WO2018143163A1 - ジホスホメバロン酸デカルボキシラーゼ変異体、及びそれを用いたオレフィン化合物の製造方法 - Google Patents

ジホスホメバロン酸デカルボキシラーゼ変異体、及びそれを用いたオレフィン化合物の製造方法 Download PDF

Info

Publication number
WO2018143163A1
WO2018143163A1 PCT/JP2018/002875 JP2018002875W WO2018143163A1 WO 2018143163 A1 WO2018143163 A1 WO 2018143163A1 JP 2018002875 W JP2018002875 W JP 2018002875W WO 2018143163 A1 WO2018143163 A1 WO 2018143163A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
diphosphomevalonate decarboxylase
seq
site
acid sequence
Prior art date
Application number
PCT/JP2018/002875
Other languages
English (en)
French (fr)
Inventor
涼子 折下
智量 白井
高橋 和弘
日座 操
祐介 田邊
Original Assignee
国立研究開発法人理化学研究所
日本ゼオン株式会社
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人理化学研究所, 日本ゼオン株式会社, 横浜ゴム株式会社 filed Critical 国立研究開発法人理化学研究所
Priority to JP2018565547A priority Critical patent/JP7054092B2/ja
Priority to EP18747462.2A priority patent/EP3578649A4/en
Priority to US16/481,585 priority patent/US10988751B2/en
Priority to CN201880009364.2A priority patent/CN110234761B/zh
Publication of WO2018143163A1 publication Critical patent/WO2018143163A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/02Preparation of hydrocarbons or halogenated hydrocarbons acyclic
    • C12P5/026Unsaturated compounds, i.e. alkenes, alkynes or allenes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/007Preparation of hydrocarbons or halogenated hydrocarbons containing one or more isoprene units, i.e. terpenes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/02Preparation of hydrocarbons or halogenated hydrocarbons acyclic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/01033Diphosphomevalonate decarboxylase (4.1.1.33), i.e. mevalonate-pyrophosphate decarboxylase

