WO2018143450A1 - Hydroponic device and hydroponic method - Google Patents

Hydroponic device and hydroponic method Download PDF

Info

Publication number
WO2018143450A1
WO2018143450A1 PCT/JP2018/003774 JP2018003774W WO2018143450A1 WO 2018143450 A1 WO2018143450 A1 WO 2018143450A1 JP 2018003774 W JP2018003774 W JP 2018003774W WO 2018143450 A1 WO2018143450 A1 WO 2018143450A1
Authority
WO
WIPO (PCT)
Prior art keywords
culture solution
culture
hydroponic cultivation
circulation path
cultivation apparatus
Prior art date
Application number
PCT/JP2018/003774
Other languages
French (fr)
Japanese (ja)
Inventor
朗 内山田
剛平 森田
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2018566150A priority Critical patent/JP7192500B2/en
Publication of WO2018143450A1 publication Critical patent/WO2018143450A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2
    • Y02P60/21Dinitrogen oxide [N2O], e.g. using aquaponics, hydroponics or efficiency measures

Definitions

  • the present invention relates to a hydroponic cultivation apparatus that cultivates a plant by supplying and circulating a culture solution, and a hydroponic cultivation method using the apparatus.
  • This plant factory is a system that systematically produces plants in a closed or semi-closed space where the internal environment is controlled. Specifically, the plants are arranged in a cultivation section such as a cultivation floor, and a culture solution is supplied. The plant is grown and harvested using natural or artificial light as a light source, using hydroponics that supplies nutrients by distributing it near the roots of the plant.
  • the culture solution in hydroponics is generally managed by adjusting the pH value and adjusting the electrical conductivity (hereinafter referred to as “EC”) as an index.
  • EC electrical conductivity
  • the culture solution is reused by, for example, filtering the effluent after the culture solution is supplied to the plant through a filtration membrane (for example, , See Patent Document 1 and Patent Document 2).
  • the effluent of the culture solution after being supplied to the plant is sterilized and reused (for example, Patent Documents 3 to 5), and the culture solution is purified and reused using activated carbon. (See, for example, Patent Document 6 and Patent Document 7).
  • plants are cultivated in a state where the internal environment is controlled. Concentration control and pH control are performed for the culture solution using electrical conductivity. Since the plant will fall or the plant will be sick, it will be necessary to periodically replace the culture solution and clean the plant cultivation part, and this culture solution replacement will increase the waste and lose the cultivation period As a result, the cost and time are greatly lost.
  • the present invention has been made by paying attention to the above circumstances, and its purpose is to supply a culture solution and circulate it to cultivate a plant.
  • An object of the present invention is to provide a hydroponic cultivation apparatus and a hydroponic cultivation method that can suppress and manage a culture solution easily.
  • the inventors of the present invention are based on the sum of the components excluding the water content of the culture solution.
  • the separation means for discharging components exceeding a certain ratio out of the circulation route of the culture solution can suppress the fluctuation of the ionic component balance in the culture solution and can easily manage the culture solution. It came to be completed.
  • the hydroponic cultivation apparatus of the present invention that has solved the above problems is a hydroponic cultivation apparatus that grows plants by supplying and circulating a culture solution, and a cultivation unit in which the plants are cultivated, A culture medium circulation path starting from the cultivation section and returning to the cultivation section, and the culture medium circulation path includes a component excluding moisture in the culture liquid for a part of the culture liquid. It has a feature in that it has separation means for discharging the component exceeding 50% by mass out of the culture medium circulation path with respect to 100% by mass in total.
  • the balance of the ionic components of the circulating broth is restored to be close to conditions suitable for plant growth. I am letting. It is preferable to discharge and supply the culture solution in small amounts, because discharging a large amount of the culture solution at a time and supplying a large amount of new culture solution involve a large production loss and economic loss. It is effective for maintaining the growth of plants to exchange the circulating culture solution and the newly supplied culture solution little by little.
  • the culture medium circulation path includes a first circulation tank located upstream of the cultivation unit, and a second circulation tank located downstream of the cultivation unit and upstream of the separating unit. Preferably it is.
  • the second circulation tank preferably has a microbubble generator that generates microbubbles.
  • the separation means preferably includes a reverse osmosis membrane and / or a nanofiltration membrane.
  • the hydroponic cultivation apparatus has a culture solution supply means for supplying a culture solution.
  • the culture medium circulation path preferably includes a thermometer, a pH meter, and an electrical conductivity meter.
  • a part of the cultivation part is shielded from light.
  • the hydroponic cultivation method using the hydroponic cultivation apparatus exceeds 50% by mass with respect to a total of 100% by mass of the components excluding water in the culture solution in a culture solution circulation path. It is preferable to include a first step in which the component is discharged out of the culture fluid circulation path and a second step in which a culture fluid is newly supplied to the culture fluid that has undergone the first step.
  • hydroponic cultivation apparatus and hydroponic cultivation method of the present invention it is possible to suppress the fluctuation of the ionic component balance in the culture solution and to easily manage the culture solution.
  • FIG. 1 is an example of a schematic configuration diagram showing a hydroponic cultivation apparatus according to an embodiment of the present invention.
  • the hydroponic cultivation apparatus 1 supplies a culture solution 2 and circulates it to cultivate a plant 3, and starts from a cultivating unit 4 where the plant 3 is cultivated and a cultivating unit 4.
  • a culture medium circulation path 5 that returns to the cultivation unit 4.
  • the culture medium circulation path 5 contains, for a part of the culture liquid 2, more than 50 mass% of the components with respect to 100 mass% of the total components excluding moisture in the culture liquid 2.
  • 5 has separation means 6 for discharging outside.
  • the culture solution 2 is a liquid containing a component added as a fertilizer for growing the plant 3, and specifically, nitrogen, phosphorus, potassium, calcium, magnesium, sulfur, chlorine, etc. as ions as a large amount of component. include. Moreover, iron, manganese, zinc, copper, molybdenum, sodium, boron, etc. are contained as an ion as a trace component.
  • a culture solution composition suitable for the state of raw water and the stage of plant growth has been devised.In the practice of the present invention, for example, it contains moderately nitrogenous nitrogen and is suitable for fruit vegetables from autumn to spring.
  • OAT House No. 1, OAT House No. 2, OAT House No. 8 (all manufactured by OAT Agrio Co., Ltd.) and the like can be used.
  • the plant 3 that can be cultivated by the hydroponic cultivation apparatus 1 of the present invention can cultivate various fruit vegetables, leaf vegetables, and flowers according to the formulation of the culture solution 2.
  • OAT Agrio Co., Ltd. can be used as a culture solution formulation. Lettuce can be cultivated when OAT House No. 1, OAT House No. 2, and OAT House No. 8 are used.
  • the cultivation unit 4 is a place where plants are grown by hydroponics.
  • a material called a hydroponic cultivation board having a structure that has buoyancy on the culture solution 2 and can hold seedlings can be used.
  • seedlings are set in a hole formed in a hydroponics growth board and planted, and sunlight or artificial light on a bath filled with the culture solution 2, sometimes at room temperature, carbon dioxide in the air Cultivate by growing for several days to several tens of days in an environment where the gas concentration is adjusted.
  • the culture medium circulation path 5 is a path through which the culture medium 2 that starts from the cultivation section 4 where the plant 3 is grown and returns to the cultivation section 4 circulates. If the cultivation part 4 which is the start point and the cultivation part 4 which is the end point coincide with each other, the route in the middle is not particularly limited.
  • the first circulation which is a buffer for controlling EC and pH in the middle of the route. You may make it provide the tank 7a and distribute
  • a material of the culture solution circulation path 5 for example, a stainless steel pipe can be used, and one having improved durability and corrosivity is used.
  • the separating means 6 will be described in detail below.
  • the hydroponic cultivation apparatus 1 of the present invention in order to suppress the fluctuation of the ionic component balance in the culture solution 2, attention was paid to changing the ionic component in the culture solution 2 as close to the initial value as possible.
  • the total amount of components excluding moisture in the culture solution 2 is 100% by mass with respect to a part of the culture solution 2.
  • the separation unit 6 is configured to discharge the component exceeding 50 mass% out of the culture medium circulation path 5.
  • the culture fluid 2 has been returned to the culture fluid circulation path 5 as it is, but in the present invention, contrary to the conventional technology, a part of the components excluding moisture in the culture fluid 2 is discarded. (Exhaust) is characterized in that the fluctuation of the ionic component balance in the culture solution 2 is suppressed.
  • main ionic components nitrogen, phosphoric acid, potassium
  • nitrogen, phosphoric acid, potassium are taken as an example based on FIG. 3 and FIG. This will be described below.
  • FIG. 3 schematically shows the history of the balance of ionic components in the culture medium by conventional EC value measurement.
  • FIG. 4 schematically shows the history of ionic component balance in the culture solution when the hydroponic cultivation apparatus of the present invention is used. As shown in FIGS. 4 (a) and 4 (b), the initial state and the state in which the ionic components in the culture solution are consumed are the same as in FIGS. 3 (a) and 3 (c).
  • (Nitrogen: Phosphoric acid: Potassium 0.65: 0.65: 0.65) is performed.
  • route should just exceed 50 mass% with respect to a total of 100 mass% of the components except the water
  • it is preferably 60% by mass, more preferably 75% by mass, further preferably 90% by mass, and most preferably 99% by mass.
  • the components other than the water in the culture solution include, for example, nitrogen, phosphate ions, iron ions, tin ions, zinc ions, boron ions, sodium ions, calcium ions, magnesium ions, etc., which are the culture components of the culture solution. That is.
  • the separation means of the present invention include a membrane separation method in which separation is performed using a membrane.
  • Membrane separation methods are classified into microfiltration method, ultrafiltration method, ion permeation method, nanofiltration method, reverse osmosis method, and gas separation method in the order of the size of the substance to be separated.
  • Filtration membranes, ultrafiltration membranes, ion permeable membranes, nanofiltration membranes, reverse osmosis membranes, and gas separation membranes are preferable to use a separation membrane having a pore size of 10 nm or less, more preferably 5 nm or less, and even more preferably 2 nm.
  • a nanofiltration membrane that allows moisture, sodium ions, and chloride ions to pass through and blocks the passage of macromolecules such as amino acids and proteins smaller than 2 nm, and more preferably allows only water to pass through.
  • a reverse osmosis membrane Reverse Osmosis Membrane, hereinafter referred to as RO membrane
  • RO membrane reverse Osmosis Membrane
  • a nanofiltration membrane and an RO membrane may be used in combination.
  • the amount of the liquid supplied to the filtration membrane of the separation means is made constant, and the amount of the concentrated liquid generated at the time of filtration is made constant, so that the filtrate is not affected by the temperature fluctuation of the culture solution.
  • a culture solution supply pump is provided in the culture solution circulation path leading to the separation means, and a flow rate is supplied to the filtrate path of the separation means.
  • a filtrate flow rate control means for providing a transmitter, controlling the number of rotations of the culture solution supply pump based on a flow rate signal transmitted from the flow rate transmitter, and making the filtrate flow rate constant, and a concentrate of the separation means
  • a concentrated liquid constant flow valve for making the flow rate of the concentrated liquid constant is provided in the path, interposed between the separation means and the concentrated liquid constant flow valve, and a pressure reducing valve for reducing the pressure of the concentrated liquid, the pressure reducing valve, and the above You may make it the structure provided with the pressure indicator interposed between concentrated liquid constant flow valves.
  • the treatment of the culture solution by the separation means may be performed continuously during the growth of the plant, but is preferably performed intermittently in order to reduce production loss and economic loss.
  • a periodic operation such as operating the separation means may be performed once or more, more preferably twice or more, and even more preferably three times or more per week of the plant growth period.
  • the hydroponic cultivation apparatus 1 of the present invention By configuring the hydroponic cultivation apparatus 1 of the present invention as described above, it is possible to suppress the fluctuation of the ionic component balance in the culture solution and easily manage the culture solution.
  • the culture medium circulation path 5 includes a first circulation tank 7 a located upstream of the cultivation unit 4 and a second circulation tank 7 b located downstream of the cultivation unit 4 and upstream of the separating unit 6. It is preferable. That is, the culture medium circulation path 5 preferably includes a first circulation tank 7a that is a buffer for controlling EC and pH, and a second circulation tank 7b that is a buffer for partially treating the culture liquid. Since the culture solution circulation path 5 includes the first circulation tank 7a and the second circulation tank 7b, the operation of the separation means 6 can be freely controlled.
  • FIG. 2 is another example of a schematic configuration diagram showing the hydroponic cultivation apparatus according to the embodiment of the present invention.
  • the culture solution circulation path 5 has two routes: a route through which the culture solution 2 discharged from the cultivation unit 4 passes through the second circulation tank 7 b and a route through which the second circulation tank 7 b does not pass. May be provided.
  • the separation means 6 processed the culture solution 2 stored in the second circulation tank 7b, and was obtained by the separation means 6. It is preferable to supply water to the culture solution circulation path 5 and store the culture solution 2 in the first circulation tank 7a. Since the culture solution circulation path 5 is configured in this way, the amount of drainage discharged from the hydroponic cultivation apparatus 1 can be reduced.
  • the water obtained by the separation means 6 is preferably supplied to the culture medium circulation path 5 and stored in the first circulation tank 7a. Specifically, as shown in FIG. 2 may be stored in the first circulation tank 7a after being returned to the circulation tank 7b. As shown in FIG. 2, the culture solution 2 is supplied to the path from the second circulation tank 7b to the first circulation tank 7a. You may store in the 1st circulation tank 7a.
  • the second circulation tank 7b preferably has a microbubble generator 11 that generates microbubbles. Since the second circulation tank 7b has the microbubble generating device 11, the allelopathic substance (details will be described later) released from the plant 3 to the culture solution 2 during the growth of the plant 3 in the cultivation unit 4 is microbubbled. The growth of the plant 3 can be prevented from being hindered by the accumulation of allelopathic substances in the culture solution 2 due to the circulation of the culture solution 2.
  • Microbubbles refer to fine bubbles with a bubble diameter of 100 ⁇ m or less. It is considered that the allelopathic substance is erased by microbubbles because radicals are generated when the microbubbles are crushed and the allelopathic substances are decomposed by the radicals.
  • the type of microbubble generator is a swirling flow type that generates microbubbles by generating a swirling flow by sending pressure water with a pump into the device, and an ejector type that generates microbubbles by ejecting liquid from a nozzle at high speed
  • a rotary type that generates microbubbles by rotating the screw at high speed is preferable.
  • the roots of the plant may be damaged, and the growth of the plant may be hindered or the plant may wither. Therefore, it is preferable not to circulate the culture solution in the second circulation tank in the culture solution circulation path during the operation of the microbubble generator so that the culture solution containing microbubbles is not supplied to the cultivation unit.
  • the second circulation tank 7b when the microbubble generator 11 in the second circulation tank 7b is operated to generate microbubbles in the culture solution 2 in the second circulation tank 7b, the second It is preferable to stop the pump 10 between the circulation tank 7b and the first circulation tank 7a so that the culture solution 2 in the second circulation tank 7b is not supplied into the first circulation tank 7a.
  • the pump 10 between the second circulation tank 7b and the first circulation tank 7a is stopped during a certain period of time after the operation of the microbubble generator 11 in the second circulation tank 7b and after the operation is stopped. More preferably, the culture solution 2 in the second circulation tank 7b is not supplied to the first circulation tank 7a.
  • the plant 3 By circulating the culture solution through the culture solution circulation path in this way, it is possible to remove allelopathic substances in the culture solution, reduce the possibility that the microbubbles will adversely affect the plant, and increase the yield of the plant.
  • operation of the microbubble generator 11 it is possible to supply the culture solution 2 which does not contain a microbubble to the cultivation part 4.
  • the plant 3 can be sufficiently grown.
  • the hydroponic cultivation apparatus 1 of the present invention may have a culture solution supply means 8 for supplying the culture solution as shown in FIG. preferable.
  • a culture medium storage tank 9 adjusted to a desired culture medium component is provided before being supplied to the cultivation unit, and the culture medium is quantitatively supplied from the storage tank by the pump 10. good.
  • the culture solution circulation path of the hydroponic cultivation apparatus of the present invention preferably includes a thermometer, a pH meter, and an electrical conductivity meter. More preferably, the temperature, pH, and electrical conductivity of the culture solution can be measured before and after supplying the cultivation part.
  • the cultivation unit has a hydroponics growth board having a fixed planting hole for growing seedlings, and the board has a first layer (upper part) and a second layer (lower part). It is preferable that the first layer has a higher brightness than the second layer.
  • the cultivation section has a foreign matter removing means for removing foreign matters such as plant leaves and root fragments.
  • the foreign matter removing means include a rake-like object in which teeth are arranged in a rough comb shape in the cultivation part, and a mesh-like substance is arranged at a discharge port for discharging the culture solution in the cultivation part to the culture medium circulation path. .
  • a component excluding moisture in the culture liquid with respect to a part of the culture liquid The component exceeding 50% by mass is discharged out of the culture medium circulation path with respect to the total of 100% by mass (first step).
  • components such as nitrogen, phosphate ion, iron ion, tin ion, zinc ion, boron ion, sodium ion, calcium ion, magnesium ion, etc., which are culture components It is preferable to discharge 99% by mass of the component out of the culture medium circulation path with respect to the total of 100% by mass. By doing in this way, the component of the major part of the ionic component in a culture solution will be discharged
  • a new culture solution is supplied to the moisture of the culture solution that has undergone the first step (second step).
  • the culture solution is newly supplied in a state where the component concentration in the culture solution in the first step is lowered, and the ionic component that is deficient in the culture solution is replenished, and the culture solution The ionic component balance in the medium can be regenerated.
  • the first step and the second step are repeated a plurality of times.
  • the collapse of the ionic component balance in the culture solution can be further improved.
  • a culture solution can be made into the state of substantially fresh water, and the reproduction
  • Hydroponics unlike soil cultivation, is a method of cultivating without using soil as a culture medium, giving it as a liquid fertilizer (culture solution) in which fertilizer is dissolved in water, with respect to the nutrient moisture necessary for plant growth, It is classified into a jet type, a thin film flow type (Nutrient Film Technique, hereinafter referred to as NFT) and a irrigation type (Deep Flow Technique, hereinafter referred to as DFT) depending on the configuration of circulating the culture solution.
  • NFT Nutrient Film Technique
  • DFT Deep Flow Technique
  • NFT is what flows a culture solution at a shallow water depth
  • DFT stores a culture solution in a bathtub and can immerse in deeper water depth.
  • DFT is adopted because of ease of plant production management.
  • any of the above-described spraying type, NFT, and DFT methods is used. It is possible to use.
  • allelopathy a substance that suppresses the growth of other plants by decaying the roots of seeds, seed shells, etc. in addition to disruption of the ionic component balance in the culture solution ( (Allelochemical) is released, and animals and microorganisms are attracted.
  • allelopathy a substance that suppresses the growth of other plants by decaying the roots of seeds, seed shells, etc. in addition to disruption of the ionic component balance in the culture solution.
  • allelopathic substances mainly organic acids
  • the hydroponic cultivation apparatus and hydroponic cultivation method of the present invention out of the culture solution containing the harmful components, more than half of the components excluding moisture are discharged out of the culture solution circulation path, and then newly cultured. Since the solution is replenished, allelopathic substances in the culture solution can also be removed.
  • the hydroponic cultivation apparatus and hydroponic cultivation method of the present invention provide 50% by mass with respect to a total of 100% by mass of the components excluding moisture in the culture solution, with respect to a part of the culture solution.
  • separation means for discharging the excess components out of the culture medium circulation path By having separation means for discharging the excess components out of the culture medium circulation path, the fluctuation of the ionic component balance in the culture solution can be suppressed, the culture solution can be easily managed, and an automatic pH controller is provided. By adding, it enables free maintenance of culture solution management in hydroponics.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Hydroponics (AREA)

Abstract

Provided are a hydroponic device and a hydroponic method, in which a culture solution is supplied and circulated to cultivate a plant, wherein fluctuations in ionic component balance in the culture solution are suppressed by means of a simple configuration, and the culture solution can be easily managed. This hydroponic device, in which a culture solution is supplied and circulated to cultivate a plant, has: a cultivating part in which the plant is cultivated; and a culture solution circulation path which starts from the cultivating part and reaches the cultivating part, wherein the culture solution circulation path has a culture solution separation means which, from a portion of the culture solution, discharges, to the outside of the culture solution circulation path, a component that makes up more than 50 mass% of a total of 100 mass% of components that remove water in the culture solution.

