WO2018142468A1 - Component mounting device and method for inspecting suction nozzle - Google Patents

Component mounting device and method for inspecting suction nozzle Download PDF

Info

Publication number
WO2018142468A1
WO2018142468A1 PCT/JP2017/003416 JP2017003416W WO2018142468A1 WO 2018142468 A1 WO2018142468 A1 WO 2018142468A1 JP 2017003416 W JP2017003416 W JP 2017003416W WO 2018142468 A1 WO2018142468 A1 WO 2018142468A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
nozzle body
holder
image
imaging
Prior art date
Application number
PCT/JP2017/003416
Other languages
French (fr)
Japanese (ja)
Inventor
勇真 河合
智康 荒井
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to PCT/JP2017/003416 priority Critical patent/WO2018142468A1/en
Priority to JP2018565108A priority patent/JP6706353B2/en
Publication of WO2018142468A1 publication Critical patent/WO2018142468A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components

Definitions

  • the technology disclosed in this specification relates to a component mounting apparatus and a method for inspecting a suction nozzle used in the component mounting apparatus.
  • the component mounting apparatus includes a mounting head having a nozzle shaft that is movable in the vertical direction.
  • a suction nozzle is attached to the tip of the nozzle shaft, and the electronic component is held by negative pressure.
  • the suction nozzle is composed of a nozzle holder, a nozzle body that can move in the vertical direction with respect to the nozzle holder, and a spring.
  • the spring When a load is applied to the nozzle body, the spring is contracted to absorb the impact (hereinafter referred to as “the nozzle body”). Buffing function).
  • the nozzle body By providing such a buffing function, vertical and vertical variations such as variations in component thickness, substrate warpage, and motor positioning accuracy can be applied to suction nozzles and electronic components during component mounting and component adsorption. The applied impact can be softened.
  • Patent Document 1 describes that the suction nozzle is imaged by a camera and the amount of protrusion of the nozzle body with respect to the nozzle holder is detected within the normal range. Specifically, as shown in FIG. 24, the entire amount from the lower part 310 of the nozzle holder to the nozzle main body 320 is simultaneously imaged by one imaging to inspect the protruding amount of the nozzle main body. Note that a frame 330 illustrated in FIG. 24 indicates an imaging area of the camera.
  • the entire area from the lower part of the nozzle holder to the nozzle body is within the field of view of the camera, and the entire range necessary for the inspection of the protrusion amount can be imaged by one imaging.
  • the range required for the inspection of the protrusion amount may not fit within the field of view of the camera.
  • the technology disclosed in the present specification has been created in view of the above problems, and even when the entire area from the lower part of the nozzle holder to the nozzle body does not fit within the field of view of the camera, the protruding amount of the nozzle body It is an object to determine whether the product is good or bad.
  • the component mounting apparatus disclosed in this specification includes a mounting head that moves in a plane direction with respect to a base on which a substrate is fixed, a nozzle shaft that is supported so as to be movable in the vertical direction with respect to the mounting head, A suction nozzle attached to the tip of the nozzle shaft; a side view camera that images a side surface of the suction nozzle; and an inspection unit that inspects the state of the suction nozzle; and the suction nozzle is a tip of the nozzle shaft.
  • a nozzle holder attached to the nozzle holder, a nozzle body attached to the nozzle holder so that a protruding amount is displaceable, and a biasing member that urges the nozzle body in the protruding direction with respect to the nozzle holder.
  • the inspection unit moves the suction nozzle in the vertical direction so that the nozzle body and the nozzle holder fit within the field of view of the side view camera.
  • an imaging process for separately imaging the nozzle body and the nozzle holder is executed by the side view camera, and a first image of the nozzle body obtained by the imaging and a second image of the nozzle holder And whether or not the amount of protrusion of the nozzle body relative to the nozzle holder is determined based on the moving distance of the suction nozzle accompanying imaging to obtain the first image and the second image.
  • the inspection unit displaces the nozzle body in the pushing direction to reduce the protrusion amount against the biasing member, and then moves the nozzle body to the nozzle body.
  • the process of imaging the nozzle body is performed a plurality of times, and the nozzle body with respect to the nozzle holder is obtained based on the image of the nozzle body obtained by each imaging
  • the repeatability of the tip position is determined. With this configuration, it is possible to determine the repeatability of the tip position of the nozzle body.
  • the inspection unit displaces the nozzle body in the pushing direction to reduce the protrusion amount against the biasing member, and then moves the nozzle body to the nozzle body.
  • the nozzle main body is continuously imaged by the camera unit, and the nozzle main body with respect to the nozzle holder is determined from the images continuously captured and the interval of the imaging time. Determine the slidability. With this configuration, the slidability of the nozzle body can be determined.
  • whether the protrusion amount of the nozzle body is good or not can be determined even when the entire area from the lower part of the nozzle holder to the nozzle body does not fit within the field of view of the camera.
  • Embodiment 1 Perspective view of head unit
  • the perspective view which expanded a part of head unit Perspective view showing structure of rotating body The figure which expanded the B section of FIG. Cross section of the main part of the head unit
  • Enlarged view of the suction nozzle Block diagram showing the electrical configuration of the component mounting device View of the head unit as seen from the direction A in FIG.
  • FIG. 1 Perspective view of camera unit Diagram showing the imaging operation of electronic components
  • FIG. 2 Perspective view of camera unit Diagram showing the imaging operation of electronic components
  • FIG. 3 Perspective view of camera unit Diagram showing the imaging operation of electronic components
  • FIG. 3 shows the imaging operation of the nozzle body with the camera unit
  • FIG. 3 shows the imaging operation of the nozzle holder by the camera unit Diagram showing nozzle body and nozzle holder image Sectional drawing which shows pushing-in operation of the suction nozzle in Embodiment 2, 3.
  • Diagram showing variation in nozzle tip position The figure which shows the mode of a change of the front-end
  • the figure which shows the response curve of the tip position of the nozzle body The figure which shows the conventional imaging example of a suction nozzle
  • FIG. 1 is a plan view of a component mounting apparatus 1.
  • the component mounting apparatus 1 includes a base 10, a transport conveyor 20 for transporting the printed circuit board B1, a head unit 50, a drive device 30 that moves the head unit 50 in the plane direction (XY axis direction), and component supply. Part 40 and the like.
  • the head unit 50 is an example of the “mounting head” in the present invention.
  • the printed circuit board B1 is an example of the “board” in the present invention.
  • the base 10 has a rectangular shape in plan view and a flat upper surface.
  • a backup device (not shown) is provided below the conveyor 10 in the base 10 for backing up the printed circuit board B1 when the electronic component E1 is mounted on the printed circuit board B1.
  • the conveyance direction (left-right direction in FIG. 1) of the printed circuit board B1 is the X-axis direction
  • the short side direction (up-down direction in FIG. 1) of the base 10 is the Y-axis direction
  • the up-down direction is the Z-axis direction.
  • the conveyance conveyor 20 is disposed at a substantially central position of the base 10 in the Y-axis direction, and conveys the printed circuit board B1 along the X-axis direction.
  • the conveyor 20 includes a pair of conveyor belts 22 that circulate and drive in the X direction, which is the conveying direction.
  • the printed circuit board B1 is carried from one side (right side shown in FIG. 1) in the carrying direction along the conveyor belt 22 to a work position on the base 10 (position surrounded by a two-dot chain line in FIG. 1).
  • the printed circuit board B1 is stopped at the work position and fixed to the base 10, and after the electronic component E1 is mounted, the printed circuit board B1 is carried out along the conveyor belt 22 to the other side (the left side shown in FIG. 1).
  • the parts supply unit 40 is arranged at four places in total, two places in the X-axis direction on both sides of the conveyor 20 (upper and lower sides in FIG. 1).
  • a plurality of feeders 42 are attached to these component supply units 40 in a side-by-side arrangement.
  • Each feeder 42 includes a reel around which a component supply tape containing a plurality of electronic components E1 is wound, and an electric feeding device that pulls out the component supply tape from the reel, and supplies the electronic components E1 one by one. It is supposed to be.
  • the driving device 30 includes a pair of support frames 32 and a head driving mechanism.
  • the pair of support frames 32 are located on both sides of the base 10 in the X-axis direction and extend in the Y-axis direction.
  • the support frame 32 is provided with an X-axis servo mechanism and a Y-axis servo mechanism that constitute a head drive mechanism.
  • the head unit 50 is movable in the X-axis direction and the Y-axis direction within the movable region on the base 10 by the X-axis servo mechanism and the Y-axis servo mechanism.
  • the Y-axis servo mechanism has a pair of Y-axis guide rails 33Y, a head support 36, a Y-axis ball screw 34Y, and a Y-axis servo motor 35Y.
  • the head support 36 is supported by a pair of Y-axis guide rails 33Y so as to be slidable in the Y-axis direction.
  • a ball nut (not shown) that is screwed to the Y-axis ball screw 34Y is fixed to the head support 36.
  • the X-axis servo mechanism has an X-axis guide rail (not shown) attached to the head support 36, an X-axis ball screw 34X, and an X-axis servo motor 35X.
  • a head unit 50 is movably attached to the X-axis guide rail along the axial direction.
  • the head unit 50 is attached with a ball nut (not shown) that engages with the X-axis ball screw 34X.
  • the head unit 50 performs a function of sucking and mounting the electronic component E1 supplied by the feeder 42 on the printed circuit board B1.
  • the head unit 50 includes a unit main body 60, a base panel 52, an outer ring member 58, and covers 53 and 54.
  • the base panel 52 has a shape that is long in the vertical direction.
  • the outer ring member 58 has an annular shape and is fixed to the base panel 52.
  • the base panel 52 and the outer ring member 58 have a function of supporting the unit main body 60 and correspond to a “support member” of the present invention.
  • the unit main body 60 is a rotary type, and as shown in FIGS. 2 to 4 and 6, a shaft portion 62 having an axial shape along the Z-axis direction, a rotating body 64, eighteen nozzle shafts 100, N-axis drive device 45.
  • the shaft portion 62 has a double structure, and includes an outer shaft portion 62B and an inner shaft portion 62A located inside the outer shaft portion 62B.
  • the inner shaft portion 62A is supported by the base panel 52 so as to be rotatable around the axis of the shaft portion 62A.
  • the rotating body 64 has a substantially cylindrical shape having a larger diameter than the shaft portion 62.
  • the rotating body 64 is fixed to the lower portion of the inner shaft portion 62A.
  • the rotating body 64 is located on the inner peripheral side of the outer ring member 58 and is supported in a state in which it can rotate relative to the outer ring member 58.
  • the outer ring member 58 is omitted in order to illustrate the rotating body 64.
  • through holes 65 are formed in the rotating body 64 at equal intervals in the circumferential direction.
  • a nozzle shaft 100 which will be described later is attached to each through hole 65 so as to penetrate the through hole 65.
  • An N-axis driven gear 62N and an R-axis driven gear 62R are vertically arranged at a position near the upper portion of the shaft portion 62 (see FIG. 4).
  • the N-axis driven gear 62N is coupled to the inner shaft portion 62A
  • the R-axis driven gear 62R is coupled to the outer shaft portion 62B.
  • the N-axis drive device 45 has an N-axis servomotor 35N and an N-axis drive gear (not shown) provided on the output shaft of the N-axis servomotor 35N.
  • the N-axis drive gear is meshed with the N-axis driven gear 62N. Therefore, when the N-axis servo motor 35N is driven, the power of the motor 35N is transmitted to the inner shaft portion 62A via the N-axis drive gear and the N-axis driven gear 62N. Therefore, the rotating body 64 rotates together with the inner shaft portion 62 ⁇ / b> A, and the 18 nozzle shafts 100 supported by the rotating body 64 rotate integrally with the rotating body 64.
  • outer shaft portion 62B is supported at both ends in the axial direction with respect to the inner shaft portion 62A and the rotating body 64 via bearings, and is relatively to the inner shaft portion 62A and the rotating body 64. It can be rotated.
  • the nozzle shaft 100 has an axial shape along the Z-axis direction, and is attached to each through hole 65 formed in the rotating body 64 via a cylindrical shaft holder 57.
  • a suction nozzle 120 is attached to the tip of the nozzle shaft 100.
  • the suction nozzle 120 is supplied with a negative pressure or a positive pressure. Each suction nozzle 120 sucks and holds the electronic component E1 at its tip by negative pressure, and releases the electronic component E1 held at its tip by positive pressure.
  • a coil spring 130 is attached to the upper outer peripheral surface of the nozzle shaft 100.
  • the coil spring 130 functions to urge the nozzle shaft 100 upward.
  • the R-axis drive device 70 is disposed at a substantially central portion in the Z-axis direction of the head unit 50, and serves as an R-axis servomotor 35R and an output shaft of the R-axis servomotor 35R.
  • An R-axis drive gear 72R that is provided and meshed with the R-axis driven gear 62R and a common gear 55 are provided.
  • the common gear 55 is provided in the lower part of the outer shaft part 62B as shown in FIGS.
  • the common gear 55 is meshed with the gear 57R of each shaft holder 57.
  • the power of the motor 35R is transmitted to the outer shaft portion 62B and the common gear 55 via the R-axis drive gear 72R and the R-axis driven gear 62R, and the outer shaft portion 62B and the common gear 55 are transmitted. Rotates.
  • each shaft holder 57 rotates by meshing with the gear 57R. Since each shaft holder 57 and each nozzle shaft 100 are ball spline-coupled, the 18 nozzle shafts 100 are simultaneously rotated in the same direction and the same angle around the axis L as the common gear 55 rotates. Rotate to.
  • the head unit 50 also includes two Z-axis driving devices 80 for moving the nozzle shafts 100 up and down in the Z-axis direction (vertical direction) with respect to the rotating body 64.
  • the Z-axis drive device 80 is disposed symmetrically on the left and right sides (both sides in the X-axis direction) of the head unit 50 with the shaft portion 62 of the rotating body 64 sandwiched above the nozzle shaft 100.
  • the nozzle shafts 100 located on the left and right sides (X-axis direction both sides) in FIG.
  • the Z-axis drive device 80 has a Z-axis linear motor 35Z and a Z-axis movable part 84.
  • the Z-axis linear motor 35Z has a stator (coil) and a mover (magnet) movable in the Z-axis direction.
  • the Z-axis movable portion 84 is fixed to the mover, and moves in the Z-axis direction (vertical direction) by driving the Z-axis linear motor 35Z.
  • a cam follower 86 is attached to the lower end portion of the Z-axis movable portion 84 as shown in FIG.
  • the cam follower 86 comes into contact with the upper end portion of the nozzle shaft 100, and the entire nozzle shaft 100 is elastic force of the coil spring 130. Descends against
  • the feeder 42 is operated by operating the X-axis servo motor 35X, the Y-axis servo motor 35Y, the N-axis servo motor 35N, the R-axis servo motor 35R, and the Z-axis linear motor 35Z at a predetermined timing.
  • the electronic component E1 supplied through the head unit 50 can be taken out by the head unit 50 and mounted on the printed circuit board P.
  • the X-axis servo motor 35X and the Y-axis servo motor 35Y are driven to move the head unit 50 above the feeder.
  • the Z-axis linear motor 35Z is driven to lower the first nozzle shaft 100 at the lifting operation position from the rising end position S1 shown in FIG.
  • the raising / lowering operation position is a position where the raising / lowering operation by the Z-axis drive device 80 is possible, and is a position on the left side or the right side in FIG.
  • the suction nozzle 120 provided at the tip of the nozzle shaft 100 is supplied with a negative pressure in accordance with the timing when the suction nozzle 120 is lowered to the height of the upper surface of the electronic component E1 supplied by the feeder 42, so that the electronic component is fed from the feeder 42. E1 can be taken out. And after taking out components, the Z-axis linear motor 35Z is driven and the 1st nozzle shaft 100 is raised to the raising end position S1 shown in FIG.
  • the N-axis servo motor 35N is driven to rotate the rotating body 64, and the second nozzle shaft 100 is moved to the elevation operation position.
  • the Z-axis linear motor 35Z is driven to lower the second nozzle shaft 100 from the rising end position S1 shown in FIG.
  • the electronic component E1 can be taken out from the feeder 42 by supplying a negative pressure in accordance with the timing when the suction nozzle 120 descends to the height of the upper surface of the electronic component E1 supplied by the feeder 42 (adsorption processing). ).
  • Such an operation is performed for each of the 18 nozzle shafts 100, whereby the 18 electronic components E1 can be taken out from the feeder 42 by one head unit 50.
  • the X-axis servo motor 35X and the Y-axis servo motor 35Y are driven to move the head unit 50 from above the feeder onto the printed circuit board B1.
  • the camera unit 150 images the electronic component E1 (described later).
  • the Z-axis linear motor 35Z is driven to lower the first nozzle shaft 100 located at the lifting operation position from the rising end position S1 shown in FIG. Further, during the descent, the R-axis servomotor 35R is driven as necessary to rotate the nozzle shaft 100 about the axis L, thereby correcting the inclination of the electronic component E1.
  • the electronic component E1 can be mounted on the printed circuit board B1 by switching the negative pressure to the positive pressure in accordance with the timing when the electronic component E1 held by the suction nozzle 120 descends to the height of the printed circuit board B1. Then, after mounting the electronic component E1, the Z-axis linear motor 35Z is driven to raise the first shaft shaft 100 to the rising end position S1 shown in FIG.
  • the N-axis servo motor 35N is driven to rotate the rotating body 64, and the second nozzle shaft 100 is moved to the elevation operation position.
  • the Z-axis linear motor 35Z is driven to lower the second nozzle shaft 100 from the rising end position S1 shown in FIG.
  • the electronic component E1 can be mounted on the printed circuit board B1 by switching the negative pressure to the positive pressure in accordance with the timing when the electronic component E1 held by the suction nozzle 120 descends to the height of the printed circuit board B1. processing).
  • the 18 electronic components taken out from the feeder 42 can be mounted on the printed circuit board B1.
  • a diffusion plate 190 is attached to the center of the lower portion of the rotating body 64.
  • the diffusion plate 190 has a cylindrical shape and is located inside the suction nozzle 120 arranged in a circumferential shape.
  • the diffusing plate 190 is provided to illuminate the background portion when the camera unit 150 described later captures an image of the electronic component E1 held by the suction nozzle 120.
  • the controller 200 includes an arithmetic control unit 211 configured by a CPU or the like.
  • the arithmetic control unit 211 includes a motor control unit 212, a storage unit 213, an image processing unit 214, an input / output unit 215, a feeder communication unit 216, an external communication unit, a display unit 218, and an operation unit 219. Each is connected.
  • the arithmetic control unit 211 is an example of the “inspection unit” in the present invention.
  • the motor control unit 212 controls the X-axis servo motor 35X, the Y-axis servo motor 35Y, the N-axis servo motor 35N, the R-axis servo motor 35R, and the Z-axis linear motor 35Z according to the electronic component mounting program. Moreover, the motor control part 212 drives the conveyance conveyor 20 according to a conveyance program.
  • the storage unit 213 includes a ROM (Read Only Memory), a RAM (Random Access Memory), and the like.
  • the storage unit 213 stores an electronic component E1 mounting program, a printed circuit board conveyance program, and various data necessary for mounting the electronic component E1.
  • the image processing unit 214 captures images output from the camera unit 150, and analyzes the captured images.
  • the feeder communication unit 216 is connected to each feeder 42 attached to the component supply unit 40, and controls each feeder 42 in an integrated manner.
  • the display unit 218 includes a liquid crystal display device having a display screen, and displays the state of the component mounting device 1 on the display screen.