Definitions

  • the present invention relates to a method for producing an olefin compound using a diphosphomevalonate decarboxylase mutant.
  • the present invention also relates to the mutant and a method for producing the mutant, and further relates to a DNA encoding the mutant and a vector into which the DNA is inserted.
  • the present invention also relates to a method for producing an olefin compound using a host cell into which the DNA or the vector has been introduced, and further for promoting the production of an olefin compound comprising the mutant, the DNA or the vector. Also related to agents.
  • Olefin compounds such as isoprene are extremely useful as raw materials for various synthetic polymers such as synthetic rubber, and these compounds can be obtained by chemical methods such as petroleum fractionation.
  • Patent Documents 1 to 3 a method for producing isoprene and the like using a mutation introduced into diphosphomevalonate decarboxylase involved in the mevalonate pathway and the like has been disclosed.
  • the present inventors also introduced one or more amino acid mutations into diphosphomevalonate decarboxylase to change the substrate specificity of the enzyme (diphosphomevalonate decarboxylase mutant) from the original 5-diphosphomevalonate to 3-phosphate. Attempts have been made to produce isoprene and the like by changing to those for hydroxy-3-methylpent-4-enotate and the like.
  • diphosphomevalonate decarboxylase (R74HT209R), in which arginine at position 74 is replaced with histidine and threonine at position 209 is replaced with arginine, is by far the most related to the generation of isoprene among about 200 mutants.
  • the present inventors have revealed that high catalytic activity is exhibited (Non-patent Document 1).
  • the present invention has been made in view of the above problems, and an object thereof is to provide an enzyme capable of producing an olefin compound with high productivity.
  • the inventors of the present invention have made extensive studies to obtain a diphosphomevalonate decarboxylase mutant that exhibits high catalytic activity in the production of isoprene, in addition to the above-mentioned R74HT209R. As a result, it was revealed that diphosphomevalonate decarboxylase (S153XT209X) in which serine at position 153 and threonine at position 209 of diphosphomevalonate decarboxylase were each substituted with other amino acids had high catalytic activity to produce isoprene. I made it.
  • S153XT209X has a catalytic activity that is about 4 times higher than that of R74HT209R, which is the only one obtained previously. Made clear.
  • X as described above means another amino acid substituted at each site (for example, “X” in “S153X” means an amino acid other than serine, and T209X “X” means an amino acid other than threonine).
  • the present inventors further substituted glycine at position 152 with another amino acid in the above-mentioned S153XT209X. As a result, it was found that the catalytic activity was further improved by 1.3 times. Furthermore, in this triple mutant (G152XS153XT209X), it was clarified that the catalytic activity was further improved by more than 3 times by substituting arginine at position 74 with another amino acid.
  • R 1 and R 2 each independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 15 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a halogen atom.
  • the alkyl group and alkenyl group may be each optionally substituted with a hydroxy group and / or a carboxy group)].
  • a method for producing an olefin compound comprising a step of culturing a host cell into which DNA or a vector containing the DNA has been introduced, and collecting the olefin compound produced in the host cell and / or culture thereof.
  • position 153 of the amino acid sequence of SEQ ID NO: 2 or another amino acid obtained by mutating serine corresponding to the site is aspartic acid or glutamic acid, ⁇ 1> or The manufacturing method as described in ⁇ 2>.
  • position 209 of the amino acid sequence shown in SEQ ID NO: 2 or another amino acid obtained by mutating threonine corresponding to the site is aspartic acid, ⁇ 1> to ⁇ 3 > The manufacturing method as described in any one of these.
  • the diphosphomevalonate decarboxylase is a diphosphomevalonate decarboxylase in which the glycine corresponding to position 152 of the amino acid sequence shown in SEQ ID NO: 2 or the site thereof is mutated to another amino acid.
  • the manufacturing method as described in any one of ⁇ 4>.
  • ⁇ 6> The production according to ⁇ 5>, wherein, in the diphosphomevalonate decarboxylase, position 152 of the amino acid sequence shown in SEQ ID NO: 2 or another amino acid obtained by mutating glycine corresponding to the site is leucine. Method.
  • the diphosphomevalonate decarboxylase is a diphosphomevalonate decarboxylase in which position 74 of the amino acid sequence shown in SEQ ID NO: 2 or arginine corresponding to the site is mutated to another amino acid, ⁇ 5> or The manufacturing method as described in ⁇ 6>.
  • position 74 of the amino acid sequence shown in SEQ ID NO: 2 or other amino acid obtained by mutating arginine corresponding to the site is tyrosine, histidine, glutamine, or asparagine, 7>.
  • ⁇ 9> The production method according to any one of ⁇ 1> to ⁇ 8>, wherein the olefin compound is isoprene.
  • ⁇ 10> The production method according to any one of ⁇ 1> to ⁇ 8>, wherein the olefin compound is isobutene.
  • ⁇ 11> A method for producing diphosphomevalonate decarboxylase with enhanced catalytic activity for producing an olefin compound, wherein diphosphomevalonate decarboxylase is serine corresponding to position 153 of the amino acid sequence shown in SEQ ID NO: 2 or the site. And 209 or a step of mutating threonine corresponding to the site to another amino acid, respectively.
  • ⁇ 14> In the above-mentioned diphosphomevalonate decarboxylase, further comprising a step of mutating glycine corresponding to position 152 of the amino acid sequence shown in SEQ ID NO: 2 or the site to another amino acid, among ⁇ 11> to ⁇ 13>
  • the manufacturing method as described in any one of. ⁇ 15> The production according to ⁇ 14>, wherein in the diphosphomevalonate decarboxylase, position 152 of the amino acid sequence shown in SEQ ID NO: 2 or another amino acid obtained by mutating glycine corresponding to the site is leucine.
  • ⁇ 16> The method according to ⁇ 14> or ⁇ 15>, further comprising a step of mutating arginine corresponding to position 74 of the amino acid sequence shown in SEQ ID NO: 2 or the site to another amino acid in the diphosphomevalonate decarboxylase. Manufacturing method.
  • position 74 of the amino acid sequence of SEQ ID NO: 2 or other amino acid obtained by mutating arginine corresponding to the site is tyrosine, histidine, glutamine, or asparagine, 16>.
  • ⁇ 18> The production method according to any one of ⁇ 11> to ⁇ 17>, wherein the olefin compound is isoprene.
  • ⁇ 19> The production method according to any one of ⁇ 11> to ⁇ 17>, wherein the olefin compound is isobutene.
  • ⁇ 20> A diphosphomevalonate decarboxylase in which the serine corresponding to position 153 of the amino acid sequence of SEQ ID NO: 2 or serine corresponding to the site and the threonine corresponding to position 209 or the site are each mutated to another amino acid.
  • ⁇ 21> The diphosphomevalonate decarboxylase according to ⁇ 20>, wherein the other amino acid obtained by mutating position 153 of the amino acid sequence of SEQ ID NO: 2 or serine corresponding to the site is aspartic acid or glutamic acid.
  • ⁇ 22> The diphosphomevalonate deoxy according to ⁇ 20> or ⁇ 21>, wherein the other amino acid obtained by mutating 209th position of the amino acid sequence of SEQ ID NO: 2 or threonine corresponding to the site is aspartic acid.
  • position 152 of the amino acid sequence shown in SEQ ID NO: 2 or glycine corresponding to the site is mutated to another amino acid. Diphosphomevalonate decarboxylase.
  • ⁇ 24> The diphosphomevalonate decarboxylase according to ⁇ 23>, wherein the other amino acid obtained by mutating glycine corresponding to position 152 of the amino acid sequence of SEQ ID NO: 2 or the site is leucine. ⁇ 25> Furthermore, the diphosphomevalonate decarboxylase according to ⁇ 23> or ⁇ 24>, wherein position 74 of the amino acid sequence shown in SEQ ID NO: 2 or arginine corresponding to the site is mutated to another amino acid.
  • Position 74 of the amino acid sequence shown in SEQ ID NO: 2 or other amino acids obtained by mutating arginine corresponding to the site are tyrosine, histidine, glutamine, asparagine, phenylalanine, serine and alanine (preferably tyrosine, Selected from the group consisting of histidine, glutamine, asparagine, phenylalanine and serine; more preferably tyrosine, histidine, glutamine and asparagine), or tyrosine, histidine, glutamine, asparagine, lysine, glutamic acid, leucine, serine and valine (preferably Tyrosine, histidine, glutamine, asparagine, lysine, glutamic acid and leucine; more preferably tyrosine, histidine, glutamine, asparagine and lysine).
  • tyrosine Selected from the group consisting of histidine, glutamine, asparagine, phenylalan
  • ⁇ 25> The diphosphomevalonate decarboxylase according to ⁇ 25>.
  • ⁇ 27> DNA encoding the diphosphomevalonate decarboxylase according to any one of ⁇ 20> to ⁇ 26>.
  • ⁇ 28> A vector comprising the DNA according to ⁇ 27>.
  • ⁇ 29> A host cell into which the DNA according to ⁇ 27> or the vector according to ⁇ 28> is introduced.
  • ⁇ 30> A method for producing a diphosphomevalonate decarboxylase mutant, comprising culturing the host cell according to ⁇ 29> and collecting a protein expressed in the host cell.
  • ⁇ 31> comprising the diphosphomevalonate decarboxylase according to any one of ⁇ 20> to ⁇ 26>, a DNA encoding the diphosphomevalonate decarboxylase, or a vector having the DNA inserted therein, represented by the following formula (1):
  • R 1 and R 2 each independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 15 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a halogen atom. (The alkyl group and alkenyl group may be each optionally substituted with a hydroxy group and / or a carboxy group)].
  • ⁇ 32> The agent according to ⁇ 31>, wherein the olefin compound is isoprene.
  • ⁇ 33> The agent according to ⁇ 31>, wherein the olefin compound is isobutene.
  • an enzyme capable of producing an olefin compound with high productivity and a method for producing an olefin compound using the enzyme.
  • the vertical axis indicates the relative value calculated by using the amount of isoprene produced by each amino acid variant as the standard (1) in the triple amino acid variant. As a control, the relative value of the amount of isoprene produced by R74HT209R is also shown.
  • shaft shows the relative value which calculated the amount of isobutene produced
  • the relative value of the amount of isobutene produced by R74HT209R is also shown.
  • olefin compound production method 1 As shown in the Examples described later, by substituting serine at position 153 and threonine at position 209 of diphosphomevalonate decarboxylase with other amino acids, the catalytic activity for promoting the following reaction to produce an olefin compound (“olefin compound”) It was also found that the catalytic activity for producing "is improved”.
  • the present invention relates to serine corresponding to the position 153 of the amino acid sequence shown in SEQ ID NO: 2 or the site (hereinafter also simply referred to as “the serine at position 153”) and threonine corresponding to the position 209 or the site (hereinafter referred to as “the serine”).
  • the serine threonine corresponding to the position 209 or the site
  • diphosphomevalonate decarboxylase hereinafter also referred to as “diphosphomevalonate decarboxylase mutant”
  • the manufacturing method of an olefin compound including the process with which the compound represented by this and ATP (adenosine triphosphate) are made to react is provided.
  • the “olefin compound” means a hydrocarbon compound having at least one carbon-carbon double bond, and has a substituent such as a hydroxy group and / or a carboxy group and an atom such as a halogen atom introduced therein. It may be.
  • Examples of such compounds include monoolefin compounds such as isobutene, ethene, propene, 2-methyl-1-butene, isoprenol, 3-hydroxy-3-methyl-4-pentenoic acid, isoprene, butadiene (1,3 -Butadiene), piperylene, 2,3-dimethylbutadiene, 1,3-hexadiene, 2-methyl-1,3-pentadiene, chloroprene, diolefin compounds such as conjugated diene compounds such as 3-methyl-2,4-pentadienoic acid Is mentioned.
  • monoolefin compounds such as isobutene, ethene, propene, 2-methyl-1-butene, isoprenol, 3-hydroxy-3-methyl-4-pentenoic acid, isoprene, butadiene (1,3 -Butadiene), piperylene, 2,3-dimethylbutadiene, 1,3-hexadiene, 2-methyl-1,
  • R 1 and R 2 are not particularly limited, and are each independently a hydrogen atom, having 1 to 10 carbon atoms.
  • An alkyl group, an alkenyl group having 2 to 15 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a halogen atom (the alkyl group and alkenyl group are each independently optionally substituted with a hydroxy group and / or a carboxy group). May be).
  • R 3 , R 4 and R 5 are not particularly limited, and each independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a halogen atom, or 2 to 2 carbon atoms.
  • a substituent selected from the group consisting of 15 alkenyl groups and aryl groups having 6 to 20 carbon atoms is shown.
  • examples of the alkyl group having 1 to 10 carbon atoms include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, s-butyl group, t -Butyl group, n-pentyl group, n-hexyl group, cyclopropyl group, cyclopentyl group, cyclohexyl group, n-heptyl group, n-octyl group, n-decyl group, (cyclohexyl) methyl group, (1-methylcyclohexyl) ) Methyl group, (1-methylcyclopentyl) methyl group, and (1-ethylcyclohexyl) methyl group.
  • Examples of the alkenyl group having 2 to 15 carbon atoms include vinyl group, 1-propenyl group, 2-propenyl group, 2-methyl-2-propenyl group, 3-butenyl group, 5-hexenyl group, and 7-octenyl.
  • Examples of the aryl group having 6 to 20 carbon atoms include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, an acenaphthyl group, a phenanthryl group, and an anthryl group.
  • a halogen atom shows a chlorine atom, a fluorine atom, a bromine atom, and an iodine atom.
  • Such a compound represented by the above formula (1) can be purchased as a commercially available product as shown in Examples described later. Further, those skilled in the art can also synthesize with appropriate reference to known synthesis methods (for example, the method described in Tetrahedron Letters, 1988, Vol. 20, No. 15, pp. 1763 to 1766).
  • reaction conditions for the compound represented by the formula (1) and ATP may be any conditions that promote the reaction and produce an olefin compound, A person skilled in the art can appropriately adjust and set the composition of the reaction solution, the pH of the reaction solution, the reaction temperature, the reaction time, and the like.
  • magnesium ions that are cofactors of diphosphomevalonate decarboxylase are usually added.
  • 1 to 50 mM, preferably 5 to 20 mM may be contained, and the other composition and pH are not particularly limited as long as they do not interfere with the reaction as described above, but are preferably pH 7 to 8 buffer solutions. More preferably, it is a Tris-HCl buffer solution having a pH of 7 to 8.
  • the reaction temperature is not particularly limited as long as the reaction is not hindered, but is usually 20 to 40 ° C., preferably 25 to 37 ° C. Furthermore, the reaction time is not particularly limited as long as it can produce an olefin compound, but is usually 30 minutes to 7 days, and preferably 12 hours to 2 days.
  • the olefin compound produced under such conditions is generally easily vaporized, it can be collected by a known recovery and purification method of volatile gas.
  • sampling methods include gas stripping, fractional distillation, adsorption, desorption, pervaporation, desorption of isoprene adsorbed on the solid phase from the solid phase by heat or vacuum, extraction with a solvent, or chromatography (eg, gas Chromatography).
  • chromatography eg, gas Chromatography
  • Even when the olefin compound to be produced is a liquid, it can be collected by appropriately using known recovery and purification methods (distillation, chromatography, etc.).
  • these methods may be carried out alone or may be carried out in multiple stages by appropriately combining them.
  • ⁇ Olefin compound production method 2> expresses diphosphomevalonate decarboxylase in which serine corresponding to position 153 of the amino acid sequence shown in SEQ ID NO: 2 or serine corresponding to the site and threonine corresponding to position 209 or the site are mutated to other amino acids, respectively.
  • the olefin compound can be produced with high productivity.
  • the culture conditions of the host cell are as described later, but the medium is added with the compound represented by the above formula (1), which is a substrate of diphosphomevalonate decarboxylase, and magnesium ion, which is a cofactor. It is preferable that all of these compounds are added.
  • the culture temperature can be appropriately changed according to the type of host cell to be used, but is usually 20 to 40 ° C., preferably 25 to 37 ° C.
  • the term “culture” refers to a medium obtained by culturing host cells in a medium, containing proliferated host cells, secreted products of the host cells, metabolites of the host cells, and the like. Including their dilutions and concentrates.
  • the collection of olefin compounds from such host cells and / or cultures is not particularly limited, and can be performed using the above-described known recovery and purification methods.
  • the time of collection may be appropriately adjusted according to the type of host cell to be used and may be any time that can produce an olefin compound, but is usually 30 minutes to 7 days, preferably 12 hours to 2 days. is there.
  • diphosphomevalonate decarboxylase mutant used in the above-described method for producing an olefin compound of the present invention will be described.
  • diphosphomevalonate decarboxylase is an enzyme which is also referred to as MVD (Diphosphomevalonate decarboxylase) and is registered as EC number: 4.1.1.33. From 5-diphosphomevalonate and ATP to isopentenyl It is a kind of carboxyl lyase which produces diphosphoric acid, ADP, phosphoric acid and carbon dioxide, catalyzed by the following reaction.
  • the diphosphomevalonate decarboxylase into which the mutation described below is introduced is not particularly limited, and those derived from various organisms can be used.
  • examples of such enzymes include MVD derived from budding yeast (Saccharomyces cerevisiae) (protein consisting of the amino acid sequence described in SEQ ID NO: 2), MVD derived from budding yeast (YJM7 strain) (UniProt accession number: A6ZSB7).
  • MVD (uniprot accession number: protein specified by B3LPK0) derived from budding yeast (RM11-1a strain), MVD (uniprot accession number: B9W6G7) derived from Candida yeast (Candida dubliniensis) ), MVD derived from Pichia pastoris (UniProt accession number: protein specified by C4QX63), division MVD derived from mother (Schizosaccharomyces pombe) (uniprot accession number: protein identified by O139363), MVD derived from ashbia (Ashbya gossypii), protein identified by UniProt accession number: Q751 D8 Hanseni) -derived MVD (uniprot accession number: protein specified by Q6BY07), Kiyota terrestrial discoideum-derived MVD (uniprot accession number: protein specified by Q54YQ9), Aspergillus aspergillus MVD (Un Prot accession number
  • MVD from Japan (UniProt accession number: protein specified by Q6ETS8), MVD from Arabidopsis thaliana (UniProt accession number: protein specified by Q8LB37), Tomato (Solanum lycopersicum) MVD (UniProt accession number: protein specified by A8WBX7), MVD (UniProt accession number: protein specified by A5A7A2) derived from silkworm (Bombyx mori), MVD (UniProt) derived from zebrafish (Danirerio) Accession number: Protein specified by Q5U403), mouse (Mus musc) us) -derived MVD (uniprot accession number: protein specified by Q99JF5 or Q3UYC1), MVD (ratus norvegicus) -derived MVD (uniprot accession number: protein specified by Q62967), bovine (bos taurus) MVD (uniprot accession number
  • MVD derived from Saccharomyces cerevisiae is preferable, and a protein consisting of the amino acid sequence set forth in SEQ ID NO: 2 is more preferable. It should also be understood that changes in the amino acid sequence of a protein can occur due to nucleotide sequence variations in nature.
  • the “diphosphomevalonate decarboxylase” of the present invention may be one in which a mutation is artificially introduced in addition to serine at position 153 and threonine at position 209 of the amino acid sequence shown in SEQ ID NO: 2. . That is, in the “diphosphomevalonate decarboxylase” of the present invention, one or more amino acids are substituted at positions other than positions 153 and 209 in the amino acid sequence of diphosphomevalonate decarboxylase (such as the amino acid sequence described in SEQ ID NO: 2). Also included are “proteins comprising amino acid sequences that are deleted, added and / or inserted”.
  • the “plurality” is not particularly limited, but usually 2 to 80, preferably 2 to 40, more preferably 2 to 20, more preferably 2 to 10 (for example, 2 to 8, 2-4, 2).
  • amino acids at other positions other than position 153 of the amino acid sequence shown in SEQ ID NO: 2 or serine corresponding to the position and 209 or threonine corresponding to the position The mutation is not particularly limited as long as it has a catalytic activity for producing an olefin compound, but as shown in the Examples below, from the viewpoint that the activity tends to be higher, the amino acid sequence described in SEQ ID NO: 2
  • the glycine corresponding to position 152 of the glycine (hereinafter also referred to simply as “glycine at position 152”) is mutated to another amino acid
  • position 74 of the amino acid sequence shown in SEQ ID NO: 2 or Arginine corresponding to this site hereinafter also simply referred to as “position 74 arginine” is also mutated to other amino acids. It is more preferable.
  • the “other amino acid” obtained by mutating serine corresponding to position 153 of the amino acid sequence shown in SEQ ID NO: 2 or the site may be any amino acid other than serine, and is not particularly limited. From the viewpoint of easily exhibiting high catalytic activity in the production of an olefin compound, aspartic acid or glutamic acid is preferable, and glutamic acid is more preferable, as shown in the examples described later.
  • the “other amino acid” obtained by mutating the threonine corresponding to position 209 of the amino acid sequence shown in SEQ ID NO: 2 or the site may be any amino acid other than threonine, and is not particularly limited.
  • aspartic acid is preferred from the viewpoint of easily exhibiting high catalytic activity in the production of olefin compounds.
  • the “other amino acid” obtained by mutating glycine corresponding to position 152 of the amino acid sequence shown in SEQ ID NO: 2 or the site may be any amino acid other than glycine, and is not particularly limited.
  • leucine is preferable from the viewpoint of easily exhibiting high catalytic activity in the production of the olefin compound, as shown in Examples below.
  • the “other amino acid” obtained by mutating the 74th position of the amino acid sequence shown in SEQ ID NO: 2 or the arginine corresponding to the site may be any amino acid other than arginine, and is not particularly limited.
