WO2018141910A1 - Low ph pharmaceutical composition comprising t cell engaging antibody constructs - Google Patents
Low ph pharmaceutical composition comprising t cell engaging antibody constructs Download PDFInfo
- Publication number
- WO2018141910A1 WO2018141910A1 PCT/EP2018/052665 EP2018052665W WO2018141910A1 WO 2018141910 A1 WO2018141910 A1 WO 2018141910A1 EP 2018052665 W EP2018052665 W EP 2018052665W WO 2018141910 A1 WO2018141910 A1 WO 2018141910A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- domain
- pharmaceutical composition
- antibody
- antibody construct
- seq
- Prior art date
Links
- 239000008194 pharmaceutical composition Substances 0.000 title claims abstract description 177
- 239000000427 antigen Substances 0.000 claims abstract description 104
- 108091007433 antigens Proteins 0.000 claims abstract description 104
- 102000036639 antigens Human genes 0.000 claims abstract description 104
- 101710160107 Outer membrane protein A Proteins 0.000 claims abstract description 78
- 239000000872 buffer Substances 0.000 claims abstract description 27
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 27
- 239000004094 surface-active agent Substances 0.000 claims abstract description 24
- 150000001720 carbohydrates Chemical class 0.000 claims abstract description 17
- 239000000203 mixture Substances 0.000 claims description 187
- 241000282414 Homo sapiens Species 0.000 claims description 143
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 137
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 82
- 235000001014 amino acid Nutrition 0.000 claims description 69
- 150000001413 amino acids Chemical group 0.000 claims description 68
- 229920001184 polypeptide Polymers 0.000 claims description 67
- 239000007788 liquid Substances 0.000 claims description 55
- 239000000178 monomer Substances 0.000 claims description 50
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 47
- 206010028980 Neoplasm Diseases 0.000 claims description 45
- -1 EGFRvlll Proteins 0.000 claims description 42
- 201000010099 disease Diseases 0.000 claims description 41
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 claims description 31
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 claims description 29
- 229930006000 Sucrose Natural products 0.000 claims description 29
- 239000005720 sucrose Substances 0.000 claims description 29
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 26
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 claims description 24
- 241000282553 Macaca Species 0.000 claims description 23
- 229920000053 polysorbate 80 Polymers 0.000 claims description 23
- 238000002347 injection Methods 0.000 claims description 22
- 239000007924 injection Substances 0.000 claims description 22
- 239000000244 polyoxyethylene sorbitan monooleate Substances 0.000 claims description 22
- 229940068968 polysorbate 80 Drugs 0.000 claims description 22
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 19
- 238000011282 treatment Methods 0.000 claims description 19
- 102100022529 Cadherin-19 Human genes 0.000 claims description 18
- 101000899410 Homo sapiens Cadherin-19 Proteins 0.000 claims description 18
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 claims description 17
- 229930195725 Mannitol Natural products 0.000 claims description 17
- 229930195712 glutamate Natural products 0.000 claims description 17
- 235000010355 mannitol Nutrition 0.000 claims description 17
- 239000000594 mannitol Substances 0.000 claims description 17
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 claims description 13
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 claims description 13
- 235000010356 sorbitol Nutrition 0.000 claims description 13
- 239000000600 sorbitol Substances 0.000 claims description 13
- 102100024222 B-lymphocyte antigen CD19 Human genes 0.000 claims description 12
- 101000980825 Homo sapiens B-lymphocyte antigen CD19 Proteins 0.000 claims description 12
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 12
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 12
- 229920005862 polyol Polymers 0.000 claims description 11
- 150000003077 polyols Chemical class 0.000 claims description 11
- 230000003612 virological effect Effects 0.000 claims description 11
- 101000934338 Homo sapiens Myeloid cell surface antigen CD33 Proteins 0.000 claims description 10
- 102100025243 Myeloid cell surface antigen CD33 Human genes 0.000 claims description 10
- 239000002253 acid Substances 0.000 claims description 10
- 238000004108 freeze drying Methods 0.000 claims description 10
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 claims description 9
- 208000026278 immune system disease Diseases 0.000 claims description 9
- 239000007787 solid Substances 0.000 claims description 9
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 claims description 8
- 229940127276 delta-like ligand 3 Drugs 0.000 claims description 8
- 238000001802 infusion Methods 0.000 claims description 8
- 229920001481 poly(stearyl methacrylate) Polymers 0.000 claims description 8
- 150000005846 sugar alcohols Chemical class 0.000 claims description 8
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 claims description 7
- BGFTWECWAICPDG-UHFFFAOYSA-N 2-[bis(4-chlorophenyl)methyl]-4-n-[3-[bis(4-chlorophenyl)methyl]-4-(dimethylamino)phenyl]-1-n,1-n-dimethylbenzene-1,4-diamine Chemical compound C1=C(C(C=2C=CC(Cl)=CC=2)C=2C=CC(Cl)=CC=2)C(N(C)C)=CC=C1NC(C=1)=CC=C(N(C)C)C=1C(C=1C=CC(Cl)=CC=1)C1=CC=C(Cl)C=C1 BGFTWECWAICPDG-UHFFFAOYSA-N 0.000 claims description 7
- 108010008014 B-Cell Maturation Antigen Proteins 0.000 claims description 7
- 102000006942 B-Cell Maturation Antigen Human genes 0.000 claims description 7
- 102100022005 B-lymphocyte antigen CD20 Human genes 0.000 claims description 7
- 102100025221 CD70 antigen Human genes 0.000 claims description 7
- 102100036466 Delta-like protein 3 Human genes 0.000 claims description 7
- 102100041003 Glutamate carboxypeptidase 2 Human genes 0.000 claims description 7
- 101000897405 Homo sapiens B-lymphocyte antigen CD20 Proteins 0.000 claims description 7
- 101000934356 Homo sapiens CD70 antigen Proteins 0.000 claims description 7
- 101000928513 Homo sapiens Delta-like protein 3 Proteins 0.000 claims description 7
- 101000892862 Homo sapiens Glutamate carboxypeptidase 2 Proteins 0.000 claims description 7
- 101000932478 Homo sapiens Receptor-type tyrosine-protein kinase FLT3 Proteins 0.000 claims description 7
- 229920001213 Polysorbate 20 Polymers 0.000 claims description 7
- 102100020718 Receptor-type tyrosine-protein kinase FLT3 Human genes 0.000 claims description 7
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 claims description 7
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 claims description 7
- 229920001993 poloxamer 188 Polymers 0.000 claims description 7
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 claims description 7
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 claims description 7
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 claims description 6
- 229940068977 polysorbate 20 Drugs 0.000 claims description 6
- CTKXFMQHOOWWEB-UHFFFAOYSA-N Ethylene oxide/propylene oxide copolymer Chemical compound CCCOC(C)COCCO CTKXFMQHOOWWEB-UHFFFAOYSA-N 0.000 claims description 5
- 150000001449 anionic compounds Chemical class 0.000 claims description 5
- 229910001412 inorganic anion Inorganic materials 0.000 claims description 5
- 229940044519 poloxamer 188 Drugs 0.000 claims description 5
- 229920002307 Dextran Polymers 0.000 claims description 4
- 229910019142 PO4 Inorganic materials 0.000 claims description 4
- 230000002062 proliferating effect Effects 0.000 claims description 4
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 claims description 4
- 229920002562 Polyethylene Glycol 3350 Polymers 0.000 claims description 3
- 229920001030 Polyethylene Glycol 4000 Polymers 0.000 claims description 3
- 229920001214 Polysorbate 60 Polymers 0.000 claims description 3
- 150000002016 disaccharides Chemical class 0.000 claims description 3
- 102000052116 epidermal growth factor receptor activity proteins Human genes 0.000 claims description 3
- 108700015053 epidermal growth factor receptor activity proteins Proteins 0.000 claims description 3
- 150000002772 monosaccharides Chemical class 0.000 claims description 3
- YOHYSYJDKVYCJI-UHFFFAOYSA-N n-[3-[[6-[3-(trifluoromethyl)anilino]pyrimidin-4-yl]amino]phenyl]cyclopropanecarboxamide Chemical compound FC(F)(F)C1=CC=CC(NC=2N=CN=C(NC=3C=C(NC(=O)C4CC4)C=CC=3)C=2)=C1 YOHYSYJDKVYCJI-UHFFFAOYSA-N 0.000 claims description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 3
- 239000010452 phosphate Substances 0.000 claims description 3
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 claims description 3
- ODLHGICHYURWBS-LKONHMLTSA-N trappsol cyclo Chemical compound CC(O)COC[C@H]([C@H]([C@@H]([C@H]1O)O)O[C@H]2O[C@@H]([C@@H](O[C@H]3O[C@H](COCC(C)O)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](COCC(C)O)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](COCC(C)O)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](COCC(C)O)[C@H]([C@@H]([C@H]3O)O)O3)[C@H](O)[C@H]2O)COCC(O)C)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H]3O[C@@H]1COCC(C)O ODLHGICHYURWBS-LKONHMLTSA-N 0.000 claims description 3
- SXGZJKUKBWWHRA-UHFFFAOYSA-M 2-(N-morpholino)ethanesulfonate Chemical compound [O-]S(=O)(=O)CCN1CCOCC1 SXGZJKUKBWWHRA-UHFFFAOYSA-M 0.000 claims description 2
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 claims description 2
- 229920001219 Polysorbate 40 Polymers 0.000 claims description 2
- 229920004890 Triton X-100 Polymers 0.000 claims description 2
- 239000013504 Triton X-100 Substances 0.000 claims description 2
- HQPMKSGTIOYHJT-UHFFFAOYSA-N ethane-1,2-diol;propane-1,2-diol Chemical compound OCCO.CC(O)CO HQPMKSGTIOYHJT-UHFFFAOYSA-N 0.000 claims description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-L fumarate(2-) Chemical compound [O-]C(=O)\C=C\C([O-])=O VZCYOOQTPOCHFL-OWOJBTEDSA-L 0.000 claims description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 claims description 2
- 235000010483 polyoxyethylene sorbitan monopalmitate Nutrition 0.000 claims description 2
- 239000000249 polyoxyethylene sorbitan monopalmitate Substances 0.000 claims description 2
- 235000010989 polyoxyethylene sorbitan monostearate Nutrition 0.000 claims description 2
- 239000001818 polyoxyethylene sorbitan monostearate Substances 0.000 claims description 2
- 229920001282 polysaccharide Polymers 0.000 claims description 2
- 239000005017 polysaccharide Substances 0.000 claims description 2
- 229940101027 polysorbate 40 Drugs 0.000 claims description 2
- 229940113124 polysorbate 60 Drugs 0.000 claims description 2
- 229940095064 tartrate Drugs 0.000 claims description 2
- 101000576802 Homo sapiens Mesothelin Proteins 0.000 claims 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-L L-tartrate(2-) Chemical compound [O-]C(=O)[C@H](O)[C@@H](O)C([O-])=O FEWJPZIEWOKRBE-JCYAYHJZSA-L 0.000 claims 1
- 102100025096 Mesothelin Human genes 0.000 claims 1
- 230000027455 binding Effects 0.000 abstract description 163
- 108090000623 proteins and genes Proteins 0.000 description 229
- 102000004169 proteins and genes Human genes 0.000 description 213
- 235000018102 proteins Nutrition 0.000 description 206
- 238000009472 formulation Methods 0.000 description 126
- 210000004027 cell Anatomy 0.000 description 119
- 238000000034 method Methods 0.000 description 113
- 239000003814 drug Substances 0.000 description 70
- 229940024606 amino acid Drugs 0.000 description 64
- 125000005647 linker group Chemical group 0.000 description 58
- 125000003275 alpha amino acid group Chemical group 0.000 description 48
- 229940079593 drug Drugs 0.000 description 48
- 238000006467 substitution reaction Methods 0.000 description 46
- 108060003951 Immunoglobulin Proteins 0.000 description 43
- 102000018358 immunoglobulin Human genes 0.000 description 43
- 210000001744 T-lymphocyte Anatomy 0.000 description 41
- 239000003755 preservative agent Substances 0.000 description 40
- 102000017420 CD3 protein, epsilon/gamma/delta subunit Human genes 0.000 description 39
- 108050005493 CD3 protein, epsilon/gamma/delta subunit Proteins 0.000 description 39
- 230000002776 aggregation Effects 0.000 description 39
- 238000004220 aggregation Methods 0.000 description 39
- 239000012634 fragment Substances 0.000 description 36
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 35
- 230000000694 effects Effects 0.000 description 30
- 239000002502 liposome Substances 0.000 description 30
- 125000000539 amino acid group Chemical group 0.000 description 27
- 230000006870 function Effects 0.000 description 27
- 239000000047 product Substances 0.000 description 26
- 230000001225 therapeutic effect Effects 0.000 description 26
- NFGXHKASABOEEW-UHFFFAOYSA-N 1-methylethyl 11-methoxy-3,7,11-trimethyl-2,4-dodecadienoate Chemical compound COC(C)(C)CCCC(C)CC=CC(C)=CC(=O)OC(C)C NFGXHKASABOEEW-UHFFFAOYSA-N 0.000 description 25
- 239000013628 high molecular weight specie Substances 0.000 description 25
- 108010047041 Complementarity Determining Regions Proteins 0.000 description 24
- 230000001965 increasing effect Effects 0.000 description 24
- 238000001542 size-exclusion chromatography Methods 0.000 description 24
- 239000000243 solution Substances 0.000 description 24
- 230000004048 modification Effects 0.000 description 23
- 238000012986 modification Methods 0.000 description 23
- 150000007523 nucleic acids Chemical group 0.000 description 23
- 230000008569 process Effects 0.000 description 22
- 241000699666 Mus <mouse, genus> Species 0.000 description 21
- 239000003963 antioxidant agent Substances 0.000 description 21
- 235000006708 antioxidants Nutrition 0.000 description 21
- 238000006243 chemical reaction Methods 0.000 description 21
- 150000002500 ions Chemical class 0.000 description 21
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 20
- 239000004472 Lysine Substances 0.000 description 20
- 229960003646 lysine Drugs 0.000 description 20
- 239000012071 phase Substances 0.000 description 20
- 238000001727 in vivo Methods 0.000 description 18
- 238000004519 manufacturing process Methods 0.000 description 18
- 239000000463 material Substances 0.000 description 18
- 241000894007 species Species 0.000 description 18
- 238000011161 development Methods 0.000 description 17
- 230000018109 developmental process Effects 0.000 description 17
- 230000013595 glycosylation Effects 0.000 description 17
- 238000006206 glycosylation reaction Methods 0.000 description 17
- 230000003993 interaction Effects 0.000 description 17
