according to the present invention is a control method of the integrated heating member management system for controlling the integrated heating member management system described above. More specifically, the control method of the integrated heating member management system according to the present invention comprises the steps of measuring the resistance value generated in the cable module using the measurement module; Determining a damage state of the member to be heated by analyzing a resistance value measured by the measurement module using the integrated management module; Displaying a damaged state of the member to be heated by using the integrated management module on a data output unit; And generating management information on the member to be heated by using the integrated management module, and transmitting management information about the member to be heated to the local terminal. In the step of, the insertion position of the damaged cable module in response to the calculated resistance value is derived, and through the insertion position of the damaged cable module to determine the distance penetrated into the interior of the member to be heated.
  • the integrated member management system and the control method thereof when the member to be installed inside the various industrial furnaces are damaged by the thermal shock, the member to be heated to immediately grasp the state of the member to be heated According to the damaged state of the heated member can be effectively managed.
  • the present invention can be applied to a variety of industrial furnaces, it is possible to manage the heating member of the industrial furnace to prevent heat loss of the industrial furnace, damage to the external equipment, safety accidents of field workers, etc. due to the damage of the heating member. have.
  • the present invention can easily grasp the damage depth of the member to be heated by grasping the distance penetrated into the interior of the member to be heated through the multi-stage arrangement of the cable module representing the mesh structure.
  • the present invention can easily grasp the damage position of the member to be heated and the degree of damage of the member to be heated by a thermal shock on a plane perpendicular to the thickness direction of the member to be heated through the cable module representing the mesh structure.
  • the present invention can precisely measure the resistance value generated in the cable module through the fixed resistance unit connected to the cable module, it is possible to clearly identify the damage state of the member to be heated.
  • FIG. 1 is a schematic diagram of an integrated management member for a heating member according to an embodiment of the present invention.
  • FIG. 2 is a block diagram of the integrated member to be heated management system according to an embodiment of the present invention.
  • FIG. 3 is a view showing the arrangement of the cable module in the integrated member heating management system according to an embodiment of the present invention.
  • FIG. 4 is a diagram illustrating a first unit cable in the integrated member system for heating member according to an embodiment of the present invention.
  • FIG. 5 is a view showing a state in which the cable module is disposed in the refractory installed in the steelmaking furnace in the integrated member to be heated management system according to an embodiment of the present invention.
  • FIG. 6 is a view showing a damaged state of the refractory installed in the steelmaking furnace in the integrated member to be heated management system according to an embodiment of the present invention.
  • FIG. 7 is a view showing a state in which the cable module is disposed in the refractory installed in the furnace in the integrated member to be heated management system according to an embodiment of the present invention.
  • FIG. 8 is a view showing a damaged state of the refractory installed in the furnace in the integrated member to be heated management system according to an embodiment of the present invention.
  • FIG. 9 is a view showing a control method of the integrated member management system to be heated according to an embodiment of the present invention.
  • Integrated heating member management system is a heating member integrated management system for the integrated management of the damaged state of the heating member to be heated by the hot melt 30.
  • the melt 30 is accommodated in an industrial furnace.
  • Integrated heating member management system includes the heating member, the cable module 100, the measurement module 200, the integrated management module 300, and the local terminal 400. .
  • the member to be heated is installed inside the industrial furnace to prevent the outer wall of the industrial furnace from contacting the melt 30.
  • the member to be heated prevents the outer wall of the industrial furnace from being damaged by the melt 30.
  • the member to be heated may be made of refractory materials such as refractory bricks and castables.
  • the member to be heated may be made of glass or cement.
  • the member to be heated may be made of a mixture of refractory and glass or a mixture of refractory and cement.
  • the material of the member to be heated is not limited, and the member to be heated may be formed of a material which prevents the outer wall of the industrial furnace from contacting the melt.
  • the member to be heated is described as being made of a refractory 10. Then, the refractory 10 is installed inside the industrial furnace.
  • the cable module 100 is at least partially inserted into the refractory 10.
  • the cable module 100 may allow a current to flow. Both ends of the cable module 100 are exposed to the outside of the refractory 10 and is connected to the measurement module 200 disposed outside the refractory 10.
  • the cable module 100 has different thickness direction arrangement positions of the refractory 10 depending on the shape and size of the refractory 10. It is independently arranged inside the refractory 10.
  • the thickness t0 of the refractory 10 represents a distance from the outer wall of the industrial furnace to a portion where the melt 30 is in contact with the refractory 10 in the interior of the industrial furnace
  • the thickness of the refractory 10 The direction represents the direction from the portion where the melt 30 is in contact with the refractory 10 toward the outer wall of the industrial furnace.
  • the cable module 100 includes a plurality of first unit cables 110 spaced apart from each other, and a plurality of cable units 100 spaced apart from each other in a state in which they cross the first unit cable 110.
  • the second unit cable 120 is included. Accordingly, the cable module 100 exhibits a mesh structure on a plane perpendicular to the thickness direction of the refractory 10.
  • the location where the refractory 10 is damaged on a plane may be coordinated by changing resistance values of the first unit cable 110 and the second unit cable 120 that are damaged in the mesh structure as shown in FIG. 3. And, through such coordinates it is possible to easily determine the location where the refractory 10 is damaged on the plane.
  • first unit cable 110 Since the first unit cable 110 and the second unit cable 120 have substantially the same structure, the first unit cable 110 will be described as the first unit cable 110 as shown in FIG. 4.
  • the first unit cable 110 includes a metal wire 111 and a space securing coating layer 113.
  • the periphery of the metal wire 111 is provided with a protrusion 112 protruding at least in part.
  • the protrusion 112 may be formed to protrude around the metal wire 111 in a sawtooth shape.
  • connection terminals 115 are provided at both ends of the metal wire 111 to be connected to the measurement module 200.
  • the surface area of the metal wire 111 may have a larger surface area per unit length than a general metal wire having a circular cross section.
  • the protrusion 112 protrudes from the circumferential surface of the metal wire 111 so that the surface area of the metal wire 111 in contact with the refractory 10 is widened.
  • the screw-shaped metal wire 111 and the sawtooth-shaped projection 112 can grab the refractory 10, the coupling structure of the refractory 10 and the cable module 100 is Can be enhanced.
  • a circumferential surface of the metal wire 111 may be partially irregularly settled.
  • the present invention is not limited to the above-described embodiment, and the first unit cable 110 includes a refractory binding member irregularly bonded to the metal wire 111 and at least a portion of the circumferential surface of the metal wire 111. It can be configured to include.
  • the refractory binding member may be formed of a fiber made of a metal material such as a hot fiber, and the like, which are attached to the circumferential surface of the metal wire 111 and are introduced into the refractory 10 and constitute the refractory 10. And get tangled up well.
  • the metal wire 111 may use a SUS material having excellent heat resistance so as not to be easily melted or expanded by heat transmitted by the refractory 10.
  • the material used for the metal wire 111 is not limited thereto, and may be replaced with a metal having excellent heat resistance and good current flow.
  • the structure of the metal wire 111 is located in the center of the copper wire so that the current can pass well, the form of wrapping the outer side of the copper wire with SUS wire in order to prevent the copper wire from being easily melted by the heat of the refractory 10. It can be configured as.
  • the space securing coating layer 113 is coated on at least a portion of the circumferential surface of the metal wire 111 to ensure expansion space of the metal wire 111 while melting when the temperature of the refractory 10 rises.
  • the metal wire 111 expands as the temperature of the refractory 10 increases, the metal wire 111 fills at least a portion of the expansion space formed by the space securing coating layer 113.
  • the space securing coating layer 113 is melted by the heat transmitted by the refractory 10, and thus is discharged to the outside of the refractory 10 in the form of a coating liquid.
  • the present invention is not limited to the above-described embodiment, and a storage tank for accommodating and storing the coating liquid discharged outside the refractory 10 may be disposed.
  • the storage tank may not only accommodate and store the coating solution, but may also serve to guide the coating solution to be inserted into the refractory 10 again.
  • the space securing coating layer 113 may be composed of paraffin.
  • the material of the space securing coating layer 113 is not limited to this, and the melting point is lower than the metal wire, the coating process is simple, it can be replaced with a material that does not pass the current.
  • the measurement module 200 is disposed outside the refractory 10.
  • the measurement module 200 measures a resistance value generated in the cable module 100.
  • the resistance value measured by the measurement module 200 is changed as the refractory 10 is damaged by the melt 30 and the cable module 100 is damaged.
  • the resistance value measured by the measurement module 200 is changed according to the damage state of the refractory 10 due to dropping, melting, cracking, breakage and erosion of the refractory 10.
  • the measurement module 200 includes a resistance sensing unit 211 and a data transmitter 213.
  • the resistance sensing unit 211 measures a resistance value generated in the cable module 100.
  • the data transmitter 213 transmits the resistance value measured by the resistance sensing unit 211 to the integrated management module 300.
  • the measurement module 200 may be configured to further include an alarm means.
  • the alarm means displays the alarm information so that the site manager can confirm when the state of the refractory 10 is out of the range of the normal state.
  • the alarm information and the control signal of the alarm means may be transmitted from the integrated management module 300.
  • the alarm means is disposed adjacent to the refractory 10, it can display the state of the refractory 10 by the alarm sound and indicator light.
  • the color of the sound and the indicator of the alarm sound is changed according to the damage state of the refractory 10, and accordingly, the field operator can check in real time so that the repair and replacement of the refractory 10 can be made immediately.
  • the measurement module 200 is coupled to the first unit cable 110 in a one-to-one correspondence with a first unit measurement unit 210 for measuring a resistance value generated in the first unit cable 110 and the It may include a second unit measurement unit 220 is coupled to the second unit cable 120 in a one-to-one correspondence to measure the resistance value generated in the second unit cable (120).
  • the first unit measurement unit 210 and the second unit measurement unit 220 have substantially the same structure.
  • the first unit measurement unit 210 and the second unit measurement unit 220 may include the resistance sensing unit 211 and the data transmission unit 213, respectively.
  • the integrated management module 300 determines the damage state of the refractory 10 by the melt 30 based on the resistance value measured by the measurement module 200, and determines the damage state of the refractory 10. It displays and generates management information for the refractory (10).