Description

水耕栽培装置、及び水耕栽培方法Hydroponic cultivation apparatus and hydroponic cultivation method
 本発明は、培養液を供給し、且つ循環させて植物を栽培する水耕栽培装置、及び当該装置を用いた水耕栽培方法に関するものである。 The present invention relates to a hydroponic cultivation apparatus that cultivates a plant by supplying and circulating a culture solution, and a hydroponic cultivation method using the apparatus.
 近年、安全な食材の供給、食材の通年供給を目的とした環境保全型の生産システムである植物工場が注目されている。この植物工場は、内部環境をコントロールした閉鎖的または半閉鎖的な空間で植物を計画的に生産するシステムであり、具体的には、植物を栽培床等の栽培部に配列させ、培養液を植物の根付近に流通させることで養分を供給する水耕栽培を利用し、自然光または人工光を光源として植物を成育させ、収穫させるものである。 In recent years, plant factories, which are environmentally friendly production systems that aim to supply safe foods and supply foods throughout the year, have attracted attention. This plant factory is a system that systematically produces plants in a closed or semi-closed space where the internal environment is controlled. Specifically, the plants are arranged in a cultivation section such as a cultivation floor, and a culture solution is supplied. The plant is grown and harvested using natural or artificial light as a light source, using hydroponics that supplies nutrients by distributing it near the roots of the plant.
 水耕栽培における培養液は、一般に、pH値の調整と電気伝導度(Electrical Conductivity:以下ECという)を指標にした濃度調整により管理されている。また、pH値やEC値による培養液の濃度調整と共に、培養液を植物に供給した後の排液を、例えばろ過膜でろ過することにより培養液を再利用することが行われている(例えば、特許文献1、特許文献2参照)。 The culture solution in hydroponics is generally managed by adjusting the pH value and adjusting the electrical conductivity (hereinafter referred to as “EC”) as an index. In addition to adjusting the concentration of the culture solution based on the pH value or EC value, the culture solution is reused by, for example, filtering the effluent after the culture solution is supplied to the plant through a filtration membrane (for example, , See Patent Document 1 and Patent Document 2).
 また、植物に供給した後の培養液の排液を除菌して再利用すること(例えば、特許文献3~特許文献5)、活性炭を用いて培養液を浄化して再利用することも行われている(例えば、特許文献6、特許文献7参照)。 In addition, the effluent of the culture solution after being supplied to the plant is sterilized and reused (for example, Patent Documents 3 to 5), and the culture solution is purified and reused using activated carbon. (See, for example, Patent Document 6 and Patent Document 7).
特開平9-107826号公報Japanese Patent Laid-Open No. 9-107826 特開2011-078332号公報JP 2011-078332 A 特開2011-299116号公報JP 2011-299116 A 特開昭63-29417号公報JP 63-29417 A 特開2001-346460号公報JP 2001-346460 A 特開昭50-18224号公報Japanese Patent Laid-Open No. 50-18224 特開平9-313055号公報JP-A-9-313055
 しかしながら、培養液成分には、植物の生長に有益な成分のうち植物に吸収されにくい成分と吸収されやすい成分が存在することから、培養液を長期間使用すると、植物に吸収されにくい成分が循環系内に蓄積され、植物に吸収されやすい成分が消費されることにより、培養液中のイオン成分バランスは次第に崩れる傾向にある。また、従来の培養液の再利用技術では、植物の生長に有益でない成分であるアレロパシー物質(主に有機酸)等はろ過膜を通過して培養液中に蓄積し、培養液の管理が困難になるという問題があった。これらの対策として、例えばイオンクロマトグラフィーを用いて逐一分析して、その分析結果に基づいて培養液成分を制御することは可能であるが、当該イオンクロマトグラフィーは高価であり、また、培養液成分の管理制御が煩雑となることから実用的なものではなかった。 However, among the components that are beneficial to plant growth, there are components that are difficult to be absorbed by plants and components that are easily absorbed, so that components that are difficult to be absorbed by plants circulate when the culture solution is used for a long time. By consuming components that are accumulated in the system and are easily absorbed by plants, the ionic component balance in the culture solution tends to gradually collapse. In addition, in the conventional culture broth reuse technology, allelopathic substances (mainly organic acids) that are not beneficial to plant growth pass through the filtration membrane and accumulate in the broth, making it difficult to manage the broth There was a problem of becoming. As these countermeasures, for example, it is possible to perform analysis one by one using ion chromatography and control the culture solution components based on the analysis results, but the ion chromatography is expensive, and the culture solution components Since the management control of the system becomes complicated, it was not practical.
 植物工場では、内部環境をコントロールした状態で植物を栽培しており、培養液は電気伝導度で濃度管理とpH管理を行っているが、前述の問題により栽培期間が長期にわたると植物の収量が下がったり、植物が病気にかかったりするため、定期的に培養液の交換と植物栽培部の洗浄を行わざるを得ず、この培養液の交換が廃棄物の増大に加え栽培期間を失することにより費用面及び時間面の大きなロスとなっている。 In plant factories, plants are cultivated in a state where the internal environment is controlled. Concentration control and pH control are performed for the culture solution using electrical conductivity. Since the plant will fall or the plant will be sick, it will be necessary to periodically replace the culture solution and clean the plant cultivation part, and this culture solution replacement will increase the waste and lose the cultivation period As a result, the cost and time are greatly lost.
 本発明は上記の事情に着目してなされたものであって、その目的は、培養液を供給し、且つ循環させて植物を栽培する水耕栽培において、培養液中のイオン成分バランスの変動を抑えると共に、培養液を容易に管理することができる水耕栽培装置、及び水耕栽培方法を提供することにある。 The present invention has been made by paying attention to the above circumstances, and its purpose is to supply a culture solution and circulate it to cultivate a plant. An object of the present invention is to provide a hydroponic cultivation apparatus and a hydroponic cultivation method that can suppress and manage a culture solution easily.
 本発明者らは、上記課題を解決するために鋭意検討する中で、培養液を供給し、且つ循環させて植物を栽培する水耕栽培装置において、培養液の水分を除く成分の合計に対して、一定の割合を超える成分を培養液循環経路外に排出させる分離手段により、培養液中のイオン成分バランスの変動を抑えると共に、培養液を容易に管理することができることを見出し、本発明を完成するに至った。 In the hydroponic cultivation apparatus for cultivating a plant by supplying a culture solution and circulating the plant while diligently studying to solve the above-mentioned problems, the inventors of the present invention are based on the sum of the components excluding the water content of the culture solution. Thus, it has been found that the separation means for discharging components exceeding a certain ratio out of the circulation route of the culture solution can suppress the fluctuation of the ionic component balance in the culture solution and can easily manage the culture solution. It came to be completed.
 すなわち、上記課題を解決し得た本発明の水耕栽培装置は、培養液を供給し、且つ循環させて植物を栽培する水耕栽培装置であって、前記植物が栽培される栽培部と、前記栽培部から出発して該栽培部に戻る培養液循環経路と、を有しており、前記培養液循環経路には、前記培養液の一部に対し、該培養液中の水分を除く成分の合計100質量%に対して、50質量%を超える該成分を前記培養液循環経路外に排出させる分離手段を有する点に特徴を有している。 That is, the hydroponic cultivation apparatus of the present invention that has solved the above problems is a hydroponic cultivation apparatus that grows plants by supplying and circulating a culture solution, and a cultivation unit in which the plants are cultivated, A culture medium circulation path starting from the cultivation section and returning to the cultivation section, and the culture medium circulation path includes a component excluding moisture in the culture liquid for a part of the culture liquid. It has a feature in that it has separation means for discharging the component exceeding 50% by mass out of the culture medium circulation path with respect to 100% by mass in total.
 培養液に対して処理を行い、あえて培養液の一部を培養液循環経路から排出することによって、循環している培養液のイオン成分のバランスを植物の生育に適した条件に近づくように回復させている。培養液を一度に大量に排出して新たな培養液を大量に供給することは大きな生産ロスや経済ロスを伴うため、少量ずつ培養液を排出及び供給することが好ましい。循環している培養液と新たに供給される培養液とを少量ずつ交換することが植物の生育維持に効果的である。 By treating the culture broth and deliberately discharging a portion of the culture broth from the culture circulation path, the balance of the ionic components of the circulating broth is restored to be close to conditions suitable for plant growth. I am letting. It is preferable to discharge and supply the culture solution in small amounts, because discharging a large amount of the culture solution at a time and supplying a large amount of new culture solution involve a large production loss and economic loss. It is effective for maintaining the growth of plants to exchange the circulating culture solution and the newly supplied culture solution little by little.
 上記水耕栽培装置において、培養液循環経路は、栽培部の上流に位置する第1循環槽と、栽培部の下流であり、分離手段の上流に位置する第2循環槽と、を有していることが好ましい。 In the hydroponic cultivation apparatus, the culture medium circulation path includes a first circulation tank located upstream of the cultivation unit, and a second circulation tank located downstream of the cultivation unit and upstream of the separating unit. Preferably it is.
 上記水耕栽培装置において、第2循環槽は、マイクロバブルを発生させるマイクロバブル発生装置を有していることが好ましい。 In the hydroponic cultivation apparatus, the second circulation tank preferably has a microbubble generator that generates microbubbles.
 上記水耕栽培装置において、分離手段が、逆浸透膜、及び/またはナノろ過膜を備えることが好ましい。 In the hydroponic cultivation apparatus, the separation means preferably includes a reverse osmosis membrane and / or a nanofiltration membrane.
 上記水耕栽培装置において、培養液が供給される培養液供給手段を有することが好ましい。 It is preferable that the hydroponic cultivation apparatus has a culture solution supply means for supplying a culture solution.
 上記水耕栽培装置において、培養液循環経路には、温度計、pH計、及び電気伝導度計を備えることが好ましい。 In the hydroponic cultivation apparatus, the culture medium circulation path preferably includes a thermometer, a pH meter, and an electrical conductivity meter.
 上記水耕栽培装置において、栽培部の一部が遮光されていることが好ましい。 In the hydroponic cultivation apparatus, it is preferable that a part of the cultivation part is shielded from light.
 上記水耕栽培装置を用いる水耕栽培方法は、培養液循環経路において、培養液の一部に対し、該培養液中の水分を除く成分の合計100質量%に対して、50質量%を超える該成分が該培養液循環経路外に排出される第1ステップと、前記第1ステップを経た培養液に対して新たに培養液が供給される第2ステップと、を含むことが好ましい。 The hydroponic cultivation method using the hydroponic cultivation apparatus exceeds 50% by mass with respect to a total of 100% by mass of the components excluding water in the culture solution in a culture solution circulation path. It is preferable to include a first step in which the component is discharged out of the culture fluid circulation path and a second step in which a culture fluid is newly supplied to the culture fluid that has undergone the first step.
