JP6737602B2 - Cultivation system, cultivation method and plant manufacturing method - Google Patents

Cultivation system, cultivation method and plant manufacturing method Download PDF

Info

Publication number
JP6737602B2
JP6737602B2 JP2016027621A JP2016027621A JP6737602B2 JP 6737602 B2 JP6737602 B2 JP 6737602B2 JP 2016027621 A JP2016027621 A JP 2016027621A JP 2016027621 A JP2016027621 A JP 2016027621A JP 6737602 B2 JP6737602 B2 JP 6737602B2
Authority
JP
Japan
Prior art keywords
nutrient solution
cultivation
circulation path
water
water tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016027621A
Other languages
Japanese (ja)
Other versions
JP2017143779A5 (en
JP2017143779A (en
Inventor
稲葉 仁
仁 稲葉
池田 昌弘
昌弘 池田
剛 竹葉
剛 竹葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP2016027621A priority Critical patent/JP6737602B2/en
Publication of JP2017143779A publication Critical patent/JP2017143779A/en
Publication of JP2017143779A5 publication Critical patent/JP2017143779A5/en
Application granted granted Critical
Publication of JP6737602B2 publication Critical patent/JP6737602B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Hydroponics (AREA)

Description

本発明は、栽培システム及び栽培方法に関する。 The present invention relates to a cultivation system and a cultivation method.

近年、野菜等の各種植物を人工的な環境で栽培する植物工場の建設が盛んに行われている。植物工場には、太陽光を利用したものや人工光を利用したものがあり、年間を通して安定した計画生産が行われている。これらの植物工場では、各種の栽培システムが採用されている(例えば、特許文献1−3を参照)。 In recent years, a plant factory for cultivating various plants such as vegetables in an artificial environment has been actively constructed. Some plant factories use sunlight or artificial light, and stable planned production is performed throughout the year. Various cultivation systems are adopted in these plant factories (for example, refer to patent documents 1-3).

特開2002−191244号公報JP-A-2002-191244 特開2009−165374号公報JP, 2009-165374, A 特開2012−24012号公報JP2012-24012A

植物工場で採用されている栽培システムの一例として、土壌を使用しない養液栽培のシステムがある。養液栽培のシステムは、生産管理の容易化と生産物の品質の均一化が可能である。養液栽培のシステムとしては、水使用量の削減や、肥料による環境汚染防止の目的から、養液を循環使用する形態が主流である。 An example of a cultivation system adopted in a plant factory is a hydroponics system that does not use soil. The hydroponic system enables easy production control and uniform product quality. The mainstream of the hydroponic culture system is to use the nutrient solution in a circulating manner for the purpose of reducing the amount of water used and preventing environmental pollution by fertilizer.

ところで、栽培物に病原菌が発生あるいは侵入すると、病原菌が植物工場内に一気に広まる虞がある。そこで、養液を循環使用する形態のシステムに対しては、例えば、菌を除去できるフィルタを養液の循環経路に設置し、除菌された養液を栽培物へ供給することが考えられる。しかし、例えば、養液が接する栽培物の根表面や養液の水面に菌がバイオフィルム状に発生すると、当該バイオフィルム状の菌を養液の循環流でフィルタへ流して除去することができない。 By the way, if a pathogenic bacterium is generated or invades a cultivated product, the pathogenic bacterium may spread all over the plant factory. Therefore, for a system in which the nutrient solution is circulated and used, for example, it is possible to install a filter capable of removing bacteria in the nutrient solution circulation path and supply the sterilized nutrient solution to the cultivated product. However, for example, when bacteria occur in the form of biofilm on the root surface of the cultivated product in contact with the nutrient solution or the water surface of the nutrient solution, it is not possible to remove the biofilm-like bacteria by flowing them to the filter with the circulating flow of the nutrient solution. ..

そこで、循環養液にオゾン等の殺菌成分を注入することが考えられるが、養液に殺菌成分が混ざると、養液の成分が変質して栽培物の生育に悪影響を及ぼす虞がある。例えば、養液に含まれるマンガンや鉄、カルシウムは、オゾンにより酸化されやすく、酸化されると植物に吸収されない組成に変化する。よって、殺菌成分によって失われた成分のみを補給するか、あるいは所定の割合で養液の入れ替えを行う必要に迫られるが、前者の場合には専用の計測器や成分毎の薬剤等を用意する必要があるので設備コストが増大し、また、後者の場合には入れ替えに掛かる養液のコストが増大する虞がある。 Therefore, it is conceivable to inject a sterilizing component such as ozone into the circulating nutrient solution. However, if the sterilizing component is mixed with the nutrient solution, the components of the nutrient solution may be deteriorated and adversely affect the growth of the cultivated product. For example, manganese, iron, and calcium contained in the nutrient solution are easily oxidized by ozone, and when oxidized, the composition is changed so that they are not absorbed by plants. Therefore, it is necessary to replenish only the components lost due to the sterilization component, or to replace the nutrient solution at a predetermined ratio, but in the former case, a dedicated measuring instrument or a drug for each component is prepared. Since it is necessary, the equipment cost increases, and in the latter case, the cost of the nutrient solution for replacement may increase.

そこで、本願は、養液の成分を変質させることなく、栽培床の病原菌を除去可能な栽培システム及び栽培方法を開示する。 Therefore, the present application discloses a cultivation system and a cultivation method capable of removing pathogenic bacteria in a cultivation bed without deteriorating the components of the nutrient solution.

上記課題を解決するため、本発明では、循環経路を殺菌する際に循環経路の養液を一時的に貯留する貯留槽を設けておき、貯留槽の養液を循環経路へ返送する際は、菌を除去可能なフィルタ経由で貯留槽から栽培床へ養液を返送することにした。 In order to solve the above problems, the present invention provides a storage tank for temporarily storing the nutrient solution of the circulation path when sterilizing the circulation path, and when returning the nutrient solution of the storage tank to the circulation path, It was decided to return the nutrient solution from the storage tank to the cultivation bed via a filter that can remove bacteria.

詳細には、本発明は、栽培システムであって、植物が栽培される栽培床と、栽培床を経由する養液の循環経路と、循環経路の養液を一時的に貯留可能な容量を有する貯留槽と、
循環経路の養液が貯留槽に貯留されている場合に、循環経路へ殺菌成分の薬液を流入出させる薬液給排出手段と、貯留槽から循環経路へ返送される養液から菌を除去可能な、貯留槽から栽培床へ至る経路の途中にあるフィルタと、を備える。
More specifically, the present invention is a cultivation system, and has a cultivation bed on which a plant is cultivated, a circulation path of a nutrient solution passing through the cultivation bed, and a capacity capable of temporarily storing the nutrient solution of the circulation path. A storage tank,
When the nutrient solution in the circulation path is stored in the storage tank, bacteria can be removed from the chemical solution supply/discharge means that causes the chemical solution of the sterilizing component to flow in and out of the circulation path, and the nutrient solution returned from the storage tank to the circulation path. , A filter on the way from the storage tank to the cultivation bed.

このような栽培システムであれば、循環経路を循環していた養液を貯留槽で回収した後に、循環経路に薬液を循環させることができるので、養液の成分を薬液で変質させることなく循環経路の殺菌が可能である。また、回収された養液に菌が残留する場合であっても、循環経路の殺菌処理後に循環経路へ返送される養液は、貯留槽から栽培床へ至る経路の途中にあるフィルタを通るため、少なくとも殺菌処理された栽培床に養液の菌が流入して栽培床を汚染することは無い。したがって、養液を回収して再利用しつつ、栽培床の殺菌が可能である。 With such a cultivation system, the nutrient solution that has been circulating in the circulation path can be circulated without being altered by the chemical solution because the nutrient solution can be circulated in the circulation path after being collected in the storage tank. Sterilization of the route is possible. Further, even when bacteria remain in the recovered nutrient solution, the nutrient solution returned to the circulation path after the circulation path is sterilized passes through the filter in the middle of the path from the storage tank to the cultivation bed. At least, the fungus in the nutrient solution does not flow into the sterilized cultivation floor to contaminate the cultivation floor. Therefore, it is possible to sterilize the cultivation bed while collecting and reusing the nutrient solution.

なお、上記のフィルタは、循環経路上にあるものであってもよい。上記栽培システムがこのように構成されていれば、循環経路を循環する養液から菌を除去可能である。 The above filter may be on the circulation path. If the cultivation system is configured in this way, it is possible to remove the bacteria from the nutrient solution circulating in the circulation route.

また、薬液給排出手段は、循環経路に備わる水槽を通じて循環経路へ殺菌成分の薬液を流入出させるものであってもよい。上記栽培システムがこのように構成されていれば、水を貯留できない構造の栽培床を適用することができる。 Further, the chemical liquid supply/discharge means may be one that causes the chemical liquid of the sterilizing component to flow in and out of the circulation path through a water tank provided in the circulation path. If the cultivation system is configured in this way, it is possible to apply a cultivation bed having a structure that cannot store water.

