WO2018142008A2 - Sistema de depuración de aire y gases - Google Patents

Sistema de depuración de aire y gases Download PDF

Info

Publication number
WO2018142008A2
WO2018142008A2 PCT/ES2018/070065 ES2018070065W WO2018142008A2 WO 2018142008 A2 WO2018142008 A2 WO 2018142008A2 ES 2018070065 W ES2018070065 W ES 2018070065W WO 2018142008 A2 WO2018142008 A2 WO 2018142008A2
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
fan
separator group
air
gas
Prior art date
Application number
PCT/ES2018/070065
Other languages
English (en)
French (fr)
Other versions
WO2018142008A3 (es
Inventor
Jose Maria Nacenta Anmella
Original Assignee
Desenvolupament Innovacio I Recerca Aplicada, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Desenvolupament Innovacio I Recerca Aplicada, S.L. filed Critical Desenvolupament Innovacio I Recerca Aplicada, S.L.
Publication of WO2018142008A2 publication Critical patent/WO2018142008A2/es
Publication of WO2018142008A3 publication Critical patent/WO2018142008A3/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D47/00Separating dispersed particles from gases, air or vapours by liquid as separating agent
    • B01D47/06Spray cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D47/00Separating dispersed particles from gases, air or vapours by liquid as separating agent
    • B01D47/16Apparatus having rotary means, other than rotatable nozzles, for atomising the cleaning liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2247/00Details relating to the separation of dispersed particles from gases, air or vapours by liquid as separating agent
    • B01D2247/10Means for removing the washing fluid dispersed in the gas or vapours
    • B01D2247/107Means for removing the washing fluid dispersed in the gas or vapours using an unstructured demister, e.g. a wire mesh demister
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2247/00Details relating to the separation of dispersed particles from gases, air or vapours by liquid as separating agent
    • B01D2247/12Fan arrangements for providing forced draft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/12Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces
    • B01D45/14Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces generated by rotating vanes, discs, drums or brushes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D47/00Separating dispersed particles from gases, air or vapours by liquid as separating agent
    • B01D47/14Packed scrubbers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D50/00Combinations of methods or devices for separating particles from gases or vapours