 本発明の水耕栽培装置、及び水耕栽培方法によれば、培養液中のイオン成分バランスの変動を抑えると共に、培養液を容易に管理することができる。 According to the hydroponic cultivation apparatus and hydroponic cultivation method of the present invention, it is possible to suppress the fluctuation of the ionic component balance in the culture solution and to easily manage the culture solution.
本発明の実施の形態に係る水耕栽培装置の概略構成図の一例である。It is an example of the schematic block diagram of the hydroponic cultivation apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る水耕栽培装置の概略構成図の他の一例である。It is another example of the schematic block diagram of the hydroponic cultivation apparatus which concerns on embodiment of this invention. 従来の培養液中のイオン成分バランスの経緯を示した模式図である。It is the schematic diagram which showed the history of the ionic component balance in the conventional culture solution. 本発明の実施の形態に係る水耕栽培装置を用いた場合の培養液中のイオン成分バランスの経緯を示した模式図である。It is the schematic diagram which showed the history of the ionic component balance in the culture solution at the time of using the hydroponic cultivation apparatus which concerns on embodiment of this invention.
 以下、図面を参照しつつ、本発明の実施の形態について説明するが、本発明は以下の実施の形態のみに限定されず、前・後記の趣旨に適合し得る範囲で変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。以下の説明では、同一の部品には同一の符号を付してある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the present invention is not limited only to the following embodiments, and is implemented with modifications within a range that can meet the gist of the preceding and following descriptions. All of which are within the scope of the present invention. In the following description, the same parts are denoted by the same reference numerals.
 図1は、本発明の実施の形態に係る水耕栽培装置を示す概略構成図の一例である。図1に示すように、水耕栽培装置1は培養液2を供給し、且つ循環させて植物3を栽培するものであり、植物3が栽培される栽培部4と、栽培部4から出発して栽培部4に戻る培養液循環経路5とを備えている。また、培養液循環経路5には、培養液2の一部に対し、該培養液2中の水分を除く成分の合計100質量%に対して、50質量%を超える該成分を培養液循環経路5外に排出させる分離手段6を有している。 FIG. 1 is an example of a schematic configuration diagram showing a hydroponic cultivation apparatus according to an embodiment of the present invention. As shown in FIG. 1, the hydroponic cultivation apparatus 1 supplies a culture solution 2 and circulates it to cultivate a plant 3, and starts from a cultivating unit 4 where the plant 3 is cultivated and a cultivating unit 4. And a culture medium circulation path 5 that returns to the cultivation unit 4. In addition, the culture medium circulation path 5 contains, for a part of the culture liquid 2, more than 50 mass% of the components with respect to 100 mass% of the total components excluding moisture in the culture liquid 2. 5 has separation means 6 for discharging outside.
 培養液2は、植物3を育成するための肥料として加えられた成分を含む液体であり、具体的には、多量成分として、窒素、リン、カリウム、カルシウム、マグネシウム、硫黄、塩素等がイオンとして含まれている。また、微量成分として、鉄、マンガン、亜鉛、銅、モリブデン、ナトリウム、ホウ素等がイオンとして含まれている。栽培育成する植物ごとに、また原水の状態、植物の育成ステージ別に適した培養液組成が考案されており、本発明の実施において、例えば、アンモニア性窒素を適度に含み、秋から春の果菜類に対応した培養液処方として、OATハウス1号、OATハウス2号、及びOATハウス8号(いずれもOATアグリオ株式会社製)等を用いることができる。 The culture solution 2 is a liquid containing a component added as a fertilizer for growing the plant 3, and specifically, nitrogen, phosphorus, potassium, calcium, magnesium, sulfur, chlorine, etc. as ions as a large amount of component. include. Moreover, iron, manganese, zinc, copper, molybdenum, sodium, boron, etc. are contained as an ion as a trace component. For each plant to be cultivated and cultivated, a culture solution composition suitable for the state of raw water and the stage of plant growth has been devised.In the practice of the present invention, for example, it contains moderately nitrogenous nitrogen and is suitable for fruit vegetables from autumn to spring. As a corresponding culture medium formulation, OAT House No. 1, OAT House No. 2, OAT House No. 8 (all manufactured by OAT Agrio Co., Ltd.) and the like can be used.
 本発明の水耕栽培装置1で栽培できる植物3は、上記培養液2の処方により、種々の果菜類、葉菜類、花き類を栽培することができるが、例えば、培養液処方としてOATアグリオ株式会社製OATハウス1号、OATハウス2号、及びOATハウス8号を用いた場合、レタスを栽培することができる。 The plant 3 that can be cultivated by the hydroponic cultivation apparatus 1 of the present invention can cultivate various fruit vegetables, leaf vegetables, and flowers according to the formulation of the culture solution 2. For example, OAT Agrio Co., Ltd. can be used as a culture solution formulation. Lettuce can be cultivated when OAT House No. 1, OAT House No. 2, and OAT House No. 8 are used.
 栽培部4は、水耕栽培で植物を成育させる場所であり、例えば、培養液2上に浮力があり苗を保持できる構造を有した水耕栽培用育成ボードと呼ばれる資材を用いることができる。具体的には、水耕栽培用育成ボードに空けられた孔に苗をセットして定植し、培養液2の満たされた浴槽上にて日光または人工光、場合によっては室温、空気中の炭酸ガス濃度等を調整した環境下で数日から数十日の栽培を行い収穫する。 The cultivation unit 4 is a place where plants are grown by hydroponics. For example, a material called a hydroponic cultivation board having a structure that has buoyancy on the culture solution 2 and can hold seedlings can be used. Specifically, seedlings are set in a hole formed in a hydroponics growth board and planted, and sunlight or artificial light on a bath filled with the culture solution 2, sometimes at room temperature, carbon dioxide in the air Cultivate by growing for several days to several tens of days in an environment where the gas concentration is adjusted.
 培養液循環経路5は、植物3が栽培される栽培部4から出発して該栽培部4に戻る培養液2が循環する経路である。当該経路について、始点である栽培部4と終点である栽培部4が一致していれば、途中の経路は特に限定されず、例えば、経路途中にECやpHをコントロールするバッファである第1循環槽7aを設けて、当該第1循環槽7aから栽培部4に向けて培養液が流通するようにしても良い。また、栽培部4から第1循環槽7aに至る経路の途中において、分離手段6を経由する経路と、分離手段6を経由しない経路の2つの経路を備えるようにしても良い。このように構成することで、分離手段6の運転を自由に制御できる。なお、培養液循環経路5の材質としては例えばステンレス製配管を用いることができ、耐久性や腐食性を向上させたものが用いられる。 The culture medium circulation path 5 is a path through which the culture medium 2 that starts from the cultivation section 4 where the plant 3 is grown and returns to the cultivation section 4 circulates. If the cultivation part 4 which is the start point and the cultivation part 4 which is the end point coincide with each other, the route in the middle is not particularly limited. For example, the first circulation which is a buffer for controlling EC and pH in the middle of the route. You may make it provide the tank 7a and distribute | circulate a culture solution toward the cultivation part 4 from the said 1st circulation tank 7a. Further, in the middle of the route from the cultivation unit 4 to the first circulation tank 7a, two routes may be provided: a route that passes through the separating unit 6 and a route that does not pass through the separating unit 6. With this configuration, the operation of the separating unit 6 can be freely controlled. In addition, as a material of the culture solution circulation path 5, for example, a stainless steel pipe can be used, and one having improved durability and corrosivity is used.
 分離手段6について、以下詳細に説明する。
 本発明の水耕栽培装置1では、培養液2中のイオン成分バランスの変動を抑えるためには、培養液2中のイオン成分をなるべく初期値に近い状態で推移させることに着目した。具体的には、本発明の水耕栽培装置1には、培養液循環経路5において、培養液2の一部に対し、該培養液2中の水分を除く成分の合計100質量%に対して、50質量%を超える該成分を培養液循環経路5外に排出させる分離手段6を有する構成とした。従来、培養液2はそのまま培養液循環経路5に戻していたのに対して、本発明では、従来とは逆に、培養液2中の水分を除く成分のうち一部の割合の成分を廃棄(排出)させることで培養液2中のイオン成分バランスの変動を抑えている点に特徴がある。
The separating means 6 will be described in detail below.
In the hydroponic cultivation apparatus 1 of the present invention, in order to suppress the fluctuation of the ionic component balance in the culture solution 2, attention was paid to changing the ionic component in the culture solution 2 as close to the initial value as possible. Specifically, in the hydroponic cultivation apparatus 1 of the present invention, in the culture solution circulation path 5, the total amount of components excluding moisture in the culture solution 2 is 100% by mass with respect to a part of the culture solution 2. The separation unit 6 is configured to discharge the component exceeding 50 mass% out of the culture medium circulation path 5. Conventionally, the culture fluid 2 has been returned to the culture fluid circulation path 5 as it is, but in the present invention, contrary to the conventional technology, a part of the components excluding moisture in the culture fluid 2 is discarded. (Exhaust) is characterized in that the fluctuation of the ionic component balance in the culture solution 2 is suppressed.
 上記で説明したように培養液中のイオン成分は多種存在し、且つ複雑に混在するため、ここでは主なイオン成分(窒素、リン酸、カリウム)を例にして、図3、図4に基づき以下説明する。 As described above, various ionic components in the culture medium exist and are mixed in a complicated manner. Therefore, here, main ionic components (nitrogen, phosphoric acid, potassium) are taken as an example based on FIG. 3 and FIG. This will be described below.
 図3は、従来のEC値計測による培養液中のイオン成分バランスの経緯を模式的に示したものである。図3(a)に示すように、初期状態において培養液中のイオン成分バランスは整っており、この状態における窒素、リン酸、カリウムの構成値は、窒素:リン酸:カリウム=1:1:1であると仮定する。 FIG. 3 schematically shows the history of the balance of ionic components in the culture medium by conventional EC value measurement. As shown in FIG. 3 (a), the ionic component balance in the culture solution is in the initial state, and the constituent values of nitrogen, phosphoric acid, and potassium in this state are nitrogen: phosphate: potassium = 1: 1: Assume that 1.
 次に、図3(b)に示すように、水耕栽培装置で植物をある程度栽培させた状態において、EC計による計測で培養液全体のEC値が初期3であったものが、2.1に減少したと感知する。EC計による計測では培養液中の各成分のEC値をそれぞれ計測することができないため、この状態における窒素、リン酸、カリウムの構成値は、窒素:リン酸:カリウム=0.7:0.7:0.7である。 Next, as shown in FIG. 3 (b), in the state where the plant was cultivated to some extent by the hydroponic cultivation apparatus, the EC value of the whole culture solution was initially 3 as measured by the EC meter. Perceived to have decreased. Since the EC value of each component in the culture solution cannot be measured by the EC meter, the constituent values of nitrogen, phosphoric acid, and potassium in this state are as follows: nitrogen: phosphate: potassium = 0.7: 0. 7: 0.7.