  • the operation unit 219 is a keyboard or the like, and can input various settings and conditions to the component mounting apparatus 1.
  • the head unit 50 has a camera unit 150.
  • the camera unit 150 is a side view camera that images an imaging target from the horizontal direction (side), and is fixed to the outer ring member 58 that rotatably supports the rotating body 64.
  • FIG. 10 is a perspective view of FIG. 2 viewed from the direction A
  • FIG. 11 is a perspective view of the camera unit.
  • FIG. 12 is a diagram illustrating an imaging operation of the electronic component
  • FIG. 13 is an optical path diagram of the camera unit.
  • the camera unit 150 includes a camera body 153, a light guide unit 160, and light sources 180a and 180b as shown in FIGS.
  • the camera body 153 includes a lens 155 and an imaging unit 157 such as a CCD, and is disposed on the upper part of the light guide unit 160 (upper part of the center frame) with the lens 155 facing downward.
  • an imaging unit 157 such as a CCD
  • the light guide unit 160 guides light to the camera body 153, and includes a center frame 163 and a pair of side frames 165a and 165b.
  • the center frame 163 is located behind the rotating body 64 in FIG. 10, and a triangular center prism 171 (see FIG. 13) is disposed therein.
  • the pair of side frames 165a and 165b are located on both sides in the X direction of the rotating body 64 in FIG. 10, and the center frame 163 and the inside are connected.
  • a first side prism 173a and a second side prism 175a are arranged inside the side frame 165a, and a first side prism 173b and a second side prism are arranged inside the side frame 165b.
  • a prism 175b is arranged.
  • Light entrance windows 166a and 166b are respectively provided on the inner surfaces of the pair of side frames 165a and 165b (the surfaces facing the rotating body 64). These light entrance windows 166a and 166b are located on both sides in the X direction of the rotating body 64, and correspond to the raising / lowering operation positions (positions on the left and right sides in FIG. 6) of the nozzle shaft 100 by the Z-axis drive device 80.
  • “H” shown in FIG. 12 indicates the range of the light incident windows 166a and 166b in the Z-axis direction.
  • the positions of the light entrance windows 166a and 166b in the Z-axis direction generally correspond to the tip of the suction nozzle 120 when the nozzle shaft 100 is at the rising end position S1 shown in FIG. 6, and the nozzle shaft 100 is at the rising end position S1. 12, the range H in the Z-axis direction of the light entrance windows 166a and 166b and the tip of the suction nozzle 120 overlap in the Z-axis direction, as shown in FIG.
  • the light sources 180a and 180b are arranged on both sides in the Y direction of the light entrance windows 166a and 166b.
  • the light sources 180a and 180b are composed of a plurality of LEDs (Light Emitting Diode) and emit light.
  • the tip of the suction nozzle 120 (tip 125a of the nozzle body 125) and The electronic component E1 attracted and held by the electronic component E1 is located in front of the corresponding light entrance windows 166a and 166b and falls within the field of view of the camera. Therefore, it is possible to take an image of the electronic component E ⁇ b> 1 sucked by the suction nozzle 120 with the camera unit 150.
  • the light source 180a When the light source 180a is turned on, the light is diffused by the diffusion plate 190. A part of the diffused light passes outside the electronic component E1 held by the suction nozzle 120b. The light that has passed through the outside of the electronic component E1 enters from the light incident window 166b of the side frame 165b.
  • the incident light is reflected by the first side prism 173b, the second side prism 175b, and the center prism 171 and enters the region on one side of the imaging unit 157 of the camera body 153. . Therefore, an image of the electronic component E1 can be obtained.
  • the right light source 180b shown in FIGS. 12 and 13 when the electronic component E1 held by the suction nozzle 120a located at the left end is imaged, the right light source 180b shown in FIGS. 12 and 13 is turned on.
  • the light source 180b When the light source 180b is turned on, a part of the light diffused by the diffusion plate 190 passes outside the electronic component E1 held by the suction nozzle 120a.
  • the light transmitted through the electronic component E1 enters from the light incident window 166a of the side frame 165a.
  • the incident light is reflected by the first side prism 173a, the second side prism 175a, and the center prism 171 and enters the other region of the imaging unit 157 of the camera body 153. . Therefore, an image of the electronic component E1 can be obtained.
  • the camera unit 150 is provided with the two light incident windows 166a and 166b, and has a structure in which light incident from the two light incident windows 166a and 166b is incident on the imaging unit 157. Therefore, it is possible to take an image of the electronic component E1 sucked and held by the two suction nozzles 120 with one camera unit 150.
  • the two electronic components E1 sucked and held by the two suction nozzles 120a and 120b Images can be taken at the same time.
  • the imaging of the electronic component E1 can be performed in a state where the nozzle shaft 100 is stopped at the rising end position S1, and it is not necessary to adjust the position of each nozzle shaft 100 in the Z-axis direction for imaging.
  • the N-axis servo motor 35N is driven to rotate the rotating body 64 so that each nozzle shaft 100 performs imaging in accordance with the timing at which the nozzle shaft 100 passes the elevating operation position at which the elevating operation in the Z-axis direction can be performed.
  • each electronic component E1 sucked and held by the eighteen suction nozzles 120 can be continuously imaged.
  • the electronic component E1 is imaged by the camera unit 150 during the period in which the head unit 50 is moved from above the feeder to above the printed circuit board.
  • the suction state of the electronic component E1 with respect to the nozzle 120 is detected.
  • FIG. 14 is a cross-sectional view of the suction nozzle 120.
  • the suction nozzle 120 includes a nozzle holder 121, a nozzle body 125, a coil spring 127, and a stopper pin 128.
  • the coil spring 127 corresponds to the “biasing member” of the present invention.
  • the nozzle holder 121 is made of, for example, synthetic resin and has a cylindrical shape that is long in the Z-axis direction. Inside the nozzle holder 121, the lower end portion 101 of the nozzle shaft 100 is fitted so as to be prevented from coming off by the flange 103. A coil spring 105 is attached to the outer periphery of the nozzle shaft 100. The coil spring 105 pushes the nozzle holder 121 downward via the washer 107. The nozzle holder 121 is prevented from rotating with respect to the nozzle shaft 100 by friction generated by being pushed downward.
  • the lower part 123 of the nozzle holder 121 is provided with a cylindrical mounting portion 124 that protrudes downward.
  • the nozzle body 125 has a cylindrical shape that is long in the Z-axis direction, and has a small-diameter nozzle hole 125b at the tip.
  • the nozzle body 125 is fitted into the nozzle holder 121 from below while penetrating the attachment portion 124.
  • the nozzle body 125 is displaceable with respect to the nozzle holder 121 by an amount of protrusion D (for example, the length from the mounting portion 124 of the nozzle holder 121 to the tip 125a of the nozzle body 125) D.
  • the coil spring 127 is attached to the outside of the attachment portion 124. The coil spring 127 pushes the nozzle body 125 downward with respect to the nozzle holder 121.
  • FIG. 14A shows a state in which the nozzle body 125 protrudes most with respect to the nozzle holder 121 (when the suction nozzle is fully extended).
  • FIG. 14B shows a state where the nozzle body 125 is pushed into the nozzle holder 121.
  • the nozzle holder 121 and the nozzle body 125 are configured as separate parts, and the coil spring 127 is provided between them, so that when a load is applied to the tip 125a of the nozzle body 125, the coil spring 127 is placed.
  • the shock can be absorbed (hereinafter referred to as buffing function).
  • the suction nozzle 120 and electronic components are mounted when mounting or picking up components due to variations in the vertical direction such as variations in component thickness, substrate warpage, and motor positioning accuracy. The impact applied to can be softened.
  • the stopper 128 is inside the nozzle holder 121 and is fitted in a groove 126 formed on the outer peripheral surface of the nozzle body 125.
  • the stopper 128 abuts on the upper end of the groove 126 and prevents the nozzle body 125 from coming off from the nozzle holder 121.
  • the stopper 128 is in contact with the lower end of the groove 126 and restricts the position of the nozzle body 125 relative to the nozzle holder 121.
  • the adsorbing nozzle 120 having a buffing function has a nozzle body 125 with respect to the nozzle holder 121 due to its own wear powder generated by sucking and adhering foreign matters such as dust, dust, and solder, or repetition. When the external force is released, the nozzle body 125 may not return to the protruding state (the maximum protruding state shown in FIG. 14A).
  • the side surface of the suction nozzle 120 is imaged by the camera unit 150, and it is determined from the obtained image whether the protrusion amount D of the nozzle body 125 relative to the nozzle holder 121 is normal.
  • the entire area from the nozzle holder 121 to the nozzle body 125 may not be able to fit in the field of view.
  • the nozzle body 125 and the nozzle holder 121 are imaged separately. And the movement distance to the Z-axis direction of the suction nozzle 120 accompanying the imaging for obtaining the first image G1 of the nozzle body 125, the second image G2 of the nozzle holder 121, and the first image G1 and the second image G2. Based on H, it is determined whether the protrusion amount D of the nozzle body 125 relative to the nozzle holder 121 is normal.
  • the movement distance H in the Z-axis direction of the suction nozzle 120 associated with imaging for obtaining the first image G1 and the second image G2 is obtained by capturing one of the images in order to obtain two images G1 and G2.
  • the position of the suction nozzle 120 in the Z-axis direction is displaced when the Z-axis drive device 80 moves the nozzle shaft 100 up and down in the Z-axis direction. Therefore, the movement distance H in the Z-axis direction of the suction nozzle 120 is determined by the linear sensor (movement of the mover constituting the linear motor in the Z-axis direction) provided in the Z-axis linear motor 35Z that is the power source of the Z-axis drive device 80. It can be calculated by detecting the output of the sensor for detecting the amount by the arithmetic control unit 211.
  • the arithmetic control unit 211 checks the position of the suction nozzle 120 to determine whether the nozzle body 125 of the suction nozzle 120 is positioned in front of the light entrance window 116 b of the camera unit 150.
  • the nozzle body 125 is positioned in front of the light incident window 116b of the camera unit 150. It has become.
  • the arithmetic control unit 211 determines that the nozzle body 125 is located in front of the light entrance window 116b when the suction nozzle 120 to be inspected is at the highest position. Then, the arithmetic control unit 211 captures an image of the nozzle body 125 with the camera unit 150, and acquires the first image G1 of the nozzle body 125 (FIG. 15: S1). Note that the arrows described in FIG. 16 indicate the first imaging position of the suction nozzle 120 at which the nozzle main body 125 is imaged by the camera unit 150. 18A is a first image G1 of the nozzle body 125. FIG.
  • the calculation control unit 211 adjusts the position of the suction nozzle 120 in the Z-axis direction so that the stepped portion 121a of the nozzle holder 121 is within the field of view of the camera. Specifically, the Z-axis drive device 80 is driven to lower the nozzle shaft 100 from the rising end position S1, so that the stepped portion 121a of the nozzle holder 121 is positioned in front of the light entrance window 116b as shown in FIG. Then, the position of the suction nozzle 120 in the Z-axis direction is changed (FIG. 15: S3).
  • the arithmetic control unit 211 captures an image of the nozzle holder 121 with the camera unit 150, and acquires the second image G2 of the nozzle holder 121 (FIG. 15: S5).
  • the arrows shown in FIG. 17 indicate the second imaging position of the suction nozzle 120 where the camera holder 150 performs imaging of the nozzle holder 121.
  • 18B is a second image G2 of the nozzle holder 121.
  • the processes of S1 and S5 correspond to the “imaging process” of the present invention.
  • the stepped portion 121a of the nozzle holder 121 is used as a reference for determining the protrusion amount, and the two images G1 and G2 and the suction nozzle 120 in the Z-axis direction associated with imaging for obtaining the two images G1 and G2 are used. From the moving distance H, the total length L from the stepped portion 121a of the nozzle holder 121 to the tip 125a of the nozzle body 125 is calculated (FIG. 15: S7).
  • a distance Z1 from the reference line F to the tip 125a of the nozzle body 125 is obtained in the first image G1.
  • a distance Z2 from the reference line F to the stepped portion 121a of the nozzle holder 121 is obtained in the second image G2.
  • the reference line is the upper frame F of the image.
  • the total length L is expressed as follows: It can be calculated by equation (1).
  • the movement distance H in the Z-axis direction of the suction nozzle 120 accompanying the imaging for obtaining the two images G1 and G2 is determined by moving the suction nozzle 120 to Z in order to image the nozzle holder 121 after imaging the nozzle body 125. The distance moved in the axial direction.
  • the calculation control unit 211 compares the calculation result of the total length L from the stepped portion 121a to the tip 125a of the nozzle body 125 with the design value Lo of the total length L at the maximum protrusion shown in FIG.
  • the design value Lo can be obtained from the dimensions of each component such as the nozzle holder 121 and the nozzle body 125, and the data is stored in the storage unit 213 in advance.
  • the arithmetic control unit 211 determines that the protrusion amount D of the nozzle body 125 is normal (FIG. 15: S9). On the other hand, if the difference between the calculated total length L and the design value Lo is outside the allowable range, it is determined that the nozzle body 125 is abnormal.
  • the calculation control unit 211 performs the pass / fail determination regarding the protrusion amount D of the nozzle main body 125 before, for example, the component mounting apparatus 1 starts the mounting operation. By doing in this way, it can avoid beforehand that suction nozzle 120 in which slidability fell is used for mounting work.
  • the suction nozzle 120 to be determined can be moved up and down left and right to be movable in the Z-axis direction. It must be performed individually after moving to either of the operation positions (both left and right in FIG. 6).
  • the projection amount D of the nozzle body 125 relative to the nozzle holder 121 can be judged.
  • the arithmetic control unit 211 lowers the suction nozzle 120 from a predetermined height and pushes it into the base 10 or the like, thereby causing the nozzle body 125 to move. Is displaced with respect to the nozzle holder 121 in the pushing direction to reduce the protruding amount against the coil spring 127.
  • the arithmetic control unit 211 raises the suction nozzle 120 and releases the load applied to the nozzle body 125 in the pushing direction.
  • the nozzle body 125 returns to the protruding state (ideally, the maximum protruding state shown in FIG. 14A) due to the elasticity of the coil spring 127.
  • the calculation control unit 211 drives the Z-axis driving device 80 to raise the suction nozzle 120 to the position of FIG. 16 in parallel with the return of the nozzle body 125 to the protruding state. Thereafter, the processing of S1 to S9 shown in FIG. 15 is executed to determine whether the protrusion amount D of the nozzle body 125 is good or bad. In this configuration, the nozzle body 125 is once displaced in the pushing direction and then the quality of the protruding amount D of the nozzle body 125 is determined. Therefore, the sliding that remains contracted after the sliding operation of the nozzle body 125 with respect to the nozzle body 121 is performed. It becomes possible to detect defective suction nozzles.
  • the arithmetic control unit 211 lowers the suction nozzle 120 from a predetermined height and pushes it into the base 10 or the like, thereby causing the nozzle body 125 to move. Is displaced with respect to the nozzle holder 121 in the pushing direction to reduce the protruding amount against the coil spring 127 (FIG. 20: S11).
  • the arithmetic control unit 211 raises the suction nozzle 120 and releases the load applied to the nozzle body 125 in the pushing direction (FIG. 20: S13).
  • the nozzle body 125 returns to the protruding state (ideally, the maximum protruding state shown in FIG. 14A) due to the elasticity of the coil spring 127.
  • the arithmetic control unit 211 drives the Z-axis drive device 80 to raise the suction nozzle 120 to the position shown in FIG. An image is taken (FIG. 20: S15).
  • the arithmetic control unit 211 executes such a series of processes (S11 to S15) a plurality of times, and repeats the position of the tip end of the nozzle body 125 relative to the nozzle holder 121 based on the image of the nozzle body 125 obtained by a plurality of imaging operations.
  • the accuracy is determined (S19).
  • the position of the tip 125a of the nozzle body 125 is detected from the image obtained by each imaging, and the amount of change ⁇ in the position of the tip 125a of the nozzle body 125 is calculated.
  • the difference between the lowest state and the highest state is calculated as the change amount ⁇ . If the calculated change amount ⁇ is smaller than the threshold, it is determined that the repeatability is good, and if it is greater than the threshold, the repeatability is determined as NG.
  • the process for determining the repeatability (the flowchart in FIG. 20) is performed following the process for determining the quality of the protrusion amount D described in the first embodiment (the flowchart in FIG. 15).
  • the arithmetic control unit 211 uses the suction nozzle 120 for the mounting process only when both the protrusion amount D and the repetition accuracy are both OK.
  • the slidability of the nozzle body 125 with respect to the nozzle holder 121 is determined.
  • the slidability is the smoothness of displacement of the nozzle body 125 in the Z-axis direction with respect to the nozzle body 121. The greater the friction (sliding resistance), the lower the slidability.
  • the camera unit 150 images the nozzle body 125 (FIG. 20: S15).
  • the Z-axis driving device 80 is driven so that imaging can be started before the nozzle body 125 starts to be displaced in the protruding direction.
  • the suction nozzle 120 is raised to the position shown in FIG.
  • the arithmetic control unit 121 continuously captures images of the nozzle body 125 with the camera unit 150.
  • FIG. 22 is a continuous image of the nozzle body 125, and the arithmetic control unit 211 detects the position of the tip 125a of the nozzle body 125 from each of the continuously captured images.
  • the position of the tip 125a of the nozzle body 125 gradually changes downward as time T passes, and finally the maximum protruding position where the protrusion is limited by the stopper pin 128. Up to Pm.
  • the position of the tip 125a of the nozzle body 125 may stop without changing to the maximum protruding position Pm.
  • FIG. 23 is a graph in which the horizontal axis represents the elapsed time T from the start of imaging, and the vertical axis represents the amount of change V of the tip 125a of the nozzle body 125. The higher the slidability, the shorter the amount of change V converges. .
  • a response curve Lv (TV correlation curve) of the tip position of the nozzle body shown in FIG. 23 is obtained from the imaging time interval t of the nozzle body 125 and the change amount V of the tip position 125a of the nozzle body 125 at each time point.
  • the quality of the slidability can be determined by comparing the obtained response curve Lv with a predetermined reference curve (response curve when the slidability is good).
  • the above-described process for determining slidability is performed as part of the process (S15) when the determination of the repeatability described in the third embodiment (the flowchart in FIG. 20) is performed.
  • the arithmetic control unit 211 uses the suction nozzle 120 for the mounting process only when the protrusion amount D, the repeatability, and the slidability are all OK.
  • the reference for the change amount V is the maximum protrusion position Pm.
  • the rotary type head unit 50 is exemplified.
  • an inline type head unit in which a plurality of nozzle shafts 100 are linearly arranged may be used.
  • a side view camera may be fixed to a support provided on the base 10 and the suction nozzle 120 may be imaged with the camera.
  • the side view camera is a camera that has a field of view in the horizontal direction from the viewpoint and images the side surface of the object.
  • the above-described slidability determination process is performed as part of the process (S15) when determining the repeatability described in the third embodiment (the flowchart in FIG. 20). Although an example is shown, the determination may be performed separately from the determination of the repetition accuracy. Further, it is possible to perform only the determination of the slidability without determining the repeatability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Abstract