  • the integrated management module 300 includes a data receiver 310, a data analysis unit 330, a data storage unit 350, a data output unit 370, and a management instruction unit 390.
  • the data receiver 310 receives the resistance value transmitted from the data transmitter 230 and transmits the resistance value to the data analyzer 330.
  • the data analyzer 330 calculates a resistance value received by the data receiver 310 to determine a damage state of the refractory 10.
  • the relevant information about the state of the refractory 10 is stored in the data storage unit 350.
  • the data analysis unit 330 analyzes the resistance value measured by the measurement module 200 based on the data conversion criteria stored in the data storage unit 350.
  • a state of the refractory may be defined according to a corresponding resistance value.
  • the damage state and location of the refractory 10 are determined according to the analysis result of the resistance value by the data analyzer 330.
  • the analysis of the resistance value may include not only disconnection caused by damage of the refractory material 10, but also noise generated by wastewater penetrating into the damaged space of the refractory material 10, resistance value changed by heat of the refractory material 10, and the like. It may include.
  • the change in the resistance value due to the heat of the refractory 10 can grasp the degree and location of the crack of the refractory 10, thereby analyzing the start time and damage progress rate and degree of damage of the refractory (10). .
  • the field operator through the resistance value can easily determine the damage location and the damage state of the refractory (10).
  • the data analyzer 330 may grasp management information of the refractory 10 based on the quantity and history of the refractory 10 stored in the data storage 350.
  • the data analysis unit 330 is a stock quantity of the damaged refractory of the refractory (10) arranged for each zone of the industrial furnace, product name, manufacturer, date of manufacture and receipt of the refractory 10, Lot No Product history, including, etc. can be obtained in real time.
  • the damaged state of the refractory 10 stored in the data storage unit 350 may be used to determine the replacement cycle and timing of the refractory 10.
  • the integrated management module It can be used to manage the damage history of the refractory 10 at 300.
  • the data output unit 370 displays a damaged state of the refractory 10, a stock quantity and a product history of the refractory, and a damage history of the refractory 10.
  • the management instruction unit 390 transmits management information on the refractory 10 to the local terminal 400 so that the site manager and the person in charge can check the damage state of the refractory 10 in real time.
  • the integrated management module 300 derives the insertion position of the damaged cable module 100 in response to the changed resistance value, and the melt 30 through the insertion position of the damaged cable module 100 The distance D penetrated into the refractory 10 can be grasped.
  • the integrated management module 300 locates the first unit cable 110 and the second unit cable 120 damaged by the melt 30 based on the one cable module 100. Through this, the damage position of the refractory 10 can be determined on a plane perpendicular to the thickness direction of the refractory 10.
  • the local terminal 400 receives the management information of the refractory 10 from the integrated management module 300.
  • the local terminal 400 may be a notebook and a mobile phone of the field manager and the person in charge.
  • the management instruction command transmitted to the local terminal 400 may be differently transmitted according to the state of the refractory 10, and thus, a site manager and a person in charge may proceed with management according to the state of the refractory 10.
  • the integrated refractory management system including the cable module 100, the measurement module 200, the integrated management module 300 and the local terminal 400 enables the integrated management of the refractory 10, By monitoring the damage state of the refractory 10 in real time, it is possible to manage the refractory 10 with a minimum field management personnel.
  • Integrated refractory management system may further include a fixed resistance unit (200a).
  • the fixed resistance unit 200a has a predetermined resistance value.
  • the fixed resistance unit 200a is disposed outside the refractory 10.
  • the fixed resistance unit 200a is disposed between the cable module 100 and the measurement module 200 to electrically connect the cable module 100 and the measurement module 200.
  • the fixed resistance unit 200a may clarify the change in the resistance value generated by the cable module 100 and reduce the error of the resistance value measured by the measurement module 200.
  • a through hole 11 penetrates through the refractory 10 installed in the steelmaking furnace 40 in the thickness direction of the refractory 10.
  • Bubbling plug 20 for supplying air bubbles to the melt 30 in a state where the residual measuring block 21 damaged by the melt 30 is embedded in the through hole 11 due to the characteristics of the steelmaking furnace 40. ) Are combined.
  • the bubbling plug 20 and the residual measurement block may be damaged faster than the refractory 10.
  • the cable module 100 may include a magino wire mesh module 103 installed inside the residual measurement block 21 in response to the replacement time of the bubbling plug 20.
  • the margin wire mesh module 103 may include the first unit cable 110 and the second unit cable 120.
  • the measurement module 200 may include a margin line measurement module 203 for measuring a resistance value generated by the margin line mesh module 103.
  • the margin line measurement module 203 may include the first unit measurement unit 210 and the second unit measurement unit 220.
  • the bubbling plug 20 is coupled to the through hole 11 in correspondence to the thickness t0 of the refractory, and the residual measurement block 21 is formed in the bubbling plug 20. ) Is built.
  • the remaining measurement block 21 has the margin wire mesh module 103 embedded therein.
  • the magino line mesh module 103 is connected to the magino line measurement module 203.
  • the melt 30 penetrates into the refractory 10. Since the magino wire mesh module 103 is embedded in the magino line t1 of the residual measurement block 21, when the melt 30 penetrates into the inside of the refractory 10 by "D", the In response to the replacement time of the bubbling plug 20, the magino wire mesh module 103 embedded in the refractory 10 is damaged, and the magino wire measurement module ( The resistance value measured at 203 is changed.
  • the integrated management module 300 derives the insertion position of the damaged cable module 100 in response to the changed resistance value, and the melt 30 through the insertion position of the damaged cable module 100.
  • the distance penetrated into the refractory 10 can be determined.
  • the integrated management module 300 is perpendicular to the thickness direction of the refractory 10 through the position of the first unit cable 110 and the second unit cable 120 damaged by the melt 30.
  • the damage location of the refractory 10 can be grasped on the phosphorus plane.
  • the installation state of the cable module 100 and the measurement module 200 will be described with respect to the refractory 10 installed in the wire line 50 of the industrial furnace.
  • the cable module 100 may be divided into a residual information mesh module and a magino wire mesh module 103.
  • the remaining information mesh module is installed inside the refractory 10 along the thickness direction of the refractory 10 from a boundary between the refractory 10 and the melt 30.
  • the remaining information mesh module includes a first remaining information mesh module 101 spaced apart from a boundary between the refractory 10 and the melt 30 along the thickness direction of the refractory 10, and the first remaining information mesh module.
  • the second residual information mesh module 102 spaced apart from the 101 in the thickness direction of the refractory 10 may be divided.
  • the margin line mesh module 103 is spaced apart from the residual information mesh module along the thickness direction of the refractory from the boundary of the melt 30.
  • the margin line mesh module 103 is spaced apart from the second remaining information mesh module 102 along the thickness direction of the refractory 10.
  • the magino wire mesh module 103 is installed inside the refractory 10 in response to the replacement time of the refractory 10.
  • the remaining information mesh module and the margin wire mesh module 103 may include the first unit cable 110 and the second unit cable 120, respectively.
  • the measurement module 200 may be divided into a residual information measurement module and a margin line measurement module 203.
  • the residual information measuring module measures a resistance value generated by the residual information mesh module ().
  • the remaining information measuring module includes a first remaining information measuring module 201 for measuring a resistance value generated by the first remaining information mesh module 101 and a resistance value generated by the second remaining information mesh module 102. It can be divided into a second residual information measurement module 202 for measuring the.
  • the margin line measurement module 203 measures a resistance value generated by the margin line mesh module 103.
  • the residual information measurement module and the margin line measurement module 203 may include the first unit measurement unit 210 and the second unit measurement unit 220, respectively.
  • the first residual information mesh module is formed in the refractory 10 in the thickness direction of the refractory 10 from the melt 30 in correspondence to the thickness t0 of the refractory.
  • 101, the second remaining information mesh module 102, and the margin line mesh module 103 are sequentially disposed in a state of being spaced apart from each other.
  • the first residual information measurement module 201 is connected to the first residual information mesh module 101
  • the second residual information measurement module 202 is connected to the second residual information mesh module 102.
  • the margin line measurement module 203 is connected to the margin line mesh module 103.
  • the integrated management module 300 derives the insertion position of the damaged cable module 100 in response to the changed resistance value, and the melt 30 through the insertion position of the damaged cable module 100.
  • the distance penetrated into the refractory 10 can be determined.
  • the integrated management module 300 is perpendicular to the thickness direction of the refractory 10 through the position of the first unit cable 110 and the second unit cable 120 damaged by the melt 30.
  • the damage location of the refractory 10 can be grasped on the phosphorus plane.
  • the installation state of the cable module 100 and the measurement module 200 with respect to the refractory 10 installed in the performance furnace 60 among industrial furnaces is installed in the steelmaking furnace 40 or the wire furnace 50. Since the same structure as that shown, and the description thereof will be omitted.
  • the integrated refractory management control method in controlling the refractory integrated management system, resistance value measuring step (S10), refractory state determining step (S20), alarm information display A step S30, a refractory state display step S40, and a local terminal command transfer step S50 are included.
  • the resistance value generated by the cable module 100 is measured by the measurement module 200.
  • refractory state determining step (S20) to determine the damage state of the refractory 10 by analyzing the resistance value measured by the measurement module 200 by the integrated management module 300.
  • the alarm information display step (S30) when the state of the refractory 10 is out of the range of the normal state, the alarm information is displayed in the alarm means disposed adjacent to the refractory 10.
  • the state of the refractory 10 is displayed on the data output unit 370 by the integrated management module 300.
  • the management information for the refractory 10 by the integrated management module 300 to the local terminal ( 400).
  • the present invention is a state of the member to be heated when the member to be heated inside the various industrial furnaces (heating furnace, heat treatment furnace, firing furnace, blast furnace, etc.) used in steel mills, power plants, glass forming plants, etc. are damaged by thermal shock. It can be applied to the integrated member management system that can be immediately identified.
  • the present invention can be applied to the integrated member heating management system that can easily grasp the damage position of the member to be heated and the degree of damage of the member to be heated.
  • the present invention is applied to the integrated member management system to manage the heating member of the industrial furnace to prevent heat loss of the industrial furnace due to the damaged member, damage to the external equipment, safety accidents of field workers, etc. can do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