 ここで、植物の生長に消費される各イオン成分の割合が各々異なることから、実際の培養液中のイオン成分バランスは、図3(c)に示すように、各成分の構成値の減少はそれぞれ異なり、窒素:リン酸:カリウム=1:0.7:0.4であると仮定する。 Here, since the ratio of each ionic component consumed for the growth of the plant is different, the ionic component balance in the actual culture solution is as shown in FIG. It is assumed that nitrogen: phosphate: potassium = 1: 0.7: 0.4.
 次に、図3(d)に示すように、上記EC計で感知した値に基づき、減少した肥料成分(3-2.1=0.9)を補充するための追肥として、培養液の補充(窒素:リン酸:カリウム=0.3:0.3:0.3)が行われる。 Next, as shown in FIG. 3 (d), based on the value detected by the EC meter, replenishment of the culture solution as supplementary fertilizer to replenish the reduced fertilizer component (3-2.1 = 0.9) (Nitrogen: phosphoric acid: potassium = 0.3: 0.3: 0.3) is performed.
 さらに、図3(e)に示すように、図3(c)の状態に図3(d)の状態が補充されることにより、窒素:リン酸:カリウム=1.3:1:0.7の状態となり、過剰成分の窒素は初期状態よりも過剰になり、不足成分のカリウムは初期状態よりも不足した状態となる。 Furthermore, as shown in FIG. 3 (e), the state of FIG. 3 (d) is supplemented to the state of FIG. 3 (c), so that nitrogen: phosphate: potassium = 1.3: 1: 0.7. In this state, the excess component nitrogen becomes excessive from the initial state, and the insufficient component potassium becomes insufficient from the initial state.
 図4は、本発明の水耕栽培装置を用いた場合の培養液中のイオン成分バランスの経緯を模式的に示したものである。図4(a)、図4(b)で示すように、初期状態、及び培養液中のイオン成分が消費された状態は、図3(a)、図3(c)と同様である。 FIG. 4 schematically shows the history of ionic component balance in the culture solution when the hydroponic cultivation apparatus of the present invention is used. As shown in FIGS. 4 (a) and 4 (b), the initial state and the state in which the ionic components in the culture solution are consumed are the same as in FIGS. 3 (a) and 3 (c).
 次に、図4(c)に示すように、図4(b)で示す培養液中のイオン成分が消費された状態において、培養液の水分を除く成分の合計100質量%に対して、半分の成分(窒素:リン酸:カリウム=0.5:0.35:0.2)を培養液循環経路外に排出させる。 Next, as shown in FIG. 4 (c), in a state where the ionic components in the culture solution shown in FIG. 4 (b) are consumed, half of the total 100% by mass of the components excluding moisture in the culture solution. (Nitrogen: phosphate: potassium = 0.5: 0.35: 0.2) are discharged out of the culture medium circulation path.
 次に、図4(d)に示すように、図4(c)で示す培養液の排出により減少した肥料成分(3-1.05=1.95)を補充するための追肥として、培養液の補充(窒素:リン酸:カリウム=0.65:0.65:0.65)が行われる。 Next, as shown in FIG. 4 (d), the culture solution is used as a supplementary fertilizer to replenish the fertilizer component (3-1.05 = 1.95) reduced by the discharge of the culture solution shown in FIG. 4 (c). (Nitrogen: Phosphoric acid: Potassium = 0.65: 0.65: 0.65) is performed.
 さらに、図4(e)に示すように、図4(c)の状態に図4(d)の状態が補充されることにより、窒素:リン酸:カリウム=1.15:1:0.85の状態となり、図4(b)で生じた培養液中のイオン成分バランスの崩れを改善することができる。なお、図4(b)から図4(e)に至る一連の流れを繰返すことにより、培養液中のイオン成分バランスは初期の状態に限りなく近づけることができる。 Furthermore, as shown in FIG. 4 (e), the state of FIG. 4 (d) is supplemented to the state of FIG. 4 (c), so that nitrogen: phosphate: potassium = 1.15: 1: 0.85. Thus, it is possible to improve the balance of the ionic component in the culture broth produced in FIG. 4B. In addition, by repeating a series of flows from FIG. 4B to FIG. 4E, the ionic component balance in the culture solution can be brought close to the initial state as much as possible.
 なお、培養液経路外に排出する割合は、培養液の水分を除く成分の合計100質量%に対して、50質量%を超えるものであれば良いが、水耕栽培装置の稼動時間、培養液の排出量及び補充量のバランスを考慮すると、60質量%であれば好ましく、75質量%であればより好ましく、90質量%であればさらに好ましく、99質量%であれば最も好ましい。培養液の一部であっても定期的に処理することで、少しずつ改善された環境を提供でき、植物の生育に有利となる。 In addition, although the ratio discharged | emitted out of a culture solution path | route should just exceed 50 mass% with respect to a total of 100 mass% of the components except the water | moisture content of a culture solution, the operating time of a hydroponic cultivation apparatus, a culture solution In view of the balance between the discharge amount and the replenishing amount, it is preferably 60% by mass, more preferably 75% by mass, further preferably 90% by mass, and most preferably 99% by mass. By treating even part of the culture solution periodically, an environment that is gradually improved can be provided, which is advantageous for plant growth.
 ここで、培養液の水分を除く成分とは、例えば、培養液の培養成分である窒素、リン酸イオン、鉄イオン、錫イオン、亜鉛イオン、ホウ素イオン、ナトリウムイオン、カルシウムイオン、マグネシウムイオン等のことである。 Here, the components other than the water in the culture solution include, for example, nitrogen, phosphate ions, iron ions, tin ions, zinc ions, boron ions, sodium ions, calcium ions, magnesium ions, etc., which are the culture components of the culture solution. That is.
 本発明の分離手段の具体的構成としては、膜を用いて分離を行う膜分離法を挙げることができる。膜分離法は分離対象物質の大きさ順に、精密ろ過法、限外ろ過法、イオン透過法、ナノろ過法、逆浸透法、ガス分離法と分類され、それぞれの方法に使用する膜は、精密ろ過膜、限外ろ過膜、イオン透過膜、ナノろ過膜、逆浸透膜、ガス分離膜である。上記分離膜のうち、本発明の実施においては、培養液の分離手段として使用する分離膜の孔径が10nm以下のものを用いることが好ましく、より好ましくは5nm以下のものが好ましく、さらに好ましくは2nm以下のものが好ましく、より一層好ましくは1nm以下のものが良い。より詳細には、水分とナトリウムイオン、塩素イオンを通過させ、2nmより小さいアミノ酸やタンパク質等の高分子の通過を阻止するナノろ過膜を用いることが好ましく、より好ましくは、水のみを通過させ、イオンや塩類等の水以外の成分は通過させない逆浸透膜(Reverse Osmosis Membrane、以下RO膜という)を用いることが良い。また、ナノろ過膜、及びRO膜を併用しても良い。 Specific examples of the separation means of the present invention include a membrane separation method in which separation is performed using a membrane. Membrane separation methods are classified into microfiltration method, ultrafiltration method, ion permeation method, nanofiltration method, reverse osmosis method, and gas separation method in the order of the size of the substance to be separated. Filtration membranes, ultrafiltration membranes, ion permeable membranes, nanofiltration membranes, reverse osmosis membranes, and gas separation membranes. Among the above separation membranes, in the practice of the present invention, it is preferable to use a separation membrane having a pore size of 10 nm or less, more preferably 5 nm or less, and even more preferably 2 nm. The following are preferable, and still more preferable is 1 nm or less. More specifically, it is preferable to use a nanofiltration membrane that allows moisture, sodium ions, and chloride ions to pass through and blocks the passage of macromolecules such as amino acids and proteins smaller than 2 nm, and more preferably allows only water to pass through. It is preferable to use a reverse osmosis membrane (Reverse Osmosis Membrane, hereinafter referred to as RO membrane) that does not allow components other than water such as ions and salts to pass through. Further, a nanofiltration membrane and an RO membrane may be used in combination.
 ろ過水量と回収率を維持するために、原水を加温して原水温度を一定にし、透過水量を一定にする方法があるが、この場合、原水を加温するための設備と大きなエネルギーとを必要とする。特に、この種のろ過膜装置では一定の濃縮水排水が必要であり、この濃縮水排水の加熱に供したエネルギーについては有効利用されることなく廃棄されることになる。また、原水を加温するこの方法では、ろ過膜の閉塞による透過水量の減少については排除することが出来ないという問題もある。 In order to maintain the filtered water volume and the recovery rate, there is a method of heating the raw water to keep the raw water temperature constant and the permeated water quantity constant, but in this case, the equipment for heating the raw water and large energy are required. I need. In particular, this type of filtration membrane device requires a certain amount of concentrated drainage, and the energy used for heating the concentrated drainage is discarded without being effectively used. Further, in this method of heating raw water, there is a problem that it is impossible to eliminate the decrease in the amount of permeated water due to the clogging of the filtration membrane.
 供給水量や供給水圧を一定にするために、ろ過水供給ポンプの吐出量、圧力を制御する方法がある。具体的には、原水供給ポンプの回転数を制御する方法や、原水供給ポンプの出口側に制御弁を設け、吐出量を制御する方法である。 There is a method of controlling the discharge amount and pressure of the filtered water supply pump in order to keep the supply water amount and supply water pressure constant. Specifically, there are a method for controlling the number of revolutions of the raw water supply pump and a method for controlling the discharge amount by providing a control valve on the outlet side of the raw water supply pump.
 本発明の実施においては、分離手段のろ過膜への供給液量を一定とすることと、ろ過時に発生する濃縮液量を一定にすることで、培養液の温度変動に影響されず、ろ過液量と回収率を一定にし得る装置を用いても良い。具体的には、培養液を供給し、且つ循環させて植物を栽培する水耕栽培装置において、分離手段に通じる培養液循環経路に培養液供給ポンプを設け、上記分離手段のろ過液経路に流量発信器を設け、上記流量発信器から送信される流量信号に基づいて上記培養液供給ポンプの回転数を制御し、ろ過液流量を一定にするろ過液流量制御手段と、上記分離手段の濃縮液経路に濃縮液流量を一定にする濃縮液定流量弁を設け、上記分離手段と上記濃縮液定流量弁との間に介設され、濃縮液圧力を減圧する減圧弁と、上記減圧弁と上記濃縮液定流量弁との間に介設される圧力指示器とを備える構成にしても良い。 In the practice of the present invention, the amount of the liquid supplied to the filtration membrane of the separation means is made constant, and the amount of the concentrated liquid generated at the time of filtration is made constant, so that the filtrate is not affected by the temperature fluctuation of the culture solution. You may use the apparatus which can make quantity and a recovery rate constant. Specifically, in a hydroponic cultivation apparatus that supplies a culture solution and circulates to grow a plant, a culture solution supply pump is provided in the culture solution circulation path leading to the separation means, and a flow rate is supplied to the filtrate path of the separation means. A filtrate flow rate control means for providing a transmitter, controlling the number of rotations of the culture solution supply pump based on a flow rate signal transmitted from the flow rate transmitter, and making the filtrate flow rate constant, and a concentrate of the separation means A concentrated liquid constant flow valve for making the flow rate of the concentrated liquid constant is provided in the path, interposed between the separation means and the concentrated liquid constant flow valve, and a pressure reducing valve for reducing the pressure of the concentrated liquid, the pressure reducing valve, and the above You may make it the structure provided with the pressure indicator interposed between concentrated liquid constant flow valves.