Definitions

  • the invention relates to an air and gas purification system, applicable both for the cleaning of gases resulting from industrial activities and for the reduction of environmental pollution created, among others, by motor vehicles with combustion engines (particles, NO x , O3, SO x , etc.).
  • a known technique is to subject the gases to an absorption process.
  • the gases to be treated are introduced through the bottom of an absorption tower, partially filled with a liquid (water, acid solution, alkaline solution, sodium hypochlorite, etc.), which absorbs the contaminants present in the gas.
  • the gas leaves the tower without the presence of pollutants and can be emitted into the atmosphere.
  • Pollutants successfully removed by a gas-liquid absorption process are S02 and NOX from the flue gases of a device, hydrogen sulfide from wastewater treatment plants, etc.
  • washing towers that are equipment that can remove harmful particles or gases by impact or interception of the gas to be cleaned with a washing liquid.
  • Almost all washing towers comprise a gas-liquid contact section followed by a section where the wet particles are removed by inertial forces.
  • the washing liquid can be water or acidic or alkaline solutions can be used at different pH levels to neutralize other harmful gases contained in the gas to be cleaned.
  • Washing machines especially suitable for removing particles have atomizers of a liquid to put the particles in contact with the micro drops of the liquid and produce a particle-liquid agglomerate. Due to the increase in both mass and size, the resulting particle can be more easily removable from the gas stream by inertial separation, for example, using a centrifugal fan.
  • This technique is also used in domestic air treatment equipment. Several examples are described in EP 1804952.
  • the inertial separation overcomes the disadvantages of the oldest proposals that used solid separation filters, whose main drawback lies in the rapid clogging of the filters and their necessary replacement, as exemplified in patent document GB 632654, the inertial separation continues to present Several inconveniences.
  • the known drawbacks it should be noted that there is agglomeration or crushing inside the equipment and the formation of contaminating mists that are carried by the supposedly clean gas stream.
  • Other associated drawbacks are the necessary control of a large number of equipment parameters for proper operation, such as the amount of washing liquid, the size of the drop to be used and its good distribution, parameters that can vary depending on the gas flow to clean and of its nature.
  • the proposed air and gas purification system comprises at least one main separator group for transferring contaminants from a gas phase to a liquid phase, comprising a centrifugal fan and a liquid spray means arranged in the aspiration of the fan.
  • this system is characterized in that the fan impeller has a series of blades between which an air-permeable and micro-porous material is placed; because the sprinkler means are configured to wet liquid to said material; and because it also comprises a collector of the charged liquid that, having passed through the material, is expelled from the fan containing substances stolen from the gas.
  • the system combines the effects of the micro porous material with the fact that it is centrifuged, instead of being fixed.
  • the pore size of this material will be selected greater than that of the particles to be stolen from the gas, so that it does not exert the function of a conventional filter that retains the particles.
  • the micro porous material allows the passage of the gas to be cleaned, it can pass through it.
  • the obstacle of an irregular distribution of the pores along the path that the gas follows when it passes through this micro-porous material causes part of the particles to be retained, thereby contributing to the wet surface of the material, to which particles stick together.
  • this contact with the liquid that wets the material causes the particles or other soluble substances (such as pollutant gases) to be dissolved in the liquid that wets the micro porous material.
  • solid pollutants present in the air are filtered by both dissolution and adhesion, while gaseous pollutants are filtered by dissolution.
  • gaseous pollutants are filtered by dissolution.
  • chemical reaction phenomena are also included.
  • the centrifugal force generated by the fan causes liquid droplets of the micro-porous material to be drawn towards a collector that drag both the adhered particles and the dissolved particles or substances, while the gas, already more purified, continues to flow towards the outlet of the system.
  • this liquid we refer to this liquid as a charged liquid, since it carries with it the contaminants, solid or gaseous, stolen from the gas.
  • Spraying or spraying means are included, in the context of this invention, under the concept of spraying means. Consequently, the liquid spray can be in the form of fog or droplets.
  • the air-permeable and micro-porous material that is disposed between the blades has hydrophilic properties.
  • the recommended hydrophilicity of the micro porous material can be intrinsic to the material or achieved through additives, for example, with the addition of bentonite.
  • the micro porous material is a foam; preferably a filter foam of at least 10 PPI, preferably at least 30 PPI.
  • the filter foam is 60 PPI and its thickness, in the radial direction of the fan, is greater than 1 cm.
  • the micro-porous material could be a polyurethane filter foam, a semi-flexible, washable open cell foam, preferably provided with hydrophilicity and allowing the passage of air and water.
  • This material has a large surface area and an irregular distribution of pores to impede the passage of air and temporarily retain particles before being centrifuged with the wetting liquid.
  • micro porous material are included, in the context of this invention, those materials composed of fibers, fibrous materials, among which are, for example, cellulose, viscose or melamine.
  • the micro porous material can be composed of various layers.
  • a fibrous material with a fiber separation of less than 2 mm can be used between blades, surrounding it with a narrow layer thereof or another micro porous material that would occupy the outer part of the fan impeller of the separator group.
  • the collector comprises a drop recovery means in which the drops that come off the centrifugal fan impact, these drop recovery means being suitable to minimize the formation of mists by impacting the charged liquid against these, mist that would be dragged by the gas or purified air.
  • Evaporative cooling panels (Humicool), preferably covered with polyurethane foam
  • Y Evaporative cooling panels
  • this material can be, for example, cellulose or viscose.
  • the invention contemplates arranging these drop recovery means such that the surface or face against which the charged liquid impacts is normal to the radial direction of the fan or at an angle with respect to it, attenuating more if possible the impact force of this liquid loaded on the said static means of recovery of drops.
  • the drop recovery means are formed by individual static panels, juxtaposed to surround the fan of the separator group.
  • the panels can form angles to each other, in order to offer faces or impact surfaces normal to the tangential direction of the fan, alternating with faces or contact surfaces oriented in coincidence with said tangential direction.
  • the invention contemplates that these panels are mounted with rotation capacity so that the angle of incidence of the liquid charged against said panels can be varied.
  • the drop recovery means can be mobile, for example, attached to a common rotating support, concentric with respect to the associated fan.
  • An adequate rotation speed to avoid excessive centrifugal force could be 60 rpm.
  • the direction of rotation can be either the same as the fan impeller of the associated separator group, or the opposite direction.
  • the collector comprises an envelope, through which liquid loaded can slide in the direction of a collection point or zone.
  • Said envelope can present various forms: tronocoonic, prismatic, cylindrical bell, etc.
  • the invention also provides for equipping the system with dynamic means for retaining drops placed in series with an associated separator group, that is, following said separator group.
  • these dynamic drop retention means essentially comprise a second impeller provided between its blades with micro-porous, air-permeable and preferably hydrophilic material.
  • the system may be equipped with a liquid recirculation circuit associated with the main separator group.
  • This circuit may comprise a liquid accumulator; means for driving the liquid in the direction of the spraying means; and means for collecting the charged liquid collected by the collector.
  • the circuit is provided with means to remove solids, by decanting or other known means, of the liquid charged to clean it before being reused in a new duty cycle.
  • the recirculation circuit comprises leads outside the system connected to the recirculation circuit by means of corresponding valve devices.
  • Such shunts can be used as a drain and as a supply, respectively, of liquid.
  • one embodiment would comprise a separator group with its associated manifold that uses a carbonate bicarbonate solution at the appropriate temperature to treat PM10, Pl bs, NO x and SO x , and then dynamic drop retention means with its corresponding impeller used as a water retention system, that is to say, equipped with air-permeable and preferably hydrophilic micro porous material between its blades but without associated sprinkler means or recirculation circuit, in order to prevent water in the form of Drops or mists generated leave the system.
  • an option would be the installation of a refrigeration circuit, whose condenser serves to maintain the temperature of the liquid and whose evaporator allows to condense the excess of moisture, recovering the evaporated liquid and being able, optionally, to return it again to the recirculation circuit associated with the separator.
  • nitrate and / or nitrite removal or uptake system both to maintain the system's performance, since they can partially inhibit the absorption of NO2, and to be able to pour the liquid into the sewer system .
  • One option would be the use of a system based on anionic resins.
  • the system comprises more than one separator group as described above, in series, in order to eliminate the greatest number of different and specific contaminants. That is, the gas or air leaving a first separator group will be conducted to the aspiration of the fan from another separator group arranged below in the direction of the current of the gas being treated.
  • the separating groups will cascade the gas and as many groups can be arranged as necessary, also selecting the adequate liquids for each separator group to perform its function.
  • the main separator group will be intended to remove solid particles and water soluble substances; and at least a second separator group will be intended to remove other substances from the gas that require the use of an aqueous solution with specific properties.
  • a suitable liquid should be used. Examples of NO2 absorbers would be NaOH, Na2CÜ3 or the carbonate bicarbonate pair, which would also allow the reduction of SO2. If the second separator group is specifically intended to treat metal particles, the associated liquid may be an acid solution.
  • the second separator group in series with the main separator group has its corresponding centrifugal fan and its sprinkler means.
  • the micro porous material housed between the blades of the impeller of this or these second separator groups it may be the same or different from that used in the main separator group.
  • This or these other separator groups will also comprise its corresponding collector and its recirculation circuit of the liquid used.
  • the main separator group and the second separator group are superimposed, the respective fans being driven by a common, motorized vertical axis, which transmits a simultaneous rotation to both fans.
  • the invention contemplates that they may comprise a fixed distributor, arranged in the center of the associated impeller and with spray nozzles that each direct a beam of liquid in an essentially tangential direction to the associated impeller.
  • This direction prevents degrading, by direct shock with the projected liquid, the micro porous material to be wet.
  • the liquid beam is in the form of a vain oriented in a vertical plane. It is recommended that the direction of liquid spraying be the same as the rotation of the impeller, in order to wet as much surface as possible.