본 발명은 피가열부재의 상태를 즉각적으로 파악하여 피가열부재의 손상 상태에 따라 피가열부재를 효과적으로 관리할 수 있는 피가열부재 통합관리 시스템과 이의 제어방법에 관한 것이다. 이를 위해 피가열부재 통합관리 시스템은 피가열부재의 내부에 적어도 일부분이 삽입되어 있는 케이블모듈과, 상기 케이블모듈에서 발생되는 저항값을 측정하는 계측모듈과, 상기 계측모듈에서 측정된 저항값을 바탕으로 용융물에 의한 상기 피가열부재의 손상 상태를 파악하여 상기 피가열부재에 대한 관리정보를 생성하는 통합관리모듈 및 상기 통합관리모듈로부터 상기 피가열부재에 대한 관리정보를 수신하는 로컬단말;을 포함한다.

Description

피가열부재 통합관리 시스템과 이의 제어방법
본 발명은 피가열부재 통합관리 시스템과 이의 제어방법에 관한 것으로, 보다 구체적으로는 피가열부재의 상태를 즉각적으로 파악하여 피가열부재의 손상 상태에 따라 피가열부재를 효과적으로 관리할 수 있는 피가열부재 통합관리 시스템과 이의 제어방법에 관한 것이다.
일반적으로, 제철 공정 등에 이용되는 가열로, 열처리로, 소성로, 고로 등과 같은 공업로의 내부에는 내화벽돌, 캐스타블과 같은 내화물이 설치될 수 있다.
내화물은 공업로를 이용한 공정 진행에 따라 고온의 상황에서 장시간 노출될 수 있으며, 이러한 경우, 내화물은 열충격에 의해 손상을 입게 된다. 그러나, 내화물은 공업로 내부에 설치되기 때문에, 내화물의 손상 여부를 즉각적으로 판단하기 어렵다는 문제점이 있었다. 또한, 내화물은 열충격에 의한 손상 위치와 손상 정도를 파악하기 어렵다는 문제점이 있었다.
이에 따라, 내화물의 적절한 보수와 교체 시기가 지나게 되면, 손상된 내화물은 공정 진행 과정에서 공업로에 영향을 주게 되고, 제작되는 생산품에 결함을 발생시키며, 생산품의 품질에 악영향을 미치게 된다. 도한, 손상된 내화물은 공업로 내부에서 분리되는 원인이 된다.
공업로의 내부에서 내화물이 분리되면, 내화물이 분리된 영역을 통해 쇳물이 흘러나오므로, 손상된 내화물은 공업로의 열손실, 외부 설비의 손상, 현장 작업자의 안전사고 등을 발생시키는 원인이 된다.
관련 기술로는 대한민국 공개특허공보 제2013-0035084호(발명의 명칭 : 내화물 온도 측정이 가능한 전기로, 2013. 04. 08. 공개)가 있다.
본 발명의 목적은 종래의 문제점을 해결하기 위한 것으로서, 피가열부재의 상태를 즉각적으로 파악하여 피가열부재의 손상 상태에 따라 피가열부재를 효과적으로 관리할 수 있는 피가열부재 통합관리 시스템과 이의 제어방법을 제공함에 있다.
상술한 본 발명의 목적을 달성하기 위한 바람직한 실시예에 따르면, 본 발명에 따른 피가열부재 통합관리 시스템은 고온의 용융물에 의해 가열되는 피가열부재의 손상 상태를 통합 관리하기 위한 피가열부재 통합관리 시스템에 있어서, 상기 피가열부재의 내부에 적어도 일부분이 삽입되어 있는 케이블모듈; 상기 피가열부재의 외부에 배치되고, 상기 케이블모듈에서 발생되는 저항값을 측정하는 계측모듈; 상기 계측모듈에서 측정된 저항값을 바탕으로 상기 용융물에 의한 상기 피가열부재의 손상 상태를 파악하고, 상기 피가열부재의 손상 상태를 표시하며, 상기 피가열부재에 대한 관리정보를 생성하는 통합관리모듈; 및 상기 통합관리모듈로부터 상기 피가열부재에 대한 관리정보를 수신하는 로컬단말;을 포함하고, 상기 저항값은, 상기 용융물에 의해 상기 피가열부재가 손상되면서 상기 케이블모듈이 손상됨에 따라 변경되며, 상기 통합관리모듈은, 변경된 상기 저항값에 대응하여 손상된 상기 케이블모듈의 삽입 위치를 도출하고, 손상된 상기 케이블모듈의 삽입 위치를 통해 상기 용융물이 상기 피가열부재의 내부로 침투한 거리를 파악한다.
여기서, 상기 케이블모듈은, 상호 이격 배치되는 다수의 제1단위케이블; 및 상기 제1단위케이블과 교차된 상태에서 상호 이격 배치되는 다수의 제2단위케이블;을 포함하고, 상기 계측모듈은, 상기 제1단위케이블과 1:1 대응으로 결합되어 상기 제1단위케이블에서 발생되는 저항값을 측정하는 제1단위계측유닛; 및 상기 제2단위케이블과 1:1 대응으로 결합되어 상기 제2단위케이블에서 발생되는 저항값을 측정하는 제2단위계측유닛;을 포함하며, 상기 통합관리모듈은, 상기 용융물에 의해 손상되는 상기 제1단위케이블과 상기 제2단위케이블의 위치를 통해 상기 피가열부재의 두께 방향에 수직인 평면 상에서 상기 피가열부재의 손상 위치를 파악한다.
여기서, 상기 케이블모듈과 상기 계측모듈 사이에는 기설정된 저항값을 갖는 고정저항유닛이 연결된다.
여기서, 상기 피가열부재에는, 상기 피가열부재의 두께 방향으로 관통홀;이 관통 형성되고, 상기 관통홀에는, 상기 용융물에 의해 손상되는 잔존측정블럭이 내장된 상태에서 상기 용융물에 기포를 공급하는 버블링플러그;가 결합되며, 상기 케이블모듈은, 상기 버블링플러그의 교체 시기에 대응하여 상기 잔존측정블럭의 내부에 설치되는 마지노선메쉬모듈;을 포함한다.
여기서, 상기 케이블모듈은, 상기 피가열부재와 상기 용융물의 경계로부터 상기 피가열부재의 두께 방향을 따라 상기 피가열부재의 내부에 설치되는 잔존정보메쉬모듈; 및 상기 피가열부재와 상기 용융물의 경계로부터 상기 피가열부재의 두께 방향을 따라 상기 잔존정보메쉬모듈에서 이격 배치되고, 상기 피가열부재의 교체 시기에 대응하여 상기 피가열부재의 내부에 설치되는 마지노선메쉬모듈;을 포함하고, 상기 계측모듈은, 상기 잔존정보메쉬모듈에서 발생되는 저항값을 측정하는 잔존정보계측모듈; 및 상기 마지노선메쉬모듈에서 발생되는 저항값을 측정하는 마지노선계측모듈;을 포함한다.
여기서, 상기 계측모듈은, 상기 케이블모듈에서 발생되는 저항값을 측정하는 저항센싱부; 및 상기 저항센싱부에서 측정된 저항값을 상기 통합관리모듈로 송신하는 데이터송신부;를 포함하고, 상기 통합관리모듈은, 상기 데이터송신부에서 송신하는 저항값을 수신하는 데이터수신부; 상기 데이터수신부에서 수신한 저항값을 연산하여 상기 피가열부재의 손상 상태를 파악하는 데이터분석부; 상기 데이터분석부에서 파악된 상기 피가열부재의 손상 상태를 모니터링하도록 표시하는 데이터출력부; 및 상기 데이터분석부에서 파악된 상기 피가열부재의 손상 상태를 바탕으로 상기 피가열부재에 대한 관리정보를 생성하여 상기 로컬단말로 송신하는 관리지시부;를 포함한다.
본 발명에 따른 피가열부재 통합관리 시스템의 제어방법은 상술한 피가열부재 통합관리 시스템을 제어하기 위한 피가열부재 통합관리 시스템의 제어방법이다. 좀더 구체적으로, 본 발명에 따른 피가열부재 통합관리 시스템의 제어방법은 상기 계측모듈을 이용하여 상기 케이블모듈에서 발생되는 저항값을 측정하는 단계; 상기 통합관리모듈을 이용하여 상기 계측모듈에서 측정된 저항값을 분석하여 상기 피가열부재의 손상 상태를 파악하는 단계; 상기 통합관리모듈을 이용하여 상기 피가열부재의 손상 상태를 데이터출력부에 표시하는 단계; 및 상기 통합관리모듈을 이용하여 상기 피가열부재에 대한 관리정보를 생성하고, 상기 피가열부재에 대한 관리정보를 상기 로컬단말로 송신하는 단계;를 포함하고, 상기 피가열부재의 손상 상태를 파악하는 단계는, 연산된 상기 저항값에 대응하여 손상된 상기 케이블모듈의 삽입 위치를 도출하고, 손상된 상기 케이블모듈의 삽입 위치를 통해 상기 용융물이 상기 피가열부재의 내부로 침투한 거리를 파악한다.
본 발명에 따른 피가열부재 통합관리 시스템과 이의 제어방법에 따르면, 다양한 공업로의 내부에 설치되는 피가열부재가 열충격에 의해 손상을 입을 때, 피가열부재의 상태를 즉각적으로 파악하여 피가열부재의 손상 상태에 따라 피가열부재를 효과적으로 관리할 수 있다.
또한, 본 발명은 다양한 공업로에 적용이 가능하고, 공업로의 피가열부재를 관리하여 피가열부재 손상에 따른 공업로의 열손실, 외부 설비의 손상, 현장 작업자의 안전사고 등을 방지할 수 있다.
또한, 본 발명은 메쉬 구조를 나타내는 케이블모듈의 다단 배치를 통해 용융물이 피가열부재의 내부로 침투한 거리를 파악하여 피가열부재의 손상 깊이를 용이하게 파악할 수 있다.
또한, 본 발명은 메쉬 구조를 나타내는 케이블모듈을 통해 피가열부재의 두께 방향에 수직인 평면 상에서 열충격에 의해 발생되는 피가열부재의 손상 위치와 피가열부재의 손상 정도를 용이하게 파악할 수 있다.
또한, 본 발명은 케이블모듈에 연결되는 고정저항유닛을 통해 케이블모듈에서 발생되는 저항값의 측정을 정밀하게 하고, 피가열부재의 손상 상태를 명확하게 규명할 수 있다.
도 1은 본 발명의 일 실시예에 따른 피가열부재 통합관리 시스템의 개략도이다.
도 2는 본 발명의 일 실시예에 따른 피가열부재 통합관리 시스템의 블럭도이다.
도 3은 본 발명의 일 실시예에 따른 피가열부재 통합관리 시스템에서 케이블모듈의 배치 상태를 도시한 도면이다.
