WO2022182097A1 - 송풍지관, 송풍지관의 제조방법 및 용해로 송풍시스템 - Google Patents

송풍지관, 송풍지관의 제조방법 및 용해로 송풍시스템 Download PDF

Info

Publication number
WO2022182097A1
WO2022182097A1 PCT/KR2022/002574 KR2022002574W WO2022182097A1 WO 2022182097 A1 WO2022182097 A1 WO 2022182097A1 KR 2022002574 W KR2022002574 W KR 2022002574W WO 2022182097 A1 WO2022182097 A1 WO 2022182097A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
temperature
layer
blower
pipe
Prior art date
Application number
PCT/KR2022/002574
Other languages
English (en)
French (fr)
Inventor
박성재
Original Assignee
엑셀로 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220020021A external-priority patent/KR20220121713A/ko
Application filed by 엑셀로 주식회사 filed Critical 엑셀로 주식회사
Priority to CN202280001711.3A priority Critical patent/CN115244192B/zh
Priority to EP22726375.3A priority patent/EP4074844A4/en
Priority to JP2022537126A priority patent/JP7444491B2/ja
Priority to US17/836,995 priority patent/US20220298591A1/en
Publication of WO2022182097A1 publication Critical patent/WO2022182097A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/16Tuyéres
    • C21B7/163Blowpipe assembly
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/24Test rods or other checking devices
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B9/00Stoves for heating the blast in blast furnaces
    • C21B9/10Other details, e.g. blast mains
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B9/00Stoves for heating the blast in blast furnaces
    • C21B9/16Cooling or drying the hot-blast
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • F27B1/16Arrangements of tuyeres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • F27B1/28Arrangements of monitoring devices, of indicators, of alarm devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • F27D21/0014Devices for monitoring temperature