- 102000039446 nucleic acids Human genes 0.000 description 17
- 108020004707 nucleic acids Proteins 0.000 description 17
- 230000004845 protein aggregation Effects 0.000 description 17
- 239000013598 vector Substances 0.000 description 17
- 239000012636 effector Substances 0.000 description 16
- 210000004602 germ cell Anatomy 0.000 description 16
- 238000003860 storage Methods 0.000 description 16
- 231100000491 EC50 Toxicity 0.000 description 15
- 238000013459 approach Methods 0.000 description 15
- 230000015572 biosynthetic process Effects 0.000 description 15
- 229940049906 glutamate Drugs 0.000 description 15
- 239000000523 sample Substances 0.000 description 15
- 239000000126 substance Substances 0.000 description 15
- 239000003981 vehicle Substances 0.000 description 15
- 239000002202 Polyethylene glycol Substances 0.000 description 14
- 108010003723 Single-Domain Antibodies Proteins 0.000 description 14
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 14
- 201000011510 cancer Diseases 0.000 description 14
- 229920001223 polyethylene glycol Polymers 0.000 description 14
- 230000035882 stress Effects 0.000 description 14
- ODKSFYDXXFIFQN-BYPYZUCNSA-N L-arginine Chemical compound OC(=O)[C@@H](N)CCCN=C(N)N ODKSFYDXXFIFQN-BYPYZUCNSA-N 0.000 description 13
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 13
- 238000003556 assay Methods 0.000 description 13
- 230000004071 biological effect Effects 0.000 description 13
- 238000005755 formation reaction Methods 0.000 description 13
- 230000004927 fusion Effects 0.000 description 13
- 108091033319 polynucleotide Proteins 0.000 description 13
- 102000040430 polynucleotide Human genes 0.000 description 13
- 239000002157 polynucleotide Substances 0.000 description 13
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 12
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 12
- 229940072221 immunoglobulins Drugs 0.000 description 12
- 238000001990 intravenous administration Methods 0.000 description 12
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 12
- 238000002360 preparation method Methods 0.000 description 12
- 230000002335 preservative effect Effects 0.000 description 12
- 239000003381 stabilizer Substances 0.000 description 12
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 11
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 11
- 235000019766 L-Lysine Nutrition 0.000 description 11
- 238000005516 engineering process Methods 0.000 description 11
- 238000011534 incubation Methods 0.000 description 11
- 230000007246 mechanism Effects 0.000 description 11
- 230000035772 mutation Effects 0.000 description 11
- 238000000746 purification Methods 0.000 description 11
- 230000002829 reductive effect Effects 0.000 description 11
- 229960002920 sorbitol Drugs 0.000 description 11
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 10
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 10
- 108091028043 Nucleic acid sequence Proteins 0.000 description 10
- 108091008874 T cell receptors Proteins 0.000 description 10
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 10
- 230000000890 antigenic effect Effects 0.000 description 10
- 238000007385 chemical modification Methods 0.000 description 10
- 238000004587 chromatography analysis Methods 0.000 description 10
- 210000004408 hybridoma Anatomy 0.000 description 10
- 125000003729 nucleotide group Chemical group 0.000 description 10
- 229920000642 polymer Polymers 0.000 description 10
- 230000004044 response Effects 0.000 description 10
- 235000000346 sugar Nutrition 0.000 description 10
- 210000001519 tissue Anatomy 0.000 description 10
- 108020004414 DNA Proteins 0.000 description 9
- 230000002411 adverse Effects 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 9
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 9
- 150000001875 compounds Chemical class 0.000 description 9
- 230000009089 cytolysis Effects 0.000 description 9
- 239000000539 dimer Substances 0.000 description 9
- 239000012530 fluid Substances 0.000 description 9
- 230000000670 limiting effect Effects 0.000 description 9
- 235000018977 lysine Nutrition 0.000 description 9
- 239000002773 nucleotide Substances 0.000 description 9
- 238000007911 parenteral administration Methods 0.000 description 9
- 239000002245 particle Substances 0.000 description 9
- 229920000136 polysorbate Polymers 0.000 description 9
- 229960001153 serine Drugs 0.000 description 9
- 239000011780 sodium chloride Substances 0.000 description 9
- 238000007920 subcutaneous administration Methods 0.000 description 9
- 229940124597 therapeutic agent Drugs 0.000 description 9
- 239000004475 Arginine Substances 0.000 description 8
- 102000002265 Human Growth Hormone Human genes 0.000 description 8
- 108010000521 Human Growth Hormone Proteins 0.000 description 8
- 239000000854 Human Growth Hormone Substances 0.000 description 8
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 8
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 8
- 102000003735 Mesothelin Human genes 0.000 description 8
- 108090000015 Mesothelin Proteins 0.000 description 8
- 241001465754 Metazoa Species 0.000 description 8
- 241000288906 Primates Species 0.000 description 8
- 241000283984 Rodentia Species 0.000 description 8
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 8
- 230000002378 acidificating effect Effects 0.000 description 8
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 8
- 235000009697 arginine Nutrition 0.000 description 8
- 229960003121 arginine Drugs 0.000 description 8
- 210000004369 blood Anatomy 0.000 description 8
- 239000008280 blood Substances 0.000 description 8
- 238000004422 calculation algorithm Methods 0.000 description 8
- 230000015556 catabolic process Effects 0.000 description 8
- 230000007423 decrease Effects 0.000 description 8
- 238000006731 degradation reaction Methods 0.000 description 8
- 230000001419 dependent effect Effects 0.000 description 8
- 238000001514 detection method Methods 0.000 description 8
- 238000000338 in vitro Methods 0.000 description 8
- RLSSMJSEOOYNOY-UHFFFAOYSA-N m-cresol Chemical compound CC1=CC=CC(O)=C1 RLSSMJSEOOYNOY-UHFFFAOYSA-N 0.000 description 8
- 230000000873 masking effect Effects 0.000 description 8
- 239000012528 membrane Substances 0.000 description 8
- LXCFILQKKLGQFO-UHFFFAOYSA-N methylparaben Chemical compound COC(=O)C1=CC=C(O)C=C1 LXCFILQKKLGQFO-UHFFFAOYSA-N 0.000 description 8
- 239000003094 microcapsule Substances 0.000 description 8
- 230000007935 neutral effect Effects 0.000 description 8
- 230000003647 oxidation Effects 0.000 description 8
- 238000007254 oxidation reaction Methods 0.000 description 8
- QELSKZZBTMNZEB-UHFFFAOYSA-N propylparaben Chemical compound CCCOC(=O)C1=CC=C(O)C=C1 QELSKZZBTMNZEB-UHFFFAOYSA-N 0.000 description 8
- 235000004400 serine Nutrition 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- 150000008163 sugars Chemical class 0.000 description 8
- 238000004704 ultra performance liquid chromatography Methods 0.000 description 8
- 239000003643 water by type Substances 0.000 description 8
- 241000894006 Bacteria Species 0.000 description 7
- 229920000858 Cyclodextrin Polymers 0.000 description 7
- 102000004190 Enzymes Human genes 0.000 description 7
- 108090000790 Enzymes Proteins 0.000 description 7
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 7
- 102000017727 Immunoglobulin Variable Region Human genes 0.000 description 7
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 7
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 7
- 241000699670 Mus sp. Species 0.000 description 7
- 241000700159 Rattus Species 0.000 description 7
- 235000004279 alanine Nutrition 0.000 description 7
- 229960003767 alanine Drugs 0.000 description 7
- 230000003078 antioxidant effect Effects 0.000 description 7
- 239000011324 bead Substances 0.000 description 7
- WHGYBXFWUBPSRW-FOUAGVGXSA-N beta-cyclodextrin Chemical compound OC[C@H]([C@H]([C@@H]([C@H]1O)O)O[C@H]2O[C@@H]([C@@H](O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O3)[C@H](O)[C@H]2O)CO)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H]3O[C@@H]1CO WHGYBXFWUBPSRW-FOUAGVGXSA-N 0.000 description 7
- 230000006240 deamidation Effects 0.000 description 7
- 238000012377 drug delivery Methods 0.000 description 7
- 229940088598 enzyme Drugs 0.000 description 7
- 230000007717 exclusion Effects 0.000 description 7
- 239000012669 liquid formulation Substances 0.000 description 7
- 239000002609 medium Substances 0.000 description 7
- 238000001179 sorption measurement Methods 0.000 description 7
- 230000006641 stabilisation Effects 0.000 description 7
- 238000011105 stabilization Methods 0.000 description 7
- 230000000087 stabilizing effect Effects 0.000 description 7
- 238000013268 sustained release Methods 0.000 description 7
- 239000012730 sustained-release form Substances 0.000 description 7
- 238000001890 transfection Methods 0.000 description 7
- 210000004881 tumor cell Anatomy 0.000 description 7
- 238000000108 ultra-filtration Methods 0.000 description 7
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 6
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 6
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 6
- 241000196324 Embryophyta Species 0.000 description 6
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 6
- 239000004471 Glycine Substances 0.000 description 6
- 241000282412 Homo Species 0.000 description 6
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 6
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 6
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 6
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 6
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 6
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 6
- 108091007491 NSP3 Papain-like protease domains Proteins 0.000 description 6
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 6
- 239000004473 Threonine Substances 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 6
- 210000003719 b-lymphocyte Anatomy 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 6
- 235000011175 beta-cyclodextrine Nutrition 0.000 description 6
- 239000000969 carrier Substances 0.000 description 6
- 239000002738 chelating agent Substances 0.000 description 6
- 239000003153 chemical reaction reagent Substances 0.000 description 6
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 6
- 238000002784 cytotoxicity assay Methods 0.000 description 6
- 231100000263 cytotoxicity test Toxicity 0.000 description 6
- 239000003085 diluting agent Substances 0.000 description 6
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 6
- 208000035475 disorder Diseases 0.000 description 6
- VHJLVAABSRFDPM-QWWZWVQMSA-N dithiothreitol Chemical compound SC[C@@H](O)[C@H](O)CS VHJLVAABSRFDPM-QWWZWVQMSA-N 0.000 description 6
- 239000000839 emulsion Substances 0.000 description 6
- 239000013020 final formulation Substances 0.000 description 6
- 235000019253 formic acid Nutrition 0.000 description 6
- 238000007710 freezing Methods 0.000 description 6
- 230000008014 freezing Effects 0.000 description 6
- 230000012010 growth Effects 0.000 description 6
- 229910052588 hydroxylapatite Inorganic materials 0.000 description 6
- 230000028993 immune response Effects 0.000 description 6
- 230000001976 improved effect Effects 0.000 description 6
- 150000002632 lipids Chemical class 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 229910021645 metal ion Inorganic materials 0.000 description 6
- 229930182817 methionine Natural products 0.000 description 6
- 235000006109 methionine Nutrition 0.000 description 6
- 238000002703 mutagenesis Methods 0.000 description 6
- 231100000350 mutagenesis Toxicity 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 210000000056 organ Anatomy 0.000 description 6
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 6
- 238000012510 peptide mapping method Methods 0.000 description 6
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 6
- 238000002823 phage display Methods 0.000 description 6
- 239000000825 pharmaceutical preparation Substances 0.000 description 6
- YBYRMVIVWMBXKQ-UHFFFAOYSA-N phenylmethanesulfonyl fluoride Chemical compound FS(=O)(=O)CC1=CC=CC=C1 YBYRMVIVWMBXKQ-UHFFFAOYSA-N 0.000 description 6
- 239000002953 phosphate buffered saline Substances 0.000 description 6
- 229940068965 polysorbates Drugs 0.000 description 6
- 229910000160 potassium phosphate Inorganic materials 0.000 description 6
- 235000011009 potassium phosphates Nutrition 0.000 description 6
- 235000013930 proline Nutrition 0.000 description 6
- 229960002429 proline Drugs 0.000 description 6
- 230000001954 sterilising effect Effects 0.000 description 6
- 238000004659 sterilization and disinfection Methods 0.000 description 6
- 239000000725 suspension Substances 0.000 description 6
- 239000012085 test solution Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 230000009466 transformation Effects 0.000 description 6
- 229940074410 trehalose Drugs 0.000 description 6
- 241000699800 Cricetinae Species 0.000 description 5
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 5
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 5
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 5
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 5
- 241000283973 Oryctolagus cuniculus Species 0.000 description 5
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 5
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 5
- 238000012867 alanine scanning Methods 0.000 description 5
- 239000004067 bulking agent Substances 0.000 description 5
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 5
- 230000001472 cytotoxic effect Effects 0.000 description 5
- 238000011026 diafiltration Methods 0.000 description 5
- 229940126534 drug product Drugs 0.000 description 5
- 210000003527 eukaryotic cell Anatomy 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 238000003780 insertion Methods 0.000 description 5
- 230000037431 insertion Effects 0.000 description 5
- 239000000543 intermediate Substances 0.000 description 5
- 239000011859 microparticle Substances 0.000 description 5
- 230000002265 prevention Effects 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- 238000012216 screening Methods 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- 239000001488 sodium phosphate Substances 0.000 description 5
- 229910000162 sodium phosphate Inorganic materials 0.000 description 5
- 235000011008 sodium phosphates Nutrition 0.000 description 5
- 238000010561 standard procedure Methods 0.000 description 5
- 239000011550 stock solution Substances 0.000 description 5
- 235000008521 threonine Nutrition 0.000 description 5