Provided is a method for inspecting a suction nozzle 120 which suctions electronic components to be mounted on a substrate. The suction nozzle 120 includes: a nozzle holder 121 attached to the leading end of a nozzle shaft 100; a nozzle body 125 attached to the nozzle holder 121 such that a projection amount D is variable; and an impelling member 127 for impelling the nozzle body 125 in a projecting direction with respect to the nozzle holder 121. By means of a side view camera 150, the nozzle body 125 and the nozzle holder 121 are separately imaged. On the basis of a first image G1 of the nozzle body 125 and a second image g2 of the nozzle holder 121 that are obtained by the imaging, and a movement distance H of the suction nozzle 120 according to the imaging for obtaining the first image G1 and the second image G2, it is determined whether or not the projection amount D of the nozzle body 125 with respect to the nozzle holder 121 is appropriate.

Description

部品搭載装置および吸着ノズルの検査方法Component mounting device and suction nozzle inspection method
 本明細書で開示される技術は部品搭載装置及び、部品搭載装置に使用される吸着ノズルの検査方法に関する。 The technology disclosed in this specification relates to a component mounting apparatus and a method for inspecting a suction nozzle used in the component mounting apparatus.
 従来から、プリント基板上に電子部品を搭載する部品搭載装置が知られている。部品搭載装置は、上下方向に移動可能なノズルシャフトを有する搭載ヘッドを備えている。ノズルシャフトの先端には、吸着ノズルが取り付けられており、負圧により電子部品を保持する構造になっている。 Conventionally, a component mounting apparatus for mounting an electronic component on a printed circuit board is known. The component mounting apparatus includes a mounting head having a nozzle shaft that is movable in the vertical direction. A suction nozzle is attached to the tip of the nozzle shaft, and the electronic component is held by negative pressure.
 また、吸着ノズルには、ノズルホルダと、ノズルホルダに対して上下方向に移動可能なノズル本体と、ばねとからなり、ノズル本体に荷重が加わったとき、ばねが縮むことで衝撃を吸収(以下、バフィング機能)する構造がある。こうしたバフィング機能を持たせることで、部品厚みのバラつきや、基板の反り量のバラつき、モータの位置決め精度のバラつきなどの上下方向のバラつきにより、部品搭載時や部品吸着時に、吸着ノズルや電子部品に加わる衝撃をやわらげることが出来る。 The suction nozzle is composed of a nozzle holder, a nozzle body that can move in the vertical direction with respect to the nozzle holder, and a spring. When a load is applied to the nozzle body, the spring is contracted to absorb the impact (hereinafter referred to as “the nozzle body”). Buffing function). By providing such a buffing function, vertical and vertical variations such as variations in component thickness, substrate warpage, and motor positioning accuracy can be applied to suction nozzles and electronic components during component mounting and component adsorption. The applied impact can be softened.
 一方、バフィング機能を持つ吸着ノズルは、塵やゴミ、はんだ等の異物の吸引や付着、または材料の摩耗により、ノズル本体の摺動性が低下して、外力を解放しても、ノズル本体が摺動前の突出した状態に復帰しない事態が生じる場合がある。そのため、下記特許文献1では、カメラにより吸着ノズルを撮像して、ノズルホルダに対するノズル本体の突出量が正常範囲か検出する点が記載されている。具体的には、図24に示すように、1回の撮像で、ノズルホルダの下部310からノズル本体320までの全体を同時に撮像してノズル本体の突出量を検査している。尚、図24に示す枠330は、カメラの撮像エリアを示している。 On the other hand, a suction nozzle with a buffing function reduces the slidability of the nozzle body due to the suction and adhesion of foreign matters such as dust, dirt, and solder, or wear of the material. There may be a situation where the projecting state before sliding does not return. Therefore, Patent Document 1 below describes that the suction nozzle is imaged by a camera and the amount of protrusion of the nozzle body with respect to the nozzle holder is detected within the normal range. Specifically, as shown in FIG. 24, the entire amount from the lower part 310 of the nozzle holder to the nozzle main body 320 is simultaneously imaged by one imaging to inspect the protruding amount of the nozzle main body. Note that a frame 330 illustrated in FIG. 24 indicates an imaging area of the camera.
特開2006-114534号公報JP 2006-114534 A
 特許文献1に記載の方法では、ノズルホルダの下部からノズル本体までの全体がカメラの視野内に収まっており、1回の撮像で、突出量の検査に必要な全範囲が撮像できている。
 しかしながら、吸着ノズルの形状に起因して、或いはカメラの視野が小さい場合は、突出量の検査に必要な範囲が、カメラの視野内に収まらない場合があった。
In the method described in Patent Document 1, the entire area from the lower part of the nozzle holder to the nozzle body is within the field of view of the camera, and the entire range necessary for the inspection of the protrusion amount can be imaged by one imaging.
However, due to the shape of the suction nozzle or when the field of view of the camera is small, the range required for the inspection of the protrusion amount may not fit within the field of view of the camera.
 本明細書で開示される技術は、上記の課題に鑑みて創作されたものであって、ノズルホルダの下部からノズル本体までの全体がカメラの視野内に収まらない場合でも、ノズル本体の突出量の良否を判定することを課題とする。 The technology disclosed in the present specification has been created in view of the above problems, and even when the entire area from the lower part of the nozzle holder to the nozzle body does not fit within the field of view of the camera, the protruding amount of the nozzle body It is an object to determine whether the product is good or bad.
 本明細書で開示される部品搭載装置は、基板が固定される基台に対して平面方向に移動する搭載ヘッドと、前記搭載ヘッドに対して上下方向に移動可能に支持されたノズルシャフトと、前記ノズルシャフトの先端に取り付けられた吸着ノズルと、前記吸着ノズルの側面を撮像するサイドビューカメラと、吸着ノズルの状態を検査する検査部と、を含み、前記吸着ノズルは、前記ノズルシャフトの先端に取り付けられたノズルホルダと、前記ノズルホルダに対して突出量が変位自在に取り付けられたノズル本体と、前記ノズル本体を前記ノズルホルダに対して突出方向に付勢する付勢部材と、を含み、前記検査部は、前記サイドビューカメラの視野に前記ノズル本体と前記ノズルホルダがそれぞれ収まるように前記吸着ノズルを上下方向に移動して、前記サイドビューカメラにより、前記ノズル本体と前記ノズルホルダとを別々に撮像する撮像処理を実行し、前記撮像により得られた前記ノズル本体の第1画像と、前記ノズルホルダの第2画像と、前記第1画像と前記第2画像とを得るための撮像に伴う前記吸着ノズルの移動距離と、に基づいて、前記ノズルホルダに対する前記ノズル本体の突出量の良否を判定する。 The component mounting apparatus disclosed in this specification includes a mounting head that moves in a plane direction with respect to a base on which a substrate is fixed, a nozzle shaft that is supported so as to be movable in the vertical direction with respect to the mounting head, A suction nozzle attached to the tip of the nozzle shaft; a side view camera that images a side surface of the suction nozzle; and an inspection unit that inspects the state of the suction nozzle; and the suction nozzle is a tip of the nozzle shaft. A nozzle holder attached to the nozzle holder, a nozzle body attached to the nozzle holder so that a protruding amount is displaceable, and a biasing member that urges the nozzle body in the protruding direction with respect to the nozzle holder. The inspection unit moves the suction nozzle in the vertical direction so that the nozzle body and the nozzle holder fit within the field of view of the side view camera. Then, an imaging process for separately imaging the nozzle body and the nozzle holder is executed by the side view camera, and a first image of the nozzle body obtained by the imaging and a second image of the nozzle holder And whether or not the amount of protrusion of the nozzle body relative to the nozzle holder is determined based on the moving distance of the suction nozzle accompanying imaging to obtain the first image and the second image.
 本構成では、ノズルホルダの下部からノズル本体までの全体がカメラの視野内に収まらない場合でも、ノズル本体の突出量の良否を判定することが出来る。 In this configuration, it is possible to determine whether the amount of protrusion of the nozzle body is good or not even when the entire area from the bottom of the nozzle holder to the nozzle body does not fit within the field of view of the camera.
 本明細書で開示される部品搭載装置の一実施態様として、前記検査部は、前記ノズル本体を前記付勢部材に抗して突出量を小さくする押込方向に変位させた後、前記ノズル本体に対して前記押込方向に加わる荷重を解放してから、前記ノズル本体を撮像する処理を複数回実行し、各回の撮像で得られた前記ノズル本体の画像に基づいて、前記ノズルホルダに対する前記ノズル本体の先端位置の繰り返し精度を判定する。この構成では、ノズル本体の先端位置の繰り返し精度を判定することができる。 As an embodiment of the component mounting apparatus disclosed in the present specification, the inspection unit displaces the nozzle body in the pushing direction to reduce the protrusion amount against the biasing member, and then moves the nozzle body to the nozzle body. On the other hand, after releasing the load applied in the pushing direction, the process of imaging the nozzle body is performed a plurality of times, and the nozzle body with respect to the nozzle holder is obtained based on the image of the nozzle body obtained by each imaging The repeatability of the tip position is determined. With this configuration, it is possible to determine the repeatability of the tip position of the nozzle body.
 本明細書で開示される部品搭載装置の一実施態様として、前記検査部は、前記ノズル本体を前記付勢部材に抗して突出量を小さくする押込方向に変位させた後、前記ノズル本体に対して前記押込方向に加わる荷重を解放してから、前記ノズル本体を前記カメラユニットで連続して撮像し、連続して撮像した各画像と撮像時間の間隔とから、前記ノズルホルダに対する前記ノズル本体の摺動性を判定する。この構成では、ノズル本体の摺動性を判定することが出来る。 As an embodiment of the component mounting apparatus disclosed in the present specification, the inspection unit displaces the nozzle body in the pushing direction to reduce the protrusion amount against the biasing member, and then moves the nozzle body to the nozzle body. On the other hand, after releasing the load applied in the pushing direction, the nozzle main body is continuously imaged by the camera unit, and the nozzle main body with respect to the nozzle holder is determined from the images continuously captured and the interval of the imaging time. Determine the slidability. With this configuration, the slidability of the nozzle body can be determined.
 本明細書で開示される技術によれば、ノズルホルダの下部からノズル本体までの全体がカメラの視野内に収まらない場合でも、ノズル本体の突出量の良否を判定することが出来る。 According to the technology disclosed in the present specification, whether the protrusion amount of the nozzle body is good or not can be determined even when the entire area from the lower part of the nozzle holder to the nozzle body does not fit within the field of view of the camera.
実施形態1に適用された部品搭載装置の平面図The top view of the component mounting apparatus applied to Embodiment 1 ヘッドユニットの斜視図Perspective view of head unit ヘッドユニットの一部を拡大した斜視図The perspective view which expanded a part of head unit 回転体の構造を示す斜視図Perspective view showing structure of rotating body 図4のB部を拡大した図The figure which expanded the B section of FIG. ヘッドユニットの要部断面図Cross section of the main part of the head unit 図6の一部(下半分)を拡大した図An enlarged view of a part (lower half) of FIG. 吸着ノズルの拡大図Enlarged view of the suction nozzle 部品搭載装置の電気的構成を示すブロック図Block diagram showing the electrical configuration of the component mounting device ヘッドユニットを図2のA方向から見た図View of the head unit as seen from the direction A in FIG. カメラユニットの斜視図Perspective view of camera unit 電子部品の撮像動作を示す図Diagram showing the imaging operation of electronic components カメラユニットの光路図Optical path diagram of camera unit 吸着ノズルの断面図Cross section of suction nozzle ノズル本体の突出量の良否判定のフローチャート図Flowchart diagram for determining the quality of the protrusion of the nozzle body カメラユニットによるノズル本体の撮像動作を示す図The figure which shows the imaging operation of the nozzle body with the camera unit カメラユニットによるノズルホルダの撮像動作を示す図The figure which shows the imaging operation of the nozzle holder by the camera unit ノズル本体とノズルホルダの画像を示す図Diagram showing nozzle body and nozzle holder image 実施形態2、3において吸着ノズルの押込動作を示す断面図Sectional drawing which shows pushing-in operation of the suction nozzle in Embodiment 2, 3. 実施形態3における繰り返し精度の判定方法を示すフローチャート図The flowchart figure which shows the determination method of the repeatability in Embodiment 3. ノズル本体の先端位置のばらつきを示す図Diagram showing variation in nozzle tip position 実施形態4においてノズル本体の先端位置の変化の様子を示す図The figure which shows the mode of a change of the front-end | tip position of a nozzle body in Embodiment 4. ノズル本体の先端位置の応答曲線を示す図The figure which shows the response curve of the tip position of the nozzle body 吸着ノズルの従来の撮像例を示す図The figure which shows the conventional imaging example of a suction nozzle
 <実施形態1>
 1.部品搭載装置の全体構成
 図1は部品搭載装置1の平面図である。部品搭載装置1は、基台10と、プリント基板B1を搬送するための搬送コンベア20と、ヘッドユニット50と、ヘッドユニット50を平面方向(XY軸方向)に移動させる駆動装置30と、部品供給部40等とを備えている。尚、ヘッドユニット50が本発明の「搭載ヘッド」の一例である。また、プリント基板B1が本発明の「基板」の一例である。
<Embodiment 1>
1. FIG. 1 is a plan view of a component mounting apparatus 1. The component mounting apparatus 1 includes a base 10, a transport conveyor 20 for transporting the printed circuit board B1, a head unit 50, a drive device 30 that moves the head unit 50 in the plane direction (XY axis direction), and component supply. Part 40 and the like. The head unit 50 is an example of the “mounting head” in the present invention. The printed circuit board B1 is an example of the “board” in the present invention.
 基台10は、平面視長方形状をなすとともに上面が平坦とされる。また、基台10における搬送コンベア20の下方には、プリント基板B1上に電子部品E1を実装する際にそのプリント基板B1をバックアップするバックアップ装置(図略)が設けられている。以下の説明では、プリント基板B1の搬送方向(図1の左右方向)をX軸方向とし、基台10の短辺方向(図1の上下方向)をY軸方向とし、上下方向をZ軸方向とする。 The base 10 has a rectangular shape in plan view and a flat upper surface. A backup device (not shown) is provided below the conveyor 10 in the base 10 for backing up the printed circuit board B1 when the electronic component E1 is mounted on the printed circuit board B1. In the following description, the conveyance direction (left-right direction in FIG. 1) of the printed circuit board B1 is the X-axis direction, the short side direction (up-down direction in FIG. 1) of the base 10 is the Y-axis direction, and the up-down direction is the Z-axis direction. And
 搬送コンベア20は、Y軸方向における基台10の略中央位置に配置され、プリント基板B1をX軸方向に沿って搬送する。搬送コンベア20は、搬送方向であるX方向に循環駆動する一対のコンベアベルト22を備えている。プリント基板B1は、搬送方向の一方側(図1で示す右側)からコンベアベルト22に沿って基台10上の作業位置(図1の二点鎖線で囲まれる位置)に搬入される。そして、プリント基板B1は作業位置で停止して基台10に固定され、電子部品E1の実装作業がされた後、コンベアベルト22に沿って他方側(図1で示す左側)に搬出される。 The conveyance conveyor 20 is disposed at a substantially central position of the base 10 in the Y-axis direction, and conveys the printed circuit board B1 along the X-axis direction. The conveyor 20 includes a pair of conveyor belts 22 that circulate and drive in the X direction, which is the conveying direction. The printed circuit board B1 is carried from one side (right side shown in FIG. 1) in the carrying direction along the conveyor belt 22 to a work position on the base 10 (position surrounded by a two-dot chain line in FIG. 1). The printed circuit board B1 is stopped at the work position and fixed to the base 10, and after the electronic component E1 is mounted, the printed circuit board B1 is carried out along the conveyor belt 22 to the other side (the left side shown in FIG. 1).
 部品供給部40は、搬送コンベア20の両側(図1の上下両側)においてX軸方向に並んで2箇所ずつ、計4箇所に配されている。これらの部品供給部40には、複数のフィーダ42が横並び状に整列して取り付けられている。各フィーダ42は、複数の電子部品E1が収容された部品供給テープが巻回されたリール、及びリールから部品供給テープを引き出す電動式の送出装置を備えており、電子部品E1を一つずつ供給するようになっている。 The parts supply unit 40 is arranged at four places in total, two places in the X-axis direction on both sides of the conveyor 20 (upper and lower sides in FIG. 1). A plurality of feeders 42 are attached to these component supply units 40 in a side-by-side arrangement. Each feeder 42 includes a reel around which a component supply tape containing a plurality of electronic components E1 is wound, and an electric feeding device that pulls out the component supply tape from the reel, and supplies the electronic components E1 one by one. It is supposed to be.
 駆動装置30は、一対の支持フレーム32と、ヘッド駆動機構とから構成される。一対の支持フレーム32は、X軸方向における基台10の両側に位置しており、Y軸方向に延びている。支持フレーム32には、ヘッド駆動機構を構成するX軸サーボ機構及びY軸サーボ機構が設けられている。ヘッドユニット50は、X軸サーボ機構及びY軸サーボ機構によって、基台10上の可動領域内でX軸方向及びY軸方向に移動可能とされている。 The driving device 30 includes a pair of support frames 32 and a head driving mechanism. The pair of support frames 32 are located on both sides of the base 10 in the X-axis direction and extend in the Y-axis direction. The support frame 32 is provided with an X-axis servo mechanism and a Y-axis servo mechanism that constitute a head drive mechanism. The head unit 50 is movable in the X-axis direction and the Y-axis direction within the movable region on the base 10 by the X-axis servo mechanism and the Y-axis servo mechanism.
 Y軸サーボ機構は、一対のY軸ガイドレール33Yと、ヘッド支持体36と、Y軸ボールねじ34Yと、Y軸サーボモータ35Yとを有している。ヘッド支持体36は、一対のY軸ガイドレール33Yにより、Y軸方向にスライド可能に支持されている。また、ヘッド支持体36には、Y軸ボールねじ34Yと螺合するボールナット(図略)が固定されている。 The Y-axis servo mechanism has a pair of Y-axis guide rails 33Y, a head support 36, a Y-axis ball screw 34Y, and a Y-axis servo motor 35Y. The head support 36 is supported by a pair of Y-axis guide rails 33Y so as to be slidable in the Y-axis direction. A ball nut (not shown) that is screwed to the Y-axis ball screw 34Y is fixed to the head support 36.
 Y軸サーボモータ35Yが駆動すると、Y軸ボールねじ34Yに沿ってボールナットが進退し、その結果、ヘッド支持体36及び後述するヘッドユニット50がY軸ガイドレール33Yに沿ってY軸方向に移動する。 When the Y-axis servo motor 35Y is driven, the ball nut advances and retreats along the Y-axis ball screw 34Y. As a result, the head support 36 and a head unit 50 described later move in the Y-axis direction along the Y-axis guide rail 33Y. To do.
 X軸サーボ機構は、ヘッド支持体36に対して取り付けられたX軸ガイドレール(不図示)と、X軸ボールねじ34Xと、X軸サーボモータ35Xとを有している。X軸ガイドレールには、その軸方向に沿ってヘッドユニット50が移動自在に取り付けられている。また、ヘッドユニット50には、X軸ボールねじ34Xと螺合するボールナット(図略)が取り付けられている。 The X-axis servo mechanism has an X-axis guide rail (not shown) attached to the head support 36, an X-axis ball screw 34X, and an X-axis servo motor 35X. A head unit 50 is movably attached to the X-axis guide rail along the axial direction. The head unit 50 is attached with a ball nut (not shown) that engages with the X-axis ball screw 34X.
 X軸サーボモータ35Xが駆動すると、X軸ボールねじ34Xに沿ってボールナットが進退し、その結果、ボールナットに固定されたヘッドユニット50が、ヘッド支持体36上をX軸ガイドレールに沿ってX軸方向に移動する。 When the X-axis servomotor 35X is driven, the ball nut advances and retreats along the X-axis ball screw 34X. As a result, the head unit 50 fixed to the ball nut moves on the head support 36 along the X-axis guide rail. Move in the X-axis direction.
 (ヘッドユニットの構成)
 ヘッドユニット50は、フィーダ42によって供給される電子部品E1を吸着して、プリント基板B1上に搭載する機能を果たす。ヘッドユニット50は、図2~図4に示すように、ユニット本体60と、ベースパネル52と、外環部材58と、カバー53、54とを有している。ベースパネル52は上下方向に長い形状をなす。外環部材58は、円環状であり、ベースパネル52に対して固定されている。ベースパネル52と外環部材58は、ユニット本体60を支持する機能を果たしており、本発明の「支持部材」に相当する。
(Head unit configuration)
The head unit 50 performs a function of sucking and mounting the electronic component E1 supplied by the feeder 42 on the printed circuit board B1. As shown in FIGS. 2 to 4, the head unit 50 includes a unit main body 60, a base panel 52, an outer ring member 58, and covers 53 and 54. The base panel 52 has a shape that is long in the vertical direction. The outer ring member 58 has an annular shape and is fixed to the base panel 52. The base panel 52 and the outer ring member 58 have a function of supporting the unit main body 60 and correspond to a “support member” of the present invention.
 ユニット本体60は、ロータリー式であり、図2~4、図6に示すように、Z軸方向に沿った軸状をなす軸部62と、回転体64と、18本のノズルシャフト100と、N軸駆動装置45と、を含む。 The unit main body 60 is a rotary type, and as shown in FIGS. 2 to 4 and 6, a shaft portion 62 having an axial shape along the Z-axis direction, a rotating body 64, eighteen nozzle shafts 100, N-axis drive device 45.
 図6に示すように、軸部62は二重構造となっており、外側軸部62Bと、外側軸部62Bの内側に位置する内側軸部62Aと、を含む。内側軸部62Aは、ベースパネル52に対して、当該軸部62Aの軸線周りに回転可能に支持されている。 As shown in FIG. 6, the shaft portion 62 has a double structure, and includes an outer shaft portion 62B and an inner shaft portion 62A located inside the outer shaft portion 62B. The inner shaft portion 62A is supported by the base panel 52 so as to be rotatable around the axis of the shaft portion 62A.
 回転体64は、軸部62より大径な略円柱状をなす。回転体64は、内側軸部62Aの下部に固定されている。回転体64は、外環部材58の内周側に位置しており、外環部材58に対して相対回転可能な状態で支持されている。尚、図4は、回転体64を図示するため、外環部材58は省略した図となっている。 The rotating body 64 has a substantially cylindrical shape having a larger diameter than the shaft portion 62. The rotating body 64 is fixed to the lower portion of the inner shaft portion 62A. The rotating body 64 is located on the inner peripheral side of the outer ring member 58 and is supported in a state in which it can rotate relative to the outer ring member 58. In FIG. 4, the outer ring member 58 is omitted in order to illustrate the rotating body 64.
