WO2018142897A1 - 光電センサ - Google Patents

光電センサ Download PDF

Info

Publication number
WO2018142897A1
WO2018142897A1 PCT/JP2018/000815 JP2018000815W WO2018142897A1 WO 2018142897 A1 WO2018142897 A1 WO 2018142897A1 JP 2018000815 W JP2018000815 W JP 2018000815W WO 2018142897 A1 WO2018142897 A1 WO 2018142897A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
transmission cable
signal transmission
unit
photoelectric sensor
Prior art date
Application number
PCT/JP2018/000815
Other languages
English (en)
French (fr)
Inventor
俊樹 越
功 野原
慎二 飯島
Original Assignee
アズビル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アズビル株式会社 filed Critical アズビル株式会社
Publication of WO2018142897A1 publication Critical patent/WO2018142897A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/10Detecting, e.g. by using light barriers
    • G01V8/20Detecting, e.g. by using light barriers using multiple transmitters or receivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H35/00Switches operated by change of a physical condition
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/78Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used using opto-electronic devices, i.e. light-emitting and photoelectric devices electrically- or optically-coupled

Definitions

  • This invention relates to a photoelectric sensor for detecting the presence or absence of an object.
  • a plurality of photoelectric sensors are connected in order to detect an object (part or product) flowing on a production line such as a semiconductor device.
  • an optical fiber type photoelectric sensor using an optical fiber is used (for example, see Patent Document 1).
  • the light emitted from the light emitting element is guided by an optical fiber to irradiate the detection area, and the light passing through the detection area is guided to the light receiving element by the optical fiber to detect the presence or absence of an object.
  • the optical fiber is not used in a straight line but is used by being bent according to the installation location. For this reason, there has been a problem that the optical fiber is disconnected or the amount of light varies, so that the object cannot be detected accurately.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide a photoelectric sensor that can detect the presence or absence of an object without using an optical fiber.
  • the photoelectric sensor according to the present invention is provided in pairs with a plurality of light emitting elements that emit light converted from an input transmission signal, a light receiving element that receives light, and is provided for each light emitting element.
  • a first signal transmission cable that transmits an input transmission signal and outputs it to a light emitting element connected to one end, and a received signal indicating light received by the light receiving element provided for each light receiving element and connected to one end
  • a generation control unit and an object detection unit that detects presence or absence of an object based on a reception signal transmitted by the second signal transmission cable are provided.
  • the presence or absence of an object can be detected without using an optical fiber.
  • FIG. 3A and 3B are perspective views showing an example of a method of connecting the light emitting element and the signal transmission cable according to Embodiment 1 of the present invention
  • FIG. 3A is a diagram showing a state in which the optical lens and the film portion are removed.
  • FIG. 3B is a diagram showing an appearance. It is a figure explaining an example of the connection method of the signal transmission cable and amplifier part in Embodiment 1 of this invention. It is a figure which shows an example of the transmission signal produced
  • Embodiment 1 of this invention It is a figure which shows an example of the positional relationship of the light emitting element and light receiving element in Embodiment 1 of this invention. It is a figure which shows the example of a display by the display part in Embodiment 1 of this invention. It is a figure which shows the structural example of the optical sensor system which concerns on Embodiment 2 of this invention.
  • FIG. 1 is a diagram showing a configuration example of a photoelectric sensor 1 according to Embodiment 1 of the present invention.
  • the photoelectric sensor 1 detects the presence / absence of an object (part or product) flowing on a production line such as a semiconductor device.
  • a transmission type is shown.
  • the photoelectric sensor 1 includes a plurality of light emitting elements 101, a plurality of light receiving elements 102, a plurality of signal transmission cables (first signal transmission cables) 103, and a plurality of signal transmission cables (second signal transmission cables). ) 104 and the main body 105.
  • the main body unit 105 includes a plurality of amplifier units 106, a control unit 107, a communication unit 108, and a display unit 109.
  • N light emitting elements 101 (101-1 to 101-N), light receiving elements 102 (102-2 to 102-N), signal transmission cables 103 (103-1 to 103-N), signal transmission cables
  • 104 (104-1 to 104-N) and an amplifier unit 106 (106-1 to 106-N) are provided.
  • the light emitting element 101 is a sensor element such as a chip LED or a photo IC that emits light obtained by converting the transmission signal according to a transmission signal transmitted by the signal transmission cable 103 to which the light emitting element 101 is connected. Further, a chip resistor or a protective diode is connected as necessary.
  • the light receiving element 102 is a sensor element such as a photodiode that is provided in a pair with the light emitting element 101 and receives light. Further, a chip resistor or a protective diode is connected as necessary.
  • the light receiving element 102 is disposed to face the paired light emitting elements 101 with a detection region for detecting the presence or absence of an object interposed therebetween.
  • a reception signal indicating the light received by the light receiving element 102 is output to the signal transmission cable 104 to which the light receiving element 102 is connected.
  • the received signal consists of a change in current or voltage value.
  • the signal transmission cable 103 is provided for each light emitting element 101, the light emitting element 101 is connected to one end, and the other end is connected to the amplifier section 106 (main body section 105).
  • the signal transmission cable 103 includes a signal line 1031, a ground line 1032, and an insulator 1033 that covers the signal line 1031 and the ground line 1032 (see FIG. 3). Further, a power supply line (not shown) is added as necessary.
  • the signal transmission cable 103 transmits the transmission signal amplified by the amplifier unit 106 and outputs the transmission signal to the light emitting element 101.
  • the transmitted signal consists of a change in current or voltage value.
  • the signal transmission cable 104 is provided for each light receiving element 102, the light receiving element 102 is connected to one end, and the other end is connected to the amplifier section 106 (main body section 105).
  • the signal transmission cable 104 includes a signal line 1041 (not shown), a ground line 1042 (not shown), and an insulator 1043 (not shown) that covers the signal line 1041 and the ground line 1042.
  • the signal transmission cable 104 transmits a reception signal indicating the light received by the light receiving element 102 and outputs the received signal to the amplifier unit 106.
  • the amplifier unit 106 is provided for each pair of the signal transmission cable 103 and the signal transmission cable 104, and amplifies a transmission signal generated by a signal generation unit 1073 described later of the control unit 107. At this time, the amplifier unit 106 may convert a transmission signal that is a voltage into a current. Note that the amplification amount in each amplifier unit 106 is set to an appropriate value based on the positional relationship between the light emitting element 101 and the light receiving element 102 by a PC or the like. The transmission signal amplified by the amplifier unit 106 is output to the signal transmission cable 103 connected to the amplifier unit 106.
  • the amplifier unit 106 amplifies the received signal transmitted by the signal transmission cable 104 connected to the amplifier unit 106 after removing noise by filtering or the like. At this time, the amplifier unit 106 may convert a received signal, which is a current, into a voltage. The reception signal amplified by the amplifier unit 106 is output to the control unit 107.
  • the amplifier unit 106 is mainly composed of an analog circuit.
  • the control unit 107 controls the amplifier unit 106, the communication unit 108, and the display unit 109.
  • the control unit 107 is realized by a processing circuit such as a system LSI or a CPU that executes a program stored in a memory or the like.
  • the control unit 107 includes a storage unit 1071, a mode setting unit 1072, a plurality of signal generation units 1073, a signal generation control unit 1074, a plurality of signal demodulation units 1075, and an object detection unit 1076. . In FIG. 2, only one signal generation unit 1073 and one signal demodulation unit 1075 are shown.
  • the storage unit 1071 stores information for configuring a bit string used in the signal generation unit 1073.
  • the storage unit 1071 stores information indicating the ID of each signal transmission cable 103 as the information. Further, the storage unit 1071 may store information indicating a bit string that is different for each signal transmission cable 103 instead of the above information. Note that the storage unit 1071 is not an essential component and may be removed from the control unit 107.
  • the mode setting unit 1072 sets the operation mode of the photoelectric sensor 1 to the adjustment mode or the normal mode according to the input by the user who uses the photoelectric sensor 1.
  • the adjustment mode is a mode for positioning the light emitting element 101 and the light receiving element 102.
  • the signal generation control unit 1074 causes the signal transmission cable 103 connected to the light emitting element 101 until the positioning of the specific light emitting element 101 and the light receiving element 102 paired with the light emitting element 101 is completed.