- 239000012443 tonicity enhancing agent Substances 0.000 description 5
- 230000014616 translation Effects 0.000 description 5
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 5
- 239000011123 type I (borosilicate glass) Substances 0.000 description 5
- DPVHGFAJLZWDOC-PVXXTIHASA-N (2r,3s,4s,5r,6r)-2-(hydroxymethyl)-6-[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxane-3,4,5-triol;dihydrate Chemical compound O.O.O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 DPVHGFAJLZWDOC-PVXXTIHASA-N 0.000 description 4
- HKZAAJSTFUZYTO-LURJTMIESA-N (2s)-2-[[2-[[2-[[2-[(2-aminoacetyl)amino]acetyl]amino]acetyl]amino]acetyl]amino]-3-hydroxypropanoic acid Chemical compound NCC(=O)NCC(=O)NCC(=O)NCC(=O)N[C@@H](CO)C(O)=O HKZAAJSTFUZYTO-LURJTMIESA-N 0.000 description 4
- WRMNZCZEMHIOCP-UHFFFAOYSA-N 2-phenylethanol Chemical compound OCCC1=CC=CC=C1 WRMNZCZEMHIOCP-UHFFFAOYSA-N 0.000 description 4
- 101100454807 Caenorhabditis elegans lgg-1 gene Proteins 0.000 description 4
- 241000288950 Callithrix jacchus Species 0.000 description 4
- 108090000317 Chymotrypsin Proteins 0.000 description 4
- 108091026890 Coding region Proteins 0.000 description 4
- 108020004705 Codon Proteins 0.000 description 4
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 4
- 238000002965 ELISA Methods 0.000 description 4
- 102000003839 Human Proteins Human genes 0.000 description 4
- 108090000144 Human Proteins Proteins 0.000 description 4
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 4
- 108700005091 Immunoglobulin Genes Proteins 0.000 description 4
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 4
- 108700018351 Major Histocompatibility Complex Proteins 0.000 description 4
- 241000124008 Mammalia Species 0.000 description 4
- 241000282577 Pan troglodytes Species 0.000 description 4
- 108010076504 Protein Sorting Signals Proteins 0.000 description 4
- 108020004511 Recombinant DNA Proteins 0.000 description 4
- 241000288960 Saguinus oedipus Species 0.000 description 4
- 241000282696 Saimiri sciureus Species 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 4
- 108090000631 Trypsin Proteins 0.000 description 4
- 102000004142 Trypsin Human genes 0.000 description 4
- 241000700605 Viruses Species 0.000 description 4
- 238000012452 Xenomouse strains Methods 0.000 description 4
- 239000013543 active substance Substances 0.000 description 4
- 230000009824 affinity maturation Effects 0.000 description 4
- 230000000845 anti-microbial effect Effects 0.000 description 4
- 239000004599 antimicrobial Substances 0.000 description 4
- 210000001106 artificial yeast chromosome Anatomy 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000008228 bacteriostatic water for injection Substances 0.000 description 4
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 4
- 229960004853 betadex Drugs 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 4
- 210000004899 c-terminal region Anatomy 0.000 description 4
- 238000005341 cation exchange Methods 0.000 description 4
- 238000004113 cell culture Methods 0.000 description 4
- 239000003638 chemical reducing agent Substances 0.000 description 4
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 4
- 229960002376 chymotrypsin Drugs 0.000 description 4
- 239000013068 control sample Substances 0.000 description 4
- 238000013270 controlled release Methods 0.000 description 4
- 235000018417 cysteine Nutrition 0.000 description 4
- 230000002939 deleterious effect Effects 0.000 description 4
- 230000036425 denaturation Effects 0.000 description 4
- 238000004925 denaturation Methods 0.000 description 4
- 230000000368 destabilizing effect Effects 0.000 description 4
- 238000000113 differential scanning calorimetry Methods 0.000 description 4
- 230000029087 digestion Effects 0.000 description 4
- 239000002552 dosage form Substances 0.000 description 4
- 238000002296 dynamic light scattering Methods 0.000 description 4
- 230000009881 electrostatic interaction Effects 0.000 description 4
- 230000002255 enzymatic effect Effects 0.000 description 4
- 230000002068 genetic effect Effects 0.000 description 4
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 4
- 235000011187 glycerol Nutrition 0.000 description 4
- 230000001939 inductive effect Effects 0.000 description 4
- 230000036512 infertility Effects 0.000 description 4
- 230000010354 integration Effects 0.000 description 4
- 238000002955 isolation Methods 0.000 description 4
- 238000006317 isomerization reaction Methods 0.000 description 4
- 210000003292 kidney cell Anatomy 0.000 description 4
- 238000002372 labelling Methods 0.000 description 4
- 210000000265 leukocyte Anatomy 0.000 description 4
- 230000007774 longterm Effects 0.000 description 4
- 230000001404 mediated effect Effects 0.000 description 4
- 239000004292 methyl p-hydroxybenzoate Substances 0.000 description 4
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 4
- 229960002216 methylparaben Drugs 0.000 description 4
- 239000004005 microsphere Substances 0.000 description 4
- 238000010525 oxidative degradation reaction Methods 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 230000001575 pathological effect Effects 0.000 description 4
- 239000002504 physiological saline solution Substances 0.000 description 4
- 229920000747 poly(lactic acid) Polymers 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 230000004481 post-translational protein modification Effects 0.000 description 4
- 235000010232 propyl p-hydroxybenzoate Nutrition 0.000 description 4
- 239000004405 propyl p-hydroxybenzoate Substances 0.000 description 4
- 229960003415 propylparaben Drugs 0.000 description 4
- 230000008707 rearrangement Effects 0.000 description 4
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 4
- 210000002966 serum Anatomy 0.000 description 4
- 238000012421 spiking Methods 0.000 description 4
- 230000020382 suppression by virus of host antigen processing and presentation of peptide antigen via MHC class I Effects 0.000 description 4
- 208000024891 symptom Diseases 0.000 description 4
- 238000010257 thawing Methods 0.000 description 4
- 238000002560 therapeutic procedure Methods 0.000 description 4
- 238000013519 translation Methods 0.000 description 4
- 229940074409 trehalose dihydrate Drugs 0.000 description 4
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 4
- 239000012588 trypsin Substances 0.000 description 4
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical class OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 3
- KWTQSFXGGICVPE-UHFFFAOYSA-N 2-amino-5-(diaminomethylideneamino)pentanoic acid;hydron;chloride Chemical compound Cl.OC(=O)C(N)CCCN=C(N)N KWTQSFXGGICVPE-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 102000009027 Albumins Human genes 0.000 description 3
- 108010088751 Albumins Proteins 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 241000282693 Cercopithecidae Species 0.000 description 3
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 3
- 239000001116 FEMA 4028 Substances 0.000 description 3
- 241000233866 Fungi Species 0.000 description 3
- 241000238631 Hexapoda Species 0.000 description 3
- 108010093488 His-His-His-His-His-His Proteins 0.000 description 3
- 108091006905 Human Serum Albumin Proteins 0.000 description 3
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 3
- 125000000393 L-methionino group Chemical group [H]OC(=O)[C@@]([H])(N([H])[*])C([H])([H])C(SC([H])([H])[H])([H])[H] 0.000 description 3
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 3
- 102000043131 MHC class II family Human genes 0.000 description 3
- 108091054438 MHC class II family Proteins 0.000 description 3
- 230000004989 O-glycosylation Effects 0.000 description 3
- 108010029485 Protein Isoforms Proteins 0.000 description 3
- 102000001708 Protein Isoforms Human genes 0.000 description 3
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 3
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 108700019146 Transgenes Proteins 0.000 description 3
- 239000007983 Tris buffer Substances 0.000 description 3
- 238000001042 affinity chromatography Methods 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000003242 anti bacterial agent Substances 0.000 description 3
- 230000010056 antibody-dependent cellular cytotoxicity Effects 0.000 description 3
- 125000000637 arginyl group Chemical group N[C@@H](CCCNC(N)=N)C(=O)* 0.000 description 3
- 125000000613 asparagine group Chemical group N[C@@H](CC(N)=O)C(=O)* 0.000 description 3
- 235000003704 aspartic acid Nutrition 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 3
- 229920001222 biopolymer Polymers 0.000 description 3
- 229920005549 butyl rubber Polymers 0.000 description 3
- 235000014633 carbohydrates Nutrition 0.000 description 3
- 230000006037 cell lysis Effects 0.000 description 3
- 210000000170 cell membrane Anatomy 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 238000002144 chemical decomposition reaction Methods 0.000 description 3
- 235000012000 cholesterol Nutrition 0.000 description 3
- 229940107161 cholesterol Drugs 0.000 description 3
- 210000000349 chromosome Anatomy 0.000 description 3
- 230000001684 chronic effect Effects 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000003776 cleavage reaction Methods 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 3
- 230000001086 cytosolic effect Effects 0.000 description 3
- 230000022811 deglycosylation Effects 0.000 description 3
- 238000012217 deletion Methods 0.000 description 3
- 230000037430 deletion Effects 0.000 description 3
- 238000001212 derivatisation Methods 0.000 description 3
- 239000008121 dextrose Substances 0.000 description 3
- 238000010494 dissociation reaction Methods 0.000 description 3
- 230000005593 dissociations Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000003995 emulsifying agent Substances 0.000 description 3
- 239000003623 enhancer Substances 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 230000005284 excitation Effects 0.000 description 3
- 230000001747 exhibiting effect Effects 0.000 description 3
- 239000013604 expression vector Substances 0.000 description 3
- 238000011049 filling Methods 0.000 description 3
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 3
- 239000012537 formulation buffer Substances 0.000 description 3
- 108020001507 fusion proteins Proteins 0.000 description 3
- 102000037865 fusion proteins Human genes 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 238000010353 genetic engineering Methods 0.000 description 3
- 239000008103 glucose Substances 0.000 description 3
- 229960002989 glutamic acid Drugs 0.000 description 3
- 125000000291 glutamic acid group Chemical group N[C@@H](CCC(O)=O)C(=O)* 0.000 description 3
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 3
- 235000004554 glutamine Nutrition 0.000 description 3
- 210000005260 human cell Anatomy 0.000 description 3
- 230000002209 hydrophobic effect Effects 0.000 description 3
- 210000000987 immune system Anatomy 0.000 description 3
- 230000002163 immunogen Effects 0.000 description 3
- 230000005847 immunogenicity Effects 0.000 description 3
- 230000016784 immunoglobulin production Effects 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 238000007918 intramuscular administration Methods 0.000 description 3
- 230000003211 malignant effect Effects 0.000 description 3
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 description 3
- 108020004999 messenger RNA Proteins 0.000 description 3
- 208000037819 metastatic cancer Diseases 0.000 description 3
- 208000011575 metastatic malignant neoplasm Diseases 0.000 description 3
- 230000000813 microbial effect Effects 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 231100000252 nontoxic Toxicity 0.000 description 3
- 230000003000 nontoxic effect Effects 0.000 description 3
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 3
- 235000021317 phosphate Nutrition 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 230000002035 prolonged effect Effects 0.000 description 3
- 230000001737 promoting effect Effects 0.000 description 3
- 238000010188 recombinant method Methods 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 3
- 230000007017 scission Effects 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 150000003384 small molecules Chemical class 0.000 description 3
- 108020001568 subdomains Proteins 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical compound OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- 230000000153 supplemental effect Effects 0.000 description 3
- 231100000331 toxic Toxicity 0.000 description 3
- 230000002588 toxic effect Effects 0.000 description 3
- 230000001988 toxicity Effects 0.000 description 3
- 231100000419 toxicity Toxicity 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 230000004614 tumor growth Effects 0.000 description 3
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 3
- 125000001493 tyrosinyl group Chemical group [H]OC1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 3
- 238000003989 weak cation exchange chromatography Methods 0.000 description 3
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 2
- XMQUEQJCYRFIQS-YFKPBYRVSA-N (2s)-2-amino-5-ethoxy-5-oxopentanoic acid Chemical compound CCOC(=O)CC[C@H](N)C(O)=O XMQUEQJCYRFIQS-YFKPBYRVSA-N 0.000 description 2
- WHBMMWSBFZVSSR-GSVOUGTGSA-N (R)-3-hydroxybutyric acid Chemical compound C[C@@H](O)CC(O)=O WHBMMWSBFZVSSR-GSVOUGTGSA-N 0.000 description 2
- VYEWZWBILJHHCU-OMQUDAQFSA-N (e)-n-[(2s,3r,4r,5r,6r)-2-[(2r,3r,4s,5s,6s)-3-acetamido-5-amino-4-hydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-6-[2-[(2r,3s,4r,5r)-5-(2,4-dioxopyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]-2-hydroxyethyl]-4,5-dihydroxyoxan-3-yl]-5-methylhex-2-enamide Chemical compound N1([C@@H]2O[C@@H]([C@H]([C@H]2O)O)C(O)C[C@@H]2[C@H](O)[C@H](O)[C@H]([C@@H](O2)O[C@@H]2[C@@H]([C@@H](O)[C@H](N)[C@@H](CO)O2)NC(C)=O)NC(=O)/C=C/CC(C)C)C=CC(=O)NC1=O VYEWZWBILJHHCU-OMQUDAQFSA-N 0.000 description 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 2
- QCDWFXQBSFUVSP-UHFFFAOYSA-N 2-phenoxyethanol Chemical compound OCCOC1=CC=CC=C1 QCDWFXQBSFUVSP-UHFFFAOYSA-N 0.000 description 2
- LIZDKDDCWIEQIN-UHFFFAOYSA-N 6-[2-[5-(3-ethyl-1,1-dimethyl-6,8-disulfobenzo[e]indol-2-ylidene)penta-1,3-dienyl]-1,1-dimethyl-6,8-disulfobenzo[e]indol-3-ium-3-yl]hexanoate Chemical compound C1=CC2=C(S(O)(=O)=O)C=C(S(O)(=O)=O)C=C2C(C2(C)C)=C1N(CC)\C2=C\C=C\C=C\C1=[N+](CCCCCC([O-])=O)C2=CC=C(C(=CC(=C3)S(O)(=O)=O)S(O)(=O)=O)C3=C2C1(C)C LIZDKDDCWIEQIN-UHFFFAOYSA-N 0.000 description 2
- 206010069754 Acquired gene mutation Diseases 0.000 description 2
- 229920000936 Agarose Polymers 0.000 description 2