 分離手段による培養液の処理は、植物の生育中に連続して行われていてもよいが、生産ロスや経済ロスを低減させるために、間欠的に行うことが好ましい。具体的には、例えば、植物の生育期間の1週間に1回以上、より好ましくは2回以上、さらに好ましくは3回以上、分離手段を作動させる等の定期運転を行えば良い。 The treatment of the culture solution by the separation means may be performed continuously during the growth of the plant, but is preferably performed intermittently in order to reduce production loss and economic loss. Specifically, for example, a periodic operation such as operating the separation means may be performed once or more, more preferably twice or more, and even more preferably three times or more per week of the plant growth period.
 以上のように本発明の水耕栽培装置1を構成することで、培養液中のイオン成分バランスの変動を抑え、培養液の管理を容易に行うことができる。 By configuring the hydroponic cultivation apparatus 1 of the present invention as described above, it is possible to suppress the fluctuation of the ionic component balance in the culture solution and easily manage the culture solution.
 培養液循環経路5は、栽培部4の上流に位置する第1循環槽7aと、栽培部4の下流であり、分離手段6の上流に位置する第2循環槽7bと、を有していることが好ましい。つまり、培養液循環経路5は、ECやpHをコントロールするバッファである第1循環槽7a、及び培養液を部分処理するバッファである第2循環槽7bを有していることが好ましい。培養液循環経路5が第1循環槽7a及び第2循環槽7bを有していることにより、分離手段6の運転を自由に制御できる。 The culture medium circulation path 5 includes a first circulation tank 7 a located upstream of the cultivation unit 4 and a second circulation tank 7 b located downstream of the cultivation unit 4 and upstream of the separating unit 6. It is preferable. That is, the culture medium circulation path 5 preferably includes a first circulation tank 7a that is a buffer for controlling EC and pH, and a second circulation tank 7b that is a buffer for partially treating the culture liquid. Since the culture solution circulation path 5 includes the first circulation tank 7a and the second circulation tank 7b, the operation of the separation means 6 can be freely controlled.
 図2は、本発明の実施の形態に係る水耕栽培装置を示す概略構成図の他の一例である。図2に示すように、培養液循環経路5は、栽培部4から排出された培養液2が、第2循環槽7bを経由する経路と、第2循環槽7bを経由しない経路の2つの経路を備えていても良い。培養液循環経路5をこのように構成することによって、分離手段6の運転を自由に制御できる。 FIG. 2 is another example of a schematic configuration diagram showing the hydroponic cultivation apparatus according to the embodiment of the present invention. As shown in FIG. 2, the culture solution circulation path 5 has two routes: a route through which the culture solution 2 discharged from the cultivation unit 4 passes through the second circulation tank 7 b and a route through which the second circulation tank 7 b does not pass. May be provided. By configuring the culture medium circulation path 5 in this way, the operation of the separating means 6 can be freely controlled.
 培養液循環経路5が第1循環槽7a及び第2循環槽7bを有する場合、分離手段6は第2循環槽7bに貯蔵されている培養液2を処理して、分離手段6によって得られた水を培養液循環経路5に供給し、第1循環槽7aに培養液2を貯蔵することが好ましい。培養液循環経路5がこのように構成されていることにより、水耕栽培装置1から排出される排液の量を減らすことができる。 When the culture solution circulation path 5 has the first circulation tank 7a and the second circulation tank 7b, the separation means 6 processed the culture solution 2 stored in the second circulation tank 7b, and was obtained by the separation means 6. It is preferable to supply water to the culture solution circulation path 5 and store the culture solution 2 in the first circulation tank 7a. Since the culture solution circulation path 5 is configured in this way, the amount of drainage discharged from the hydroponic cultivation apparatus 1 can be reduced.
 分離手段6によって得られた水は、培養液循環経路5に供給され、第1循環槽7aに貯蔵されることが好ましいが、具体的には、図1に示すように、培養液2が第2循環槽7bに戻されてから第1循環槽7aに貯蔵されても良く、図2に示すように、培養液2が第2循環槽7bから第1循環槽7aに向かう経路に供給されて第1循環槽7aに貯蔵されても良い。 The water obtained by the separation means 6 is preferably supplied to the culture medium circulation path 5 and stored in the first circulation tank 7a. Specifically, as shown in FIG. 2 may be stored in the first circulation tank 7a after being returned to the circulation tank 7b. As shown in FIG. 2, the culture solution 2 is supplied to the path from the second circulation tank 7b to the first circulation tank 7a. You may store in the 1st circulation tank 7a.
 第2循環槽7bは、マイクロバブルを発生させるマイクロバブル発生装置11を有していることが好ましい。第2循環槽7bがマイクロバブル発生装置11を有していることにより、栽培部4において植物3の生育中に植物3から培養液2に放出されたアレロパシー物質(詳細は後述する)をマイクロバブルによって効果的に消去することができ、培養液2の循環による培養液2中のアレロパシー物質の蓄積によって植物3の生育が妨げられないようにすることができる。 The second circulation tank 7b preferably has a microbubble generator 11 that generates microbubbles. Since the second circulation tank 7b has the microbubble generating device 11, the allelopathic substance (details will be described later) released from the plant 3 to the culture solution 2 during the growth of the plant 3 in the cultivation unit 4 is microbubbled. The growth of the plant 3 can be prevented from being hindered by the accumulation of allelopathic substances in the culture solution 2 due to the circulation of the culture solution 2.
 マイクロバブルとは、気泡径が100μm以下の微細な気泡を指す。マイクロバブルによるアレロパシー物質の消去は、マイクロバブルの圧壊時にラジカルが生成され、このラジカルによってアレロパシー物質が分解されるためであると考えられる。 «Microbubbles refer to fine bubbles with a bubble diameter of 100 µm or less. It is considered that the allelopathic substance is erased by microbubbles because radicals are generated when the microbubbles are crushed and the allelopathic substances are decomposed by the radicals.
 マイクロバブル発生装置の種類としては、装置内にポンプによって圧力水を送り込んで旋回流を発生させてマイクロバブルを生成する旋回流式、ノズルから液体を高速に噴出させてマイクロバブルを生成するエジェクター式等があるが、マイクロバブル発生装置の小型化のために、スクリューを高速回転させることによってマイクロバブルを生成する回転式であることが好ましい。 The type of microbubble generator is a swirling flow type that generates microbubbles by generating a swirling flow by sending pressure water with a pump into the device, and an ejector type that generates microbubbles by ejecting liquid from a nozzle at high speed However, in order to reduce the size of the microbubble generator, a rotary type that generates microbubbles by rotating the screw at high speed is preferable.
 培養液中にマイクロバブルが残存していると、植物の根等を傷めてしまい、植物の生育を妨げたり、植物が枯れたりする場合がある。そのため、マイクロバブルを含む培養液が栽培部に供給されないように、マイクロバブル発生装置の作動中は第2循環槽の中の培養液を培養液循環経路において循環させないことが好ましい。図1を例に具体的に説明すると、第2循環槽7bのマイクロバブル発生装置11を作動させて、第2循環槽7b中の培養液2にマイクロバブルを発生させているときは、第2循環槽7bと第1循環槽7aとの間のポンプ10を停止させて、第2循環槽7b内の培養液2が第1循環槽7a内に供給されないようにすることが好ましい。 If microbubbles remain in the culture solution, the roots of the plant may be damaged, and the growth of the plant may be hindered or the plant may wither. Therefore, it is preferable not to circulate the culture solution in the second circulation tank in the culture solution circulation path during the operation of the microbubble generator so that the culture solution containing microbubbles is not supplied to the cultivation unit. Referring to FIG. 1 as an example, when the microbubble generator 11 in the second circulation tank 7b is operated to generate microbubbles in the culture solution 2 in the second circulation tank 7b, the second It is preferable to stop the pump 10 between the circulation tank 7b and the first circulation tank 7a so that the culture solution 2 in the second circulation tank 7b is not supplied into the first circulation tank 7a.
 また、マイクロバブルによる植物への悪影響を防ぐために、マイクロバブル発生装置の作動中だけでなく、マイクロバブル発生装置の作動を停止させてから発生させたマイクロバブルが全て消滅するまでの一定時間が経過するまでも、第2循環槽の中の培養液を培養液循環経路において循環させないことがより好ましい。つまり、第2循環槽7bのマイクロバブル発生装置11の作動中及び作動停止後の一定時間の間は、第2循環槽7bと第1循環槽7aとの間のポンプ10を停止させて、第1循環槽7aへ第2循環槽7bの培養液2が供給されないようにすることがより好ましい。このように培養液を培養液循環経路で循環させることにより、培養液中のアレロパシー物質を除去し、且つマイクロバブルが植物へ悪影響を与える可能性を低下させ、植物の収量を高めることができる。なお、マイクロバブル発生装置11の作動中に、第1循環槽7aと栽培部4との間のポンプを作動させることにより、栽培部4にマイクロバブルを含まない培養液2を供給することが可能となり、植物3を十分に生育することができる。 Also, in order to prevent the adverse effects of microbubbles on plants, not only during the operation of the microbubble generator, but also after a certain period of time has passed since the microbubble generator has been stopped until all the generated microbubbles have disappeared Even so, it is more preferable not to circulate the culture solution in the second circulation tank in the culture solution circulation path. That is, the pump 10 between the second circulation tank 7b and the first circulation tank 7a is stopped during a certain period of time after the operation of the microbubble generator 11 in the second circulation tank 7b and after the operation is stopped. More preferably, the culture solution 2 in the second circulation tank 7b is not supplied to the first circulation tank 7a. By circulating the culture solution through the culture solution circulation path in this way, it is possible to remove allelopathic substances in the culture solution, reduce the possibility that the microbubbles will adversely affect the plant, and increase the yield of the plant. In addition, by operating the pump between the 1st circulation tank 7a and the cultivation part 4 during the action | operation of the microbubble generator 11, it is possible to supply the culture solution 2 which does not contain a microbubble to the cultivation part 4. Thus, the plant 3 can be sufficiently grown.
 また、培養液の供給を定期的、且つ定量的に行う観点から、本発明の水耕栽培装置1には、図1に示すように培養液が供給される培養液供給手段8を有することが好ましい。具体的には、栽培部に供給する以前に所望の培養液成分に調整された培養液貯蔵槽9を設けておき、当該貯蔵槽からポンプ10により定量的に培養液を供給するようにしても良い。 In addition, from the viewpoint of periodically and quantitatively supplying the culture solution, the hydroponic cultivation apparatus 1 of the present invention may have a culture solution supply means 8 for supplying the culture solution as shown in FIG. preferable. Specifically, a culture medium storage tank 9 adjusted to a desired culture medium component is provided before being supplied to the cultivation unit, and the culture medium is quantitatively supplied from the storage tank by the pump 10. good.
 また、培養液の管理の精度を向上させる観点から、本発明の水耕栽培装置の培養液循環経路には、温度計、pH計、及び電気伝導度計を備えることが好ましい。より好ましくは、栽培部に供給する前後において培養液の温度、pH、及び電気伝導度を計測できるようにすることが良い。 Also, from the viewpoint of improving the accuracy of management of the culture solution, the culture solution circulation path of the hydroponic cultivation apparatus of the present invention preferably includes a thermometer, a pH meter, and an electrical conductivity meter. More preferably, the temperature, pH, and electrical conductivity of the culture solution can be measured before and after supplying the cultivation part.