Definitions

  • blower pipe is assembled with a plurality of connecting pipes that can be disassembled and assembled to meet the relative angle and location conditions between the blower main and the air inlet hole of the melting furnace, and to have workability and maintainability.
  • a temperature in a certain range must always be maintained. If a crack or a deformation of the flow path occurs in the blower pipe, the melting quality may be deteriorated because air at an appropriate temperature cannot be supplied to the melting furnace.
  • cracks generated in the blower pipe or the deformed portion of the flow path may cause damage to the blower pipe due to the continuously supplied high-temperature and high-pressure air, which may cause damage to the entire facility as well as a major safety accident.
  • An object of the present invention to solve the above problems is to prevent safety accidents in advance by monitoring in real time whether the blower pipe is damaged such as red heat, cracks, and deformation of the flow path, and it is possible to stably supply high-temperature air toward the melting furnace.
  • Another object of the present invention is to include a temperature sensor module with a compact structure in the blower pipe installed in an environment where the operator is inaccessible or difficult to measure the temperature.
  • Blowing paper pipe for solving the above-described problems, a refractory layer in which a flow path in contact with high-temperature air is formed on the inner surface; a heat conductive layer disposed on the outer surface of the refractory layer and heated by the heat transferred from the refractory layer; an external heat insulating layer disposed on the outer surface of the heat-conducting layer and blocking heat of the heat-conducting layer from being transmitted to the outside or external heat from being transmitted to the heat-conducting layer; and a temperature sensor for sensing the temperature of the heat-conducting layer.
  • blower pipe it is disposed between the refractory layer and the heat-conducting layer, and when the temperature of the inner surface in contact with the refractory layer exceeds a preset temperature, it is deformed and the thermal conductivity is rapidly increased.
  • the length of the first extension part and the second extension part may be the same.
  • the first extension part and the second extension part may have different lengths, and in this case, the first extension part may have a first thermal conductivity, and the second extension part may have the It may have a second thermal conductivity greater than the first thermal conductivity.
  • the first extension portion and the second extension portion may have different lengths.
  • the first extension portion may have a first area
  • the second extension portion may have a The second area may be larger than the first area.
  • the heat-conducting layer is disposed in the first outer region or the second outer region, and a heat collecting unit for collecting heat transferred from the refractory layer; may further include,
  • the heat collecting part may include a material having a higher thermal conductivity than the first pattern part and the second pattern part.
  • the manufacturing method of the blower branch pipe according to an embodiment of the present invention, the outer insulating layer forming step of forming an external insulating layer on the inner surface of the outer skin layer; a heat-conducting layer forming step of forming a heat-conducting layer on the inner surface of the outer heat insulating layer; a refractory layer forming step of inserting an insert member into the inner surface of the heat conductive layer and forming a refractory layer between the insert member and the heat conductive layer; and an insert member removing step of removing the insert member.
  • the method for manufacturing a blower pipe may be performed after the heat-conducting layer forming step, and may further include an internal heat-insulating layer forming step of forming an internal heat-insulating layer on an inner surface of the heat-conducting layer.
  • the temperature management module may calculate in real time the temperature of the refractory layer in contact with high-temperature air, based on the temperature of the heat-conducting layer sensed by the temperature sensor.
  • the damaged area such as red heat, cracks, and flow path deformation in the blower pipe
  • the time at which the damage occurred, and the scale of the damage can be quickly and accurately determined.
  • the present invention by measuring and monitoring the temperature state and local temperature difference of the blower pipe in real time, it is possible to detect and determine the high-temperature air and heat emitted to the outside of the blower pipe, and accordingly, the high-temperature air toward the melting furnace It is possible to increase the quality of the melting in the melting furnace by stably supplying it.
  • FIG. 1 is an exemplary side view of a melting furnace blowing system according to an embodiment of the present invention.
  • Figure 2 is a plan view of the furnace blowing system according to an embodiment of the present invention.
  • FIG. 6 is a plan view illustrating a pattern portion of a heat conductive layer according to a first embodiment of the present invention.
  • FIG. 7 is a plan view illustrating a modified example of FIG. 6 .
  • FIG. 8 is a plan view illustrating a pattern portion of a heat conductive layer according to a second embodiment of the present invention.
  • FIG. 9 is a plan view illustrating a pattern portion of a heat conductive layer according to a third embodiment of the present invention.
  • FIG. 10 is a plan view illustrating a pattern portion of a heat conductive layer according to a fourth embodiment of the present invention.
  • FIG. 11 is a flowchart illustrating a method of manufacturing a blower pipe according to an embodiment of the present invention.
  • the melting furnace blowing system monitors the temperature and damage of the blower pipe 40 in real time, such as red heat, cracks, and deformation of the flow path, in real time, and When determining damage, it is possible to prevent a safety accident in advance by a quick response of an operator or inspector, and to stably provide high-temperature air toward the melting furnace 10 .
  • the melting furnace blowing system may include a melting furnace 10 , a supply unit 20 , a blowing main pipe 30 , a blowing branch pipe 40 , and a temperature management module 60 .
  • the melting furnace 10 has a melting space inside, and the raw material produced in the sintering process and high-temperature air are introduced into the melting space to produce molten iron (molten iron).
  • An inlet hole for receiving high-temperature air may be provided around the lower end of the melting furnace 10 .
  • a plurality of inlet holes may be provided to be spaced apart along the circumference of the melting furnace 10 .
  • the supply unit 20 is for supplying high-temperature air to the melting furnace 10 side, and may pressurize the high-temperature air heated by the heating unit to the blower main 30 .
  • a pump may be used as the supply unit 20 .
  • the blower pipe 30 is connected to the supply unit 20 , and may supply high-temperature air pressure-supplied from the supply unit 20 to the blowing branch pipe 40 .
  • This blower pipe 30 may have a ring shape surrounding the circumference of the melting furnace 10 .
  • the blower pipe 40 connects the blower pipe 30 and the melting furnace 10 , and distributes the high-temperature air supplied from the blower pipe 30 to supply it to the melting furnace 10 side.
  • a plurality of these blower pipes 40 may be disposed to be spaced apart along the circumference of the melting furnace 10 with respect to the ring-shaped blower pipe 30 , and may be respectively coupled to a plurality of inlet holes provided in the melting furnace 10 . have.
  • the upper pipe (40A) may have one end connected to the main air blower (30).
  • the upper pipe (40A) may be formed to extend obliquely from the blower pipe (30) toward the inlet hole of the melting furnace (10).
  • the lower pipe 40B may have one end connected to the upper pipe 40A.
  • the lower pipe (40B) may be formed to extend obliquely from the upper pipe (40A) toward the inlet hole of the melting furnace (10).
  • the elbow storage 40C may have one end connected to the lower pipe 40B, and the other end may be bent so as to horizontally face the inlet hole of the melting furnace 10 .
  • blow pipe 40D may be connected to the elbow storage 40C, and the other end may be inserted into the inlet hole of the melting furnace 10 to extend into the melting space of the melting furnace 10 .
  • the temperature sensor 50 may sense the temperature of the blower pipe 40 in real time.
  • the temperature sensor 50 may have a contact type sensing unit 51 (refer to FIG. 6 ) for measuring a temperature.
  • the temperature sensor 50 may include a thermocouple part having the sensing part 51 as a hot junction, and a processing part connected to the cold junction of the thermocouple part and calculating a temperature from thermoelectric power according to the temperature of the thermocouple part.
  • the thermocouple part includes different types of metal wires, and when both ends of the metal wire are connected, a hot junction (temperature-measurement junction) that is one connection end of the metal wire and a cold junction (reference junction) that is the other connection end of the metal wire Current flows through the metal wire due to the temperature difference between them.
  • thermocouple may correspond to the sensing unit 51 , and the thermocouple including the thermal junction may be protected by being buried in a cover member such as a tube.
  • the processor may obtain actual temperature information at the hot junction from a relationship between a temperature difference value between a hot junction and a cold junction of the thermocouple and thermoelectric power generated in the thermocouple.
  • a voltmeter may be used as such a processing unit.
  • the temperature sensor 50 various types of known temperature sensors as well as thermocouples may be used depending on the type of heat source to be measured.
  • the temperature sensor 50 may further have a first communication unit, and the first communication unit may transmit temperature information measured and processed by the temperature sensor 50 to the temperature management module 60, and the temperature management module ( 60) can receive a control signal transmitted from.
  • a plurality of temperature sensors 50 may be provided for each blower pipe 40, and at least a portion of the heat conductive layer 42 in contact with the refractory layer 41 of each blower pipe 40 is a temperature measuring region ( One temperature sensor may be provided for each A).
  • the temperature management module 60 compares the temperature of the blower pipe 40 sensed by the temperature sensor 50 with a preset reference temperature to determine whether the blower pipe 40 is damaged such as red heat, cracks, and deformation of the flow path. and can provide it to the operator or inspector.
  • the temperature management module 60 may operate the cooling module according to whether the blower pipe 40 is damaged or not, or may emergency stop the furnace blowing system.
  • the temperature management module 60 may have a second communication unit, and the second communication unit may receive temperature information measured and processed by the temperature sensor 50 , and transmit a control signal to the temperature sensor 50 .
  • the temperature management module 60 may process the temperature information measured and processed by the temperature sensor 50 and display it as various output values, while the manager monitors the temperature information displayed on the temperature management module 60 in real time. It is possible to effectively manage the operation and state of the blower pipe 40 .
  • the temperature management module 60 may be a computer, or may be a tablet or smart phone that an administrator can carry.
  • the blower pipe 40 may generate a local temperature difference during use, for example, the heating temperature may be relatively high in the area of the upper pipe 40A connected to the blower pipe 30 .
  • a local temperature difference occurs in the blower pipe 40
  • a difference in durability may occur locally due to a difference in thermal expansion or thermal contraction.
  • red heat may occur due to the high-temperature air flowing therein, or in severe cases, the flow path may be deformed or cracked.
  • the cooling module is operated before the blower pipe 40 is damaged to operate the blower pipe 40 ) can compensate for overheating or local temperature differences, and provide information for quick response to operators or inspectors.
  • the blower pipe 40 may further include a refractory material layer 41 , a heat conductive layer 42 , an outer heat insulating layer 43 , and an outer skin layer 44 .
  • the refractory layer 41 is a portion in direct contact with the high-temperature air passing through the blower pipe 40, and a flow path S in contact with the high-temperature air may be formed on the inner surface.
  • the refractory layer 41 may be made of a material having excellent heat resistance and may have a preset allowable refractory temperature.
  • the refractory layer 41 When the refractory layer 41 is maintained for a certain period of time in a state in which the refractory layer 41 exceeds the allowed refractory temperature by high-temperature air, cracks may occur or the flow path may be deformed. Then, the heat resistance of the refractory layer 41 is rapidly lowered, so that high-temperature air and heat may be discharged to the outside.
  • the outer heat insulating layer 43 may be made of a heat insulating material, and may be disposed on the outer surface of the heat conductive layer 42 . Accordingly, the external heat insulating layer 43 may block heat of the heat conductive layer 42 from being transmitted to the outside or external heat from being transmitted to the heat conductive layer 42 .
  • the temperature management module 60 is based on the temperature of the heat-conducting layer 42 sensed by the plurality of temperature sensors 50, the temperature distribution over the entire area of the refractory layer 41 in contact with high-temperature air in real time can be checked
  • the cooling module may have a cooling passage and a refrigerant supply unit.
  • the cooling passage may be disposed in the blower pipe 40 , and may be formed in the refractory layer 41 .
  • the inner heat insulating layer 45 may be deformed and the thermal conductivity may be rapidly increased. Accordingly, the heat transferred from the refractory layer 41 may be rapidly transferred to the heat conductive layer 42 to rapidly heat the heat conductive layer 42 .
  • the temperature sensor 50 can measure the changed temperature of the heat conductive layer 42 more accurately and quickly. In addition, even if a relatively inexpensive temperature sensor 50 is used, it is possible to accurately measure the temperature of the heat conductive layer 42 .
  • the temperature measurement area A may be a region defined by an imaginary outline extending along the edge of the heat conductive layer 420 .
  • the heat conductive layer 420 may be composed of a plurality of temperature measurement areas (A) partitioned by a virtual dividing line.
  • the heat conductive layer 420 may collect heat transferred from the refractory layer 41 to the temperature measurement area A and transfer it to the sensing unit 51 of the temperature sensor 50 along the surface of the temperature measurement area A. .
  • the heat-conducting layer 420 may have a pattern part, and the pattern part may have an overall uniform pattern while going to the edge region of the temperature measurement region A with the sensing part 51 as the center.
  • the pattern portion may form at least a part of the temperature measurement area (A). That is, the heat-conducting layer 420 may be provided to completely cover the external insulating layer 43 in a plan view, and may have a pattern covering only a portion of the external insulating layer 43 .
  • FIG. 6 is a plan view illustrating a pattern portion of a heat conductive layer according to a first embodiment of the present invention.
  • the first pattern portion 420A may have a first inner region 421A, a first outer region 422A, and a first extension portion 423A.
  • the second inner region 421B may be disposed in the inner central region of the temperature measurement region A, and may be connected to the sensing unit 51 of the temperature sensor 50 .
  • the second outer region 422B may be disposed in an outer edge region of the temperature measurement region A, and may be disposed to be spaced apart from the second inner region 421B by a second straight distance d2.
  • the second straight distance d2 may be longer than the first straight distance d1.
  • the second extension portion 423B may connect the second inner region 421B and the second outer region 422B.
  • the second extension portion 423B may have the same length as the second straight distance d2 or may have a length longer than the second straight distance d2.
  • the second extension portion 423B may have an irregular shape such as a zigzag shape or an arc shape in a plan view and may be formed to extend from the second inner region 421B toward the second outer region 422B.
  • the heat transferred from the sensing unit 51 to the first outer region 422A spaced apart by a first straight distance d1 and the heat transferred to the second outer region 422B spaced apart by a second straight distance d2 After the heat moves along the first extension 423A and the second extension 423B, it can reach the sensing unit 51 at the same time. Due to this, the temperature sensor 50 can quickly and accurately acquire the temperature for the temperature measurement area A in a specific time period.
  • the heat transferred to the 422B may reach the sensing unit 51 at the same time after moving along the first extension 4230A and the second extension 4230B.
  • FIG. 8 is a plan view illustrating a pattern portion of a heat conductive layer according to a second embodiment of the present invention.
  • the first extension part 4231A and the second extension part 4231B may have different lengths.
  • the first extension portion 4231A and the second extension portion 4231B may be made of materials having different thermal conductivity. That is, the first extension portion 4231A may have a first thermal conductivity ⁇ 1 , and the second extension portion 4231B may have a second thermal conductivity ⁇ 2 greater than the first thermal conductivity ⁇ 1 .
  • the thermal conductivity of the first extension portion 4231A and the second extension portion 4231B is different from each other, the first outer region 422A and the second outer region 422B are transferred to the sensing unit 51, respectively.
  • a change according to the linear distance difference (d1, d2) of the transferred heat transfer rate may be compensated.
  • FIG. 9 is a plan view illustrating a pattern portion of a heat conductive layer according to a third embodiment of the present invention.
  • the pattern part may include a first pattern part 420A and a second pattern part 420B.
  • the first pattern portion 420A may have a first inner region 421A, a first outer region 422A, and a first extension portion 4232A
  • the second pattern portion 420B has a second inner region. 421B, a second outer region 422B, and a second extension portion 4232B may be provided. A duplicate description thereof will be omitted.
  • the first extension part 4232A and the second extension part 4232B may have different lengths.
  • the first extension 4232A and the second extension 4232B may have different areas. That is, the first extension portion 4232A may have a first area A1 , and the second extension portion 4232B may have a second area A2 larger than the first area A1 .
  • the first outer region 422A and the second outer region 422B are transmitted to the sensing unit 51, respectively. It is possible to compensate for the change according to the linear distance difference (d1, d2) of the heat transfer rate.
  • FIG. 10 is a plan view illustrating a pattern portion of a heat conductive layer according to a fourth embodiment of the present invention.
  • the pattern part may include a first pattern part 420A and a second pattern part 420B.
  • the first pattern portion 420A may have a first inner region 421A, a first outer region 422A, and a first extension portion 4233A
  • the second pattern portion 420B has a second inner region. 421B, a second outer region 422B, and a second extension portion 4233B may be provided.
  • the first pattern part 420A may further include a first heat collecting part 425A disposed in the first outer region 422A
  • the second pattern part 420B is disposed in the second outer region 422B. It may further have a second heat collecting unit 425B.
  • the first extension part 4233A and the second extension part 4233B may have different lengths.
  • the first heat collecting part 425A and the second heat collecting part 425B may be made of materials having different thermal conductivity. That is, the first heat collecting unit 425A may have a third thermal conductivity, and the second heat collecting unit 425B may have a fourth thermal conductivity greater than the third thermal conductivity.
  • the temperature difference between the first inner region 421A and the first outer region 422A and the second By setting the temperature difference between the inner region 421B and the second outer region 422B to be different from each other, a straight line of the heat transfer rate transmitted from the first outer region 422A and the second outer region 422B to the sensing unit 51, respectively.
  • a change according to the distance difference d1, d2 may be compensated.
  • the heat of the refractory layer 41 is transferred to the outer region of the heat conducting layer 420 and then faster to the sensing unit 51 . time can be reached.
  • the length of the first extension part 423A and the second extension part 423B when the first pattern part 420A and the second pattern part 420B are formed Although it has been described that the set values of thermal conductivity and area are individually adjusted, when the first pattern portion 420A and the second pattern portion 420B are formed, the first extension portion 423A and the second extension portion 423B Compensating for a change according to the linear distance difference (d1, d2) of the heat transfer rate passing through the first extension part 423A and the second extension part 423B by adjusting the set value of at least one of length, thermal conductivity, and area can do.
  • the set values of the length, thermal conductivity, and area of the pattern part provided in the thermal conductive layer 420 may be appropriately adjusted according to the type of the refractory layer 41 and the installation position of the sensing part 51 .
  • the heat conductive layer 420 according to the present embodiment may have a flat plate shape corresponding to the temperature measurement area A without a pattern part.
  • the temperature measuring area (A) may have a circular shape, and the sensing unit 51 of the temperature sensor 50 may be disposed in the center of the temperature measuring area (A).
  • the heat conductive layer 420 may have a circular shape having a constant radius around the sensing unit 51 corresponding to the circular shape temperature measuring area A. As shown in FIG.
  • the heat transfer rate transmitted from the outer region of the heat-conducting layer 420 to the sensing unit 51 may be uniform even if there is no pattern part.
  • the heat transferred from the refractory layer 41 to the outer region of the heat conductive layer 420 can reach the inner region connected to the sensing unit 51 at the same time.
  • the heat-conducting layer 420 having a circular shape having a constant radius around the sensing unit 51 may also have a pattern unit.
  • the pattern unit is directed toward the outside region with respect to the inner region connected to the sensing unit 51 . It may have a radial pattern portion having the same length, thermal conductivity, and area. Accordingly, the heat transferred from the refractory layer 41 to the outer region of the heat conductive layer 420 is faster to the inner region connected to the sensing unit 51 . time can be reached.
  • FIG. 11 is a flowchart illustrating a method of manufacturing a blower pipe according to an embodiment of the present invention.
  • the method of manufacturing a blower pipe according to an embodiment of the present invention includes an outer skin layer forming step (S11), an outer heat insulating layer forming step (S12), a heat conductive layer forming step (S13), an inner heat insulating layer forming step (S14), It may include a refractory layer forming step (S15) and an insert member removing step (S16).
  • the skin layer forming step ( S11 ) may be a step of forming the outer skin layer 44 .
  • the external insulating layer forming step ( S12 ) may be a step of forming the external insulating layer 43 on the inner surface of the outer skin layer 44 .
  • the temperature sensor 50 may be integrally assembled with the external heat insulating layer (43). That is, at least a portion of the temperature sensor 50 may be embedded in the external thermal insulation layer 43 during the formation of the external thermal insulation layer 43 so that the sensing unit 51 of the temperature sensor 50 is exposed to the inner surface of the external thermal insulation layer 43 . have. Accordingly, the temperature sensor 50 may measure the temperature of the heat conductive layer 42 formed on the inner surface of the external heat insulating layer 43 .
  • the heat conductive layer forming step ( S13 ) may be a step of forming the heat conductive layer 42 on the inner surface of the external heat insulating layer 43 .
  • the heat conductive layer 420 having various pattern portions shown in FIGS. 5 to 10 may be formed.
  • the internal insulating layer forming step ( S14 ) may be a step of forming the internal insulating layer 45 on the inner surface of the heat conductive layer 42 .
  • an insert member having a shape corresponding to the flow path S is inserted into the inner surface of the heat conductive layer 42, and a refractory layer 41 is formed between the insert member and the heat conductive layer 42.
  • a flow path S through which high-temperature air flows may be provided on the inner surface of the refractory layer 41 .
  • the insert member removing step (S16) may be a step of removing the insert member. That is, when the formation of the refractory layer 41 is completed, the manufacture of the blower pipe 40 is completed by removing the insert member.
  • the present invention measures and monitors the temperature state and local temperature difference of the blower pipe, which is a furnace facility, in real time, thereby quickly measuring and monitoring the damaged area such as red heat, cracks, and flow path deformation in the blower pipe, the time at which the damage occurred, and the scale of the damage. It can be accurately detected and judged, and from this, not only can the quality of melting in the furnace be improved, but also safety accidents that may occur in the furnace can be prevented in advance, so it can be widely used in the field of melting furnaces.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Fire-Detection Mechanisms (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Blast Furnaces (AREA)