また、循環経路には、循環ポンプが備わっており、栽培システムは、循環経路のうち栽培床から循環ポンプへ至る経路を通じて貯留槽の養液を循環経路へ返送させる養液返送手段を備えるものであってもよい。上記栽培システムがこのように構成されていれば、貯留槽に貯留された養液が、栽培床から循環ポンプへ至る経路に流入するので、循環ポンプで養液を循環させることで、栽培床が菌で汚染されないように養液を循環経路へ戻すことができる。 In addition, the circulation route is equipped with a circulation pump, and the cultivation system is provided with a nutrient solution returning means for returning the nutrient solution in the storage tank to the circulation route through the route from the cultivation floor to the circulation pump in the circulation route. It may be. If the above cultivation system is configured in this way, the nutrient solution stored in the storage tank flows into the route from the cultivation bed to the circulation pump, so by circulating the nutrient solution with the circulation pump, the cultivation floor is The nutrient solution can be returned to the circulation route so as not to be contaminated with bacteria.

また、養液返送手段は、貯留槽から循環経路に備わる水槽へ至る返送経路であってもよい。上記栽培システムがこのように構成されていれば、貯留槽に貯留された養液を水槽に一旦蓄えることができるので、養液の返送が容易である。 Further, the nutrient solution returning means may be a returning path from the storage tank to the water tank provided in the circulation path. If the cultivation system is configured in this way, the nutrient solution stored in the storage tank can be temporarily stored in the water tank, and thus the nutrient solution can be easily returned.

また、本発明は、方法の側面から捉えることもできる。すなわち、本発明は、例えば、植物が栽培される栽培床を含む循環経路の養液を貯留する工程と、養液が貯留された状態で、循環経路へ殺菌成分の薬液を流入出させる工程と、養液が貯留された箇所から栽培床へ至る経路の途中にある、養液から菌を除去可能なフィルタを通じて、循環経路へ養液を返送する工程と、を備える、栽培方法であってもよい。 The present invention can also be viewed as a method aspect. That is, the present invention, for example, a step of storing a nutrient solution of a circulation route including a cultivation bed in which a plant is cultivated, and a step of flowing a chemical solution of a bactericidal component into and out of the circulation route in a state where the nutrient solution is stored. In the middle of the route from the location where the nutrient solution is stored to the cultivation bed, through a filter capable of removing bacteria from the nutrient solution, the step of returning the nutrient solution to the circulation route, Good.

上記栽培システム及び栽培方法は、養液の成分を変質させることなく、栽培床の病原菌を除去することができる。 The above cultivation system and cultivation method can remove pathogenic bacteria in the cultivation bed without deteriorating the components of the nutrient solution.

図1は、本発明の実施形態に係る栽培システムの構成図である。FIG. 1 is a configuration diagram of a cultivation system according to an embodiment of the present invention. 図2は、通常運転時の栽培システムの状態図である。FIG. 2 is a state diagram of the cultivation system during normal operation. 図3は、養液を回収する際の栽培システムの状態図である。FIG. 3 is a state diagram of the cultivation system when the nutrient solution is collected. 図4は、養液の回収が完了した後の栽培システムの状態図である。FIG. 4 is a state diagram of the cultivation system after the collection of the nutrient solution is completed. 図5は、オゾン水を給水している時の栽培システムの状態図である。FIG. 5 is a state diagram of the cultivation system when ozone water is being supplied. 図6は、オゾン水の給水が完了した後の栽培システムの状態図である。FIG. 6 is a state diagram of the cultivation system after the supply of ozone water is completed. 図7は、オゾン水による殺菌処理時の栽培システムの状態図である。FIG. 7 is a state diagram of the cultivation system at the time of sterilization treatment with ozone water. 図8は、オゾン水による殺菌処理が完了した後の栽培システムの状態図である。FIG. 8 is a state diagram of the cultivation system after the sterilization treatment with ozone water is completed. 図9は、オゾン水の排出が完了した後の栽培システム1の状態図である。FIG. 9 is a state diagram of the cultivation system 1 after the discharge of ozone water is completed. 図10は、オゾン水を置換する際の栽培システムの状態図である。FIG. 10 is a state diagram of a cultivation system when substituting ozone water. 図11は、栽培床の構造のバリエーションを示した図である。FIG. 11: is the figure which showed the variation of the structure of a cultivation bed. 図12は、変形例に係る栽培システムの構成図である。FIG. 12: is a block diagram of the cultivation system which concerns on a modification. 図13は、殺菌処理後に成長した野菜の根の状態を示した図である。FIG. 13: is the figure which showed the state of the root of the vegetable grown after the sterilization process.

以下、本発明の実施形態について説明する。以下に示す実施形態は、本発明の実施形態の一例であり、本発明の技術的範囲を以下の態様に限定するものではない。 Hereinafter, embodiments of the present invention will be described. The embodiment described below is an example of the embodiment of the present invention, and the technical scope of the present invention is not limited to the following modes.

<システム構成>
図1は、本発明の実施形態に係る栽培システムの構成図である。栽培システム1は、図1に示すように、植物が栽培される栽培床2、栽培床2に流す水が貯えられる第1水槽3、第1水槽3の水を栽培床2へ送る第1ポンプ4を備える。また、栽培システム1は、第1ポンプ4から栽培床2へ至る経路の途中にプレフィルタ5および高性能フィルタ6を備える。また、栽培システム1は、栽培床2から第1水槽3へ至る配管と、第1水槽3から第1ポンプ4へ至る配管と、第1ポンプ4からプレフィルタ5へ至る配管と、プレフィルタ5から高性能フィルタ6へ至る配管と、高性能フィルタ6から栽培床2へ至る配管とを有する循環経路であり、栽培床2から順に第1水槽3、第1ポンプ4、プレフィルタ5、高性能フィルタ6、栽培床2へ至る循環経路7を形成する。なお、第1水槽3は、栽培床2よりも低い位置に設置されている。よって、栽培床2の排水口から流れ出た養液は、栽培床2から第1水槽3へ至る配管を通じて第1水槽3へ流れ落ちる。また、高性能フィルタ6は、養液中の菌を除去可能な性能を有するフィルタである。
<System configuration>
FIG. 1 is a configuration diagram of a cultivation system according to an embodiment of the present invention. As shown in FIG. 1, the cultivating system 1 includes a cultivating floor 2 on which a plant is cultivated, a first aquarium 3 for storing water flowing through the cultivating floor 2, and a first pump for sending water from the first aquarium 3 to the cultivating floor 2. 4 is provided. In addition, the cultivation system 1 includes a pre-filter 5 and a high-performance filter 6 on the way from the first pump 4 to the cultivation floor 2. Further, the cultivation system 1 includes a pipe from the cultivation floor 2 to the first water tank 3, a pipe from the first water tank 3 to the first pump 4, a pipe from the first pump 4 to the prefilter 5, and a prefilter 5. Is a circulation path having a pipe from the high-performance filter 6 to the high-performance filter 6, and a pipe from the high-performance filter 6 to the cultivating floor 2. The first water tank 3, the first pump 4, the pre-filter 5, the high-performance in the order from the cultivating floor 2. A circulation path 7 leading to the filter 6 and the cultivation floor 2 is formed. The first water tank 3 is installed at a position lower than the cultivation floor 2. Therefore, the nutrient solution flowing out from the drainage port of the cultivation floor 2 flows down to the first water tank 3 through the pipe extending from the cultivation floor 2 to the first water tank 3. Further, the high-performance filter 6 is a filter having a capability of removing bacteria in the nutrient solution.

また、栽培システム1は、上記した機器の他、循環経路7の養液を一時的に貯留可能な容量を有する第2水槽8(本願でいう「貯留槽」の一例である)を備える。第2水槽8は、循環経路7を構成する各機器よりも低い位置に設置されており、各機器から配管を通じて流れ落ちる水が流入するようになっている。すなわち、第2水槽8は、第1水槽3よりも低い位置に設置されており、第1水槽3の下部に設置された水槽ドレン弁9を開くと、第1水槽3の下部から第2水槽8へ至るドレン配管を通じて第1水槽3内の水が第2水槽8へ流れ落ちるようになっている。また、第2水槽8は、プレフィルタ5よりも低い位置に設置されており、プレフィルタ5の下部に設置されたフィルタドレン弁10を開くと、プレフィルタ5の下部から第2水槽8へ至るドレン配管を通じてプレフィルタ5内の水が第2水槽8へ流れ落ちるようになっている。 In addition to the above-described devices, the cultivation system 1 also includes a second water tank 8 (which is an example of the “reservoir” in the present application) having a capacity capable of temporarily storing the nutrient solution in the circulation path 7. The second water tank 8 is installed at a position lower than each device that constitutes the circulation path 7, and water that flows down from each device through a pipe flows into the second water tank 8. That is, the second water tank 8 is installed at a position lower than the first water tank 3, and when the water tank drain valve 9 installed at the lower portion of the first water tank 3 is opened, the second water tank is moved from the lower portion of the first water tank 3 to the second water tank. The water in the first water tank 3 flows down to the second water tank 8 through the drain pipe reaching the water tank 8. Further, the second water tank 8 is installed at a position lower than the pre-filter 5, and when the filter drain valve 10 installed in the lower portion of the pre-filter 5 is opened, the second water tank 8 reaches from the lower portion of the pre-filter 5 to the second water tank 8. The water in the pre-filter 5 flows down to the second water tank 8 through the drain pipe.