 また、回転体64には、周方向に等間隔で貫通孔65が18個形成されている。各貫通孔65には、これを貫通して、後述するノズルシャフト100が取り付けられている。 Further, 18 through holes 65 are formed in the rotating body 64 at equal intervals in the circumferential direction. A nozzle shaft 100 which will be described later is attached to each through hole 65 so as to penetrate the through hole 65.
 軸部62の上部寄りの位置には、N軸被駆動ギヤ62Nと、R軸被駆動ギヤ62Rが上下に配置されている(図4参照)。N軸被駆動ギヤ62Nは内側軸部62Aと結合し、R軸被駆動ギヤ62Rは、外側軸部62Bと結合している。 An N-axis driven gear 62N and an R-axis driven gear 62R are vertically arranged at a position near the upper portion of the shaft portion 62 (see FIG. 4). The N-axis driven gear 62N is coupled to the inner shaft portion 62A, and the R-axis driven gear 62R is coupled to the outer shaft portion 62B.
 N軸駆動装置45は、N軸サーボモータ35Nと、N軸サーボモータ35Nの出力軸に設けられたN軸駆動ギヤ(不図示)と、を有している。N軸駆動ギヤはN軸被駆動ギヤ62Nと噛み合わされている。そのため、N軸サーボモータ35Nを駆動すると、モータ35Nの動力が、N軸駆動ギヤ及びN軸被駆動ギヤ62Nを介して内側軸部62Aに伝わる。そのため、内側軸部62Aと共に回転体64が回転し、回転体64に支持された18本のノズルシャフト100が回転体64と一体的に回転する構造になっている。 The N-axis drive device 45 has an N-axis servomotor 35N and an N-axis drive gear (not shown) provided on the output shaft of the N-axis servomotor 35N. The N-axis drive gear is meshed with the N-axis driven gear 62N. Therefore, when the N-axis servo motor 35N is driven, the power of the motor 35N is transmitted to the inner shaft portion 62A via the N-axis drive gear and the N-axis driven gear 62N. Therefore, the rotating body 64 rotates together with the inner shaft portion 62 </ b> A, and the 18 nozzle shafts 100 supported by the rotating body 64 rotate integrally with the rotating body 64.
 また、外側軸部62Bは、軸方向の両端部を、ベアリングを介して内側軸部62Aと回転体64に対してそれぞれ軸受けしており、内側軸部62Aや回転体64に対して相対的に回転可能となっている。 Further, the outer shaft portion 62B is supported at both ends in the axial direction with respect to the inner shaft portion 62A and the rotating body 64 via bearings, and is relatively to the inner shaft portion 62A and the rotating body 64. It can be rotated.
 ノズルシャフト100は、Z軸方向に沿った軸状であり、筒状のシャフトホルダ57を介して、回転体64に形成された各貫通孔65に取り付けられている。 The nozzle shaft 100 has an axial shape along the Z-axis direction, and is attached to each through hole 65 formed in the rotating body 64 via a cylindrical shaft holder 57.
 また、図7に示すように、ノズルシャフト100の先端には、吸着ノズル120が取り付けられている。 Further, as shown in FIG. 7, a suction nozzle 120 is attached to the tip of the nozzle shaft 100.
 吸着ノズル120には、負圧又は正圧が供給されるようになっている。各吸着ノズル120は、負圧によってその先端部に電子部品E1を吸着して保持するとともに、正圧によってその先端部に保持した電子部品E1を解放する。 The suction nozzle 120 is supplied with a negative pressure or a positive pressure. Each suction nozzle 120 sucks and holds the electronic component E1 at its tip by negative pressure, and releases the electronic component E1 held at its tip by positive pressure.
 ノズルシャフト100の上部外周面には、コイルばね130が取り付けられている。コイルばね130は、ノズルシャフト100を上向きに付勢する機能を果たしている。 A coil spring 130 is attached to the upper outer peripheral surface of the nozzle shaft 100. The coil spring 130 functions to urge the nozzle shaft 100 upward.
 次に、各ノズルシャフト100をその軸線L周りに回転駆動するためのR軸駆動装置70について説明する。 Next, an R-axis drive device 70 for driving each nozzle shaft 100 to rotate around its axis L will be described.
 R軸駆動装置70は、図2、図3に示すように、ヘッドユニット50のZ軸方向における略中央部に配置されており、R軸サーボモータ35Rと、R軸サーボモータ35Rの出力軸に設けられ、R軸被駆動ギヤ62Rと噛み合わされたR軸駆動ギヤ72Rと、共通ギヤ55を有している。 As shown in FIGS. 2 and 3, the R-axis drive device 70 is disposed at a substantially central portion in the Z-axis direction of the head unit 50, and serves as an R-axis servomotor 35R and an output shaft of the R-axis servomotor 35R. An R-axis drive gear 72R that is provided and meshed with the R-axis driven gear 62R and a common gear 55 are provided.
 共通ギヤ55は、図5、図7に示すように、外側軸部62Bの下部に設けられている。共通ギヤ55は、各シャフトホルダ57のギヤ57Rと噛み合わされている。R軸サーボモータ35Rを駆動すると、モータ35Rの動力が、R軸駆動ギヤ72R及びR軸被駆動ギヤ62Rを介して、外側軸部62B、共通ギヤ55に伝わり、外側軸部62Bと共通ギヤ55が回転する。 The common gear 55 is provided in the lower part of the outer shaft part 62B as shown in FIGS. The common gear 55 is meshed with the gear 57R of each shaft holder 57. When the R-axis servomotor 35R is driven, the power of the motor 35R is transmitted to the outer shaft portion 62B and the common gear 55 via the R-axis drive gear 72R and the R-axis driven gear 62R, and the outer shaft portion 62B and the common gear 55 are transmitted. Rotates.
 共通ギヤ55が回転すると、ギヤ57Rとの噛み合いにより、各シャフトホルダ57が回転する。そして、各シャフトホルダ57と各ノズルシャフト100は、ボールスプライン結合していることから、共通ギヤ55の回転に伴って、18本のノズルシャフト100がその軸線L周りにおいて同方向及び同角度に一斉に回転する。 When the common gear 55 rotates, each shaft holder 57 rotates by meshing with the gear 57R. Since each shaft holder 57 and each nozzle shaft 100 are ball spline-coupled, the 18 nozzle shafts 100 are simultaneously rotated in the same direction and the same angle around the axis L as the common gear 55 rotates. Rotate to.
 また、ヘッドユニット50は、各ノズルシャフト100を、回転体64に対してZ軸方向(上下方向)に昇降させるための2つのZ軸駆動装置80を備えている。 The head unit 50 also includes two Z-axis driving devices 80 for moving the nozzle shafts 100 up and down in the Z-axis direction (vertical direction) with respect to the rotating body 64.
 Z軸駆動装置80は、図6に示すように、ノズルシャフト100の上方において、回転体64の軸部62を挟んでヘッドユニット50の左右両側(X軸方向両側)に対称配置されており、18本のノズルシャフト100のうち図6の左右両側(X軸方向両側)に位置するノズルシャフト100を上下方向であるZ軸方向に昇降させる。 As shown in FIG. 6, the Z-axis drive device 80 is disposed symmetrically on the left and right sides (both sides in the X-axis direction) of the head unit 50 with the shaft portion 62 of the rotating body 64 sandwiched above the nozzle shaft 100. Among the 18 nozzle shafts 100, the nozzle shafts 100 located on the left and right sides (X-axis direction both sides) in FIG.
 Z軸駆動装置80は、Z軸リニアモータ35Zと、Z軸可動部84とを有している。Z軸リニアモータ35Zは、固定子(コイル)と、Z軸方向に移動可能な可動子(マグネット)を有している。Z軸可動部84は、可動子に固定されており、Z軸リニアモータ35Zの駆動により、Z軸方向(上下方向)に移動する。 The Z-axis drive device 80 has a Z-axis linear motor 35Z and a Z-axis movable part 84. The Z-axis linear motor 35Z has a stator (coil) and a mover (magnet) movable in the Z-axis direction. The Z-axis movable portion 84 is fixed to the mover, and moves in the Z-axis direction (vertical direction) by driving the Z-axis linear motor 35Z.
 Z軸可動部84の下端部には、図6に示すように、カムフォロア86が取り付けられている。Z軸リニアモータ35Zの駆動により、Z軸可動部84が図6に示す初期位置から下降すると、カムフォロア86がノズルシャフト100の上端部に当接し、ノズルシャフト100の全体がコイルばね130の弾性力に抗って下降する。 A cam follower 86 is attached to the lower end portion of the Z-axis movable portion 84 as shown in FIG. When the Z-axis movable portion 84 is lowered from the initial position shown in FIG. 6 by driving the Z-axis linear motor 35Z, the cam follower 86 comes into contact with the upper end portion of the nozzle shaft 100, and the entire nozzle shaft 100 is elastic force of the coil spring 130. Descends against
 また、カムカムフォロア86がノズルシャフト100の上端部に当接した状態から、Z軸可動部84を上昇させると、コイルばね130の弾性力復帰力によって、ノズルシャフト100の全体が上昇する。 Further, when the Z-axis movable portion 84 is raised from the state where the cam cam follower 86 is in contact with the upper end portion of the nozzle shaft 100, the entire nozzle shaft 100 is raised by the elastic force restoring force of the coil spring 130.
 尚、Z軸可動部84が図6に示す初期位置にある状態では、カムフォロア86はノズルシャフト100の上方にあって、ノズルシャフト100から離れて位置する。そのため、回転体64を回転した時に、各ノズルフャフト100とカムフォロア86が干渉しないようになっている。 In the state where the Z-axis movable part 84 is in the initial position shown in FIG. 6, the cam follower 86 is located above the nozzle shaft 100 and is separated from the nozzle shaft 100. For this reason, when the rotating body 64 is rotated, each nozzle phaff 100 and the cam follower 86 do not interfere with each other.
 このような構成とすることで、X軸サーボモータ35X、Y軸サーボモータ35Y、N軸サーボモータ35N、R軸サーボモータ35R、Z軸リニアモータ35Zを所定のタイミングで作動させることにより、フィーダ42を通じて供給される電子部品E1をヘッドユニット50により取り出して、プリント基板P上に装着する処理を実行することが出来る。 With such a configuration, the feeder 42 is operated by operating the X-axis servo motor 35X, the Y-axis servo motor 35Y, the N-axis servo motor 35N, the R-axis servo motor 35R, and the Z-axis linear motor 35Z at a predetermined timing. The electronic component E1 supplied through the head unit 50 can be taken out by the head unit 50 and mounted on the printed circuit board P.
 すなわち、フィーダ42から電子部品E1を取り出す場合、X軸サーボモータ35X、Y軸サーボモータ35Yを駆動して、ヘッドユニット50をフィーダ上方に移動させる。ヘッドユニット50がフィーダ上方に移動したら、Z軸リニアモータ35Zを駆動して、昇降操作位置にある1本目のノズルシャフト100を図6に示す上昇端位置S1から下降させる。尚、昇降操作位置とは、Z軸駆動装置80による昇降操作が可能な位置であり、図6の左側又は右側の位置である。 That is, when the electronic component E1 is taken out from the feeder 42, the X-axis servo motor 35X and the Y-axis servo motor 35Y are driven to move the head unit 50 above the feeder. When the head unit 50 moves above the feeder, the Z-axis linear motor 35Z is driven to lower the first nozzle shaft 100 at the lifting operation position from the rising end position S1 shown in FIG. In addition, the raising / lowering operation position is a position where the raising / lowering operation by the Z-axis drive device 80 is possible, and is a position on the left side or the right side in FIG.
 そして、ノズルシャフト100の先端に設けられた吸着ノズル120がフィーダ42による供給される電子部品E1の上面の高さに下降するタイミングに合わせて、負圧を供給することで、フィーダ42から電子部品E1を取り出すことができる。そして、部品の取り出し後は、Z軸リニアモータ35Zを駆動して、1本目のノズルシャフト100を図6に示す上昇端位置S1まで上昇させる。 Then, the suction nozzle 120 provided at the tip of the nozzle shaft 100 is supplied with a negative pressure in accordance with the timing when the suction nozzle 120 is lowered to the height of the upper surface of the electronic component E1 supplied by the feeder 42, so that the electronic component is fed from the feeder 42. E1 can be taken out. And after taking out components, the Z-axis linear motor 35Z is driven and the 1st nozzle shaft 100 is raised to the raising end position S1 shown in FIG.
 次に、N軸サーボモータ35Nを駆動して回転体64を回転し、2本目のノズルシャフト100を、昇降操作位置まで移動する。あとは1本目と同様に、Z軸リニアモータ35Zを駆動して2本目のノズルシャフト100を図6に示す上昇端位置S1から下降させる。そして、吸着ノズル120がフィーダ42による供給される電子部品E1の上面の高さに下降するタイミングに合わせて、負圧を供給することで、フィーダ42から電子部品E1を取り出すことができる(吸着処理)。 Next, the N-axis servo motor 35N is driven to rotate the rotating body 64, and the second nozzle shaft 100 is moved to the elevation operation position. After that, similarly to the first one, the Z-axis linear motor 35Z is driven to lower the second nozzle shaft 100 from the rising end position S1 shown in FIG. Then, the electronic component E1 can be taken out from the feeder 42 by supplying a negative pressure in accordance with the timing when the suction nozzle 120 descends to the height of the upper surface of the electronic component E1 supplied by the feeder 42 (adsorption processing). ).
 このような動作を、18本のノズルシャフト100についてそれぞれ行うことで、1つのヘッドユニット50で、フィーダ42から18個の電子部品E1を取り出すことが出来る。 Such an operation is performed for each of the 18 nozzle shafts 100, whereby the 18 electronic components E1 can be taken out from the feeder 42 by one head unit 50.
 次に取り出した電子部品E1をプリント基板B1に搭載する場合、X軸サーボモータ35X、Y軸サーボモータ35Yを駆動して、ヘッドユニット50をフィーダ上方からプリント基板B1上に移動させる。また、ヘッドユニット50の移動中、カメラユニット150による電子部品E1の撮像が行われる(後述)。 Next, when the electronic component E1 taken out is mounted on the printed circuit board B1, the X-axis servo motor 35X and the Y-axis servo motor 35Y are driven to move the head unit 50 from above the feeder onto the printed circuit board B1. In addition, during the movement of the head unit 50, the camera unit 150 images the electronic component E1 (described later).
 そして、ヘッドユニット50がプリント基板上方に移動したら、Z軸リニアモータ35Zを駆動して、昇降操作位置に位置する1本目のノズルシャフト100を、図6に示す上昇端位置S1から下降させる。また、下降中、必要に応じてR軸サーボモータ35Rを駆動して、ノズルシャフト100を、軸線Lを中心に回転させ、電子部品E1の傾きを補正する。 When the head unit 50 moves above the printed circuit board, the Z-axis linear motor 35Z is driven to lower the first nozzle shaft 100 located at the lifting operation position from the rising end position S1 shown in FIG. Further, during the descent, the R-axis servomotor 35R is driven as necessary to rotate the nozzle shaft 100 about the axis L, thereby correcting the inclination of the electronic component E1.
 そして、吸着ノズル120に保持された電子部品E1が、プリント基板B1の高さに下降するタイミングに合わせて、負圧を正圧に切り換えることで、電子部品E1をプリント基板B1に搭載できる。そして、電子部品E1の搭載後は、Z軸リニアモータ35Zを駆動して、1本目のシャフトシャフト100を図6に示す上昇端位置S1まで上昇させる。 The electronic component E1 can be mounted on the printed circuit board B1 by switching the negative pressure to the positive pressure in accordance with the timing when the electronic component E1 held by the suction nozzle 120 descends to the height of the printed circuit board B1. Then, after mounting the electronic component E1, the Z-axis linear motor 35Z is driven to raise the first shaft shaft 100 to the rising end position S1 shown in FIG.
 次に、N軸サーボモータ35Nを駆動して回転体64を回転し、2本目のノズルシャフト100を、昇降操作位置まで移動する。あとは1本目と同様に、Z軸リニアモータ35Zを駆動して2本目のノズルシャフト100を図6に示す上昇端位置S1から下降させる。そして、吸着ノズル120に保持された電子部品E1が、プリント基板B1の高さに下降するタイミングに合わせて、負圧を正圧に切り換えることで、電子部品E1をプリント基板B1に搭載できる(搭載処理)。 Next, the N-axis servo motor 35N is driven to rotate the rotating body 64, and the second nozzle shaft 100 is moved to the elevation operation position. After that, similarly to the first one, the Z-axis linear motor 35Z is driven to lower the second nozzle shaft 100 from the rising end position S1 shown in FIG. The electronic component E1 can be mounted on the printed circuit board B1 by switching the negative pressure to the positive pressure in accordance with the timing when the electronic component E1 held by the suction nozzle 120 descends to the height of the printed circuit board B1. processing).
 このような動作を、18本のノズルシャフト100についてそれぞれ行うことで、フィーダ42から取り出した18個の電子部品を、プリント基板B1上に搭載することが出来る。 By performing such an operation for each of the 18 nozzle shafts 100, the 18 electronic components taken out from the feeder 42 can be mounted on the printed circuit board B1.
 尚、上記では、2つのZ軸駆動装置80のうち一方だけを利用し、プリント基板B1に対して電子部品E1を1つずつ搭載する例を説明した。この他にも、2つのZ軸駆動装置80の双方を利用して、2本のノズルシャフト100を同時に昇降させて、プリント基板B1に対して2つの電子部品E1を同時に搭載するようにしてもよい。また、2つのZ軸駆動装置80を交互に使用することも可能である。 In the above description, an example in which only one of the two Z-axis drive devices 80 is used and one electronic component E1 is mounted on the printed circuit board B1 has been described. In addition, by using both of the two Z-axis drive devices 80, the two nozzle shafts 100 can be lifted and lowered simultaneously to mount two electronic components E1 on the printed circuit board B1. Good. It is also possible to use two Z-axis drive devices 80 alternately.
 また、図6、図7に示すように、回転体64の下部中央には、拡散板190が取り付けられている。拡散板190は、筒状をしており、円周状に配置された吸着ノズル120の内側に位置している。この拡散板190は、後述するカメラユニット150で、吸着ノズル120に保持された電子部品E1を撮像する際に、背景部分を光らすために設けられている。 Further, as shown in FIGS. 6 and 7, a diffusion plate 190 is attached to the center of the lower portion of the rotating body 64. The diffusion plate 190 has a cylindrical shape and is located inside the suction nozzle 120 arranged in a circumferential shape. The diffusing plate 190 is provided to illuminate the background portion when the camera unit 150 described later captures an image of the electronic component E1 held by the suction nozzle 120.
 次に、部品搭載装置1の電気的構成について、図9を参照して説明する。部品搭載装置1の本体は、コントローラ200によってその全体が制御統括されている。コントローラ200は、CPU等により構成される演算制御部211を備えている。演算制御部211には、モータ制御部212と、記憶部213と、画像処理部214と、入出力部215と、フィーダ通信部216、外部通信部、表示部218と、操作部219と、がそれぞれ接続されている。演算制御部211は、本発明の「検査部」の一例である。 Next, the electrical configuration of the component mounting apparatus 1 will be described with reference to FIG. The entire body of the component mounting apparatus 1 is controlled and controlled by the controller 200. The controller 200 includes an arithmetic control unit 211 configured by a CPU or the like. The arithmetic control unit 211 includes a motor control unit 212, a storage unit 213, an image processing unit 214, an input / output unit 215, a feeder communication unit 216, an external communication unit, a display unit 218, and an operation unit 219. Each is connected. The arithmetic control unit 211 is an example of the “inspection unit” in the present invention.
 モータ制御部212は、電子部品の搭載プログラムに従って、X軸サーボモータ35X、Y軸サーボモータ35Y、N軸サーボモータ35N、R軸サーボモータ35R、Z軸リニアモータ35Zを制御する。また、モータ制御部212は、搬送プログラムに従って、搬送コンベア20を駆動させる。 The motor control unit 212 controls the X-axis servo motor 35X, the Y-axis servo motor 35Y, the N-axis servo motor 35N, the R-axis servo motor 35R, and the Z-axis linear motor 35Z according to the electronic component mounting program. Moreover, the motor control part 212 drives the conveyance conveyor 20 according to a conveyance program.
 記憶部213は、ROM(Read Only Memory)やRAM(Random Access Memory)等から構成されている。記憶部213には、電子部品E1の搭載プログラムやプリント基板の搬送プログラム、及び電子部品E1の搭載に必要な各種データが記憶されている。 The storage unit 213 includes a ROM (Read Only Memory), a RAM (Random Access Memory), and the like. The storage unit 213 stores an electronic component E1 mounting program, a printed circuit board conveyance program, and various data necessary for mounting the electronic component E1.
 画像処理部214には、カメラユニット150から出力される画像がそれぞれ取り込まれるようになっており、取り込まれた画像の解析が行われるようになっている。 The image processing unit 214 captures images output from the camera unit 150, and analyzes the captured images.
 入出力部215には、各種センサやスイッチが接続されている。 Various sensors and switches are connected to the input / output unit 215.
 フィーダ通信部216は、部品供給部40に取り付けられた各フィーダ42と接続されており、各フィーダ42を統括して制御する。 The feeder communication unit 216 is connected to each feeder 42 attached to the component supply unit 40, and controls each feeder 42 in an integrated manner.
 表示部218は、表示画面を有する液晶表示装置等から構成され、部品搭載装置1の状態等を表示画面上に表示する。操作部219はキーボード等であり、部品搭載装置1に対して各種設定や条件などを入力操作できる。 The display unit 218 includes a liquid crystal display device having a display screen, and displays the state of the component mounting device 1 on the display screen. The operation unit 219 is a keyboard or the like, and can input various settings and conditions to the component mounting apparatus 1.
2.カメラユニットの構成
 図2に示すように、ヘッドユニット50は、カメラユニット150を有している。カメラユニット150は、撮像対象を水平方向(側方)から撮像するサイドビューカメラであり、回転体64を回転可能に支持する外環部材58に対して固定されている。
2. Configuration of Camera Unit As shown in FIG. 2, the head unit 50 has a camera unit 150. The camera unit 150 is a side view camera that images an imaging target from the horizontal direction (side), and is fixed to the outer ring member 58 that rotatably supports the rotating body 64.
 図10は図2をA方向から見た斜視図、図11はカメラユニットの斜視図である。図12は電子部品の撮像動作を示す図、図13はカメラユニットの光路図である。 10 is a perspective view of FIG. 2 viewed from the direction A, and FIG. 11 is a perspective view of the camera unit. FIG. 12 is a diagram illustrating an imaging operation of the electronic component, and FIG. 13 is an optical path diagram of the camera unit.
 カメラユニット150は、図10、11に示すように、カメラ本体153と、導光ユニット160と、光源180a、180bと、を備える。 The camera unit 150 includes a camera body 153, a light guide unit 160, and light sources 180a and 180b as shown in FIGS.
 カメラ本体153は、レンズ155と、CCD等の撮像部157とを備え、レンズ155を下方に向けた状態で、導光ユニット160の上部(センターフレームの上部)に配置されている。 The camera body 153 includes a lens 155 and an imaging unit 157 such as a CCD, and is disposed on the upper part of the light guide unit 160 (upper part of the center frame) with the lens 155 facing downward.
 導光ユニット160は、光をカメラ本体153に導くものであり、センターフレーム163と、一対のサイドフレーム165a、165bとを有している。 The light guide unit 160 guides light to the camera body 153, and includes a center frame 163 and a pair of side frames 165a and 165b.
 センターフレーム163は、図10において回転体64の後方に位置しており、その内部には、三角形状のセンタープリズム171(図13を参照)が配置されている。 The center frame 163 is located behind the rotating body 64 in FIG. 10, and a triangular center prism 171 (see FIG. 13) is disposed therein.