도 4는 본 발명의 일 실시예에 따른 피가열부재 통합관리 시스템에서 제1단위케이블을 도시한 도면이다.
도 5는 본 발명의 일 실시예에 따른 피가열부재 통합관리 시스템에서 제강로에 설치되는 내화물에 케이블모듈이 배치된 상태를 나타내는 도면이다.
도 6은 본 발명의 일 실시예에 따른 피가열부재 통합관리 시스템에서 제강로에 설치되는 내화물의 손상 상태를 도시한 도면이다.
도 7은 본 발명의 일 실시예에 따른 피가열부재 통합관리 시스템에서 제선로에 설치되는 내화물에 케이블모듈이 배치된 상태를 나타내는 도면이다.
도 8은 본 발명의 일 실시예에 따른 피가열부재 통합관리 시스템에서 제선로에 설치되는 내화물의 손상 상태를 도시한 도면이다.
도 9는 본 발명의 일 실시예에 따른 피가열부재 통합관리 시스템의 제어방법을 도시한 도면이다.
이하, 첨부된 도면들을 참조하여 본 발명에 따른 피가열부재 통합관리 시스템과 이의 제어방법의 일 실시예를 설명한다. 이때, 본 발명은 실시예에 의해 제한되거나 한정되는 것은 아니다. 또한, 본 발명을 설명함에 있어서, 공지된 기능 혹은 구성에 대해 구체적인 설명은 본 발명의 요지를 명확하게 하기 위해 생략될 수 있다.
도 1 내지 도 8을 참조하여, 본 발명의 일 실시예에 따른 피가열부재 통합관리 시스템에 대하여 설명한다.
본 발명의 일 실시예에 따른 피가열부재 통합관리 시스템은 고온의 용융물(30)에 의해 가열되는 피가열부재의 손상 상태를 통합 관리하기 위한 피가열부재 통합관리 시스템이다. 상기 용융물(30)은 공업로의 내부에 수용된다.
본 발명의 일 실시예에 따른 피가열부재 통합관리 시스템은 피가열부재와, 케이블모듈(100)과, 계측모듈(200)과, 통합관리모듈(300)과, 로컬단말(400)을 포함한다.
상기 피가열부재는 상기 공업로의 내부에 설치되어 상기 공업로의 외벽과 상기 용융물(30)이 접촉되는 것을 방지한다. 상기 피가열부재는 상기 공업로의 외벽이 상기 용융물(30)에 의해 파손되는 것을 방지하게 된다.
상기 피가열부재는 내화벽돌, 캐스타블 등과 같은 내화물로 이루어질 수 있다. 또한, 상기 피가열부재는 유리 또는 시멘트 등으로 이루어질 수 있다. 또한, 상기 피가열부재는 내화물과 유리의 혼합물 또는 내화물과 시멘트의 혼합물로 이루어질 수 있다. 본 발명에서 상기 피가열부재의 재질을 한정하는 것은 아니고, 상기 피가열부재는 상기 공업로의 외벽과 상기 용융물이 접촉되는 것을 방지하는 재질로 이루어질 수 있다.
본 발명의 일 실시예에서 상기 피가열부재는 내화물(10)로 이루어진 것으로 설명한다. 그러면, 상기 내화물(10)은 상기 공업로의 내부에 설치된다.
상기 케이블모듈(100)은 상기 내화물(10)의 내부에 적어도 일부분이 삽입된다. 상기 케이블모듈(100)에는 전류가 흐르도록 할 수 있다. 상기 케이블모듈(100)의 양단부는 상기 내화물(10)의 외부로 노출되고, 상기 내화물(10)의 외부에 배치된 상기 계측모듈(200)과 연결된다.
상기 케이블모듈(100)이 내장된 상기 내화물(10)을 제조함에 있어서, 상기 케이블모듈(100)은 상기 내화물(10)의 모양과 크기에 의하여 상기 내화물(10)의 두께 방향 배치 위치를 다르게 하여 독립적으로 상기 내화물(10)의 내부에 배치된다. 여기서, 상기 내화물(10)의 두께(t0)는 공업로의 외벽으로부터 공업로의 내부에서 상기 내화물(10)에 용융물(30)이 접촉되는 부분까지의 거리를 나타내고, 상기 내화물(10)의 두께 방향은 상기 내화물(10)에 상기 용융물(30)이 접촉되는 부분으로부터 공업로의 외벽을 향하는 방향을 나타낸다.
여기서, 상기 케이블모듈(100)은 도 3에 도시된 바와 같이 상호 이격 배치되는 다수의 제1단위케이블(110)과, 상기 제1단위케이블(110)과 교차된 상태에서 상호 이격 배치되는 다수의 제2단위케이블(120)을 포함한다. 이에 따라 상기 케이블모듈(100)은 상기 내화물(10)의 두께 방향에 수직인 평면 상에서 메쉬 구조를 나타내게 된다.
그러면, 도 3과 같은 메쉬 구조 내에서 손상되는 상기 제1단위케이블(110)과 상기 제2단위케이블(120)에 대한 저항값 변화를 통해 평면 상에서 상기 내화물(10)이 손상된 위치를 좌표화할 수 있고, 이러한 좌표화를 통해 평면 상에서 상기 내화물(10)이 손상된 위치를 간편하게 파악할 수 있다.
상기 제1단위케이블(110)과 상기 제2단위케이블(120)은 실질적으로 동일한 구조를 가지므로, 도 4에 도시된 바와 같은 상기 제1단위케이블(110)로 설명한다.
상기 제1단위케이블(110)은 금속전선(111)과 공간확보용 코팅층(113)을 포함하여 구성된다.
상기 금속전선(111)의 둘레에는 적어도 일부분에 돌출 형성된 돌기(112)가 구비된다. 상기 돌기(112)는 톱니 형상으로 상기 금속전선(111)의 둘레에 돌출 형성될 수 있다. 또한, 상기 금속전선(111)의 양단부에는 상기 계측모듈(200)과 연결되도록 연결단자(115)가 구비된다.
상기 금속전선(111)은 표면 자체가 스크류 형상으로 굴곡을 가지면서 형성됨에 따라, 상기 금속전선(111)의 표면적은 원형 단면을 갖는 일반적인 금속전선보다 단위길이당 넓은 표면적을 가질 수 있다. 뿐만 아니라, 상기 돌기(112)가 상기 금속전선(111)의 둘레 표면에 돌출 형성되어 상기 금속전선(111)이 상기 내화물(10)과 접촉하는 표면적이 넓어지게 된다.
결과적으로, 스크류 형상의 상기 금속전선(111)과 톱니 형상의 상기 돌기(112)가 상기 내화물(10)을 잡아줄 수 있게 됨으로써, 상기 내화물(10)과 상기 케이블모듈(100)의 결합 구조가 강화될 수 있다.
또한, 상기 금속전선(111)과 상기 내화물(10)이 접촉하는 표면적을 넓히기 위하여, 상기 금속전선(111)의 둘레면이 부분적으로 불규칙하게 침강되어 형성될 수 있다.
본 발명은 상술한 실시 예에 한정되지 않고, 상기 제1단위케이블(110)은 상기 금속전선(111)과, 상기 금속전선(111)의 둘레면의 적어도 일부분에 불규칙하게 접착되는 내화물 결속부재를 포함하여 구성될 수 있다.
상기 내화물 결속부재는 핫화이바 등과 같은 금속 재질의 섬유로 구성될 수 있으며, 상기 금속전선(111)의 둘레면에 부착되어 상기 내화물(10) 내부에 투입되고 상기 내화물(10)을 구성하는 재료들과 잘 엉겨붙게 된다.
따라서, 상기 내화물(10)과 상기 제1단위케이블(110)의 결합 구조가 강화되므로, 상기 내화물(10)에서 상기 제1단위케이블(110)이 탈락되는 현상이 줄어들게 된다.
상기 금속전선(111)은 상기 내화물(10)이 전달하는 열에 의해 쉽게 녹거나 팽창하지 않도록 내열성이 우수한 SUS 재질을 사용할 수 있다.
상기 금속전선(111)에 사용되는 재질은 이에 한정되지 않고, 내열성이 우수하며, 전류가 잘 통하는 금속으로 대체 가능하다.
또한, 상기 금속전선(111)의 구조는 전류가 잘 통할 수 있도록 구리선이 중심에 위치하고, 상기 내화물(10)의 열에 의해 상기 구리선이 쉽게 용융되지 않도록 하기 위하여 상기 구리선의 외측을 SUS선으로 감싸는 형태로 구성될 수 있다.
상기 공간확보용 코팅층(113)은 상기 금속전선(111)의 둘레면의 적어도 일부분에 코팅되어 상기 내화물(10)의 온도 상승시 녹으면서 상기 금속전선(111)의 팽창공간을 확보한다.
상기 내화물(10)의 온도 상승에 따라서 상기 금속전선(111)이 팽창하게 되면, 상기 금속전선(111)은 상기 공간확보용 코팅층(113)에 의해 형성된 팽창공간의 적어도 일부분을 채우게 된다.
이에 따라, 상기 공간확보용 코팅층(113)은 상기 내화물(10)이 전달하는 열에 의해 녹게 되며, 따라서 코팅액의 형태로 상기 내화물(10)의 외부로 배출된다.
본 발명은 상술한 실시 예에 한정되지 않고, 상기 내화물(10) 외부에는 배출된 상기 코팅액을 수용하며, 보관할 수 있는 저장탱크가 배치될 수 있다.
상기 저장탱크는 상기 코팅액을 수용하여 보관할 뿐만 아니라, 상기 코팅액이 상기 내화물(10) 내부에 다시 삽입될 수 있도록 안내하는 역할을 가질 수 있다.
상기 공간확보용 코팅층(113)은 파라핀으로 구성될 수 있다.
상기 공간확보용 코팅층(113)의 재질은 이에 한정되지 않고, 상기 금속전선보다 용융점이 낮고, 코팅의 과정이 간단하며, 전류가 통하지 않는 재질로 대체 가능하다.
상기 계측모듈(200)은 상기 내화물(10)의 외부에 배치된다. 상기 계측모듈(200)은 상기 케이블모듈(100)에서 발생되는 저항값을 측정한다. 상기 계측모듈(200)에서 측정되는 저항값은 상기 용융물(30)에 의해 상기 내화물(10)이 손상되면서 상기 케이블모듈(100)이 손상됨에 따라 변경된다. 또한, 상기 계측모듈(200)에서 측정되는 저항값은 상기 내화물(10)의 탈락, 용융, 균열, 파손 및 침식 등에 의한 상기 내화물(10)의 손상 상태에 따라 변경된다.