なお、高性能フィルタ6は、高性能フィルタ6の上流側の配管を構成する下部に接続された循環経路7用の配管を通じてプレフィルタ5と繋がっている。よって、フィルタドレン弁10が開かれてプレフィルタ5内の養液が第2水槽8へ流れ落ち始めると、高性能フィルタ6内や周辺配管内(例えば、高性能フィルタ6から栽培床2へ至る配管内、プレフィルタ5から高性能フィルタ6へ至る配管内等)の養液がプレフィルタ5へ流れ落ちる。また、栽培床2の養液は、栽培床2の下部に設置された栽培床ドレン弁11を開くと、栽培床2の下部から第1水槽3へ至るドレン配管を通じて第1水槽3へ流れ落ちるようになっている。よって、栽培床2の養液は、第1水槽3経由で第2水槽8へ流れ落とすことが可能である。このような操作が行われれば、栽培床2や循環経路7内の養液が第2水槽8へ移送され、栽培床2や循環経路7には滴の類を除けば養液は存在しないことになる。 The high-performance filter 6 is connected to the pre-filter 5 through a pipe for the circulation path 7 that is connected to a lower portion of the high-performance filter 6 and forms a pipe on the upstream side. Therefore, when the filter drain valve 10 is opened and the nutrient solution in the pre-filter 5 starts to flow down to the second water tank 8, the inside of the high-performance filter 6 and the peripheral piping (for example, the piping from the high-performance filter 6 to the cultivation floor 2). The nutrient solution in the pipe from the pre-filter 5 to the high-performance filter 6) flows down to the pre-filter 5. Further, the nutrient solution of the cultivation floor 2 may flow down to the first water tank 3 through a drain pipe extending from the lower portion of the cultivation floor 2 to the first water tank 3 when the cultivation floor drain valve 11 installed at the lower portion of the cultivation floor 2 is opened. It has become. Therefore, the nutrient solution of the cultivation floor 2 can be flown down to the second water tank 8 via the first water tank 3. If such an operation is performed, the nutrient solution in the cultivation bed 2 or the circulation path 7 is transferred to the second water tank 8, and there is no nutrient solution in the cultivation floor 2 or the circulation path 7 except for drops. become.

また、栽培システム1には、第2水槽8の水を第1水槽3へ汲み上げる第2ポンプ12(本願でいう「養液返送手段」の一例である)が第2水槽8の下部から第1水槽3の上部へ至る経路(本願でいう「返送経路」の一例である)の途中に備わっている。よって、例えば、循環経路7内にある養液が第2水槽8へ流下しても、水槽ドレン弁9とフィルタド
レン弁10を閉じた状態で第2ポンプ12を起動すれば、第2水槽8の養液を第1水槽3へ返送することが可能である。また、第2水槽8の養液が第1水槽3へ返送された後または返送中に、フィルタドレン弁10および栽培床ドレン弁11を閉じた状態で第1ポンプ4を起動すれば、循環経路7を養液で再び満たすことが可能である。
Further, in the cultivation system 1, a second pump 12 (which is an example of the “nutrition solution returning means” in the present application) for pumping the water in the second water tank 8 to the first water tank 3 is provided from the bottom of the second water tank 8 to the first. It is provided in the middle of the route to the upper part of the water tank 3 (which is an example of the “return route” in the present application). Therefore, for example, even if the nutrient solution in the circulation path 7 flows down to the second water tank 8, if the second pump 12 is started with the water tank drain valve 9 and the filter drain valve 10 closed, the second water tank 8 It is possible to return the nutrient solution to the first water tank 3. Moreover, if the 1st pump 4 is started in the state which closed the filter drain valve 10 and the cultivation floor drain valve 11 after the nutrient solution of the 2nd water tank 8 was returned to the 1st water tank 3, or during return, a circulation path will be provided. It is possible to refill 7 with nutrient solution.

また、栽培システム1には、第1水槽3の水を系外へ排出する排水経路が備わっており、当該排水経路には水槽排水弁13が設けられている。当該排水経路は、排水を浄化する処理設備へ通じている。 Further, the cultivation system 1 is provided with a drainage path for discharging the water in the first water tank 3 to the outside of the system, and a water tank drainage valve 13 is provided in the drainage path. The drainage route leads to a treatment facility for purifying the drainage.

また、栽培システム1には、第1水槽3に通ずる給水経路が設けられており、第1水槽3内には当該給水経路の終端を開閉するボールタップ弁14が設けられている。第1水槽3に通ずる給水経路は、普通の水が流れる経路とオゾン水(本願でいう「薬液」の一例である)が流れる経路とに通じており、普通の水が流れる経路に設けられている第1給水弁15とオゾン水が流れる経路に設けられている第2給水弁16の何れかを開くことで、適宜の水を第1水槽3内へ給水することができる。第1給水弁15を流れる水としては、上水、井水、蒸気の凝縮水、その他各種の水が挙げられる。第2給水弁16と水槽排水弁13は、本願でいう「薬液給排出手段」の一例を構成する。オゾン水は、例えば、電解法により水中でオゾンが生成溶解されたものであってもよいし、オゾンガス発生器で発生したオゾンガスを水にバブリングさせて溶解させたものであってもよい。ただし、気中へのオゾンの漏洩量を少なくしたい場合は、電解法かマイクロバブルによるオゾンガスの溶解法によって生成されたオゾン水が望ましい。 Further, the cultivation system 1 is provided with a water supply path leading to the first water tank 3, and a ball tap valve 14 for opening and closing the end of the water supply path is provided in the first water tank 3. The water supply path leading to the first water tank 3 leads to a path through which ordinary water flows and a path through which ozone water (which is an example of the “chemical solution” in the present application) flows, and is provided in a path through which ordinary water flows. Appropriate water can be supplied into the first water tank 3 by opening either the first water supply valve 15 that is present or the second water supply valve 16 that is provided in the path through which ozone water flows. Examples of water flowing through the first water supply valve 15 include tap water, well water, condensed water of steam, and various other types of water. The second water supply valve 16 and the water tank drain valve 13 constitute an example of “chemical solution supply/discharge means” in the present application. The ozone water may be, for example, one in which ozone is generated and dissolved in water by an electrolysis method, or one in which ozone gas generated by an ozone gas generator is bubbled in water to be dissolved. However, when it is desired to reduce the amount of ozone leaked into the air, ozone water produced by an electrolytic method or a method of dissolving ozone gas by microbubbles is preferable.

また、栽培システム1には、第1水槽3に通ずる養分の補給経路が設けられており、第1水槽3内の養液の電気伝導率を計測するセンサ17の出力に応じて適宜の量の養分が補給されるようになっている。養液に含まれる養分は栽培床2の植物に消費される。しかし、養液の電気伝導率は、養液に含まれる養分の含有量に応じて変化する。よって、センサ17の出力に応じて適宜の量の養分が第1水槽3に自動的に補給されれば、栽培システム1は、栽培床2にある植物の育成に適した量の養分を含有する養液を循環し続けることができる。養液に含まれる養分の含有量は、電気伝導率の他、例えば、水素イオン指数(pH)で把握できる場合もある。 In addition, the cultivation system 1 is provided with a nutrient supply path that leads to the first water tank 3, and an appropriate amount of the nutrient solution in the first water tank 3 is measured according to the output of the sensor 17 that measures the electrical conductivity of the nutrient solution. The nutrients are being supplied. The nutrients contained in the nutrient solution are consumed by the plants on the cultivation floor 2. However, the electrical conductivity of the nutrient solution changes depending on the content of the nutrient contained in the nutrient solution. Therefore, if an appropriate amount of nutrients is automatically replenished to the first aquarium 3 according to the output of the sensor 17, the cultivation system 1 contains the nutrients in an amount suitable for growing plants on the cultivation floor 2. The nutrient solution can be kept circulating. The content of the nutrient contained in the nutrient solution may be grasped by, for example, the hydrogen ion index (pH) in addition to the electric conductivity.

<通常運転>
以下、上記栽培システム1の運転方法について説明する。図2は、通常運転時の栽培システム1の状態図である。栽培システム1は、通常運転時、栽培床ドレン弁11と水槽排水弁13と水槽ドレン弁9とフィルタドレン弁10と第2給水弁16が閉じられており、第1給水弁15が開かれている。そして、第1ポンプ4が作動しており、循環経路7内を養液が循環している。第2ポンプ12は停止している。
<Normal operation>
Hereinafter, a method of operating the cultivation system 1 will be described. FIG. 2 is a state diagram of the cultivation system 1 during normal operation. In the cultivation system 1, during normal operation, the cultivation floor drain valve 11, the water tank drain valve 13, the water tank drain valve 9, the filter drain valve 10, and the second water supply valve 16 are closed, and the first water supply valve 15 is opened. There is. Then, the first pump 4 is operating, and the nutrient solution circulates in the circulation path 7. The second pump 12 is stopped.