Abstract

본 발명은 송풍지관의 적열, 균열, 유로의 변형 등의 손상 여부를 모니터링하여 안전사고를 미연에 예방할 수 있고, 용해로를 향하여 고온의 공기를 안정적으로 제공할 수 있는 송풍지관, 송풍지관의 제조방법 및 용해로 송풍시스템을 제공함에 있다. 이를 위한 본 발명은 용해로에 고온의 공기를 공급하기 위한 공급부; 상기 공급부에 연결되는 송풍주관; 상기 송풍주관과 상기 용해로를 연결하며 상기 송풍주관에서 고온의 공기를 분배되는 상기 용해로에 공급하는 송풍지관; 및 상기 송풍지관의 온도와 미리 설정된 기준온도를 비교하여 상기 송풍지관의 손상 여부를 판단하는 온도관리모듈을 포함하고, 상기 송풍지관은 고온의 공기와 접촉하는 유로가 내면에 형성되는 내화물층; 상기 내화물층의 외면에 배치되며 상기 내화물층으로부터 전달된 열에 의해 가열되는 열전도층; 상기 열전도층의 외면에 배치되며 상기 열전도층의 열이 외부로 전달되거나 외부의 열이 상기 열전도층으로 전달되는 것을 차단하는 외부단열층; 상기 열전도층의 온도를 감지하기 위한 온도센서;를 포함하는 특징을 개시한다.