  • the signal generation unit 1073 is controlled so as to continue outputting the transmission signal only.
  • the normal mode is a mode for detecting the presence or absence of an object in the detection area.
  • the signal generation control unit 1074 selects the target signal transmission cable 103 and outputs the transmission signal to the signal transmission cable 103 at a preset timing and order. Control. If the distance between the plurality of signal transmission cables 104 is sufficiently large, a problem of mutual interference does not occur. Therefore, transmission signals may be output to the plurality of signal transmission cables 103 simultaneously.
  • the signal generation unit 1073 is provided for each signal transmission cable 103, generates a transmission signal, and outputs the transmission signal to the amplifier unit 106 connected to the corresponding signal transmission cable 103. Further, when the light receiving element 102 is installed in a place where disturbance light exists, or when it is necessary to specify the light emitting element 101 that is the light emission source of the light received by the light receiving element 102, each signal generation unit 1073.
  • the transmission signal may be a signal unique to each signal transmission cable 103. That is, each signal generation unit 1073 generates a several-bit on / off signal including a bit string unique to the corresponding signal transmission cable 103 as a transmission signal.
  • each signal generation unit 1073 performs modulation with a bit string obtained from the information stored in the storage unit 1071, thereby An on / off signal can be generated.
  • the bit string may be configured by adding an error detection code such as CRC (Cyclic Redundancy Check).
  • the signal generation control unit 1074 selects the signal generation unit 1073 to be operated. When the photoelectric sensor 1 is in the adjustment mode, the signal generation control unit 1074 selects a specific signal generation unit 1073. When the positioning of the light emitting element 101 that is the output destination of the transmission signal generated by the signal generation unit 1073 and the light receiving element 102 that is paired with the light emitting element 101 is completed, the signal generation control unit 1074 To the signal generation unit 1073. When the photoelectric sensor 1 is in the normal mode, the signal generation control unit 1074 selects one or a plurality of signal generation units 1073 while switching them in a preset time interval and order.
  • a selection time of 1 ms is provided for one signal generator 1073, and the time for causing the light emitting element 101 to emit light via the signal transmission cable 103 is set to about 0.3 ms. Etc. are considered.
  • the signal generation control unit 1074 switches the signal generation unit 1073 at a preset time interval and order.
  • the signal generation control unit 1074 is not limited to this, and the signal generation control unit 1074 can detect the next signal generation unit when the object is detected using the light emitting element 101 that is the output destination of the transmission signal generated by the selected signal generation unit 1073. 1073 may be selected.
  • the signal demodulating unit 1075 is provided for each signal transmission cable 104 and demodulates the reception signal amplified by the amplifier unit 106 connected to the corresponding signal transmission cable 104. At this time, the signal demodulating unit 1075 compares the bit string of the reception signal amplified by the amplifier unit 106 with the bit string used when the signal generation unit 1073 as a pair generates the transmission signal. The signal demodulating unit 1075 determines that the light emitting element 101 that is the output destination of the transmission signal is the light emitting source when both bit strings are completely matched or matched at a certain ratio. The received signal demodulated by the signal demodulating unit 1075 (the light emitting element 101 is determined to be the light emitting source) is output to the object detecting unit 1076.
  • the signal generator 1073 and the signal demodulator 1075 that are paired with each other are synchronized with each other, and the signal demodulator 1075 responds to the transmission signal within a predetermined time after the signal generator 1073 outputs the transmission signal.
  • the object detection unit 1076 is notified of this.
  • the transmission signal is not a signal unique to each signal transmission cable 103, the signal demodulator 1075 is not necessary and may be removed from the controller 107. In this case, it is only necessary that the object detection unit 1076 can identify the signal generation unit 1073 selected by the signal generation control unit 1074.
  • the object detection unit 1076 detects the presence or absence of an object based on the received signal demodulated by the signal demodulation unit 1075 when the photoelectric sensor 1 is in the normal mode. That is, the object detection unit 1076 has an object such as a transparent body in the detection area when it is determined that the light receiving element 102 whose light reception level is equal to or less than the threshold is present based on the reception signal demodulated by the signal demodulation unit 1075. Judge. If the signal demodulator 1075 notifies that the corresponding received signal is not detected, it is determined that there is an object in the detection area. A signal indicating the presence / absence of an object detected by the object detection unit 1076 is output to at least one of the communication unit 108 and the display unit 109. When the photoelectric sensor 1 is in the adjustment mode, the control unit 107 outputs the reception signal output from the signal demodulation unit 1075 to the display unit 109 as it is.
  • the communication unit 108 communicates with an external device. Note that the connection between the communication unit 108 and the external device may be wired (RS-485 or Ethernet (registered trademark)) or wireless.
  • the communication unit 108 transmits a signal output from the control unit 107 to an external device and receives a signal transmitted from the external device.
  • the display unit 109 performs display according to the signal output from the control unit 107.
  • the display unit 109 displays the light reception level indicated by the reception signal.
  • the display unit 109 displays the presence / absence of the object.
  • the light emitting element 101 and the signal transmission cable 103 are electrically connected via a circuit board 110 with wiring. That is, the light emitting element 101 is connected to the circuit board 110 by soldering or bonding, and the signal transmission cable 103 is connected to the circuit board 110 by soldering or bonding at one end of the signal line 1031 and the ground line 1032.
  • an optical lens 111 is mounted on the light emitting element 101. Further, the light emitting element 101, one end of the signal transmission cable 103, and the circuit board 110 are covered with a coating portion 112.
  • connection between the light emitting element 101 and the signal transmission cable 103 is not limited to the above.
  • the light emitting element 101 may be connected to the male side of a commercially available connector, and the signal transmission cable 103 may be connected to the female side.
  • the light emitting element 101 can be easily attached to and detached from the signal transmission cable 103, and when the light emitting element 101 deteriorates, only the light emitting element 101 can be replaced without changing the wiring of the signal transmission cable 103.
  • connection method between the light emitting element 101 and the signal transmission cable 103 is shown.
  • connection method between the light receiving element 102 and the signal transmission cable 104 is the same, and the description thereof is omitted.
  • the amplifier unit 106 male sides 1061 of a plurality of connectors are connected on a substrate.
  • the female side 1034 of the connector is connected to the other ends of the signal line 1031 and the ground line 1032 of the signal transmission cable 103. Then, by connecting the female side 1034 to the male side 1061, the amplifier unit 106 and the signal transmission cable 103 are electrically connected. With such a configuration, the signal transmission cable 103 can be easily attached to and detached from the amplifier unit 106 (main body unit 105).
  • connection method between the signal transmission cable 103 and the amplifier unit 106 is shown.
  • connection method between the signal transmission cable 104 and the amplifier unit 106 is the same, and the description thereof is omitted.
  • each signal generation unit 1073 sequentially generate transmission signals to the corresponding light emitting elements 101 (101-1 to 101-3) at preset time intervals. Is shown.
  • the signal generation control unit 1074 selects the signal generation unit 1073-1 as the signal generation unit 1073 to be operated. Then, the signal generation unit 1073-1 generates a transmission signal f1 for the light emitting element 101-1. In FIG. 5, the signal generation unit 1073-1 generates an on / off signal of several bits as the transmission signal f1. Then, the signal generation unit 1073-1 outputs the generated transmission signal f1 to the signal transmission cable 103-1 via the amplifier unit 106-1 during time T1. Thereafter, the light emitting element 101-1 emits light obtained by converting the transmission signal f1, the light receiving element 102-1 receives the light, and the control unit 107 passes through the signal transmission cable 104-1 and the amplifier unit 106-1. Receive signal detection.
  • the signal generation control unit 1074 selects the signal generation unit 1073-2 as the signal generation unit 1073 to be operated. Then, the signal generation unit 1073-2 generates a transmission signal f2 for the light emitting element 101-2. In FIG. 5, the bit string of the transmission signal f2 is different from the bit string of the transmission signal f1. Then, the signal generation unit 1073-2 outputs the generated transmission signal f2 to the signal transmission cable 103-2 via the amplifier unit 106-2 during the time T2. Thereafter, the light emitting element 101-2 emits light converted from the transmission signal f2, the light receiving element 102-2 receives the light, and the control unit 107 passes through the signal transmission cable 104-2 and the amplifier unit 106-2. Receive signal detection. After the time T2 has elapsed, the same processing is performed on the signal transmission cable 103-3.