 さらに、本発明の水耕栽培装置の栽培部の一部が遮光されていることが好ましい。具体的には、栽培部が苗を栽培するための定植孔を有する水耕栽培用育成ボードを有しており、当該ボードが第1層(上部)及び第2層(下部)を有する積層構造であり、第1層が第2層よりも明度が高い構成とすることが好ましい。このような構成にすることで、上記水耕栽培用育成ボードからの反射光を利用し農作物の光合成に必要な光を増加させることによって農作物の育成を促進させ、また、水耕栽培用育成ボードからの透過光を減少させることで水耕栽培用育成ボードの培養液と接する面に藻が発生することを抑制することができる。 Furthermore, it is preferable that a part of the cultivation section of the hydroponic cultivation apparatus of the present invention is shielded from light. Specifically, the cultivation unit has a hydroponics growth board having a fixed planting hole for growing seedlings, and the board has a first layer (upper part) and a second layer (lower part). It is preferable that the first layer has a higher brightness than the second layer. By adopting such a configuration, the growth of the crop is promoted by increasing the light necessary for the photosynthesis of the crop using the reflected light from the above-mentioned hydroponics growth board. It can suppress that algae generate | occur | produces on the surface which contacts the culture solution of the cultivation board for hydroponics by reducing the transmitted light from.
 栽培部において、生育中の植物の葉が折れたり根が切れたりすることがある。この葉や根の破片を放置すると、葉や根の破片からアレロパシー物質が放出されたり、葉や根の破片が培養液循環経路や培養液の分離手段である分離装置等で詰まったりという問題が発生するおそれがある。これらの問題の発生を防ぐため、栽培部において、植物の葉や根の破片等の異物を除去する異物除去手段を有していることが好ましい。異物除去手段としては、歯を粗い櫛状に並べた熊手状物を栽培部に備える、栽培部中の培養液を培養液循環経路に排出する排出口にメッシュ状物を配置する等が挙げられる。 In the cultivation department, leaves of plants that are growing may break or roots may break. If this leaf or root fragment is left untreated, allelopathic substances are released from the leaf or root fragment, or the leaf or root fragment is clogged by a separation device that is a culture medium circulation route or a culture solution separation means. May occur. In order to prevent the occurrence of these problems, it is preferable that the cultivation section has a foreign matter removing means for removing foreign matters such as plant leaves and root fragments. Examples of the foreign matter removing means include a rake-like object in which teeth are arranged in a rough comb shape in the cultivation part, and a mesh-like substance is arranged at a discharge port for discharging the culture solution in the cultivation part to the culture medium circulation path. .
 次に、本発明の水耕栽培装置を用いた水耕栽培方法について説明する。 Next, a hydroponic cultivation method using the hydroponic cultivation apparatus of the present invention will be described.
 本発明の水耕栽培装置を用いて植物を水耕栽培するには、まず、水耕栽培装置の培養液循環経路において、培養液の一部に対し、該培養液中の水分を除いた成分の合計100質量%に対して、50質量%を超える成分を培養液循環経路外に排出させる(第1ステップ)。具体的には、例えば、培養液の水分を除く成分として、培養成分である窒素、リン酸イオン、鉄イオン、錫イオン、亜鉛イオン、ホウ素イオン、ナトリウムイオン、カルシウムイオン、マグネシウムイオン等の成分の合計100質量%に対して、99質量%の成分を培養液循環経路外に排出することが好ましい。このようにすることで、培養液中のイオン成分の大部分の割合の成分が培養液循環経路外に排出されることになる。 In order to hydroponically cultivate a plant using the hydroponic cultivation apparatus of the present invention, first, in the culture liquid circulation path of the hydroponic cultivation apparatus, a component excluding moisture in the culture liquid with respect to a part of the culture liquid The component exceeding 50% by mass is discharged out of the culture medium circulation path with respect to the total of 100% by mass (first step). Specifically, for example, as a component excluding moisture in the culture solution, components such as nitrogen, phosphate ion, iron ion, tin ion, zinc ion, boron ion, sodium ion, calcium ion, magnesium ion, etc., which are culture components It is preferable to discharge 99% by mass of the component out of the culture medium circulation path with respect to the total of 100% by mass. By doing in this way, the component of the major part of the ionic component in a culture solution will be discharged | emitted out of a culture solution circulation path | route.
 さらに、第1ステップを経た培養液の水分に対して新たに培養液が供給される(第2ステップ)。具体的には、例えば、第1ステップの培養液中の成分濃度が低下した状態で新たに培養液が供給されることになり、培養液中で不足するイオン成分が補充されると共に、培養液中のイオン成分バランスの再生を行うことができる。 Furthermore, a new culture solution is supplied to the moisture of the culture solution that has undergone the first step (second step). Specifically, for example, the culture solution is newly supplied in a state where the component concentration in the culture solution in the first step is lowered, and the ionic component that is deficient in the culture solution is replenished, and the culture solution The ionic component balance in the medium can be regenerated.
 なお、第1ステップと第2ステップは、複数回繰返すことがより好ましい。このように行うことで、培養液中のイオン成分バランスの崩れをより一層改善することができる。また、第1ステップを経た培養液の水分に対してさらに水を追加しても良い。このようにすることで、培養液をほぼ真水の状態にすることができ、第2ステップにおける培養液の供給による培養液中のイオン成分バランスの再生をより促進できる。 It is more preferable that the first step and the second step are repeated a plurality of times. By carrying out in this way, the collapse of the ionic component balance in the culture solution can be further improved. Moreover, you may add water further with respect to the water | moisture content of the culture solution which passed through the 1st step. By doing in this way, a culture solution can be made into the state of substantially fresh water, and the reproduction | regeneration of the ionic component balance in a culture solution by supply of the culture solution in a 2nd step can be promoted more.
 水耕栽培は土耕栽培とは異なり、培地として土を用いずに、植物の成育に必要な養水分に関して、水に肥料を溶かした液状肥料(培養液)として与えて栽培する方法であり、培養液を循環させる構成の違いにより噴射式、薄膜流水式(Nutrient Film Technique、以下NFTという。)と潅水式(Deep Flow Technique、以下DFTという。)に分類される。噴射式は、霧状または水滴状の培養液を植物の根に噴霧または滴下するものである。また、NFTは、培養液を浅い水深で流すものであり、DFTは、培養液を浴槽に貯め、より深い水深に漬けるものである。多くの植物工場では、植物生産管理のしやすさからDFTが採用されているが、本発明の水耕栽培装置、及び水耕栽培方法においては、上記噴射式、NFT、DFTのいずれの方法も用いることが可能である。 Hydroponics, unlike soil cultivation, is a method of cultivating without using soil as a culture medium, giving it as a liquid fertilizer (culture solution) in which fertilizer is dissolved in water, with respect to the nutrient moisture necessary for plant growth, It is classified into a jet type, a thin film flow type (Nutrient Film Technique, hereinafter referred to as NFT) and a irrigation type (Deep Flow Technique, hereinafter referred to as DFT) depending on the configuration of circulating the culture solution. In the spraying type, a mist-like or water-drop-like culture solution is sprayed or dripped onto the roots of plants. Moreover, NFT is what flows a culture solution at a shallow water depth, DFT stores a culture solution in a bathtub and can immerse in deeper water depth. In many plant factories, DFT is adopted because of ease of plant production management. In the hydroponic cultivation apparatus and hydroponic cultivation method of the present invention, any of the above-described spraying type, NFT, and DFT methods is used. It is possible to use.
 また、水耕栽培において培養液を長期間使用すると、培養液中のイオン成分バランスの崩れの他に、植物の根、種子の殻等の腐敗により、植物が他の植物の生長を抑える物質(アレロケミカル)を放出したり、動物や微生物を引き寄せたりする効果があり、これらの効果を総称してアレロパシーと定義されている。水耕栽培の培養液中には、このアレロパシー物質(主に有機酸)の溶出や、ウイルス、バクテリア等の病原菌の繁殖により、植物の生長にとって有害となる成分が蓄積する。本発明の水耕栽培装置、及び水耕栽培方法によれば、上記有害な成分を含む培養液のうち、水分を除く成分の半分以上を培養液循環経路外に排出させ、その後、新たに培養液が補充されることから、培養液中のアレロパシー物質についても除去することができる。 In addition, when a culture solution is used for a long period of time in hydroponics, a substance that suppresses the growth of other plants by decaying the roots of seeds, seed shells, etc. in addition to disruption of the ionic component balance in the culture solution ( (Allelochemical) is released, and animals and microorganisms are attracted. These effects are collectively defined as allelopathy. In the culture medium of hydroponics, components that are harmful to plant growth accumulate due to elution of allelopathic substances (mainly organic acids) and propagation of pathogenic bacteria such as viruses and bacteria. According to the hydroponic cultivation apparatus and hydroponic cultivation method of the present invention, out of the culture solution containing the harmful components, more than half of the components excluding moisture are discharged out of the culture solution circulation path, and then newly cultured. Since the solution is replenished, allelopathic substances in the culture solution can also be removed.
 以上のように、本発明の水耕栽培装置、及び水耕栽培方法は、培養液の一部に対し、該培養液中の水分を除く成分の合計100質量%に対して、50質量%を超える該成分を前記培養液循環経路外に排出させる分離手段を有することにより、培養液中のイオン成分バランスの変動を抑えると共に、培養液を容易に管理することができ、さらにpH自動制御装置を加えることにより、水耕栽培における培養液管理のフリーメンテナンス化を可能にする。 As described above, the hydroponic cultivation apparatus and hydroponic cultivation method of the present invention provide 50% by mass with respect to a total of 100% by mass of the components excluding moisture in the culture solution, with respect to a part of the culture solution. By having separation means for discharging the excess components out of the culture medium circulation path, the fluctuation of the ionic component balance in the culture solution can be suppressed, the culture solution can be easily managed, and an automatic pH controller is provided. By adding, it enables free maintenance of culture solution management in hydroponics.
 本願は、2017年2月6日に出願された日本国特許出願第2017-019906号に基づく優先権の利益を主張するものである。2017年2月6日に出願された日本国特許出願第2017-019906号の明細書の全内容が、本願に参考のため援用される。 This application claims the benefit of priority based on Japanese Patent Application No. 2017-019906 filed on Feb. 6, 2017. The entire contents of Japanese Patent Application No. 2017-019906 filed on Feb. 6, 2017 are incorporated herein by reference.
 1 水耕栽培装置
 2 培養液
 3 植物
 4 栽培部
 5 培養液循環経路
 6 分離手段
 7a 第1循環槽
 7b 第2循環槽
 8 培養液供給手段
 9 培養液貯蔵槽
 10 ポンプ
 11 マイクロバブル発生装置
DESCRIPTION OF SYMBOLS 1 Hydroponic cultivation apparatus 2 Culture solution 3 Plant 4 Cultivation part 5 Culture solution circulation path 6 Separation means 7a First circulation tank 7b Second circulation tank 8 Culture solution supply means 9 Culture solution storage tank 10 Pump 11 Microbubble generator