Description

송풍지관, 송풍지관의 제조방법 및 용해로 송풍시스템
본 발명은 송풍지관, 송풍지관의 제조방법 및 용해로 송풍시스템에 관한 것으로, 상세하게는 적열, 균열, 유로의 변형 등 송풍지관의 손상 여부를 실시간 모니터링하여 안전사고를 미연에 예방할 수 있고, 용해로를 향하여 고온의 공기를 안정적으로 공급할 수 있는 송풍지관, 송풍지관의 제조방법 및 용해로 송풍시스템에 관한 것이다.
철광석 등의 원료를 용해하여 쇳물을 생산하는 용해로(주로 고로 또는 용광로라 함)는 원료를 용해시키기 위한 열원으로 대략 1200도 내지 1400도로 가열된 공기를 공급 받는다.
이러한 고온의 공기를 용해로 공급하기 위한 송풍장치로는 고온으로 가열된 공기를 공급하는 공급부와, 공급부에 연결되며 용해로의 둘레를 감싸도록 링 형상으로 형성되는 송풍주관과, 송풍주관과 용해로를 연결하며 송풍주관에서 분배되는 고온의 공기를 용해로에 공급하는 송풍지관이 사용된다.
일반적으로 송풍지관은 송풍주관과 용해로의 공기유입홀 간의 상대적인 각도와 위치 조건을 충족하면서 시공성과 정비성을 갖추기 위하여, 분해 및 조립이 가능한 복수의 연결관을 조립하여서 송풍주관과 용해로의 공기유입홀을 연결하게 된다.
이러한 송풍지관은 일부 영역에서 발열온도가 높아지는 문제가 발생되고, 이처럼 국부적인 온도차가 발생하면, 열팽창의 차이로 인하여 내구성의 차이가 국부적으로 나타날 수 있다. 그러면 내부를 흐르는 고온 고압의 공기로 인하여 송풍지관에 적열 현상이 발생되거나 심할 경우에는 유로의 변형 또는 균열이 발생될 수 있다.
또한, 용해로에서 원료를 용해하는 중에는 항상 일정한 범위의 온도가 유지되어야 하는데, 송풍지관에 균열이나 유로의 변형이 발생하게 되면, 용해로에 적정 온도의 공기가 공급되지 못하여 용해 품질이 떨어질 수 있다.
또한, 송풍지관에 발생된 균열이나 유로의 변형 부분은 계속해서 공급되는 고온 고압의 공기로 인하여 송풍지관의 파손을 유발할 수 있고, 그러면 전체 설비의 파손 뿐만 아니라 큰 안전사고를 유발할 수 있다.
대한민국 등록특허공보 제0828154호(2008.05.08.공고)에는 열풍로 설비의 발열 및 적열 상태를 조기에 검출하여 더 이상의 손상이 진행되지 않도록 냉각시키는 열풍관의 냉각 장치가 개시되어 있다.
상술한 문제점을 해결하기 위한 본 발명의 과제는 송풍지관의 적열, 균열, 유로의 변형 등의 손상 여부를 실시간 모니터링하여 안전사고를 미연에 예방할 수 있고, 용해로를 향하여 고온의 공기를 안정적으로 공급할 수 있는 송풍지관, 송풍지관의 제조방법 및 용해로 송풍시스템을 제공함에 있다.
본 발명의 다른 과제는 작업자의 접근이 불가하거나 온도 측정이 어려운 환경에 설치되는 송풍지관에 콤팩트한 구조의 온도센서 모듈을 포함하여 송풍지관의 온도를 신속하고 정확하게 획득해낼 수 있는 송풍지관, 송풍지관의 제조방법 및 용해로 송풍시스템을 제공함에 있다.
본 발명이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상술한 과제를 해결하기 위한 본 발명의 실시예에 따른 송풍지관은, 고온의 공기와 접촉하는 유로가 내면에 형성되는 내화물층; 상기 내화물층의 외면에 배치되며, 상기 내화물층으로부터 전달된 열에 의해 가열되는 열전도층; 상기 열전도층의 외면에 배치되며, 상기 열전도층의 열이 외부로 전달되거나 외부의 열이 상기 열전도층으로 전달되는 것을 차단하는 외부단열층; 및 상기 열전도층의 온도를 감지하기 위한 온도센서;를 포함한다.
본 실시예에 따른 송풍지관에 있어서, 상기 내화물층 및 상기 열전도층 사이에 배치되며, 상기 내화물층과 접촉하는 내면의 온도가 미리 설정된 설정온도를 초과할 경우, 변형되면서 열전도율이 급격히 상승되는 내부단열층을 더 포함할 수 있다.
본 실시예에 따른 송풍지관에 있어서, 상기 온도센서는 상기 열전도층의 적어도 일부인 온도측정영역의 온도를 감지할 수 있고, 이 경우 상기 열전도층은 상기 온도측정영역의 적어도 일부를 형성하는 패턴부를 가질 수 있다.
본 실시예에 따른 송풍지관에 있어서, 상기 패턴부는, 상기 온도센서의 감지부에 연결되는 제1내측영역과, 상기 제1내측영역으로부터 제1직선거리로 이격하여 배치되는 제1외측영역과, 상기 제1내측영역 및 제1외측영역을 연결하는 제1연장부를 가지는 제1패턴부; 및 상기 온도센서의 감지부에 연결되는 제2내측영역과, 상기 제2내측영역으로부터 상기 제1직선거리보다 긴 제2직선거리로 이격하여 배치되는 제2외측영역과, 상기 제2내측영역 및 제2외측영역을 연결하는 제2연장부를 가지는 제2패턴부;를 포함할 수 있다.
본 실시예에 따른 송풍지관에 있어서, 상기 제1연장부 및 상기 제2연장부의 길이는 동일할 수 있다.
본 실시예에 따른 송풍지관에 있어서, 상기 제1연장부 및 상기 제2연장부는 서로 다른 길이를 가질 수 있고, 이 경우 상기 제1연장부는 제1열전도율을 가질 수 있으며, 상기 제2연장부는 상기 제1열전도율보다 큰 제2열전도율을 가질 수 있다.
본 실시예에 따른 송풍지관에 있어서, 상기 제1연장부 및 상기 제2연장부는 서로 다른 길이를 가질 수 있고, 이 경우 상기 제1연장부는 제1면적을 가질 수 있으며, 상기 제2연장부는 상기 제1면적보다 넓은 제2면적을 가질 수 있다.
본 실시예에 따른 송풍지관에 있어서, 상기 열전도층은, 상기 제1외측영역 또는 상기 제2외측영역에 배치되며, 상기 내화물층으로부터 전달되는 열을 수집하는 열수집부;를 더 포함할 수 있고, 이 경우 상기 열수집부는 상기 제1패턴부 및 상기 제2패턴부보다 열전도율이 큰 소재를 포함할 수 있다.
한편, 본 발명의 실시예에 따른 송풍지관의 제조방법은, 외피층의 내면에 외부단열층을 형성하는 외부단열층 형성단계; 상기 외부단열층의 내면에 열전도층을 형성하는 열전도층 형성단계; 상기 열전도층의 내면에 인서트부재를 삽입시키고, 상기 인서트부재와 상기 열전도층 사이에 내화물층을 형성하는 내화물층 형성단계; 및 상기 인서트부재를 제거하는 인서트부재 제거단계;를 포함한다.
본 실시예에 따른 송풍지관의 제조방법에 있어서, 상기 열전도층 형성단계 이후에 수행될 수 있으며, 상기 열전도층의 내면에 내부단열층을 형성하는 내부단열층 형성단계;를 더 포함할 수 있다.
본 실시예에 따른 송풍지관의 제조방법에 있어서, 상기 외부단열층 형성단계에서, 상기 열전도층에 온도센서의 감지부가 접촉되도록 상기 온도센서의 적어도 일부를 상기 외부단열층에 매립시킬 수 있다.
한편, 본 발명의 실시예에 따른 용해로 송풍시스템은, 용해로에 고온의 공기를 공급하기 위한 공급부; 상기 공급부에 연결되는 송풍주관; 상기 송풍주관과 상기 용해로를 연결하며, 상기 송풍주관에서 고온의 공기를 분배하여 상기 용해로에 공급하기 위한 전술한 송풍지관; 및 상기 송풍지관의 온도와 미리 설정된 기준온도를 비교하여 상기 송풍지관의 손상 여부를 판단하는 온도관리모듈;을 포함한다.
본 실시예에 따른 용해로 송풍시스템에 있어서, 상기 온도관리모듈은, 상기 온도센서에서 감지된 상기 열전도층의 온도를 바탕으로, 고온의 공기와 접촉하는 상기 내화물층의 온도를 실시간 산출할 수 있다.
본 발명에 따르면, 송풍지관의 온도 상태 및 국부적인 온도차를 실시간으로 측정 및 모니터링함으로써, 송풍지관에서의 적열, 균열, 유로 변형 등의 손상 부위, 손상이 발생된 시간 및 손상의 규모를 신속하고 정확히 감지 및 판단할 수 있다. 또한 이를 바탕으로 송풍지관을 냉각시키거나 작업자 또는 점검자로 하여금 신속히 대처할 수 있도록 하여, 안전사고를 미연에 예방할 수 있다.
본 발명에 따르면, 송풍지관의 온도 상태 및 국부적인 온도차를 실시간으로 측정 및 모니터링함으로써, 송풍지관의 외부로 방출되는 고온의 공기 및 열을 감지 및 판단할 수 있으며, 이에 따라 용해로를 향하여 고온의 공기를 안정적으로 공급하여 용해로에서의 용해 품질을 높일 수 있다.
본 발명에 따르면, 온도센서의 감지부에 연결된 채 측정영역의 표면을 따라 연장하여 형성되는 열전도층을 포함하여, 송풍지관에 전달되는 온도를 정확하게 측정 및 처리해낼 수 있으며, 이렇게 획득된 온도 정보로부터 송풍지관에 대한 안정적이고 체계적인 관리가 가능하다.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.
도 1은 본 발명의 일 실시예에 따른 용해로 송풍시스템의 측면 예시도이다.
도 2는 본 발명의 일 실시예에 따른 용해로 송풍시스템의 평면 예시도이다.
도 3은 본 발명의 일 실시예에 따른 송풍지관을 나타낸 예시도이다.
도 4는 본 발명의 다른 실시예에 따른 송풍지관을 나타낸 예시도이다.
도 5는 본 발명의 일 실시예에 따른 열전도층을 나타낸 평면 예시도이다.
도 6은 본 발명의 제1실시예에 따른 열전도층의 패턴부를 나타낸 평면 예시도이다.
도 7은 도 6의 변형예를 나타낸 평면 예시도이다.
도 8은 본 발명의 제2실시예에 따른 열전도층의 패턴부를 나타낸 평면 예시도이다.
도 9는 본 발명의 제3실시예에 따른 열전도층의 패턴부를 나타낸 평면 예시도이다.
도 10은 본 발명의 제4실시예에 따른 열전도층의 패턴부를 나타낸 평면 예시도이다.
도 11은 본 발명의 일 실시예에 따른 송풍지관의 제조방법을 나타낸 흐름도이다.
이하 상술한 해결하고자 하는 과제가 구체적으로 실현될 수 있는 본 발명의 바람직한 실시예들이 첨부된 도면을 참조하여 설명된다. 본 실시예들을 설명함에 있어서, 동일 구성에 대해서는 동일 명칭 및 동일 부호가 사용될 수 있으며 이에 따른 부가적인 설명은 생략될 수 있다.
도 1은 본 발명의 일 실시예에 따른 용해로 송풍시스템의 측면 예시도이고, 도 2는 본 발명의 일 실시예에 따른 용해로 송풍시스템의 평면 예시도이며, 도 3은 본 발명의 일 실시예에 따른 송풍지관을 나타낸 예시도이다.
도 1 내지 도 3을 참조하면, 본 발명의 실시예에 따른 용해로 송풍시스템은 적열, 균열, 유로의 변형 등 송풍지관(40)의 온도 및 손상 여부를 실시간으로 모니터링하고, 송풍지관(40)의 손상 판단 시 작업자 또는 점검자의 신속한 대처로 안전사고를 미연에 예방하고, 용해로(10)를 향해 고온의 공기를 안정적으로 제공할 수 있다.
이를 위한 본 발명의 일 실시예에 따른 용해로 송풍시스템은 용해로(10), 공급부(20), 송풍주관(30), 송풍지관(40) 및 온도관리모듈(60)을 포함할 수 있다.
용해로(10)는 내부에 용해공간을 가지며, 용해공간에는 소결공정에서 생산된 원료와 고온의 공기를 유입하여 용해된 용선(쇳물)을 생산할 수 있다.
용해로(10)의 하단부 둘레에는 고온의 공기를 공급받기 위한 유입홀이 구비될 수 있다. 유입홀은 용해로(10)의 둘레를 따라 이격하여 복수개가 마련될 수 있다.
공급부(20)는 용해로(10) 측으로 고온의 공기를 공급하기 위한 것으로, 가열부에서 가열된 고온의 공기를 가압하여 송풍주관(30)으로 압송할 수 있다. 이러한 공급부(20)로는 펌프가 사용될 수 있다.
송풍주관(30)은 공급부(20)에 연결되며, 공급부(20)에서 압송된 고온의 공기를 송풍지관(40)으로 공급할 수 있다.
이러한 송풍주관(30)은 용해로(10)의 둘레를 감싸는 링 형상을 가질 수 있다.
송풍지관(40)은 송풍주관(30)과 용해로(10)를 연결하며, 송풍주관(30)에서 공급되는 고온의 공기를 분배하여 용해로(10) 측으로 공급할 수 있다.
이러한 송풍지관(40)은 링 형상의 송풍주관(30)에 대해 용해로(10)의 둘레를 따라 이격하여 복수개가 배치될 수 있고, 용해로(10)에 구비된 복수의 유입홀에 각각 결합될 수 있다.
따라서, 복수의 송풍지관(40)을 통하여 용해로(10)의 둘레를 따라 균일한 용량으로 분배된 고온의 공기를 용해로(10) 측으로 공급해줄 수 있다.
송풍지관(40)은 상부관(40A), 하부관(40B), 엘보관(40C) 및 블로우관(40D)을 포함할 수 있다.
상부관(40A)은 일단부가 송풍주관(30)에 연결될 수 있다. 또한 상부관(40A)은 송풍주관(30)에서 용해로(10)의 유입홀을 향하도록 경사지게 연장 형성될 수 있다.
하부관(40B)은 일단부가 상부관(40A)에 연결될 수 있다. 또한 하부관(40B)은 상부관(40A)에서 용해로(10)의 유입홀을 향하도록 경사지게 연장 형성될 수 있다.
엘보관(40C)은 일단부가 하부관(40B)에 연결될 수 있고, 타단부가 용해로(10)의 유입홀을 수평하게 대향하도록 벤딩 형성될 수 있다.
블로우관(40D)은 일단부가 엘보관(40C)에 연결될 수 있고, 타단부가 용해로(10)의 유입홀에 삽입되어 용해로(10)의 용해공간 내측으로 연장될 수 있다.
이처럼 송풍지관(40)은 용해로(10)의 유입홀에 삽입 장착되는 블로우관(40D)의 각도와 위치 조건을 만족시키기 위해 상부관(40A), 하부관(40B), 엘보관(40C) 및 블로우관(40D)이 탈부착 가능하게 결합될 수 있다.
또한, 상부관(40A), 하부관(40B), 엘보관(40C) 및 블로우관(40D)들 중 적어도 하나는 유동방향과 나란한 축방향 또는 횡방향에 대해 충격에 의한 변위를 흡수할 수 있는 구조를 가질 수 있다. 예를 들면, 상부관(40A), 하부관(40B), 엘보관(40C) 및 블로우관(40D)들 중 적어도 하나는 벨로우즈(Bellows) 연결부를 가질 수 있다. 이에 따라, 송풍지관(40)은 사용 중 고온 또는 고압의 공기로부터 발생되는 충격에 의한 변위를 효과적으로 흡수할 수 있다.