  • the signal can be obtained even in a narrow place where a normal photoelectric sensor cannot be installed.
  • the transmission cable 103 and the signal transmission cable 104 can be installed, and an object can be detected.
  • the signal transmission cable 103 and the signal transmission cable 104 can transmit signals even if they are arbitrarily bent. Therefore, even when the signal transmission cable 103 and the signal transmission cable 104 are bent and used in accordance with the installation location, the object can be detected accurately with respect to the optical fiber photoelectric sensor.
  • the light emitting element 101 deteriorates, it is only necessary to replace the light emitting element 101 or the signal transmission cable 103, and it is not necessary to replace the main body portion 105, so that the part replacement cost at the time of maintenance can be reduced.
  • the light receiving element 102 deteriorates.
  • each signal generation unit 1073 generates a transmission signal composed of a different bit string for each signal transmission cable 103, so that the control unit 107 receives the light from the bit string of the reception signal indicating the light received by the light receiving element 102. It becomes possible to specify which light emitting element 101 emits the emitted light.
  • Each signal generation unit 1073 outputs a transmission signal in a time division manner for each signal transmission cable 103. Therefore, it is also possible to specify which light emitting element 101 emits the received light from the timing when the light receiving element 102 receives the light.
  • the time T1 to T3 during which each signal generator 1073 outputs the transmission signals f1 to f3 can be set by the signal generation controller 1074.
  • the transmission time of the transmission signals f1 to f3 itself is set to about 0.2 to 0.3 ms
  • the propagation delay time of the signal transmission cable 103 and the signal transmission cable 104 is several ns with respect to the cable length of 1 m.
  • the times T1 to T3 are about 1 ms.
  • the signal generation control unit 1074 has a plurality of signals. Even if the signal generation unit 1073 is selected and the plurality of signal generation units 1073 simultaneously output transmission signals from the plurality of signal transmission cables 103, mutual interference does not occur.
  • FIG. 6 shows the positional relationship between the three systems of light emitting elements 101 (101-1 to 101-3) and light receiving elements 102 (102-1 to 102-3).
  • the distance L2 between the light emitting element 101-2 and the light receiving element 102-2 is longer than the distance L1 between the light emitting element 101-1 and the light receiving element 102-1. Therefore, even if the intensity of the transmission signal output to the light emitting element 101-1 is weaker than the intensity of the transmission signal output to the light emitting element 101-2, the light receiving element 102-1 can sufficiently receive light.
  • FIG. 6 shows the positional relationship between the three systems of light emitting elements 101 (101-1 to 101-3) and light receiving elements 102 (102-1 to 102-3).
  • the appropriate intensity of the transmission signal output to each light emitting element 101 differs depending on the positional relationship between the light emitting element 101 and the light receiving element 102. Therefore, after positioning the light emitting element 101 and the light receiving element 102, for example, using a PC, based on the positional relationship, the amplification amount for the transmission signal output to the corresponding light emitting element 101 to each amplifier unit 106 is set. Set. As a result, object detection under optimum conditions becomes possible.
  • the same number of display windows 1091 (1091-1 to 1091-N) as the light receiving elements 102 are provided, and the light receiving level at each light receiving element 102 is displayed with a gauge.
  • the display unit 109 is mainly used when positioning the light emitting element 101 and the light receiving element 102.
  • the control unit 107 performs signal transmission cable 103 connected to the light emitting element 101 until the positioning of a specific light emitting element 101 and the light receiving element 102 paired with the light emitting element 101 is completed. Continue to output the transmission signal only.
  • the display unit 109 displays the light reception level at each light receiving element 102. Thereby, as shown in FIG. 7, the light reception result in each light receiving element 102 with respect to light emission by the specific light emitting element 101 can be observed. Therefore, the presence or absence of mutual interference by the plurality of light emitting elements 101 can be determined, and each light emitting element 101 and each light receiving element 102 can be optimally installed without mutual interference.
  • the display unit 109 is based on, for example, a signal indicating the presence / absence of an object output by the object detection unit 1076, and when there is no object, the level gauge of the display window 1091 is displayed. Is set to 0%, and when there is an object, the level gauge of the display window 1091 is set to 100%.
  • a plurality of light emitting elements 101 that emit light according to an input transmission signal and a light receiving element that is provided in pairs with the light emitting elements 101 and receives light.
  • 102 and a signal transmission cable 103 that is provided for each light emitting element 101, transmits an input transmission signal, and outputs it to the light emitting element 101 connected to one end, and is provided for each light receiving element 102 and connected to one end.
  • a signal transmission cable 104 that transmits a reception signal indicating light received by the light receiving element 102, a signal generation unit 1073 that is provided for each signal transmission cable 103, generates a transmission signal, and outputs the transmission signal to the signal transmission cable 103;
  • the presence or absence of an object is detected based on a signal generation control unit 1074 that selects a signal generation unit 1073 to be transmitted and a reception signal transmitted by the signal transmission cable 104. Since a object detection unit 1076, without using the optical fiber, it can detect the presence or absence of the object.
  • the photoelectric sensor 1 Conventionally, a plurality of photoelectric sensors are connected and used. In this case, there is a problem that communication between the photoelectric sensors is complicated and the speed cannot be increased, and that the wiring of the power supply line and the signal line is complicated.
  • the photoelectric sensor 1 according to the first embodiment a configuration in which a plurality of sensor elements (the light emitting element 101 and the light receiving element 102) are connected to the single main body 105 via the signal transmission cable 103 and the signal transmission cable 104. It is said. As a result, it is possible to speed up the processing for sensing in each sensor element, and it is also easy to route the wiring.
  • the photoelectric sensor 1 is a transmissive type.
  • the present invention is not limited to this, and the photoelectric sensor 1 may be of a reflective type.
  • the pair of light emitting element 101 and light receiving element 102 and the pair of signal transmission cable 103 and signal transmission cable 104 can be integrated together.
  • the pair of light emitting element 101 and light receiving element 102 are housed in a casing, and the pair of signal transmission cable 103 and signal transmission cable 104 are covered with a coating portion.
  • FIG. 8 is a diagram showing a configuration example of a photoelectric sensor system according to Embodiment 2 of the present invention. As shown in FIG. 8, the photoelectric sensor system includes a plurality of photoelectric sensors 1 and an integrated server 2.
  • the photoelectric sensor 1 is the same sensor as in the first embodiment.
  • the communication unit 108 communicates with another photoelectric sensor 1 or the integrated server 2 provided in the photoelectric sensor system.
  • the signal generation control unit 1074b in Embodiment 2 sets the operation timing of the signal generation unit 1073 based on the signal received by the communication unit 108 in addition to the function of the signal generation control unit 1074 in Embodiment 1. It has a function to control. That is, based on the signal received by the communication unit 108, the signal generation control unit 1074b moves the object from the installation location of the other photoelectric sensor 1 where the object is detected to the location where the photoelectric sensor 1 is installed. The flow timing is determined, and the signal generation unit 1073 is operated according to the timing.
  • the integration server 2 collects signals transmitted by the communication unit 108 of each photoelectric sensor 1 and manages each photoelectric sensor 1. For example, the integrated server 2 notifies each photoelectric sensor 1 of signals collected from each photoelectric sensor 1. At this time, the integrated server 2 transmits the signal to a specific photoelectric sensor 1, and the photoelectric sensor 1 receiving the signal receives only information related to itself and transmits the signal to the adjacent photoelectric sensor 1. To do. Thereafter, the signal is transmitted from the integrated server 2 to each photoelectric sensor 1 by passing the signal by each photoelectric sensor 1.
  • the photoelectric sensor 1 installed for each manufacturing process can understand the flow of the process, can determine the timing at which the object should be detected, and can save power.
  • the photoelectric sensor according to the present invention is configured to detect the presence or absence of an object without using an optical fiber. Suitable for use.