Claims (8)

  1.  培養液を供給し、且つ循環させて植物を栽培する水耕栽培装置であって、
     前記植物が栽培される栽培部と、
     前記栽培部から出発して該栽培部に戻る培養液循環経路と、を有しており、
     前記培養液循環経路には、前記培養液の一部に対し、該培養液中の水分を除く成分の合計100質量%に対して、50質量%を超える該成分を前記培養液循環経路外に排出させる分離手段を有することを特徴とする水耕栽培装置。
    A hydroponic cultivation apparatus that supplies a culture solution and circulates to grow a plant,
    A cultivation section where the plant is cultivated;
    A culture medium circulation path starting from the cultivation section and returning to the cultivation section,
    In the culture medium circulation path, with respect to a part of the culture liquid, the component exceeding 50% by mass out of the culture medium circulation path with respect to a total of 100% by mass of the components excluding moisture in the culture liquid. A hydroponic cultivation apparatus comprising separation means for discharging.
  2.  前記培養液循環経路は、前記栽培部の上流に位置する第1循環槽と、
     前記栽培部の下流であり、前記分離手段の上流に位置する第2循環槽と、を有している請求項1に記載の水耕栽培装置。
    The culture medium circulation path is a first circulation tank located upstream of the cultivation unit,
    The hydroponic cultivation apparatus according to claim 1, further comprising a second circulation tank located downstream of the cultivation unit and upstream of the separation unit.
  3.  前記第2循環槽は、マイクロバブルを発生させるマイクロバブル発生装置を有している請求項2に記載の水耕栽培装置。 The hydroponic cultivation apparatus according to claim 2, wherein the second circulation tank has a microbubble generator that generates microbubbles.
  4.  前記分離手段が、逆浸透膜、及び/またはナノろ過膜を備える請求項1~3のいずれかに記載の水耕栽培装置。 The hydroponic cultivation apparatus according to any one of claims 1 to 3, wherein the separation means includes a reverse osmosis membrane and / or a nanofiltration membrane.
  5.  前記培養液が供給される培養液供給手段を有する請求項1~4のいずれかに記載の水耕栽培装置。 The hydroponic cultivation apparatus according to any one of claims 1 to 4, further comprising a culture solution supply means for supplying the culture solution.
  6.  前記培養液循環経路には、温度計、pH計、及び電気伝導度計を備える請求項1~5のいずれかに記載の水耕栽培装置。 The hydroponic cultivation apparatus according to any one of claims 1 to 5, wherein the culture solution circulation path includes a thermometer, a pH meter, and an electric conductivity meter.
  7.  前記栽培部の一部が遮光されている請求項1~6のいずれかに記載の水耕栽培装置。 The hydroponic cultivation apparatus according to any one of claims 1 to 6, wherein a part of the cultivation section is shielded from light.
  8.  請求項1~7のいずれかに記載の水耕栽培装置を用いる水耕栽培方法であって、
     前記培養液循環経路において、前記培養液の一部に対し、該培養液中の水分を除く成分の合計100質量%に対して、50質量%を超える該成分が該培養液循環経路外に排出される第1ステップと、
     前記第1ステップを経た培養液に対して新たに培養液が供給される第2ステップと、を含む水耕栽培方法。
    A hydroponic cultivation method using the hydroponic cultivation apparatus according to any one of claims 1 to 7,
    In the culture medium circulation path, with respect to a part of the culture liquid, the component exceeding 50 mass% is discharged out of the culture liquid circulation path with respect to 100 mass% in total of the components excluding moisture in the culture liquid. A first step,
    A hydroponics method comprising: a second step in which a culture solution is newly supplied to the culture solution that has undergone the first step.
PCT/JP2018/003774 2017-02-06 2018-02-05 Hydroponic device and hydroponic method WO2018143450A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018566150A JP7192500B2 (en) 2017-02-06 2018-02-05 Hydroponic cultivation device and hydroponic cultivation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017019906 2017-02-06
JP2017-019906 2017-02-06