  • Fig. 1 a is a schematic of a system according to an embodiment according to the invention, in a compact version
  • Fig. 1b is an extension of the scheme of Fig. 1, specifically of the air treatment zone;
  • Figs. 2a and 2b show in plan variants for an impeller of a fan of a separator group according to the system of the invention
  • Fig. 3 is a scheme of a system according to another embodiment according to the invention.
  • Fig. 4 is a diagram of another system according to another embodiment according to the invention, in particular of the air treatment zone.
  • Fig. 1a schematically illustrates a system 1 suitable for purifying ambient air in an urban environment, that is air stale by particles and gases expelled mainly by vehicles.
  • This system 1 comprises an outer housing 16 that houses a main separator group 3 and, as will be explained later, associated, superimposed and series dynamic drop retention means 34.
  • the air to be treated rises from an inlet opening 17 in the direction of an upper ejection opening 18.
  • the main separator group 3 is in this case intended to remove PM10, Pl b.s, NO2 and SO2 particles from the air among other contaminants; and the dynamic drop retention means 34 are intended to remove droplets carried by the air stream at the outlet of the main separator group 3.
  • the main separator group 3 and the dynamic drop retention means 34 both comprise a respective fan 4 and 54, both centrifugal and responsible for establishing a forced and ascending air circulation. All the air that leaves the main separator group 3 is conducted, as will be explained later, to the aspiration of the dynamic drop retention means 34.
  • FIG. 1 of the example have a series of blades between which an air-permeable and micro-porous material 8, 58 is placed.
  • the shape of the blades 7 can vary, preferably being radial or backward, and the arrangement of this material is best illustrated in Figs. 2a and 2b.
  • FIGs. 2a and 2b show two impellers 6 of a separator group 3, the first one with blades 7 towards the back and the second one with radial blades 7, between which a polyurethane filter foam can be arranged, as an example 8, as an example.
  • concrete a foam of 60 PPI (pores per linear inch), the pore diameter being 0.4 mm.
  • the typical range of this type of foam ranges from 10 PPI (pore diameter of more than 2.5 mm) to 80 PPI (pore diameter of about 0.3 mm), with 60 PPI foam being recommended.
  • this 60 PPI foam gives material 8 a Wet contact surface for the air to be cleaned of 4,000 m 2 / m 3 , which together with a thickness of between 1 cm and 5 cm effectively hinders the passage of air to achieve in the separator group 3 the retention of contaminants by dissolution and by adhesion at the same time as very effective to retain drops in the output current, when a runner 56 of similar configuration to runner 6 is used in dynamic drop retention means 34.
  • Another alternative is to use different micro porous materials 8 and 58 in the fans 4 and 54 of the separator group 3 and the dynamic drop retention means 34, respectively.
  • the separator group 3 of the system 1 also comprises sprinkler means 5 that are configured to wet liquid to the associated micro porous material 8.
  • FIGs. 2a and 2b A preferred form of these spray means 5 is also illustrated in Figs. 2a and 2b referred to above. Specifically, these figures show sprinkler means 5 with a fixed distributor 5a, arranged in the center of the associated impeller 6 and with regularly distributed spray nozzles 5b each directing a beam of liquid 9a in an essentially tangential direction to the impeller 5 associated and in the direction of rotation of the impeller 5.
  • the directions of rotation of the impeller 5 and the liquid beam ejected by the nozzles 5b have been shown by arrows in Figs. 2a and 2b.
  • the number of nozzles 5b is eight and they are flat-type tongue jet, inscribed in two vertical planes. Its purpose is not so much to form a mist to humidify the air but to keep the micro porous material housed between the blades 7 wet without impacting with a pressure too strong that it could deteriorate said material.
  • the main separator group 3 is completed with a manifold 10 in the form of an envelope 11, in the example of a conical trunk shape, which offers inclined impact surfaces and subsequent conduction for the charged liquid that will be detached by centrifugation of the material 8 which rotate together with impeller 6.
  • the system 1 of Fig. 1 b which exemplifies an embodiment of the invention, is also equipped with a means of recovering static drops 23 formed by individual panels 23a consisting of a 5 cm layer of evaporative cooling panel followed by a 1 cm thick layer of 20 PPI polyurethane foam that is interposed in the liquid path, in the form of drops, which is expelled of fan 4 in the direction of envelope 1 1.
  • panels 23a are placed juxtaposed at angles to each other, with the purpose of offering normal impact surfaces to the tangential direction of the fan, alternating with impact surfaces oriented in coincidence with said tangential direction.
  • the fans 4 and 54 of the main separator group 3 and of the dynamic drop retention means 34 rotate together, driven by a common vertical drive shaft 15, driven by a 1,450 rpm motor 19 with variable speed drive. speed.
  • the air to be treated penetrates the housing 16 through a grille or suction opening 17 disposed in the lower part of said housing 16.
  • the air is sucked by the fan 4 of the main separator group 3 and is forced to pass between the blades 7 of the impeller 6, that is through the micro-porous material 8 that is kept wet from a liquid 9a by the sprinkler means 5.
  • This main separator group 3, with the suitable liquid 9a, is intended for the reduction of the particles in suspension, specifically of PM10 (particles less than 10 microns in diameter) and PlVb.s (particles less than 2.5 microns in diameter), as well as gaseous pollutants such as NO2 and SO2.
  • the obstacle posed by the irregular distribution of the pores of the micro-porous material 8 causes the contaminants in the air that passes through it to be retained, thereby contributing to the wet surface of the material, to which particles stick together.
  • the centrifugal force generated by the fan 4 causes 10 drops of the liquid used to be dislodged from the micro-porous material 8 and into the path of the material 8, which adheres particles as well as particles or substances dissolved in the liquid, while in its path. the air continues to flow in the direction of the dynamic means of retention of drops 34.
  • This liquid which we will refer to hereinafter as charged liquid 9b, which carries with it the adhered or dissolved substances, stolen from the gas, is partially recovered by the means of recovery of static drops 23, where it can be retained to drain naturally to a collection point or area.
  • the part of the charged liquid 9b that passes through these static drop recovery means 23 will impact the inclined surface of the housing bell 11 of the collector 10, and will slide or drain in a controlled manner by said housing bell 11 until it is collected at a point or pick up area
  • the liquid 9a is an equimolar carbonate bicarbonate solution and the system 1 comprises a recirculation circuit 12 of this solution comprising an accumulator 21, in the form of a reservoir; a dispenser 20 that provides the reagents if necessary; drive means 13 employing a pump; and a collection means 14 of the charged liquid 9b, that is of the treated liquid that emerges from the micro-porous material 8, collected by the wrapping bell 11.
  • the envelope 11 referred to above in addition to having a truncated conical shape, has an inclined base, the charged liquid 9b being directed to its lowest point 1 1a where the collection point or zone is located.
  • the recirculation circuit 12 of the example comprises leads 12a; 12b outside the system 1 connected to the recirculation circuit by means of corresponding valve devices to renew the water continuously or at intervals programmed or assisted by computer means.
  • the recirculation circuit includes filter means for separating solid particles, such as mechanical or by decantation.
  • a lime removal system or device In the example, a small water softener has been used.
  • the flow of liquid to be driven will depend both on the characteristics of the fan 4 (rotation speed and impeller diameter) as well as the hydraulic circuit (loss of load in the circuit by pipe diameter and sprinkler system).
  • the particle removal performance obtained with the aforementioned characteristics is very high. Specifically, it is possible to eliminate 98% of PM10 particles and 95% of PlVb.s. By using an equimolar solution of carbonate bicarbonate at the appropriate temperature, very high yields are also achieved in the reduction of NO2 and SO2. Specifically, 80% of the reduction of N0 2 and 90% of the reduction of S0 2 is reached.
  • Other aqueous solutions that can be used are based on sodium hydroxide (NaOH) or sodium carbonate (Na2CÜ3).
  • the moisture supply that the system 1 provides to the treated air can be eliminated if a last impeller is coupled whose hydraulic circuit drives water at a temperature lower than that of dew. This water can come from a small chiller plant installed on site.
  • a dehydrating solution based on, for example, calcium chloride or lithium chloride.
  • the dispenser 20 can be formed by a dosing pump that pumps, from a small tank, the absorbent to be used to the accumulator 21 of the liquid 9a.
  • Said dosing pump can be operated by a timer, programmed according to the dosage calculations.
  • Figs. 1a and 1 b following the main separator group 3, the more purified air is then sucked in by the fan 54 of the dynamic drop retention means 34.
  • These comprise, in the example, a manifold 150 comprising an envelope 151 whose function is similar to that provided by the bell 10 of the separator group 3.
  • a particulate filter suitable for the air flow in question.
  • a synthetic bag filter of classification F9 has been used.
  • the system 1 of Fig. 1 a is extremely compact and can therefore be installed, for example, on a typical bus stop canopy, the air inlet 17 being arranged at an ideal height of the floor, about 2.5 m approximately .
  • the system 1 shown in Fig. 3 shows a slightly different arrangement in a housing 160 this time in a hollow column format, which serves as a support for active advertising, for example, by means of monitors 24, or passive.
  • the components or characteristics equivalent to those of the system according to Fig. 1a have been designated using the same numerical references as for said Fig. 1 a.
  • system 1 comprises a single separator group, the main separator group 3, it is contemplated that the system 1 can deploy other functions by adding successive separator groups for each contaminant to be treated, all as illustrated in the example of Fig. 4 .
  • first and second separator groups 3 and 33 instead of a single separator group.
  • the liquid used in said first and second separator groups 3 and 33 is, in the example, different.
  • the second separator group 33 uses a second liquid 99a, in this case an acid solution (pH ⁇ 7) to reduce the concentration of metal particles in suburban trains, and would be equipped with its corresponding recirculation circuit.
  • This recirculation circuit similar to that associated with the main separator group 3 of Figs. 1a and 1b, would comprise a second accumulator of the second liquid 99a; a second fluid delivery means 99a in the direction of the second spray means 55 of the second separator group 33; and a second collection means of the second charged liquid 99b collected by a second manifold 100 that can be configured in the form of an envelope 10.
  • the second separator group 33 could be used to specifically remove the generated metal particles, using, for example, an acid solution.
  • the second separator group 33 would have, as previously mentioned, an associated recirculation circuit, including all its elements.
  • the micro porous material between blades may be the same as that of the first separator group 3 or otherwise.
  • the deposits can go outside the housing and even, if several systems are used in parallel, the deposits can be common to the system. It should be borne in mind that these systems may require mobility, for example, in the case of application to suburban trains along the tracks, something to consider for the supply and evacuation of the liquid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Centrifugal Separators (AREA)
  • Gas Separation By Absorption (AREA)
  • Separation Of Particles Using Liquids (AREA)