상기 계측모듈(200)은 저항센싱부(211)와 데이터송신부(213)를 포함한다.
상기 저항센싱부(211)는 상기 케이블모듈(100)에서 발생되는 저항값을 측정한다.
상기 데이터송신부(213)는 상기 저항센싱부(211)에서 측정된 저항값을 상기 통합관리모듈(300)로 송신한다.
본 발명은 상술한 실시 예에 한정되지 않고, 상기 계측모듈(200)은 알람수단을 더 포함하여 구성될 수 있다.
상기 알람수단은 상기 내화물(10)의 상태가 정상 상태의 범위를 벗어나는 경우 현장관리자가 확인할 수 있도록 알람정보를 표시한다.
상기 알람정보 및 알람수단의 제어신호는 상기 통합관리모듈(300)에서 전송될 수 있다. 상기 알람수단은 상기 내화물(10)과 인접하게 배치되어, 경보음 및 지시등으로 상기 내화물(10)의 상태를 표시할 수 있다.
상기 경보음의 소리 및 지시등의 색은 상기 내화물(10)의 손상 상태에 따라 변경되며, 이에 따라 현장 작업자가 실시간으로 확인하여 상기 내화물(10)의 보수 및 교체가 즉각적으로 이루어지도록 할 수 있다.
상기 계측모듈(200)은 상기 제1단위케이블(110)과 1:1 대응으로 결합되어 상기 제1단위케이블(110)에서 발생되는 저항값을 측정하는 제1단위계측유닛(210)과, 상기 제2단위케이블(120)과 1:1 대응으로 결합되어 상기 제2단위케이블(120)에서 발생되는 저항값을 측정하는 제2단위계측유닛(220)을 포함할 수 있다.
상기 제1단위계측유닛(210)과 상기 제2단위계측유닛(220)은 실질적으로 동일한 구조를 가진다. 상기 제1단위계측유닛(210)과 상기 제2단위계측유닛(220)은 각각 상기 저항센싱부(211)와 상기 데이터송신부(213)를 포함할 수 있다.
상기 통합관리모듈(300)은 상기 계측모듈(200)에서 측정된 저항값을 바탕으로 상기 용융물(30)에 의한 상기 내화물(10)의 손상 상태를 파악하고, 상기 내화물(10)의 손상 상태를 표시하며, 상기 내화물(10)에 대한 관리정보를 생성한다.
상기 통합관리모듈(300)은 데이터수신부(310), 데이터분석부(330), 데이터저장부(350), 데이터출력부(370), 관리지시부(390)를 포함한다.
상기 데이터수신부(310)는 상기 데이터송신부(230)에서 송신하는 저항값을 수신하여 상기 데이터분석부(330)로 저항값을 전달한다.
상기 데이터분석부는(330)는 상기 데이터수신부(310)에서 수신한 저항값을 연산하여 상기 내화물(10)의 손상 상태를 파악한다. 상기 내화물(10)의 상태에 대한 관련정보는 데이터저장부에(350) 저장된다.
구체적으로, 상기 데이터분석부(330)는 상기 데이터저장부(350)에 저장되어 있는 데이터 변환기준을 바탕으로 상기 계측모듈(200)에서 측정된 상기 저항값을 분석한다. 상기 데이터 변환기준에서는 해당 저항값에 따라 상기 내화물의 상태가 정의될 수 있다.
결과적으로, 상기 데이터분석부(330)에 의한 상기 저항값의 분석결과에 따라 상기 내화물(10)의 손상 상태 및 위치가 파악된다.
상기 저항값의 분석은 상기 내화물(10)의 손상에 의한 단절뿐만 아니라, 상기 내화물(10)의 손상된 공간에 침투한 쇳물에 의해 발생하는 노이즈와 상기 내화물(10)의 열에 의해 변화하는 저항값 등을 포함할 수 있다.
상기 내화물(10)의 열에 의한 저항값의 변화는 상기 내화물(10)의 균열 정도와 위치를 파악할 수 있으며, 이에 따라 상기 내화물(10)의 손상 시작 시기와 손상 진행 속도 및 정도를 분석할 수 있다.
따라서, 상기 저항값을 통해 현장작업자는 상기 내화물(10)의 손상 위치와 손상 상태를 용이하게 파악할 수 있다.
결과적으로, 현장작업자 및 담당자는 보다 즉각적이고 정확하게 상기 내화물(10)의 손상 위치와 손상 상태를 파악할 수 있으므로, 상기 내화물(10)의 빠른 보수 및 교체작업이 이루어질 수 있도록 하여 안전사고의 위험성을 최소화 할 수 있다.
또한, 상기 데이터분석부(330)는 상기 데이터저장부(350)에 저장되어 있는 상기 내화물(10)의 수량 및 이력을 바탕으로 상기 내화물(10)의 관리정보를 파악할 수 있다.
구체적으로, 상기 데이터분석부(330)는 공업로의 구역별로 배치된 상기 내화물(10) 중 손상을 입은 내화물의 재고 물량과, 상기 내화물(10)의 제품명, 제조사, 제조 및 입고일, Lot No 등을 포함하는 제품 이력을 실시간으로 파악할 수 있다.
상기 데이터저장부(350)에서 저장된 상기 내화물(10)의 손상 상태는 상기 내화물(10)의 교체 주기 및 시기를 파악하는 데에 이용될 수 있다.
구체적으로, 상기 데이터저장부(350)에 저장된 상기 내화물(10)의 손상 상태에 관한 정보를 바탕으로 상기 내화물(10)의 불량율, 파손율, 사용율 등을 파악할 수 있도록 분석되어, 상기 통합관리모듈(300)에서 상기 내화물(10)의 손상 이력을 관리하는 데에 이용될 수 있다.
상기 데이터출력부(370)는 상기 내화물(10)의 손상 상태, 내화물의 재고 물량 및 제품 이력, 그리고 상기 내화물(10)의 손상 이력을 표시하게 된다.
상기 관리지시부(390)는 상기 내화물(10)에 대한 관리정보를 상기 로컬단말(400)로 송신하여 현장 관리자 및 담당자가 실시간으로 상기 내화물(10)의 손상 상태를 확인할 수 있도록 한다.
따라서, 상기 현장 관리자 및 담당자는 상기 내화물(10)을 즉각적으로 수리 및 교체할 수 있다.
특히, 상기 통합관리모듈(300)은 변경된 상기 저항값에 대응하여 손상된 상기 케이블모듈(100)의 삽입 위치를 도출하고, 손상된 상기 케이블모듈(100)의 삽입 위치를 통해 상기 용융물(30)이 상기 내화물(10)의 내부로 침투한 거리(D)를 파악할 수 있다.
또한, 상기 통합관리모듈(300)은 하나의 상기 케이블모듈(100)을 기준으로 상기 용융물(30)에 의해 손상되는 상기 제1단위케이블(110)과 상기 제2단위케이블(120)의 위치를 통해 상기 내화물(10)의 두께 방향에 수직인 평면 상에서 상기 내화물(10)의 손상 위치를 파악할 수 있다.
상기 로컬단말(400)은 상기 통합관리모듈(300)로부터 상기 내화물(10)의 관리정보를 전달받는다. 상기 로컬단말(400)은 현장관리자 및 담당자의 노트북 및 휴대폰이 될 수 있다.
상기 로컬단말(400)로 전달되는 관리지시명령은 상기 내화물(10)의 상태에 따라 다르게 전달되며, 이에 따라 현장관리자 및 담당자는 상기 내화물(10)의 상태에 맞추어 관리를 진행할 수 있다.
상기 케이블모듈(100), 상기 계측모듈(200), 상기 통합관리모듈(300) 및 상기 로컬단말(400)을 포함하는 내화물 통합관리 시스템은 상기 내화물(10)의 통합관리를 가능하게 하고, 상기 내화물(10)의 손상 상태를 실시간 모니터링 할 수 있도록 하여, 최소의 현장 관리 인원으로 상기 내화물(10)을 관리할 수 있도록 한다.
본 발명의 일 실시예에 따른 내화물 통합관리 시스템은 고정저항유닛(200a)을 더 포함할 수 있다.
상기 고정저항유닛(200a)은 기설정된 저항값을 갖는다. 상기 고정저항유닛(200a)은 상기 내화물(10)의 외부에 배치된다. 상기 고정저항유닛(200a)은 상기 케이블모듈(100)과 상기 계측모듈(200) 사이에 배치되어 상기 케이블모듈(100)과 상기 계측모듈(200)을 전기적으로 연결한다.
상기 고정저항유닛(200a)은 상기 케이블모듈(100)에서 발생되는 저항값의 변화를 명확하게 하고, 상기 계측모듈(200)에서 측정되는 저항값의 오차를 줄일 수 있다.
도 5와 도 6에 도시된 바와 같이, 공업로 중 제강로(40)에 설치되는 상기 내화물(10)에 대하여 상기 케이블모듈(100)과 상기 계측모듈(200)의 설치 상태에 대하여 설명한다.
상기 제강로(40)의 내부에 설치되는 상기 내화물(10)에는 상기 내화물(10)의 두께 방향으로 관통홀(11)이 관통 형성된다. 상기 제강로(40)의 특성상 상기 관통홀(11)에는 상기 용융물(30)에 의해 손상되는 잔존측정블럭(21)이 내장된 상태에서 상기 용융물(30)에 기포를 공급하는 버블링플러그(20)가 결합된다. 상기 버블링플러그(20)와 상기 잔존측정블럭은 상기 내화물(10)보다 빨리 손상될 수 있다.
이때, 상기 케이블모듈(100)은 상기 버블링플러그(20)의 교체 시기에 대응하여 상기 잔존측정블럭(21)의 내부에 설치되는 마지노선메쉬모듈(103)을 포함할 수 있다. 상기 마지노선메쉬모듈(103)은 상기 제1단위케이블(110)과 상기 제2단위케이블(120)을 포함할 수 있다. 이에 대응하여, 상기 계측모듈(200)은 상기 마지노선메쉬모듈(103)에서 발생되는 저항값을 측정하는 마지노선계측모듈(203)을 포함할 수 있다. 상기 마지노선계측모듈(203)은 상기 제1단위계측유닛(210)과 상기 제2단위계측유닛(220)을 포함할 수 있다.