- IKYJCHYORFJFRR-UHFFFAOYSA-N Alexa Fluor 350 Chemical compound O=C1OC=2C=C(N)C(S(O)(=O)=O)=CC=2C(C)=C1CC(=O)ON1C(=O)CCC1=O IKYJCHYORFJFRR-UHFFFAOYSA-N 0.000 description 2
- WEJVZSAYICGDCK-UHFFFAOYSA-N Alexa Fluor 430 Chemical compound CC[NH+](CC)CC.CC1(C)C=C(CS([O-])(=O)=O)C2=CC=3C(C(F)(F)F)=CC(=O)OC=3C=C2N1CCCCCC(=O)ON1C(=O)CCC1=O WEJVZSAYICGDCK-UHFFFAOYSA-N 0.000 description 2
- ZAINTDRBUHCDPZ-UHFFFAOYSA-M Alexa Fluor 546 Chemical compound [H+].[Na+].CC1CC(C)(C)NC(C(=C2OC3=C(C4=NC(C)(C)CC(C)C4=CC3=3)S([O-])(=O)=O)S([O-])(=O)=O)=C1C=C2C=3C(C(=C(Cl)C=1Cl)C(O)=O)=C(Cl)C=1SCC(=O)NCCCCCC(=O)ON1C(=O)CCC1=O ZAINTDRBUHCDPZ-UHFFFAOYSA-M 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 2
- 208000023275 Autoimmune disease Diseases 0.000 description 2
- 108090001008 Avidin Proteins 0.000 description 2
- 239000005711 Benzoic acid Substances 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 2
- 101100454808 Caenorhabditis elegans lgg-2 gene Proteins 0.000 description 2
- 101100217502 Caenorhabditis elegans lgg-3 gene Proteins 0.000 description 2
- GHXZTYHSJHQHIJ-UHFFFAOYSA-N Chlorhexidine Chemical compound C=1C=C(Cl)C=CC=1NC(N)=NC(N)=NCCCCCCN=C(N)N=C(N)NC1=CC=C(Cl)C=C1 GHXZTYHSJHQHIJ-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- 102100030886 Complement receptor type 1 Human genes 0.000 description 2
- 108090000695 Cytokines Proteins 0.000 description 2
- 102000004127 Cytokines Human genes 0.000 description 2
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 2
- 108010053770 Deoxyribonucleases Proteins 0.000 description 2
- 102000016911 Deoxyribonucleases Human genes 0.000 description 2
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 2
- QSJXEFYPDANLFS-UHFFFAOYSA-N Diacetyl Chemical compound CC(=O)C(C)=O QSJXEFYPDANLFS-UHFFFAOYSA-N 0.000 description 2
- 241000255925 Diptera Species 0.000 description 2
- 102000018651 Epithelial Cell Adhesion Molecule Human genes 0.000 description 2
- 108010066687 Epithelial Cell Adhesion Molecule Proteins 0.000 description 2
- 241000588724 Escherichia coli Species 0.000 description 2
- 102000001690 Factor VIII Human genes 0.000 description 2
- 108010054218 Factor VIII Proteins 0.000 description 2
- 108010087819 Fc receptors Proteins 0.000 description 2
- 102000009109 Fc receptors Human genes 0.000 description 2
- 229940123457 Free radical scavenger Drugs 0.000 description 2
- 206010056740 Genital discharge Diseases 0.000 description 2
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 2
- 108010024636 Glutathione Proteins 0.000 description 2
- JZNWSCPGTDBMEW-UHFFFAOYSA-N Glycerophosphorylethanolamin Natural products NCCOP(O)(=O)OCC(O)CO JZNWSCPGTDBMEW-UHFFFAOYSA-N 0.000 description 2
- 102000005744 Glycoside Hydrolases Human genes 0.000 description 2
- 108010031186 Glycoside Hydrolases Proteins 0.000 description 2
- 101000690301 Homo sapiens Aldo-keto reductase family 1 member C4 Proteins 0.000 description 2
- 101000727061 Homo sapiens Complement receptor type 1 Proteins 0.000 description 2
- 101001116548 Homo sapiens Protein CBFA2T1 Proteins 0.000 description 2
- 102000008100 Human Serum Albumin Human genes 0.000 description 2
- 206010020751 Hypersensitivity Diseases 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 102000009786 Immunoglobulin Constant Regions Human genes 0.000 description 2
- 108010009817 Immunoglobulin Constant Regions Proteins 0.000 description 2
- 238000012695 Interfacial polymerization Methods 0.000 description 2
- 244000285963 Kluyveromyces fragilis Species 0.000 description 2
- 241001138401 Kluyveromyces lactis Species 0.000 description 2
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 2
- 125000000510 L-tryptophano group Chemical group [H]C1=C([H])C([H])=C2N([H])C([H])=C(C([H])([H])[C@@]([H])(C(O[H])=O)N([H])[*])C2=C1[H] 0.000 description 2
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 2
- 108060001084 Luciferase Proteins 0.000 description 2
- 239000005089 Luciferase Substances 0.000 description 2
- 206010025323 Lymphomas Diseases 0.000 description 2
- 239000004907 Macro-emulsion Substances 0.000 description 2
- 206010027476 Metastases Diseases 0.000 description 2
- 241001529936 Murinae Species 0.000 description 2
- OVRNDRQMDRJTHS-CBQIKETKSA-N N-Acetyl-D-Galactosamine Chemical compound CC(=O)N[C@H]1[C@@H](O)O[C@H](CO)[C@H](O)[C@@H]1O OVRNDRQMDRJTHS-CBQIKETKSA-N 0.000 description 2
- MBLBDJOUHNCFQT-UHFFFAOYSA-N N-acetyl-D-galactosamine Natural products CC(=O)NC(C=O)C(O)C(O)C(O)CO MBLBDJOUHNCFQT-UHFFFAOYSA-N 0.000 description 2
- 230000004988 N-glycosylation Effects 0.000 description 2
- 229940123973 Oxygen scavenger Drugs 0.000 description 2
- 229920000954 Polyglycolide Polymers 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- 239000004365 Protease Substances 0.000 description 2
- RADKZDMFGJYCBB-UHFFFAOYSA-N Pyridoxal Chemical compound CC1=NC=C(CO)C(C=O)=C1O RADKZDMFGJYCBB-UHFFFAOYSA-N 0.000 description 2
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 2
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 2
- 241000242739 Renilla Species 0.000 description 2
- 108010071390 Serum Albumin Proteins 0.000 description 2
- 102000007562 Serum Albumin Human genes 0.000 description 2
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 2
- 241000256251 Spodoptera frugiperda Species 0.000 description 2
- 230000006044 T cell activation Effects 0.000 description 2
- NYTOUQBROMCLBJ-UHFFFAOYSA-N Tetranitromethane Chemical compound [O-][N+](=O)C([N+]([O-])=O)([N+]([O-])=O)[N+]([O-])=O NYTOUQBROMCLBJ-UHFFFAOYSA-N 0.000 description 2
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 2
- YJQCOFNZVFGCAF-UHFFFAOYSA-N Tunicamycin II Natural products O1C(CC(O)C2C(C(O)C(O2)N2C(NC(=O)C=C2)=O)O)C(O)C(O)C(NC(=O)C=CCCCCCCCCC(C)C)C1OC1OC(CO)C(O)C(O)C1NC(C)=O YJQCOFNZVFGCAF-UHFFFAOYSA-N 0.000 description 2
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 2
- TVXBFESIOXBWNM-UHFFFAOYSA-N Xylitol Natural products OCCC(O)C(O)C(O)CCO TVXBFESIOXBWNM-UHFFFAOYSA-N 0.000 description 2
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 description 2
- 230000021736 acetylation Effects 0.000 description 2
- 238000006640 acetylation reaction Methods 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- 208000026935 allergic disease Diseases 0.000 description 2
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 230000009435 amidation Effects 0.000 description 2
- 238000007112 amidation reaction Methods 0.000 description 2
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 2
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 2
- 235000011130 ammonium sulphate Nutrition 0.000 description 2
- 210000004102 animal cell Anatomy 0.000 description 2
- 238000010171 animal model Methods 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 230000000844 anti-bacterial effect Effects 0.000 description 2
- 230000001093 anti-cancer Effects 0.000 description 2
- 229940121375 antifungal agent Drugs 0.000 description 2
- 239000003429 antifungal agent Substances 0.000 description 2
- 239000002246 antineoplastic agent Substances 0.000 description 2
- 239000013011 aqueous formulation Substances 0.000 description 2
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 2
- 210000001367 artery Anatomy 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 235000009582 asparagine Nutrition 0.000 description 2
- 229960001230 asparagine Drugs 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 229960000686 benzalkonium chloride Drugs 0.000 description 2
- 235000010233 benzoic acid Nutrition 0.000 description 2
- 229960004365 benzoic acid Drugs 0.000 description 2
- 235000019445 benzyl alcohol Nutrition 0.000 description 2
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical compound [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 description 2
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 2
- 102000005936 beta-Galactosidase Human genes 0.000 description 2
- 108010005774 beta-Galactosidase Proteins 0.000 description 2
- 230000001588 bifunctional effect Effects 0.000 description 2
- 230000008827 biological function Effects 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 238000004820 blood count Methods 0.000 description 2
- 210000004204 blood vessel Anatomy 0.000 description 2
- 238000009583 bone marrow aspiration Methods 0.000 description 2
- 239000007975 buffered saline Substances 0.000 description 2
- 239000006172 buffering agent Substances 0.000 description 2
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 2
- RYYVLZVUVIJVGH-UHFFFAOYSA-N caffeine Chemical compound CN1C(=O)N(C)C(=O)C2=C1N=CN2C RYYVLZVUVIJVGH-UHFFFAOYSA-N 0.000 description 2
- 150000001718 carbodiimides Chemical class 0.000 description 2
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000003196 chaotropic effect Effects 0.000 description 2
- 238000001311 chemical methods and process Methods 0.000 description 2
- 229960003260 chlorhexidine Drugs 0.000 description 2
- 229960004926 chlorobutanol Drugs 0.000 description 2
- 229940069078 citric acid / sodium citrate Drugs 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 238000005354 coacervation Methods 0.000 description 2
- 238000005345 coagulation Methods 0.000 description 2
- 230000015271 coagulation Effects 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000004040 coloring Methods 0.000 description 2
- 230000004540 complement-dependent cytotoxicity Effects 0.000 description 2
- 238000005094 computer simulation Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000003246 corticosteroid Substances 0.000 description 2
- 229960001334 corticosteroids Drugs 0.000 description 2
- 238000011262 co‐therapy Methods 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 239000003431 cross linking reagent Substances 0.000 description 2
- 239000002577 cryoprotective agent Substances 0.000 description 2
- 238000012258 culturing Methods 0.000 description 2
- 230000001461 cytolytic effect Effects 0.000 description 2
- 231100000433 cytotoxic Toxicity 0.000 description 2
- 229940127089 cytotoxic agent Drugs 0.000 description 2
- 230000003013 cytotoxicity Effects 0.000 description 2
- 231100000135 cytotoxicity Toxicity 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 239000007857 degradation product Substances 0.000 description 2
- 239000003405 delayed action preparation Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000003599 detergent Substances 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 238000006471 dimerization reaction Methods 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 108010067396 dornase alfa Proteins 0.000 description 2
- 238000011143 downstream manufacturing Methods 0.000 description 2
- 239000003937 drug carrier Substances 0.000 description 2
- 229940088679 drug related substance Drugs 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 230000006353 environmental stress Effects 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 2
- 239000005038 ethylene vinyl acetate Substances 0.000 description 2
- HXQVQGWHFRNKMS-UHFFFAOYSA-M ethylmercurithiosalicylic acid Chemical compound CC[Hg]SC1=CC=CC=C1C(O)=O HXQVQGWHFRNKMS-UHFFFAOYSA-M 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 238000013401 experimental design Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 229960000301 factor viii Drugs 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000010579 first pass effect Methods 0.000 description 2
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 2
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 229930182830 galactose Natural products 0.000 description 2
- 230000002496 gastric effect Effects 0.000 description 2
- 210000005095 gastrointestinal system Anatomy 0.000 description 2
- 125000000404 glutamine group Chemical group N[C@@H](CCC(N)=O)C(=O)* 0.000 description 2
- 229960003180 glutathione Drugs 0.000 description 2
- 239000005090 green fluorescent protein Substances 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 230000008642 heat stress Effects 0.000 description 2
- 230000002440 hepatic effect Effects 0.000 description 2
- 125000000487 histidyl group Chemical group [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C([H])=N1 0.000 description 2
- 102000054751 human RUNX1T1 Human genes 0.000 description 2
- 229920002674 hyaluronan Polymers 0.000 description 2
- 229960003160 hyaluronic acid Drugs 0.000 description 2
- 239000000017 hydrogel Substances 0.000 description 2
- 229960002163 hydrogen peroxide Drugs 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 229920003063 hydroxymethyl cellulose Polymers 0.000 description 2
- 229940031574 hydroxymethyl cellulose Drugs 0.000 description 2
- 150000002463 imidates Chemical class 0.000 description 2
- 238000001597 immobilized metal affinity chromatography Methods 0.000 description 2
- 210000002865 immune cell Anatomy 0.000 description 2
- 230000036046 immunoreaction Effects 0.000 description 2
- 238000009169 immunotherapy Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 230000028709 inflammatory response Effects 0.000 description 2
- 230000004941 influx Effects 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 238000001361 intraarterial administration Methods 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 238000000185 intracerebroventricular administration Methods 0.000 description 2
- 238000007912 intraperitoneal administration Methods 0.000 description 2
- 238000007919 intrasynovial administration Methods 0.000 description 2
- 238000007913 intrathecal administration Methods 0.000 description 2
- JDNTWHVOXJZDSN-UHFFFAOYSA-N iodoacetic acid Chemical compound OC(=O)CI JDNTWHVOXJZDSN-UHFFFAOYSA-N 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- 239000000644 isotonic solution Substances 0.000 description 2
- 210000003734 kidney Anatomy 0.000 description 2
- SXQCTESRRZBPHJ-UHFFFAOYSA-M lissamine rhodamine Chemical compound [Na+].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=C(S([O-])(=O)=O)C=C1S([O-])(=O)=O SXQCTESRRZBPHJ-UHFFFAOYSA-M 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 210000005229 liver cell Anatomy 0.000 description 2
- 210000004698 lymphocyte Anatomy 0.000 description 2
- 239000008176 lyophilized powder Substances 0.000 description 2
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 2
- 229920002521 macromolecule Polymers 0.000 description 2
- 229910001425 magnesium ion Inorganic materials 0.000 description 2
- 210000004962 mammalian cell Anatomy 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 238000001819 mass spectrum Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 229940100630 metacresol Drugs 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 2
- 239000004530 micro-emulsion Substances 0.000 description 2