栽培システム1は、通常運転時、循環経路7を循環する養液をプレフィルタ5および高性能フィルタ6で浄化する。よって、仮に病原菌が養液中にあっても高性能フィルタ6に捕獲され、栽培床2には清浄な養液が供給される。また、栽培システム1は、通常運転時、センサ17の出力に応じて養分の補給を行う。よって、養液に含まれる養分が栽培床2の植物に消費されても、循環経路7を循環する養液に含まれる養分の含有量が所定量以上に保たれる。また、栽培システム1は、通常運転時、第1水槽3の水位が低下するとボールタップ弁14が開いて普通の水が給水される。よって、循環経路7を循環する養液の水分が栽培床2の水面や植物の葉から気散して系内から失われても、循環経路7を循環する養液の量が所定量以上に保たれる。栽培システム1がこのようにして通常運転を継続することにより、栽培床2にある植物が成長する。 The cultivation system 1 purifies the nutrient solution circulating through the circulation path 7 by the pre-filter 5 and the high-performance filter 6 during normal operation. Therefore, even if pathogenic bacteria are present in the nutrient solution, they are captured by the high-performance filter 6 and the culture solution is supplied to the cultivation floor 2. In addition, the cultivation system 1 replenishes nutrients according to the output of the sensor 17 during normal operation. Therefore, even if the nutrients contained in the nutrient solution are consumed by the plants of the cultivation floor 2, the content of the nutrients contained in the nutrient solution circulating in the circulation path 7 is maintained at a predetermined amount or more. Further, in the cultivation system 1, during normal operation, when the water level in the first water tank 3 drops, the ball tap valve 14 opens and normal water is supplied. Therefore, even if the water content of the nutrient solution circulating in the circulation path 7 is diffused from the water surface of the cultivation floor 2 and the leaves of the plant and is lost from the system, the amount of the nutrient solution circulating in the circulation path 7 becomes a predetermined amount or more. To be kept. By continuing the normal operation of the cultivation system 1 in this manner, the plants on the cultivation floor 2 grow.

<殺菌運転>
次に、循環経路7(特に栽培床2)を殺菌する際の手順について説明する。循環経路7を殺菌する場合、まず、循環経路7の養液を第2水槽8へ回収した後、循環経路7にオゾン水を循環させる。そして、循環経路7からオゾン水を排水した後、第2水槽8の養液を循環経路7へ戻す。以下、当該手順の詳細について説明する。
<Sterilization operation>
Next, a procedure for sterilizing the circulation route 7 (particularly the cultivation floor 2) will be described. When sterilizing the circulation path 7, first, after the nutrient solution in the circulation path 7 is collected in the second water tank 8, ozone water is circulated in the circulation path 7. Then, after draining the ozone water from the circulation path 7, the nutrient solution in the second water tank 8 is returned to the circulation path 7. The details of the procedure will be described below.

図3は、養液を回収する際の栽培システム1の状態図である。例えば、通常運転状態にある栽培システム1の系統構成を変更して循環経路7の養液を第2水槽8へ回収される場合、作業者は、まず、第1ポンプ4を停止する。そして、第1給水弁15を閉じた後に、水槽ドレン弁9とフィルタドレン弁10を開く。次いで、栽培床ドレン弁11を開く。水槽ドレン弁9とフィルタドレン弁10と栽培床ドレン弁11が開かれることにより、循環経路7にあった養液は第2水槽8へ回収される。 FIG. 3 is a state diagram of the cultivation system 1 when collecting the nutrient solution. For example, when changing the system configuration of the cultivation system 1 in the normal operation state and collecting the nutrient solution in the circulation path 7 into the second water tank 8, the worker first stops the first pump 4. Then, after closing the first water supply valve 15, the water tank drain valve 9 and the filter drain valve 10 are opened. Then, the cultivation floor drain valve 11 is opened. By opening the water tank drain valve 9, the filter drain valve 10, and the cultivation bed drain valve 11, the nutrient solution in the circulation path 7 is collected in the second water tank 8.

図4は、養液の回収が完了した後の栽培システム1の状態図である。循環経路7にあった養液が第2水槽8へ回収された後、作業者は、水槽ドレン弁9とフィルタドレン弁10と栽培床ドレン弁11を閉じる。水槽ドレン弁9とフィルタドレン弁10と栽培床ドレン弁11が閉じられることにより、第2水槽8の養液は、循環経路7から隔離された状態になる。 FIG. 4 is a state diagram of the cultivation system 1 after the collection of the nutrient solution is completed. After the nutrient solution in the circulation path 7 is collected in the second water tank 8, the worker closes the water tank drain valve 9, the filter drain valve 10, and the cultivation bed drain valve 11. By closing the water tank drain valve 9, the filter drain valve 10, and the cultivation bed drain valve 11, the nutrient solution in the second water tank 8 is isolated from the circulation path 7.

図5は、オゾン水を給水している時の栽培システム1の状態図である。養液を循環経路7から隔離した後、作業者は、第2給水弁16を開く。第1水槽3内には水が無いのでボールタップ弁14が開いている。よって、第2給水弁16が開かれると、オゾン水が第1水槽3内に流入する。 FIG. 5 is a state diagram of the cultivation system 1 when supplying ozone water. After isolating the nutrient solution from the circulation path 7, the operator opens the second water supply valve 16. Since there is no water in the first water tank 3, the ball tap valve 14 is open. Therefore, when the second water supply valve 16 is opened, the ozone water flows into the first water tank 3.

図6は、オゾン水の給水が完了した後の栽培システム1の状態図である。第1水槽3に適当な量のオゾン水が給水された後、作業者は、第2給水弁16を閉じる。第2給水弁16が閉じられることにより、第1水槽3の水位が低下してもオゾン水の給水が行われない状態になる。なお、作業者は、第2給水弁16を閉じなくてもよい。第2給水弁16が開いたままの状態でも、オゾン水の給水はボールタップ弁14の動作により自動的に止まる。 FIG. 6 is a state diagram of the cultivation system 1 after the supply of ozone water is completed. After the appropriate amount of ozone water is supplied to the first water tank 3, the worker closes the second water supply valve 16. By closing the second water supply valve 16, ozone water is not supplied even if the water level in the first water tank 3 is lowered. The operator does not have to close the second water supply valve 16. Even when the second water supply valve 16 remains open, the supply of ozone water is automatically stopped by the operation of the ball tap valve 14.

図7は、オゾン水による殺菌処理時の栽培システム1の状態図である。作業者は、第2給水弁16を閉じた後に第1ポンプ4を起動する。第1ポンプ4が起動されると、第1水槽3にあるオゾン水が循環経路7を循環する。これにより、養液が第2水槽8へ回収された後も循環経路7に残留していた病原菌が殺菌される。すなわち、循環経路7内にある栽培床2の植物の根や茎、栽培床2を構成するケーシングの底面や内壁面、植物の支持材(例えば、マットやロックウール、スポンジポット等)等に残留していた病原菌が殺菌される。オゾン水の循環時間は、栽培床2や配管の大きさ等の諸条件にもよるが、時間が短すぎると十分な殺菌が行われないし、時間が長すぎると殺菌中に栄養分を含まないオゾン水に根が浸漬される植物が養分を吸収できず、成長が緩慢になる。よって、オゾン水の循環時間は、殺菌後に許容できる病原菌の残留量と植物の成長速度を勘案した適宜の長さとすることが望ましい。 FIG. 7 is a state diagram of the cultivation system 1 at the time of sterilization treatment with ozone water. The operator activates the first pump 4 after closing the second water supply valve 16. When the first pump 4 is activated, the ozone water in the first water tank 3 circulates in the circulation path 7. As a result, the pathogenic bacteria remaining in the circulation path 7 even after the nutrient solution is collected in the second water tank 8 is sterilized. That is, it remains on the roots and stems of the plant of the cultivation floor 2 in the circulation path 7, the bottom surface and inner wall surface of the casing constituting the cultivation floor 2, the support material of the plant (for example, mat, rock wool, sponge pot, etc.). The pathogenic bacteria that were doing are killed. The circulation time of ozone water depends on various conditions such as the size of the cultivation floor 2 and the pipes, but if the time is too short, sufficient sterilization is not performed, and if the time is too long, ozone that does not contain nutrients during sterilization is used. Plants whose roots are soaked in water cannot absorb nutrients and grow slowly. Therefore, it is desirable that the circulation time of ozone water be an appropriate length in consideration of the residual amount of pathogenic bacteria that can be tolerated after sterilization and the growth rate of plants.

図8は、オゾン水による殺菌処理が完了した後の栽培システム1の状態図である。オゾン水による殺菌処理が完了した後、作業者は、第1ポンプ4を停止すると共に、水槽排水弁13と栽培床ドレン弁11を開く。水槽排水弁13と栽培床ドレン弁11が開かれると、循環経路7内のオゾン水が循環経路7から系外へ排出される。 FIG. 8 is a state diagram of the cultivation system 1 after the sterilization treatment with ozone water is completed. After the sterilization treatment with ozone water is completed, the worker stops the first pump 4 and opens the water tank drain valve 13 and the cultivation floor drain valve 11. When the water tank drain valve 13 and the cultivation floor drain valve 11 are opened, the ozone water in the circulation path 7 is discharged from the circulation path 7 to the outside of the system.