한편, 송풍지관(40)은 온도센서(50)를 포함할 수 있다.
온도센서(50)는 송풍지관(40)의 온도를 실시간으로 감지할 수 있다.
온도센서(50)는 온도를 측정하기 위한 접촉식의 감지부(51: 도 6 참조)를 가질 수 있다.
실시예에 따른 온도센서(50)로는 감지부(51)를 열접점으로 하는 열전대부와, 열전대부의 냉접점에 연결되며 열전대부의 온도에 따른 열기전력으로부터 온도를 산출하는 처리부를 포함할 수 있다. 구체적으로, 열전대부는 서로 다른 종류의 금속선을 포함하며, 상기 금속선의 양측 단부를 접속했을 때, 금속선의 일측 접속단부인 열접점(측온접점)과, 금속선의 타측 접속단부인 냉접점(기준접점) 간의 온도 차이에 의해 금속선에는 전류가 흐르게 된다. 이러한 열전대부의 열접점이 감지부(51)에 해당될 수 있고, 열접점을 포함한 열전대부는 튜브와 같은 커버부재의 매립되어 보호될 수 있다. 그리고, 처리부는 열전대부의 열접점 및 냉접점 간의 온도 차이 값과 열전대부에서 발생되는 열기전력과의 관계로부터 상기 열접점에서의 실제 온도 정보를 획득할 수 있다. 이러한 처리부로는 전압계가 사용될 수 있다. 물론 온도센서(50)는 측정 대상이 되는 열원의 종류에 따라 열전대뿐만 아니라 공지된 다양한 종류의 온도센서가 사용될 수도 있다.
또한, 온도센서(50)는 제1통신부를 더 가질 수 있으며, 제1통신부는 온도센서(50)에서 측정 및 처리된 온도 정보를 온도관리모듈(60)로 송신할 수 있고, 온도관리모듈(60)에서 전달되는 제어신호를 수신할 수 있다.
또한, 각각의 송풍지관(40)마다 복수개의 온도센서(50)가 구비될 수 있으며, 각 송풍지관(40)의 내화물층(41)에 접촉하는 열전도층(42)의 적어도 일부인 온도측정영역(A)마다 하나의 온도센서가 구비될 수 있다.
온도관리모듈(60)은 온도센서(50)에서 감지된 송풍지관(40)의 온도와, 미리 설정된 기준온도를 비교하여 송풍지관(40)의 적열, 균열, 유로의 변형 등의 손상 여부를 판단할 수 있고, 이를 작업자 또는 점검자에게 제공할 수 있다.
또한, 온도관리모듈(60)은 판단된 송풍지관(40)의 손상 여부에 따라 냉각모듈을 작동시킬 수 있고, 혹은 용해로 송풍시스템을 비상 정지시킬 수도 있다.
또한, 온도관리모듈(60)은 제2통신부를 가질 수 있으며, 제2통신부는 온도센서(50)에서 측정 및 처리된 온도 정보를 수신할 수 있고, 제어신호를 온도센서(50)로 송신할 수 있다. 그리고, 온도관리모듈(60)은 온도센서(50)에서 측정 및 처리된 온도 정보를 처리하여 다양한 출력 값으로 표시해줄 수 있으며, 관리자는 온도관리모듈(60)에 표시되는 온도 정보를 실시간 모니터링하면서 송풍지관(40)의 작동 및 상태에 대한 관리를 효과적으로 수행할 수 있다.
이러한 온도관리모듈(60)은 컴퓨터일 수 있고, 혹은 관리자가 휴대 가능한 테블릿이나 스마트폰일 수 있다.
송풍지관(40)은 사용 중 국부적인 온도차가 발생될 수 있는데, 예를 들면, 송풍주관(30)에 연결되는 상부관(40A) 영역에서 발열온도가 상대적으로 높아질 수 있다. 이처럼 송풍지관(40)에 국부적인 온도차가 발생하면 열팽창이나 열수축의 차이로 인하여 국부적으로 내구성의 차이가 발생할 수 있다. 이에 따라, 송풍지관(40)은 내부를 흐르는 고온의 공기로 인하여 적열 현상이 발생되거나 심할 경우에는 유로의 변형 또는 균열이 발생될 수 있다. 이에 온도센서(50)를 통하여 각각의 송풍지관(40)에서의 온도 상태 및 국부적인 온도 차이를 실시간으로 측정 및 모니터링함으로써 송풍지관(40)이 손상되기에 앞서 냉각모듈을 작동시켜 송풍지관(40)이 과열되거나 국부적인 온도 차를 보상시킬 수 있고, 작업자 또는 점검자로 하여금 신속한 대처를 위한 정보를 제공할 수 있다.
이에 더해서, 본 실시예에 따른 용해로 송풍시스템은 송풍지관(40)의 손상 부위, 손상이 발생된 시간 및 손상의 규모를 보다 신속하고 정확히 감지 및 판단할 수 있고, 이에 따라 보다 안정적이고 신속한 관리가 가능하도록 할 수 있다.
이하 본 발명의 실시예에 따른 송풍지관에 대해 보다 상세히 설명한다.
도 3을 참조하면, 본 실시예에 따른 송풍지관(40)은 내화물층(41), 열전도층(42), 외부단열층(43) 및 외피층(44)을 더 포함할 수 있다.
내화물층(41)은 송풍지관(40)을 통과하는 고온의 공기와 직접 접촉하는 부분으로, 고온의 공기와 접촉하는 유로(S)가 내면에 형성될 수 있다.
내화물층(41)은 내열성이 우수한 재질로 제작될 수 있으며, 미리 설정된 허용 내화온도를 가질 수 있다. 이러한 내화물층(41)은 고온의 공기에 의해 내화물층(41)이 허용된 내화온도를 초과한 상태에서 일정 시간이 유지될 경우, 균열이 발생되거나 유로의 변형을 초래할 수 있다. 그러면 내화물층(41)의 내열성이 급격히 낮아져 고온의 공기 및 열이 외부로 방출될 수 있다.
열전도층(42)은 금속과 같이 열전도가 우수한 재질로 제작될 수 있으며, 내화물층(41)의 외면에 배치될 수 있다. 이에 따라 열전도층(42)은 내화물층(41)으로부터 전달된 열에 의해 가열되어 온도가 상승될 수 있다.
외부단열층(43)은 단열 소재가 사용될 수 있으며, 열전도층(42)의 외면에 배치될 수 있다. 이에 따라 외부단열층(43)은 열전도층(42)의 열이 외부로 전달되거나 외부의 열이 열전도층(42)으로 전달되는 것을 차단할 수 있다.
외피층(44)은 외부단열층(43)의 외면에 배치되어 송풍지관(40)의 외형을 형성할 수 있다. 외피층(44)으로는 외부 충격으로부터 송풍지관(40)이 보호되도록 철 등의 금속 재질로 제작될 수 있다.
이때, 온도센서(50)는 외부단열층(43)에 설치될 수 있고, 외부단열층(43)에 설치된 온도센서(50)의 감지부(51)는 열전도층(42)에 접촉될 수 있다. 따라서, 온도센서(50)는 열전도층(42)의 온도를 감지할 수 있고, 이를 온도관리모듈(60)로 전송할 수 있다.
따라서, 온도관리모듈(60)은 복수개의 온도센서(50)에서 감지된 열전도층(42)의 온도를 바탕으로, 고온의 공기와 접촉하는 내화물층(41)의 전체 영역에 대한 온도 분포를 실시간 확인할 수 있다.
도시된 바로는 송풍지관(40) 중 상부관(40A)의 단면 구조에 대해 설명하고 있으나, 하부관(40B), 엘보관(40C) 및 블로우관(40D)들 역시 동일한 단면 구조를 가질 수 있다.
상기와 같이, 내화물층(41)으로부터 전달된 열에 의해 가열되는 열전도층(42)과, 열전도층(42)을 중심으로 내화물층(41)의 반대측 영역에 온도센서(50)를 배치함으로써, 고온의 공기에 대한 온도센서(50)의 내구성 저하를 방지할 수 있으면서 열전도층(42)의 온도 변화를 신속하고 정확하게 측정해낼 수 있다. 이에 따라, 온도관리모듈(60)은 온도센서(50)에서 감지된 열전도층(42)의 온도와 미리 설정된 기준온도를 비교하여, 내화물층(41)에서 발생되는 손상 부위, 시간 및 규모를 즉시 측정 및 판단할 수 있다. 이로 인하여, 송풍지관(40)의 안전사고를 예방할 수 있으면서 용해로(10)를 향하여 고온의 공기를 안정적으로 제공할 수 있다.
한편, 본 실시예에 따른 용해로 송풍시스템은 냉각모듈을 더 포함할 수도 있다.
냉각모듈은 냉각유로 및 냉매공급부를 가질 수 있다.
냉각유로는 송풍지관(40)에 배치될 수 있으며, 내화물층(41)에 형성될 수 있다.
냉매공급부는 냉매를 가압하여 냉각유로를 따라 냉매를 순환시킬 수 있다. 이에 따라 온도센서(50)에 의해 감지된 송풍지관(40)의 온도가 기준온도를 초과할 경우, 온도관리모듈(60)은 냉각모듈을 작동하여 송풍지관(40)의 온도를 냉각시킬 수 있다.
또한, 냉각모듈은 온도센서(50)가 설치되는 온도측정영역(A)마다 복수개의 냉각모듈이 독립적으로 설치될 수 있다. 이에 따라, 송풍지관(40)의 국부적인 온도차가 발생하는 영역에 대해 독립적으로 냉각시킬 수 있고, 이에 따라, 송풍지관(40)의 국부적인 온도차가 발생하는 것을 억제할 수 있다.
한편, 온도관리모듈(60)은 미리 설정된 냉각모듈 작동온도를 가질 수 있으며, 이때 냉각모듈 작동온도는 기준온도보다 낮게 설정될 수 있다. 즉, 온도센서(50)에서 감지된 열전도층(42)의 온도가 기준온도에 도달하기에 앞서 냉각모듈 작동온도에 먼저 도달하게 되면, 온도관리모듈(60)은 송풍지관(40)의 과열 상태임을 판단하고, 냉각모듈을 작동하여 송풍지관(40)을 냉각시킬 수 있다. 이에 따라, 송풍지관(40)의 균열이나 유로 변형 등의 손상을 미연에 예방할 수 있다.
도 4는 본 발명의 다른 실시예에 따른 송풍지관을 나타낸 예시도이다.
도 4를 참조하면, 본 실시예에 따른 송풍지관(40)은 내화물층(41)과 열전도층(42) 사이에 배치되는 내부단열층(45)을 더 포함할 수 있다.
내부단열층(45)은 평소에 내화물층(41)으로부터 열전도층(42)을 향해 과도한 열 전달을 억제할 수 있다. 이에 따라, 내부단열층(45)이 없는 경우와 비교하여 열전도층(42)의 온도는 낮아질 수 있다.
또한, 내부단열층(45)은 내화물층(41)과 접촉하는 내면의 온도가 미리 설정된 설정온도를 초과할 경우, 변형되면서 열전도율이 급격히 상승될 수 있다. 이에 따라, 내화물층(41)으로부터 전달된 열은 열전도층(42)으로 빠르게 전달되어 열전도층(42)을 급속히 가열시킬 수 있다.
내부단열층(45)이 없는 경우와 비교하여, 내부단열층(45)이 있는 경우에는 열전도층(42)이 내화물층(41)의 손상 여부에 따라 보다 넓은 온도 범위와 높은 온도 변화율을 가질 수 있게 된다.
결과적으로, 온도센서(50)는 열전도층(42)의 변화되는 온도를 보다 정확하고 빠르게 측정해낼 수 있다. 또한, 상대적으로 저가의 온도센서(50)를 사용하더라도 열전도층(42)의 온도를 정확히 측정해낼 수 있다.
내부단열층(45)으로는 진공단열재가 사용될 수 있으며, 진공단열재는 우수한 단열성을 가지면서도 진공이 깨지게 되면 단열성이 급격히 낮아지게 된다.
한편, 도 5는 본 발명의 실시예에 따른 열전도층을 나타낸 평면 예시도이다.
도 5를 추가 참조하면, 본 실시예에 따른 열전도층(420)은 온도센서(50)의 감지부(51: 도 6 참조)에 연결된 채 내화물층(41)에 접촉되는 온도측정영역(A)을 가질 수 있다.
온도측정영역(A)은 열전도층(420)의 테두리부를 따라 연장되는 가상의 외곽선에 의해 구획되는 영역일 수 있다. 그리고, 열전도층(420)은 가상의 구획선에 의해 구획되는 복수개의 온도측정영역(A)들로 구성될 수 있다.
열전도층(420)은 내화물층(41)으로부터 온도측정영역(A)으로 전달되는 열을 수집하여 온도측정영역(A)의 표면을 따라 온도센서(50)의 감지부(51)로 전달할 수 있다.
또한, 열전도층(420)은 패턴부를 가질 수 있으며, 패턴부는 기본적으로 감지부(51)를 중심으로 온도측정영역(A)의 테두리 영역으로 가면서 전체적으로 균일한 패턴을 가질 수 있다. 그리고, 패턴부는 온도측정영역(A)의 적어도 일부를 형성할 수 있다. 즉, 열전도층(420)은 평면도 상에서 외부단열층(43)을 완전히 덮도록 마련될 수 있고, 외부단열층(43)의 일부만을 커버하는 패턴을 가질 수 있다.
이하 도 6 내지 도 10을 참조하여 본 발명의 다양한 실시예에 따른 패턴부를 가지는 열전도층에 대해 상세히 설명한다.
도 6은 본 발명의 제1실시예에 따른 열전도층의 패턴부를 나타낸 평면 예시도이다.
도 6을 참조하면, 본 실시예에 따른 열전도층(420)은 패턴부를 가질 수 있고, 패턴부는 제1패턴부(420A) 및 제2패턴부(420B)를 가질 수 있다.
제1패턴부(420A)는 제1내측영역(421A), 제1외측영역(422A) 및 제1연장부(423A)를 가질 수 있다.
제1내측영역(421A)은 온도측정영역(A)의 내측 중심영역에 배치될 수 있으며, 온도센서(50)의 감지부(51)에 연결될 수 있다.
제1외측영역(422A)은 온도측정영역(A)의 외측 테두리영역에 배치될 수 있으며, 제1내측영역(421A)으로부터 제1직선거리(d1)로 이격하여 배치될 수 있다.
제1연장부(423A)는 제1내측영역(421A) 및 제1외측영역(422A)을 연결할 수 있다. 제1연장부(423A)는 제1직선거리(d1)와 동일한 길이를 가지거나, 제1직선거리(d1)보다 긴 길이를 가질 수 있다. 예컨대, 제1연장부(423A)는 평면도 상에서 지그재그 형상이나 호 형상 등의 비정형 형상을 가지며 제1내측영역(421A)에서 제1외측영역(422A)을 향해 연장하여 형성될 수 있다.
제2패턴부(420B)는 제2내측영역(421B), 제2외측영역(422B) 및 제2연장부(423B)를 가질 수 있다.
제2내측영역(421B)은 온도측정영역(A)의 내측 중심영역에 배치될 수 있으며, 온도센서(50)의 감지부(51)에 연결될 수 있다.
제2외측영역(422B)은 온도측정영역(A)의 외측 테두리영역에 배치될 수 있으며, 제2내측영역(421B)으로부터 제2직선거리(d2)로 이격하여 배치될 수 있다. 이때 제2직선거리(d2)는 제1직선거리(d1)보다 길게 형성될 수 있다.