- 239000003068 molecular probe Substances 0.000 description 2
- 239000002088 nanocapsule Substances 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 210000001322 periplasm Anatomy 0.000 description 2
- 150000002978 peroxides Chemical class 0.000 description 2
- 230000002688 persistence Effects 0.000 description 2
- 229960005323 phenoxyethanol Drugs 0.000 description 2
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 2
- OJUGVDODNPJEEC-UHFFFAOYSA-N phenylglyoxal Chemical compound O=CC(=O)C1=CC=CC=C1 OJUGVDODNPJEEC-UHFFFAOYSA-N 0.000 description 2
- WTJKGGKOPKCXLL-RRHRGVEJSA-N phosphatidylcholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC WTJKGGKOPKCXLL-RRHRGVEJSA-N 0.000 description 2
- 150000008104 phosphatidylethanolamines Chemical class 0.000 description 2
- 150000003904 phospholipids Chemical class 0.000 description 2
- 230000026731 phosphorylation Effects 0.000 description 2
- 238000006366 phosphorylation reaction Methods 0.000 description 2
- 229920001983 poloxamer Polymers 0.000 description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 239000004633 polyglycolic acid Substances 0.000 description 2
- 229920002338 polyhydroxyethylmethacrylate Polymers 0.000 description 2
- 239000004626 polylactic acid Substances 0.000 description 2
- 229920001451 polypropylene glycol Polymers 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 230000000750 progressive effect Effects 0.000 description 2
- 230000035755 proliferation Effects 0.000 description 2
- 230000000069 prophylactic effect Effects 0.000 description 2
- 238000001742 protein purification Methods 0.000 description 2
- 239000012460 protein solution Substances 0.000 description 2
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 2
- NGVDGCNFYWLIFO-UHFFFAOYSA-N pyridoxal 5'-phosphate Chemical compound CC1=NC=C(COP(O)(O)=O)C(C=O)=C1O NGVDGCNFYWLIFO-UHFFFAOYSA-N 0.000 description 2
- 238000011002 quantification Methods 0.000 description 2
- 239000002516 radical scavenger Substances 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000005057 refrigeration Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000004366 reverse phase liquid chromatography Methods 0.000 description 2
- 229960004889 salicylic acid Drugs 0.000 description 2
- 238000005185 salting out Methods 0.000 description 2
- 230000003248 secreting effect Effects 0.000 description 2
- 230000028327 secretion Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 239000001632 sodium acetate Substances 0.000 description 2
- 235000017281 sodium acetate Nutrition 0.000 description 2
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 2
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 2
- 230000037439 somatic mutation Effects 0.000 description 2
- 235000010199 sorbic acid Nutrition 0.000 description 2
- 239000004334 sorbic acid Substances 0.000 description 2
- 229940075582 sorbic acid Drugs 0.000 description 2
- 238000004611 spectroscopical analysis Methods 0.000 description 2
- 238000012430 stability testing Methods 0.000 description 2
- 239000012086 standard solution Substances 0.000 description 2
- 238000011146 sterile filtration Methods 0.000 description 2
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 2
- 230000002459 sustained effect Effects 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- MPLHNVLQVRSVEE-UHFFFAOYSA-N texas red Chemical compound [O-]S(=O)(=O)C1=CC(S(Cl)(=O)=O)=CC=C1C(C1=CC=2CCCN3CCCC(C=23)=C1O1)=C2C1=C(CCC1)C3=[N+]1CCCC3=C2 MPLHNVLQVRSVEE-UHFFFAOYSA-N 0.000 description 2
- RTKIYNMVFMVABJ-UHFFFAOYSA-L thimerosal Chemical compound [Na+].CC[Hg]SC1=CC=CC=C1C([O-])=O RTKIYNMVFMVABJ-UHFFFAOYSA-L 0.000 description 2
- 229940033663 thimerosal Drugs 0.000 description 2
- 125000003396 thiol group Chemical group [H]S* 0.000 description 2
- 125000000341 threoninyl group Chemical group [H]OC([H])(C([H])([H])[H])C([H])(N([H])[H])C(*)=O 0.000 description 2
- 230000000699 topical effect Effects 0.000 description 2
- 238000013518 transcription Methods 0.000 description 2
- 230000035897 transcription Effects 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- 239000013638 trimer Substances 0.000 description 2
- MEYZYGMYMLNUHJ-UHFFFAOYSA-N tunicamycin Natural products CC(C)CCCCCCCCCC=CC(=O)NC1C(O)C(O)C(CC(O)C2OC(C(O)C2O)N3C=CC(=O)NC3=O)OC1OC4OC(CO)C(O)C(O)C4NC(=O)C MEYZYGMYMLNUHJ-UHFFFAOYSA-N 0.000 description 2
- 239000004474 valine Substances 0.000 description 2
- 210000003462 vein Anatomy 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 239000008215 water for injection Substances 0.000 description 2
- 239000000080 wetting agent Substances 0.000 description 2
- 239000000811 xylitol Substances 0.000 description 2
- 235000010447 xylitol Nutrition 0.000 description 2
- HEBKCHPVOIAQTA-SCDXWVJYSA-N xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 description 2
- 229960002675 xylitol Drugs 0.000 description 2
- FXYPGCIGRDZWNR-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 3-[[3-(2,5-dioxopyrrolidin-1-yl)oxy-3-oxopropyl]disulfanyl]propanoate Chemical compound O=C1CCC(=O)N1OC(=O)CCSSCCC(=O)ON1C(=O)CCC1=O FXYPGCIGRDZWNR-UHFFFAOYSA-N 0.000 description 1
- IRZNDKKKFMEHTG-XNIJJKJLSA-N (2r,3s,4r,5r)-2-(hydroxymethyl)-5-[6-[(5-hydroxypyridin-2-yl)methylamino]purin-9-yl]oxolane-3,4-diol Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(NCC=3N=CC(O)=CC=3)=C2N=C1 IRZNDKKKFMEHTG-XNIJJKJLSA-N 0.000 description 1
- KYBXNPIASYUWLN-WUCPZUCCSA-N (2s)-5-hydroxypyrrolidine-2-carboxylic acid Chemical compound OC1CC[C@@H](C(O)=O)N1 KYBXNPIASYUWLN-WUCPZUCCSA-N 0.000 description 1
- AGBQKNBQESQNJD-SSDOTTSWSA-N (R)-lipoic acid Chemical compound OC(=O)CCCC[C@@H]1CCSS1 AGBQKNBQESQNJD-SSDOTTSWSA-N 0.000 description 1
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- 125000003287 1H-imidazol-4-ylmethyl group Chemical group [H]N1C([H])=NC(C([H])([H])[*])=C1[H] 0.000 description 1
- VGIRNWJSIRVFRT-UHFFFAOYSA-N 2',7'-difluorofluorescein Chemical compound OC(=O)C1=CC=CC=C1C1=C2C=C(F)C(=O)C=C2OC2=CC(O)=C(F)C=C21 VGIRNWJSIRVFRT-UHFFFAOYSA-N 0.000 description 1
- NHJVRSWLHSJWIN-UHFFFAOYSA-N 2,4,6-trinitrobenzenesulfonic acid Chemical compound OS(=O)(=O)C1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O NHJVRSWLHSJWIN-UHFFFAOYSA-N 0.000 description 1
- 150000003923 2,5-pyrrolediones Chemical class 0.000 description 1
- BHANCCMWYDZQOR-UHFFFAOYSA-N 2-(methyldisulfanyl)pyridine Chemical compound CSSC1=CC=CC=N1 BHANCCMWYDZQOR-UHFFFAOYSA-N 0.000 description 1
- 125000000979 2-amino-2-oxoethyl group Chemical group [H]C([*])([H])C(=O)N([H])[H] 0.000 description 1
- HTCSFFGLRQDZDE-UHFFFAOYSA-N 2-azaniumyl-2-phenylpropanoate Chemical compound OC(=O)C(N)(C)C1=CC=CC=C1 HTCSFFGLRQDZDE-UHFFFAOYSA-N 0.000 description 1
- FKJSFKCZZIXQIP-UHFFFAOYSA-N 2-bromo-1-(4-bromophenyl)ethanone Chemical compound BrCC(=O)C1=CC=C(Br)C=C1 FKJSFKCZZIXQIP-UHFFFAOYSA-N 0.000 description 1
- JQPFYXFVUKHERX-UHFFFAOYSA-N 2-hydroxy-2-cyclohexen-1-one Natural products OC1=CCCCC1=O JQPFYXFVUKHERX-UHFFFAOYSA-N 0.000 description 1
- 238000005084 2D-nuclear magnetic resonance Methods 0.000 description 1
- VJINKBZUJYGZGP-UHFFFAOYSA-N 3-(1-aminopropylideneamino)propyl-trimethylazanium Chemical compound CCC(N)=NCCC[N+](C)(C)C VJINKBZUJYGZGP-UHFFFAOYSA-N 0.000 description 1
- BIGBDMFRWJRLGJ-UHFFFAOYSA-N 3-benzyl-1,5-didiazoniopenta-1,4-diene-2,4-diolate Chemical compound [N-]=[N+]=CC(=O)C(C(=O)C=[N+]=[N-])CC1=CC=CC=C1 BIGBDMFRWJRLGJ-UHFFFAOYSA-N 0.000 description 1
- ONZQYZKCUHFORE-UHFFFAOYSA-N 3-bromo-1,1,1-trifluoropropan-2-one Chemical compound FC(F)(F)C(=O)CBr ONZQYZKCUHFORE-UHFFFAOYSA-N 0.000 description 1
- QHSXWDVVFHXHHB-UHFFFAOYSA-N 3-nitro-2-[(3-nitropyridin-2-yl)disulfanyl]pyridine Chemical compound [O-][N+](=O)C1=CC=CN=C1SSC1=NC=CC=C1[N+]([O-])=O QHSXWDVVFHXHHB-UHFFFAOYSA-N 0.000 description 1
- XMIIGOLPHOKFCH-UHFFFAOYSA-N 3-phenylpropionic acid Chemical compound OC(=O)CCC1=CC=CC=C1 XMIIGOLPHOKFCH-UHFFFAOYSA-N 0.000 description 1
- QFVHZQCOUORWEI-UHFFFAOYSA-N 4-[(4-anilino-5-sulfonaphthalen-1-yl)diazenyl]-5-hydroxynaphthalene-2,7-disulfonic acid Chemical compound C=12C(O)=CC(S(O)(=O)=O)=CC2=CC(S(O)(=O)=O)=CC=1N=NC(C1=CC=CC(=C11)S(O)(=O)=O)=CC=C1NC1=CC=CC=C1 QFVHZQCOUORWEI-UHFFFAOYSA-N 0.000 description 1
- NLPWSMKACWGINL-UHFFFAOYSA-N 4-azido-2-hydroxybenzoic acid Chemical compound OC(=O)C1=CC=C(N=[N+]=[N-])C=C1O NLPWSMKACWGINL-UHFFFAOYSA-N 0.000 description 1
- SJQRQOKXQKVJGJ-UHFFFAOYSA-N 5-(2-aminoethylamino)naphthalene-1-sulfonic acid Chemical compound C1=CC=C2C(NCCN)=CC=CC2=C1S(O)(=O)=O SJQRQOKXQKVJGJ-UHFFFAOYSA-N 0.000 description 1
- 229940117976 5-hydroxylysine Drugs 0.000 description 1
- ZMERMCRYYFRELX-UHFFFAOYSA-N 5-{[2-(iodoacetamido)ethyl]amino}naphthalene-1-sulfonic acid Chemical compound C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1NCCNC(=O)CI ZMERMCRYYFRELX-UHFFFAOYSA-N 0.000 description 1
- 241000256118 Aedes aegypti Species 0.000 description 1
- 241000256173 Aedes albopictus Species 0.000 description 1
- 241000243290 Aequorea Species 0.000 description 1
- 108010011170 Ala-Trp-Arg-His-Pro-Gln-Phe-Gly-Gly Proteins 0.000 description 1
- 239000012103 Alexa Fluor 488 Substances 0.000 description 1
- 239000012109 Alexa Fluor 568 Substances 0.000 description 1
- 239000012110 Alexa Fluor 594 Substances 0.000 description 1
- 239000012112 Alexa Fluor 633 Substances 0.000 description 1
- 239000012115 Alexa Fluor 660 Substances 0.000 description 1
- 239000012116 Alexa Fluor 680 Substances 0.000 description 1
- 239000012099 Alexa Fluor family Substances 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 241000219194 Arabidopsis Species 0.000 description 1
- 241000228212 Aspergillus Species 0.000 description 1
- 241000228245 Aspergillus niger Species 0.000 description 1
- 241001203868 Autographa californica Species 0.000 description 1
- 230000003844 B-cell-activation Effects 0.000 description 1
- 102000004506 Blood Proteins Human genes 0.000 description 1
- 108010017384 Blood Proteins Proteins 0.000 description 1
- 241000255789 Bombyx mori Species 0.000 description 1
- 241000409811 Bombyx mori nucleopolyhedrovirus Species 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 102100032367 C-C motif chemokine 5 Human genes 0.000 description 1
- 125000001433 C-terminal amino-acid group Chemical group 0.000 description 1
- 101150093947 CD3E gene Proteins 0.000 description 1
- 241000288943 Callitrichinae Species 0.000 description 1
- 241000222120 Candida <Saccharomycetales> Species 0.000 description 1
- 241000282465 Canis Species 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 241000700198 Cavia Species 0.000 description 1
- 241000282513 Cebidae Species 0.000 description 1
- 102000000844 Cell Surface Receptors Human genes 0.000 description 1
- 108010001857 Cell Surface Receptors Proteins 0.000 description 1
- 231100000023 Cell-mediated cytotoxicity Toxicity 0.000 description 1
- 206010057250 Cell-mediated cytotoxicity Diseases 0.000 description 1
- 229920002101 Chitin Polymers 0.000 description 1
- 241000282552 Chlorocebus aethiops Species 0.000 description 1
- 241000251730 Chondrichthyes Species 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 108091035707 Consensus sequence Proteins 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- 241000255601 Drosophila melanogaster Species 0.000 description 1
- 206010059866 Drug resistance Diseases 0.000 description 1
- 238000004435 EPR spectroscopy Methods 0.000 description 1
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 108010008177 Fd immunoglobulins Proteins 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 241000724791 Filamentous phage Species 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 244000299507 Gossypium hirsutum Species 0.000 description 1
- 108060005986 Granzyme Proteins 0.000 description 1
- 102000001398 Granzyme Human genes 0.000 description 1
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 1
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 1
- HVLSXIKZNLPZJJ-TXZCQADKSA-N HA peptide Chemical compound C([C@@H](C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](C)C(O)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CC=C(O)C=C1 HVLSXIKZNLPZJJ-TXZCQADKSA-N 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- SQUHHTBVTRBESD-UHFFFAOYSA-N Hexa-Ac-myo-Inositol Natural products CC(=O)OC1C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C1OC(C)=O SQUHHTBVTRBESD-UHFFFAOYSA-N 0.000 description 1
- 238000011993 High Performance Size Exclusion Chromatography Methods 0.000 description 1
- 101000797762 Homo sapiens C-C motif chemokine 5 Proteins 0.000 description 1
- 101000840258 Homo sapiens Immunoglobulin J chain Proteins 0.000 description 1
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 1
- PMMYEEVYMWASQN-DMTCNVIQSA-N Hydroxyproline Chemical compound O[C@H]1CN[C@H](C(O)=O)C1 PMMYEEVYMWASQN-DMTCNVIQSA-N 0.000 description 1
- 241000282596 Hylobatidae Species 0.000 description 1
- 102100029571 Immunoglobulin J chain Human genes 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- LPHGQDQBBGAPDZ-UHFFFAOYSA-N Isocaffeine Natural products CN1C(=O)N(C)C(=O)C2=C1N(C)C=N2 LPHGQDQBBGAPDZ-UHFFFAOYSA-N 0.000 description 1
- 241000235649 Kluyveromyces Species 0.000 description 1
- 241000235058 Komagataella pastoris Species 0.000 description 1
- LKDRXBCSQODPBY-AMVSKUEXSA-N L-(-)-Sorbose Chemical compound OCC1(O)OC[C@H](O)[C@@H](O)[C@@H]1O LKDRXBCSQODPBY-AMVSKUEXSA-N 0.000 description 1
- 125000000998 L-alanino group Chemical group [H]N([*])[C@](C([H])([H])[H])([H])C(=O)O[H] 0.000 description 1
- 229930064664 L-arginine Natural products 0.000 description 1
- 235000014852 L-arginine Nutrition 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- 102000003855 L-lactate dehydrogenase Human genes 0.000 description 1
- 108700023483 L-lactate dehydrogenases Proteins 0.000 description 1
- LRQKBLKVPFOOQJ-YFKPBYRVSA-N L-norleucine Chemical compound CCCC[C@H]([NH3+])C([O-])=O LRQKBLKVPFOOQJ-YFKPBYRVSA-N 0.000 description 1
- 125000000174 L-prolyl group Chemical group [H]N1C([H])([H])C([H])([H])C([H])([H])[C@@]1([H])C(*)=O 0.000 description 1
- 241000481961 Lachancea thermotolerans Species 0.000 description 1
- 241000235651 Lachancea waltii Species 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 235000007688 Lycopersicon esculentum Nutrition 0.000 description 1
- 231100000070 MTS assay Toxicity 0.000 description 1
- 238000000719 MTS assay Methods 0.000 description 1
- 231100000002 MTT assay Toxicity 0.000 description 1
- 238000000134 MTT assay Methods 0.000 description 1
- 241000282567 Macaca fascicularis Species 0.000 description 1
- 101710175625 Maltose/maltodextrin-binding periplasmic protein Proteins 0.000 description 1