 一対のサイドフレーム165a、165bは、図10において回転体64のX方向両側に位置しており、センターフレーム163と内部が繋がっている。 The pair of side frames 165a and 165b are located on both sides in the X direction of the rotating body 64 in FIG. 10, and the center frame 163 and the inside are connected.
 サイドフレーム165aの内部には、第1サイドプリズム173a、第2サイドプリズム175a(図13を参照)が配置されており、また、サイドフレーム165bの内部には、第1サイドプリズム173b、第2サイドプリズム175b(図13を参照)が配置されている。 A first side prism 173a and a second side prism 175a (see FIG. 13) are arranged inside the side frame 165a, and a first side prism 173b and a second side prism are arranged inside the side frame 165b. A prism 175b (see FIG. 13) is arranged.
 一対のサイドフレーム165a、165bの内面(回転体64との対向面)には、入光窓166a、166bがそれぞれ設けられている。これら各入光窓166a、166bは回転体64のX方向両側に位置しており、Z軸駆動装置80によるノズルシャフト100の昇降操作位置(図6の左右両側の位置)と対応している。 Light entrance windows 166a and 166b are respectively provided on the inner surfaces of the pair of side frames 165a and 165b (the surfaces facing the rotating body 64). These light entrance windows 166a and 166b are located on both sides in the X direction of the rotating body 64, and correspond to the raising / lowering operation positions (positions on the left and right sides in FIG. 6) of the nozzle shaft 100 by the Z-axis drive device 80.
 また、図12に示す「H」は、入光窓166a、166bのZ軸方向の範囲を示している。入光窓166a、166bのZ軸方向の位置は、ノズルシャフト100が図6に示す上昇端位置S1にあるときの吸着ノズル120の先端と概ね対応しており、ノズルシャフト100が上昇端位置S1にある場合、図12に示すように、入光窓166a、166bのZ軸方向の範囲Hと吸着ノズル120の先端がZ軸方向で重なる関係となっている。 Further, “H” shown in FIG. 12 indicates the range of the light incident windows 166a and 166b in the Z-axis direction. The positions of the light entrance windows 166a and 166b in the Z-axis direction generally correspond to the tip of the suction nozzle 120 when the nozzle shaft 100 is at the rising end position S1 shown in FIG. 6, and the nozzle shaft 100 is at the rising end position S1. 12, the range H in the Z-axis direction of the light entrance windows 166a and 166b and the tip of the suction nozzle 120 overlap in the Z-axis direction, as shown in FIG.
 光源180a、180bは、入光窓166a、166bのY方向両側に配置されている。光源180a、180bは、複数のLED(Light Emitting Diode)から構成されており、光を発光する。 The light sources 180a and 180b are arranged on both sides in the Y direction of the light entrance windows 166a and 166b. The light sources 180a and 180b are composed of a plurality of LEDs (Light Emitting Diode) and emit light.
 本実施形態では、Z軸方向の操作が可能となる昇降操作位置において、ノズルシャフト100を上昇操作位置S1(図6を参照)にすると、吸着ノズル120の先端(ノズル本体125の先端125a)及びそれに吸着保持された電子部品E1が、対応する入光窓166a、166bの正面に位置して、カメラの視野内に収まる。そのため、吸着ズル120に吸着された電子部品E1をカメラユニット150により撮像することができる。 In the present embodiment, when the nozzle shaft 100 is moved to the ascending operation position S1 (see FIG. 6) at the ascending / descending operation position at which operation in the Z-axis direction is possible, the tip of the suction nozzle 120 (tip 125a of the nozzle body 125) and The electronic component E1 attracted and held by the electronic component E1 is located in front of the corresponding light entrance windows 166a and 166b and falls within the field of view of the camera. Therefore, it is possible to take an image of the electronic component E <b> 1 sucked by the suction nozzle 120 with the camera unit 150.
 具体的に説明すると、図12、図13にて右端に位置する吸着ノズル120bに保持された電子部品E1を撮像する場合、図12、図13に示す左側の光源180aを点灯する。 More specifically, when imaging the electronic component E1 held by the suction nozzle 120b located at the right end in FIGS. 12 and 13, the left light source 180a shown in FIGS. 12 and 13 is turned on.
 光源180aを点灯すると、その光は、拡散板190で拡散する。そして、拡散した光の一部が、吸着ノズル120bに保持された電子部品E1の外側を通過する。電子部品E1の外側を通過した光は、サイドフレーム165bの入光窓166bから入射する。 When the light source 180a is turned on, the light is diffused by the diffusion plate 190. A part of the diffused light passes outside the electronic component E1 held by the suction nozzle 120b. The light that has passed through the outside of the electronic component E1 enters from the light incident window 166b of the side frame 165b.
 そして、入射した光は、図13に示すように、第1サイドプリズム173b、第2サイドプリズム175b、センタープリズム171で反射して、カメラ本体153の撮像部157の一方側の領域に入光する。そのため、電子部品E1の画像を得ることが出来る。 Then, as shown in FIG. 13, the incident light is reflected by the first side prism 173b, the second side prism 175b, and the center prism 171 and enters the region on one side of the imaging unit 157 of the camera body 153. . Therefore, an image of the electronic component E1 can be obtained.
 また、図12、図13にて左端に位置する吸着ノズル120aに保持された電子部品E1を撮像する場合、図12、図13に示す右側の光源180bを点灯する。光源180bを点灯すると、拡散板190で拡散した光の一部が、吸着ノズル120aに保持された電子部品E1の外側を通過する。電子部品E1を透過した光は、サイドフレーム165aの入光窓166aから入射する。 12 and 13, when the electronic component E1 held by the suction nozzle 120a located at the left end is imaged, the right light source 180b shown in FIGS. 12 and 13 is turned on. When the light source 180b is turned on, a part of the light diffused by the diffusion plate 190 passes outside the electronic component E1 held by the suction nozzle 120a. The light transmitted through the electronic component E1 enters from the light incident window 166a of the side frame 165a.
 そして、入射した光は、図13に示すように、第1サイドプリズム173a、第2サイドプリズム175a、センタープリズム171で反射して、カメラ本体153の撮像部157の他方側の領域に入光する。そのため、電子部品E1の画像を得ることが出来る。 Then, as shown in FIG. 13, the incident light is reflected by the first side prism 173a, the second side prism 175a, and the center prism 171 and enters the other region of the imaging unit 157 of the camera body 153. . Therefore, an image of the electronic component E1 can be obtained.
 このように、本実施形態のカメラユニット150は、2つの入光窓166a、166bを設けており、2つの入光窓166a、166bから入射した光が、撮像部157に入光する構造になっていることから、1台のカメラユニット150で、2つの吸着ノズル120に吸着保持された電子部品E1を撮像することが出来るようになっている。 As described above, the camera unit 150 according to the present embodiment is provided with the two light incident windows 166a and 166b, and has a structure in which light incident from the two light incident windows 166a and 166b is incident on the imaging unit 157. Therefore, it is possible to take an image of the electronic component E1 sucked and held by the two suction nozzles 120 with one camera unit 150.
 また、2つの入光窓166a、166bから入射した光は、撮像部157の異なる領域に入射する構成になっているので、2つの吸着ノズル120a、120bに吸着保持された2つの電子部品E1を同時に撮像することが出来る。 Moreover, since the light incident from the two light incident windows 166a and 166b is configured to be incident on different areas of the imaging unit 157, the two electronic components E1 sucked and held by the two suction nozzles 120a and 120b Images can be taken at the same time.
 また、電子部品E1の撮像は、ノズルシャフト100を上昇端位置S1に停止させた状態で行うことが出来、撮像にあたり、各ノズルシャフト100の位置をZ軸方向で調整する必要がない。 Further, the imaging of the electronic component E1 can be performed in a state where the nozzle shaft 100 is stopped at the rising end position S1, and it is not necessary to adjust the position of each nozzle shaft 100 in the Z-axis direction for imaging.
 そのため、N軸サーボモータ35Nを駆動して回転体64を回転させて、各ノズルシャフト100が、Z軸方向への昇降操作が可能となる昇降操作位置を通過するタイミングに合わせて撮像を行うことで、18本の吸着ノズル120に吸着保持された各電子部品E1を、連続して撮像することが出来る。 Therefore, the N-axis servo motor 35N is driven to rotate the rotating body 64 so that each nozzle shaft 100 performs imaging in accordance with the timing at which the nozzle shaft 100 passes the elevating operation position at which the elevating operation in the Z-axis direction can be performed. Thus, each electronic component E1 sucked and held by the eighteen suction nozzles 120 can be continuously imaged.
 尚、本実施形態では、フィーダ上方からプリント基板の上方に、ヘッドユニット50を移動する期間中に、カメラユニット150による電子部品E1の撮像を行っており、カメラユニット150で撮像した画像から各吸着ノズル120に対する電子部品E1の吸着状態を検出している。 In the present embodiment, the electronic component E1 is imaged by the camera unit 150 during the period in which the head unit 50 is moved from above the feeder to above the printed circuit board. The suction state of the electronic component E1 with respect to the nozzle 120 is detected.
 4.吸着ノズルの構成
 次に、図8及び図14を参照して吸着ノズル120の構成を説明する。図14は、吸着ノズル120の断面図である。吸着ノズル120は、ノズルホルダ121と、ノズル本体125と、コイルばね127と、ストッパピン128と、を備えている。尚、コイルばね127が本発明の「付勢部材」に相当する。
4). Next, the configuration of the suction nozzle 120 will be described with reference to FIGS. 8 and 14. FIG. 14 is a cross-sectional view of the suction nozzle 120. The suction nozzle 120 includes a nozzle holder 121, a nozzle body 125, a coil spring 127, and a stopper pin 128. The coil spring 127 corresponds to the “biasing member” of the present invention.
 ノズルホルダ121は、例えば、合成樹脂製であり、Z軸方向に長い筒型をしている。ノズルホルダ121の内部には、ノズルシャフト100の下端部101が、フランジ103によって抜け止めされた嵌合している。ノズルシャフト100の外周部には、コイルばね105が取り付けられている。コイルばね105は、ワッシャー107を介してノズルホルダ121を下向きに押している。ノズルホルダ121は、下向きに押されることにより生じる摩擦により、ノズルシャフト100に対して回り止めされている。ノズルホルダ121の下部123には、下向きに突出する筒型の取付部124が設けられている。 The nozzle holder 121 is made of, for example, synthetic resin and has a cylindrical shape that is long in the Z-axis direction. Inside the nozzle holder 121, the lower end portion 101 of the nozzle shaft 100 is fitted so as to be prevented from coming off by the flange 103. A coil spring 105 is attached to the outer periphery of the nozzle shaft 100. The coil spring 105 pushes the nozzle holder 121 downward via the washer 107. The nozzle holder 121 is prevented from rotating with respect to the nozzle shaft 100 by friction generated by being pushed downward. The lower part 123 of the nozzle holder 121 is provided with a cylindrical mounting portion 124 that protrudes downward.
 ノズル本体125はZ軸方向に長い筒型であり、先端には小径のノズル孔125bを有している。ノズル本体125は、取付部124を貫通しつつ、ノズルホルダ121の内側に下方から嵌合している。ノズル本体125は、ノズルホルダ121に対して、突出量(一例として、ノズルホルダ121の取付部124からノズル本体125の先端125aまでの長さ)Dが変位自在である。コイルばね127は、取付部124の外側に取り付けられている。コイルばね127は、ノズルホルダ121に対してノズル本体125を下向きに押している。 The nozzle body 125 has a cylindrical shape that is long in the Z-axis direction, and has a small-diameter nozzle hole 125b at the tip. The nozzle body 125 is fitted into the nozzle holder 121 from below while penetrating the attachment portion 124. The nozzle body 125 is displaceable with respect to the nozzle holder 121 by an amount of protrusion D (for example, the length from the mounting portion 124 of the nozzle holder 121 to the tip 125a of the nozzle body 125) D. The coil spring 127 is attached to the outside of the attachment portion 124. The coil spring 127 pushes the nozzle body 125 downward with respect to the nozzle holder 121.
 図14の(A)は、ノズルホルダ121に対してノズル本体125が最も突出した状態(吸着ノズルの最大伸張時)を示している。図14の(B)は、ノズルホルダ121に対してノズル本体125が押し込まれた状態を示している。 FIG. 14A shows a state in which the nozzle body 125 protrudes most with respect to the nozzle holder 121 (when the suction nozzle is fully extended). FIG. 14B shows a state where the nozzle body 125 is pushed into the nozzle holder 121.
 上記のように、ノズルホルダ121とノズル本体125とを別々の部品で構成し、両間にコイルばね127を設けておくことで、ノズル本体125の先端125aに荷重が加わったとき、コイルばね127が縮むことで衝撃を吸収(以下、バフィング機能)することが出来る。こうしたバフィング機能を持たせることで、部品厚みのバラつきや、基板の反り量のバラつき、モータの位置決め精度のバラつきなどの上下方向のバラつきにより、部品搭載時や部品吸着時に、吸着ノズル120や電子部品に加わる衝撃をやわらげることが出来る。 As described above, the nozzle holder 121 and the nozzle body 125 are configured as separate parts, and the coil spring 127 is provided between them, so that when a load is applied to the tip 125a of the nozzle body 125, the coil spring 127 is placed. By shrinking, the shock can be absorbed (hereinafter referred to as buffing function). By having such a buffing function, the suction nozzle 120 and electronic components are mounted when mounting or picking up components due to variations in the vertical direction such as variations in component thickness, substrate warpage, and motor positioning accuracy. The impact applied to can be softened.
 ストッパ128は、ノズルホルダ121の内側にあって、ノズル本体125の外周面に形成された溝部126に嵌合している。図14の(A)に示す最大突出状態では、ストッパ128が溝部126の上端に当接し、ノズルホルダ121に対してノズル本体125を抜け止めする。また、図14の(B)に示す後退状態では、ストッパ128が溝部126の下端に当接し、ノズルホルダ121に対して、ノズル本体125の位置を規制している。 The stopper 128 is inside the nozzle holder 121 and is fitted in a groove 126 formed on the outer peripheral surface of the nozzle body 125. In the maximum projecting state shown in FIG. 14A, the stopper 128 abuts on the upper end of the groove 126 and prevents the nozzle body 125 from coming off from the nozzle holder 121. Further, in the retracted state shown in FIG. 14B, the stopper 128 is in contact with the lower end of the groove 126 and restricts the position of the nozzle body 125 relative to the nozzle holder 121.
 5.ノズル本体125の突出量Dの良否判定
 バフィング機能を持つ吸着ノズル120は、塵やゴミ、はんだ等の異物の吸引や付着、または繰り返しにより発生する自身の摩耗粉により、ノズルホルダ121に対するノズル本体125の摺動性が低下して、外力を解放しても、ノズル本体125が突出した状態(図14の(A)に示す最大突出状態)に復帰しない事態が生じる場合がある。
5. The adsorbing nozzle 120 having a buffing function has a nozzle body 125 with respect to the nozzle holder 121 due to its own wear powder generated by sucking and adhering foreign matters such as dust, dust, and solder, or repetition. When the external force is released, the nozzle body 125 may not return to the protruding state (the maximum protruding state shown in FIG. 14A).
 そのため、本実施形態では、カメラユニット150により吸着ノズル120の側面を撮像し、得られた画像から、ノズルホルダ121に対するノズル本体125の突出量Dが正常か、判定する。また、カメラユニット150の視野が狭い場合、ノズルホルダ121からノズル本体125までの全体が視野に収まりきらない場合がある。 Therefore, in this embodiment, the side surface of the suction nozzle 120 is imaged by the camera unit 150, and it is determined from the obtained image whether the protrusion amount D of the nozzle body 125 relative to the nozzle holder 121 is normal. When the field of view of the camera unit 150 is narrow, the entire area from the nozzle holder 121 to the nozzle body 125 may not be able to fit in the field of view.
 そこで、本実施形態では、ノズル本体125とノズルホルダ121とを別々に撮像する。そして、ノズル本体125の第1画像G1と、ノズルホルダ121の第2画像G2と、第1画像G1と第2画像G2とを得るための撮像に伴う吸着ノズル120のZ軸方向への移動距離Hと、に基づいて、ノズルホルダ121に対するノズル本体125の突出量Dが正常か判定する。 Therefore, in this embodiment, the nozzle body 125 and the nozzle holder 121 are imaged separately. And the movement distance to the Z-axis direction of the suction nozzle 120 accompanying the imaging for obtaining the first image G1 of the nozzle body 125, the second image G2 of the nozzle holder 121, and the first image G1 and the second image G2. Based on H, it is determined whether the protrusion amount D of the nozzle body 125 relative to the nozzle holder 121 is normal.
 尚、第1画像G1と第2画像G2とを得るための撮像に伴う吸着ノズル120のZ軸方向への移動距離Hとは、2つの画像G1、G2を取得するため、一方を撮像してからもう一方を撮像するために、吸着ノズル120をZ軸方向に移動させた距離である。下記の例では、図16に示す第1撮像位置から図17に示す第2撮像位置までの吸着ノズル120の移動距離である。 In addition, the movement distance H in the Z-axis direction of the suction nozzle 120 associated with imaging for obtaining the first image G1 and the second image G2 is obtained by capturing one of the images in order to obtain two images G1 and G2. The distance at which the suction nozzle 120 is moved in the Z-axis direction in order to take an image of the other. In the following example, it is the moving distance of the suction nozzle 120 from the first imaging position shown in FIG. 16 to the second imaging position shown in FIG.
 また、吸着ノズル120は、Z軸駆動装置80がノズルシャフト100をZ軸方向に昇降させることによりZ軸方向の位置が変位する。そのため、吸着ノズル120のZ軸方向の移動距離Hは、Z軸駆動装置80の動力源であるZ軸リニアモータ35Zに設けられたリニアセンサ(リニアモータを構成する可動子のZ軸方向の移動量を検出するセンサ)の出力を演算制御部211にて検出することにより、算出することが出来る。 Further, the position of the suction nozzle 120 in the Z-axis direction is displaced when the Z-axis drive device 80 moves the nozzle shaft 100 up and down in the Z-axis direction. Therefore, the movement distance H in the Z-axis direction of the suction nozzle 120 is determined by the linear sensor (movement of the mover constituting the linear motor in the Z-axis direction) provided in the Z-axis linear motor 35Z that is the power source of the Z-axis drive device 80. It can be calculated by detecting the output of the sensor for detecting the amount by the arithmetic control unit 211.
 以下、ノズル本体125の突出量Dが正常か否かの判定方法について具体的に説明する。
 まず、演算制御部211は、図16に示すように、吸着ノズル120のノズル本体125がカメラユニット150の入光窓116bの正面に位置しているか、吸着ノズル120の位置を確認する。
Hereinafter, a method for determining whether or not the protrusion amount D of the nozzle body 125 is normal will be described in detail.
First, as shown in FIG. 16, the arithmetic control unit 211 checks the position of the suction nozzle 120 to determine whether the nozzle body 125 of the suction nozzle 120 is positioned in front of the light entrance window 116 b of the camera unit 150.
 本例では、吸着ノズル120が最も上昇している時、すなわちノズルシャフト100が図6に示す上昇端位置S1にある時に、ノズル本体125がカメラユニット150の入光窓116bの正面に位置する関係となっている。 In this example, when the suction nozzle 120 is raised most, that is, when the nozzle shaft 100 is at the rising end position S1 shown in FIG. 6, the nozzle body 125 is positioned in front of the light incident window 116b of the camera unit 150. It has become.
 そのため、演算制御部211は、検査対象となる吸着ノズル120が最も上昇した位置にあれば、ノズル本体125は入光窓116bの正面に位置していると判断する。そして、演算制御部211は、その後、カメラユニット150によりノズル本体125を撮像し、ノズル本体125の第1画像G1を取得する(図15:S1)。尚、図16に記載されている矢印は、カメラユニット150によるノズル本体125の撮像が行われる吸着ノズル120の第1撮像位置を示している。また、図18の(A)は、ノズル本体125の第1画像G1である。 Therefore, the arithmetic control unit 211 determines that the nozzle body 125 is located in front of the light entrance window 116b when the suction nozzle 120 to be inspected is at the highest position. Then, the arithmetic control unit 211 captures an image of the nozzle body 125 with the camera unit 150, and acquires the first image G1 of the nozzle body 125 (FIG. 15: S1). Note that the arrows described in FIG. 16 indicate the first imaging position of the suction nozzle 120 at which the nozzle main body 125 is imaged by the camera unit 150. 18A is a first image G1 of the nozzle body 125. FIG.
 次に、演算制御部211は、ノズルホルダ121の段差部121aがカメラの視野に収まるように、吸着ノズル120のZ軸方向の位置を調整する。具体的には、Z軸駆動装置80を駆動してノズルシャフト100を上昇端位置S1から下降させ、図17に示すようにノズルホルダ121の段差部121aが入光窓116bの正面に位置するように、吸着ノズル120のZ軸方向の位置を変更する(図15:S3)。 Next, the calculation control unit 211 adjusts the position of the suction nozzle 120 in the Z-axis direction so that the stepped portion 121a of the nozzle holder 121 is within the field of view of the camera. Specifically, the Z-axis drive device 80 is driven to lower the nozzle shaft 100 from the rising end position S1, so that the stepped portion 121a of the nozzle holder 121 is positioned in front of the light entrance window 116b as shown in FIG. Then, the position of the suction nozzle 120 in the Z-axis direction is changed (FIG. 15: S3).
 その後、演算制御部211は、カメラユニット150でノズルホルダ121を撮像し、ノズルホルダ121の第2画像G2を取得する(図15:S5)。尚、図17に記載されている矢印は、カメラユニット150によるノズルホルダ121の撮像が行われる吸着ノズル120の第2撮像位置を示している。また、図18の(B)は、ノズルホルダ121の第2画像G2である。また、S1、S5の処理が本発明の「撮像処理」に相当する。 Thereafter, the arithmetic control unit 211 captures an image of the nozzle holder 121 with the camera unit 150, and acquires the second image G2 of the nozzle holder 121 (FIG. 15: S5). Note that the arrows shown in FIG. 17 indicate the second imaging position of the suction nozzle 120 where the camera holder 150 performs imaging of the nozzle holder 121. 18B is a second image G2 of the nozzle holder 121. FIG. Further, the processes of S1 and S5 correspond to the “imaging process” of the present invention.
 本実施形態では、ノズルホルダ121の段差部121aを突出量判定の基準としており、2つの画像G1、G2と、2つの画像G1、G2を得るための撮像に伴う吸着ノズル120のZ軸方向の移動距離Hから、ノズルホルダ121の段差部121aからノズル本体125の先端125aまでの全長Lを算出する(図15:S7)。 In this embodiment, the stepped portion 121a of the nozzle holder 121 is used as a reference for determining the protrusion amount, and the two images G1 and G2 and the suction nozzle 120 in the Z-axis direction associated with imaging for obtaining the two images G1 and G2 are used. From the moving distance H, the total length L from the stepped portion 121a of the nozzle holder 121 to the tip 125a of the nozzle body 125 is calculated (FIG. 15: S7).