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Switches Operated By Changes In Physical Conditions (AREA)

Abstract

光電センサ1は、送信信号に応じた光を発光する複数の発光素子101と、発光素子101と対となって設けられ、光を受光する受光素子102と、発光素子101毎に設けられ、送信信号を伝送し、発光素子101に出力する信号伝送ケーブル103と、受光素子毎102に設けられ、受光素子102により受光された光を示す受信信号を伝送する信号伝送ケーブル104と、信号伝送ケーブル103毎に設けられ、送信信号を生成して該当する信号伝送ケーブル103に出力する信号生成部1073と、動作させる信号生成部1073を選択する選択部1074と、信号伝送ケーブル104により伝送された受信信号に基づいて、物体の有無を検出する物体検出部1076とを備えた。

Description

光電センサ
 この発明は、物体の有無を検出する光電センサに関する。
 従来から、例えば半導体装置等の製造ライン上を流れる物体(部品又は製品等)を検出するため、複数の光電センサを連結して用いている。また、光電センサの設置箇所が狭い場合、光ファイバを用いた光ファイバ型光電センサが用いられる(例えば特許文献1参照)。この光ファイバ型光電センサでは、発光素子により発光された光を光ファイバで導いて検出領域に照射し、検出領域を通過した光を光ファイバで受光素子まで導き、物体の有無を検出する。この光ファイバ型光電センサを用いることで、通常の光電センサでは設置できない狭い箇所であっても光ファイバを設置可能であり、物体検出が可能となる。
特開2005-106523号公報
 しかしながら、通常、光ファイバは直線のまま使用されるのではなく、設置箇所に応じて折り曲げられて使用される。そのため、光ファイバの断線や光量の変動が生じ、正確に物体検出ができないという課題があった。
 この発明は、上記のような課題を解決するためになされたもので、光ファイバを用いずに、物体の有無を検出できる光電センサを提供することを目的としている。
 この発明に係る光電センサは、入力された送信信号を変換した光を発光する複数の発光素子と、発光素子と対となって設けられ、光を受光する受光素子と、発光素子毎に設けられ、入力された送信信号を伝送し、一端に接続された発光素子に出力する第1信号伝送ケーブルと、受光素子毎に設けられ、一端に接続された受光素子により受光された光を示す受信信号を伝送する第2信号伝送ケーブルと、第1信号伝送ケーブル毎に設けられ、送信信号を生成して該当する第1信号伝送ケーブルに出力する信号生成部と、動作させる信号生成部を選択する信号生成制御部と、第2信号伝送ケーブルにより伝送された受信信号に基づいて、物体の有無を検出する物体検出部とを備えたことを特徴とする。
 この発明によれば、上記のように構成したので、光ファイバを用いずに、物体の有無を検出できる。
この発明の実施の形態1に係る光電センサの構成例を示す図である。 この発明の実施の形態1における制御部の構成例を示す図である。 図3A、図3Bは、この発明の実施の形態1における発光素子と信号伝送ケーブルとの接続方法の一例を示す斜視図であり、図3Aは光学レンズ及び被膜部を取除いた状態を示す図であり、図3Bは外観を示す図である。 この発明の実施の形態1における信号伝送ケーブルとアンプ部との接続方法の一例を説明する図である。 この発明の実施の形態1における信号生成部により生成されて出力される送信信号の一例を示す図である。 この発明の実施の形態1における発光素子及び受光素子の位置関係の一例を示す図である。 この発明の実施の形態1における表示部による表示例を示す図である。 この発明の実施の形態2に係る光学センサシステムの構成例を示す図である。
 以下、この発明の実施の形態について図面を参照しながら詳細に説明する。
実施の形態1.
 図1はこの発明の実施の形態1に係る光電センサ1の構成例を示す図である。
 光電センサ1は、例えば半導体装置等の製造ライン上を流れる物体(部品又は製品等)の有無を検出する。以下では、光電センサ1が透過形である場合を示す。この光電センサ1は、図1に示すように、複数の発光素子101、複数の受光素子102、複数の信号伝送ケーブル(第1信号伝送ケーブル)103、複数の信号伝送ケーブル(第2信号伝送ケーブル)104及び本体部105を備えている。また、本体部105には、複数のアンプ部106、制御部107、通信部108及び表示部109が搭載されている。図1では、N系統の発光素子101(101-1~101-N)、受光素子102(102-2~102-N)、信号伝送ケーブル103(103-1~103-N)、信号伝送ケーブル104(104-1~104-N)及びアンプ部106(106-1~106-N)を備えた場合を示している。
 発光素子101は、当該発光素子101が接続された信号伝送ケーブル103により伝送された送信信号に応じ、当該送信信号を変換した光を発光するチップLED又はフォトIC等のセンサ素子である。また必要に応じて、チップ抵抗又は保護ダイオード等も接続される。
 受光素子102は、発光素子101と対となって設けられ、光を受光するフォトダイオード等のセンサ素子である。また必要に応じて、チップ抵抗又は保護ダイオード等も接続される。なお、受光素子102は、物体の有無を検出する検出領域を挟んで、対となる発光素子101に対向配置される。この受光素子102により受光された光を示す受信信号は、当該受光素子102が接続された信号伝送ケーブル104に出力される。受信信号は電流又は電圧の値の変化から成る。
 信号伝送ケーブル103は、発光素子101毎に設けられ、一端に発光素子101が接続され、他端がアンプ部106(本体部105)に接続される。信号伝送ケーブル103は、信号ライン1031、グランドライン1032、及び、信号ライン1031及びグランドライン1032を被膜する絶縁体1033を有している(図3参照)。また必要に応じて、電源ライン(不図示)も追加される。この信号伝送ケーブル103は、アンプ部106により増幅された送信信号を伝送して発光素子101に出力する。送信信号は電流又は電圧の値の変化から成る。
 信号伝送ケーブル104は、受光素子102毎に設けられ、一端に受光素子102が接続され、他端がアンプ部106(本体部105)に接続される。信号伝送ケーブル104は、信号ライン1041(不図示)、グランドライン1042(不図示)、及び、信号ライン1041及びグランドライン1042を被膜する絶縁体1043(不図示)を有している。この信号伝送ケーブル104は、受光素子102により受光された光を示す受信信号を伝送してアンプ部106に出力する。
 アンプ部106は、対となる信号伝送ケーブル103及び信号伝送ケーブル104毎に設けられ、制御部107の後述する信号生成部1073により生成された送信信号を増幅する。このとき、アンプ部106は、電圧である送信信号を電流に変換する場合もある。なお、各アンプ部106における増幅量は、PC等により、発光素子101及び受光素子102の位置関係に基づいて適切な値に設定される。このアンプ部106により増幅された送信信号は、当該アンプ部106に接続された信号伝送ケーブル103に出力される。また、アンプ部106は、当該アンプ部106に接続された信号伝送ケーブル104により伝送された受信信号をフィルタリング等でノイズを除去した後に増幅する。このとき、アンプ部106は、電流である受信信号を電圧に変換する場合もある。このアンプ部106により増幅された受信信号は、制御部107に出力される。アンプ部106は、主にアナログ回路で構成される。