Abstract

Sistema de depuración de aire y gases que comprende uno o más grupos separadores, para trasladar los contaminantes de una fase gaseosa a una fase líquida, que comprende cada uno un ventilador centrífugo; unos medios aspersores de un líquido dispuestos en la aspiración del ventilador, teniendo el rodete del ventilador una serie de álabes entre los cuales está colocado un material permeable al aire y micro poroso, estando configurados los medios aspersores para mojar de líquido a dicho material; y un colector de líquido cargado que habiendo atravesado el material micro poroso sale expelido del ventilador conteniendo sustancias robadas al gas. El sistema puede comprender varios grupos separadores de este tipo en serie, preferiblemente superpuestos de forma que el gas que sale de un grupo inferior es aspirado por un grupo superior.

Description

D E S C R I P C I Ó N
"Sistema de depuración de aire y gases" Sector técnico de la invención
La invención se refiere a sistema de depuración de aire y gases, aplicable tanto para la limpieza de gases resultado de actividades industriales como para la reducción de la contaminación ambiental creada, entre otros, por los vehículos automóviles de motor de combustión (partículas, NOx, O3, SOx, etc.).
Antecedentes de la invención
Existe una multitud de procesos industriales en los que se producen gases contaminantes que deben ser tratados antes de ser emitidos a la atmósfera. Una técnica conocida consiste en someter los gases a un proceso de absorción. Los gases a tratar se introducen por la parte inferior de una torre de absorción, llena parcialmente de un líquido (agua, solución ácida, solución alcalina, hipoclorito sódico, etc.), que absorbe los contaminantes presentes en el gas. El gas abandona la torre sin presencia de contaminantes y puede ser emitido a la atmósfera. Contaminantes eliminados satisfactoriamente mediante un proceso de absorción gas-líquido son el S02 y los NOX de los gases de combustión de un equipo, el sulfuro de hidrógeno procedente de las plantas de tratamiento de aguas residuales, etc.
Para la puesta en práctica de esta técnica es necesario proveer de una superficie amplia de contacto, donde sea posible transferir el contaminante al líquido absorbente, lo que imposibilita la construcción de equipos compactos y su consecuente instalación en los tiros de chimeneas o en zonas urbanizadas.
Otra técnica conocida son las torres lavadoras o "scrubbers" que son equipos que pueden remover partículas o gases nocivos por impacto o intercepción del gas a limpiar con un líquido lavador. Casi todas las torres lavadoras comprenden a tal efecto una sección de contacto gas- líquido seguida de una sección donde las partículas húmedas son removidas por fuerzas inerciales. En general, el líquido lavador puede ser agua o se pueden utilizar soluciones ácidas o alcalinas a distintos niveles de pH para neutralizar otros gases nocivos contenidos en el gas a limpiar. Lavadoras especialmente aptas para remover partículas disponen atomizadores de un líquido para poner en contacto las partículas con las micro gotas del líquido y producir un aglomerado partículas-liquido. Debido al incremento tanto en masa como en tamaño, la partícula resultante puede ser más fácilmente removible de la corriente gaseosa por separación inercial, por ejemplo, empleando un ventilador centrífugo. Esta técnica también se emplea en equipos domésticos de tratamiento de aire. Varios ejemplos se describen en el documento de patente EP 1804952.
Aunque la separación inercial supera los inconvenientes de las propuestas más antiguas que empleaban filtros de separación de sólidos, cuyo principal inconveniente reside en el rápido taponamiento de los filtros y su necesario reemplazo, como ejemplificaría el documento de patente GB 632654, la separación inercial sigue presentando varios inconvenientes. De entre los inconvenientes conocidos, a destacar que se produce aglomeración o encostramiento en el interior de los equipos y la formación de neblinas contaminantes que son arrastradas por la corriente del gas supuestamente limpio. Otros inconvenientes asociados son el necesario control de un gran número de parámetros del equipo para su correcto funcionamiento, como son la cantidad de líquido lavador, del tamaño de gota a emplear y su buena distribución, parámetros que pueden variar en función del flujo de gas a limpiar y de su naturaleza.
Otro inconveniente cuando se emplean ventiladores de tiro forzado es su posible degradación debido a la acción de los gases corrosivos con la humedad, pero también, al intervenir materia particulada, esta puede picar la protección superficial de la que ha sido dotado el ventilador. Por ello es aconsejable o bien emplear ventiladores de plástico o bien metálicos con una protección, en ambos casos resistentes a los pequeños golpes de las partículas y a la corrosión.
Es un objetivo de la invención un sistema de depuración más compacto que los conocidos, más versátil, con mayor eficacia y que no requiera de un control tan estricto del tamaño de gota a emplear. Es también de interés que el sistema permita la reducción o eliminación de neblinas tóxicas y que requiera de menores costes de mantenimiento. Explicación de la invención
El sistema de depuración de aire y gases que se propone comprende al menos un grupo separador, principal, para trasladar los contaminantes de una fase gaseosa a una fase líquida, que comprende un ventilador centrífugo y unos medios aspersores de un líquido dispuestos en la aspiración del ventilador.
En esencia, este sistema se caracteriza porque el rodete del ventilador tiene una serie de álabes entre los cuales está colocado un material permeable al aire y micro poroso; porque los medios aspersores están configurados para mojar de líquido a dicho material; y porque además comprende un colector del líquido cargado que habiendo atravesado el material sale expelido del ventilador conteniendo sustancias robadas al gas.
En la práctica, el sistema combina los efectos del material micro poroso con el hecho de que éste es centrifugado, en lugar de ser fijo. Además, el tamaño de poro de este material, como se explica en mayor detalle más adelante, se seleccionará mayor que el de las partículas a robar del gas, de forma que no ejerce la función de un filtro convencional que retiene las partículas. Esto aporta ventajas muy interesantes al sistema, destacándose por ejemplo el de auto-limpieza del material micro poroso y en consecuencia una reducción muy importante en operaciones de mantenimiento del sistema, superando así una de las desventajas asociadas con las técnicas conocidas.
La combinación de los efectos antes señalados permite que las partículas se filtren de dos modos distintos: por disolución y por adherencia. Dado que el material micro poroso permite el paso del gas a limpiar, éste puede atravesarlo. Ahora bien, el obstáculo que supone una distribución irregular de los poros a lo largo de la trayectoria que sigue el gas cuando atraviesa este material micro poroso provoca que parte de las partículas sean retenidas, coadyuvando en ello la superficie húmeda del material, al que las partículas quedan adheridas. De hecho, este contacto con el líquido que moja el material hace que las partículas u otras sustancias solubles (como es el caso de los gases contaminantes) sean disueltas en el líquido que moja el material micro poroso.
En resumen, los contaminantes sólidos presentes en el aire se filtran tanto por disolución como por adherencia, mientras que los contaminantes gaseosos se filtran por disolución. En el contexto de esta invención, cuando se habla de disolución, se incluyen también los fenómenos de reacción química.
La fuerza centrífuga generada por el ventilador hace que se desprendan hacia un colector gotas de líquido del material micro poroso que arrastran tanto las partículas adheridas como las partículas o sustancias disueltas, mientras que el gas, ya más depurado, sigue fluyendo en dirección a la salida del sistema. En el contexto de la presente invención nos referimos a este líquido como líquido cargado, pues lleva consigo los contaminantes, sólidos o gaseosos, robados al gas.
Al desprenderse del material micro poroso las partículas filtradas, arrastradas por el líquido cargado que es impelido por efecto de la fuerza centrífuga, se produce un efecto de auto-limpieza del material micro poroso. Repárese además que la función de los medios aspersores no es tanto la de formar una nube donde se pone en contacto el líquido con el gas a limpiar como ocurre en las torres de lavado tradicionales, sino la de mantener mojada toda la superficie del material micro poroso. De hecho, mientras este material esté mojado, y el ventilador gire a la velocidad adecuada, el sistema podrá seguir prestando su función aun cuando los medios aspersores no eyecten líquido. Asimismo, no es preciso llevar un control tan exacto del tamaño de gota como precisan las torres de lavado. Estos hechos simplifican mucho el control del sistema para mantenerlo en regímenes de funcionamiento óptimos.
Medios de nebulización o de pulverización están comprendidos, en el contexto de esta invención, bajo el concepto de medios de aspersión. Consiguientemente, la aspersión de líquido puede ser en la forma de niebla o gotículas.
De forma preferida, el material permeable al aire y micro poroso que se dispone entre los álabes tiene propiedades hidrófilas. La hidrofilia recomendable del material micro poroso puede ser intrínseca al material o conseguirse a través de aditivos, por ejemplo, con la adición de bentonita.
En una forma de realización, el material micro poroso es una espuma; preferentemente una espuma filtrante de al menos 10 PPI, preferiblemente de al menos 30 PPI. De acuerdo con una variante de interés, la espuma filtrante es de 60 PPI y su grosor, en la dirección radial del ventilador, es mayor a 1 cm.