 具体的には、図18の(A)に示すように、第1画像G1において、基準ラインFからノズル本体125の先端125aまでの距離Z1を求める。また、図18の(B)に示すように、第2画像G2において、基準ラインFからノズルホルダ121の段差部121aまでの距離Z2を求める。尚、本例では、基準ラインを画像の上フレームFとしている。 Specifically, as shown in FIG. 18A, a distance Z1 from the reference line F to the tip 125a of the nozzle body 125 is obtained in the first image G1. Further, as shown in FIG. 18B, a distance Z2 from the reference line F to the stepped portion 121a of the nozzle holder 121 is obtained in the second image G2. In this example, the reference line is the upper frame F of the image.
 そして、2つの画像G1、G2から求めた2つの距離Z1、Z2と、2つの画像G1、G2を得るための撮像に伴う吸着ノズル120のZ軸方向の移動距離Hから、全長Lを以下の(1)式で算出することが出来る。尚、2つの画像G1、G2を得るための撮像に伴う吸着ノズル120のZ軸方向の移動距離Hは、ノズル本体125を撮像してからノズルホルダ121を撮像するために、吸着ノズル120をZ軸方向に移動した距離である。 Then, from the two distances Z1 and Z2 obtained from the two images G1 and G2, and the movement distance H in the Z-axis direction of the suction nozzle 120 accompanying the imaging for obtaining the two images G1 and G2, the total length L is expressed as follows: It can be calculated by equation (1). In addition, the movement distance H in the Z-axis direction of the suction nozzle 120 accompanying the imaging for obtaining the two images G1 and G2 is determined by moving the suction nozzle 120 to Z in order to image the nozzle holder 121 after imaging the nozzle body 125. The distance moved in the axial direction.
 L=(Z1-Z2)+H・・・・・(1) L = (Z1-Z2) + H (1)
 演算制御部211は、段差部121aからノズル本体125の先端125aまでの全長Lの算出結果を、図14の(A)に示す最大突出時の全長Lの設計値Loと比較する。尚、設計値Loは、ノズルホルダ121、ノズル本体125など各部品の寸法から求めることが出来、同データは記憶部213に予め記憶されている。 The calculation control unit 211 compares the calculation result of the total length L from the stepped portion 121a to the tip 125a of the nozzle body 125 with the design value Lo of the total length L at the maximum protrusion shown in FIG. The design value Lo can be obtained from the dimensions of each component such as the nozzle holder 121 and the nozzle body 125, and the data is stored in the storage unit 213 in advance.
 そして、演算制御部211は、算出した全長Lと設計値Loとの差が許容範囲内であれば、ノズル本体125の突出量Dは、正常であると判定する(図15:S9)。一方、算出した全長Lと設計値Loとの差が許容範囲外であれば、ノズル本体125に異常ありと判定する。 Then, if the difference between the calculated total length L and the design value Lo is within an allowable range, the arithmetic control unit 211 determines that the protrusion amount D of the nozzle body 125 is normal (FIG. 15: S9). On the other hand, if the difference between the calculated total length L and the design value Lo is outside the allowable range, it is determined that the nozzle body 125 is abnormal.
 演算制御部211は、上記したノズル本体125の突出量Dに関する良否判定を、例えば、部品搭載装置1が実装動作を開始する前に行う。このようにすることで、摺動性が低下した吸着ノズル120が実装作業に使用されることを未然に回避することが出来る。 The calculation control unit 211 performs the pass / fail determination regarding the protrusion amount D of the nozzle main body 125 before, for example, the component mounting apparatus 1 starts the mounting operation. By doing in this way, it can avoid beforehand that suction nozzle 120 in which slidability fell is used for mounting work.
 尚、突出量Dの良否判定を行うためには、ノズル本体125とノズルホルダ121を撮像する必要があり、それには、カメラユニット150に対する吸着ノズル120の位置をZ軸方向で調整しなければならない。そのため、回転体64に搭載された各18本の吸着ノズル120について突出量Dの良否判定を行うには、判定対象となる吸着ノズル120を、Z軸方向への移動が可能となる左右の昇降操作位置(図6の左右両端)のいずれかに移動させてから、個々に行う必要がある。 In order to determine whether the protrusion amount D is good or bad, it is necessary to take an image of the nozzle body 125 and the nozzle holder 121. For this purpose, the position of the suction nozzle 120 relative to the camera unit 150 must be adjusted in the Z-axis direction. . Therefore, in order to determine the quality of the projection amount D for each of the 18 suction nozzles 120 mounted on the rotating body 64, the suction nozzle 120 to be determined can be moved up and down left and right to be movable in the Z-axis direction. It must be performed individually after moving to either of the operation positions (both left and right in FIG. 6).
 6.効果説明
 本構成では、ノズル本体125とノズルホルダ121とを別々に撮像し、得られた2つの画像G1、G2と、2つの画像G1、G2を得るための撮像に伴う吸着ノズル120のZ軸方向への移動距離Hとに基づいて、ノズルホルダ121に対するノズル本体125の突出量Dが正常か否か、判定する。
6). Explanation of Effects In this configuration, the nozzle body 125 and the nozzle holder 121 are separately imaged, and the two images G1 and G2 obtained and the Z axis of the suction nozzle 120 associated with the imaging for obtaining the two images G1 and G2 are obtained. Based on the movement distance H in the direction, it is determined whether or not the protrusion amount D of the nozzle body 125 relative to the nozzle holder 121 is normal.
 このようにすることで、例えば、カメラの視野が狭い場合や、或いはノズルホルダ121の下部からノズル本体125までの全体が視野内に収まらない場合でも、ノズルホルダ121に対するノズル本体125の突出量Dの良否を判定することが出来る。 By doing so, for example, even when the camera field of view is narrow or when the entire area from the lower part of the nozzle holder 121 to the nozzle body 125 does not fit within the field of view, the projection amount D of the nozzle body 125 relative to the nozzle holder 121 Can be judged.
 <実施形態2>
 実施形態2について、図19を参照して説明する。
 実施形態2では、ノズル本体125を押込方向に変位させてから、ノズルホルダ121に対するノズル本体125の突出量Dの良否を判定する。
<Embodiment 2>
A second embodiment will be described with reference to FIG.
In the second embodiment, after the nozzle body 125 is displaced in the pushing direction, the quality of the protruding amount D of the nozzle body 125 relative to the nozzle holder 121 is determined.
 具体的に説明すると、演算制御部211は、図19の(A)~(B)に示すように、吸着ノズル120を所定高さから下降して基台10等に押し込むことにより、ノズル本体125を、ノズルホルダ121に対してコイルばね127に抗して突出量を小さくする押込方向に変位させる。 More specifically, as shown in FIGS. 19A to 19B, the arithmetic control unit 211 lowers the suction nozzle 120 from a predetermined height and pushes it into the base 10 or the like, thereby causing the nozzle body 125 to move. Is displaced with respect to the nozzle holder 121 in the pushing direction to reduce the protruding amount against the coil spring 127.
 その後、演算制御部211は、図19の(C)に示すように、吸着ノズル120を上昇させて、ノズル本体125に対して押込方向に加わる荷重を解放する。これにより、ノズル本体125は、コイルばね127の弾性により、突出した状態(理想的には、図14の(A)に示す最大突出状態)に復帰する。 Thereafter, as shown in FIG. 19C, the arithmetic control unit 211 raises the suction nozzle 120 and releases the load applied to the nozzle body 125 in the pushing direction. As a result, the nozzle body 125 returns to the protruding state (ideally, the maximum protruding state shown in FIG. 14A) due to the elasticity of the coil spring 127.
 演算制御部211は、ノズル本体125の突出した状態への復帰と並行して、Z軸駆動装置80を駆動して吸着ノズル120を図16の位置に上昇させる。その後、図15に示すS1~S9の処理を実行し、ノズル本体125の突出量Dの良否を判定する。本構成では、ノズル本体125を一旦、押込方向に変位させてからノズル本体125の突出量Dの良否を判定するので、ノズル本体121に対するノズル本体125の摺動動作後に縮んだままとなる摺動不良の吸着ノズルの検出が可能になる。 The calculation control unit 211 drives the Z-axis driving device 80 to raise the suction nozzle 120 to the position of FIG. 16 in parallel with the return of the nozzle body 125 to the protruding state. Thereafter, the processing of S1 to S9 shown in FIG. 15 is executed to determine whether the protrusion amount D of the nozzle body 125 is good or bad. In this configuration, the nozzle body 125 is once displaced in the pushing direction and then the quality of the protruding amount D of the nozzle body 125 is determined. Therefore, the sliding that remains contracted after the sliding operation of the nozzle body 125 with respect to the nozzle body 121 is performed. It becomes possible to detect defective suction nozzles.
 <実施形態3>
 実施形態3を図19~図21を参照して説明する。
 実施形態3では、ノズルホルダ121に対するノズル本体125の先端位置の繰り返し精度を判定する。
<Embodiment 3>
A third embodiment will be described with reference to FIGS.
In the third embodiment, the repeatability of the tip position of the nozzle body 125 relative to the nozzle holder 121 is determined.
 具体的に説明すると、演算制御部211は、図19の(A)~(B)に示すように、吸着ノズル120を所定高さから下降して基台10等に押し込むことにより、ノズル本体125を、ノズルホルダ121に対してコイルばね127に抗して突出量を小さくする押込方向に変位させる(図20:S11)。 More specifically, as shown in FIGS. 19A to 19B, the arithmetic control unit 211 lowers the suction nozzle 120 from a predetermined height and pushes it into the base 10 or the like, thereby causing the nozzle body 125 to move. Is displaced with respect to the nozzle holder 121 in the pushing direction to reduce the protruding amount against the coil spring 127 (FIG. 20: S11).
 その後、演算制御部211は、図19の(C)に示すように、吸着ノズル120を上昇させて、ノズル本体125に対して押込方向に加わる荷重を解放する(図20:S13)。これにより、ノズル本体125は、コイルばね127の弾性により、突出した状態(理想的には、図14の(A)に示す最大突出状態)に復帰する。 Thereafter, as shown in FIG. 19C, the arithmetic control unit 211 raises the suction nozzle 120 and releases the load applied to the nozzle body 125 in the pushing direction (FIG. 20: S13). As a result, the nozzle body 125 returns to the protruding state (ideally, the maximum protruding state shown in FIG. 14A) due to the elasticity of the coil spring 127.
 演算制御部211は、ノズル本体125の突出した状態への復帰と並行して、Z軸駆動装置80を駆動して吸着ノズル120を図16の位置に上昇させ、カメラユニット150でノズル本体125を撮像する(図20:S15)。 In parallel with the return of the nozzle body 125 to the protruding state, the arithmetic control unit 211 drives the Z-axis drive device 80 to raise the suction nozzle 120 to the position shown in FIG. An image is taken (FIG. 20: S15).
 演算制御部211は、こうした一連の処理(S11~S15)を複数回実行し、複数回の撮像で得られたノズル本体125の画像に基づいて、ノズルホルダ121に対するノズル本体125の先端位置の繰り返し精度を判定する(S19)。 The arithmetic control unit 211 executes such a series of processes (S11 to S15) a plurality of times, and repeats the position of the tip end of the nozzle body 125 relative to the nozzle holder 121 based on the image of the nozzle body 125 obtained by a plurality of imaging operations. The accuracy is determined (S19).
 具体的には、各回の撮像で得られた画像から、ノズル本体125の先端125aの位置を検出し、ノズル本体125の先端125aの位置の変化量Δを算出する。本例では、図21に示すように、ノズル本体125の先端125aの位置について、最も下がった状態と最も上がった状態の差を、変化量Δとして算出する。そして、算出した変化量Δが閾値より小さければ、繰り返し精度は良好、閾値より大きければ、繰り返し精度はNGと判定する。 Specifically, the position of the tip 125a of the nozzle body 125 is detected from the image obtained by each imaging, and the amount of change Δ in the position of the tip 125a of the nozzle body 125 is calculated. In this example, as shown in FIG. 21, with respect to the position of the tip 125a of the nozzle body 125, the difference between the lowest state and the highest state is calculated as the change amount Δ. If the calculated change amount Δ is smaller than the threshold, it is determined that the repeatability is good, and if it is greater than the threshold, the repeatability is determined as NG.
 このようにすることで、繰り返し精度が低下した吸着ノズル120が実装作業に使用されることを未然に回避することが出来る。 By doing in this way, it is possible to prevent the suction nozzle 120 having a reduced repeatability from being used for mounting work.
 尚、上記した繰り返し精度を判定する処理(図20のフローチャート)は、実施形態1で説明した突出量Dの良否を判定する処理(図15のフローチャート)に続けて行われる。そして、演算制御部211は、突出量Dと繰り返し精度の双方がいずれもOKの場合にのみ、その吸着ノズル120を実装処理に使用する。 The process for determining the repeatability (the flowchart in FIG. 20) is performed following the process for determining the quality of the protrusion amount D described in the first embodiment (the flowchart in FIG. 15). The arithmetic control unit 211 uses the suction nozzle 120 for the mounting process only when both the protrusion amount D and the repetition accuracy are both OK.
 <実施形態4>
 実施形態4を、図22、図23を参照して説明する。
 実施形態4では、ノズルホルダ121に対するノズル本体125の摺動性を判定する。尚、摺動性とは、ノズル本体121に対するノズル本体125のZ軸方向への位置変位の滑らかさであり、摩擦(摺動抵抗)が大きいほど、摺動性は低い。
<Embodiment 4>
The fourth embodiment will be described with reference to FIGS.
In the fourth embodiment, the slidability of the nozzle body 125 with respect to the nozzle holder 121 is determined. The slidability is the smoothness of displacement of the nozzle body 125 in the Z-axis direction with respect to the nozzle body 121. The greater the friction (sliding resistance), the lower the slidability.
 具体的に説明すると、実施形態3では、繰り返し精度を判定するため、ノズル本体125に対して押込方向に加わる荷重を解放した後、ノズル本体125の突出した状態への復帰と並行して、Z軸駆動装置80を駆動して吸着ノズル120を図16の位置に上昇させた後、カメラユニット150でノズル本体125を撮像した(図20:S15)。 Specifically, in the third embodiment, in order to determine the repeatability, after releasing the load applied to the nozzle body 125 in the pushing direction, in parallel with the return of the nozzle body 125 to the protruding state, Z After driving the shaft driving device 80 to raise the suction nozzle 120 to the position of FIG. 16, the camera unit 150 images the nozzle body 125 (FIG. 20: S15).
 実施形態4では、ノズル本体125に対して押込方向に加わる荷重を解放した後、ノズル本体125が突出方向に変位し始める前に撮像を開始できるように、Z軸駆動装置80を駆動して、吸着ノズル120を図16の位置に高速で上昇させる。 In the fourth embodiment, after releasing the load applied to the nozzle body 125 in the pushing direction, the Z-axis driving device 80 is driven so that imaging can be started before the nozzle body 125 starts to be displaced in the protruding direction. The suction nozzle 120 is raised to the position shown in FIG.
 そして、演算制御部121は、吸着ノズル120が図16まで上昇すると、カメラユニット150でノズル本体125の画像を連続して撮像する。 Then, when the suction nozzle 120 moves up to FIG. 16, the arithmetic control unit 121 continuously captures images of the nozzle body 125 with the camera unit 150.
 図22はノズル本体125の連続画像であり、演算制御部211は連続して撮像された各画像からノズル本体125の先端125aの位置を検出する。図22に示すように、荷重の解放後、ノズル本体125の先端125aの位置は、時間Tの経過と共に下方へ次第に変化し、最終的には、ストッパピン128により突出が制限される最大突出位置Pmに至る。尚、ノズルホルダ121に対するノズル本体125の摺動抵抗が大きい場合、ノズル本体125の先端125aの位置が、最大突出位置Pmまで変化せずに停止することもある。 FIG. 22 is a continuous image of the nozzle body 125, and the arithmetic control unit 211 detects the position of the tip 125a of the nozzle body 125 from each of the continuously captured images. As shown in FIG. 22, after the load is released, the position of the tip 125a of the nozzle body 125 gradually changes downward as time T passes, and finally the maximum protruding position where the protrusion is limited by the stopper pin 128. Up to Pm. When the sliding resistance of the nozzle body 125 with respect to the nozzle holder 121 is large, the position of the tip 125a of the nozzle body 125 may stop without changing to the maximum protruding position Pm.
 図23は、横軸を撮像開始からの経過時間T、縦軸をノズル本体125の先端125aの変化量Vとしたグラフであり、摺動性が高い程、変化量Vは短い時間で収束する。 FIG. 23 is a graph in which the horizontal axis represents the elapsed time T from the start of imaging, and the vertical axis represents the amount of change V of the tip 125a of the nozzle body 125. The higher the slidability, the shorter the amount of change V converges. .
 そのため、ノズル本体125の撮像時間の間隔tと、各時点のノズル本体125の先端位置125aの変化量Vから、図23に示すノズル本体の先端位置の応答曲線Lv(T-V相関曲線)を求めることにより、摺動性の良否を判断することが出来る。すなわち、応答曲線Lvのカーブが緩やかな程、摩擦が大きく摺動性は低下している。そのため、求めた応答曲線Lvを、所定の基準カーブ(摺動性が良好な場合の応答曲線)と比較することで、摺動性の良否を判定できる。 Therefore, a response curve Lv (TV correlation curve) of the tip position of the nozzle body shown in FIG. 23 is obtained from the imaging time interval t of the nozzle body 125 and the change amount V of the tip position 125a of the nozzle body 125 at each time point. By determining, it is possible to determine whether the slidability is good. That is, the gentler the response curve Lv, the greater the friction and the lower the slidability. Therefore, the quality of the slidability can be determined by comparing the obtained response curve Lv with a predetermined reference curve (response curve when the slidability is good).
 このようにすることで、摺動性が低下した吸着ノズル120が実装作業に使用されることを未然に回避することが出来る。 By doing in this way, it is possible to avoid the suction nozzle 120 having reduced slidability from being used for mounting work.
 尚、上記した摺動性を判定する処理は、実施形態3で説明した繰り返し精度の判定(図20のフローチャート)を行う際に、処理の一部(S15)として行われる。そして、演算制御部211は、突出量D、繰り返し精度、摺動性が全てOKの場合にのみ、その吸着ノズル120を実装処理に使用する。尚、本例では、変化量Vの基準は、最大突出位置Pmとしている。 Note that the above-described process for determining slidability is performed as part of the process (S15) when the determination of the repeatability described in the third embodiment (the flowchart in FIG. 20) is performed. The arithmetic control unit 211 uses the suction nozzle 120 for the mounting process only when the protrusion amount D, the repeatability, and the slidability are all OK. In this example, the reference for the change amount V is the maximum protrusion position Pm.
 <他の実施形態>
 本明細書で開示される技術は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も技術的範囲に含まれる。
(1)上記の実施形態1では、ロータリー型のヘッドユニット50を例示したが、複数のノズルシャフト100を直線状に配置したインライン型のヘッドユニットであってもよい。
<Other embodiments>
The technology disclosed in this specification is not limited to the embodiment described with reference to the above description and drawings, and for example, the following embodiments are also included in the technical scope.
(1) In the first embodiment, the rotary type head unit 50 is exemplified. However, an inline type head unit in which a plurality of nozzle shafts 100 are linearly arranged may be used.
(2)上記の実施形態1では、吸着ノズル120を、ヘッドユニット50に搭載したカメラユニット150で撮像する例を示した。この他にも、例えば、基台10上に設けられた支柱にサイドビューカメラを固定しておき、そのカメラで、吸着ノズル120を撮像してもよい。尚、サイドビューカメラとは、視点から水平方向への視野を持ち、対象物の側面を撮像するカメラである。 (2) In the first embodiment, an example in which the suction nozzle 120 is imaged by the camera unit 150 mounted on the head unit 50 has been described. In addition to this, for example, a side view camera may be fixed to a support provided on the base 10 and the suction nozzle 120 may be imaged with the camera. The side view camera is a camera that has a field of view in the horizontal direction from the viewpoint and images the side surface of the object.
(3)上記の実施形態4では、上記した摺動性を判定する処理を、実施形態3で説明した繰り返し精度の判定(図20のフローチャート)する際に、処理の一部(S15)として行う例を示したが、繰り返し精度の判定とは別に行うようにしてもよい。また、繰り返し精度の判定は行わず、摺動性の判定のみ行うようにしてもよい。 (3) In the above-described fourth embodiment, the above-described slidability determination process is performed as part of the process (S15) when determining the repeatability described in the third embodiment (the flowchart in FIG. 20). Although an example is shown, the determination may be performed separately from the determination of the repetition accuracy. Further, it is possible to perform only the determination of the slidability without determining the repeatability.
 以上、実施形態について詳細に説明したが、これらは例示に過ぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。 As mentioned above, although embodiment was described in detail, these are only illustrations and do not limit a claim. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.
 1...部品搭載装置
 10...基台
 30...駆動装置
 50...ヘッドユニット(本発明の「搭載ヘッド」の一例)
 52...ベースパネル(本発明の「支持部材」の一例)
 58...外環部材(本発明の「支持部材」の一例)
 64...回転体
 100...ノズルシャフト
 120...吸着ノズル
 121...ノズルホルダ
 125...ノズル本体
 127...コイルばね(本発明の「付勢部材」の一例)
 150...カメラユニット(本発明の「サイドビューカメラ」の一例)
 200...コントローラ
 211...演算制御部(本発明の「検査部」の一例)
 B1...プリント基板(本発明の「基板」の一例)
 E1...電子部品
DESCRIPTION OF SYMBOLS 1 ... Component mounting apparatus 10 ... Base 30 ... Drive apparatus 50 ... Head unit (an example of "mounting head" of this invention)
52. Base panel (an example of the “support member” of the present invention)
58. Outer ring member (an example of the “support member” of the present invention)
64 ... Rotating body 100 ... Nozzle shaft 120 ... Suction nozzle 121 ... Nozzle holder 125 ... Nozzle body 127 ... Coil spring (an example of the "biasing member" of the present invention)
150 ... Camera unit (an example of the “side view camera” of the present invention)
200 ... Controller 211 ... Calculation control unit (an example of "inspection unit" of the present invention)
B1 ... Printed circuit board (an example of the “board” of the present invention)
E1 ... Electronic components