Publications (1)

Publication Number Publication Date
WO2018143450A1 true WO2018143450A1 (en) 2018-08-09

Family

ID=63040792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003774 WO2018143450A1 (en) 2017-02-06 2018-02-05 Hydroponic device and hydroponic method

Country Status (2)

Country Link
JP (1) JP7192500B2 (en)
WO (1) WO2018143450A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03292823A (en) * 1990-04-11 1991-12-24 Chubu Electric Power Co Inc Water culture
JP2007319047A (en) * 2006-05-31 2007-12-13 Oji Paper Co Ltd Method for creating seedling or scion-production mother tree
JP2013138615A (en) * 2011-12-28 2013-07-18 Kurita Water Ind Ltd Hydroponic system
JP2014131495A (en) * 2013-01-07 2014-07-17 Watanabe Takeshi Nutrient liquid cultivation method and nutrient liquid cultivation apparatus of japanese ginger
JP2017023009A (en) * 2015-07-16 2017-02-02 国立大学法人 鹿児島大学 Cultivation apparatus and cultivation method of low potassium-containing plants using sewage-treated water

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011078332A (en) 2009-10-05 2011-04-21 Nippon Rensui Co Ltd Device for collecting discharged culture solution, method for collecting discharged culture solution and hydroponic device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03292823A (en) * 1990-04-11 1991-12-24 Chubu Electric Power Co Inc Water culture
JP2007319047A (en) * 2006-05-31 2007-12-13 Oji Paper Co Ltd Method for creating seedling or scion-production mother tree
JP2013138615A (en) * 2011-12-28 2013-07-18 Kurita Water Ind Ltd Hydroponic system
JP2014131495A (en) * 2013-01-07 2014-07-17 Watanabe Takeshi Nutrient liquid cultivation method and nutrient liquid cultivation apparatus of japanese ginger
JP2017023009A (en) * 2015-07-16 2017-02-02 国立大学法人 鹿児島大学 Cultivation apparatus and cultivation method of low potassium-containing plants using sewage-treated water

Also Published As

Publication number Publication date
JP7192500B2 (en) 2022-12-20
JPWO2018143450A1 (en) 2019-11-21

Similar Documents

Publication Publication Date Title
KR101375709B1 (en) Nutrient Solution Circular Supply System
Kuntz et al. Effects of water nutrients on regeneration capacity of submerged aquatic plant fragments
KR20160085437A (en) Irrigation Control System Of Nutrient Solution Circular Type
JP2011078332A (en) Device for collecting discharged culture solution, method for collecting discharged culture solution and hydroponic device
KR20160026375A (en) Recycling system for nutriculture
US11343984B2 (en) Hydroponic system using seawater and cultivation system for growing seeds and seedlings
KR101797212B1 (en) Waste nutrient solution recycling system
JP7406776B1 (en) aquaponics system
WO2018143450A1 (en) Hydroponic device and hydroponic method
KR20220078270A (en) Circulation type hydroponics cultivation apparatus
US20230080040A1 (en) Production System, Program, Control Method, and Production Method
KR20160049728A (en) High efficient plant nutrient recycling system used for plant factory and plant factory using the same
JP6876187B1 (en) Production system, program, control method, water treatment equipment and liquid fertilizer production method
US11330774B2 (en) Hydroponic culture method for plant in high salinity environment
JP6737602B2 (en) Cultivation system, cultivation method and plant manufacturing method
KR200486448Y1 (en) An apparatus for separating nutrient from hydroponic waste solution
JP2007104960A (en) Plant cultivation method and apparatus
JP2001299116A (en) Method for hydroponic
JP2005333854A (en) Method for raising plant
JPH09107826A (en) Solution culture apparatus and solution culture method
KR20210031243A (en) Complex Microorganism for removing Nitrate and Phosphate and Method of Purifying water for Hydroponics using the Complex Microorganism
US20220312690A1 (en) Horticulture Facility, Comprising a Water Loop
JP3238937U (en) Apparatus for producing modified water and distributing this modified water to agricultural holdings
KR102343129B1 (en) Supply device of cultivating water
KR20170027905A (en) Drainage solution recycling system

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018566150

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18747857

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18747857

Country of ref document: EP

Kind code of ref document: A1