A modo de ejemplo, el material micro poroso podría ser una espuma filtrante de poliuretano, una espuma de célula abierta semiflexible, lavable, preferiblemente dotada de hidrofilia y que permite el paso del aire y del agua. Este material cuenta con una gran superficie y una distribución de poros irregular para obstaculizar el paso del aire y retener temporalmente las partículas antes de ser centrifugadas con el líquido que lo moja. Bajo el concepto de material micro poroso están comprendidos, en el contexto de esta invención, aquellos materiales integrados por fibras, materiales fibrosos, entre los cuales se encuentran, por ejemplo, la celulosa, la viscosa o la melamina. Todos ellos poseen las propiedades de hidrofilia, permiten el paso del aire y del agua, y tienen una distribución de fibras que obstaculiza el paso del aire, permitiendo así la retención temporal de partículas y dando el tiempo necesario para que los contaminantes gaseosos reaccionen con el líquido del que están mojados. Otra forma de realización consistiría en emplear un material fibroso cuya separación entre fibras sea de, como máximo, 2 mm. Grosores, en la dirección radial del ventilador, superiores a 1 cm y preferentemente de 1 cm a 4 cm son preferidos. El material micro poroso puede ser compuesto de diversas capas. A modo de ejemplo, se puede emplear entre álabes un material fibroso con una separación de fibras inferior a 2 mm, rodeándolo de una capa estrecha del mismo u otro material micro poroso que ocuparía la parte exterior del rodete del ventilador del grupo separador.
En una forma de realización, el colector comprende unos medios de recuperación de gotas en los que impactan las gotas que se desprenden del ventilador centrífugo, siendo estos medios de recuperación de gotas adecuados para atenuar al máximo la formación de neblinas al impactar el líquido cargado contra estos, neblinas que serían arrastradas por el gas o aire depurado.
Entre los posibles materiales aptos o sistemas candidatos para formar estos medios de recuperación de gotas, se encuentran, entre otros: · Paneles de enfriamiento evaporativo (Humicool), preferiblemente cubiertos de espuma de poliuretano; y
• Filtros de un material hidrófilo con pequeña separación entre fibras o un pequeño tamaño de poro, pudiendo ser este material, por ejemplo, celulosa o viscosa.
La invención contempla disponer estos medios de recuperación de gotas de tal forma que la superficie o cara contra la que impacta el líquido cargado sea normal a la dirección radial del ventilador o formando un ángulo respecto de ésta, atenuando más si cabe la fuerza de impacto de este líquido cargado sobre los citados medios estáticos de recuperación de gotas.
En una variante, los medios de recuperación de gotas están formados por paneles estáticos individuales, yuxtapuestos para rodear al ventilador del grupo separador. Los paneles pueden formar ángulos entre sí, con el propósito de ofrecer caras o superficies de impacto normales a la dirección tangencial del ventilador, alternadas con caras o superficies de contacto orientadas en coincidencia con dicha dirección tangencial.
La invención contempla que estos paneles estén montados con capacidad de giro para poderse variar el ángulo de incidencia del líquido cargado contra dichos paneles. Alternativamente, los medios de recuperación de gotas pueden ser móviles, por ejemplo, unidos a un soporte común giratorio, concéntrico con respecto al ventilador asociado. Una velocidad de rotación adecuada para evitar una excesiva fuerza centrífuga podría ser de 60 rpm. El sentido de giro puede ser o el mismo del rodete del ventilador del grupo separador asociado, o bien el sentido contrario.
Con interposición o no de estos medios, estáticos o móviles, de recuperación de gotas, se prevé que el colector comprenda una envolvente, por la que pueda resbalar líquido cargado en dirección a un punto o zona de recogida. Dicha envolvente puede presentar diversas formas: campana tronococónica, prismática, cilindrica, etc.
La invención también prevé equipar al sistema con medios dinámicos de retención de gotas colocados en serie con un grupo separador asociado, es decir, a continuación del citado grupo separador.
En una forma de realización, estos medios dinámicos de retención de gotas en esencia comprenden un segundo rodete provisto entre sus álabes con material micro poroso permeable al aire y preferentemente hidrófilo. Cualquiera de las opciones anteriores pueden utilizarse de forma combinada y conjunta. El sistema puede estar equipado con un circuito de recirculación del líquido asociado con el grupo separador principal. Este circuito puede comprender un acumulador del líquido; unos medios de impulsión del líquido en dirección a los medios aspersores; y unos medios de recogida del líquido cargado colectado por el colector. Naturalmente, se prevé también que el circuito esté provisto de medios para eliminar los sólidos, por decantación o u otros medios conocidos, del líquido cargado para limpiarlo antes de volver a ser empleado en un nuevo ciclo de trabajo.
Asimismo, se prevé que el circuito de recirculación comprenda derivaciones al exterior del sistema conectadas al circuito de recirculación mediante correspondientes dispositivos de válvula. Tales derivaciones pueden ser empleadas como desagüe y como abastecimiento, respectivamente, de líquido.
Cuando el líquido de abastecimiento que entra al circuito de recirculación sea agua de red, se recomienda emplear un sistema o dispositivo de eliminación de cal.
En el caso que el contaminante a eliminar requiriera el uso de una disolución muy alcalina, será necesario un tratamiento del líquido cargado para que este pueda ser vertido al alcantarillado. Una opción sería neutralizarlo con la dosificación de bicarbonato hasta niveles de pH = 10 o inferiores.
Empleando el líquido adecuado, es posible eliminar varios contaminantes con un solo grupo separador. A modo de ejemplo, empleando una disolución equimolar carbonato-bicarbonato a la temperatura adecuada, es posible reducir en un mismo grupo separador el nivel de partículas PM10, Pl b.s, NOx y SOx entre otros contaminantes.
La experimentación ha demostrado que el empleo de líquidos, y con esto se incluye disoluciones como la disolución equimolar carbonato-bicarbonato antes referida, a temperaturas por debajo de 20°C es menos efectivo a cuando estos mismos líquidos están a una temperatura igual o superior a 20°C. Por consiguiente, una forma de realización comprendería un grupo separador con su colector asociado que emplease una disolución carbonato- bicarbonato a la temperatura adecuada para tratar PM10, Pl b.s, NOx y SOx, y a continuación unos medios dinámicos de retención de gotas con su correspondiente rodete empleado a modo de sistema de retención de agua, es decir, dotado de material micro poroso permeable al aire y preferentemente hidrófilo entre sus álabes pero sin medios de aspersión ni circuito de recirculación asociados, con el fin de evitar que aguas en forma de gotas o neblinas generadas salgan del sistema. Con el fin de mantener el líquido a la temperatura adecuada, y a la vez de eliminar la humedad generada en el sistema, una opción sería la instalación de un circuito frigorífico, cuyo condensador sirva para mantener la temperatura del líquido y cuyo evaporador permita condensar el exceso de humedad, recuperando el líquido evaporado y pudiendo, opcionalmente, retornarlo nuevamente al circuito de recirculación asociado al separador.
En la eliminación del NO2 se recomienda emplear un sistema de eliminación o captación de nitratos y/o nitritos, tanto para mantener el rendimiento del sistema, ya que pueden inhibir parcialmente la absorción del NO2, como para poder verter el líquido a la red de alcantarillado. Una opción sería el empleo de un sistema basado en resinas aniónicas.
En una variante de interés el sistema comprende más de un grupo separador como el antes descrito, en serie, con el fin de eliminar el mayor número de contaminantes distintos y específicos. Eso es, el gas o aire que sale de un primer grupo separador será conducido a la aspiración del ventilador de otro grupo separador dispuesto a continuación en el sentido de la corriente del gas en tratamiento. Los grupos separadores irán depurando en cascada el gas y pueden disponerse tantos grupos como sea necesario, seleccionándose además los líquidos adecuados para que cada grupo separador desempeñe su función.
En esta línea, en una variante de interés el grupo separador principal estará destinado a remover partículas sólidas y sustancias solubles en agua; y al menos un segundo grupo separador estará destinado a eliminar otras sustancias del gas que requieren el empleo de una solución acuosa con propiedades específicas. Por ejemplo, si el segundo grupo separador se destina específicamente a tratar el NO2, deberá emplearse un líquido adecuado. Ejemplos de absorbentes de NO2 serían NaOH, el Na2CÜ3 o el par carbonato-bicarbonato, que además permitirían la reducción del SO2. Si el segundo grupo separador se destina específicamente a tratar partículas metálicas, el líquido asociado puede ser una disolución ácida.
De acuerdo con esta variante, el segundo grupo separador en serie con el grupo separador principal dispone de su correspondiente ventilador centrífugo y sus medios aspersores. Por lo que respecta al material micro poroso alojado entre los álabes del rodete de este o de estos segundos grupos separadores puede ser el mismo o distinto del empleado en el grupo separador principal.
Este o estos otros grupos separadores comprenderán también su correspondiente colector y su circuito de recirculación del líquido empleado.
Cuando un grupo separador emplea un líquido diferente al de un grupo separador inferior, es de particular interés proveer al grupo separador inferior de los medios dinámicos de retención de gotas antes referidos, para preservar al máximo posible la formulación o las concentraciones del líquido empleado en el grupo separador superior.
De acuerdo con una forma de realización, el grupo separador principal y el segundo grupo separador están superpuestos, siendo accionados los respectivos ventiladores por un eje común vertical, motorizado, que transmite un giro simultaneo a ambos ventiladores.
Esta solución también es posible para el accionamiento, en su caso, de los medios dinámicos de retención de gotas con los que pueda estar provisto uno cualquiera o los dos grupos separadores.