Claims (7)

  1.  基板に電子部品を搭載する部品搭載装置であって、
     基板が固定される基台に対して平面方向に移動する搭載ヘッドと、
     前記搭載ヘッドに対して上下方向に移動可能に支持されたノズルシャフトと、
     前記ノズルシャフトの先端に取り付けられた吸着ノズルと、
     前記吸着ノズルの側面を撮像するサイドビューカメラと、
     吸着ノズルの状態を検査する検査部と、を含み、
     前記吸着ノズルは、
     前記ノズルシャフトの先端に取り付けられたノズルホルダと、
     前記ノズルホルダに対して突出量が変位自在に取り付けられたノズル本体と、
     前記ノズル本体を前記ノズルホルダに対して突出方向に付勢する付勢部材と、を含み、
     前記検査部は、
     前記サイドビューカメラの視野に前記ノズル本体と前記ノズルホルダがそれぞれ収まるように前記吸着ノズルを上下方向に移動して、前記サイドビューカメラにより、前記ノズル本体と前記ノズルホルダとを別々に撮像する撮像処理を実行し、
     前記撮像により得られた前記ノズル本体の第1画像と、前記ノズルホルダの第2画像と、前記第1画像と前記第2画像とを得るための撮像に伴う前記吸着ノズルの移動距離と、に基づいて、前記ノズルホルダに対する前記ノズル本体の突出量の良否を判定する、部品搭載装置。
    A component mounting apparatus for mounting electronic components on a substrate,
    A mounting head that moves in a plane direction with respect to a base on which the substrate is fixed;
    A nozzle shaft supported so as to be movable in the vertical direction with respect to the mounting head;
    A suction nozzle attached to the tip of the nozzle shaft;
    A side view camera that images the side surface of the suction nozzle;
    An inspection unit for inspecting the state of the suction nozzle, and
    The suction nozzle is
    A nozzle holder attached to the tip of the nozzle shaft;
    A nozzle body attached to the nozzle holder so that the protrusion amount is freely displaceable;
    A biasing member that biases the nozzle body in a protruding direction with respect to the nozzle holder,
    The inspection unit
    Image picking up the nozzle body and the nozzle holder separately by the side view camera by moving the suction nozzle in the vertical direction so that the nozzle body and the nozzle holder are respectively contained in the field of view of the side view camera Execute the process,
    To the first image of the nozzle body obtained by the imaging, the second image of the nozzle holder, and the moving distance of the suction nozzle accompanying imaging to obtain the first image and the second image A component mounting apparatus that determines whether or not the protrusion amount of the nozzle body with respect to the nozzle holder is good.
  2.  請求項1に記載の部品搭載装置であって、
     前記検査部は、
     前記ノズル本体を前記付勢部材に抗して突出量を小さくする押込方向に変位させた後、
    前記ノズル本体に対して前記押込方向に加わる荷重を解放してから、前記ノズル本体を撮像する処理を複数回実行し、
     各回の撮像で得られた前記ノズル本体の画像に基づいて、前記ノズルホルダに対する前記ノズル本体の先端位置の繰り返し精度を判定する、部品搭載装置。
    The component mounting apparatus according to claim 1,
    The inspection unit
    After displacing the nozzle body in the pushing direction to reduce the protruding amount against the biasing member,
    After releasing the load applied to the nozzle body in the pushing direction, the process of imaging the nozzle body is executed a plurality of times,
    A component mounting apparatus that determines the repeatability of the tip position of the nozzle body with respect to the nozzle holder based on the image of the nozzle body obtained by each imaging.
  3.  請求項1又は請求項2に記載の部品搭載装置であって、
     前記検査部は、
     前記ノズル本体を前記付勢部材に抗して突出量を小さくする押込方向に変位させた後、
    前記ノズル本体に対して前記押込方向に加わる荷重を解放してから、前記ノズル本体を前記カメラユニットで連続して撮像し、
     連続して撮像した各画像と撮像時間の間隔とから、前記ノズルホルダに対する前記ノズル本体の摺動性を判定する、部品搭載装置。
    The component mounting apparatus according to claim 1 or 2,
    The inspection unit
    After displacing the nozzle body in the pushing direction to reduce the protruding amount against the biasing member,
    After releasing the load applied in the pushing direction to the nozzle body, the nozzle body is continuously imaged by the camera unit,
    A component mounting apparatus that determines the slidability of the nozzle body with respect to the nozzle holder from each image captured continuously and an interval between imaging times.
  4.  請求項1~請求項3のいずれか一項に記載の部品搭載装置であって、
     前記搭載ヘッドは、
     前記ノズルシャフトを周方向に複数本配置した回転体と、
     前記回転体を回転可能に支持する支持部材と、を備えたロータリー式の搭載ヘッドであり、
     前記サイドビューカメラは、前記支持部材に取り付けられている、部品搭載装置。
    The component mounting apparatus according to any one of claims 1 to 3,
    The mounting head is
    A rotating body in which a plurality of the nozzle shafts are arranged in the circumferential direction;
    A rotary mounting head comprising a support member that rotatably supports the rotating body,
    The side view camera is a component mounting device attached to the support member.
  5.  基板に搭載する電子部品を吸着する吸着ノズルの検査方法であって、
     前記吸着ノズルは、
     前記ノズルシャフトの先端に取り付けられたノズルホルダと、
     前記ノズルホルダに対して突出量が変位自在に取り付けられたノズル本体と、
     前記ノズル本体を前記ノズルホルダに対して突出方向に付勢する付勢部材と、を含み、
     サイドビューカメラにより、前記ノズル本体と前記ノズルホルダとを別々に撮像し、
     前記撮像により得られた前記ノズル本体の第1画像と、前記ノズルホルダの第2画像と、
    前記第1画像と前記第2画像とを得るための撮像に伴う前記吸着ノズルの移動距離と、に基づいて、前記ノズルホルダに対する前記ノズル本体の突出量の良否を判定する、吸着ノズルの検査方法。
    A suction nozzle inspection method for sucking electronic components mounted on a substrate,
    The suction nozzle is
    A nozzle holder attached to the tip of the nozzle shaft;
    A nozzle body attached to the nozzle holder so that the protrusion amount is freely displaceable;
    A biasing member that biases the nozzle body in a protruding direction with respect to the nozzle holder,
    With the side view camera, the nozzle body and the nozzle holder are separately imaged,
    A first image of the nozzle body obtained by the imaging, a second image of the nozzle holder,
    A suction nozzle inspection method for determining whether or not the amount of protrusion of the nozzle body with respect to the nozzle holder is good based on a moving distance of the suction nozzle accompanying imaging to obtain the first image and the second image .
  6.  請求項5に記載の吸着ノズルの検査方法であって、
     前記ノズル本体を前記付勢部材に抗して突出量を小さくする押込方向に変位させた後、
    前記ノズル本体に対して前記押込方向に加わる荷重を解放してから、前記ノズル本体を撮像する処理を複数回実行し、
     各回の撮像で得られた前記ノズル本体の画像に基づいて、前記ノズルホルダに対する前記ノズル本体の先端位置の繰り返し精度を判定する、吸着ノズルの検査方法。
    An inspection method for a suction nozzle according to claim 5,
    After displacing the nozzle body in the pushing direction to reduce the protruding amount against the biasing member,
    After releasing the load applied to the nozzle body in the pushing direction, the process of imaging the nozzle body is executed a plurality of times,
    A suction nozzle inspection method for determining a repeat accuracy of a tip position of the nozzle body with respect to the nozzle holder based on an image of the nozzle body obtained by imaging each time.
  7.  請求項5又は請求項6に記載の吸着ノズルの検査方法であって、
     前記ノズル本体を前記付勢部材に抗して突出量を小さくする押込方向に変位させた後、
    前記ノズル本体に対して前記押込方向に加わる荷重を解放してから、前記ノズル本体を前記カメラユニットで連続して撮像し、
     連続して撮像した各画像と撮像時間の間隔とから、前記ノズルホルダに対する前記ノズル本体の摺動性を判定する、吸着ノズルの検査方法。
    The suction nozzle inspection method according to claim 5 or 6,
    After displacing the nozzle body in the pushing direction to reduce the protruding amount against the biasing member,
    After releasing the load applied in the pushing direction to the nozzle body, the nozzle body is continuously imaged by the camera unit,
    A suction nozzle inspection method for determining the slidability of the nozzle body with respect to the nozzle holder from each image captured continuously and an interval between imaging times.
PCT/JP2017/003416 2017-01-31 2017-01-31 Component mounting device and method for inspecting suction nozzle WO2018142468A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/003416 WO2018142468A1 (en) 2017-01-31 2017-01-31 Component mounting device and method for inspecting suction nozzle
JP2018565108A JP6706353B2 (en) 2017-01-31 2017-01-31 Component mounting device and suction nozzle inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/003416 WO2018142468A1 (en) 2017-01-31 2017-01-31 Component mounting device and method for inspecting suction nozzle