- 102000018697 Membrane Proteins Human genes 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical class ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 description 1
- OVRNDRQMDRJTHS-UHFFFAOYSA-N N-acelyl-D-glucosamine Natural products CC(=O)NC1C(O)OC(CO)C(O)C1O OVRNDRQMDRJTHS-UHFFFAOYSA-N 0.000 description 1
- OVRNDRQMDRJTHS-FMDGEEDCSA-N N-acetyl-beta-D-glucosamine Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O OVRNDRQMDRJTHS-FMDGEEDCSA-N 0.000 description 1
- MBLBDJOUHNCFQT-LXGUWJNJSA-N N-acetylglucosamine Natural products CC(=O)N[C@@H](C=O)[C@@H](O)[C@H](O)[C@H](O)CO MBLBDJOUHNCFQT-LXGUWJNJSA-N 0.000 description 1
- 125000000729 N-terminal amino-acid group Chemical group 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 241000221960 Neurospora Species 0.000 description 1
- 241000221961 Neurospora crassa Species 0.000 description 1
- 244000061176 Nicotiana tabacum Species 0.000 description 1
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 1
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 108700026244 Open Reading Frames Proteins 0.000 description 1
- 108090000526 Papain Proteins 0.000 description 1
- 241000282520 Papio Species 0.000 description 1
- 206010034016 Paronychia Diseases 0.000 description 1
- 241000228143 Penicillium Species 0.000 description 1
- 102000057297 Pepsin A Human genes 0.000 description 1
- 108090000284 Pepsin A Proteins 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- KHGNFPUMBJSZSM-UHFFFAOYSA-N Perforine Natural products COC1=C2CCC(O)C(CCC(C)(C)O)(OC)C2=NC2=C1C=CO2 KHGNFPUMBJSZSM-UHFFFAOYSA-N 0.000 description 1
- 240000007377 Petunia x hybrida Species 0.000 description 1
- 206010057249 Phagocytosis Diseases 0.000 description 1
- 229920000436 Poly(lactide-co-glycolide)-block-poly(ethylene glycol)-block-poly(lactide-co-glycolide) Polymers 0.000 description 1
- 229920000805 Polyaspartic acid Polymers 0.000 description 1
- 229920002560 Polyethylene Glycol 3000 Polymers 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 1
- 241001343656 Ptilosarcus Species 0.000 description 1
- 239000012980 RPMI-1640 medium Substances 0.000 description 1
- 241000700157 Rattus norvegicus Species 0.000 description 1
- 108700008625 Reporter Genes Proteins 0.000 description 1
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 1
- JVWLUVNSQYXYBE-UHFFFAOYSA-N Ribitol Natural products OCC(C)C(O)C(O)CO JVWLUVNSQYXYBE-UHFFFAOYSA-N 0.000 description 1
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 1
- 238000011579 SCID mouse model Methods 0.000 description 1
- 241000235347 Schizosaccharomyces pombe Species 0.000 description 1
- 241000311088 Schwanniomyces Species 0.000 description 1
- 241001123650 Schwanniomyces occidentalis Species 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- 240000003768 Solanum lycopersicum Species 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 101800001707 Spacer peptide Proteins 0.000 description 1
- UQZIYBXSHAGNOE-USOSMYMVSA-N Stachyose Natural products O(C[C@H]1[C@@H](O)[C@H](O)[C@H](O)[C@@H](O[C@@]2(CO)[C@H](O)[C@@H](O)[C@@H](CO)O2)O1)[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@H](CO[C@@H]2[C@@H](O)[C@@H](O)[C@@H](O)[C@H](CO)O2)O1 UQZIYBXSHAGNOE-USOSMYMVSA-N 0.000 description 1
- PJANXHGTPQOBST-VAWYXSNFSA-N Stilbene Natural products C=1C=CC=CC=1/C=C/C1=CC=CC=C1 PJANXHGTPQOBST-VAWYXSNFSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 230000024932 T cell mediated immunity Effects 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 241000255588 Tephritidae Species 0.000 description 1
- 241001149964 Tolypocladium Species 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 241000223259 Trichoderma Species 0.000 description 1
- 244000000188 Vaccinium ovalifolium Species 0.000 description 1
- 208000036142 Viral infection Diseases 0.000 description 1
- 231100000480 WST assay Toxicity 0.000 description 1
- 241000235013 Yarrowia Species 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000001594 aberrant effect Effects 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 239000003070 absorption delaying agent Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000008351 acetate buffer Substances 0.000 description 1
- RRNJROHIFSLGRA-JEDNCBNOSA-N acetic acid;(2s)-2,6-diaminohexanoic acid Chemical compound CC(O)=O.NCCCC[C@H](N)C(O)=O RRNJROHIFSLGRA-JEDNCBNOSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 239000012082 adaptor molecule Substances 0.000 description 1
- 238000011374 additional therapy Methods 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 229910001508 alkali metal halide Inorganic materials 0.000 description 1
- 150000008045 alkali metal halides Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 230000007815 allergy Effects 0.000 description 1
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 1
- AGBQKNBQESQNJD-UHFFFAOYSA-N alpha-Lipoic acid Natural products OC(=O)CCCCC1CCSS1 AGBQKNBQESQNJD-UHFFFAOYSA-N 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 238000012870 ammonium sulfate precipitation Methods 0.000 description 1
- 239000003957 anion exchange resin Substances 0.000 description 1
- 230000000181 anti-adherent effect Effects 0.000 description 1
- 229940124650 anti-cancer therapies Drugs 0.000 description 1
- 230000000259 anti-tumor effect Effects 0.000 description 1
- 239000003911 antiadherent Substances 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 229940125644 antibody drug Drugs 0.000 description 1
- 238000009175 antibody therapy Methods 0.000 description 1
- 238000011319 anticancer therapy Methods 0.000 description 1
- 102000025171 antigen binding proteins Human genes 0.000 description 1
- 108091000831 antigen binding proteins Proteins 0.000 description 1
- 230000009831 antigen interaction Effects 0.000 description 1
- 230000024306 antigen processing and presentation of peptide antigen Effects 0.000 description 1
- 239000008365 aqueous carrier Substances 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 206010003119 arrhythmia Diseases 0.000 description 1
- 210000004507 artificial chromosome Anatomy 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 230000005784 autoimmunity Effects 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 108091008324 binding proteins Proteins 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 229920002988 biodegradable polymer Polymers 0.000 description 1
- 239000004621 biodegradable polymer Substances 0.000 description 1
- 230000031018 biological processes and functions Effects 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 108091006004 biotinylated proteins Proteins 0.000 description 1
- 229960003008 blinatumomab Drugs 0.000 description 1
- 108091005948 blue fluorescent proteins Proteins 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 229960001948 caffeine Drugs 0.000 description 1
- VJEONQKOZGKCAK-UHFFFAOYSA-N caffeine Natural products CN1C(=O)N(C)C(=O)C2=C1C=CN2C VJEONQKOZGKCAK-UHFFFAOYSA-N 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- BPKIGYQJPYCAOW-FFJTTWKXSA-I calcium;potassium;disodium;(2s)-2-hydroxypropanoate;dichloride;dihydroxide;hydrate Chemical compound O.[OH-].[OH-].[Na+].[Na+].[Cl-].[Cl-].[K+].[Ca+2].C[C@H](O)C([O-])=O BPKIGYQJPYCAOW-FFJTTWKXSA-I 0.000 description 1
- 208000035269 cancer or benign tumor Diseases 0.000 description 1
- 230000000711 cancerogenic effect Effects 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000001244 carboxylic acid anhydrides Chemical class 0.000 description 1
- 125000002057 carboxymethyl group Chemical group [H]OC(=O)C([H])([H])[*] 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000005277 cation exchange chromatography Methods 0.000 description 1
- 239000003729 cation exchange resin Substances 0.000 description 1
- 150000001768 cations Chemical group 0.000 description 1
- 230000011712 cell development Effects 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 230000005890 cell-mediated cytotoxicity Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 208000019065 cervical carcinoma Diseases 0.000 description 1
- 238000010382 chemical cross-linking Methods 0.000 description 1
- 238000003508 chemical denaturation Methods 0.000 description 1
- 239000002962 chemical mutagen Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- VDQQXEISLMTGAB-UHFFFAOYSA-N chloramine T Chemical compound [Na+].CC1=CC=C(S(=O)(=O)[N-]Cl)C=C1 VDQQXEISLMTGAB-UHFFFAOYSA-N 0.000 description 1
- VIMWCINSBRXAQH-UHFFFAOYSA-M chloro-(2-hydroxy-5-nitrophenyl)mercury Chemical compound OC1=CC=C([N+]([O-])=O)C=C1[Hg]Cl VIMWCINSBRXAQH-UHFFFAOYSA-M 0.000 description 1
- VXIVSQZSERGHQP-UHFFFAOYSA-N chloroacetamide Chemical compound NC(=O)CCl VXIVSQZSERGHQP-UHFFFAOYSA-N 0.000 description 1
- FOCAUTSVDIKZOP-UHFFFAOYSA-N chloroacetic acid Chemical compound OC(=O)CCl FOCAUTSVDIKZOP-UHFFFAOYSA-N 0.000 description 1
- 229940106681 chloroacetic acid Drugs 0.000 description 1
- 238000011098 chromatofocusing Methods 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 229960004106 citric acid Drugs 0.000 description 1
- 150000001860 citric acid derivatives Chemical class 0.000 description 1
- 231100000096 clonogenic assay Toxicity 0.000 description 1
- 238000009643 clonogenic assay Methods 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000006854 communication Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 230000024203 complement activation Effects 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 239000008139 complexing agent Substances 0.000 description 1
- 238000002591 computed tomography Methods 0.000 description 1
- 239000005289 controlled pore glass Substances 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000012866 crystallographic experiment Methods 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- ATDGTVJJHBUTRL-UHFFFAOYSA-N cyanogen bromide Chemical compound BrC#N ATDGTVJJHBUTRL-UHFFFAOYSA-N 0.000 description 1
- 150000003999 cyclitols Chemical class 0.000 description 1
- OILAIQUEIWYQPH-UHFFFAOYSA-N cyclohexane-1,2-dione Chemical compound O=C1CCCCC1=O OILAIQUEIWYQPH-UHFFFAOYSA-N 0.000 description 1
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 1
- 230000007402 cytotoxic response Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- YSMODUONRAFBET-UHFFFAOYSA-N delta-DL-hydroxylysine Natural products NCC(O)CCC(N)C(O)=O YSMODUONRAFBET-UHFFFAOYSA-N 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- FFYPMLJYZAEMQB-UHFFFAOYSA-N diethyl pyrocarbonate Chemical compound CCOC(=O)OC(=O)OCC FFYPMLJYZAEMQB-UHFFFAOYSA-N 0.000 description 1
- 238000001938 differential scanning calorimetry curve Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000002050 diffraction method Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 239000007884 disintegrant Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- PMMYEEVYMWASQN-UHFFFAOYSA-N dl-hydroxyproline Natural products OC1C[NH2+]C(C([O-])=O)C1 PMMYEEVYMWASQN-UHFFFAOYSA-N 0.000 description 1
- 231100000371 dose-limiting toxicity Toxicity 0.000 description 1
- 230000003828 downregulation Effects 0.000 description 1
- 229940000406 drug candidate Drugs 0.000 description 1
- 238000009510 drug design Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 108010048367 enhanced green fluorescent protein Proteins 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- YQGOJNYOYNNSMM-UHFFFAOYSA-N eosin Chemical compound [Na+].OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 YQGOJNYOYNNSMM-UHFFFAOYSA-N 0.000 description 1
- YSMODUONRAFBET-UHNVWZDZSA-N erythro-5-hydroxy-L-lysine Chemical compound NC[C@H](O)CC[C@H](N)C(O)=O YSMODUONRAFBET-UHNVWZDZSA-N 0.000 description 1
- IINNWAYUJNWZRM-UHFFFAOYSA-L erythrosin B Chemical compound [Na+].[Na+].[O-]C(=O)C1=CC=CC=C1C1=C2C=C(I)C(=O)C(I)=C2OC2=C(I)C([O-])=C(I)C=C21 IINNWAYUJNWZRM-UHFFFAOYSA-L 0.000 description 1
- 238000012869 ethanol precipitation Methods 0.000 description 1
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 1
- 229940093471 ethyl oleate Drugs 0.000 description 1
- 230000017188 evasion or tolerance of host immune response Effects 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 210000001723 extracellular space Anatomy 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 238000000684 flow cytometry Methods 0.000 description 1
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 230000005714 functional activity Effects 0.000 description 1
- FBPFZTCFMRRESA-GUCUJZIJSA-N galactitol Chemical compound OC[C@H](O)[C@@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-GUCUJZIJSA-N 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 229940014259 gelatin Drugs 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 230000004077 genetic alteration Effects 0.000 description 1
- 231100000118 genetic alteration Toxicity 0.000 description 1
- 229940063135 genotropin Drugs 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 229940047135 glycate Drugs 0.000 description 1
- 230000036252 glycation Effects 0.000 description 1
- 229930182470 glycoside Natural products 0.000 description 1
- 150000002338 glycosides Chemical class 0.000 description 1
- HHLFWLYXYJOTON-UHFFFAOYSA-N glyoxylic acid Chemical compound OC(=O)C=O HHLFWLYXYJOTON-UHFFFAOYSA-N 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- ZRALSGWEFCBTJO-UHFFFAOYSA-N guanidine group Chemical group NC(=N)N ZRALSGWEFCBTJO-UHFFFAOYSA-N 0.000 description 1
- 229940093915 gynecological organic acid Drugs 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 239000000833 heterodimer Substances 0.000 description 1
- 238000005734 heterodimerization reaction Methods 0.000 description 1
- 230000001744 histochemical effect Effects 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 102000056549 human Fv Human genes 0.000 description 1
- 108700005872 human Fv Proteins 0.000 description 1
- 238000013415 human tumor xenograft model Methods 0.000 description 1
- 239000003906 humectant Substances 0.000 description 1
- 230000008348 humoral response Effects 0.000 description 1
- 235000003642 hunger Nutrition 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- 238000004191 hydrophobic interaction chromatography Methods 0.000 description 1
- 125000002349 hydroxyamino group Chemical group [H]ON([H])[*] 0.000 description 1
- 238000012872 hydroxylapatite chromatography Methods 0.000 description 1
- 230000033444 hydroxylation Effects 0.000 description 1
- 238000005805 hydroxylation reaction Methods 0.000 description 1
- 229960002591 hydroxyproline Drugs 0.000 description 1
- 230000009610 hypersensitivity Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Substances C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000003053 immunization Effects 0.000 description 1