Otras variantes son posibles sin que ello afecte la esencia de la invención. Por ejemplo, existe la posibilidad de que los ventiladores sean también accionados mediante ejes y motores individuales.
Por lo que a los medios aspersores se refiere, la invención contempla que puedan comprender un distribuidor fijo, dispuesto en el centro del rodete asociado y con boquillas de aspersión que dirigen cada una un haz de líquido en una dirección esencialmente tangencial al rodete asociado. Esta dirección previene degradar, por choque directo con el líquido proyectado, el material micro poroso a mojar. Preferentemente, el haz de líquido es en forma de vano orientado según un plano vertical. Se recomienda que el sentido de pulverización de líquido sea el mismo que el de giro del rodete, con el fin de mojar la mayor superficie posible.
Se recomienda añadir, a la salida del sistema, un filtro convencional de partículas para aire o gases, adecuado con el caudal de aire que trata el sistema.
Breve descripción de los dibujos
La Fig. 1 a, es un esquema de un sistema de acuerdo con una forma de realización según la invención, en una versión compacta;
La Fig. 1 b, es una ampliación del esquema de la Fig. 1 , en concreto de la zona de tratamiento del aire;
Las Figs. 2a y 2b, muestran en planta variantes para un rodete de un ventilador de un grupo separador de acuerdo con el sistema de la invención;
La Fig. 3, es un esquema de un sistema de acuerdo con otra forma de realización según la invención; y
La Fig. 4, es un esquema de otro sistema de acuerdo con otra forma de realización según la invención, en concreto de la zona de tratamiento del aire.
Descripción detallada de una forma de realización
La Fig. 1a ilustra esquemáticamente un sistema 1 apto para depurar aire ambiental en un entorno urbano, eso es aire viciado por partículas y gases expulsados principalmente por los vehículos. Este sistema 1 comprende una carcasa exterior 16 que aloja un grupo separador 3 principal y, como se explicará más adelante, unos medios dinámicos de retención de gotas 34 asociados, superpuestos y en serie. El aire a tratar asciende desde una abertura de entrada 17 en dirección a una abertura superior 18 de expulsión.
El grupo separador 3 principal está en este caso destinado a remover partículas PM10, Pl b.s, NO2 y SO2 del aire entre otros contaminantes; y los medios dinámicos de retención de gotas 34 están destinados a remover gotas arrastradas por la corriente de aire a la salida del grupo separador 3 principal.
En concreto, como ilustra la Fig. 1 b, el grupo separador 3 principal y los medios dinámicos de retención de gotas 34 comprenden ambos un respectivo ventilador 4 y 54, ambos centrífugos y encargados de establecer una circulación forzada y ascendente del aire. Todo el aire que sale del grupo separador 3 principal es conducido, como se explicará más adelante, a la aspiración de los medios dinámicos de retención de gotas 34. Los rodetes 6, 56 de los ventiladores 4 y 54, respectivamente, del sistema
1 del ejemplo tienen una serie de álabes entre los cuales está colocado un material 8, 58 permeable al aire y micro poroso. La forma de los álabes 7 puede variar, siendo preferiblemente radiales o hacia atrás, y la disposición de este material se ilustra mejor en las Figs. 2a y 2b.
Dichas Figs. 2a y 2b muestran sendos rodetes 6 de un grupo separador 3, el primero con álabes 7 hacia atrás y el segundo con álabes 7 radiales, entre los cuales se puede disponer, como material 8 y a modo de ejemplo, una espuma filtrante de poliuretano, en concreto una espuma de 60 PPI (poros por pulgada lineal), siendo el diámetro de poro de 0,4 mm. El rango típico de este tipo de espumas va desde los 10 PPI (diámetro de poro de más de 2,5 mm) hasta los 80 PPI (diámetro de poro de unos 0,3 mm), recomendándose la espuma de 60 PPI.
En los ejemplos, esta espuma de 60 PPI confiere al material 8 una superficie de contacto húmeda para el aire a limpiar de 4.000 m2/m3, que junto con un grosor de entre 1 cm y 5 cm consigue dificultar eficazmente el paso del aire para lograr en el grupo separador 3 la retención de contaminantes por disolución y por adherencia a la par que mucha efectividad para retener gotas en la corriente de salida, cuando se utiliza un rodete 56 de configuración similar al rodete 6 en unos medios dinámicos de retención de gotas 34.
Otra alternativa es emplear materiales micro porosos 8 y 58 diferentes en los ventiladores 4 y 54 del grupo separador 3 y de los medios dinámicos de retención de gotas 34, respectivamente.
En el caso del material 8 entre álabes del rodete 6 del ventilador 4 del separador principal 3, se ha obtenido un mejor rendimiento, comparado con la espuma filtrante de poliuretano, empleando un tejido fibroso de un grosor entre 1 cm y 4 cm, rodeado de una capa de unos 3 mm de grosor de un material hidrófilo cuya composición es 50% viscosa, 20% polipropileno, 20% poliéster y el resto otras fibras, dispuesta esta capa abrazando el rodete.
Por su parte, en el ventilador 54 de los medios dinámicos de retención de gotas 34, el material 88 entre álabes fue únicamente el tejido fibroso de entre 1 cm y 4 cm de grosor. Los resultados que se muestran más adelante en la Tabla 1 se refieren a esta combinación de materiales micro porosos.
En la selección del tamaño de poro o separación entre fibras, se ha revelado que si es éste demasiado grande no filtrará las partículas contaminantes más pequeñas; mientras que si es demasiado pequeño provocará una pérdida de carga significativa que menguará el rendimiento del ventilador, además de que rápidamente podría llegar a la saturación y no producirse el ventajoso efecto auto limpiante antes referido.
En cuanto a su espesor, si es muy bajo, independientemente del tamaño de poros, no se obstaculizará lo suficiente el paso del aire como para permitir la eliminación de partículas; y si es demasiado elevado provocará una pérdida de carga significativa que menguará el rendimiento del ventilador. El grupo separador 3 del sistema 1 también comprende unos medios aspersores 5 que están configurados para mojar de líquido al material micro poroso 8 asociado.
Una forma preferente de estos medios de aspersión 5 también se ilustra en las Figs. 2a y 2b antes referidas. En concreto, en estas figuras se muestran medios aspersores 5 con un distribuidor 5a fijo, dispuesto en el centro del rodete 6 asociado y con boquillas 5b de aspersión regularmente distribuidas que dirigen cada una un haz de líquido 9a en una dirección esencialmente tangencial al rodete 5 asociado y en el sentido de giro del rodete 5. Los sentidos de giro del rodete 5 y del haz de líquido eyectado por las boquillas 5b se han mostrado mediante flechas en las Figs. 2a y 2b. En estos ejemplos, el número de boquillas 5b es de ocho y son de chorro plano de tipo lengua, inscritos en sendos planos verticales. Su propósito no es tanto formar una neblina para humidificar el aire sino conseguir mantener mojado el material micro poroso alojado entre los álabes 7 sin impactar con una presión demasiado fuerte que pudiera deteriorar dicho material.
Serían también validos otros tipos de pulverizadores siempre y cuando las gotas producidas dispongan de un ángulo de aspersión grande como por ejemplo los nebulizadores. El grupo separador 3 principal se completa con un colector 10 en la forma de una envolvente 11 , en el ejemplo de forma tronco-cónica, que ofrece superficies inclinadas de impacto y posterior conducción para el líquido cargado que se desprenderá por centrifugación del material 8 que gira conjuntamente con el rodete 6.
Como soporte a la inclinación de la envolvente 11 empleada en esta forma de realización y de los medios dinámicos de retención de gotas 34, el sistema 1 de la Fig. 1 b, que ejemplifica una forma de realización de la invención, está además equipado con unos medios de recuperación de gotas 23 estáticos formados por paneles 23a individuales constituidos por una capa de 5 cm de panel de enfriamiento evaporativo seguida de una capa de 1 cm de grosor de espuma de poliuretano de 20 PPI que se interpone en la trayectoria del líquido, en forma de gotas, que es expelido del ventilador 4 en dirección a la envolvente 1 1. En esta forma de realización, ejemplificada en las Figs. 2a y 2b, paneles 23a están colocados yuxtapuestos formando ángulos entre sí, con el propósito de ofrecer superficies de impacto normales a la dirección tangencial del ventilador, alternadas con superficies de impacto orientadas en coincidencia con dicha dirección tangencial.
En el ejemplo, los ventiladores 4 y 54 del grupo separador principal 3 y de los medios dinámicos de retención de gotas 34, respectivamente, giran conjuntamente, accionados por un eje motriz común 15 vertical, accionado por un motor 19 de 1.450 rpm con variador de velocidad.
El funcionamiento del sistema 1 es el que se explica a continuación.
El aire a tratar penetra en la carcasa 16 a través de una rejilla o abertura de aspiración 17 dispuesta en la parte baja de dicha carcasa 16. El aire es aspirado por el ventilador 4 del grupo separador 3 principal y es obligado a pasar por entre los álabes 7 del rodete 6, eso es a través del material 8 micro poroso que se mantiene mojado de un líquido 9a por los medios aspersores 5. Este grupo separador 3 principal, con el líquido 9a adecuado, está destinado a la reducción de las partículas en suspensión, concretamente de las PM10 (partículas de diámetro inferior a 10 mieras) y de las PlVb.s (partículas de diámetro inferior a 2,5 mieras), así como de contaminantes gaseosos como el NO2 y el SO2.
Entre los diversos ejemplos de puesta en práctica se ha logrado retener entre un 80% y un 100% de estas partículas, dependiendo de diversas variables como la hora, el lugar, el grado de humedad, la temperatura, etc.