그러면, 도 5에 도시된 바와 같이 상기 내화물의 두께(t0)에 대응하여 상기 버블링플러그(20)가 상기 관통홀(11)에 결합되고, 상기 버블링플러그(20)에는 잔존측정블럭(21)이 내장된다. 그리고 상기 잔존측정블럭(21)에는 상기 마지노선메쉬모듈(103)이 내장된다. 또한, 상기 마지노선메쉬모듈(103)에는 상기 마지노선계측모듈(203)이 연결된다.
그리고 도 6에 도시된 바와 같이 상기 용융물(30)에 의해 상기 내화물(10)이 손상되면, 상기 용융물(30)이 상기 내화물(10)의 내부로 침투한다. 상기 잔존측정블럭(21)의 마지노선(t1)에는 상기 마지노선메쉬모듈(103)이 내장되어 있으므로, 상기 용융물(30)이 상기 내화물(10)의 내부로 "D" 만큼 침투하게 되면, 상기 버블링플러그(20)의 교체 시기에 대응하여 상기 내화물(10)에 내장된 상기 마지노선메쉬모듈(103)이 손상되고, 상기 마지노선메쉬모듈(103)의 손상에 따라 상기 마지노선계측모듈(203)에서 측정되는 저항값이 변경된다.
이에 따라, 상기 통합관리모듈(300)은 변경된 상기 저항값에 대응하여 손상된 상기 케이블모듈(100)의 삽입 위치를 도출하고, 손상된 상기 케이블모듈(100)의 삽입 위치를 통해 상기 용융물(30)이 상기 내화물(10)의 내부로 침투한 거리를 파악할 수 있다.
또한, 상기 통합관리모듈(300)은 상기 용융물(30)에 의해 손상되는 상기 제1단위케이블(110)과 상기 제2단위케이블(120)의 위치를 통해 상기 내화물(10)의 두께 방향에 수직인 평면 상에서 상기 내화물(10)의 손상 위치를 파악할 수 있다.
도 7과 도 8에 도시된 바와 같이, 공업로 중 제선로(50)에 설치되는 상기 내화물(10)에 대하여 상기 케이블모듈(100)과 상기 계측모듈(200)의 설치 상태에 대하여 설명한다.
상기 제선로(50)의 내부에 상기 내화물(10)이 설치되는 경우, 상기 케이블모듈(100)은 잔존정보메쉬모듈과, 마지노선메쉬모듈(103)로 구분할 수 있다.
상기 잔존정보메쉬모듈은 상기 내화물(10)과 상기 용융물(30)의 경계로부터 상기 내화물(10)의 두께 방향을 따라 상기 내화물(10)의 내부에 설치된다. 상기 잔존정보메쉬모듈은 상기 내화물(10)과 상기 용융물(30)의 경계로부터 상기 내화물(10)의 두께 방향을 따라 이격되는 제1잔존정보메쉬모듈(101)과, 상기 제1잔존정보메쉬모듈(101)로부터 상기 내화물(10)의 두께 방향을 따라 이격되는 제2잔존정보메쉬모듈(102)로 구분할 수 있다.
상기 마지노선메쉬모듈(103)은 상기 용융물(30)의 경계로부터 상기 내화물의 두께 방향을 따라 상기 잔존정보메쉬모듈에서 이격 배치된다. 상기 마지노선메쉬모듈(103)은 상기 제2잔존정보메쉬모듈(102)로부터 상기 내화물(10)의 두께 방향을 따라 이격 배치된다. 상기 마지노선메쉬모듈(103)은 상기 내화물(10)의 교체 시기에 대응하여 상기 내화물(10)의 내부에 설치된다.
여기서, 상기 잔존정보메쉬모듈과 상기 마지노선메쉬모듈(103)은 각각 상기 제1단위케이블(110)과 상기 제2단위케이블(120)을 포함할 수 있다.
이에 대응하여 상기 계측모듈(200)은 잔존정보계측모듈과 마지노선계측모듈(203)로 구분할 수 있다.
상기 잔존정보계측모듈은 상기 잔존정보메쉬모듈()에서 발생되는 저항값을 측정한다. 상기 잔존정보계측모듈은 상기 제1잔존정보메쉬모듈(101)에서 발생되는 저항값을 측정하는 제1잔존정보계측모듈(201)과, 상기 제2잔존정보메쉬모듈(102)에서 발생되는 저항값을 측정하는 제2잔존정보계측모듈(202)로 구분할 수 있다.
상기 마지노선계측모듈(203)은 상기 마지노선메쉬모듈(103)에서 발생되는 저항값을 측정한다.
상기 잔존정보계측모듈과 상기 마지노선계측모듈(203)은 각각 상기 제1단위계측유닛(210)과 상기 제2단위계측유닛(220)을 포함할 수 있다.
그러면, 도 7에 도시된 바와 같이 상기 내화물의 두께(t0)에 대응하여 상기 내화물(10)의 내부에는 상기 용융물(30)로부터 상기 내화물(10)의 두께 방향을 따라 상기 제1잔존정보메쉬모듈(101)과, 상기 제2잔존정보메쉬모듈(102)과, 상기 마지노선메쉬모듈(103)이 상호 이격된 상태로 차례로 배치된다. 상기 제1잔존정보메쉬모듈(101)에는 상기 제1잔존정보계측모듈(201)이 연결되고, 상기 제2잔존정보메쉬모듈(102)에는 상기 제2잔존정보계측모듈(202)이 연결되며, 상기 마지노선메쉬모듈(103)에는 상기 마지노선계측모듈(203)이 연결된다.
그리고 도 8에 도시된 바와 같이 상기 용융물(30)에 의해 상기 내화물(10)이 손상되면, 상기 용융물(30)이 상기 내화물(10)의 내부로 침투한다. 그러면, 상기 용융물(30)은 상기 제1잔존정보메쉬모듈(101)을 손상시키고, 다음으로 상기 제2잔존정보메쉬모듈(102)을 손상시키며, 마지막으로 마지노선메쉬모듈(103)을 손상시키게 된다. 이때, 상기 내화물(10)의 마지노선(t1)에는 상기 마지노선메쉬모듈(103)이 내장되어 있으므로, 상기 용융물(30)이 상기 내화물(10)의 내부로 "D" 만큼 침투하게 되면, 상기 내화물(10)의 교체 시기에 대응하여 상기 내화물(10)에 내장된 상기 마지노선메쉬모듈(103)이 손상되고, 상기 마지노선메쉬모듈(103)의 손상에 따라 상기 마지노선계측모듈(203)에서 측정되는 저항값이 변경된다.
이에 따라, 상기 통합관리모듈(300)은 변경된 상기 저항값에 대응하여 손상된 상기 케이블모듈(100)의 삽입 위치를 도출하고, 손상된 상기 케이블모듈(100)의 삽입 위치를 통해 상기 용융물(30)이 상기 내화물(10)의 내부로 침투한 거리를 파악할 수 있다.
또한, 상기 통합관리모듈(300)은 상기 용융물(30)에 의해 손상되는 상기 제1단위케이블(110)과 상기 제2단위케이블(120)의 위치를 통해 상기 내화물(10)의 두께 방향에 수직인 평면 상에서 상기 내화물(10)의 손상 위치를 파악할 수 있다.
공업로 중 연주로(60)에 설치되는 상기 내화물(10)에 대하여 상기 케이블모듈(100)과 상기 계측모듈(200)의 설치 상태는 상기 제강로(40) 또는 상기 제선로(50)에 설치되는 것과 동일한 구조를 나타내므로, 이에 대한 설명은 생략한다.
도 9를 참조하여, 본 발명의 일 실시예에 따른 내화물 통합관리 시스템의 제어방법에 대하여 설명한다.
도 9에 도시된 바와 같이, 본 발명의 일 실시예에 따른 내화물 통합관리 제어방법은 내화물 통합관리 시스템을 제어함에 있어서, 저항값 측정 단계(S10), 내화물 상태 파악 단계(S20), 알람정보 표시 단계(S30), 내화물 상태 디스플레이 단계(S40), 로컬단말 명령전달 단계(S50)을 포함한다.
상기 저항값 측정 단계(S10)에서는 상기 계측모듈(200)에 의하여 상기 케이블모듈(100)에서 발생되는 저항값을 측정한다.
상기 내화물 상태 파악 단계(S20)에서는 상기 통합관리모듈(300)에 의하여 상기 계측모듈(200)에서 측정된 저항값을 분석하여 상기 내화물(10)의 손상 상태를 파악한다.
상기 알람정보 표시 단계(S30)에서는 상기 내화물(10)의 상태가 정상 상태의 범위를 벗어나는 경우에 상기 내화물(10)과 인접하게 배치되는 상기 알람수단에서 알람정보가 표시된다.
상기 내화물 상태 디스플레이 단계(S40)에서는 상기 통합관리모듈(300)에 의하여 상기 내화물(10)의 상태가 상기 데이터출력부(370)에 표시된다.
상기 로컬단말 명령전달 단계(S50)에서는 상기 통합관리모듈을 이용하여 상기 내화물에 대한 관리정보를 생성하고, 상기 통합관리모듈(300)에 의하여 상기 내화물(10)에 대한 관리정보를 상기 로컬단말(400)로 송신한다.
상술한 바와 같이 도면을 참조하여 본 발명의 바람직한 실시예를 설명하였지만, 해당 기술분야의 숙련된 당업자라면, 하기의 청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 또는 변경시킬 수 있다.
본 발명은 제철소, 발전소, 유리 성형 공장 등에서 사용되는 다양한 공업로(가열로, 열처리로, 소성로, 고로 등)의 내부에 설치되는 피가열부재가 열충격에 의해 손상을 입을 때, 피가열부재의 상태를 즉각적으로 파악할 수 있는 피가열부재 통합관리 시스템에 적용할 수 있다.
또한, 본 발명은 피가열부재의 손상 위치와 피가열부재의 손상 정도를 용이하게 파악할 수 있는 피가열부재 통합관리 시스템에 적용할 수 있다.
또한, 본 발명은 공업로의 피가열부재를 관리하여 피가열부재 손상에 따른 공업로의 열손실, 외부 설비의 손상, 현장 작업자의 안전사고 등을 방지할 수 있는 피가열부재 통합관리 시스템에 적용할 수 있다.