제2연장부(423B)는 제2내측영역(421B) 및 제2외측영역(422B)을 연결할 수 있다. 제2연장부(423B)는 제2직선거리(d2)와 동일한 길이를 가지거나, 제2직선거리(d2)보다 긴 길이를 가질 수 있다. 예컨대, 제2연장부(423B)는 평면도 상에서 지그재그 형상이나 호 형상 등의 비정형 형상을 가지며 제2내측영역(421B)에서 제2외측영역(422B)을 향해 연장하여 형성될 수 있다.
여기서, 본 실시예에 따르면, 제1직선거리(d1) 및 제2직선거리(d2)의 차이와 무관하게, 제1연장부(423A) 및 제2연장부(423B)의 길이(L1)는 서로 동일할 수 있다. 즉, 제1직선거리(d1) 및 제2직선거리(d2)의 차이가 발생됨에 따라 제1연장부(423A) 및 제2연장부(423B)가 동일한 길이(L1)를 가지기 위해서는 도시된 바와 같이 서로 다른 형상의 패턴을 가지게 된다.
결과적으로, 제1연장부(423A) 및 제2연장부(423B)의 길이(L1)를 동일하게 설정함으로써, 제1외측영역(422A) 및 제2외측영역(422B)에서 감지부(51)로 각각 전달되는 열전달률의 직선 거리차(d1,d2)에 따른 변화를 보상해 줄 수 있다.
또한, 감지부(51)로부터 제1직선거리(d1)로 이격된 제1외측영역(422A)에 전달된 열과, 제2직선거리(d2)로 이격된 제2외측영역(422B)에 전달된 열은, 제1연장부(423A) 및 제2연장부(423B)를 따라 이동한 후, 동일한 시간에 감지부(51)에 도달할 수 있게 된다. 이로 인하여, 온도센서(50)는 온도측정영역(A)에 대한 온도를 특정 시간대에 빠르고 정확하게 획득할 수 있게 된다.
도 6에 나타낸 바와 같이, 평면도 상에서 사각 형상의 온도측정영역(A)을 가지는 열전도층(420)에 대해 감지부(51)가 온도측정영역(A)의 중심부에 배치되는 경우, 감지부(51)로부터 상대적으로 가까운 측면영역의 열과, 감지부(51)로부터 상대적으로 먼 코너영역의 열은, 제1연장부(423A) 및 제2연장부(423B)를 각각 거친 후, 동일한 시간에 감지부(51)에 도달할 수 있게 된다.
도 7은 도 6의 변형예를 나타낸 평면 예시도이다.
도 7에서와 같이, 온도센서(50)의 감지부(51)는 열원의 종류 혹은 열원을 수용하는 내화물층(41)의 여건에 따라, 열전도층(420)에 의해 구획되는 온도측정영역(A)의 내측공간에 간섭구조물(ST)이 배치될 수 있다. 이에 따라, 온도센서(50)의 감지부(51)가 온도측정영역(A)의 중심부에서 어긋나 편심된 위치에 설치될 필요가 있다.
이와 같이, 온도센서(50)의 감지부(51)가 온도측정영역(A)의 중심부에서 편심된 위치에 배치되더라도, 앞서 설명한 바와 같이, 제1연장부(4230A) 및 제2연장부(4230B)의 길이(L1)를 동일하게 설정함으로써, 제1외측영역(422A) 및 제2외측영역(422B)에서 감지부(51)로 각각 전달되는 열전달률의 직선 거리차에 따른 변화를 보상해 줄 수 있다.
또한, 감지부(51)로부터 제1직선거리(d1)로 이격된 제1외측영역(422A)에 전달된 열과, 감지부(51)로부터 제2직선거리(d2)로 이격된 제2외측영역(422B)에 전달된 열은, 제1연장부(4230A) 및 제2연장부(4230B)를 따라 이동한 후, 동일한 시간에 감지부(51)에 도달할 수 있게 된다.
도 8은 본 발명의 제2실시예에 따른 열전도층의 패턴부를 나타낸 평면 예시도이다.
도 8을 참조하면, 앞서 설명한 것과 마찬가지, 패턴부는 제1패턴부(420A) 및 제2패턴부(420B)를 가질 수 있다. 그리고, 제1패턴부(420A)는 제1내측영역(421A), 제1외측영역(422A) 및 제1연장부(4231A)를 가질 수 있고, 제2패턴부(420B)는 제2내측영역(421B), 제2외측영역(422B) 및 제2연장부(4231B)를 가질 수 있다. 이에 대한 중복 설명은 생략한다.
여기서, 본 실시예에 따르면, 제1직선거리(d1) 및 제2직선거리(d2)의 차이에 따라, 제1연장부(4231A) 및 제2연장부(4231B)는 서로 다른 길이를 가질 수 있으며, 이때 제1연장부(4231A) 및 제2연장부(4231B)는 서로 다른 열전도율을 가지는 소재로 이루어질 수 있다. 즉, 제1연장부(4231A)는 제1열전도율(λ1)을 가질 수 있고, 제2연장부(4231B)는 제1열전도율(λ1)보다 큰 제2열전도율(λ2)을 가질 수 있다.
결과적으로, 제1연장부(4231A) 및 제2연장부(4231B)가 가지는 열전도율을 서로 다르게 설정함으로써, 제1외측영역(422A) 및 제2외측영역(422B)에서 감지부(51)로 각각 전달되는 열전달률의 직선 거리차(d1,d2)에 따른 변화를 보상해 줄 수 있다.
도 9는 본 발명의 제3실시예에 따른 열전도층의 패턴부를 나타낸 평면 예시도이다.
도 9를 참조하면, 앞서 설명한 것과 마찬가지, 패턴부는 제1패턴부(420A) 및 제2패턴부(420B)를 가질 수 있다. 그리고, 제1패턴부(420A)는 제1내측영역(421A), 제1외측영역(422A) 및 제1연장부(4232A)를 가질 수 있고, 제2패턴부(420B)는 제2내측영역(421B), 제2외측영역(422B) 및 제2연장부(4232B)를 가질 수 있다. 이에 대한 중복 설명은 생략한다.
여기서, 본 실시예에 따르면, 제1직선거리(d1) 및 제2직선거리(d2)의 차이에 따라, 제1연장부(4232A) 및 제2연장부(4232B)는 서로 다른 길이를 가질 수 있으며, 이때 제1연장부(4232A) 및 제2연장부(4232B)는 서로 다른 면적을 가질 수 있다. 즉, 제1연장부(4232A)는 제1면적(A1)을 가질 수 있고, 제2연장부(4232B)는 제1면적(A1)보다 넓은 제2면적(A2)을 가질 수 있다.
결과적으로, 제1연장부(4232A) 및 제2연장부(4232B)의 면적을 서로 다르게 설정함으로써, 제1외측영역(422A) 및 제2외측영역(422B)에서 감지부(51)로 각각 전달되는 열전달률의 직선 거리차(d1,d2)에 따른 변화를 보상해 줄 수 있다.
도 10은 본 발명의 제4실시예에 따른 열전도층의 패턴부를 나타낸 평면 예시도이다.
도 10을 참조하면, 앞서 설명한 것과 마찬가지, 패턴부는 제1패턴부(420A) 및 제2패턴부(420B)를 가질 수 있다. 그리고, 제1패턴부(420A)는 제1내측영역(421A), 제1외측영역(422A) 및 제1연장부(4233A)를 가질 수 있고, 제2패턴부(420B)는 제2내측영역(421B), 제2외측영역(422B) 및 제2연장부(4233B)를 가질 수 있다. 또한, 제1패턴부(420A)는 제1외측영역(422A)에 배치되는 제1열수집부(425A)를 더 가질 수 있고, 제2패턴부(420B)는 제2외측영역(422B)에 배치되는 제2열수집부(425B)를 더 가질 수 있다.
여기서, 본 실시예에 따르면, 제1직선거리(d1) 및 제2직선거리(d2)의 차이에 따라, 제1연장부(4233A) 및 제2연장부(4233B)는 서로 다른 길이를 가질 수 있으며, 이때 제1열수집부(425A) 및 제2열수집부(425B)는 서로 다른 열전도율을 가지는 소재로 이루어질 수 있다. 즉, 제1열수집부(425A)는 제3열전도율을 가질 수 있고, 제2열수집부(425B)는 제3열전도율보다 큰 제4열전도율을 가질 수 있다.
결과적으로, 제1외측영역(422A) 및 제2외측영역(422B)에 서로 다른 열전도율을 가지는 소재를 배치하여, 제1내측영역(421A) 및 제1외측영역(422A) 간의 온도차와, 제2내측영역(421B) 및 제2외측영역(422B) 간의 온도차를 서로 다르게 설정함으로써, 제1외측영역(422A) 및 제2외측영역(422B)에서 감지부(51)로 각각 전달되는 열전달률의 직선 거리차(d1,d2)에 따른 변화를 보상해 줄 수 있다.
또한, 제1열수집부(425A) 및 제2열수집부(425B)를 추가적으로 구비함에 따라 내화물층(41)의 열은 열전도층(420)의 외측영역으로 전달된 후 감지부(51)에 보다 빠른 시간에 도달할 수 있게 된다.
도 6 내지 도 10을 통하여 설명된 다양한 실시예에서는 제1패턴부(420A) 및 제2패턴부(420B)를 형성할 시 제1연장부(423A) 및 제2연장부(423B)의 길이, 열전도율 및 면적의 설정값을 개별적으로 조절하는 것으로 설명하였지만, 제1패턴부(420A) 및 제2패턴부(420B)를 형성할 시 제1연장부(423A) 및 제2연장부(423B)의 길이, 열전도율 및 면적 중 적어도 어느 하나의 설정값을 조절하는 것에 의해 제1연장부(423A) 및 제2연장부(423B)를 경유하는 열전달율의 직선 거리차(d1,d2)에 따른 변화를 보상할 수 있다. 그리고, 이처럼 열전도층(420)에 구비되는 패턴부의 길이, 열전도율 및 면적의 설정값은 내화물층(41)의 종류, 감지부(51)의 설치 위치에 따라 적절히 조절될 수 있다.
한편, 도시되진 않았지만, 본 실시예에 따른 열전도층(420)은 패턴부가 없이 온도측정영역(A)에 상응하는 형상의 평판 형태를 가질 수도 있다.
즉, 실시예에 따른 온도측정영역(A)은 원형 형상을 가질 수 있고, 온도측정영역(A)의 중심부에 온도센서(50)의 감지부(51)가 배치될 수 있다. 그리고, 열전도층(420)은 원형 형상의 온도측정영역(A)에 대응하여 감지부(51)를 중심으로 일정한 반경을 가지는 원형 형상을 가질 수 있다.
이와 같이, 감지부(51)를 중심으로 일정한 반경을 가지는 원형 형상의 열전도층(420)은 패턴부가 없더라도 열전도층(420)의 외측영역에서 감지부(51)로 전달되는 열전달율이 균일해질 수 있다. 또한, 내화물층(41)에서 열전도층(420)의 외측영역으로 전달된 열은 감지부(51)에 연결된 내측영역에 동일한 시간에 도달할 수 있게 된다.
물론, 감지부(51)를 중심으로 일정한 반경을 가지는 원형 형상의 열전도층(420) 역시 패턴부를 가질 수도 있는데, 이 경우 패턴부는 감지부(51)에 연결되는 내측영역을 중심으로 외측영역을 향해 동일한 길이, 열전도율 및 면적을 가지는 방사형의 패턴부를 가질 수 있으며, 이에 따라, 내화물층(41)에서 열전도층(420)의 외측영역으로 전달된 열은 감지부(51)에 연결된 내측영역에 보다 빠른 시간에 도달할 수 있게 된다.
도 11은 본 발명의 일 실시예에 따른 송풍지관의 제조방법을 나타낸 흐름도이다.
도 11을 참조하면, 본 발명의 실시예에 따른 송풍지관의 제조방법은 외피층 형성단계(S11), 외부단열층 형성단계(S12), 열전도층 형성단계(S13), 내부단열층 형성단계(S14), 내화물층 형성단계(S15) 및 인서트부재 제거단계(S16)를 포함할 수 있다.
외피층 형성단계(S11)는 외피층(44)을 형성하는 단계일 수 있다.
외부단열층 형성단계(S12)는 외피층(44)의 내면에 외부단열층(43)을 형성하는 단계일 수 있다.
외부단열층 형성단계(S12)에서 온도센서(50)는 외부단열층(43)에 일체로 조립될 수 있다. 즉, 온도센서(50)의 감지부(51)가 외부단열층(43)의 내면에 노출되도록 온도센서(50)의 적어도 일부는 외부단열층(43) 형성 과정에서 외부단열층(43)에 매립될 수 있다. 따라서, 온도센서(50)는 외부단열층(43)의 내면에 형성되는 열전도층(42)의 온도를 측정해낼 수 있다.
열전도층 형성단계(S13)는 외부단열층(43)의 내면에 열전도층(42)을 형성하는 단계일 수 있다.
앞서 설명한 바와 같이, 도 5 내지 도 10에 도시된 다양한 패턴부를 가지는 열전도층(420)이 형성될 수 있다.
내부단열층 형성단계(S14)는 열전도층(42)의 내면에 내부단열층(45)을 형성하는 단계일 수 있다. 내화물층 형성단계(S15)는 열전도층(42)의 내면에 유로(S)에 상응하는 형상의 인서트부재를 삽입시키고, 인서트부재와 열전도층(42) 사이에 내화물층(41)을 형성하는 단계일 수 있다. 따라서, 내화물층(41)의 형성이 완료되면 내화물층(41)의 내면에는 고온의 공기가 유동하는 유로(S)가 마련될 수 있다.
인서트부재 제거단계(S16)는 인서트부재를 제거하는 단계일 수 있다. 즉, 내화물층(41)의 형성이 완료되면 인서트부재를 제거함으로써 송풍지관(40)의 제조를 완료하게 된다.
한편, 상부관(40A), 하부관(40B), 엘보관(40C) 및 블로우관(40D) 각각은 전술한 외피층(44), 외부단열층(43), 열전도층(42), 내부단열층(45) 및 내화물층(41)을 가질 수 있고, 개별적으로 제작된 상부관(40A), 하부관(40B), 엘보관(40C) 및 블로우관(40D)은 송풍주관(30) 및 용해로(10)의 상대 위치 및 각도에 따라 별도의 체결부재를 이용하여 현장에서 적절히 조립될 수 있다.
상술한 바와 같이 도면을 참조하여 본 발명의 바람직한 실시예를 설명하였지만, 해당 기술 분야의 숙련된 당업자라면, 하기의 청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 또는 변경시킬 수 있다.
본 발명은 용해로 설비인 송풍지관의 온도 상태 및 국부적인 온도차를 실시간으로 측정 및 모니터링함으로써, 송풍지관에서의 적열, 균열, 유로 변형 등의 손상 부위, 손상이 발생된 시간 및 손상의 규모를 신속하고 정확히 감지 및 판단할 수 있고, 이로부터 용해로에서의 용해 품질을 높일 수 있을 뿐만 아니라 용해로 설비에서 발생될 수 있는 안전사고를 미연에 예방할 수 있으므로 용해로 분야에서 널리 사용될 수 있다.