El obstáculo que supone la distribución irregular de los poros del material 8 micro poroso provoca que los contaminantes del aire que lo atraviesa sean retenidos, coadyuvando en ello la superficie húmeda del material, al que las partículas quedan adheridas. La fuerza centrífuga generada por el ventilador 4 hace que se desprendan del material 8 micro poroso y hacia el colector 10 gotas del líquido empleado que arrastran a su camino por el material 8 tanto las partículas adheridas como partículas o sustancias disueltas en el líquido, mientras que el aire sigue fluyendo en dirección a los medios dinámicos de retención de gotas 34. Este líquido, al que nos referiremos en adelante como líquido cargado 9b, que lleva consigo las sustancias adheridas o disueltas, robadas del gas, es parcialmente recuperado por los medios de recuperación de gotas 23 estáticos, donde puede quedar retenido para escurrirse de forma natural hacia un punto o zona de recogida. La parte del líquido cargado 9b que atraviese estos medios de recuperación de gotas 23 estáticos impactará contra la superficie inclinada de la campana envolvente 11 del colector 10, y resbalará o se escurrirá de forma controlada por dicha campana envolvente 11 hasta ser recogido en un punto o zona de recogida.
En el ejemplo, el líquido 9a es una disolución equimolar carbonato- bicarbonato y el sistema 1 comprende un circuito de recirculación 12 de esta disolución que comprende un acumulador 21 , en la forma de depósito; un dosificador 20 que proporciona los reactivos en caso de ser necesarios; unos medios de impulsión 13 que emplean una bomba; y unos medios de recogida 14 del líquido cargado 9b, eso es del líquido tratado que se desprende del material 8 micro poroso, colectados por la campana envolvente 11.
En el ejemplo, la envolvente 11 antes referida, además de presentar una forma troncocónica, es de base inclinada, conduciéndose el líquido cargado 9b hacia su punto más inferior 1 1a donde se ubica el punto o zona de recogida.
El circuito de recirculación 12 del ejemplo comprende derivaciones 12a; 12b al exterior del sistema 1 conectadas al circuito de recirculación mediante correspondientes dispositivos de válvula para renovar el agua de forma continua o a intervalos programados o asistidos por medios informáticos. Aunque no venga representado, se contempla además que el circuito de recirculación incluya medios de filtro para separar partículas sólidas, tales como mecánicos o por decantación. Cuando el líquido de abastecimiento que entra del exterior al circuito de recirculación sea agua de red, se recomienda emplear un sistema o dispositivo de eliminación de cal. En el ejemplo se ha empleado un pequeño descalcificador.
El caudal de líquido a impulsar dependerá tanto de las características del ventilador 4 (velocidad de rotación y diámetro de rodete) así como del circuito hidráulico (pérdida de carga en el circuito por diámetro de tuberías y sistema de aspersión).
En fases de investigación, se han obtenido resultados muy satisfactorios con las siguientes características:
Figure imgf000019_0001
Tabla 1
El rendimiento de eliminación de partículas obtenido con las características anteriormente mencionadas es muy elevado. Concretamente, se consigue eliminar el 98% de las partículas PM10 y el 95% de las partículas PlVb.s. Empleando una disolución equimolar de carbonato-bicarbonato a la temperatura adecuada se consiguen también rendimientos muy elevados en la reducción del NO2 y el SO2. Concretamente se alcanza el 80% de la reducción del N02 y el 90% de la reducción del S02. Otras disoluciones acuosas que se pueden emplear están basadas en el hidróxido sódico (NaOH) o carbonato sódico (Na2CÜ3). Se recomienda emplear, en la eliminación del NO2, un sistema de eliminación o captación de nitratos y/o nitritos, tanto para mantener el rendimiento del sistema, ya que pueden inhibir parcialmente la absorción del NO2, como para poder verter el líquido a la red de alcantarillado. En el ejemplo, se ha empleado un desnitrificador dotado de resinas aniónicas débiles selectivas de nitratos.
Para mantener el líquido a la temperatura adecuada, una opción sería aplicar un circuito frigorífico, empleando el calor del condensador para calentar el líquido. Con esta opción, además, es posible recuperar el líquido perdido por evaporación, condensándolo con el evaporador, y redirigiéndolo al circuito de recirculación 12 asociado al grupo separador 3. En caso de no emplear un circuito frigorífico, la deshumidificación y recuperación del líquido evaporado a la salida, en caso de ser necesario, se podría realizar con un deshumidificador a la salida del sistema, eso es dispuesto a continuación de los medios dinámicos de retención de gotas 34 y antes de la salida 18. Aprovechando la existencia del motor 19, la aportación de humedad que el sistema 1 proporciona al aire tratado puede eliminarse si se acopla un último rodete cuyo circuito hidráulico impulse agua a una temperatura inferior a la de rocío. Esta agua puede proceder de una pequeña planta enfriadora instalada in situ. Otra opción para llevar a cabo la deshumidificación es emplear una disolución deshidratante, basada en, por ejemplo, cloruro de calcio o cloruro de litio.
El dosificador 20 puede estar formado por una bomba de dosificación que bombea, desde un pequeño depósito, el absorbente que se desea emplear hasta el acumulador 21 del líquido 9a. Dicha bomba de dosificación puede accionarse mediante un temporizador, programado de acuerdo a los cálculos de dosificación.
En el ejemplo de las Figs. 1a y 1 b, a continuación del grupo separador 3 principal, el aire más depurado es a continuación aspirado por el ventilador 54 de los medios dinámicos de retención de gotas 34. Éstos comprenden, en el ejemplo, un colector 150 que comprende una envolvente 151 cuya función es semejante a la que presta la campana envolvente 10 del grupo separador 3.
En la salida 18 del sistema 1 se recomienda la instalación de un filtro de partículas, adecuado para el caudal de aire que se trata. En el ejemplo se ha empleado un filtro de bolsas sintético de clasificación F9. El sistema 1 de la Fig. 1 a es sumamente compacto y puede instalarse en consecuencia por ejemplo sobre una marquesina típica de una parada de autobús, quedando dispuesta la entrada 17 de aire a una altura idónea del piso, de unos 2,5 m aproximadamente.
Reduciendo las medidas de los rodetes, es posible obtener sistemas de depuración de aire y gases para aplicaciones que así lo requieran. Por ejemplo, reduciendo los rodetes a unos 300 mm de diámetro y tratando 500 m3/h se puede obtener un sistema de depuración de gases de vehículos de combustión; mientras que reduciendo el diámetro del rodete a unos 100 mm y tratando un caudal de aire de 100 m3/h se podría obtener un sistema de depuración de aire doméstico, apto para ambientes cerrados, como por ejemplo viviendas. El funcionamiento del sistema 1 puede ser bajo demanda y puede estar totalmente automatizado a través de sistemas globalizados de control, que pueden incluir medidores de pH, conductímetros, densímetros, válvulas automáticas, interruptores de nivel etc., así como otros sensores de contaminación: de forma que el sistema podría funcionar únicamente cuando se sobrepasen los límites establecidos por la normativa o en episodios de especial contaminación.
El sistema 1 que viene representado en la Fig. 3 muestra una disposición ligeramente diferente en una carcasa 160 esta vez en formato columna hueca, que sirve de soporte para publicidad activa, por ejemplo, mediante monitores 24, o pasiva. Los componentes o características equivalentes a aquellos del sistema según la Fig. 1a se han designado empleando para ello las mismas referencias numéricas que para dicha Fig. 1 a.
Aunque en el ejemplo de las Figs. 1a y 1 b el sistema 1 comprende un único grupo separador, el grupo separador 3 principal, se contempla que el sistema 1 pueda desplegar otras funciones añadiendo sucesivos grupos separadores para cada contaminante a tratar, todo ello como ilustra el ejemplo de la Fig. 4.
En cualquier caso, la experimentación ha demostrado que el ozono (O3) troposférico es parcialmente reducido por descomposición en oxígeno tanto en el primer grupo separador 3 como en los otros grupos separadores que le puedan seguir. La ampliación de la zona de tratamiento de aire en la variante del sistema
1 mostrada en la Fig. 4 antes referida se basa en la provisión de un primer y un segundo grupos separadores 3 y 33 en lugar de un único grupo separador. Asimismo, el líquido que se emplea en dichos primer y segundo grupos separadores 3 y 33 es, en el ejemplo, distinto.
En efecto, repárese que en el ejemplo de la Fig. 4 el segundo grupo separador 33 emplea un segundo líquido 99a, en este caso una disolución ácida (pH < 7) para reducir la concentración de partículas metálicas en los trenes suburbanos, y estaría equipado con su correspondiente circuito de recirculación. Este circuito de recirculación, similar al asociado con el grupo separador 3 principal de las Figs. 1a y 1 b, comprendería un segundo acumulador del segundo líquido 99a; unos segundos medios de impulsión del líquido 99a en dirección a los segundos medios aspersores 55 del segundo grupo separador 33; y unos segundos medios de recogida del segundo líquido cargado 99b colectados por un segundo colector 100 que puede estar configurado en la forma de una envolvente 1 10.
Una configuración de este tipo se puede emplear cuando se requiera atacar un contaminante concreto. Por ejemplo, en el caso de un tren suburbano, el segundo grupo separador 33 se podría destinar a eliminar específicamente las partículas metálicas generadas, empleando para ello, a modo de ejemplo, una disolución ácida. El segundo grupo separador 33 contaría en este caso, como antes se ha referido, con un circuito de recirculación asociado, incluidos todos sus elementos. El material micro poroso entre álabes puede ser el mismo que el del primer grupo separador 3 o bien distinto.
Aunque no venga representado, a la salida del primer grupo separador 3 y/o del segundo grupo separador 33 se pueden colocar en serie unos medios dinámicos de retención de gotas, semejantes a los del sistema 1 de las Figs. 1a y 1 b, así como disponer cualquiera de los elementos mencionados a lo largo de la invención.
Por otro lado, los depósitos pueden ir fuera de la carcasa e incluso, si se emplean varios sistemas en paralelo, los depósitos pueden ser comunes al sistema. Se ha de tener en cuenta que estos sistemas pueden requerir movilidad, por ejemplo, en el caso de aplicación a trenes suburbanos a lo largo de las vías, algo a considerar para el abastecimiento y la evacuación del líquido.