Claims (7)

  1. 고온의 용융물에 의해 가열되는 피가열부재의 손상 상태를 통합 관리하기 위한 피가열부재 통합관리 시스템에 있어서,
    상기 피가열부재의 내부에 적어도 일부분이 삽입되어 있는 케이블모듈;
    상기 피가열부재의 외부에 배치되고, 상기 케이블모듈에서 발생되는 저항값을 측정하는 계측모듈;
    상기 계측모듈에서 측정된 저항값을 바탕으로 상기 용융물에 의한 상기 피가열부재의 손상 상태를 파악하고, 상기 피가열부재의 손상 상태를 표시하며, 상기 피가열부재에 대한 관리정보를 생성하는 통합관리모듈; 및
    상기 통합관리모듈로부터 상기 피가열부재에 대한 관리정보를 수신하는 로컬단말;을 포함하고,
    상기 저항값은, 상기 용융물에 의해 상기 피가열부재가 손상되면서 상기 케이블모듈이 손상됨에 따라 변경되며,
    상기 통합관리모듈은, 변경된 상기 저항값에 대응하여 손상된 상기 케이블모듈의 삽입 위치를 도출하고, 손상된 상기 케이블모듈의 삽입 위치를 통해 상기 용융물이 상기 피가열부재의 내부로 침투한 거리를 파악하는 것을 특징으로 하는 피가열부재 통합관리 시스템.
  2. 제1항에 있어서,
    상기 케이블모듈은,
    상호 이격 배치되는 다수의 제1단위케이블; 및
    상기 제1단위케이블과 교차된 상태에서 상호 이격 배치되는 다수의 제2단위케이블;을 포함하고,
    상기 계측모듈은,
    상기 제1단위케이블과 1:1 대응으로 결합되어 상기 제1단위케이블에서 발생되는 저항값을 측정하는 제1단위계측유닛; 및
    상기 제2단위케이블과 1:1 대응으로 결합되어 상기 제2단위케이블에서 발생되는 저항값을 측정하는 제2단위계측유닛;을 포함하며,
    상기 통합관리모듈은, 상기 용융물에 의해 손상되는 상기 제1단위케이블과 상기 제2단위케이블의 위치를 통해 상기 피가열부재의 두께 방향에 수직인 평면 상에서 상기 피가열부재의 손상 위치를 파악하는 것을 특징으로 하는 피가열부재 통합관리 시스템.
  3. 제1항에 있어서,
    상기 케이블모듈과 상기 계측모듈 사이에는 기설정된 저항값을 갖는 고정저항유닛이 연결되는 것을 특징으로 하는 피가열부재 통합관리 시스템.
  4. 제1항에 있어서,
    상기 피가열부재에는,
    상기 피가열부재의 두께 방향으로 관통홀;이 관통 형성되고,
    상기 관통홀에는,
    상기 용융물에 의해 손상되는 잔존측정블럭이 내장된 상태에서 상기 용융물에 기포를 공급하는 버블링플러그;가 결합되며,
    상기 케이블모듈은,
    상기 버블링플러그의 교체 시기에 대응하여 상기 잔존측정블럭의 내부에 설치되는 마지노선메쉬모듈;을 포함하는 것을 특징으로 하는 피가열부재 통합관리 시스템.
  5. 제1항에 있어서,
    상기 케이블모듈은,
    상기 피가열부재와 상기 용융물의 경계로부터 상기 피가열부재의 두께 방향을 따라 상기 피가열부재의 내부에 설치되는 잔존정보메쉬모듈; 및
    상기 피가열부재와 상기 용융물의 경계로부터 상기 피가열부재의 두께 방향을 따라 상기 잔존정보메쉬모듈에서 이격 배치되고, 상기 피가열부재의 교체 시기에 대응하여 상기 피가열부재의 내부에 설치되는 마지노선메쉬모듈;을 포함하고,
    상기 계측모듈은,
    상기 잔존정보메쉬모듈에서 발생되는 저항값을 측정하는 잔존정보계측모듈; 및
    상기 마지노선메쉬모듈에서 발생되는 저항값을 측정하는 마지노선계측모듈;을 포함하는 것을 특징으로 하는 피가열부재 통합관리 시스템.
  6. 제1항에 있어서,
    상기 계측모듈은,
    상기 케이블모듈에서 발생되는 저항값을 측정하는 저항센싱부; 및
    상기 저항센싱부에서 측정된 저항값을 상기 통합관리모듈로 송신하는 데이터송신부;를 포함하고,
    상기 통합관리모듈은,
    상기 데이터송신부에서 송신하는 저항값을 수신하는 데이터수신부;
    상기 데이터수신부에서 수신한 저항값을 연산하여 상기 피가열부재의 손상 상태를 파악하는 데이터분석부;
    상기 데이터분석부에서 파악된 상기 피가열부재의 손상 상태를 모니터링하도록 표시하는 데이터출력부; 및
    상기 데이터분석부에서 파악된 상기 피가열부재의 손상 상태를 바탕으로 상기 피가열부재에 대한 관리정보를 생성하여 상기 로컬단말로 송신하는 관리지시부;를 포함하는 것을 특징으로 하는 피가열부재 통합관리 시스템.
  7. 제1항 내지 제6항 중 어느 한 항에 기재된 피가열부재 통합관리 시스템을 제어하기 위한 피가열부재 통합관리 시스템의 제어방법에 있어서,
    상기 계측모듈을 이용하여 상기 케이블모듈에서 발생되는 저항값을 측정하는 단계;
    상기 통합관리모듈을 이용하여 상기 계측모듈에서 측정된 저항값을 분석하여 상기 피가열부재의 손상 상태를 파악하는 단계;
    상기 통합관리모듈을 이용하여 상기 피가열부재의 손상 상태를 데이터출력부에 표시하는 단계; 및
    상기 통합관리모듈을 이용하여 상기 피가열부재에 대한 관리정보를 생성하고, 상기 피가열부재에 대한 관리정보를 상기 로컬단말로 송신하는 단계;를 포함하고,
    상기 피가열부재의 손상 상태를 파악하는 단계는,
    연산된 상기 저항값에 대응하여 손상된 상기 케이블모듈의 삽입 위치를 도출하고, 손상된 상기 케이블모듈의 삽입 위치를 통해 상기 용융물이 상기 피가열부재의 내부로 침투한 거리를 파악하는 것을 특징으로 하는 피가열부재 통합관리 시스템의 제어방법.
PCT/KR2017/001086 2017-02-01 2017-02-01 피가열부재 통합관리 시스템과 이의 제어방법 WO2018143491A1 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/KR2017/001086 WO2018143491A1 (ko) 2017-02-01 2017-02-01 피가열부재 통합관리 시스템과 이의 제어방법
JP2019536504A JP7038126B2 (ja) 2017-02-01 2018-01-29 被加熱部材の統合管理システム
US16/477,192 US11940218B2 (en) 2017-02-01 2018-01-29 Integrated heated member management system and method for controlling same
KR1020187008106A KR101942805B1 (ko) 2017-02-01 2018-01-29 피가열부재 통합관리 시스템과 이의 제어방법
PCT/KR2018/001207 WO2018143616A1 (ko) 2017-02-01 2018-01-29 피가열부재 통합관리 시스템과 이의 제어방법
CN201880008046.4A CN110199168B (zh) 2017-02-01 2018-01-29 被加热部件综合管理系统及其控制方法
EP18747325.1A EP3553442B1 (en) 2017-02-01 2018-01-29 An integrated heated member management system and method for controlling same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2017/001086 WO2018143491A1 (ko) 2017-02-01 2017-02-01 피가열부재 통합관리 시스템과 이의 제어방법