 制御部107は、アンプ部106、通信部108及び表示部109を制御する。この制御部107は、システムLSI等の処理回路や、メモリ等に記憶されたプログラムを実行するCPU等により実現される。制御部107は、図2に示すように、記憶部1071、モード設定部1072、複数の信号生成部1073、信号生成制御部1074、複数の信号復調部1075、及び物体検出部1076を備えている。図2では、信号生成部1073及び信号復調部1075をそれぞれ1つのみ示している。
 記憶部1071は、信号生成部1073で用いるビット列を構成するための情報を格納する。例えば、記憶部1071は、上記情報として、各信号伝送ケーブル103のIDを示す情報を格納する。また、記憶部1071は、上記情報に代えて、信号伝送ケーブル103毎に異なるビット列そのものを示す情報を格納してもよい。なお、記憶部1071は必須の構成ではなく、制御部107から取り除いてもよい。
 モード設定部1072は、光電センサ1を使用する使用者による入力に応じ、光電センサ1の運用モードを調整モード又は通常モードに設定する。
 調整モードは、発光素子101及び受光素子102の位置決めを行うためのモードである。この調整モードでは、信号生成制御部1074は、ある特定の発光素子101及び当該発光素子101と対となる受光素子102の位置決めが完了するまでは、当該発光素子101に接続された信号伝送ケーブル103のみに送信信号を出力し続けるように信号生成部1073を制御する。
 通常モードは、検出領域における物体の有無を検出するためのモードである。この通常モードでは、信号生成制御部1074は、予め設定されたタイミング及び順序で、対象とする信号伝送ケーブル103を選択して当該信号伝送ケーブル103に送信信号を出力するように信号生成部1073を制御する。複数の信号伝送ケーブル104間の距離が十分離れているのであれば、相互干渉の問題が発生しないので、複数の信号伝送ケーブル103に対して同時に送信信号を出力してもよい。
 信号生成部1073は、信号伝送ケーブル103毎に設けられ、送信信号を生成して、該当する信号伝送ケーブル103に接続されたアンプ部106に出力する。
 また、受光素子102が外乱光の存在する場所に設置される場合や、受光素子102により受光された光の発光元である発光素子101を特定する必要がある場合には、各信号生成部1073は、送信信号を信号伝送ケーブル103毎に固有な信号としてもよい。すなわち、各信号生成部1073は、送信信号として、該当する信号伝送ケーブル103に固有なビット列から成る数ビットのオンオフ信号を生成する。この際、例えば、制御部107に記憶部1071が設けられている場合には、各信号生成部1073は、当該記憶部1071に格納された情報から得られたビット列で変調を掛けることで、上記オンオフ信号を生成可能である。また、上記ビット列は、CRC(Cyclic Redundancy Check)等の誤り検出符号を付加して構成してもよい。
 信号生成制御部1074は、動作させる信号生成部1073を選択する。
 光電センサ1が調整モードの場合には、信号生成制御部1074は、ある特定の信号生成部1073を選択する。また、上記信号生成部1073により生成された送信信号の出力先である発光素子101及び当該発光素子101と対となる受光素子102の位置決めが完了した場合には、信号生成制御部1074は、次の信号生成部1073に切替える。
 また、光電センサ1が通常モードの場合には、信号生成制御部1074は、予め設定された時間間隔及び順序で、1つの又は複数の信号生成部1073を切替えながら選択する。N個の信号生成部1073の切替えは、例えば1つの信号生成部1073に対して1msの選択時間を設け、信号伝送ケーブル103を介して発光素子101を発光させる時間を0.3ms程度とすること等が考えられる。信号伝送ケーブル103及び信号伝送ケーブル104のケーブル長さが数mである場合、ケーブル長さ1mに対して数nsの伝搬遅延時間が発生する程度であるため、発光時間に対して選択時間に余裕を持たせることができる。
 なお上記では、信号生成制御部1074は、予め設定された時間間隔及び順序で、信号生成部1073を切替えるものとした。しかしながら、これに限らず、信号生成制御部1074は、選択した信号生成部1073により生成された送信信号の出力先である発光素子101を用いて物体の検知ができた時点で次の信号生成部1073を選択するようにしてもよい。
 信号復調部1075は、信号伝送ケーブル104毎に設けられ、該当する信号伝送ケーブル104に接続されたアンプ部106により増幅された受信信号を復調する。この際、信号復調部1075は、アンプ部106により増幅された受信信号のビット列を、対となる信号生成部1073で送信信号を生成する際に用いたビット列と比較する。そして、信号復調部1075は、両方のビット列が完全に一致又はある一定以上の割合で一致している場合に、当該送信信号の出力先である発光素子101を発光元と判断する。この信号復調部1075により復調された(発光素子101が発光元と判断された)受信信号は、物体検出部1076に出力される。また、対となる信号生成部1073と信号復調部1075は、互いに同期をとっており、信号生成部1073が送信信号を出力した後、所定時間内に信号復調部1075で当該送信信号に対応する受信信号が検出されない場合には、その旨を物体検出部1076に通知する。なお、送信信号を信号伝送ケーブル103毎に固有な信号としない場合には、信号復調部1075は不要であり、制御部107から取り除いてもよい。この場合、物体検出部1076が信号生成制御部1074の選択した信号生成部1073を特定できればよい。
 物体検出部1076は、光電センサ1が通常モードの場合において、信号復調部1075により復調された受信信号に基づいて、物体の有無を検出する。すなわち、物体検出部1076は、信号復調部1075により復調された受信信号に基づいて、受光レベルが閾値以下である受光素子102が存在すると判断した場合に、検出領域に透明体等の物体が有ると判断する。また、信号復調部1075により該当する受信信号が検出されないと通知された場合には、検出領域に物体が有ると判断する。この物体検出部1076により検出された物体の有無を示す信号は、通信部108又は表示部109のうちの少なくとも一方に出力される。
 なお、制御部107は、光電センサ1が調整モードの場合には、信号復調部1075により出力された受信信号をそのまま表示部109に出力する。
 通信部108は、外部装置との間で通信を行う。なお、通信部108と外部装置との間の接続は、有線(RS-485又はイーサネット(登録商標)等)でも無線でもよい。この通信部108は、制御部107により出力された信号を外部装置に送信し、また、外部装置により送信された信号を受信する。