- 238000002649 immunization Methods 0.000 description 1
- 230000009851 immunogenic response Effects 0.000 description 1
- 108010023260 immunoglobulin Fv Proteins 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- CDAISMWEOUEBRE-GPIVLXJGSA-N inositol Chemical compound O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](O)[C@@H]1O CDAISMWEOUEBRE-GPIVLXJGSA-N 0.000 description 1
- 229960000367 inositol Drugs 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 210000003093 intracellular space Anatomy 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 230000000155 isotopic effect Effects 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 125000000468 ketone group Chemical group 0.000 description 1
- 239000000832 lactitol Substances 0.000 description 1
- VQHSOMBJVWLPSR-JVCRWLNRSA-N lactitol Chemical compound OC[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O VQHSOMBJVWLPSR-JVCRWLNRSA-N 0.000 description 1
- 235000010448 lactitol Nutrition 0.000 description 1
- 229960003451 lactitol Drugs 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- 208000032839 leukemia Diseases 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 235000019136 lipoic acid Nutrition 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- DLBFLQKQABVKGT-UHFFFAOYSA-L lucifer yellow dye Chemical compound [Li+].[Li+].[O-]S(=O)(=O)C1=CC(C(N(C(=O)NN)C2=O)=O)=C3C2=CC(S([O-])(=O)=O)=CC3=C1N DLBFLQKQABVKGT-UHFFFAOYSA-L 0.000 description 1
- 210000005265 lung cell Anatomy 0.000 description 1
- 210000001165 lymph node Anatomy 0.000 description 1
- 230000001926 lymphatic effect Effects 0.000 description 1
- 208000019420 lymphoid neoplasm Diseases 0.000 description 1
- 229960005357 lysine acetate Drugs 0.000 description 1
- 230000005291 magnetic effect Effects 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 238000002595 magnetic resonance imaging Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229960001855 mannitol Drugs 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 208000030159 metabolic disease Diseases 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 229960004452 methionine Drugs 0.000 description 1
- YCXSYMVGMXQYNT-UHFFFAOYSA-N methyl 3-[(4-azidophenyl)disulfanyl]propanimidate Chemical compound COC(=N)CCSSC1=CC=C(N=[N+]=[N-])C=C1 YCXSYMVGMXQYNT-UHFFFAOYSA-N 0.000 description 1
- RMAHPRNLQIRHIJ-UHFFFAOYSA-N methyl carbamimidate Chemical compound COC(N)=N RMAHPRNLQIRHIJ-UHFFFAOYSA-N 0.000 description 1
- NEGQCMNHXHSFGU-UHFFFAOYSA-N methyl pyridine-2-carboximidate Chemical compound COC(=N)C1=CC=CC=N1 NEGQCMNHXHSFGU-UHFFFAOYSA-N 0.000 description 1
- 230000011987 methylation Effects 0.000 description 1
- 238000007069 methylation reaction Methods 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 108091005601 modified peptides Proteins 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 210000001616 monocyte Anatomy 0.000 description 1
- PJUIMOJAAPLTRJ-UHFFFAOYSA-N monothioglycerol Chemical compound OCC(O)CS PJUIMOJAAPLTRJ-UHFFFAOYSA-N 0.000 description 1
- 238000002887 multiple sequence alignment Methods 0.000 description 1
- 229950006780 n-acetylglucosamine Drugs 0.000 description 1
- 238000011296 nano differential scanning fluorimetry Methods 0.000 description 1
- 210000000822 natural killer cell Anatomy 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 210000000440 neutrophil Anatomy 0.000 description 1
- FEMOMIGRRWSMCU-UHFFFAOYSA-N ninhydrin Chemical compound C1=CC=C2C(=O)C(O)(O)C(=O)C2=C1 FEMOMIGRRWSMCU-UHFFFAOYSA-N 0.000 description 1
- 239000012457 nonaqueous media Substances 0.000 description 1
- 239000000346 nonvolatile oil Substances 0.000 description 1
- 229940063137 norditropin Drugs 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 229940063149 nutropin Drugs 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 238000006384 oligomerization reaction Methods 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 238000011275 oncology therapy Methods 0.000 description 1
- 230000010494 opalescence Effects 0.000 description 1
- 238000000424 optical density measurement Methods 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 150000002891 organic anions Chemical class 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 150000002895 organic esters Chemical class 0.000 description 1
- 229940043515 other immunoglobulins in atc Drugs 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- YFZOUMNUDGGHIW-UHFFFAOYSA-M p-chloromercuribenzoic acid Chemical compound OC(=O)C1=CC=C([Hg]Cl)C=C1 YFZOUMNUDGGHIW-UHFFFAOYSA-M 0.000 description 1
- 229940055729 papain Drugs 0.000 description 1
- 235000019834 papain Nutrition 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229940111202 pepsin Drugs 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 238000010647 peptide synthesis reaction Methods 0.000 description 1
- 229930192851 perforin Natural products 0.000 description 1
- 230000008782 phagocytosis Effects 0.000 description 1
- 229940127557 pharmaceutical product Drugs 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 229960003742 phenol Drugs 0.000 description 1
- HMFAQQIORZDPJG-UHFFFAOYSA-N phosphono 2-chloroacetate Chemical compound OP(O)(=O)OC(=O)CCl HMFAQQIORZDPJG-UHFFFAOYSA-N 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000008488 polyadenylation Effects 0.000 description 1
- 108010054442 polyalanine Proteins 0.000 description 1
- 108010064470 polyaspartate Proteins 0.000 description 1
- 230000037048 polymerization activity Effects 0.000 description 1
- 229950008882 polysorbate Drugs 0.000 description 1
- 238000002600 positron emission tomography Methods 0.000 description 1
- 230000001124 posttranscriptional effect Effects 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 210000001236 prokaryotic cell Anatomy 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 235000019419 proteases Nutrition 0.000 description 1
- 230000004952 protein activity Effects 0.000 description 1
- 108020001580 protein domains Proteins 0.000 description 1
- 230000029983 protein stabilization Effects 0.000 description 1
- 238000001243 protein synthesis Methods 0.000 description 1
- 230000006432 protein unfolding Effects 0.000 description 1
- 230000004850 protein–protein interaction Effects 0.000 description 1
- 230000017854 proteolysis Effects 0.000 description 1
- 230000005588 protonation Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 229960003581 pyridoxal Drugs 0.000 description 1
- 235000008164 pyridoxal Nutrition 0.000 description 1
- 239000011674 pyridoxal Substances 0.000 description 1
- 235000007682 pyridoxal 5'-phosphate Nutrition 0.000 description 1
- 239000011589 pyridoxal 5'-phosphate Substances 0.000 description 1
- 229960001327 pyridoxal phosphate Drugs 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 238000003127 radioimmunoassay Methods 0.000 description 1
- 238000002708 random mutagenesis Methods 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 230000007115 recruitment Effects 0.000 description 1
- 231100000812 repeated exposure Toxicity 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000004007 reversed phase HPLC Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- HEBKCHPVOIAQTA-ZXFHETKHSA-N ribitol Chemical compound OC[C@H](O)[C@H](O)[C@H](O)CO HEBKCHPVOIAQTA-ZXFHETKHSA-N 0.000 description 1
- 238000002702 ribosome display Methods 0.000 description 1
- XMVJITFPVVRMHC-UHFFFAOYSA-N roxarsone Chemical group OC1=CC=C([As](O)(O)=O)C=C1[N+]([O-])=O XMVJITFPVVRMHC-UHFFFAOYSA-N 0.000 description 1
- 102220080600 rs797046116 Human genes 0.000 description 1
- 239000012146 running buffer Substances 0.000 description 1
- 238000013391 scatchard analysis Methods 0.000 description 1
- CDAISMWEOUEBRE-UHFFFAOYSA-N scyllo-inosotol Natural products OC1C(O)C(O)C(O)C(O)C1O CDAISMWEOUEBRE-UHFFFAOYSA-N 0.000 description 1
- 238000001338 self-assembly Methods 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 125000003607 serino group Chemical group [H]N([H])[C@]([H])(C(=O)[*])C(O[H])([H])[H] 0.000 description 1
- 210000000717 sertoli cell Anatomy 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 235000015424 sodium Nutrition 0.000 description 1
- HELHAJAZNSDZJO-OLXYHTOASA-L sodium L-tartrate Chemical compound [Na+].[Na+].[O-]C(=O)[C@H](O)[C@@H](O)C([O-])=O HELHAJAZNSDZJO-OLXYHTOASA-L 0.000 description 1
- IHQKEDIOMGYHEB-UHFFFAOYSA-M sodium dimethylarsinate Chemical compound [Na+].C[As](C)([O-])=O IHQKEDIOMGYHEB-UHFFFAOYSA-M 0.000 description 1
- 229940079827 sodium hydrogen sulfite Drugs 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- 229940074404 sodium succinate Drugs 0.000 description 1
- ZDQYSKICYIVCPN-UHFFFAOYSA-L sodium succinate (anhydrous) Chemical compound [Na+].[Na+].[O-]C(=O)CCC([O-])=O ZDQYSKICYIVCPN-UHFFFAOYSA-L 0.000 description 1
- 229940001482 sodium sulfite Drugs 0.000 description 1
- 235000010265 sodium sulphite Nutrition 0.000 description 1
- 239000001433 sodium tartrate Substances 0.000 description 1
- 229960002167 sodium tartrate Drugs 0.000 description 1
- 235000011004 sodium tartrates Nutrition 0.000 description 1
- GNBVPFITFYNRCN-UHFFFAOYSA-M sodium thioglycolate Chemical compound [Na+].[O-]C(=O)CS GNBVPFITFYNRCN-UHFFFAOYSA-M 0.000 description 1
- 229940046307 sodium thioglycolate Drugs 0.000 description 1
- AKHNMLFCWUSKQB-UHFFFAOYSA-L sodium thiosulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=S AKHNMLFCWUSKQB-UHFFFAOYSA-L 0.000 description 1
- 229940001474 sodium thiosulfate Drugs 0.000 description 1
- 235000019345 sodium thiosulphate Nutrition 0.000 description 1
- 239000008247 solid mixture Substances 0.000 description 1
- 239000002594 sorbent Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- UQZIYBXSHAGNOE-XNSRJBNMSA-N stachyose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO[C@@H]2[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO[C@@H]3[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O3)O)O2)O)O1 UQZIYBXSHAGNOE-XNSRJBNMSA-N 0.000 description 1
- 230000037351 starvation Effects 0.000 description 1
- 239000008174 sterile solution Substances 0.000 description 1
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical compound C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 1
- 235000021286 stilbenes Nutrition 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000012906 subvisible particle Substances 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
- 229960004793 sucrose Drugs 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 238000004114 suspension culture Methods 0.000 description 1
- 210000000225 synapse Anatomy 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 231100000378 teratogenic Toxicity 0.000 description 1
- 230000003390 teratogenic effect Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- ABZLKHKQJHEPAX-UHFFFAOYSA-N tetramethylrhodamine Chemical compound C=12C=CC(N(C)C)=CC2=[O+]C2=CC(N(C)C)=CC=C2C=1C1=CC=CC=C1C([O-])=O ABZLKHKQJHEPAX-UHFFFAOYSA-N 0.000 description 1
- 231100001274 therapeutic index Toxicity 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 238000001757 thermogravimetry curve Methods 0.000 description 1
- 229960002663 thioctic acid Drugs 0.000 description 1
- 229940035024 thioglycerol Drugs 0.000 description 1
- 229940098465 tincture Drugs 0.000 description 1
- 239000008181 tonicity modifier Substances 0.000 description 1
- FGMPLJWBKKVCDB-UHFFFAOYSA-N trans-L-hydroxy-proline Natural products ON1CCCC1C(O)=O FGMPLJWBKKVCDB-UHFFFAOYSA-N 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 230000009261 transgenic effect Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- ITMCEJHCFYSIIV-UHFFFAOYSA-N triflic acid Chemical compound OS(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-N 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- GPRLSGONYQIRFK-MNYXATJNSA-N triton Chemical compound [3H+] GPRLSGONYQIRFK-MNYXATJNSA-N 0.000 description 1
- 229960000281 trometamol Drugs 0.000 description 1
- 238000001195 ultra high performance liquid chromatography Methods 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 1
- 108020005087 unfolded proteins Proteins 0.000 description 1
- 238000005353 urine analysis Methods 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 108700026220 vif Genes Proteins 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- 239000012905 visible particle Substances 0.000 description 1
- 238000012784 weak cation exchange Methods 0.000 description 1
- 238000002424 x-ray crystallography Methods 0.000 description 1
- 210000005253 yeast cell Anatomy 0.000 description 1
- 108091005957 yellow fluorescent proteins Proteins 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
- A61K39/39591—Stabilisation, fragmentation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/26—Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2803—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2803—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
- C07K16/2809—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against the T-cell receptor (TcR)-CD3 complex
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2863—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for growth factors, growth regulators
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2887—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against CD20
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/545—Medicinal preparations containing antigens or antibodies characterised by the dose, timing or administration schedule
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/30—Immunoglobulins specific features characterized by aspects of specificity or valency
- C07K2317/31—Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/52—Constant or Fc region; Isotype
- C07K2317/524—CH2 domain
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/52—Constant or Fc region; Isotype
- C07K2317/526—CH3 domain
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/52—Constant or Fc region; Isotype
- C07K2317/53—Hinge
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/60—Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
- C07K2317/62—Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
- C07K2317/622—Single chain antibody (scFv)
Definitions
- Protein-based pharmaceuticals are among the fastest growing therapeutic agents in (pre)clinical development and as commercial products. In comparison with small chemical drugs, protein pharmaceuticals have high specificity and activity at relatively low concentrations, and typically provide for therapy of high impact diseases such as various cancers, auto-immune diseases, and metabolic disorders (Roberts, Trends Biotechnol. 2014 Jul;32(7):372-80, Wang, Int J Pharm. 1999 Aug 20;185(2):129-88).