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/002178 Continuation-In-Part WO2018159863A1 (ko) 2017-02-01 2017-02-28 피가열부재 통합관리 시스템과 이의 제어방법

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/477,192 Continuation-In-Part US11940218B2 (en) 2017-02-01 2018-01-29 Integrated heated member management system and method for controlling same

Publications (1)

Publication Number Publication Date
WO2018143491A1 true WO2018143491A1 (ko) 2018-08-09

Family

ID=63040240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/001086 WO2018143491A1 (ko) 2017-02-01 2017-02-01 피가열부재 통합관리 시스템과 이의 제어방법

Country Status (1)

Country Link
WO (1) WO2018143491A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114713462A (zh) * 2022-05-10 2022-07-08 深圳市智力昌智能设备有限公司 一种基于工业互联网的点胶机的控制系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53122608A (en) * 1977-03-31 1978-10-26 Sumitomo Metal Ind Ltd Molten metal spout survellance method
JPH05240713A (ja) * 1992-02-27 1993-09-17 Kobe Steel Ltd 耐火物監視用温度センサおよび耐火物の侵食状態計測方法
JPH0647509A (ja) * 1992-08-04 1994-02-22 Kurosaki Refract Co Ltd ガス吹き込み装置
KR19990021633U (ko) * 1997-11-29 1999-06-25 이구택 열풍변의 부정형내화물 손상검출장치
JP2000161868A (ja) * 1998-12-01 2000-06-16 Hitachi Ltd 耐火物の損傷量評価方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53122608A (en) * 1977-03-31 1978-10-26 Sumitomo Metal Ind Ltd Molten metal spout survellance method
JPH05240713A (ja) * 1992-02-27 1993-09-17 Kobe Steel Ltd 耐火物監視用温度センサおよび耐火物の侵食状態計測方法
JPH0647509A (ja) * 1992-08-04 1994-02-22 Kurosaki Refract Co Ltd ガス吹き込み装置
KR19990021633U (ko) * 1997-11-29 1999-06-25 이구택 열풍변의 부정형내화물 손상검출장치
JP2000161868A (ja) * 1998-12-01 2000-06-16 Hitachi Ltd 耐火物の損傷量評価方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114713462A (zh) * 2022-05-10 2022-07-08 深圳市智力昌智能设备有限公司 一种基于工业互联网的点胶机的控制系统

Similar Documents

Publication Publication Date Title
WO2017179755A1 (ko) 내화물 통합관리 시스템 및 이의 제어방법
WO2014092375A1 (en) Method and apparatus for controlling access between home device and external server in home network system
WO2019107705A1 (ko) 스마트 가로등 관리 시스템 및 방법
WO2018143491A1 (ko) 피가열부재 통합관리 시스템과 이의 제어방법
WO2018199659A1 (ko) 변전소 자산 관리 방법
CN109880964B (zh) 一种转炉炉内状况检测方法及设备
WO2003038839A1 (en) Method and apparatus for fiber optic monitoring of downhole power and communication conduits
WO2018021635A1 (ko) 연속주조 이상 예측 장치
WO2018159863A1 (ko) 피가열부재 통합관리 시스템과 이의 제어방법
WO2017209312A1 (ko) 내화물 어셈블리, 이를 이용한 내화물 통합관리 시스템 및 내화물 어셈블리 관리방법
WO2018143616A1 (ko) 피가열부재 통합관리 시스템과 이의 제어방법
JPH1088221A (ja) 冶金炉内観察用プローブ及び冶金炉内観察方法
WO2020004708A1 (ko) 피가열부재의 상태를 계측하기 위한 계측장치 및 이의 제어방법
WO2019083054A1 (ko) 퍼징플러그 통합관리 시스템 및 이의 제어방법
WO2017146288A1 (ko) 가상 성능 및 가상 성능의 조합을 이용한 서버실 내 인프라 구성요소 관리 시스템
CN215103364U (zh) 一种主铁沟测温装置
JP2755813B2 (ja) 耐火物の補修時期判断装置
JPH09218125A (ja) 溶融金属精錬容器用湯漏れ検知方法、並びにその判断方法
WO2023054758A1 (ko) Dc전기로의 멜트다운 판정정도 향상방법
WO2023153757A1 (ko) 내화물 마모 감지 센서 및 시스템
WO2019013455A1 (ko) Sfp형 광섬유 고장점 탐지장치
WO2022182097A1 (ko) 송풍지관, 송풍지관의 제조방법 및 용해로 송풍시스템
JP2008214717A (ja) 転炉炉体状態の測定装置
WO2024090638A1 (ko) Hvdc 전력케이블의 가속열화 모니터링 시스템
CN112490964A (zh) 一种防火非金属电缆桥架

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17895279

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17895279

Country of ref document: EP

Kind code of ref document: A1