図9は、オゾン水の排出が完了した後の栽培システム1の状態図である。循環経路7からオゾン水が排出された後、作業者、水槽排水弁13と栽培床ドレン弁11を閉じ、第2ポンプ12を起動する。そして、第2水槽8の養液が第1水槽3へ移送されたら第2ポン
プ12を停止する。第2ポンプ12を停止した後に第1ポンプ4を起動すれば、栽培システム1は、図3に示した通常運転状態に戻る。
FIG. 9 is a state diagram of the cultivation system 1 after the discharge of ozone water is completed. After the ozone water is discharged from the circulation path 7, the worker, the water tank drain valve 13 and the cultivation floor drain valve 11 are closed, and the second pump 12 is activated. Then, when the nutrient solution in the second water tank 8 is transferred to the first water tank 3, the second pump 12 is stopped. If the 1st pump 4 is started after stopping the 2nd pump 12, the cultivation system 1 will return to the normal operating state shown in FIG.

上記の栽培システム1であれば、循環経路7を循環していた養液を第2水槽8へ回収した後に、循環経路7にオゾン水を循環させることができるので、養液の成分をオゾン水で変質させることなく循環経路7の殺菌が可能である。また、第2水槽8へ回収された養液に病原菌が残留する場合であっても、循環経路7の殺菌処理後は、第2水槽8から第1水槽3へ返送された養液が高性能フィルタ6を通ってから栽培床2へ流れるため、少なくとも殺菌処理された栽培床2に養液の残留病原菌が流入して栽培床2を直ちに汚染することは無い。よって、循環経路7の養液に病原菌が含まれていても、上述した手順の殺菌処理を適宜のタイミングで行うことにより、当該養液を回収して再利用しつつ、栽培床2を殺菌することができる。 In the above cultivation system 1, since the ozone water can be circulated in the circulation path 7 after the nutrient solution circulating in the circulation path 7 is collected in the second water tank 8, the components of the nutrient solution are ozone water. It is possible to sterilize the circulation route 7 without deteriorating. Even when pathogenic bacteria remain in the nutrient solution collected in the second water tank 8, the nutrient solution returned from the second water tank 8 to the first water tank 3 has high performance after the sterilization treatment of the circulation path 7. Since it flows to the cultivation floor 2 after passing through the filter 6, the residual pathogenic bacteria of the nutrient solution do not flow into at least the sterilized cultivation floor 2 and immediately contaminate the cultivation floor 2. Therefore, even if the nutrient solution in the circulation path 7 contains pathogenic bacteria, the nutrient solution is collected and reused by sterilizing the cultivation bed 2 by performing the sterilization process of the above-described procedure at an appropriate timing. be able to.

なお、有機物がオゾンに触れると酸化するため、循環経路7を循環するオゾン水のオゾン濃度は、循環経路7に残存する有機物の量に応じて大きく変化する。よって、循環経路7に残留する有機物の量によっては、循環経路7を循環するオゾン水のオゾン濃度が著しく低下する場合もあるが、そのような場合には、次のようにしてオゾン濃度を回復させることができる。 Since the organic matter oxidizes when it comes into contact with ozone, the ozone concentration of the ozone water circulating in the circulation path 7 largely changes according to the amount of the organic matter remaining in the circulation path 7. Therefore, depending on the amount of organic substances remaining in the circulation path 7, the ozone concentration of the ozone water circulating in the circulation path 7 may be significantly reduced. In such a case, the ozone concentration is recovered as follows. Can be made.

図10は、オゾン水を置換する際の栽培システム1の状態図である。オゾン水による殺菌処理中、循環経路7を循環してオゾン水のオゾン濃度が低下した場合は、作業者は、例えば、第2給水弁16と水槽排水弁13を開く。第2給水弁16と水槽排水弁13が開かれると、循環経路7のオゾン水が入れ替わる。第1水槽3に新たなオゾン水が入ると、循環経路7を循環するオゾン水のオゾン濃度が上昇する。作業者は、循環経路7を循環するオゾン水のオゾン濃度が回復したら第2給水弁16と水槽排水弁13を閉じる。第2給水弁16と水槽排水弁13を閉じられると、循環経路7のオゾン水の入れ替えが止まり、オゾン濃度の回復操作が完了する。なお、オゾン濃度の回復操作は、循環経路7に設置されたオゾン濃度計のセンサ出力に応じて弁を開閉する制御装置により、自動的に行われるようにしてもよい。 FIG. 10 is a state diagram of the cultivation system 1 when replacing ozone water. When the ozone concentration of ozone water is lowered by circulating the circulation path 7 during the sterilization treatment with ozone water, the worker opens the second water supply valve 16 and the water tank drain valve 13, for example. When the second water supply valve 16 and the water tank drain valve 13 are opened, the ozone water in the circulation path 7 is replaced. When new ozone water enters the first water tank 3, the ozone concentration of the ozone water circulating in the circulation path 7 increases. The worker closes the second water supply valve 16 and the water tank drain valve 13 when the ozone concentration of the ozone water circulating in the circulation path 7 is recovered. When the second water supply valve 16 and the water tank drain valve 13 are closed, the replacement of ozone water in the circulation path 7 is stopped and the ozone concentration recovery operation is completed. The ozone concentration recovery operation may be automatically performed by a control device that opens and closes a valve according to the sensor output of an ozone concentration meter installed in the circulation path 7.

バッチ式による上記一連の殺菌運転は、病原菌が混入する確率や栽培床2で育成する植物の種類、栽培システム1を構成する機器の大きさ等にもよるが、例えば、月に1〜2度程度行われることが好ましい。また、殺菌運転の時間は、例えば、2時間程度行われることが好ましい。 The above-mentioned series of sterilization operation by the batch method depends on the probability of mixing of pathogenic bacteria, the type of plants grown on the cultivation floor 2, the size of the equipment constituting the cultivation system 1, etc., but, for example, once or twice a month. It is preferable that this is performed to some extent. The sterilization operation time is preferably about 2 hours, for example.

<変形例>
ところで、上記の栽培システム1では、高性能フィルタ6の水がプレフィルタ5経由で第2水槽8へ流れ落ちるように系統構成されているが、高性能フィルタ6の下部には、第2水槽8へ直接通じるドレン配管が設けられていてもよい。
<Modification>
By the way, in the cultivation system 1 described above, the systematic structure is such that the water of the high-performance filter 6 flows down to the second water tank 8 via the pre-filter 5, but below the high-performance filter 6, to the second water tank 8. A drain pipe that directly communicates may be provided.

また、上記の栽培システム1では、高性能フィルタ6とプレフィルタ5の水が第1水槽3を経由しないで第2水槽8へ流れるようになっていたが、フィルタドレン弁10の下流は第1水槽3へ通じていてもよい。フィルタドレン弁10の下流が第2水槽8ではなく第1水槽3へ通じていれば、例えば、高性能フィルタ6とプレフィルタ5に残留する養液を第1水槽3経由で第2水槽8へ流すこともできるし、高性能フィルタ6とプレフィルタ5に残留するオゾン水を第1水槽3経由で水槽排水弁13の下流へ流すこともできる。この場合、第1水槽3は、高性能フィルタ6やプレフィルタ5よりも低い位置に設置される。 Further, in the above cultivation system 1, the water of the high-performance filter 6 and the pre-filter 5 was designed to flow to the second water tank 8 without passing through the first water tank 3, but the downstream of the filter drain valve 10 is the first water tank. It may be connected to the aquarium 3. If the downstream of the filter drain valve 10 communicates with the first water tank 3 instead of the second water tank 8, for example, the nutrient solution remaining in the high-performance filter 6 and the pre-filter 5 is transferred to the second water tank 8 via the first water tank 3. Ozone water remaining in the high-performance filter 6 and the pre-filter 5 can be flowed to the downstream of the water tank drain valve 13 via the first water tank 3. In this case, the first water tank 3 is installed at a position lower than the high performance filter 6 and the prefilter 5.

また、上記の栽培システム1では、第1水槽3に通ずる1つの給水経路に普通の水とオゾン水とが流れるように系統構成されていたが、普通の水が流れる給水経路とオゾン水が
流れる給水経路は互いに独立しており、各給水経路が第1水槽3に直接繋がっていてもよい。また、第1水槽3内には給水経路の終端を開閉するボールタップ弁14が設けられていたが、ボールタップ弁14に代えて、第1水槽3の水位に応じて開閉制御される電磁式あるいは空気圧式の弁が設けられていてもよい。
Further, in the cultivation system 1 described above, the system is configured so that the ordinary water and the ozone water flow through one water supply path leading to the first water tank 3, but the water supply path through which the ordinary water flows and the ozone water flow through. The water supply paths may be independent of each other, and each water supply path may be directly connected to the first water tank 3. Further, the ball tap valve 14 for opening and closing the end of the water supply path was provided in the first water tank 3, but instead of the ball tap valve 14, an electromagnetic type or pneumatic pressure control that opens and closes according to the water level of the first water tank 3 is performed. Type valves may be provided.