  • the “other amino acid” obtained by mutating the 74th position of the amino acid sequence shown in SEQ ID NO: 2 or the arginine corresponding to the site may be any amino acid other than arginine, and is not particularly limited.
  • tyrosine preferably tyrosine, histidine, glutamine, asparagine, phenylalanine, serine and alanine (more preferably tyrosine, histidine, glutamine, asparagine, phenylalanine and Serine; more preferably tyrosine, histidine, glutamine and asparagine).
  • tyrosine histidine, glutamine, asparagine, lysine, glutamic acid, leucine, serine and valine (more preferably tyrosine, histidine, glutamine, Asparagine, lysine, glutamic acid and leucine; more preferably tyrosine, histidine, glutamine, asparagine and lysine).
  • the “corresponding site” refers to nucleotide and amino acid sequence analysis software (GENETYX-MAC, Sequencher, etc.) or BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi).
  • amino acid sequence described in SEQ ID NO: 2 is aligned with an amino acid sequence such as MVD derived from other varieties, positions 153, 209, and 152 in the amino acid sequence described in SEQ ID NO: 2 are used. Or it is the part which becomes the same row as 74th place.
  • wild-type diphosphomevalonate decarboxylase is a diphosphomevalonic acid before introduction of a mutation in the serine at position 153 and the threonine at position 209 of the amino acid sequence shown in SEQ ID NO: 2, and further, before the aforementioned artificial mutation is introduced.
  • the decarboxylase include diphosphomevalonate decarboxylase derived from various organisms such as the budding yeast and natural variants thereof.
  • Whether or not the diphosphomevalonate decarboxylase mutant has a catalytic activity for producing an olefin compound is determined by, for example, gas chromatography mass spectrometry (GC-MS) directly as shown in the Examples below. It is possible to determine whether the catalytic activity of producing an olefin compound is higher than that of wild-type diphosphomevalonate decarboxylase by comparing with the amount of wild-type diphosphomevalonate decarboxylase. Can be determined.
  • GC-MS gas chromatography mass spectrometry
  • the diphosphomevalonate decarboxylase mutant is 10 times or more (for example, 20 times or more, 30 times or more, 40 times or more) of the wild-type diphosphomevalonate decarboxylase in the catalytic activity for producing an olefin compound.
  • it is 50 times or more (for example, 60 times or more, 70 times or more, 80 times or more, 90 times or more), and 100 times or more (for example, 200 times or more, 300 times or more, 400 times or more) Or more), more preferably 500 times or more (for example, 600 times or more, 700 times or more, 800 times or more, 900 times or more), 1000 times or more (for example, 1100 times or more, 1200 times or more).
  • more, more preferably 1300 times or more, 1400 times or more 1500 times or more (for example, 600 times or more, 1700 or more times, 1800 times or more, and particularly preferably 1900 times or more).
  • the diphosphomevalonate decarboxylase mutant may have other compounds added directly or indirectly. Such addition is not particularly limited, and may be addition at the gene level or chemical addition. Further, the site to be added is not particularly limited, and may be either the amino terminus (hereinafter also referred to as “N-terminus”) or the carboxyl terminus (hereinafter also referred to as “C-terminus”) of the diphosphomevalonate decarboxylase mutant. Or both.
  • the addition at the gene level can be achieved by using a DNA encoding a diphosphomevalonate decarboxylase mutant and a DNA encoding another protein added in a reading frame.
  • the “other protein” added in this manner is not particularly limited, and for the purpose of facilitating purification of the diphosphomevalonate decarboxylase mutant, a polyhistidine (His ⁇ ) tag (tag) protein, FLAG -Tag proteins for purification such as tag proteins (registered trademark, Sigma-Aldrich), glutathione-S-transferase (GST) are preferably used, and for the purpose of facilitating detection of diphosphomevalonate decarboxylase mutants.
  • a tag protein for detection such as a fluorescent protein such as GFP and a chemiluminescent protein such as luciferase is preferably used.
  • Chemical addition may be covalent or non-covalent.
  • the “covalent bond” is not particularly limited.
  • an amide bond between an amino group and a carboxyl group For example, an amide bond between an amino group and a carboxyl group, an alkylamine bond between an amino group and an alkyl halide group, a disulfide bond between thiols, a thiol group and a maleimide group or an alkyl halide. And a thioether bond with the group.
  • the “non-covalent bond” include a biotin-avidin bond.
  • a fluorescent dye such as Cy3 or rhodamine is preferably used. Used.
  • the diphosphomevalonate decarboxylase mutant of the present invention may be used by mixing with other components.
  • other components There is no restriction
  • DNA encoding a diphosphomevalonate decarboxylase mutant will be described. By introducing such DNA, it becomes possible to transform a host cell and produce a diphosphomevalonate decarboxylase mutant in the cell, and thus an olefin compound.
  • the DNA of the present invention may be DNA in which a mutation is artificially introduced into natural DNA, or may be DNA consisting of an artificially designed nucleotide sequence. Furthermore, there is no restriction
  • genomic DNA for example, genomic DNA is extracted from budding yeast, etc., and a genomic library (plasmids, phages, cosmids, BACs, PACs, etc. can be used as vectors) is developed and expanded to diphosphomevalonic acid.
  • cDNA is synthesized based on mRNA extracted from Saccharomyces cerevisiae, and inserted into a vector such as ⁇ ZAP to produce a cDNA library. It can be prepared by performing hybridization or plaque hybridization, or by performing PCR.
  • diaminomevalonate decarboxylase in the amino acid sequence shown in SEQ ID NO: 2 with serine at position 153, threonine at position 209, etc. If there is, it can be carried out by utilizing a known part-specific mutagenesis method.
  • Kunkel method Kunkel, TA, Proc Natl Acad Sci USA, 1985, Vol. 82, No. 2, pages 488-492
  • SOE splicing-by-overlap
  • -Extension)-PCR method Ho, SN, Hunt, HD, Horton, RM, Pullen, JK, and Pease, LR, Gene, 1989, Vol. 77) 51-59).
  • DNA of the present invention can also be chemically synthesized using an automatic nucleic acid synthesizer.
  • the DNA of the present invention is a diphosphomevalonate decarboxylase whose codon is optimized in accordance with the type of the host cell from the viewpoint of further improving the expression efficiency of the encoded diphosphomevalonate decarboxylase mutant in the host cell described below.
  • An embodiment of DNA encoding the mutant may also be employed.
  • the present invention also provides a vector into which the DNA is inserted so that the DNA can be replicated in a host cell.
  • the “vector” exists as a self-replicating vector, that is, an independent entity outside the chromosome, and the replication does not depend on the replication of the chromosome, for example, it can be constructed on the basis of a plasmid.
  • a vector may be one that, when introduced into a host cell, is integrated into the genome of the host cell and replicated together with the chromosome into which it has been integrated.
  • Examples of such vectors include plasmids and phage DNA.
  • Examples of plasmids include plasmids derived from E. coli (pBR322, pBR325, pUC118, pUC119, pUC18, pUC19, etc.), plasmids derived from yeast (YEp13, YEp24, YCp50, etc.), and plasmids derived from Bacillus subtilis (pUB110, pTP5, etc.).
  • Examples of the phage DNA include ⁇ phage (Charon 4A, Charon 21A, EMBL3, EMBL4, ⁇ gt10, ⁇ gt11, ⁇ ZAP, etc.).
  • an insect virus vector such as a baculovirus if the host cell is derived from an insect
  • an animal virus vector such as a T-DNA if it is derived from a plant
  • a retrovirus or an adenovirus vector if derived from an animal, etc. It can also be used as a vector.
  • the vector construction procedure and method of the present invention may be those commonly used in the field of genetic engineering. For example, in order to insert the DNA of the present invention into a vector, first, the purified DNA is cleaved with an appropriate restriction enzyme, inserted into a restriction enzyme site or a multiple cloning site of an appropriate vector, and linked to the vector, etc. Is adopted.
  • the vector of the present invention may be in the form of an expression vector comprising the diphosphomevalonate decarboxylase mutant encoded by the DNA in a state capable of being expressed in a host cell.
  • the “expression vector” according to the present invention in addition to the DNA, a DNA sequence for controlling the expression and a transformed host cell It is desirable to include a genetic marker or the like for selecting. Examples of DNA sequences that control expression include promoters, enhancers, splicing signals, poly A addition signals, ribosome binding sequences (SD sequences), and terminators.
  • the promoter is not particularly limited as long as it exhibits transcriptional activity in the host cell, and can be obtained as a DNA sequence that controls the expression of a gene encoding a protein that is the same or different from the host cell.
  • a DNA sequence that induces expression may be included.
  • IPTG isopropyl- ⁇ -D-thiogalactopyranoside
  • the gene marker in the present invention may be appropriately selected according to the method of selecting transformed host cells. For example, a gene encoding drug resistance and a gene complementary to auxotrophy can be used.
  • DNA or vector of the present invention may be used by mixing with other components.
  • other components There is no restriction
  • the present invention relates to diphosphomevalonate decarboxylase in which serine corresponding to at least position 153 of the amino acid sequence shown in SEQ ID NO: 2 or the site and threonine corresponding to position 209 or the site are mutated to other amino acids, respectively.
  • An agent for reacting a compound represented by the following formula (1) with ATP including a DNA encoding the diphosphomevalonate decarboxylase or a vector into which the DNA is inserted, and promoting the production of an olefin compound: provide.
  • R 1 and R 2 each independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 15 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a halogen atom.
  • the alkyl group and alkenyl group may be each optionally substituted with a hydroxy group and / or a carboxy group)].
  • any agent containing the above-mentioned diphosphomevalonate decarboxylase mutant or the like may be used, but it may be used even if it is mixed with other components.
  • Such other components are not particularly limited, and examples thereof include sterilized water, physiological saline, vegetable oil, surfactants, lipids, solubilizers, buffers, protease inhibitors, DNase inhibitors, and preservatives.
  • the present invention can also provide a kit containing such an agent.
  • the agent may be contained in the form of a host cell described below into which the DNA of the present invention has been introduced and transformed.
  • the compound represented by the above formula (1), the host cell for introducing the DNA of the present invention, the medium for culturing the host cell, and instructions for use thereof May be contained in the kit of the present invention.
  • such a use manual is a manual for utilizing the agent of this invention etc. for the manufacturing method of the above-mentioned olefin compound.
  • the instructions include, for example, experimental methods and conditions of the production method of the present invention, and information on the agent of the present invention (for example, information such as a vector map showing the nucleotide sequence of the vector, diphosphomevalonate decarboxylase mutation, etc. Body sequence information, host cell origin, properties, information on the host cell culture conditions, etc.).
  • the host cell into which the DNA or vector of the present invention is introduced is not particularly limited, and examples thereof include microorganisms (E. coli, budding yeast, fission yeast, Bacillus subtilis, actinomycetes, filamentous fungi, etc.), plant cells, insect cells, and animal cells.
  • microorganisms E. coli, budding yeast, fission yeast, Bacillus subtilis, actinomycetes, filamentous fungi, etc.
  • plant cells insect cells, and animal cells.
  • insect cells and animal cells.
  • the introduction of the DNA or vector of the present invention can also be performed according to a method commonly used in this field.
  • methods for introduction into microorganisms such as Escherichia coli include heat shock method, electroporation method, spheroplast method, lithium acetate method
  • methods for introduction into plant cells include methods using Agrobacterium, Particle gun method, insect cell introduction method using baculovirus and electroporation method, animal cell introduction method including calcium phosphate method, lipofection method, electroporation method Can be mentioned.
  • DNA or the like thus introduced into the host cell may be retained in the host cell by being randomly inserted into the genomic DNA, may be retained by homologous recombination, or may be a vector. For example, it can be replicated and retained as an independent entity outside its genomic DNA.
  • the present invention can also provide a method for producing a diphosphomevalonate decarboxylase mutant, which comprises the steps of culturing the aforementioned host cell and collecting the protein expressed in the host cell.
  • the conditions for “cultivating the host cells” may be any conditions as long as the host cells can produce a diphosphomevalonate decarboxylase mutant, and those skilled in the art can match the type of the host cell, the medium used, and the like.
  • the temperature, the presence or absence of addition of air, the concentration of oxygen, the concentration of carbon dioxide, the pH of the medium, the culture temperature, the culture time, the humidity, and the like can be appropriately adjusted and set.
  • Such a medium only needs to contain something that can be assimilated by the host cell, and includes carbon sources, nitrogen sources, sulfur sources, inorganic salts, metals, peptone, yeast extract, meat extract, casein hydrolyzate, serum, and the like. Listed as inclusions.
  • the medium includes, for example, IPTG for inducing the expression of DNA encoding a diphosphomevalonate decarboxylase mutant, and an antibiotic (for example, ampicillin) corresponding to a drug resistance gene that can be encoded by the vector according to the present invention.
  • an antibiotic for example, ampicillin
  • a nutrient for example, arginine or histidine
  • the host cells are recovered from the medium by filtration, centrifugation, etc. Processed by dissolution, grinding, pressure crushing, etc., ultrafiltration, salting out, solvent precipitation such as ammonium sulfate precipitation, chromatography (eg, gel chromatography, ion exchange chromatography, affinity chromatography), etc.
  • solvent precipitation such as ammonium sulfate precipitation
  • chromatography eg, gel chromatography, ion exchange chromatography, affinity chromatography
  • these purification and concentration methods may be carried out alone or in appropriate combinations and in a multistage manner.
  • the diphosphomevalonate decarboxylase mutant is not limited to the above-described biological synthesis, and can also be produced using the DNA of the present invention and a cell-free protein synthesis system.
  • a cell-free protein synthesis system is not particularly limited, and examples thereof include synthesis systems derived from wheat germ, E. coli, rabbit reticulocytes, and insect cells.
  • those skilled in the art can chemically synthesize diphosphomevalonate decarboxylase mutants using a commercially available peptide synthesizer or the like.
  • the present invention mutates at least position 153 of the amino acid sequence shown in SEQ ID NO: 2 or serine corresponding to the site and position 209 or threonine corresponding to the site to another amino acid.
  • a method for producing diphosphomevalonate decarboxylase having an enhanced catalytic activity for producing an olefin compound, which includes a step, can also be provided.
  • Diphosphomevalonate decarboxylase with enhanced catalytic activity to produce olefinic compounds means that olefinic compounds are produced by introducing mutations into serine at position 153, threonine at position 209, etc. Diphosphomevalonate decarboxylase having high catalytic activity, and the comparison target is usually diphosphomevalonate decarboxylase derived from various organisms such as the budding yeast and natural variants thereof.
  • mutation of other amino acids in diphosphomevalonate decarboxylase can be carried out by modifying the encoded DNA.
  • DNA modification can be appropriately carried out by those skilled in the art using methods known in the art, for example, site-directed mutagenesis and chemical synthesis of DNA based on the modified sequence information. Is possible.
  • mutation of other amino acids can also be introduced using a peptide chemical synthesis method as described above.
  • the present inventors introduced a mutation into the amino acid of diphosphomevalonate decarboxylase (hereinafter also referred to as “MVD”), and the enzyme (diphosphomevalonate decarboxylase).
  • VMD diphosphomevalonate decarboxylase
  • the enzyme diphosphomevalonate decarboxylase
  • the present inventors introduced mutations involving amino acid substitutions at various sites of diphosphomevalonate decarboxylase by the following methods and the like, and prepared a large number of diphosphomevalonate decarboxylase mutants. These mutants were evaluated for their catalytic activity for the production of isoprene using 3-hydroxy-3-methylpent-4-enotate as a substrate.
  • diphosphomevalonate decarboxylase R74HT209R
  • arginine at position 74 is replaced with histidine and threonine at position 209 is replaced with arginine
  • has been found to exhibit extremely high catalytic activity such as a catalytic activity nearly 70 times that of wild-type diphosphomevalonate decarboxylase) (see Non-Patent Document 1).
  • scMVD a protein comprising the amino acid sequence described in SEQ ID NO: 2
  • the wild-type nucleotide sequence encoding it (described in SEQ ID NO: 1 Nucleotide sequence) was modified to take into account codon usage in E. coli.
  • DNA comprising such a modified nucleotide sequence (nucleotide sequence described in SEQ ID NO: 3) was chemically synthesized according to a conventional method.
  • the DNA thus prepared is inserted into the multicloning site (between the NdeI recognition site and the BamHI recognition site) of the pET-22b (+) vector (manufactured by Novagen) to thereby obtain the wild type scMVD.
  • a plasmid vector (scMVD vector) that can be expressed in E. coli was prepared in a form in which a polyhistidine tag was fused to its N-terminus.
  • a primer encoding an amino acid sequence into which each mutation was introduced was designed and synthesized. Then, using the scMVD vector as a template, such a primer and a site-specific mutagenesis kit (product name: site-Direct Mutagenesis Kit, manufactured by Agilent) were used to introduce each mutation according to the protocol attached to the kit.
  • a plasmid vector capable of expressing in Escherichia coli was prepared in a form in which the scMVD was fused with a polyhistidine tag at its N-terminus.
  • ⁇ Preparation of enzyme solution> Each of the plasmid vectors prepared as described above was introduced into Escherichia coli (BL21) by the heat shock method to prepare a transformant expressing wild type scMVD or each scMVD mutant. Subsequently, each of these transformants was cultured overnight in LB medium supplemented with 0.4 mM IPTG and ampicillin. The cultured transformants were collected by centrifugation, and a protein extraction reagent (product name: B-PER, manufactured by Thermo Fisher Scientific) to which DNase I was added was added to lyse the cells.
  • a protein extraction reagent product name: B-PER, manufactured by Thermo Fisher Scientific
  • Each lysate thus obtained was centrifuged, and each obtained supernatant was added to a polyhistidine purification column (product name: TALON (registered trademark) column, manufactured by Clontech).
  • TALON registered trademark
  • an eluate (20 mM Tris-HCl (pH 7.4), 300 mM NaCl, 150 mM imidazole) was added to each column to elute scMVD in which each polyhistidine tag was fused.
  • Each eluate is dialyzed with a buffer solution (20 mM Tris-HCl (pH 7.4), 100 mM NaCl) and then concentrated with an ultrafiltration spin column (product name: Amicon Ultra, manufactured by Millipore) to obtain an enzyme solution.
  • a buffer solution (20 mM Tris-HCl (pH 7.4), 100 mM NaCl
  • an ultrafiltration spin column product name: Amicon Ultra, manufactured by Millipore
  • the enzyme reaction was carried out at 37 ° C., and 72 hours after the start of the reaction, the amount of isoprene produced in the head space of the vial was heated at 50 ° C. for 30 minutes for sample equilibration, and then GC- Measurement was performed by MS (product name: GCMS-QP2010 Ultra, manufactured by Shimadzu Corporation). And the relative value was computed by making the measured value in each obtained mutant into the reference
  • diphosphomevalonate decarboxylase (S153XT209X) in which serine at position 153 and threonine at position 209 of diphosphomevalonate decarboxylase are each substituted with other amino acids has a very high catalytic activity to produce isoprene.
  • FIG. 2 shows the result of calculating the relative value of the measured value of GC-MS in each mutant, using that in G152LS153ET209D as a reference (1). Moreover, the measured value of R74HT209R is also shown.
  • the catalytic activity related to the production of isoprene can be further improved with the further amino acid substitution at position 74 as compared with the triple amino acid mutant.
  • the catalytic activity was improved by at least 1.5 times and at most more than 3 times compared to the triple amino acid mutant.
  • the enzyme reaction is carried out at 37 ° C, and the amount of isobutene produced in the head space of the vial is heated at 50 ° C for 30 minutes for sample equilibration several days after the start of the reaction (about 2 days later). Then, it was measured by GC-MS (product name: GCMS-QP2010 Ultra, manufactured by Shimadzu Corporation). The obtained results are shown in FIG.
  • FIG. 3 shows the result of calculating the relative value of the measured value of GC-MS in each mutant, using that in G152LS153ET209D as a reference (1). Moreover, the measured value of R74HT209R is also shown.
  • the triple amino acid mutant also has higher catalytic activity for isobutene production compared to R74HT209R, as in the case of isoprene production. It was also confirmed that the high catalytic activity can be further improved as compared to the triple amino acid variant with further amino acid substitution at position 74.
  • the catalytic activity in isobutene production was improved by at least 2 times and at most about 7 times as compared with the triple amino acid mutant.
  • an enzyme capable of producing an olefin compound with high productivity and a method for producing an olefin compound using the enzyme.
  • an olefin compound can be produced by biosynthesis regardless of chemical synthesis, so that the burden on the environment is small. Therefore, the present invention is extremely useful in the production of raw materials for various synthetic polymers such as synthetic rubber.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