Publications (1)

Publication Number Publication Date
WO2018142468A1 true WO2018142468A1 (en) 2018-08-09

Family

ID=63040358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003416 WO2018142468A1 (en) 2017-01-31 2017-01-31 Component mounting device and method for inspecting suction nozzle

Country Status (2)

Country Link
JP (1) JP6706353B2 (en)
WO (1) WO2018142468A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110430691A (en) * 2019-07-05 2019-11-08 深圳德森精密设备有限公司 Chip mounting device and control method
WO2020208798A1 (en) * 2019-04-11 2020-10-15 株式会社Fuji Component mounter and component mounting method
WO2020208797A1 (en) * 2019-04-11 2020-10-15 株式会社Fuji Component mounting device and component mounting method
CN112701065A (en) * 2020-12-29 2021-04-23 微见智能封装技术(深圳)有限公司 Automatic chip mounter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60247136A (en) * 1984-05-23 1985-12-06 Sumitomo Metal Ind Ltd Measuring method of diameter of indentation
JPH0684241A (en) * 1992-08-31 1994-03-25 Nippon Chemicon Corp Method for measuring dimension between flanges of guide roller and device therefor
JP2006114534A (en) * 2004-10-12 2006-04-27 Yamaha Motor Co Ltd Component carrying device, surface mounting machine, and component testing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60247136A (en) * 1984-05-23 1985-12-06 Sumitomo Metal Ind Ltd Measuring method of diameter of indentation
JPH0684241A (en) * 1992-08-31 1994-03-25 Nippon Chemicon Corp Method for measuring dimension between flanges of guide roller and device therefor
JP2006114534A (en) * 2004-10-12 2006-04-27 Yamaha Motor Co Ltd Component carrying device, surface mounting machine, and component testing device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020208798A1 (en) * 2019-04-11 2020-10-15 株式会社Fuji Component mounter and component mounting method
WO2020208797A1 (en) * 2019-04-11 2020-10-15 株式会社Fuji Component mounting device and component mounting method
JPWO2020208798A1 (en) * 2019-04-11 2021-12-09 株式会社Fuji Parts mounting machine and parts mounting method
JPWO2020208797A1 (en) * 2019-04-11 2021-12-09 株式会社Fuji Parts mounting machine and parts mounting method
JP7090805B2 (en) 2019-04-11 2022-06-24 株式会社Fuji Parts mounting machine and parts mounting method
JP7177915B2 (en) 2019-04-11 2022-11-24 株式会社Fuji Parts mounting machine and parts mounting method
CN110430691A (en) * 2019-07-05 2019-11-08 深圳德森精密设备有限公司 Chip mounting device and control method
CN112701065A (en) * 2020-12-29 2021-04-23 微见智能封装技术(深圳)有限公司 Automatic chip mounter

Also Published As

Publication number Publication date
JPWO2018142468A1 (en) 2019-06-27
JP6706353B2 (en) 2020-06-03

Similar Documents

Publication Publication Date Title
WO2018142468A1 (en) Component mounting device and method for inspecting suction nozzle
JP5715881B2 (en) Electronic component mounting equipment
JP5253540B2 (en) Electronic component mounting device
JP4330512B2 (en) Component mounting equipment
US11202401B2 (en) Component mounting device
CN107852858B (en) Component mounting machine and component holding member imaging method
JP6341760B2 (en) Detection apparatus, detection method, substrate transfer apparatus, substrate processing apparatus
JP6219080B2 (en) Component mounting equipment
JP2017092200A (en) Component mounter
JP6442063B2 (en) Component mounter, nozzle imaging method
JP7202169B2 (en) Rotary head, component mounting device
JP7164365B2 (en) Electronic component conveying device and electronic component conveying method
JP6348832B2 (en) Component mounting apparatus, surface mounter, and component thickness detection method
JP6470469B2 (en) Component mounter and nozzle imaging method thereof
JP6274700B2 (en) Electronic component mounting equipment
CN209961788U (en) Bare board guide rail of automatic optical detection device
CN109078863B (en) Optical detection equipment
CN216870406U (en) Visual test equipment for internal parts of electronic coil products
JPH0378300A (en) Device for mounting parts
TWI623998B (en) Electronic component transfer device and its operation classification device
JP2012094653A (en) Electronic component mounting apparatus
KR101714720B1 (en) Lighting Apparatus for Vision Inspection
JP4319061B2 (en) Component conveying device, surface mounter and component testing device
JP2003142887A (en) Electronic part mounting suction nozzle unit and electronic part mounting device
JP2005109397A (en) Component-recognizing method, component-recognizing device, surface mounting equipment and component-testing equipment

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17895130

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018565108

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17895130

Country of ref document: EP

Kind code of ref document: A1