Claims

R E I V I N D I C A C I O N E S
1. - Sistema (1) de depuración de aire y gases que comprende al menos un grupo separador (3), principal, para trasladar los contaminantes de una fase gaseosa a una fase líquida, que comprende un ventilador (4) centrífugo y unos medios aspersores (5) de un líquido (9a) dispuestos en la aspiración del ventilador, estando caracterizado el sistema porque el rodete (6) del ventilador (4) tiene una serie de álabes (7) entre los cuales está colocado un material (8) permeable al aire y micro poroso; porque los medios aspersores (5) están configurados para mojar de líquido (9a) a dicho material (8); y porque además comprende un colector (10) de líquido cargado (9b) que habiendo atravesado el material (8) sale expelido del ventilador (4) en toda la dimensión radial conteniendo sustancias robadas al gas.
2. - Sistema (1) según la reivindicación 1 , caracterizado porque el material (8) tiene o se dota, a través de aditivos, de propiedades hidrófilas.
3. - Sistema (1) según las reivindicaciones 1 o 2, caracterizado porque el material (8) puede seleccionarse de entre una espuma filtrante de al menos 10 PPI y un material fibroso cuya separación entre fibras es inferior a 2 mm.
4. - Sistema (1) según la reivindicación 3, caracterizado porque siendo el material (8) una espuma filtrante se selecciona de 60 PPI y su grosor, en la dirección radial del ventilador, es mayor a 1 cm.
5.- Sistema (1) según la reivindicación 3, caracterizado porque siendo el material (8) un material fibroso, el grosor, en la dirección radial del ventilador, superior a 1 cm y preferentemente es de 1 cm a 4 cm.
6.- Sistema (1) según una cualquiera de las reivindicaciones anteriores, caracterizado porque el colector (10) comprende unos medios de recuperación de gotas (23), estáticos o móviles, colocados en la trayectoria que sigue el líquido cargado (9b) expelido del ventilador (4) y adecuados para atenuar al máximo la formación de neblinas al impactar el líquido cargado (9b) que se desprende del ventilador (4) contra éstos, neblinas que serían arrastradas por el gas o aire depurado, escurriéndose el líquido cargado (9b) recuperado en al menos un punto o zona de recogida.
7. - Sistema según la reivindicación 6, caracterizado porque los medios de recuperación de gotas (23) comprenden un medio filtrante a base de celulosa, fibra de vidrio o viscosa.
8. - Sistema (1) según las reivindicaciones 6 o 7, caracterizado porque estos medios de recuperación de gotas (23) están formados por paneles (23a) individuales, yuxtapuestos entre sí para rodear al ventilador (4).
9. - Sistema (1) según la reivindicación anterior, caracterizado porque los paneles (23a) están montados con capacidad de giro para poderse variar el ángulo de incidencia del líquido cargado (9b) contra dichos paneles.
10. - Sistema según una cualquiera de las reivindicaciones 8 o 9, caracterizado porque los paneles (23a) forman ángulos entre sí, con el propósito de ofrecer caras o superficies de impacto normales a la dirección tangencial del ventilador (4), alternadas con caras o superficies de contacto orientadas en coincidencia con dicha dirección tangencial.
1 1. - Sistema según una cualquiera de las reivindicaciones anteriores, caracterizado porque el colector (10) comprende una envolvente (11) del ventilador (4), con interposición en su caso de los medios de recuperación de gotas (23), por la que puede resbalar o escurrir líquido cargado (9b) en dirección a un punto o zona de recogida.
12. - Sistema (1) según una cualquiera de las reivindicaciones anteriores, caracterizado porque comprende unos medios dinámicos de retención de gotas (34) colocados en serie con al menos un grupo separador (3) asociado, que comprenden un segundo ventilador (54) con un correspondiente rodete (56) provisto entre sus álabes (57) con material (58) micro poroso permeable al aire y preferentemente hidrófilo.
13. - Sistema (1) según una cualquiera de las reivindicaciones anteriores, caracterizado porque está equipado con un circuito de recirculación (12) del líquido (9a) asociado con el grupo separador (3), principal, que comprende un acumulador (21) del líquido (9a); unos medios de impulsión (13) del líquido (9a) en dirección a los medios aspersores (5); y unos medios de recogida (14) del líquido cargado (9b) conducidos por el colector (10).
14. - Sistema (1) según la reivindicación anterior, caracterizado porque el circuito de recirculación (12) también comprende un dosificador (20) para proporcionar reactivos, adyuvantes o aditivos al líquido (9a).
15. - Sistema (1) según una cualquiera de las reivindicaciones anteriores, caracterizado porque los medios aspersores (5) comprenden un distribuidor (5a) fijo, dispuesto en el centro del rodete asociado (6) con boquillas (5b) de aspersión que dirigen cada uno un haz de líquido (9a) en una dirección esencialmente tangencial al rodete (6) asociado.
16. - Sistema (1) según una cualquiera de las reivindicaciones anteriores, caracterizado porque el haz de líquido (9a), o en su caso de niebla o de gotículas, es en forma de vano orientado según un plano paralelo al eje de giro del rodete (6) asociado.
17. - Sistema (1) según una cualquiera de las reivindicaciones anteriores, caracterizado porque está equipado con al menos un segundo grupo separador (33) en serie con el grupo separador (3), principal, colocado aguas abajo del grupo separador (3), que comprende un segundo ventilador (44) centrífugo que aspira el gas o aire previamente depurado por el grupo separador (3), principal, comprendiendo el segundo grupo separador (33) unos segundos medios aspersores (55) de un segundo líquido (99a) configurados para mojar un segundo material (88) permeable al aire y micro poroso alojado entre los álabes del rodete (66) de dicho segundo ventilador (44); y un segundo colector (100) del segundo líquido cargado (99b) que habiendo atravesado el segundo material (88) sale expelido del segundo ventilador (44) conteniendo sustancias robadas al gas.
18. - Sistema (1) según la reivindicación anterior, caracterizado porque el grupo separador (3), principal, y el segundo grupo separador (33) están superpuestos, siendo accionados los respectivos ventiladores (3, 33) por un eje común (15) vertical y motorizado, que transmite un giro simultaneo a ambos ventiladores (3, 33).
19. - Sistema (1) según una cualquiera de las reivindicaciones 17 o 18, caracterizado porque el segundo material (88) del segundo grupo separador (33) es igual al material (8) empleado en el grupo separador (3), principal.
20. - Sistema según una cualquiera de las reivindicaciones anteriores, caracterizado porque el líquido (9a) que emplea al menos un grupo separador (3) es una solución que comprende absorbentes de NOx y/o SOx.
21.- Sistema (1) según la reivindicación anterior, caracterizado porque la solución que comprende absorbentes de NOx y SOx es una mezcla equimolar de carbonato-bicarbonato.
22. - Sistema según una cualquiera de las reivindicaciones 17 a 21 , caracterizado porque el segundo líquido (99a) que emplea el segundo grupo separador (33) es una disolución ácida.
23. - Sistema (1) según una cualquiera de las reivindicaciones anteriores, caracterizado porque comprende medios para mantener la temperatura del líquido (9a) por encima de los 20°C.
24. - Sistema (1) según la reivindicación anterior caracterizado porque el medio para mantener la temperatura del líquido (9a) por encima de los 20°C es el condensador de una máquina frigorífica, permitiendo el evaporador de dicha máquina frigorífica recuperar el líquido evaporado, reduciendo los niveles de humedad.
25. - Un procedimiento de depuración de aire y gases caracterizado porque comprende forzar la circulación del gas a depurar, al menos una vez, a través de un ventilador (4) centrífugo cuyo rodete (6) tiene una serie de álabes (7) entre los cuales está colocado un material (8) permeable al aire y micro poroso mojado de un líquido (9a); y recuperar el líquido cargado (9b) que habiendo atravesado el material (8) sale expelido del ventilador (4) conteniendo sustancias robadas al aire o gas.
PCT/ES2018/070065 2017-02-03 2018-01-29 Sistema de depuración de aire y gases WO2018142008A2 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201730124A ES2677608B1 (es) 2017-02-03 2017-02-03 Sistema de depuración de gases y aire
ESP201730124 2017-02-03

Publications (2)

Publication Number Publication Date
WO2018142008A2 true WO2018142008A2 (es) 2018-08-09
WO2018142008A3 WO2018142008A3 (es) 2018-11-15

Family

ID=61768342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2018/070065 WO2018142008A2 (es) 2017-02-03 2018-01-29 Sistema de depuración de aire y gases

Country Status (2)

Country Link
ES (1) ES2677608B1 (es)
WO (1) WO2018142008A2 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021058946A1 (en) * 2019-09-26 2021-04-01 Edwards Limited Packed tower

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB632654A (en) * 1945-08-27 1949-11-28 Herman Rathgeb An improved apparatus for washing gases
NL166858C (nl) * 1969-05-24 1981-10-15 Petersen Hugo Verfahrenstech Inrichting voor het nat reinigen van een met stofdeel- tjes verontreinigd gas.
FR2215995B1 (es) * 1973-02-07 1976-11-05 Percevaut Emile
US4050237A (en) * 1974-03-11 1977-09-27 Pall Corporation Demister assembly for removing liquids from gases
DE8603418U1 (de) * 1986-02-08 1986-11-06 EMW-Betrieb Emmerling & Weyl GmbH & Co Schaumstoff KG, 6252 Diez Luftreinigungsvorrichtung
FR2784607B1 (fr) * 1998-10-16 2001-02-09 Francois Simon Filtration de gaz par force centrifuge
KR100644994B1 (ko) * 1998-12-01 2006-11-10 가부시키가이샤 에바라 세이사꾸쇼 배기가스처리장치
GB0122553D0 (en) * 2001-09-19 2001-11-07 J B Thorne Ltd Filter apparatus
FR2850037B1 (fr) * 2003-01-17 2006-07-28 Simon Francois Machine rotative destinee a engendrer un flux de fluide epure reglable et capable de s'auto-nettoyer
KR100647895B1 (ko) * 2004-10-11 2006-11-23 주식회사 대우일렉트로닉스 습식 공기청정기용 다기능 팬
BE1021830B1 (nl) * 2013-10-11 2016-01-21 Darvan Invest N.V Inrichting voor het afscheiden van vaste deeltjes uit de uitlaatgassen van een motor
US20170028330A1 (en) * 2015-07-30 2017-02-02 Cummins Filtration Ip, Inc. Porous Filter Media for Use in Preventing Liquid Carryover
CN105498369B (zh) * 2015-12-08 2017-11-10 安庆市同博科技开发有限责任公司 离心式空气净化器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021058946A1 (en) * 2019-09-26 2021-04-01 Edwards Limited Packed tower

Also Published As

Publication number Publication date
ES2677608B1 (es) 2019-08-20
ES2677608A1 (es) 2018-08-03
WO2018142008A3 (es) 2018-11-15

Similar Documents

Publication Publication Date Title
ES2687241T3 (es) Sistema de tratamiento de gases de escape
CN101909720B (zh) 用于处理烟道气流的多级co2去除系统和方法
ES2833049T3 (es) Depurador de gas de múltiples niveles con múltiples cabezales de depurador inundados
EP3132807A1 (en) Method and device for producing negative oxygen ions, and method and device for purifying air
CN108211732A (zh) 一种脱硫设备
KR101382140B1 (ko) 분진 세정 및 가스 흡수가 효율적인 다기능 대기오염처리장치
CN107789970A (zh) 一种箱式空气净化器
KR101187926B1 (ko) 건습식 방식에 의한 점성입자 및 악취 제거시스템
US3936283A (en) Compact gas purifier
JP2015073982A (ja) 超微細水の特性と自然の仕組みを利用した空気中の二酸化炭素ガス等を直接吸着除去方法・冷凍機からの凝縮器排熱を回収し屋外機を不要とする方法及びその装置・本装置による上昇気流を防止することが出来る方法及びその装置
WO2018142008A2 (es) Sistema de depuración de aire y gases
RU2563501C2 (ru) Нейтрализация газообразных загрязняющих веществ посредством искусственного фотосинтеза
CN207786317U (zh) 一种金纳德箱式空气净化器
KR200399678Y1 (ko) 공기정화장치
CN206404519U (zh) 一种废气处理系统
CN218687781U (zh) 高效多级旋流臭气净化器
JP3179700B2 (ja) ガス不純物の除去装置
JP2006175336A (ja) 湿式ガス浄化装置
ES2354356T3 (es) Procedimiento y aparato para filtrar una corriente de aire usando una espuma acuosa junto con nucleación.
CN115888363A (zh) 一种塔内喷淋的废气净化系统
KR20230119342A (ko) 여과회전필터를 갖는 유해 배기가스 습식 정화장치
CN105879535A (zh) 雾化洗涤式空气净化器
CN210131501U (zh) 一种烟气除雾除尘消白装置
CN210751883U (zh) 一种带有高效除尘除雾功能的喷淋塔
JP2004202306A (ja) 空気浄化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18713298

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 30/10/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 18713298

Country of ref document: EP

Kind code of ref document: A2