オレフィン化合物を高い生産性にて製造することを可能とする方法、及び該方法に用いられる酵素を提供することを目的とし、ジホスホメバロン酸デカルボキシラーゼ(MVD)の様々な部位に、アミノ酸置換を伴う変異を導入し、MVDの変異体を多数調製した。そして、それら変異体について、イソプレン等のオレフィン化合物の生成に関する触媒活性を評価した結果、153位のセリン及び209位のスレオニンが各々他のアミノ酸に置換されることによって、前記触媒活性が向上することを見出した。また、更に152位のグリシンを他のアミノ酸に置換することによって、前記変異体の触媒活性は更に向上することを明らかにした。

Description

ジホスホメバロン酸デカルボキシラーゼ変異体、及びそれを用いたオレフィン化合物の製造方法
 本発明は、ジホスホメバロン酸デカルボキシラーゼ変異体を用いたオレフィン化合物の製造方法に関する。また本発明は、前記変異体、及びその製造方法に関し、さらに、前記変異体をコードするDNA、及び該DNAが挿入されているベクターにも関する。また本発明は、前記DNA又は前記ベクターが導入された宿主細胞を用いたオレフィン化合物の製造方法に関し、さらにまた、前記変異体、前記DNA又は前記ベクターを含む、オレフィン化合物の生成を促進するための剤にも関する。
 イソプレン等のオレフィン化合物は、合成ゴム等の様々な合成ポリマーの原料として極めて有用であり、これら化合物は、石油の分留といった化学的方法によって得ることができる。
 しかしながら、このような化学的方法においても、その収率は低く、製造コストがかかり、また時間を要する。さらに、昨今の環境問題を考慮するに、化学的方法に代わって、限られた資源を無駄にすることなく環境に優しい持続可能なオレフィン化合物の製造方法の開発が求められている。
 かかる状況を鑑み、微生物等の代謝経路を利用又は改変して、オレフィン化合物を製造することが試みられている。例えば、メバロン酸経路に関与するジホスホメバロン酸デカルボキシラーゼ等に変異を導入し、当該変異酵素を利用したイソプレン等の製造方法が開示されている(特許文献1~3)。
 また、本発明者らによっても、ジホスホメバロン酸デカルボキシラーゼに1又は複数のアミノ酸変異を導入し、当該酵素(ジホスホメバロン酸デカルボキシラーゼ変異体)の基質特異性を、元来の5-ジホスホメバロン酸から3-ヒドロキシ-3-メチルペント-4-エノテート等に対するものに変更することで、イソプレン等を製造することが試みられている。
 より具体的には、ジホスホメバロン酸デカルボキシラーゼの様々な部位に、アミノ酸置換を伴う変異を導入し、約200のジホスホメバロン酸デカルボキシラーゼの変異体を調製した。そして、それら変異体について、イソプレンの生成に関する触媒活性を、本発明者らは評価した。
 その結果、74位のアルギニンがヒスチジンに置換され、かつ209位のスレオニンがアルギニンに置換されたジホスホメバロン酸デカルボキシラーゼ(R74HT209R)は、約200もの変異体の中で群を抜いてイソプレンの生成に関する極めて高い触媒活性を示すことを、本発明者らは明らかにしている(非特許文献1)。
国際公開第2013/092567号 国際公開第2015/004211号 国際公開第2015/021045号
折下涼子ら、「有用酵素の基質特異性改変とバイオイソプレン生産への応用」、日本農芸化学会大会講演要旨集、vol.2016、p.2J003(2016年3月5日発行)、及びそれに付随するポスター(2016年3月28日公開)
 本発明は、前記課題に鑑みてなされたものであり、オレフィン化合物を高い生産性にて製造することを可能とする酵素を提供することを目的とする。
 本発明者らは、イソプレンの生成において高い触媒活性を示すジホスホメバロン酸デカルボキシラーゼの変異体を、上述のR74HT209Rの他更に得るべく、鋭意研究を重ねた。その結果、ジホスホメバロン酸デカルボキシラーゼの153位のセリン及び209位のスレオニンが各々他のアミノ酸に置換されたジホスホメバロン酸デカルボキシラーゼ(S153XT209X)は、イソプレンを生成する高い触媒活性を有していることを明らかにした。特に、約200もの変異体においてイソプレンの生成に関する極めて高い触媒活性を有する変異体として、先に唯一得られたR74HT209Rと比してなお、S153XT209Xは、更に約4倍以上も高い触媒活性を有していることを明らかにした。
 なお、本願明細書の記載において、上記のような「X」は、各部位において置換される他のアミノ酸を意味する(例えば、「S153X」の「X」はセリン以外のアミノ酸を意味し、T209Xの「X」はスレオニン以外のアミノ酸を意味する)。
 さらに、本発明者らは、前述のS153XT209Xにおいて、更に152位のグリシンも他のアミノ酸に置換した。その結果、前記触媒活性が更に1.3倍も向上することを見出した。さらにまた、この三重変異体(G152XS153XT209X)において、更に74位のアルギニンを他のアミノ酸に置換することによって、前記触媒活性が更に最大で3倍を超えて向上することを明らかにした。
 また、これらジホスホメバロン酸デカルボキシラーゼの変異体は、イソプレンのみならず、イソブテンの生成においても高い触媒活性を示すことを確認し、本発明を完成するに至った。すなわち、本発明は、以下を提供するものである。
 <1> 配列番号:2に記載のアミノ酸配列の153位又は該部位に対応するセリン及び209位又は該部位に対応するスレオニンが、各々他のアミノ酸に変異しているジホスホメバロン酸デカルボキシラーゼの存在下、下記式(1)で表される化合物とATPとを反応させる工程を含む、オレフィン化合物の製造方法
Figure JPOXMLDOC01-appb-C000003
[式(1)中、R及びRは、各々独立に、水素原子、炭素数1~10のアルキル基、炭素数2~15のアルケニル基、炭素数6~20のアリール基又はハロゲン原子を示す(前記アルキル基及びアルケニル基は、各々独立に、ヒドロキシ基及び/又はカルボキシ基によって任意に置換されていてもよい)]。
<2> 配列番号:2に記載のアミノ酸配列の153位又は該部位に対応するセリン及び209位又は該部位に対応するスレオニンが、各々他のアミノ酸に変異しているジホスホメバロン酸デカルボキシラーゼをコードするDNA又は該DNAを含むベクターが導入された宿主細胞を、培養し、該宿主細胞及び/又はその培養物において生成されたオレフィン化合物を採取する工程を含む、オレフィン化合物の製造方法。
<3> 前記ジホスホメバロン酸デカルボキシラーゼにおいて、配列番号:2に記載のアミノ酸配列の153位又は該部位に対応するセリンが変異してなる他のアミノ酸が、アスパラギン酸又はグルタミン酸である、<1>又は<2>に記載の製造方法。
<4> 前記ジホスホメバロン酸デカルボキシラーゼにおいて、配列番号:2に記載のアミノ酸配列の209位又は該部位に対応するスレオニンが変異してなる他のアミノ酸が、アスパラギン酸である、<1>~<3>のうちのいずれか一に記載の製造方法。
<5> 前記ジホスホメバロン酸デカルボキシラーゼが、更に配列番号:2に記載のアミノ酸配列の152位又は該部位に対応するグリシンが他のアミノ酸に変異しているジホスホメバロン酸デカルボキシラーゼである、<1>~<4>のうちのいずれか一に記載の製造方法。
<6> 前記ジホスホメバロン酸デカルボキシラーゼにおいて、配列番号:2に記載のアミノ酸配列の152位又は該部位に対応するグリシンが変異してなる他のアミノ酸が、ロイシンである、<5>に記載の製造方法。
<7> 前記ジホスホメバロン酸デカルボキシラーゼが、更に配列番号:2に記載のアミノ酸配列の74位又は該部位に対応するアルギニンが他のアミノ酸に変異しているジホスホメバロン酸デカルボキシラーゼである、<5>又は<6>に記載の製造方法。
<8> 前記ジホスホメバロン酸デカルボキシラーゼにおいて、配列番号:2に記載のアミノ酸配列の74位又は該部位に対応するアルギニンが変異してなる他のアミノ酸が、チロシン、ヒスチジン、グルタミン又はアスパラギンである、<7>に記載の製造方法。<9> 前記オレフィン化合物がイソプレンである請求項<1>~<8>のうちのいずれか一に記載の製造方法。
<10> 前記オレフィン化合物がイソブテンである請求項<1>~<8>のうちのいずれか一に記載の製造方法。
<11> オレフィン化合物を生成する触媒活性が高められたジホスホメバロン酸デカルボキシラーゼの製造方法であって、ジホスホメバロン酸デカルボキシラーゼにおいて、配列番号:2に記載のアミノ酸配列の153位又は該部位に対応するセリン及び209位又は該部位に対応するスレオニンを、各々他のアミノ酸に変異させる工程を含む、製造方法。
<12> 前記ジホスホメバロン酸デカルボキシラーゼにおいて、配列番号:2に記載のアミノ酸配列の153位又は該部位に対応するセリンが変異してなる他のアミノ酸が、アスパラギン酸又はグルタミン酸である、<11>に記載の製造方法。
<13> 前記ジホスホメバロン酸デカルボキシラーゼにおいて、配列番号:2に記載のアミノ酸配列の209位又は該部位に対応するスレオニンが変異してなる他のアミノ酸が、アスパラギン酸である、<11>又は<12>に記載の製造方法。
<14> 前記ジホスホメバロン酸デカルボキシラーゼにおいて、配列番号:2に記載のアミノ酸配列の152位又は該部位に対応するグリシンを他のアミノ酸に変異させる工程を更に含む、<11>~<13>のうちのいずれか一に記載の製造方法。
<15> 前記ジホスホメバロン酸デカルボキシラーゼにおいて、配列番号:2に記載のアミノ酸配列の152位又は該部位に対応するグリシンが変異してなる他のアミノ酸が、ロイシンである、<14>に記載の製造方法。
<16> 前記ジホスホメバロン酸デカルボキシラーゼにおいて、配列番号:2に記載のアミノ酸配列の74位又は該部位に対応するアルギニンを他のアミノ酸に変異させる工程を更に含む、<14>又は<15>に記載の製造方法。
<17> 前記ジホスホメバロン酸デカルボキシラーゼにおいて、配列番号:2に記載のアミノ酸配列の74位又は該部位に対応するアルギニンが変異してなる他のアミノ酸が、チロシン、ヒスチジン、グルタミン又はアスパラギンである、<16>に記載の製造方法。<18> 前記オレフィン化合物がイソプレンである<11>~<17>のうちのいずれか一に記載の製造方法。
<19> 前記オレフィン化合物がイソブテンである<11>~<17>のうちのいずれか一に記載の製造方法。
<20> 配列番号:2に記載のアミノ酸配列の153位又は該部位に対応するセリン及び209位又は該部位に対応するスレオニンが、各々他のアミノ酸に変異している、ジホスホメバロン酸デカルボキシラーゼ。
<21> 配列番号:2に記載のアミノ酸配列の153位又は該部位に対応するセリンが変異してなる他のアミノ酸が、アスパラギン酸又はグルタミン酸である、<20>に記載のジホスホメバロン酸デカルボキシラーゼ。
<22> 配列番号:2に記載のアミノ酸配列の209位又は該部位に対応するスレオニンが変異してなる他のアミノ酸が、アスパラギン酸である、<20>又は<21>に記載のジホスホメバロン酸デカルボキシラーゼ。
<23> 更に、配列番号:2に記載のアミノ酸配列の152位又は該部位に対応するグリシンが他のアミノ酸に変異している、<20>~<22>のうちのいずれか一に記載のジホスホメバロン酸デカルボキシラーゼ。
<24> 配列番号:2に記載のアミノ酸配列の152位又は該部位に対応するグリシンが変異してなる他のアミノ酸が、ロイシンである、<23>に記載のジホスホメバロン酸デカルボキシラーゼ。
<25> 更に、配列番号:2に記載のアミノ酸配列の74位又は該部位に対応するアルギニンが他のアミノ酸に変異している、<23>又は<24>に記載のジホスホメバロン酸デカルボキシラーゼ。
<26> 配列番号:2に記載のアミノ酸配列の74位又は該部位に対応するアルギニンが変異してなる他のアミノ酸が、チロシン、ヒスチジン、グルタミン、アスパラギン、フェニルアラニン、セリン及びアラニン(好ましくはチロシン、ヒスチジン、グルタミン、アスパラギン、フェニルアラニン、及びセリン;さらに好ましくはチロシン、ヒスチジン、グルタミン及びアスパラギン)からなる群から選ばれる、又は
チロシン、ヒスチジン、グルタミン、アスパラギン、リシン、グルタミン酸、ロイシン、セリン及びバリン(好ましくはチロシン、ヒスチジン、グルタミン、アスパラギン、リシン、グルタミン酸及びロイシン;さらに好ましくは、チロシン、ヒスチジン、グルタミン、アスパラギン及びリシン)からなる群から選ばれる、<25>に記載のジホスホメバロン酸デカルボキシラーゼ。
<27> <20>~<26>のうちのいずれか一に記載のジホスホメバロン酸デカルボキシラーゼをコードするDNA。
<28> <27>に記載のDNAを含むベクター。
<29> <27>に記載のDNA又は<28>に記載のベクターが導入された宿主細胞。
<30> <29>に記載の宿主細胞を培養し、該宿主細胞に発現したタンパク質を採取する工程を含む、ジホスホメバロン酸デカルボキシラーゼ変異体の製造方法。
<31> <20>~<26>のうちのいずれか一に記載のジホスホメバロン酸デカルボキシラーゼ、該ジホスホメバロン酸デカルボキシラーゼをコードするDNA又は該DNAが挿入されているベクターを含む、下記式(1)で表される化合物とATPとを反応させ、オレフィン化合物の生成を促進するための剤
Figure JPOXMLDOC01-appb-C000004
[式(1)中、R及びRは、各々独立に、水素原子、炭素数1~10のアルキル基、炭素数2~15のアルケニル基、炭素数6~20のアリール基又はハロゲン原子を示す(前記アルキル基及びアルケニル基は、各々独立に、ヒドロキシ基及び/又はカルボキシ基によって任意に置換されていてもよい)]。
<32> 前記オレフィン化合物がイソプレンである<31>に記載の剤。
<33> 前記オレフィン化合物がイソブテンである<31>に記載の剤。
 本発明によれば、オレフィン化合物を高い生産性にて製造することを可能とする酵素、並びに当該酵素を用いたオレフィン化合物の製造方法を提供することが可能となる。
ジホスホメバロン酸デカルボキシラーゼの153位のセリン及び209位のスレオニンを各々他のアミノ酸に置換した変異体(S153XT209X)等について、3-ヒドロキシ-3-メチルペント-4-エノテートを基質とするイソプレンの生成に関する酵素活性を解析した結果を示すグラフである。なお、縦軸は、各アミノ酸変異体によって生成されたイソプレン量を、74位のアルギニン及び209位のスレオニンを各々ヒスチジン及びアルギニンに置換したジホスホメバロン酸デカルボキシラーゼの変異体(R74HT209R)におけるそれを基準(1)として算出した相対値を示す。また、図中「S153E」等は、ジホスホメバロン酸デカルボキシラーゼの各変異体を示し、数字は当該酵素においてアミノ酸置換を伴う変異が導入された部位(153位等)を表し、数字の左側のアルファベットは置換される前のアミノ酸(S/セリン等)を表し、数字の右側のアルファベットは置換された後のアミノ酸(E/グルタミン酸等)を表す。 ジホスホメバロン酸デカルボキシラーゼの152位のグリシン、153位のセリン及び209位のスレオニンを各々ロイシン、グルタミン酸及びアスパラギン酸に置換した3重アミノ酸変異体(図中「LED」と表記する)と、更に74位のアミノ酸を他のアミノ酸に置換した4重アミノ酸変異体(図中「R74X_LED」と表記する)とについて、3-ヒドロキシ-3-メチルペント-4-エノテートを基質とするイソプレンの生成に関する酵素活性を解析した結果を示すグラフである。なお、縦軸は、各アミノ酸変異体によって生成されたイソプレン量を、前記3重アミノ酸変異体におけるそれを基準(1)として算出した相対値を示す。また、対照としてR74HT209Rによって生成されたイソプレン量の相対値も示す。 前記3重アミノ酸変異体(図中「LED」と表記する)と、前記4重アミノ酸変異体(図中「R74X_LED」と表記する)とについて、β-ヒドロキシイソ吉草酸を基質とするイソブテンの生成に関する酵素活性を解析した結果を示すグラフである。なお、縦軸は、各アミノ酸変異体によって生成されたイソブテン量を、前記3重アミノ酸変異体におけるそれを基準(1)として算出した相対値を示す。また、対照としてR74HT209Rによって生成されたイソブテン量の相対値も示す。
 <オレフィン化合物の製造方法 1>
 後述の実施例において示すように、ジホスホメバロン酸デカルボキシラーゼの153位のセリン及び209位のスレオニンを各々他のアミノ酸に置換することによって、オレフィン化合物を生成する下記反応を促進する触媒活性(「オレフィン化合物を生成する触媒活性」とも称する)が向上することを見出した。
Figure JPOXMLDOC01-appb-C000005
 したがって、本発明は、配列番号:2に記載のアミノ酸配列の153位又は該部位に対応するセリン(以下、単に「153位のセリン」とも称する)及び209位又は該部位に対応するスレオニン(以下、単に「209位のスレオニン」とも称する)が、各々他のアミノ酸に変異している、ジホスホメバロン酸デカルボキシラーゼ(以下、「ジホスホメバロン酸デカルボキシラーゼ変異体」とも称する)の存在下、前記式(1)で表される化合物とATP(アデノシン三リン酸)とを反応させる工程を含む、オレフィン化合物の製造方法を提供する。
 本発明において「オレフィン化合物」は、炭素間二重結合を少なくとも1つ有する炭化水素化合物を意味し、またヒドロキシ基及び/又はカルボキシ基等の置換基、ハロゲン原子等の原子が導入されているものであってもよい。このような化合物としては、例えば、イソブテン、エテン、プロペン、2-メチル-1-ブテン、イソプレノール、3-ヒドロキシ-3-メチル-4-ペンテン酸等のモノオレフィン化合物、イソプレン、ブタジエン(1,3-ブタジエン)、ピペリレン、2,3-ジメチルブタジエン、1,3-ヘキサジエン、2-メチル-1,3-ペンタジエン、クロロプレン、3-メチル-2,4-ペンタジエン酸といった共役ジエン化合物等のジオレフィン化合物が挙げられる。
 本発明においてオレフィン化合物を製造するための原料となる下記式(1)で表される化合物において、R及びRについては特に制限はなく、各々独立に、水素原子、炭素数1~10のアルキル基、炭素数2~15のアルケニル基、炭素数6~20のアリール基又はハロゲン原子を示す(前記アルキル基及びアルケニル基は、各々独立に、ヒドロキシ基及び/又はカルボキシ基によって任意に置換されていてもよい)。
Figure JPOXMLDOC01-appb-C000006
 また、本発明において、共役ジエン化合物を製造する場合には、以下の反応式に示すように、上記式(1)で表される化合物のより具体的な態様として、下記式(4)で表される化合物が好適に用いられる。
Figure JPOXMLDOC01-appb-C000007
 前記式(4)で表される化合物において、R、R及びRについては特に制限はなく、各々独立に、水素原子、炭素数1~10のアルキル基、ハロゲン原子、炭素数2~15のアルケニル基及び炭素数6~20のアリール基からなる群より選択される置換基を示す。
 また本発明において、炭素数1~10のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基、n-ヘプチル基、n-オクチル基、n-デシル基、(シクロヘキシル)メチル基、(1-メチルシクロヘキシル)メチル基、(1-メチルシクロペンチル)メチル基、(1-エチルシクロヘキシル)メチル基が挙げられる。また、炭素数2~15のアルケニル基としては、例えば、ビニル基、1-プロペニル基、2-プロペニル基、2-メチル-2-プロペニル基、3-ブテニル基、5-ヘキセニル基、7-オクテニル基が挙げられ、炭素数6~20のアリール基としては、例えば、フェニル基、1-ナフチル基、2-ナフチル基、アセナフチル基、フェナントリル基、アントリル基が挙げられる。また、ハロゲン原子は、塩素原子、フッ素原子、臭素原子、ヨウ素原子を示す。
 このような前記式(1)で表される化合物は、後述の実施例において示すように、市販の製品として購入することができる。また、当業者であれば、公知の合成方法(例えば、Tetrahedron Letters、1988年、20巻、15号、1763~1766ページに記載の方法)を適宜参酌しながら、合成することもできる。
 後述のジホスホメバロン酸デカルボキシラーゼ変異体の存在下、前記式(1)で表される化合物とATPとの反応の条件については、当該反応が促進され、オレフィン化合物が生成される条件であればよく、当業者であれば、反応液の組成、反応液のpH、反応温度、反応時間等を適宜調整し、設定することができる。
 例えば、ジホスホメバロン酸デカルボキシラーゼ変異体と、その基質である前記式(1)で表される化合物及びATPとが添加される反応液においては、ジホスホメバロン酸デカルボキシラーゼの補因子であるマグネシウムイオンが、通常1~50mM、好ましくは5~20mM含まれていればよく、その他の組成、pHについては前述のとおり、前記反応を妨げない限り、特に制限はないが、好ましくはpH7~8の緩衝液であり、より好ましくはpH7~8のトリス塩酸緩衝液である。