Claims (13)

  1. 고온의 공기와 접촉하는 유로가 내면에 형성되는 내화물층;
    상기 내화물층의 외면에 배치되며, 상기 내화물층으로부터 전달된 열에 의해 가열되는 열전도층;
    상기 열전도층의 외면에 배치되며, 상기 열전도층의 열이 외부로 전달되거나 외부의 열이 상기 열전도층으로 전달되는 것을 차단하는 외부단열층; 및
    상기 열전도층의 온도를 감지하기 위한 온도센서;를 포함하는 것을 특징으로 하는 송풍지관.
  2. 제1항에 있어서,
    상기 내화물층 및 상기 열전도층 사이에 배치되며, 상기 내화물층과 접촉하는 내면의 온도가 미리 설정된 설정온도를 초과할 경우, 변형되면서 열전도율이 급격히 상승되는 내부단열층을 더 포함하는 것을 특징으로 하는 송풍지관.
  3. 제1항에 있어서,
    상기 온도센서는 상기 열전도층의 적어도 일부인 온도측정영역의 온도를 감지하고,
    상기 열전도층은 상기 온도측정영역의 적어도 일부를 형성하는 패턴부를 가지는 것을 특징으로 하는 송풍지관.
  4. 제3항에 있어서,
    상기 패턴부는,
    상기 온도센서의 감지부에 연결되는 제1내측영역과, 상기 제1내측영역으로부터 제1직선거리로 이격하여 배치되는 제1외측영역과, 상기 제1내측영역 및 제1외측영역을 연결하는 제1연장부를 가지는 제1패턴부; 및
    상기 온도센서의 감지부에 연결되는 제2내측영역과, 상기 제2내측영역으로부터 상기 제1직선거리보다 긴 제2직선거리로 이격하여 배치되는 제2외측영역과, 상기 제2내측영역 및 제2외측영역을 연결하는 제2연장부를 가지는 제2패턴부;를 포함하는 것을 특징으로 하는 송풍지관.
  5. 제4항에 있어서,
    상기 제1연장부 및 상기 제2연장부의 길이는 동일한 것을 특징으로 하는 송풍지관.
  6. 제4항에 있어서,
    상기 제1연장부 및 상기 제2연장부는 서로 다른 길이를 가지되,
    상기 제1연장부는 제1열전도율을 가지고,
    상기 제2연장부는 상기 제1열전도율보다 큰 제2열전도율을 가지는 것을 특징으로 하는 송풍지관.
  7. 제4항에 있어서,
    상기 제1연장부 및 상기 제2연장부는 서로 다른 길이를 가지되,
    상기 제1연장부는 제1면적을 가지고,
    상기 제2연장부는 상기 제1면적보다 넓은 제2면적을 가지는 것을 특징으로 하는 송풍지관.
  8. 제4항에 있어서,
    상기 열전도층은,
    상기 제1외측영역 또는 상기 제2외측영역에 배치되며, 상기 내화물층으로부터 전달되는 열을 수집하는 열수집부;를 더 포함하고,
    상기 열수집부는 상기 제1패턴부 및 상기 제2패턴부보다 열전도율이 큰 소재를 포함하는 것을 특징으로 하는 송풍지관.
  9. 공급부에서 공급되는 고온의 공기를 용해로 내부로 공급하기 위한 송풍지관의 제조방법으로서,
    외피층의 내면에 외부단열층을 형성하는 외부단열층 형성단계;
    상기 외부단열층의 내면에 열전도층을 형성하는 열전도층 형성단계;
    상기 열전도층의 내면에 인서트부재를 삽입시키고, 상기 인서트부재와 상기 열전도층 사이에 내화물층을 형성하는 내화물층 형성단계; 및
    상기 인서트부재를 제거하는 인서트부재 제거단계;를 포함하는 것을 특징으로 하는 송풍지관의 제조방법.
  10. 제9항에 있어서,
    상기 열전도층 형성단계 이후에 수행되며,
    상기 열전도층의 내면에 내부단열층을 형성하는 내부단열층 형성단계;를 더 포함하는 것을 특징으로 하는 송풍지관의 제조방법.
  11. 제9항에 있어서,
    상기 외부단열층 형성단계에서,
    상기 열전도층에 온도센서의 감지부가 접촉되도록, 상기 온도센서의 적어도 일부를 상기 외부단열층에 매립시키는 것을 특징으로 하는 송풍지관의 제조방법.
  12. 용해로에 고온의 공기를 공급하기 위한 공급부;
    상기 공급부에 연결되는 송풍주관;
    상기 송풍주관과 상기 용해로를 연결하며, 상기 송풍주관에서 고온의 공기를 분배하여 상기 용해로에 공급하기 위한 제1항 내지 제8항 중 적어도 어느 한 항에 기재된 송풍지관; 및
    상기 송풍지관의 온도와, 미리 설정된 기준온도를 비교하여 상기 송풍지관의 손상 여부를 판단하는 온도관리모듈;을 포함하는 것을 특징으로 하는 용해로 송풍시스템.
  13. 제12항에 있어서,
    상기 온도관리모듈은,
    상기 온도센서에서 감지된 상기 열전도층의 온도를 바탕으로, 고온의 공기와 접촉하는 상기 내화물층의 온도를 실시간 산출하는 것을 특징으로 하는 용해로 송풍시스템.
PCT/KR2022/002574 2021-02-25 2022-02-22 송풍지관, 송풍지관의 제조방법 및 용해로 송풍시스템 WO2022182097A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280001711.3A CN115244192B (zh) 2021-02-25 2022-02-22 风口套管、其制造方法及用于熔炉的鼓风系统
EP22726375.3A EP4074844A4 (en) 2021-02-25 2022-02-22 BLOWER BYPASS PIPE, METHOD FOR MANUFACTURING BLOWER BYPASS PIPE, AND FURNACE BLOWING SYSTEM
JP2022537126A JP7444491B2 (ja) 2021-02-25 2022-02-22 送風支管、送風支管の製造方法及び溶解炉送風システム
US17/836,995 US20220298591A1 (en) 2021-02-25 2022-06-09 Tuyere stock, method of fabricating the same, and air blast system for melting furnace