 表示部109は、制御部107により出力された信号に応じた表示を行う。ここで、表示部109は、制御部107により受信信号が出力された場合には、当該受信信号が示す光の受光レベルを表示する。また、表示部109は、制御部107の物体検出部1076により物体の有無を示す信号が出力された場合には、当該物体の有無を表示する。
 次に、発光素子101と信号伝送ケーブル103との接続方法の一例について、図3を参照しながら説明する。
 発光素子101と信号伝送ケーブル103は、図3に示すように、配線が成された回路基板110を介して導通されている。すなわち、発光素子101は回路基板110上にはんだ付け又は接合により接続され、信号伝送ケーブル103は信号ライン1031及びグランドライン1032の一端が回路基板110上にはんだ付け又は接合により接続されている。また、発光素子101の上部には、光学レンズ111が装着される。また、発光素子101、信号伝送ケーブル103の一端及び回路基板110は、被膜部112により覆われる。
 なお、発光素子101と信号伝送ケーブル103との接続は上記に限らない。例えば、市販のコネクタのオス側に発光素子101が接続され、メス側に信号伝送ケーブル103が接続されてもよい。このような構成により、発光素子101を信号伝送ケーブル103に対して容易に着脱可能となり、発光素子101が劣化した場合に信号伝送ケーブル103の配線はそのままに発光素子101だけを交換可能となる。
 また上記では、発光素子101と信号伝送ケーブル103との接続方法について示したが、受光素子102と信号伝送ケーブル104との接続方法についても同様であり、その説明を省略する。
 次に、信号伝送ケーブル103とアンプ部106との接続方法の一例について、図4を参照しながら説明する。
 アンプ部106では、基板上に、複数のコネクタのオス側1061が接続されている。一方、信号伝送ケーブル103の信号ライン1031及びグランドライン1032の他端には、上記コネクタのメス側1034が接続されている。そして、メス側1034がオス側1061に接続されることで、アンプ部106と信号伝送ケーブル103とが導通される。このような構成により、信号伝送ケーブル103をアンプ部106(本体部105)に対して容易に着脱可能となる。
 なお上記では、信号伝送ケーブル103とアンプ部106との接続方法について示したが、信号伝送ケーブル104とアンプ部106との接続方法についても同様であり、その説明を省略する。
 次に、各信号生成部1073により生成されて出力される送信信号の一例について、図5を参照しながら説明する。図5では、3系統の信号生成部1073(1073-1~1073-3)が、予め設定された時間間隔で該当する発光素子101(101-1~101-3)に順に送信信号を生成して出力する場合を示している。
 この場合、まず、信号生成制御部1074は、動作させる信号生成部1073として、信号生成部1073-1を選択する。そして、信号生成部1073-1は、発光素子101-1に対する送信信号f1を生成する。図5では、信号生成部1073-1は、送信信号f1として、数ビットのオンオフ信号を生成している。そして、信号生成部1073-1は、生成した送信信号f1を、時間T1の間にアンプ部106-1を介して信号伝送ケーブル103-1に出力する。その後、発光素子101-1は送信信号f1を変換した光を発光し、受光素子102-1は光の受光を行い、制御部107は信号伝送ケーブル104-1及びアンプ部106-1を介して受信信号の検出を行う。
 時間T1が経過した後、信号生成制御部1074は、動作させる信号生成部1073として、信号生成部1073-2を選択する。そして、信号生成部1073-2は、発光素子101-2に対する送信信号f2を生成する。図5では、送信信号f2のビット列が、送信信号f1のビット列とは異なっている。そして、信号生成部1073-2は、生成した送信信号f2を、時間T2の間にアンプ部106-2を介して信号伝送ケーブル103-2に出力する。その後、発光素子101-2は送信信号f2を変換した光を発光し、受光素子102-2は光の受光を行い、制御部107は信号伝送ケーブル104-2及びアンプ部106-2を介して受信信号の検出を行う。
 時間T2が経過した後、信号伝送ケーブル103-3に対しても同様の処理を行う。
 このように、信号伝送ケーブル103及び信号伝送ケーブル104を用いて発光素子101及び受光素子102との間で信号の入出力を行うことで、通常の光電センサでは設置できない狭い箇所であっても信号伝送ケーブル103及び信号伝送ケーブル104を設置可能であり、物体検出が可能となる。また、信号伝送ケーブル103及び信号伝送ケーブル104は、任意に折り曲げられても、信号の伝送が可能である。そのため、信号伝送ケーブル103及び信号伝送ケーブル104が設置箇所に応じて折り曲げられて使用される場合でも、光ファイバ型光電センサに対し、正確に物体検出が可能となる。
 また、発光素子101が劣化した場合に、発光素子101又は信号伝送ケーブル103より先のみを交換するだけでよく、本体部105の交換は不要であるため、メンテナンス時における部品交換コストを低減できる。受光素子102が劣化した場合にも同様である。
 また、各信号生成部1073が信号伝送ケーブル103毎に異なるビット列から成る送信信号を生成することで、制御部107は、受光素子102により受光された光を示す受信信号のビット列から、当該受光された光がどの発光素子101により発光された光であるかを特定可能となる。
 なお、各信号生成部1073では、信号伝送ケーブル103毎に時分割に送信信号を出力している。そのため、受光素子102により光が受光されたタイミングから、当該受光された光がどの発光素子101により発光された光であるかを特定することもできる。
 また、各信号生成部1073が送信信号f1~f3を出力する時間T1~T3は、信号生成制御部1074で設定可能である。例えば、送信信号f1~f3自体の送信時間を0.2~0.3ms程度とし、信号伝送ケーブル103及び信号伝送ケーブル104の伝搬遅延時間がケーブル長さ1mに対して数nsであることを考慮すると、時間T1~T3は1ms程度等とすることが考えられる。これにより、信号伝送ケーブル103及び信号伝送ケーブル104のケーブル長による遅延等を考慮した時間T1~T3を設定可能となる。
 なお、複数の信号伝送ケーブル104の間隔が十分離れているか、又は各信号生成部1073が生成する送信信号を信号伝送ケーブル103毎に固有の信号にしておけば、信号生成制御部1074が複数の信号生成部1073を選択して、複数の信号生成部1073が複数の信号伝送ケーブル103から同時に送信信号を出力しても、相互干渉を起こすことが無くなる。
 次に、発光素子101及び受光素子102の位置関係の一例について、図6を参照しながら説明する。図6では、3系統の発光素子101(101-1~101-3)及び受光素子102(102-1~102-3)の位置関係を示している。