また、上記の栽培システム1では、栽培床2の水位を検知するセンサや電磁弁が無くても栽培床2の養液が規定の水位に保たれるよう、栽培床2内の適宜の高さに開口が設置された配管を通じて栽培床2の養液が流出し、第1水槽3へ流れ落ちるように系統構成されていたが、例えば、栽培床ドレン弁11を栽培床2の水位に応じて開閉制御し、栽培床2の水位が規定のレベルに保たれるようにしてもよい。 In addition, in the above-mentioned cultivation system 1, an appropriate height in the cultivation floor 2 is maintained so that the nutrient solution of the cultivation floor 2 is maintained at a prescribed water level without a sensor or a solenoid valve that detects the water level of the cultivation floor 2. Although the nutrient solution of the cultivation floor 2 flows out through a pipe having an opening at the opening, and the system is configured so as to flow down to the first water tank 3, for example, the cultivation floor drain valve 11 is opened/closed according to the water level of the cultivation floor 2. It may be controlled to keep the water level of the cultivation floor 2 at a specified level.

また、上記の栽培システム1では、1つの循環経路7が備わっていたが、栽培システム1には循環経路7が複数備わっていてもよい。栽培システム1に複数の循環経路7が備わる場合であっても、2以上の循環経路7を同時に殺菌処理する必要性は乏しいため、第2水槽8を1つだけ設置しておき、養液を回収する第2水槽8を各循環経路7で共用してもよい。 Further, in the above cultivation system 1, one circulation path 7 is provided, but the cultivation system 1 may be provided with a plurality of circulation paths 7. Even when the cultivation system 1 is provided with a plurality of circulation paths 7, there is little need to sterilize two or more circulation paths 7 at the same time, so only one second water tank 8 is installed and the nutrient solution is supplied. The second water tank 8 to be recovered may be shared by each circulation path 7.

また、上記の栽培システム1では、第2水槽8としてタンク状のものが用いられていたが、例えば、栽培室内に引き回した配管類を第2水槽8として用いてもよい。このような配管類としては、例えば、多数の屈曲部を設けた管等が挙げられる。管で構成したものを第2水槽8とし、これを機械室等で循環経路7に管接続すれば、省スペースかつ施工容易かつ内部に比較的多量の液体を貯留できる。 Further, in the cultivation system 1 described above, a tank-shaped one is used as the second water tank 8, but, for example, pipes routed into the cultivation chamber may be used as the second water tank 8. Examples of such pipes include pipes provided with a large number of bent portions. If the second water tank 8 is constituted by a pipe and is connected to the circulation path 7 by a machine room or the like, space saving, easy construction, and a relatively large amount of liquid can be stored inside.

また、上記の栽培システム1では、殺菌処理に用いられたオゾン水を系外へ排出しているが、水槽排水弁13の下流にオゾン水を回収する水槽を用意しておき、殺菌処理時にオゾン水を再利用可能なようにしてもよい。オゾン水が再利用されれば、オゾン水の製造にかかるコストの低減や、オゾン水の排出処理にかかるコストを抑制することができる。再利用するオゾン水には異物が蓄積され得るが、これらの異物は、オゾン水を回収する経路にフィルタを設けることで除去し、或いは、循環経路7におけるオゾン水の循環時にプレフィルタ5や高性能フィルタ6で除去することができる。 Further, in the above cultivation system 1, the ozone water used for the sterilization treatment is discharged to the outside of the system, but a water tank for collecting the ozone water is prepared downstream of the water tank drain valve 13, and ozone is used during the sterilization treatment. The water may be reusable. If the ozone water is reused, it is possible to reduce the cost for producing the ozone water and to suppress the cost for discharging the ozone water. Although foreign matters may be accumulated in the recycled ozone water, these foreign matters are removed by providing a filter in the path for collecting the ozone water, or when the ozone water in the circulation path 7 is circulated, the pre-filter 5 and the high water are removed. It can be removed by the performance filter 6.

また、上記の栽培システム1では、栽培床2や第1水槽3等に溜まる循環経路7の養液やオゾン水を自重で流下させて回収する方式が採用されているが、例えば、水槽ドレン弁9やフィルタドレン弁10、栽培床ドレン弁11等が備わる排水系の配管に設けたポンプで養液やオゾン水を回収するものであってもよい。排水系の配管に設けたポンプで養液やオゾン水の回収が行われれば、プレフィルタ5、高性能フィルタ6等の機器類の設置位置の高低を自由に決定することができる。 Further, in the cultivation system 1 described above, a method is adopted in which the nutrient solution and the ozone water in the circulation path 7 accumulated in the cultivation floor 2, the first water tank 3, etc. are flowed down by their own weight and collected, for example, a water tank drain valve. 9 and the filter drain valve 10, the cultivation floor drain valve 11, and the like may be used to collect the nutrient solution and ozone water with a pump provided in a drainage system pipe. If the nutrient solution and ozone water are collected by the pump provided in the drainage system pipe, it is possible to freely determine the installation position of the prefilter 5, the high-performance filter 6 and other devices.

なお、上記の説明では、栽培床2の構造について詳述しなかったが、上記の栽培システム1は、次のような構造の栽培床を適用可能である。図11は、栽培床2の構造のバリエーションを示した図である。上記栽培システム1に適用可能な栽培床2の構造としては、例えば、水槽内に溜まる養液に植物の根が浮遊するように構成される灌液水耕のタイプ(図11(A))、水槽内の底面に薄膜状に溜まる養液に植物の根が浸るように構成されるNFT(Nutrient Film Technique)のタイプ(図11(B))、排水用の溝を形成する
発泡スチロール製の板の上にマット状のロックウールマットが敷かれ、その上に植物が根を広げたロックウールポットを載せて灌水チューブで養液を供給するロックウール耕のタイプ(図11(C))、その他各種の栽培床が適用可能である。
Although the structure of the cultivation floor 2 was not described in detail in the above description, the cultivation system 1 described above can be applied to a cultivation bed having the following structure. FIG. 11 is a diagram showing a variation of the structure of the cultivation floor 2. The structure of the cultivation floor 2 applicable to the cultivation system 1 is, for example, a type of irrigation and hydroponic culture in which the roots of plants are suspended in the nutrient solution accumulated in the aquarium (FIG. 11(A)), NFT (Nutrient Film Technique) type (Fig. 11(B)), in which the roots of plants are soaked in a nutrient solution that accumulates in a thin film on the bottom of the aquarium, a styrofoam plate that forms grooves for drainage. A matt rockwool mat is laid on top, a rockwool pot with roots spread on the plant is placed on it, and a nutrient solution is supplied by a irrigation tube (Fig. 11(C)), and various other types. Cultivated beds are applicable.

また、上記の栽培システム1には第1水槽3が備わっていたが、栽培床2が図11(A)に示されるような灌液水耕のタイプの場合、第1水槽3は省略されていてもよい。第1
水槽3が省略される場合、第1水槽3に通じていた給水経路は栽培床2に通じ、第1水槽3内にあったボールタップ弁14は栽培床2内に設けられていることが好ましい。また、第1水槽3が省略される場合、第2水槽8の水が少なくとも高性能フィルタ6経由で栽培床2へ第2ポンプ12で送られるように系統構成されていることが好ましい。
Further, the above-mentioned cultivation system 1 was provided with the first water tank 3, but in the case where the cultivation floor 2 is a type of irrigated hydroponics as shown in FIG. 11(A), the first water tank 3 is omitted. May be. First
When the aquarium 3 is omitted, it is preferable that the water supply path leading to the first aquarium 3 leads to the cultivation floor 2, and the ball tap valve 14 present in the first aquarium 3 is provided in the cultivation floor 2. Further, when the first water tank 3 is omitted, it is preferable that the water in the second water tank 8 is systematically configured to be sent to the cultivation floor 2 by the second pump 12 at least via the high-performance filter 6.

また、上記実施形態の栽培システム1は、栽培床2の養液が規定の水位に保たれる位置に開口が設置された配管を通じてオゾン水が栽培床2から流出するようになっていたため、上記殺菌処理では、通常運転時における養液の水位より上の部分の殺菌が行われない。そこで、例えば、植物の根の上部に設けられたスポンジポッドといった、通常運転時における養液の水位よりも上の部分についても殺菌したい場合、栽培システム1は、以下のように変形してもよい。 Further, in the cultivation system 1 of the above-described embodiment, ozone water is allowed to flow out of the cultivation floor 2 through a pipe having an opening installed at a position where the nutrient solution of the cultivation floor 2 is maintained at a prescribed water level. In the sterilization process, the portion above the water level of the nutrient solution during normal operation is not sterilized. Therefore, for example, when it is desired to sterilize a portion above the water level of the nutrient solution during normal operation, such as a sponge pod provided above the root of the plant, the cultivation system 1 may be modified as follows. ..