 また、反応温度としても、前記反応を妨げない限り、特に制限はないが、通常20~40℃であり、好ましくは25~37℃である。さらに、反応時間としては、オレフィン化合物が生成し得る時間であればよく、特に制限はないが、通常30分~7日であり、好ましくは12時間~2日である。
 また、このような条件にて生成されるオレフィン化合物は、大概気化し易いため、揮発性ガスの公知の回収、精製方法により採取することができる。かかる採取方法としては、ガスストリッピング、分留、吸着、脱着、パーベーパレーション、固相に吸着させたイソプレンの熱若しくは真空による固相からの脱着、溶媒による抽出、又はクロマトグラフィー(例えば、ガスクロマトグラフィー)等が挙げられる。また、生成されるオレフィン化合物が液体である場合にも、公知の回収、精製方法(蒸留、クロマトグラフィー等)を適宜利用し、採取することができる。さらに、これらの方法は単独にて行ってもよく、また適宜組み合わせて多段階的に実施し得る。
 <オレフィン化合物の製造方法 2>
 また、配列番号:2に記載のアミノ酸配列の153位又は該部位に対応するセリン及び209位又は該部位に対応するスレオニンが各々他のアミノ酸に変異している、ジホスホメバロン酸デカルボキシラーゼを発現するように形質転換された宿主細胞を、培養することにより、オレフィン化合物を生産性高く製造することができる。したがって、本発明においては、後述のジホスホメバロン酸デカルボキシラーゼ変異体をコードするDNA又はベクターが導入された宿主細胞を培養し、該宿主細胞及び/又はその培養物において生成されたオレフィン化合物を採取する工程を含む、オレフィン化合物の製造方法も提供される。
 宿主細胞の培養条件については、後述のとおりであるが、培地には、ジホスホメバロン酸デカルボキシラーゼの基質である前記(1)式にて表される化合物、補因子であるマグネシウムイオンが添加されていることが好ましく、これら化合物全てが添加されていることがより好ましい。また、培養温度は、用いる宿主細胞の種類に合わせて適宜設計変更し得るが、通常20~40℃であり、好ましくは25~37℃である。
 また、本発明において、「培養物」とは、宿主細胞を培地で培養することによって得られる、増殖した宿主細胞、該宿主細胞の分泌産物及び該宿主細胞の代謝産物等を含有する培地のことであり、それらの希釈物、濃縮物を含む。
 このような宿主細胞及び/又は培養物からのオレフィン化合物の採取についても、特に制限はなく、上述の公知の回収、精製方法を用いて行うことができる。また、採取の時期としては、用いる宿主細胞の種類に合わせて適宜調整され、オレフィン化合物が生成し得る時間であればよいが、通常30分~7日であり、好ましくは12時間~2日である。
 <ジホスホメバロン酸デカルボキシラーゼ変異体>
 次に、上述の本発明のオレフィン化合物の製造方法において用いられる、ジホスホメバロン酸デカルボキシラーゼ変異体について説明する。本発明において「ジホスホメバロン酸デカルボキシラーゼ」とは、MVD(Diphosphomevalonate decarboxylase)とも称され、またEC番号:4.1.1.33として登録されている酵素であり、5-ジホスホメバロン酸及びATPからイソペンテニル二リン酸、ADP、リン酸及び二酸化炭素を生成する、下記反応を触媒とするカルボキシリアーゼの一種である。
Figure JPOXMLDOC01-appb-C000008
 本発明において、後述の変異が導入されるジホスホメバロン酸デカルボキシラーゼとしては、特に制限はなく、様々な生物由来のものを用いることができる。このような酵素としては、例えば、出芽酵母(Saccharomyces cerevisiae)由来のMVD(配列番号:2に記載のアミノ酸配列からなるタンパク質)、出芽酵母(YJM7株)由来のMVD(UniProtアクセッション番号:A6ZSB7にて特定されるタンパク質)、出芽酵母(RM11-1a株)由来のMVD(UniProtアクセッション番号:B3LPK0にて特定されるタンパク質)、カンジダ酵母(Candida dubliniensis)由来のMVD(UniProtアクセッション番号:B9W6G7にて特定されるタンパク質)、ピキア酵母(Pichia pastoris)由来のMVD(UniProtアクセッション番号:C4QX63にて特定されるタンパク質)、分裂酵母(Schizosaccharomyces pombe)由来のMVD(UniProtアクセッション番号:O139363にて特定されるタンパク質)、アシュビア(Ashbya gossypii)由来のMVD(UniProtアクセッション番号:Q751D8にて特定されるタンパク質)、デバリオマイセス ハンセニ(Debaryomyces hanseni)由来のMVD(UniProtアクセッション番号:Q6BY07にて特定されるタンパク質)、キイロタマホコリカビ(Dictyostelium discoideum)由来のMVD(UniProtアクセッション番号:Q54YQ9にて特定されるタンパク質)、コウジカビ(Aspergillus oryzae)由来のMVD(UniProtアクセッション番号:Q2UGF4にて特定されるタンパク質)、エンセファリトゾーン・クニクリ(Encephalitozoon cuniculi)由来のMVD(UniProtアクセッション番号:Q8SRR7にて特定されるタンパク質)、フェオダクチラム(Phaeodactylum tricornutum)由来のMVD(UniProtアクセッション番号:B7S422にて特定されるタンパク質)、パラゴムノキ(Hevea brasiliensis)由来のMVD(UniProtアクセッション番号:A9ZN03にて特定されるタンパク質)、タバコ(Nicotiana langsdorffii x Nicotiana sanderae)由来のMVD(UniProtアクセッション番号:B3F8H5にて特定されるタンパク質)、ムラサキ(Arnebia euchroma)由来のMVD(UniProtアクセッション番号:Q09RL4にて特定されるタンパク質)、ジャポニカ米(Oryza sativa subsp.japonica)由来のMVD(UniProtアクセッション番号:Q6ETS8にて特定されるタンパク質)、シロイヌナズナ(Arabidopsis thaliana)由来のMVD(UniProtアクセッション番号:Q8LB37にて特定されるタンパク質)、トマト(Solanum lycopersicum)由来のMVD(UniProtアクセッション番号:A8WBX7にて特定されるタンパク質)、カイコ(Bombyx mori)由来のMVD(UniProtアクセッション番号:A5A7A2にて特定されるタンパク質)、ゼブラフィッシュ(Danio rerio)由来のMVD(UniProtアクセッション番号:Q5U403にて特定されるタンパク質)、マウス(Mus musculus)由来のMVD(UniProtアクセッション番号:Q99JF5又はQ3UYC1にて特定されるタンパク質)、ドブネズミ(Rattus norvegicus)由来のMVD(UniProtアクセッション番号:Q62967にて特定されるタンパク質)、ウシ(Bos taurus)由来のMVD(UniProtアクセッション番号:Q0P570にて特定されるタンパク質)、ヒト(Homo sapiens)由来のMVD(UniProtアクセッション番号:P53602にて特定されるタンパク質)が挙げられる。これらの中では、出芽酵母由来のMVDが好ましく、配列番号:2に記載のアミノ酸配列からなるタンパク質がより好ましい。また、自然界においてヌクレオチド配列が変異することにより、タンパク質のアミノ酸配列の変化が生じ得ることは理解されたい。
 さらに、本発明の「ジホスホメバロン酸デカルボキシラーゼ」は、配列番号:2に記載のアミノ酸配列の153位のセリン及び209位のスレオニン以外に、人工的に変異が導入されているものであってもよい。すなわち、本発明の「ジホスホメバロン酸デカルボキシラーゼ」には、「ジホスホメバロン酸デカルボキシラーゼのアミノ酸配列(配列番号:2に記載のアミノ酸配列等)の153位及び209位以外において1又は複数のアミノ酸が置換、欠失、付加、及び/又は挿入されたアミノ酸配列からなるタンパク質」も含まれる。ここで「複数」とは、特に制限はないが、通常2~80個、好ましくは2~40個、より好ましくは2~20個、さらに好ましくは2~10個(例えば、2~8個、2~4個、2個)である。
 また、本発明の「ジホスホメバロン酸デカルボキシラーゼ」において、配列番号:2に記載のアミノ酸配列の153位又は該部位に対応するセリン及び209位又は該部位に対応するスレオニン以外の、他の部位におけるアミノ酸変異としては、オレフィン化合物を生成する触媒活性を有する限り特に制限はないが、後述の実施例に示すとおり、当該活性がより高くなる傾向にあるという観点から、配列番号:2に記載のアミノ酸配列の152位又は該部位に対応するグリシン(以下、単に「152位のグリシン」とも称する)が他のアミノ酸に変異していることが好ましく、更に配列番号:2に記載のアミノ酸配列の74位又は該部位に対応するアルギニン(以下、単に「74位のアルギニン」とも称する)も他のアミノ酸に変異していることがより好ましい。
 本発明において、配列番号:2に記載のアミノ酸配列の153位又は該部位に対応するセリンが変異してなる「他のアミノ酸」とは、セリン以外のアミノ酸であれば良く、特に制限はないが、後述の実施例に示すとおり、オレフィン化合物の生成において高い触媒活性を発揮し易いという観点から、好ましくはアスパラギン酸又はグルタミン酸であり、より好ましくはグルタミン酸である。
 また、本発明において、配列番号:2に記載のアミノ酸配列の209位又は該部位に対応するスレオニンが変異してなる「他のアミノ酸」とは、スレオニン以外のアミノ酸であれば良く、特に制限はないが、後述の実施例に示すとおり、オレフィン化合物の生成において高い触媒活性を発揮し易いという観点から、好ましくはアスパラギン酸である。
 さらに、本発明において、配列番号:2に記載のアミノ酸配列の152位又は該部位に対応するグリシンが変異してなる「他のアミノ酸」とは、グリシン以外のアミノ酸であれば良く、特に制限はないが、後述の実施例に示すとおり、オレフィン化合物の生成において高い触媒活性を発揮し易いという観点から、好ましくはロイシンである。
 さらに、本発明において、配列番号:2に記載のアミノ酸配列の74位又は該部位に対応するアルギニンが変異してなる「他のアミノ酸」とは、アルギニン以外のアミノ酸であれば良く、特に制限はないが、後述の実施例に示すとおり、オレフィン化合物の生成において高い触媒活性を発揮し易いという観点から、好ましくは、チロシン、ヒスチジン、グルタミン、アスパラギン、フェニルアラニン、セリン、アラニン、リシン、グルタミン酸、バリン及びロイシンからなる群から選択され、より好ましくは、チロシン、ヒスチジン、グルタミン及びアスパラギンからなる群から選択される。また、例えば、イソプレンの生成において高い触媒活性を発揮し易いという観点から、好ましくは、チロシン、ヒスチジン、グルタミン、アスパラギン、フェニルアラニン、セリン及びアラニン(より好ましくは、チロシン、ヒスチジン、グルタミン、アスパラギン、フェニルアラニン及びセリン;さらに好ましくは、チロシン、ヒスチジン、グルタミン及びアスパラギン)からなる群から選択される。また、例えば、イソブテンの生成において高い触媒活性を発揮し易いという観点から、好ましくは、チロシン、ヒスチジン、グルタミン、アスパラギン、リシン、グルタミン酸、ロイシン、セリン及びバリン(より好ましくは、チロシン、ヒスチジン、グルタミン、アスパラギン、リシン、グルタミン酸及びロイシン;さらに好ましくは、チロシン、ヒスチジン、グルタミン、アスパラギン及びリシン)からなる群から選択される。
 なお、本発明において、「対応する部位」とは、ヌクレオチド及びアミノ酸配列解析ソフトウェア(GENETYX-MAC、Sequencher等)やBLAST(http://blast.ncbi.nlm.nih.gov/Blast.cgi)を利用し、配列番号:2に記載のアミノ酸配列と、他品種に由来するMVD等のアミノ酸配列とを整列させた際に、配列番号:2に記載のアミノ酸配列における153位、209位、152位又は74位と同列になる部位のことである。
 また「野生型のジホスホメバロン酸デカルボキシラーゼ」は、配列番号:2に記載のアミノ酸配列の153位のセリン及び209位のスレオニンにおける変異、更には前述の人工的な変異が導入される前のジホスホメバロン酸デカルボキシラーゼであり、例えば、前記出芽酵母等の様々な生物由来のジホスホメバロン酸デカルボキシラーゼ及びその天然の変異体が挙げられる。
 また、ジホスホメバロン酸デカルボキシラーゼ変異体が、オレフィン化合物を生成する触媒活性を有するか否かは、例えば、後述の実施例に示すとおり、ガスクロマトグラフィー質量分析(GC-MS)にて、直接オレフィン化合物の量を測定することにより判定することができ、さらに野生型のジホスホメバロン酸デカルボキシラーゼにおける量と比較することで、野生型のジホスホメバロン酸デカルボキシラーゼよりもオレフィン化合物を生成する触媒活性が高いか否かも判定することができる。
 本発明において、ジホスホメバロン酸デカルボキシラーゼ変異体は、オレフィン化合物を生成する触媒活性において、野生型のジホスホメバロン酸デカルボキシラーゼに対し、10倍以上(例えば、20倍以上、30倍以上、40倍以上)であることが好ましく、50倍以上(例えば、60倍以上、70倍以上、80倍以上、90倍以上)であることがより好ましく、100倍以上(例えば、200倍以上、300倍以上、400倍以上)であることがさらに好ましく、500倍以上(例えば、600倍以上、700倍以上、800倍以上、900倍以上)であることがより好ましく、1000倍以上(例えば、1100倍以上、1200倍以上、1300倍以上、1400倍以上)であることがより好ましく、1500倍以上(例えば、1600倍以上、1700倍以上、1800倍以上、1900倍以上)であることが特に好ましい。
 また、ジホスホメバロン酸デカルボキシラーゼ変異体は、他の化合物が直接又は間接的に付加されていてもよい。かかる付加としては特に制限はなく、遺伝子レベルでの付加であってもよく、化学的な付加であってもよい。また付加される部位についても特に制限はなく、ジホスホメバロン酸デカルボキシラーゼ変異体のアミノ末端(以下「N末端」とも称する)及びカルボキシル末端(以下「C末端」とも称する)のいずれかであってもよく、その両方であってもよい。遺伝子レベルでの付加は、ジホスホメバロン酸デカルボキシラーゼ変異体をコードするDNAに、他のタンパク質をコードするDNAを読み枠を合わせて付加させたものを用いることにより達成される。このようにして付加される「他のタンパク質」としては特に制限はなく、ジホスホメバロン酸デカルボキシラーゼ変異体の精製を容易にする目的の場合には、ポリヒスチジン(His-)タグ(tag)タンパク質、FLAG-タグタンパク質(登録商標、Sigma-Aldrich社)、グルタチオン-S-トランスフェラーゼ(GST)等の精製用タグタンパク質が好適に用いられ、またジホスホメバロン酸デカルボキシラーゼ変異体の検出を容易にする目的の場合には、GFP等の蛍光タンパク質、ルシフェラーゼ等の化学発光タンパク質等の検出用タグタンパク質が好適に用いられる。化学的な付加は、共有結合であってもよく、非共有結合であってもよい。「共有結合」としては特に制限はなく、例えば、アミノ基とカルボキシル基とのアミド結合、アミノ基とアルキルハライド基とのアルキルアミン結合、チオールどうし間のジスルフィド結合、チオール基とマレイミド基又はアルキルハライド基とのチオエーテル結合が挙げられる。「非共有結合」としては、例えば、ビオチン-アビジン間結合が挙げられる。また、このようにして化学的に付加される「他の化合物」としては、ジホスホメバロン酸デカルボキシラーゼ変異体の検出を容易にする目的の場合には、例えば、Cy3、ローダミン等の蛍光色素が好適に用いられる。
 また、本発明のジホスホメバロン酸デカルボキシラーゼ変異体は、他の成分と混合して用いてもよい。他の成分としては特に制限はなく、例えば、滅菌水、生理食塩水、植物油、界面活性剤、脂質、溶解補助剤、緩衝剤、プロテアーゼ阻害剤、保存剤が挙げられる。
 <ジホスホメバロン酸デカルボキシラーゼの変異体をコードするDNA、及び該DNAを有するベクター>
 次に、ジホスホメバロン酸デカルボキシラーゼ変異体をコードするDNA等について説明する。かかるDNAを導入することによって、宿主細胞の形質を転換し、ジホスホメバロン酸デカルボキシラーゼ変異体を当該細胞において製造させること、ひいてはオレフィン化合物を製造させることが可能となる。
 本発明のDNAは、天然のDNAに人為的に変異が導入されたDNAであってもよく、人工的に設計されたヌクレオチド配列からなるDNAであってもよい。さらに、その形態について特に制限はなく、cDNAの他、ゲノムDNA、及び化学合成DNAが含まれる。これらDNAの調製は、当業者にとって常套手段を利用して行うことが可能である。ゲノムDNAは、例えば、出芽酵母等からゲノムDNAを抽出し、ゲノミックライブラリー(ベクターとしては、プラスミド、ファージ、コスミド、BAC、PACなどが利用できる)を作製し、これを展開して、ジホスホメバロン酸デカルボキシラーゼ遺伝子のヌクレオチド配列(例えば、配列番号:1に記載のヌクレオチド配列)を基に調製したプローブを用いてコロニーハイブリダイゼーションあるいはプラークハイブリダイゼーションを行うことにより調製することが可能である。また、ジホスホメバロン酸デカルボキシラーゼ遺伝子に特異的なプライマーを作製し、これを利用したPCRを行うことによって調製することも可能である。また、cDNAは、例えば、出芽酵母から抽出したmRNAを基にcDNAを合成し、これをλZAP等のベクターに挿入してcDNAライブラリーを作製し、これを展開して、上記と同様にコロニーハイブリダイゼーションあるいはプラークハイブリダイゼーションを行うことにより、また、PCRを行うことにより調製することが可能である。
 そして、このように調製したDNAに、ジホスホメバロン酸デカルボキシラーゼの、配列番号:2に記載のアミノ酸配列の153位のセリン及び209位のスレオニン等を各々他のアミノ酸に置換することは、当業者であれば、公知の部異特異的変異導入法を利用することで行うことができる。部異特異的変異導入法としては、例えば、Kunkel法(Kunkel,T.A.、Proc Natl Acad Sci USA、1985年、82巻、2号、488~492ページ)、SOE(splicing-by-overlap-extention)-PCR法(Ho,S.N.,Hunt,H.D.,Horton,R.M.,Pullen,J.K.,and Pease,L.R.、Gene、1989年、77巻、51~59ページ)が挙げられる。
 また、当業者であれば、ジホスホメバロン酸デカルボキシラーゼの153位のセリン及び209位のスレオニンを各々他のアミノ酸に置換してあるタンパク質をコードするヌクレオチド配列を人工的に設計し、該配列情報に基づき、自動核酸合成機を用いて、本発明のDNAを化学的に合成することもできる。
 無論、これらの方法によれば、ジホスホメバロン酸デカルボキシラーゼにおいて、153位のセリン及び209位のスレオニン以外の他の部位の(例えば、配列番号:2に記載のアミノ酸配列の152位の、配列番号:2に記載のアミノ酸配列の74位の)アミノ酸も、人工的に他のアミノ酸に置換することができる。
 さらに、本発明のDNAは、コードするジホスホメバロン酸デカルボキシラーゼ変異体の発現効率を後述の宿主細胞においてより向上させるという観点から、当該宿主細胞の種類に合わせて、コドンを最適化したジホスホメバロン酸デカルボキシラーゼ変異体をコードするDNAの態様もとり得る。
 また、本発明においては、前述のDNAを宿主細胞内において複製することができるよう、当該DNAが挿入されているベクターも提供される。
 本発明において「ベクター」は、自己複製ベクター、すなわち、染色体外の独立体として存在し、その複製が染色体の複製に依存しない、例えば、プラスミドを基本に構築することができる。また、ベクターは、宿主細胞に導入されたとき、その宿主細胞のゲノム中に組み込まれ、それが組み込まれた染色体と一緒に複製されるものであってもよい。
 このようなベクターとしては、例えば、プラスミド、ファージDNAが挙げられる。また、プラスミドとしては、大腸菌由来のプラスミド(pBR322、pBR325、pUC118、pUC119、pUC18、pUC19等)、酵母由来のプラスミド(YEp13、YEp24、YCp50等)、枯草菌由来のプラスミド(pUB110、pTP5等)が挙げられる。ファージDNAとしてはλファージ(Charon4A、Charon21A、EMBL3、EMBL4、λgt10、λgt11、λZAP等)が挙げられる。さらに、宿主細胞が昆虫由来であれば、バキュロウイルス等の昆虫ウイルスベクターを、植物由来であればT-DNA等、動物由来であればレトロウイルス、アデノウイルスベクター等の動物ウイルスベクターも、本発明のベクターとして用いることもできる。また、本発明のベクター構築の手順及び方法は、遺伝子工学の分野で慣用されているものを用いることができる。例えば、本発明のDNAをベクターに挿入するには、まず、精製されたDNAを適当な制限酵素で切断し、適当なベクターの制限酵素部位又はマルチクローニングサイトに挿入してベクターに連結する方法等が採用される。