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20210025498 2021-02-25
KR10-2021-0025498 2021-02-25
KR1020220020021A KR20220121713A (ko) 2021-02-25 2022-02-16 송풍지관, 송풍지관의 제조방법 및 용해로 송풍시스템
KR10-2022-0020021 2022-02-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/836,995 Continuation US20220298591A1 (en) 2021-02-25 2022-06-09 Tuyere stock, method of fabricating the same, and air blast system for melting furnace

Publications (1)

Publication Number Publication Date
WO2022182097A1 true WO2022182097A1 (ko) 2022-09-01

Family

ID=83049437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/002574 WO2022182097A1 (ko) 2021-02-25 2022-02-22 송풍지관, 송풍지관의 제조방법 및 용해로 송풍시스템

Country Status (5)

Country Link
US (1) US20220298591A1 (ko)
EP (1) EP4074844A4 (ko)
JP (1) JP7444491B2 (ko)
CN (1) CN115244192B (ko)
WO (1) WO2022182097A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100828154B1 (ko) 2002-06-20 2008-05-08 주식회사 포스코 열풍관의 냉각 장치
US20110180978A1 (en) * 2008-05-23 2011-07-28 Paul Wurth S.A. Method for feeding pulverised coal into a blast furnace
KR20110091357A (ko) * 2010-02-05 2011-08-11 (주)포스프로 풍구장치 및 이를 이용한 고로 풍구의 진단시스템
KR20130014745A (ko) * 2011-08-01 2013-02-12 사브 에스.에이알.엘 송풍 지관
KR20180092350A (ko) * 2017-02-09 2018-08-20 주식회사 대동 용해로에 구비되는 송풍지관의 실시간 적열 및 균열관리방법

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB190018028A (en) * 1900-10-10 1901-10-05 Frank Lloyd Roudebush Improvements in Hot Blast Furnaces for Smelting Pyritic Ores and other uses.
CA1168443A (en) * 1982-02-05 1984-06-05 Bricmont & Associates, Inc. Method and apparatus for generating a hot air blast
JP2001040404A (ja) 1999-07-27 2001-02-13 Nkk Corp 高炉への微粉炭吹込み気送配管系の詰まり検知方法
JP4773880B2 (ja) * 2006-05-23 2011-09-14 新日鉄エンジニアリング株式会社 熱風管路補修時の熱遮断方法
CN201779366U (zh) * 2010-08-18 2011-03-30 龙星化工股份有限公司 用于油炉法炭黑生产设备的热风管道
CN202849452U (zh) 2012-09-10 2013-04-03 广东韶钢松山股份有限公司 一种高炉铁口煤氧枪
CN202968585U (zh) 2012-12-12 2013-06-05 山东省冶金设计院股份有限公司 高炉热风测温装置
CN203451547U (zh) * 2013-09-25 2014-02-26 北京瑞尔非金属材料有限公司 一种热风管道工作层内衬的改进结构
KR101585013B1 (ko) * 2014-12-22 2016-01-13 주식회사 포스코 열풍 설비 보수용 열풍 차단 장치
CN107828928A (zh) * 2017-11-03 2018-03-23 山西太钢不锈钢股份有限公司 一种热风管道

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100828154B1 (ko) 2002-06-20 2008-05-08 주식회사 포스코 열풍관의 냉각 장치
US20110180978A1 (en) * 2008-05-23 2011-07-28 Paul Wurth S.A. Method for feeding pulverised coal into a blast furnace
KR20110091357A (ko) * 2010-02-05 2011-08-11 (주)포스프로 풍구장치 및 이를 이용한 고로 풍구의 진단시스템
KR20130014745A (ko) * 2011-08-01 2013-02-12 사브 에스.에이알.엘 송풍 지관
KR20180092350A (ko) * 2017-02-09 2018-08-20 주식회사 대동 용해로에 구비되는 송풍지관의 실시간 적열 및 균열관리방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4074844A4

Also Published As

Publication number Publication date
JP7444491B2 (ja) 2024-03-06
CN115244192B (zh) 2024-03-15
EP4074844A4 (en) 2024-01-03
CN115244192A (zh) 2022-10-25
US20220298591A1 (en) 2022-09-22
JP2023518634A (ja) 2023-05-08
EP4074844A1 (en) 2022-10-19

Similar Documents

Publication Publication Date Title
WO2014204179A1 (en) Method for verifying bad pattern in time series sensing data and apparatus thereof
WO2018070618A1 (ko) 감시 카메라용 냉각장치
WO2013100546A1 (ko) 센서장치 및 이를 포함하는 냉각설비의 성능 평가장치
WO2022182097A1 (ko) 송풍지관, 송풍지관의 제조방법 및 용해로 송풍시스템
WO2011052831A1 (ko) 화학기상증착장치의 온도제어방법
WO2018199498A2 (en) Hot water generation module for water treatment apparatus
WO2019132124A1 (ko) 병렬형 열전모듈
WO2022124780A1 (ko) 본딩 헤드 및 이를 갖는 본딩 장치
WO2019146999A1 (ko) 배터리 셀 스웰링 탐지 시스템 및 방법
WO2021261831A1 (ko) Bms 온도 센서를 활용한 배터리 셀의 온도 이상 상태 진단 시스템 및 방법
KR20220121713A (ko) 송풍지관, 송풍지관의 제조방법 및 용해로 송풍시스템
WO2016129888A1 (ko) 전지모듈 및 상호연결 어셈블리의 전압센싱부재에 제 1 및 제 2 전지셀들의 제 1 및 제 2 전기 단자들을 연결하는 방법
WO2018021635A1 (ko) 연속주조 이상 예측 장치
WO2019054728A1 (ko) 회전형 보호가스 공급 및 흄 제거장치
WO2020004708A1 (ko) 피가열부재의 상태를 계측하기 위한 계측장치 및 이의 제어방법
WO2019231251A1 (ko) 배관 손상 검출장치, 이를 이용한 배관 손상 검출시스템, 및 이를 이용한 배관 손상 검출방법
WO2023153757A1 (ko) 내화물 마모 감지 센서 및 시스템
EP3344923A1 (en) Gas cooker
WO2016129889A1 (ko) 전지모듈 및 상호 연결 어셈블리의 제 1 전압 검출 부재 및 제 2 전압 검출 부재에 제 1 및 제 2 전지셀들의 제 1 및 제 2 전기 단자들을 연결하는 방법
US7042362B2 (en) Apparatus for monitoring leakage of process cooling water in furnace
WO2021020723A1 (ko) 기판처리장치 및 그의 인터락 방법
WO2017111231A1 (ko) 소재 냉각영역 검출 장치 및 선재 냉각영역 검출 방법
WO2021125556A1 (ko) 원전 사고 모사시스템 및 이를 이용한 원전 사고 모사방법
WO2018143616A1 (ko) 피가열부재 통합관리 시스템과 이의 제어방법
JPH09218125A (ja) 溶融金属精錬容器用湯漏れ検知方法、並びにその判断方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022537126

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022726375

Country of ref document: EP

Effective date: 20220608

NENP Non-entry into the national phase

Ref country code: DE