図12は、変形例に係る栽培システムの構成図である。本変形例に係る栽培システム1Aは、図12に示すように、栽培床2の養液が規定の水位に保たれる位置に開口が設置された配管に栽培床出口弁18が備わっている。また、栽培床出口弁18へ通ずる配管の開口よりもやや高い適宜の位置、すなわちスポンジポッド等植物の根より上方(通常運転時の液位よりも上側)の高さに開口が設置された配管が第1水槽3へ通じている。その他の構成については上記実施形態の栽培システム1と同様のため、同一の符号を付して説明を省略する。 FIG. 12: is a block diagram of the cultivation system which concerns on a modification. As shown in FIG. 12, the cultivating system 1A according to the present modification includes a cultivating floor outlet valve 18 in a pipe having an opening at a position where the nutrient solution in the cultivating floor 2 is maintained at a prescribed water level. A pipe provided with an opening at an appropriate position slightly higher than the opening of the pipe leading to the cultivation floor outlet valve 18, that is, above the root of a plant such as a sponge pod (above the liquid level during normal operation). Leads to the first water tank 3. The other configurations are similar to those of the cultivation system 1 of the above-described embodiment, and thus the same reference numerals are given and the description thereof will be omitted.

本変形例に係る栽培システム1Aでは、殺菌処理時に栽培床ドレン弁11と栽培床出口弁18が閉じられていると、栽培床2のオゾン水の水位が通常運転時よりも高くなる。よって、本変形例に係る栽培システム1Aであれば、通常運転時における養液の水位より上の部分の殺菌を行うことが可能になる。 In the cultivation system 1A according to the present modification, if the cultivation floor drain valve 11 and the cultivation floor outlet valve 18 are closed during the sterilization process, the water level of ozone water on the cultivation floor 2 becomes higher than that during normal operation. Therefore, with the cultivation system 1A according to this modification, it is possible to sterilize a portion above the water level of the nutrient solution during normal operation.

<実験結果>
ところで、上記実施形態に係る栽培システム1の性能を確認するために実験を行ったので、その結果を以下に示す。
<Experimental results>
By the way, an experiment was conducted to confirm the performance of the cultivation system 1 according to the above-mentioned embodiment, and the results are shown below.

本実験では、レタス系の数種の野菜を栽培床2で栽培することにしており、野菜の株数は72株、循環経路7を循環させる養液の総量は約80リットルとした。また、殺菌処理時に循環経路7を循環させるオゾン水のオゾン濃度は約0.3ppm、オゾン水の水量は約80リットル、オゾン水の循環時間は2時間とした。なお、比較検証を行うために比較例として栽培した野菜は、上記実施形態で行われている殺菌処理と高性能フィルタ6を省いた点以外、全て同じ条件で栽培した。 In this experiment, several kinds of lettuce-based vegetables were cultivated on the cultivation floor 2. The number of vegetable strains was 72, and the total amount of the nutrient solution circulating through the circulation route 7 was about 80 liters. Further, the ozone concentration of the ozone water circulating through the circulation path 7 during the sterilization treatment was about 0.3 ppm, the amount of ozone water was about 80 liters, and the circulation time of ozone water was 2 hours. In addition, all the vegetables cultivated as a comparative example for performing the comparative verification were cultivated under the same conditions except that the sterilization treatment and the high-performance filter 6 performed in the above-described embodiment were omitted.

本実験では、栽培床2内の接水面における菌の濃度が、殺菌処理前に1×10CFU/cmであったが、殺菌処理後に9×10CFU/cmへ低下した。また、本実験では、殺菌処理時、栽培床2の野菜がオゾン水に2時間浸漬されることになるが、殺菌処理後の成長に悪影響は見られず、逆に根の張り方が明らかに旺盛になって収穫量が比較例よりも大幅に多かった。 In this experiment, the concentration of bacteria in contact the water surface in the cultivation bed 2, but was 1 × 10 8 CFU / cm 2 before the sterilization process, was decreased after sterilization to 9 × 10CFU / cm 2. In addition, in this experiment, the vegetables on the cultivation floor 2 were soaked in ozone water for 2 hours during the sterilization treatment, but no adverse effect was observed on the growth after the sterilization treatment, and conversely the way of rooting was clearly revealed It became vigorous and the yield was significantly higher than that of the comparative example.

図13は、殺菌処理後に成長した野菜の根の状態を示した図である。実施例の野菜と比較例の野菜を見比べると判るように、殺菌処理後、実施例の野菜は、比較例の野菜よりも根の繁殖が旺盛なことが判る。 FIG. 13: is the figure which showed the state of the root of the vegetable grown after the sterilization process. As can be seen by comparing the vegetables of the example and the vegetables of the comparative example, after the sterilization treatment, the roots of the vegetables of the example are more vigorous than the vegetables of the comparative example.

また、下記の表は、レタス系野菜の一種であるグリーンパタピアとコスレタスの収穫量の比較結果を表している。下記の表を見ると判るように、グリーンパタピアについては実施例の方が比較例より17.8%も収穫量が多く、また、コスレタスについては実施例の方が比較例より25.9%も収穫量が多かった。また、実施例の野菜と比較例の野菜を複
数人で試食したところ、試食人の約80%が比較例の野菜よりも実施例の野菜の方が味が良いと回答した。

Figure 0006737602
In addition, the table below shows the comparison results of the yields of green patapier, a type of lettuce vegetable, and cos lettuce. As can be seen from the table below, the yield of Green Patapia was 17.8% higher in the Example than in the Comparative Example, and the cos lettuce was 25.9% in the Example than the Comparative Example. The harvest was also high. Further, when the vegetables of the example and the vegetables of the comparative example were sampled by a plurality of people, about 80% of the samplers answered that the vegetables of the examples had a better taste than the vegetables of the comparative example.
Figure 0006737602

本実験により、上記実施形態の栽培システム1は、養液の成分を変質させないで病原菌を除去できるに留まらず、栽培物の収穫量も驚異的に増大させることができることが判る。なお、栽培物の成長が旺盛になると、栽培システム1が通常運転中に養液へ補充すべき養分の補充量が少々増えることになるが、栽培システム1を運用する際の主たるコストは人件費と光熱費であるから、収穫量の増大による売上の増大は利益率の向上に大きく寄与することになる。 From this experiment, it is understood that the cultivation system 1 of the above-described embodiment is not only capable of removing the pathogenic bacteria without deteriorating the components of the nutrient solution, but also capable of surprisingly increasing the yield of the cultivation product. Note that when the growth of the cultivated product becomes vigorous, the amount of nutrients to be added to the nutrient solution during the normal operation of the cultivating system 1 increases a little, but the main cost when operating the cultivating system 1 is the labor cost. Therefore, the increase in sales due to the increase in the amount of harvest will greatly contribute to the improvement of the profit margin.

ところで、本実験では、殺菌処理に用いるオゾン水のオゾン濃度を約0.3ppmにしているが、上記実施形態の栽培システム1に用いるオゾン水のオゾン濃度は、0.05〜0.5ppmの範囲内であれば、栽培床2等に残留する病原菌を殺菌できる。また、本実験では、殺菌処理時のオゾン水の循環時間を約2時間にしていたが、オゾン水の循環時間は、オゾン水のオゾン濃度や栽培物の成長速度、栽培システム1を構成する機器類の大きさ等に応じて、例えば5分から6時間程度の範囲内に設定されることが好ましい。また、本実験や上記実施形態ではオゾン水を製造するための原水の性質等について言及しなかったが、オゾンの分解速度は水質や温度、pH値に大きく依存するため、例えば、普通の水からオゾン水を製造する場合、オゾン水の原水のpH値は8.5以下が望ましく、より好ましくは7.5以下である。 By the way, in this experiment, the ozone concentration of the ozone water used for the sterilization treatment is set to about 0.3 ppm, but the ozone concentration of the ozone water used for the cultivation system 1 of the above embodiment is in the range of 0.05 to 0.5 ppm. Within, it is possible to sterilize the pathogenic bacteria remaining on the cultivation floor 2 and the like. In this experiment, the circulation time of ozone water during sterilization treatment was set to about 2 hours. It is preferably set within a range of, for example, about 5 minutes to 6 hours depending on the size of the class. In addition, although the nature of raw water for producing ozone water and the like were not mentioned in this experiment and the above-mentioned embodiment, since the decomposition rate of ozone greatly depends on water quality, temperature, and pH value, for example, from ordinary water When ozone water is produced, the pH value of the raw water of the ozone water is preferably 8.5 or less, more preferably 7.5 or less.