 また、本発明のベクターは、前記DNAがコードするジホスホメバロン酸デカルボキシラーゼ変異体を宿主細胞内にて発現可能な状態で含んでなる発現ベクターの形態であってもよい。本発明にかかる「発現ベクター」は、これを宿主細胞に導入してジホスホメバロン酸デカルボキシラーゼ変異体を発現させるために、前記DNAの他に、その発現を制御するDNA配列や形質転換された宿主細胞を選択するための遺伝子マーカー等を含んでいるのが望ましい。発現を制御するDNA配列としては、プロモーター、エンハンサー、スプライシングシグナル、ポリA付加シグナル、リボソーム結合配列(SD配列)及びターミネーター等がこれに含まれる。プロモーターは宿主細胞において転写活性を示すものであれば特に限定されず、宿主細胞と同種若しくは異種のいずれかのタンパク質をコードする遺伝子の発現を制御するDNA配列として得ることができる。また、前記発現を制御するDNA配列以外に発現を誘導するDNA配列を含んでいても良い。かかる発現を誘導するDNA配列としては、宿主細胞が細菌である場合には、イソプロピル-β-D-チオガラクトピラノシド(IPTG)の添加により、下流に配置された遺伝子の発現を誘導することのできるラクトースオペロンが挙げられる。本発明における遺伝子マーカーは、形質転換された宿主細胞の選択の方法に応じて適宜選択されてよいが、例えば薬剤耐性をコードする遺伝子、栄養要求性を相補する遺伝子を利用することができる。
 また、本発明のDNA又はベクターは、他の成分と混合して用いてもよい。他の成分としては特に制限はなく、例えば、滅菌水、生理食塩水、植物油、界面活性剤、脂質、溶解補助剤、緩衝剤、DNase阻害剤、保存剤が挙げられる。
 <オレフィン化合物の生成を促進するための剤>
 上述のとおり、ジホスホメバロン酸デカルボキシラーゼ変異体、該変異体をコードするDNA又は該DNAが挿入されているベクターを用いることにより、下記式(1)で表される化合物とATPとを反応させ、オレフィン化合物の生成を促進することが可能となる。したがって、本発明は、少なくとも配列番号:2に記載のアミノ酸配列の153位又は該部位に対応するセリン及び209位又は該部位に対応するスレオニンが各々他のアミノ酸に変異しているジホスホメバロン酸デカルボキシラーゼ、該ジホスホメバロン酸デカルボキシラーゼをコードするDNA又は該DNAが挿入されているベクターを含む、下記式(1)で表される化合物とATPとを反応させ、オレフィン化合物の生成を促進するための剤も提供する。
Figure JPOXMLDOC01-appb-C000009
[式(1)中、R及びRは、各々独立に、水素原子、炭素数1~10のアルキル基、炭素数2~15のアルケニル基、炭素数6~20のアリール基又はハロゲン原子を示す(前記アルキル基及びアルケニル基は、各々独立に、ヒドロキシ基及び/又はカルボキシ基によって任意に置換されていてもよい)]。
 このような剤としては、上述のジホスホメバロン酸デカルボキシラーゼ変異体等を含むものであれば良いが、他の成分と混合していても用いてもよい。かかる他の成分としては特に制限はなく、例えば、滅菌水、生理食塩水、植物油、界面活性剤、脂質、溶解補助剤、緩衝剤、プロテアーゼ阻害剤、DNase阻害剤、保存剤が挙げられる。
 また、本発明は、このような剤を含むキットをも提供することができる。本発明のキットにおいて、上記剤は、本発明のDNA等が導入され、形質転換された、後述の宿主細胞の態様にて含まれていてもよい。さらに、このような剤の他、前記式(1)で表される化合物、本発明のDNA等を導入するための宿主細胞、該宿主細胞を培養するための培地、及びそれらの使用説明書等が、本発明のキットに含まれていてもよい。また、このような使用説明書は、本発明の剤等を上述のオレフィン化合物の製造方法に利用するための説明書である。説明書は、例えば、本発明の製造方法の実験手法や実験条件、及び本発明の剤等に関する情報(例えば、ベクターのヌクレオチド配列等が示されているベクターマップ等の情報、ジホスホメバロン酸デカルボキシラーゼ変異体の配列情報、宿主細胞の由来、性質、当該宿主細胞の培養条件等の情報)を含むことができる。
 <ジホスホメバロン酸デカルボキシラーゼ変異体をコードするDNA等が導入された宿主細胞>
 次に、本発明のDNA又はベクターが導入された宿主細胞について説明する。前述のDNA又はベクターの導入によって形質転換された宿主細胞を用いれば、ジホスホメバロン酸デカルボキシラーゼ変異体を製造することが可能となり、ひいてはオレフィン化合物を製造させることも可能となる。
 本発明のDNA又はベクターが導入される宿主細胞は特に限定されず、例えば、微生物(大腸菌、出芽酵母、分裂酵母、枯草菌、放線菌、糸状菌等)、植物細胞、昆虫細胞、動物細胞が挙げられるが、比較的安価な培地にて、短時間にて高い増殖性を示し、ひいては生産性高いオレフィン化合物の製造に寄与し得るという観点から、微生物を宿主細胞として利用することが好ましく、大腸菌を利用することがより好ましい。
 また、本発明のDNA又はベクターの導入も、この分野で慣用されている方法に従い実施することができる。例えば、大腸菌等の微生物への導入方法としては、ヒートショック法、エレクトロポレーション法、スフェロプラスト法、酢酸リチウム法が挙げられ、植物細胞への導入方法としては、アグロバクテリウムを用いる方法やパーティクルガン法が挙げられ、昆虫細胞への導入方法としては、バキュロウィルスを用いる方法やエレクトロポレーション法が挙げられ、動物細胞への導入方法としては、リン酸カルシウム法、リポフェクション法、エレクトロポレーション法が挙げられる。
 このようにして宿主細胞内に導入されたDNA等は、宿主細胞内において、そのゲノムDNAにランダムに挿入されることによって保持されてもよく、相同組み換えによって保持されてもよく、またベクターであれば、そのゲノムDNA外の独立体として複製され保持し得る。
 <ジホスホメバロン酸デカルボキシラーゼ変異体の製造方法>
 後述の実施例に示すとおり、本発明のDNA等が導入された宿主細胞を培養することにより、該宿主細胞内にてジホスホメバロン酸デカルボキシラーゼ変異体を製造することができる。したがって、本発明は、前述の宿主細胞を培養し、該宿主細胞に発現したタンパク質を採取する工程を含む、ジホスホメバロン酸デカルボキシラーゼ変異体の製造方法をも提供することができる。
 本発明において、「宿主細胞を培養する」条件は、前記宿主細胞がジホスホメバロン酸デカルボキシラーゼ変異体を製造できる条件であればよく、当業者であれば、宿主細胞の種類、用いる培地等に合わせて、温度、空気の添加の有無、酸素の濃度、二酸化炭素の濃度、培地のpH、培養温度、培養時間、湿度等を適宜調整し、設定することができる。
 かかる培地としては、宿主細胞が資化し得るものが含有されていればよく、炭素源、窒素源、硫黄源、無機塩類、金属、ペプトン、酵母エキス、肉エキス、カゼイン加水分解物、血清等が含有物として挙げられる。また、かかる培地には、例えば、ジホスホメバロン酸デカルボキシラーゼ変異体をコードするDNAの発現を誘導するためのIPTGや、本発明にかかるベクターがコードし得る薬剤耐性遺伝子に対応する抗生物質(例えば、アンピシリン)や、本発明にかかるベクターがコードし得る栄養要求性を相補する遺伝子に対応する栄養物(例えば、アルギニン、ヒスチジン)を添加してもよい。
 そして、このようにして培養した宿主細胞から、「該細胞に発現したタンパク質を採取する」方法としては、例えば、宿主細胞を濾過、遠心分離等により培地から回収し、回収した宿主細胞を、細胞溶解、磨砕処理又は加圧破砕等によって処理し、さらに、限外濾過処理、塩析、硫安沈殿等の溶媒沈殿、クロマトグラフィー(例えば、ゲルクロマトグラフィー、イオン交換クロマトグラフィー、アフィニティークロマトグラフィー)等によって、宿主細胞において発現したタンパク質を精製、濃縮する方法が挙げられる。また、ジホスホメバロン酸デカルボキシラーゼ変異体に、前述の精製タグタンパク質が付加されている場合には、該タグタンパク質が吸着する基質を用いて精製し、採取することもできる。さらに、これらの精製、濃縮方法は単独にて行ってもよく、また適宜組み合わせて多段階的に実施し得る。
 また、ジホスホメバロン酸デカルボキシラーゼ変異体は、上記生物学的合成に限定されることなく、本発明のDNA等及び無細胞タンパク質合成系を用いても製造することができる。かかる無細胞タンパク質合成系としては特に制限はないが、例えば、コムギ胚芽由来、大腸菌由来、ウサギ網状赤血球由来、昆虫細胞由来の合成系が挙げられる。さらに、当業者であれば、市販のペプチド合成機等を用い、ジホスホメバロン酸デカルボキシラーゼ変異体を化学的に合成することもできる。
 また、本発明は、ジホスホメバロン酸デカルボキシラーゼにおいて、少なくとも配列番号:2に記載のアミノ酸配列の153位又は該部位に対応するセリン及び209位又は該部位に対応するスレオニンを各々他のアミノ酸に変異させる工程を含む、オレフィン化合物を生成する触媒活性が高められたジホスホメバロン酸デカルボキシラーゼの製造方法をも提供することができる。
 「オレフィン化合物を生成する触媒活性が高められたジホスホメバロン酸デカルボキシラーゼ」とは、153位のセリン及び209位のスレオニン等に変異が導入されることにより、その導入前と比較してオレフィン化合物を生成する触媒活性が高いジホスホメバロン酸デカルボキシラーゼを意味し、その比較対象は通常、上記出芽酵母等の様々な生物由来のジホスホメバロン酸デカルボキシラーゼ及びその天然の変異体である。
 ジホスホメバロン酸デカルボキシラーゼにおける「他のアミノ酸の変異」導入は、コードするDNAの改変によって行うことができる。「DNAの改変」は、上記のとおり、当業者においては公知の方法、例えば、部位特異的変異誘発法、改変された配列情報に基づくDNAの化学的合成法を用いて、適宜実施することが可能である。また、「他のアミノ酸の変異」導入は、上記のとおり、ペプチドの化学的合成法を用いても行うことができる。
 また、このような変異導入によって、オレフィン化合物を生成する触媒活性が高められたかどうかは、上記のとおり、GC-MS分析等により評価することができる。
 <ジホスホメバロン酸デカルボキシラーゼ変異体の作製及び評価>
 本発明者らは、オレフィン化合物を高い生産性にて製造することを可能とすべく、ジホスホメバロン酸デカルボキシラーゼ(以下「MVD」とも称する)のアミノ酸に変異を導入し、当該酵素(ジホスホメバロン酸デカルボキシラーゼ変異体)の基質特異性を、元来の5-ジホスホメバロン酸から3-ヒドロキシ-3-メチルペント-4-エノテート等に対するものに変更することで、下記式に示すような反応を経て、イソプレン等を製造することを着想した。
Figure JPOXMLDOC01-appb-C000010
 そこで、本発明者らは、以下に示す方法等にて、ジホスホメバロン酸デカルボキシラーゼの様々な部位に、アミノ酸置換を伴う変異を導入し、多数のジホスホメバロン酸デカルボキシラーゼの変異体を調製した。そして、それら変異体について、3-ヒドロキシ-3-メチルペント-4-エノテートを基質とするイソプレンの生成に関する触媒活性とを評価した。
 なお、本発明者らは従前にも、約200のジホスホメバロン酸デカルボキシラーゼのアミノ酸変異体を調製し、3-ヒドロキシ-3-メチルペント-4-エノテートを基質とするイソプレンの生成に関する触媒活性の評価を行っている。そして、その結果、74位のアルギニンがヒスチジンに置換され、かつ209位のスレオニンがアルギニンに置換されたジホスホメバロン酸デカルボキシラーゼ(R74HT209R)は、約200もの変異体の中で群を抜いてイソプレンの生成に関する極めて高い触媒活性を示すこと(野生型のジホスホメバロン酸デカルボキシラーゼに比べ70倍近い触媒活性を示すこと等)を見出している(非特許文献1 参照)。
 <プラスミドベクターの調製>
 先ず、出芽酵母由来のMVD(scMVD、配列番号:2に記載のアミノ酸配列からなるタンパク質)を大腸菌にて効率良く発現させるために、それをコードする野生型ヌクレオチド配列(配列番号:1に記載のヌクレオチド配列)を、大腸菌におけるコドンの使用頻度を考慮して改変した。次いで、かかる改変ヌクレオチド配列(配列番号:3に記載のヌクレオチド配列)からなるDNAを常法に沿って化学合成した。そして、このようにして調製したDNAを、pET-22b(+)ベクター(Novagen社製)のマルチクローニングサイト(NdeI認識サイトとBamHI認識サイトとの間)に挿入することにより、当該野生型のscMVDを、ポリヒスチジンタグをそのN末端に融合させた形態にて、大腸菌において発現可能なプラスミドベクター(scMVDベクター)を調製した。
 次に、各部位におけるアミノ酸置換を伴う変異をscMVDに導入すべく、各変異が導入されたアミノ酸配列をコードするプライマーを設計し、合成した。そして、前記scMVDベクターを鋳型として、このようなプライマーと部位特異的突然変異誘発キット(製品名:site-Direct Mutagenesis Kit、Agilent社製)とを用い、そのキット添付のプロトコルに従って、各変異が導入されたscMVDを、ポリヒスチジンタグをそのN末端に融合させた形態にて、大腸菌において発現可能なプラスミドベクターを調製した。
 <酵素溶液の調製>
 前記のとおり調製したプラスミドベクターを各々、大腸菌(BL21)に、ヒートショック法により導入し、野生型のscMVD又は各scMVD変異体を発現する形質転換体を調製した。次いで、これら形質転換体を各々、0.4mMのIPTGとアンピシリンとを添加したLB培地にて一晩培養した。当該培養後の形質転換体を遠心分離により集菌し、DNaseIを添加したタンパク質抽出試薬(製品名:B-PER、Thermo Fisher Scientific社製)を加え、溶菌した。このようにして得られた各溶菌液に遠心分離を施し、得られた各上清をポリヒスチジン精製用カラム(製品名:TALON(登録商標)カラム、Clontech社製)に添加した。次いで、各カラムに溶出液(20mM Tris-HCl(pH7.4)、300mM NaCl、150mM イミダゾール)を添加し、各ポリヒスチジンタグが融合しているscMVDを溶出させた。そして、各溶出液を緩衝液(20mM Tris-HCl(pH7.4)、100mM NaCl)にて透析した後、限外ろ過スピンカラム(製品名:アミコンウルトラ、ミリポア社製)によって濃縮し、酵素溶液を調製した。また、このようにして調製した溶液中の酵素(ポリヒスチジンタグが融合している、scMVD又はその変異体)の濃度を、タンパク質定量キット(製品名:BCAアッセイキット、TaKaRa社製)を用い、添付のプロトコールに沿って測定した。
 <酵素活性の測定 1>
 3-ヒドロキシ-3-メチルペント-4-エノテートを基質とするイソプレンの合成における、各酵素活性を測定した。先ず、緩衝液(50mM Tris-HCl(pH7.5)、10mM MgCl、100mM KCl)に、0.5mM 3-ヒドロキシ-3-メチルペント-4-エノテートと、5mM ATPとを添加した。次いで、ガスクロマトグラフィー質量分析(GC-MS)用の10mlバイアルに、この反応液2.5mlと、0.5mgの前記酵素とを添加し、その直後にバイアルのキャップを閉め、酵素反応を開始した。当該酵素反応は37℃にて行い、反応を開始してから72時間後にバイアルのヘッドスペース中に生成されたイソプレン量を、サンプル平衡化のために50℃にて30分間加熱した後、GC-MS(製品名:GCMS-QP2010 Ultra、島津製作所社製)によって測定した。そして、得られた各変異体における測定値を、前記R74HT209Rにおけるそれを基準(1)として、相対値を算出した。得られた結果の一部を図1に示す。
 図1に示すとおり、ジホスホメバロン酸デカルボキシラーゼの153位のセリン及び209位のスレオニンが各々他のアミノ酸に置換されたジホスホメバロン酸デカルボキシラーゼ(S153XT209X)は、イソプレンを生成する極めて高い触媒活性を有していることを明らかになった。
 すなわち、約200もの変異体の中からイソプレンの生成に関する極めて高い触媒活性を有する変異体として、従前唯一得られていたR74HT209Rと比してなお、更に約4倍以上も高い触媒活性を有する変異体を、新たに得ることができた。
 なお、図1に示すとおり、ジホスホメバロン酸デカルボキシラーゼの153位のセリンのみを他のアミノ酸に置換しても、R74HT209Rのような高い触媒活性を有する変異体を得ることはできなかった。
 さらに、前述のS153XT209Xにおいて、更に152位のグリシンも他のアミノ酸に置換した3重アミノ酸変異体を調製し、イソプレンの生成に関する触媒活性を評価した。その結果、図1に示すとおり、当該更なるアミノ酸置換に伴い、S153XT209Xと比して約1.3倍、イソプレンの生成に関する触媒活性が向上することも明らかになった。
 さらにまた、前述の3重アミノ酸変異体(152位のグリシン、153位のセリン及び209位のスレオニンが、各々ロイシン、グルタミン酸及びアスパラギン酸に置換されたジホスホメバロン酸デカルボキシラーゼ;G152LS153ET209D)において、更に74位のアルギニンも他のアミノ酸に置換した4重アミノ酸変異体を調製し、イソプレンの生成に関する触媒活性を評価した。得られた結果を図2に示す。
 なお、図2においては、各変異体におけるGC-MSの測定値を、G152LS153ET209Dにおけるそれを基準(1)として、相対値を算出した結果を示す。また、R74HT209Rの測定値も併せて示す。
 図2に示すとおり、74位における更なるアミノ酸置換に伴い、前記3重アミノ酸変異体と比して、イソプレンの生成に関する触媒活性は更に向上し得ることが明らかになった。特に、74位のアルギニンをアスパラギン、グルタミン、ヒスチジン又はチロシンにすることにより、前記3重アミノ酸変異体と比して、触媒活性は少なくとも1.5倍、最大で3倍超、向上した。
 なお、図表には示さないが、74位のアルギニンを、アスパラギン、グルタミン、ヒスチジン及びチロシン以外のアミノ酸に置換した4重変異体の活性も同様に評価した。その結果、いずれも、R74HT209Rよりも高い触媒活性を示すことが確認された。
 <酵素活性の測定 2>
 次に、上述の変異体がイソプレン以外のオレフィン化合物の生成でも利用できることを確認した。すなわち、β-ヒドロキシイソ吉草酸を基質とするイソブテンの合成(下記式に示す反応)における、各酵素活性を以下のようにして評価した。
Figure JPOXMLDOC01-appb-C000011
 先ず、緩衝液(50mM Tris-HCl(pH7.5)、10mM MgCl、100mM KCl)に、0.5mM β-ヒドロキシイソ吉草酸(東京化成工業株式会社製、製品コード:H0701、β-Hydroxyisovaleric Acid)と、5mM ATPとを添加した。そして、GC-MS用の10mlバイアルに、この反応液2.5mlと、10mgの前記酵素とを添加し、その直後にバイアルのキャップを閉め、酵素反応を開始した。当該酵素反応は37℃にて行い、反応を開始してから数日後(約2日後)にバイアルのヘッドスペース中に生成されたイソブテン量を、サンプル平衡化のために50℃にて30分間加熱した後、GC-MS(製品名:GCMS-QP2010 Ultra、島津製作所社製)によって測定した。得られた結果を図3に示す。
 なお、図3においては、各変異体におけるGC-MSの測定値を、G152LS153ET209Dにおけるそれを基準(1)として、相対値を算出した結果を示す。また、R74HT209Rの測定値も併せて示す。
 図3に示すとおり、前記3重アミノ酸変異体は、イソプレン生成の際同様に、R74HT209Rと比して高いイソブテンの生成に関する触媒活性も有していることが確認された。また、その高い触媒活性は、74位における更なるアミノ酸置換に伴い、前記3重アミノ酸変異体と比して更に向上し得ることも確認された。特に、74位のアルギニンをアスパラギン、グルタミン、ヒスチジン又はチロシンにすることにより、前記3重アミノ酸変異体と比して、イソブテン生成における触媒活性は少なくとも2倍、最大で約7倍、向上した。
 なお、図表には示さないが、74位のアルギニンを、アスパラギン、グルタミン、ヒスチジン及びチロシン以外のアミノ酸に置換した4重変異体の活性も同様に評価した。その結果、いずれも、R74HT209Rよりも高い触媒活性を示すことが確認された。
 以上説明したように、本発明によれば、オレフィン化合物を高い生産性にて製造することを可能とする酵素、並びに当該酵素を用いたオレフィン化合物の製造方法を提供することが可能となる。また、本発明によれば、化学合成によらず、生合成によってオレフィン化合物を製造できるため、環境への負荷が少ない。したがって、本発明は、合成ゴム等の様々な合成ポリマーの原料の製造において極めて有用である。
配列番号:3
<223> 大腸菌における発現のためにコドンが最適化された配列