 図6では、発光素子101-1と受光素子102-1との間の距離L1に対し、発光素子101-2と受光素子102-2との間の距離L2が長い。そのため、発光素子101-1に出力する送信信号の強度は、発光素子101-2に出力する送信信号の強度に対して弱くても、受光素子102-1は十分に受光が可能である。しかしながら、図6のように、発光素子101-1と発光素子101-2との間の距離W1が近い場合には、相互干渉を生じる可能性があるため、非常に強い送信信号を発光素子101-2に出力するのは望ましくない。一方で、図6では、発光素子101-3と発光素子101-2との間の距離W2は離れており、且つ、発光素子101-3と受光素子102-3との間の距離L3は非常に離れている。そのため、発光素子101-3に出力する送信信号の強度は強くすることが望ましい。
 このように、各発光素子101に出力する送信信号の適切な強度は、発光素子101及び受光素子102の位置関係により異なる。そこで、発光素子101及び受光素子102の位置決めを行った後、例えばPCを用いて、その位置関係に基づいて、各アンプ部106に対して該当する発光素子101に出力する送信信号に対する増幅量を設定する。これにより、最適な条件での物体検出が可能となる。
 次に、表示部109による表示例について図7を参照しながら説明する。
 図7に示す表示部109では、受光素子102と同数の表示窓1091(1091-1~1091-N)が設けられ、各受光素子102での受光レベルをゲージで表示している。
 この表示部109は、主に発光素子101及び受光素子102の位置決めを行う際に使用される。位置決めを行う場合には、制御部107は、ある特定の発光素子101及び当該発光素子101と対となる受光素子102の位置決めが完了するまでは、当該発光素子101に接続された信号伝送ケーブル103のみに送信信号を出力し続ける。そして、表示部109は、各受光素子102での受光レベルを表示する。これにより、図7に示すように、特定の発光素子101による発光に対する各受光素子102での受光結果を観測できる。よって、複数の発光素子101による相互干渉の有無を判断でき、各発光素子101及び各受光素子102を相互干渉のない最適な設置とすることができる。
 また、光電センサ1が通常モードである場合には、表示部109は、例えば、物体検出部1076により出力された物体の有無を示す信号に基づき、物体が無い場合には表示窓1091のレベルゲージを0%とし、物体が有る場合には表示窓1091のレベルゲージを100%とする。
 以上のように、この実施の形態1によれば、入力された送信信号に応じた光を発光する複数の発光素子101と、発光素子101と対となって設けられ、光を受光する受光素子102と、発光素子101毎に設けられ、入力された送信信号を伝送し、一端に接続された発光素子101に出力する信号伝送ケーブル103と、受光素子102毎に設けられ、一端に接続された受光素子102により受光された光を示す受信信号を伝送する信号伝送ケーブル104と、信号伝送ケーブル103毎に設けられ、送信信号を生成して信号伝送ケーブル103に出力する信号生成部1073と、動作させる信号生成部1073を選択する信号生成制御部1074と、信号伝送ケーブル104により伝送された受信信号に基づいて、物体の有無を検出する物体検出部1076とを備えたので、光ファイバを用いずに、物体の有無を検出できる。
 また、従来では、複数の光電センサを連結して用いている。この場合、各光電センサの通信が煩雑となり高速化ができず、また、電源ライン及び信号ラインの配線の引き回しが煩雑になるという課題があった。
 それに対し、実施の形態1に係る光電センサ1では、単一の本体部105に複数のセンサ素子(発光素子101及び受光素子102)を信号伝送ケーブル103及び信号伝送ケーブル104を介して接続する構成としている。その結果、各センサ素子でのセンシングに対する処理の高速化を図ることができ、また、配線の引き回しも容易となる。
 なお上記では、光電センサ1が透過形である場合を示した。しかしながら、これに限らず、光電センサ1は反射型でもよい。また、反射型の場合には、対となる発光素子101及び受光素子102と、対となる信号伝送ケーブル103及び信号伝送ケーブル104を、それぞれ一体にまとめることが可能である。この場合、対となる発光素子101及び受光素子102は筐体に収納され、対となる信号伝送ケーブル103及び信号伝送ケーブル104は被膜部により覆われる。
実施の形態2.
 実施の形態1では単体の光電センサ1を用いた場合を示した。それに対し、実施の形態2では、複数の光電センサ1を有する光電センサシステムについて説明する。
 図8はこの発明の実施の形態2に係る光電センサシステムの構成例を示す図である。
 光電センサシステムは、図8に示すように、複数の光電センサ1及び統合サーバ2を備えている。
 光電センサ1は、実施の形態1と同様のセンサである。なお、通信部108は、光電センサシステムに設けられた他の光電センサ1又は統合サーバ2との間で通信を行う。
 また、実施の形態2における信号生成制御部1074bは、実施の形態1における信号生成制御部1074が有する機能に加え、通信部108により受信された信号に基づいて、信号生成部1073の動作タイミングを制御する機能を有している。すなわち、信号生成制御部1074bは、通信部108により受信された信号に基づいて、物体が検出された他の光電センサ1の設置箇所から、自身の光電センサ1が設置された箇所に上記物体が流れるタイミングを判断し、そのタイミングに応じて信号生成部1073を動作させる。
 統合サーバ2は、各光電センサ1の通信部108により送信された信号を収集し、各光電センサ1を管理する。例えば、統合サーバ2は、各光電センサ1から収集した信号を各光電センサ1に通知する。この際、統合サーバ2は、ある特定の光電センサ1に対し上記信号を送信し、当該信号を受け取った光電センサ1は自身に関係する情報のみを受け取り、隣接する光電センサ1に上記信号を送信する。以降、各光電センサ1で上記信号の受け渡しを行うことで、統合サーバ2から各光電センサ1に対して上記信号を通知する。
 これにより、光電センサ1同士又は光電センサ1と統合サーバ2との間で相互に通信可能となる。その結果、例えば、製造工程毎に設置された光電センサ1が、工程の流れを理解し、自己が物体検出すべきタイミングを判断可能となり、省電力化が可能となる。
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
 この発明に係る光電センサは、光ファイバを用いずに、物体の有無を検出できるよう構成したので、例えば製造ライン上を流れる物体(部品又は製品等)を検出する光電センサ及び光電センサシステム等に用いるのに適している。
1 光電センサ
2 統合サーバ
101 発光素子
102 受光素子
103 信号伝送ケーブル(第1信号伝送ケーブル)
104 信号伝送ケーブル(第2信号伝送ケーブル)
105 本体部
106 アンプ部
107 制御部
108 通信部
109 表示部
110 回路基板
111 光学レンズ
112 被膜部
1031 信号ライン
1032 グランドライン
1033 絶縁体
1034 コネクタのメス側
1041 信号ライン
1042 グランドライン
1043 絶縁体
1061 コネクタのオス側
1071 記憶部
1072 モード設定部
1073 信号生成部
1074,1074b 信号生成制御部
1075 信号復調部
1076 物体検出部
1091 表示窓