1,1A・・栽培システム;2・・栽培床;3・・第1水槽;4・・第1ポンプ;5・・プレフィルタ;6・・高性能フィルタ;7・・循環経路;8・・第2水槽(「貯留槽」に相当);9・・水槽ドレン弁;10・・フィルタドレン弁;11・・栽培床ドレン弁;12・・第2ポンプ;13・・水槽排水弁;14・・ボールタップ弁;15・・第1給水弁;16・・第2給水弁;17・・センサ;18・・栽培床出口弁 1, 1A・・Cultivation system; 2・・Cultivation floor; 3・・First water tank; 4・・First pump; 5・・Pre-filter; 6・・High-performance filter; 7・・Circulation path; 8・・Second water tank (corresponding to "reservoir"); 9... water tank drain valve; 10... filter drain valve; 11... cultivation bed drain valve; 12... second pump; 13... water tank drain valve; 14...・Ball tap valve; 15 ・・First water supply valve; 16 ・・Second water supply valve; 17 ・・Sensor; 18 ・・Cultivation bed outlet valve

Claims (7)

植物が栽培される栽培床と、
前記栽培床を経由する養液の循環経路と、
前記循環経路に設けられる循環ポンプと、
前記循環経路および前記栽培床の養液全量を貯留可能な容量を有する貯留槽と、
前記循環経路および前記栽培床の養液が前記貯留槽に貯留されている場合に、前記循環経路へ殺菌成分の薬液を流入出させる薬液給排出手段と、
前記循環経路内の薬液を前記循環ポンプにより循環させる循環手段と、
前記貯留槽から前記循環経路へ返送される養液から菌を除去可能な、前記貯留槽から前記栽培床へ至る経路の途中にあるフィルタと、を備える、
栽培システム。
A cultivation floor on which plants are cultivated,
A circulation route of the nutrient solution via the cultivation bed,
A circulation pump provided in the circulation path;
A storage tank having a capacity capable of storing the entire amount of the nutrient solution of the circulation path and the cultivation bed,
When the circulation path and the nutrient solution of the cultivation bed are stored in the storage tank, a chemical solution supply/discharge means for causing a chemical solution of a sterilizing component to flow in and out of the circulation path,
Circulation means for circulating the chemical liquid in the circulation path by the circulation pump;
It is possible to remove bacteria from the nutrient solution returned from the storage tank to the circulation path, and a filter in the middle of the path from the storage tank to the cultivation bed,
Cultivation system.
前記養液から菌を除去可能なフィルタを介して前記循環経路から前記貯留槽へ養液を送る、
請求項1の栽培システム。
Sending the nutrient solution from the circulation path to the storage tank through a filter capable of removing bacteria from the nutrient solution,
The cultivation system according to claim 1.
前記薬液給排出手段は、前記循環経路に備わる水槽を通じて前記循環経路へ殺菌成分の薬液を流入出させる、
請求項1または2に記載の栽培システム。
The chemical liquid supply/discharge means causes a chemical liquid of a sterilizing component to flow in and out of the circulation path through a water tank provided in the circulation path,
The cultivation system according to claim 1 or 2.
前記栽培システムは、前記循環経路のうち前記栽培床から前記循環ポンプへ至る経路を通じて前記貯留槽の養液を前記循環経路へ返送させる養液返送手段を備える、
請求項1から3の何れか一項に記載の栽培システム。
The cultivation system includes a nutrient solution returning means for returning the nutrient solution in the storage tank to the circulation path through a path from the cultivation floor to the circulation pump in the circulation path.
The cultivation system according to any one of claims 1 to 3.
前記薬液は、pH値が8.5以下の水から製造された0.05〜0.5ppmのオゾン水である、
請求項1からの何れか一項に記載の栽培システム。
The chemical solution is 0.05 to 0.5 ppm ozone water produced from water having a pH value of 8.5 or less,
The cultivation system according to any one of claims 1 to 4 .
植物が栽培される栽培床を含む循環経路の養液全量を貯留槽で貯留する工程と、
前記養液全量が前記貯留槽で貯留された状態で、前記循環経路へ殺菌成分の薬液を流入させて前記薬液を前記循環経路で循環ポンプにより循環させた後に前記循環経路から前記
薬液を流出させる工程と、
養液が貯留された箇所から前記栽培床へ至る経路の途中にある、養液から菌を除去可能なフィルタを通じて、前記循環経路へ養液を返送する工程と、を備える、
栽培方法。
A step of storing the total amount of the nutrient solution in the circulation path including the cultivation floor where the plant is cultivated in the storage tank,
In a state where the whole amount of the nutrient solution is stored in the storage tank, a chemical solution of a sterilizing component is caused to flow into the circulation path, the chemical solution is circulated by a circulation pump in the circulation path, and then the chemical solution is caused to flow out from the circulation path. Process,
In the middle of the route from the location where the nutrient solution is stored to the cultivation bed, through a filter capable of removing bacteria from the nutrient solution, the step of returning the nutrient solution to the circulation path,
Cultivation method.
栽培床を用いて植物を栽培する植物製造方法であって、
植物が栽培される前記栽培床を含む循環経路の養液全量を貯留槽で貯留する工程と、
前記養液全量が前記貯留槽で貯留された状態で、前記循環経路へ殺菌成分の薬液を流入させて前記薬液を前記循環経路で循環ポンプにより循環させた後に前記循環経路から前記薬液を流出させる工程と、
養液が貯留された箇所から前記栽培床へ至る経路の途中にある、養液から菌を除去可能なフィルタを通じて、前記循環経路へ養液を返送する工程と、を備える、
植物製造方法。
A plant manufacturing method for cultivating a plant using a cultivation floor,
A step of storing the total amount of the nutrient solution of the circulation path including the cultivation bed where the plant is cultivated in a storage tank,
In a state where the whole amount of the nutrient solution is stored in the storage tank, a chemical solution of a sterilizing component is caused to flow into the circulation path, the chemical solution is circulated by a circulation pump in the circulation path, and then the chemical solution is caused to flow out from the circulation path. Process,
In the middle of the route from the location where the nutrient solution is stored to the cultivation bed, through a filter capable of removing bacteria from the nutrient solution, the step of returning the nutrient solution to the circulation path,
Plant manufacturing method.
JP2016027621A 2016-02-17 2016-02-17 Cultivation system, cultivation method and plant manufacturing method Active JP6737602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016027621A JP6737602B2 (en) 2016-02-17 2016-02-17 Cultivation system, cultivation method and plant manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016027621A JP6737602B2 (en) 2016-02-17 2016-02-17 Cultivation system, cultivation method and plant manufacturing method

Publications (3)

Publication Number Publication Date
JP2017143779A JP2017143779A (en) 2017-08-24
JP2017143779A5 JP2017143779A5 (en) 2019-03-07
JP6737602B2 true JP6737602B2 (en) 2020-08-12

Family

ID=59680331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016027621A Active JP6737602B2 (en) 2016-02-17 2016-02-17 Cultivation system, cultivation method and plant manufacturing method

Country Status (1)

Country Link
JP (1) JP6737602B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7176365B2 (en) * 2018-11-14 2022-11-22 Jfeエンジニアリング株式会社 Method and apparatus for inhibiting nitrification of nutrient solution
JP7249530B1 (en) 2022-02-08 2023-03-31 株式会社安川電機 Plant cultivation system, plant cultivation method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2615255B2 (en) * 1990-09-14 1997-05-28 エスオーエンジニアリング株式会社 Sterilization method and hydroponic cultivation equipment for cultivation tank etc. in hydroponic cultivation
JP4375591B2 (en) * 2000-06-09 2009-12-02 独立行政法人農業・食品産業技術総合研究機構 Hydroponics equipment
JP5318713B2 (en) * 2009-09-14 2013-10-16 株式会社キッツ Water quality adjustment system
WO2014066844A2 (en) * 2012-10-26 2014-05-01 GreenTech Agro LLC Self-sustaining artificially controllable environment within a storage container or other enclosed space
JP2014143926A (en) * 2013-01-28 2014-08-14 Mebiol Kk Plant cultivation system and plant cultivation method

Also Published As

Publication number Publication date
JP2017143779A (en) 2017-08-24

Similar Documents

Publication Publication Date Title
US10681879B2 (en) System, apparatus and method for growing marijuana
Ferrarezi et al. Subirrigation: Historical overview, challenges, and future prospects
KR101192139B1 (en) Vertical type plant cultivating device for water culture
CN106857220B (en) Tide type soilless culture groove
KR101375709B1 (en) Nutrient Solution Circular Supply System
JP5761821B2 (en) Hydroponics system
US20210059140A1 (en) Hydroponic grow system
KR101941891B1 (en) Aquaponics System for Ginseng Cultivation
JP6737602B2 (en) Cultivation system, cultivation method and plant manufacturing method
CN104663560A (en) Laboratory simulation ocean acidification system
JP6460912B2 (en) Plant growing apparatus and plant growing method for growing plants in a ship
CN110402805B (en) Hydroponic system and hydroponic method suitable for close planting type plants
JPH08131018A (en) Filtering apparatus for water tank, filtering method, water culture apparatus and water culture method
KR101798479B1 (en) Circulating hydroponic system
KR20110010141A (en) Auto aquiculture device available water load of a build method
KR101265571B1 (en) Cultivating system using mineral water and carbon grains
CN204443704U (en) A kind of laboratory simulation Ocean acidification system
KR101740571B1 (en) Circulation type deep flow technique apparatus for producing seed potatoes and cultivation method using the same
KR20090017243A (en) Hydroponic recyclic system using the visible light-reactive titanium oxide photocatalyst for sterilization and purification of nutrient solution
US20160088809A1 (en) Methods of cannabis cultivation using a capillary mat
KR101917364B1 (en) Method for dehiscing ginseng seed
CN110615537B (en) Three-dimensional resistance control ecological purification system for agricultural non-point source pollution wastewater and construction method
Berry et al. Plant culture in hydroponics
KR101578925B1 (en) circulating hydroponic culture method using automatic supplying water for cultivating rose
KR101402744B1 (en) Apparatus for hydroponics development of grafted cactus using bottom matt without bench and method thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200716

R150 Certificate of patent or registration of utility model

Ref document number: 6737602

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150