Claims (24)

  1.  配列番号:2に記載のアミノ酸配列の153位又は該部位に対応するセリン及び209位又は該部位に対応するスレオニンが、各々他のアミノ酸に変異しているジホスホメバロン酸デカルボキシラーゼの存在下、下記式(1)で表される化合物とATPとを反応させる工程を含む、オレフィン化合物の製造方法
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、R及びRは、各々独立に、水素原子、炭素数1~10のアルキル基、炭素数2~15のアルケニル基、炭素数6~20のアリール基又はハロゲン原子を示す(前記アルキル基及びアルケニル基は、各々独立に、ヒドロキシ基及び/又はカルボキシ基によって任意に置換されていてもよい)]。
  2.  配列番号:2に記載のアミノ酸配列の153位又は該部位に対応するセリン及び209位又は該部位に対応するスレオニンが、各々他のアミノ酸に変異しているジホスホメバロン酸デカルボキシラーゼをコードするDNA又は該DNAを含むベクターが導入された宿主細胞を、培養し、該宿主細胞及び/又はその培養物において生成されたオレフィン化合物を採取する工程を含む、オレフィン化合物の製造方法。
  3.  前記ジホスホメバロン酸デカルボキシラーゼにおいて、配列番号:2に記載のアミノ酸配列の153位又は該部位に対応するセリンが変異してなる他のアミノ酸が、アスパラギン酸又はグルタミン酸である、請求項1又は2に記載の製造方法。
  4.  前記ジホスホメバロン酸デカルボキシラーゼにおいて、配列番号:2に記載のアミノ酸配列の209位又は該部位に対応するスレオニンが変異してなる他のアミノ酸が、アスパラギン酸である、請求項1~3のうちのいずれか一項に記載の製造方法。
  5.  前記ジホスホメバロン酸デカルボキシラーゼが、更に配列番号:2に記載のアミノ酸配列の152位又は該部位に対応するグリシンが他のアミノ酸に変異しているジホスホメバロン酸デカルボキシラーゼである、請求項1~4のうちのいずれか一項に記載の製造方法。
  6.  前記ジホスホメバロン酸デカルボキシラーゼにおいて、配列番号:2に記載のアミノ酸配列の152位又は該部位に対応するグリシンが変異してなる他のアミノ酸が、ロイシンである、請求項5に記載の製造方法。
  7.  前記オレフィン化合物がイソプレンである請求項1~6のうちのいずれか一項に記載の製造方法。
  8.  オレフィン化合物を生成する触媒活性が高められたジホスホメバロン酸デカルボキシラーゼの製造方法であって、ジホスホメバロン酸デカルボキシラーゼにおいて、配列番号:2に記載のアミノ酸配列の153位又は該部位に対応するセリン及び209位又は該部位に対応するスレオニンを、各々他のアミノ酸に変異させる工程を含む、製造方法。
  9.  前記ジホスホメバロン酸デカルボキシラーゼにおいて、配列番号:2に記載のアミノ酸配列の153位又は該部位に対応するセリンが変異してなる他のアミノ酸が、アスパラギン酸又はグルタミン酸である、請求項8に記載の製造方法。
  10.  前記ジホスホメバロン酸デカルボキシラーゼにおいて、配列番号:2に記載のアミノ酸配列の209位又は該部位に対応するスレオニンが変異してなる他のアミノ酸が、アスパラギン酸である、請求項8又は9に記載の製造方法。
  11.  前記ジホスホメバロン酸デカルボキシラーゼにおいて、配列番号:2に記載のアミノ酸配列の152位又は該部位に対応するグリシンを他のアミノ酸に変異させる工程を更に含む、請求項8~10のうちのいずれか一項に記載の製造方法。
  12.  前記ジホスホメバロン酸デカルボキシラーゼにおいて、配列番号:2に記載のアミノ酸配列の152位又は該部位に対応するグリシンが変異してなる他のアミノ酸が、ロイシンである、請求項11に記載の製造方法。
  13.  前記オレフィン化合物がイソプレンである請求項8~12のうちのいずれか一項に記載の製造方法。
  14.  配列番号:2に記載のアミノ酸配列の153位又は該部位に対応するセリン及び209位又は該部位に対応するスレオニンが、各々他のアミノ酸に変異している、ジホスホメバロン酸デカルボキシラーゼ。
  15.  配列番号:2に記載のアミノ酸配列の153位又は該部位に対応するセリンが変異してなる他のアミノ酸が、アスパラギン酸又はグルタミン酸である、請求項14に記載のジホスホメバロン酸デカルボキシラーゼ。
  16.  配列番号:2に記載のアミノ酸配列の209位又は該部位に対応するスレオニンが変異してなる他のアミノ酸が、アスパラギン酸である、請求項14又は15に記載のジホスホメバロン酸デカルボキシラーゼ。
  17.  更に、配列番号:2に記載のアミノ酸配列の152位又は該部位に対応するグリシンが他のアミノ酸に変異している、請求項14~16のうちのいずれか一項に記載のジホスホメバロン酸デカルボキシラーゼ。
  18.  配列番号:2に記載のアミノ酸配列の152位又は該部位に対応するグリシンが変異してなる他のアミノ酸が、ロイシンである、請求項17に記載のジホスホメバロン酸デカルボキシラーゼ。
  19.  請求項14~18のうちのいずれか一項に記載のジホスホメバロン酸デカルボキシラーゼをコードするDNA。
  20.  請求項19に記載のDNAを含むベクター。
  21.  請求項19に記載のDNA又は請求項20に記載のベクターが導入された宿主細胞。
  22.  請求項21に記載の宿主細胞を培養し、該宿主細胞に発現したタンパク質を採取する工程を含む、ジホスホメバロン酸デカルボキシラーゼ変異体の製造方法。
  23.  請求項14~18のうちのいずれか一項に記載のジホスホメバロン酸デカルボキシラーゼ、該ジホスホメバロン酸デカルボキシラーゼをコードするDNA又は該DNAが挿入されているベクターを含む、下記式(1)で表される化合物とATPとを反応させ、オレフィン化合物の生成を促進するための剤
    Figure JPOXMLDOC01-appb-C000002
    [式(1)中、R及びRは、各々独立に、水素原子、炭素数1~10のアルキル基、炭素数2~15のアルケニル基、炭素数6~20のアリール基又はハロゲン原子を示す(前記アルキル基及びアルケニル基は、各々独立に、ヒドロキシ基及び/又はカルボキシ基によって任意に置換されていてもよい)]。
  24.  前記オレフィン化合物がイソプレンである請求項23に記載の剤。
PCT/JP2018/002875 2017-02-01 2018-01-30 ジホスホメバロン酸デカルボキシラーゼ変異体、及びそれを用いたオレフィン化合物の製造方法 WO2018143163A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018565547A JP7054092B2 (ja) 2017-02-01 2018-01-30 ジホスホメバロン酸デカルボキシラーゼ変異体、及びそれを用いたオレフィン化合物の製造方法
EP18747462.2A EP3578649A4 (en) 2017-02-01 2018-01-30 DIPHOSPHOMEVALONATE DECARBOXYLASE VARIANT AND PROCESS FOR MANUFACTURING AN OLEFIN COMPOUND BY MEANS OF THE SAME
US16/481,585 US10988751B2 (en) 2017-02-01 2018-01-30 Diphosphomevalonate decarboxylase variant and method for manufacturing olefin compound using same
CN201880009364.2A CN110234761B (zh) 2017-02-01 2018-01-30 二磷酸甲羟戊酸脱羧酶变异体、和利用了该变异体的烯烃化合物的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-016864 2017-02-01
JP2017016864 2017-02-01