Claims (10)

  1.  入力された送信信号を変換した光を発光する複数の発光素子と、
     前記発光素子と対となって設けられ、光を受光する受光素子と、
     前記発光素子毎に設けられ、入力された送信信号を伝送し、一端に接続された前記発光素子に出力する第1信号伝送ケーブルと、
     前記受光素子毎に設けられ、一端に接続された前記受光素子により受光された光を示す受信信号を伝送する第2信号伝送ケーブルと、
     前記第1信号伝送ケーブル毎に設けられ、送信信号を生成して該当する前記第1信号伝送ケーブルに出力する信号生成部と、
     動作させる前記信号生成部を選択する信号生成制御部と、
     前記第2信号伝送ケーブルにより伝送された受信信号に基づいて、物体の有無を検出する物体検出部と
     を備えた光電センサ。
  2.  前記信号生成制御部は、予め設定された時間間隔で、動作させる前記信号生成部を選択する
     ことを特徴とする請求項1記載の光電センサ。
  3.  前記信号生成部は、前記第1信号伝送ケーブルに固有なビット列から成る送信信号を生成する
     ことを特徴とする請求項1記載の光電センサ。
  4.  前記信号生成部、前記信号生成制御部及び前記物体検出部は本体部に搭載され、
     前記第1信号伝送ケーブル及び前記第2信号伝送ケーブルは、他端が前記本体部に対して着脱可能である
     ことを特徴とする請求項1記載の光電センサ。
  5.  前記発光素子は前記第1信号伝送ケーブルの一端に対して着脱可能である
     ことを特徴とする請求項1記載の光電センサ。
  6.  前記受光素子は前記第2信号伝送ケーブルの一端に対して着脱可能である
     ことを特徴とする請求項1記載の光電センサ。
  7.  対となる前記発光素子及び前記受光素子を収納する筐体と、
     対となる前記第1信号伝送ケーブル及び前記第2信号伝送ケーブルを覆う被膜部とを備えた
     ことを特徴とする請求項1記載の光電センサ。
  8.  前記第1信号伝送ケーブル毎に設けられ、一端が接続された前記信号生成部により生成された送信信号を増幅し、他端に接続された前記第1信号伝送ケーブルに出力するアンプ部を備えた
     ことを特徴とする請求項1記載の光電センサ。
  9.  前記第2信号伝送ケーブルにより伝送された受信信号又は前記物体検出部により検出された物体の有無を示す表示を行う表示部を備えた
     ことを特徴とする請求項1記載の光電センサ。
  10.  前記物体検出部により検出された物体の有無を示す信号を外部装置に送信し、外部装置により送信された信号を受信する通信部を備えた
     ことを特徴とする請求項1記載の光電センサ。
PCT/JP2018/000815 2017-01-31 2018-01-15 光電センサ WO2018142897A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-015564 2017-01-31
JP2017015564A JP2018124139A (ja) 2017-01-31 2017-01-31 光電センサ

Publications (1)

Publication Number Publication Date
WO2018142897A1 true WO2018142897A1 (ja) 2018-08-09

Family

ID=63040547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000815 WO2018142897A1 (ja) 2017-01-31 2018-01-15 光電センサ

Country Status (2)

Country Link
JP (1) JP2018124139A (ja)
WO (1) WO2018142897A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5427369U (ja) * 1977-07-28 1979-02-22
JPS604877A (ja) * 1983-06-23 1985-01-11 Fuji Xerox Co Ltd 検出装置
JPH01120122A (ja) * 1987-11-02 1989-05-12 Yamatake Honeywell Co Ltd 透過形光電スイッチ
JPH02135632A (ja) * 1988-11-14 1990-05-24 Keyence Corp 多光軸光電スイッチ
US5519784A (en) * 1992-10-07 1996-05-21 Vermeulen; Pieter J. E. Apparatus for classifying movement of objects along a passage by type and direction employing time domain patterns
JPH09288940A (ja) * 1996-04-24 1997-11-04 Keyence Corp 光電スイッチのヘッド部
JP2015162386A (ja) * 2014-02-27 2015-09-07 アズビル株式会社 光電センサの調整方法および光電センサ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5427369U (ja) * 1977-07-28 1979-02-22
JPS604877A (ja) * 1983-06-23 1985-01-11 Fuji Xerox Co Ltd 検出装置
JPH01120122A (ja) * 1987-11-02 1989-05-12 Yamatake Honeywell Co Ltd 透過形光電スイッチ
JPH02135632A (ja) * 1988-11-14 1990-05-24 Keyence Corp 多光軸光電スイッチ
US5519784A (en) * 1992-10-07 1996-05-21 Vermeulen; Pieter J. E. Apparatus for classifying movement of objects along a passage by type and direction employing time domain patterns
JPH09288940A (ja) * 1996-04-24 1997-11-04 Keyence Corp 光電スイッチのヘッド部
JP2015162386A (ja) * 2014-02-27 2015-09-07 アズビル株式会社 光電センサの調整方法および光電センサ

Also Published As

Publication number Publication date
JP2018124139A (ja) 2018-08-09

Similar Documents

Publication Publication Date Title
EP3641164B1 (en) High-bandwidth underwater data communication system
US8687969B2 (en) Inter-transceiver module communication for optimization of link between transceivers
JP5978933B2 (ja) センサシステム
US20140363166A1 (en) High-bandwith underwater data communication system
US7653314B2 (en) Optical transceiver with custom logging mechanism
EP2808706B1 (en) Transceiver element for an optical unit of a photoelectric barrier and photoelectric light curtain
US10756815B2 (en) Free space optical data transmission using photodetector array
CN103676029A (zh) 光电耦合模组
CN203705864U (zh) 用于物体检测的光电开关
WO2018142897A1 (ja) 光電センサ
WO2018142898A1 (ja) 光電センサ
WO2018142895A1 (ja) センサ装置
JP6941968B2 (ja) 光電センサ
WO2018142896A1 (ja) 物体検出センサ
JP2018185161A (ja) 光電センサ
JP2018185192A (ja) 調整ツール
JP6937605B2 (ja) 光電センサ
CN113671590B (zh) 红外传感器和红外传感系统
JP2018186040A (ja) 光電センサ
JP2018186041A (ja) 光電センサ
JP2020010205A (ja) 受光中継装置、受光反射装置および光送受信装置
CN101784912B (zh) 放射线监视器及其动作确认方法
JP2018186039A (ja) 光電センサ
JP2019022048A (ja) 空間光通信システムおよび空間光通信システムのデータ送受信方法
JP2006229638A (ja) 時刻同期システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18748645

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18748645

Country of ref document: EP

Kind code of ref document: A1