Publications (1)

Publication Number Publication Date
WO2018143163A1 true WO2018143163A1 (ja) 2018-08-09

Family

ID=63040566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002875 WO2018143163A1 (ja) 2017-02-01 2018-01-30 ジホスホメバロン酸デカルボキシラーゼ変異体、及びそれを用いたオレフィン化合物の製造方法

Country Status (5)

Country Link
US (1) US10988751B2 (ja)
EP (1) EP3578649A4 (ja)
JP (1) JP7054092B2 (ja)
CN (1) CN110234761B (ja)
WO (1) WO2018143163A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115698276A (zh) * 2020-04-15 2023-02-03 阿拉斯加大学安克雷奇分校 用于生产异丁烯的方法和组合物

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013092567A2 (en) 2011-12-20 2013-06-27 Scientist Of Fortune S.A. Production of 1,3-dienes by enzymatic conversion of 3-hydroxyalk-4-enoates and/or 3-phosphonoxyalk-4-enoates
WO2015004211A2 (en) 2013-07-09 2015-01-15 Global Bioenergies Mevalonate diphosphate decarboxylase variants
WO2015021045A2 (en) 2013-08-05 2015-02-12 INVISTA North America S.á r.l. Methods for biosynthesis of isoprene
WO2017022804A1 (ja) * 2015-08-03 2017-02-09 国立研究開発法人理化学研究所 ジホスホメバロン酸デカルボキシラーゼ変異体、及びそれを用いたオレフィン化合物の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2011123911A (ru) * 2008-11-11 2012-12-20 ДАНИСКО ЮЭс ИНК. Композиции, содержащие варианты сериновых протеаз, и способы
WO2016134381A1 (en) * 2015-02-20 2016-08-25 The Regents Of The University Of California Novel host cells and methods for producing isopentenol from mevalonate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013092567A2 (en) 2011-12-20 2013-06-27 Scientist Of Fortune S.A. Production of 1,3-dienes by enzymatic conversion of 3-hydroxyalk-4-enoates and/or 3-phosphonoxyalk-4-enoates
JP2015501660A (ja) * 2011-12-20 2015-01-19 サイエンティスト・オブ・フォーチュン・ソシエテ・アノニム 3−ヒドロキシアルク−4−エノエートおよび/または3−ホスホノキシアルク−4−エノエートの酵素変換による1,3−ジエンの産生
WO2015004211A2 (en) 2013-07-09 2015-01-15 Global Bioenergies Mevalonate diphosphate decarboxylase variants
WO2015021045A2 (en) 2013-08-05 2015-02-12 INVISTA North America S.á r.l. Methods for biosynthesis of isoprene
WO2017022804A1 (ja) * 2015-08-03 2017-02-09 国立研究開発法人理化学研究所 ジホスホメバロン酸デカルボキシラーゼ変異体、及びそれを用いたオレフィン化合物の製造方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
GOGERTY, D. S. ET AL.: "Formation of Isobutene from 3-Hydroxy-3-Methylbutyrate by Diphosphomevalonate Decarboxylase", APPL. ENVIRON. MICROBIOL., vol. 76, no. 24, 2010, pages 8004 - 8010, XP002680645, ISSN: 0099-2240 *
HO, S. N.HUNT, H. D.HORTON, R. M.PULLEN, J. K.PEASE, L. R., GENE, vol. 77, 1989, pages 51 - 59
KUNKEL, T. A., PROC NATL ACAD SCI USA, vol. 82, no. 2, 1985, pages 488 - 492
ORISHIMO RYOKO ET AL.: "Modification of Substrate Specificity of Useful Enzymes and Application to Bioisoprene Production", LECTURE ABSTRACT COLLECTION FOR THE ANNUAL MEETING OF THE JAPAN SOCIETY FOR BIOSCIENCE, BIOTECHNOLOGY, AND AGROCHEMISTRY, vol. 2016, 5 March 2016 (2016-03-05), pages 2J003
ORISHITA, RYOKO ET AL.: "Substrate-specific modifications of useful enzymes, and application to production of bio-isoprene", LECTURE ABSTRACTS IN 2016 MEETING OF JAPAN SOCIETY OF BIOSCIENCE , BIOTECHNOLOGY, AND AGROCHEMISTRY, vol. 2016, 5 March 2016 (2016-03-05), pages 2J003, XP009508887, ISSN: 2186-7976 *
See also references of EP3578649A4
TETRAHEDRON LETTERS, vol. 20, no. 15, 1988, pages 1763 - 1766

Also Published As

Publication number Publication date
CN110234761A (zh) 2019-09-13
CN110234761B (zh) 2024-02-13
EP3578649A4 (en) 2020-11-25
EP3578649A1 (en) 2019-12-11
US10988751B2 (en) 2021-04-27
US20190345476A1 (en) 2019-11-14
JP7054092B2 (ja) 2022-04-13
JPWO2018143163A1 (ja) 2019-11-21

Similar Documents

Publication Publication Date Title
JP7242058B2 (ja) デカルボキシラーゼ、及びそれを用いた不飽和炭化水素化合物の製造方法
WO2013054447A1 (ja) γ‐Glu‐X‐Glyまたはその塩の製造方法、および変異型グルタチオン合成酵素
WO2013129393A1 (ja) 炭化水素合成酵素遺伝子及びその利用
WO2021050371A1 (en) Biotin synthases for efficient production of biotin
JP6803047B2 (ja) ジホスホメバロン酸デカルボキシラーゼ変異体、及びそれを用いたオレフィン化合物の製造方法
WO2023190564A1 (ja) メタクリル酸の製造方法
WO2018143163A1 (ja) ジホスホメバロン酸デカルボキシラーゼ変異体、及びそれを用いたオレフィン化合物の製造方法
WO2018062178A1 (ja) ジホスホメバロン酸デカルボキシラーゼ変異体、及びそれを用いたオレフィン化合物の製造方法
Gabriel et al. Homoisocitrate dehydrogenase from Candida albicans: properties, inhibition, and targeting by an antifungal pro-drug
JP5540367B2 (ja) シャペロニン変異体およびこれをコードするdna
WO2021054441A1 (ja) サッカロミケス由来フェルラ酸デカルボキシラーゼ変異体、及びそれを用いた不飽和炭化水素化合物の製造方法
KR20190001934A (ko) 기능성 감미료의 제조방법
Kwon et al. Heterologous expression of a papain-like protease inhibitor (SnuCalCpI17) in the E. coli and its mode of inhibition
WO2022145178A1 (ja) フェニルアラニンアンモニアリアーゼを用いた鎖状の不飽和カルボン酸化合物の製造方法
JP2020036576A (ja) コエンザイムA(CoA)によるフィードバック阻害を受けないパントテン酸キナーゼ
WO2024090440A1 (ja) フェルラ酸デカルボキシラーゼ、及びそれを用いた不飽和炭化水素化合物の製造方法
JP2015109830A (ja) γ−グルタミルシクロトランスフェラーゼ、γ−グルタミルシクロトランスフェラーゼ遺伝子、γ−グルタミルシクロトランスフェラーゼの製造方法およびその用途
WO2006088110A1 (ja) 新規な炭酸固定促進タンパク質、及び該タンパク質を用いた炭酸固定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18747462

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018565547

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018747462

Country of ref document: EP

Effective date: 20190902