- Protein-based pharmaceuticals such as recombinant proteins
- proteins are only marginally stable and are highly susceptible to degradation, both chemical and physical.
- Chemical degradation refers to modifications involving covalent bonds, such as deamidation, oxidation, cleavage or formation of new disulfide bridges, hydrolysis, isomerization, or deglycosylation.
- Physical degradation includes protein unfolding, undesirable adsorption to surfaces, and aggregation. Dealing with these physical and chemical instabilities is one of the most challenging tasks in the development of protein pharmaceuticals (Chi et al., Pharm Res, Vol. 20, No. 9, Sept 2003, pp. 1325-1336, Roberts, Trends Biotechnol. 2014 Jul;32(7):372-80).
- BiTE ® bispecific T cell engager antibody constructs which are recombinant protein constructs made from two flexibly linked antibody derived binding domains.
- One binding domain of BiTE ® antibody constructs is specific for a selected tumor-associated surface antigen on target cells; the second binding domain is specific for CD3, a subunit of the T cell receptor complex on T cells.
- BiTE ® antibody constructs are uniquely suited to transiently connect T cells with target cells and, at the same time, potently activate the inherent cytolytic potential of T cells against target cells.
- BiTE ® antibody constructs binding to this elected epitope do not only show cross-species specificity for human and Callithrix jacchus, Saguinus oedipus or Saimiri sciureus CD3e chain, but also, due to recognizing this specific epitope instead of previously described epitopes for CD3 binders in bispecific T cell engaging molecules, do not unspecifically activate T cells to the same degree as observed for the previous generation of T cell engaging antibodies. This reduction in T cell activation was connected with less or reduced T cell redistribution in patients, which was identified as a risk for side effects.
- Antibody constructs as described in WO 2008/1 19567 are likely to suffer from rapid clearance from the body; thus, whilst they are able to reach most parts of the body rapidly, and are quick to produce and easier to handle, their in vivo applications may be limited by their brief persistence in vivo. Prolonged administration by continuous intravenous infusion was used to achieve therapeutic effects because of the short in vivo half life of this small, single chain molecule. However, such continuous intravenous infusions are classified as inconvenient for the patients and, thus, in case of more convenient alternative treatment approaches, hamper the election of the compound demonstrated to be more efficient in the treatment of the respective disease. Hence, Applicant has introduced bispecific therapeutics that retain similar therapeutic efficacy that have a format which is straightforward to produce, and that have favorable pharmacokinetic properties, including a longer half-life.
- Protein aggregation represents a major event of physical instability of proteins and occurs due to the inherent tendency to minimize the thermodynamically unfavorable interaction between the solvent and hydrophobic protein residues. It is particularly problematic because it is encountered routinely during refolding, purification, sterilization, shipping, and storage processes. Aggregation can occur even under solution conditions where the protein native state is highly thermodynamically favored (e.g., neutral pH and 37°C) and in the absence of stresses (Chi et al., Pharm Res, Vol. 20, No. 9, Sept 2003, pp. 1325-1336, Roberts, Trends Biotechnol. 2014 Jul;32(7):372-80, Wang, Int J Pharm. 1999 Aug 20;185(2):129-88, Mahler J Pharm Sci. 2009 Sep;98(9):2909-34.).
- the protein native state is highly thermodynamically favored (e.g., neutral pH and 37°C) and in the absence of stresses (Chi et al., Pharm Res, Vol. 20, No. 9,
- half-life extended antibody constructs such as of bispecific T cell engagers comprising a half-life extending modality such as Fc-molecules have to be protected against protein aggregation and/or other degradation events.
- Protein aggregation is problematic because it can impair biological activity of the therapeutic proteins.
- aggregation of proteins leads to undesirable aesthetics of the drug product, and decreases product yield due to elaborate purification steps that are required to remove the aggregates from the end product.
- HMW high-molecular weight
- removing significant amount of HMW not only results in substantial yield loss but also makes the design of a robust downstream process challenging (Chi et al., Pharm Res, Vol. 20, No. 9, Sept 2003, pp. 1325-1336).
- Preserving protein stability and activity in biological and biotechnological applications poses serious challenges.
- HLE formats half-life extending formats
- scFc single chain Fc format
- hetero Fc also designated as hetFc or heterodimeric Fc, hFc
- HSA human serum albumin
- Protein instability and in particular protein aggregation, is an increasing challenge in the biotechnology industry, where aggregation is encountered throughout the lifetime of a therapeutic protein, including during refolding, purification, sterilization, shipping, and storage processes.
- a stable pharmaceutical composition comprising an antibody construct, preferably half-life extending format, further preferably a T cell engaging antibody construct.
- a pharmaceutical composition which is preferably a liquid composition or may be a solid composition obtained by lyophilisation or may be a reconstituted liquid composition comprises
- a first domain binds to a target cell surface antigen and has an isoelectric point (pi) in the range of 4 to 9,5;
- a second domain binds to a second antigen; and has a pi in the range of 8 to 10, preferably 8.5 to 9.0;
- a third domain comprises two polypeptide monomers, each comprising a hinge, a CH2 domain and a CH3 domain, wherein said two polypeptide monomers are fused to each other via a peptide linker;
- pH of the pharmaceutical composition is in the range of 3.5 to 6.
- the pharmaceutical composition comprises an antibody construct which is a single chain antibody construct.
- the said third domain comprises an amino to carboxyl order: hinge-CH2 domain-CH3 domain-linker-hinge-CH2 domain-CH3 domain.
- the antibody construct according to the present invention comprises the third domain.
- the first domain has a pi in the range of about 4.0 to about 9.5, preferably of about 4.5 to 7.5, or 4.5 to 6.5.
- the target cell surface antigen is a tumor antigen, an antigen specific for an immunological disorder or a viral antigen.
- the tumor antigen is selected from the group consisting of CDH19, MSLN, DLL3, FLT3, EGFR, EGFRvlll, BCMA, PSMA, CD33, CD19, CD20, and CD70.
- the second domain is an extracellular epitope of CD3the human and/or the Macaca CD3e chain.
- the second domain has a pi in the range of 8.5 to 9.0.
- each of said polypeptide monomers of the third domain has an amino acid sequence that is at least 90% identical to a sequence selected from the group consisting of: SEQ ID NOs: 17-24, or has an amino acid sequence selected from the group consisting of SEQ ID NOs: 17-24.
- the CH2 domain comprises an intra domain cysteine disulfide bridge.
- the third domain has a pi in the range of 5.5 to 7.5, preferably 6.0 to 7.0.
- the first domain comprises two antibody variable domains and the second domain comprises two antibody variable domains;
- the first domain comprises one antibody variable domain and the second domain comprises two antibody variable domains;
- the first domain comprises two antibody variable domains and the second domain comprises one antibody variable domain;
- the first domain comprises one antibody variable domain and the second domain comprises one antibody variable domain.
- the antibody construct preferably comprises in an amino to carboxyl order:
- the at least one buffer agent is an acid selected from the group consisting of acetate, glutamate, citrate, succinate, tartrate, fumarate, maleate, histidine, phosphate, 2-(N-morpholino)ethanesulfonate or a combination thereof.
- the at least one buffer agent is present at a concentration range of 5 to 200 mM, more preferably at a concentration range of 10 to 50 mM.
- the at least one saccharide is selected from the group consisting of monosaccharide, disaccharide, cyclic polysaccharide, sugar alcohol, linear branched dextran or linear non-branched dextran.
- the disacchade is selected from the group consisting of sucrose, trehalose and mannitol, sorbitol, and combinations thereof.
- the sugar alcohol is sorbitol.
- the at least one saccharide is present at a concentration in the range of 1 to 15% (mA/), preferably in a concentration range of 9 to 12% (mA/).
- the at least one surfactant is selected from the group consisting of polysorbate 20, polysorbate 40, polysorbate 60, polysorbate 80, poloxamer 188, pluronic F68, triton X-100, polyoxyethylen, PEG 3350, PEG 4000 and combinations thereof.
- the at least one surfactant is present at a concentration in the range of 0.004 to 0.5 % (mA/), preferably in the range of 0.001 to 0.01 % (mA/).
- the pH of the composition is in the range of 4.0 to 5.0, preferably 4.2.
- the pharmaceutical composition has an osmolarity in the range of 150 to 500 mOsm.
- the pharmaceutical composition further comprises an excipient selected from the group consisting of, one or more polyol and one or more amino acid.
- said one or more excipient is present in the concentration range of 0.1 to 15 % (w/V).
- composition comprises
- the antibody construct is present in a concentration range of 0.1 to 8 mg/ml, preferably of 0.2-2.5 mg/ml, more preferably of 0.25-1.0 mg/ml.
- the pharmaceutical composition of the present invention is liquid.
- the pharmaceutical composition is a solid pharmaceutical composition, obtainable by lyophilisation of the liquid pharmaceutical composition of any one of the preceding claims.
- the pharmaceutical composition is a liquid pharmaceutical composition obtainable by reconstituting the solid pharmaceutical composition obtainable by lyphilisation with a pharmaceutically acceptable liquid.
- a pharmaceutical composition is for use in the treatment of a disease, preferably of a proliferative disease, an immunological disease or a viral disease.
- composition is administrated parenterally, preferably i.v. by infusion or injection.
- composition is administrated 1 , 2, 3, 4, 5, 6 or 7 times per week, or 1 , 2, 3, 4, 5 or 6 times every two weeks, or 1 or 2 times per month, or 1 or 2 times every two months, most preferably 1 time per week.
- FIG. 1 a shows a diagram of one embodiment of an antibody construct of the invention.
- Fig. 1 b shows a heterodimeric Fc antibody construct and !c a X-body construct described in the art. The indicated charged pairs are introduced in order to enforce the heterodimerization.
- Fig 1 d shows the fusion of an antibody construct with a human serum albumin (HSA or hALB).
- HSA human serum albumin
- Figure 2 Schematic representation of antibody construct domains being differently charged at about neutral pH and similarly positively charged at lower pH.
- FIG. 3 DSC thermogram of a EGFRvlll antibody construct without HLE at pH 4 and pH 7.
- the Tm at pH 4 is 5.5C lower than the Tm at pH 7.
- Figure 4 shows percentage of high molecular weight species of CDH19 scFc antibody constructs measured in pH 4 vs. pH 6. Lower aggregation is seen at the lower pH of 4.0; (b) shows percentage main peak of CDH19 scFc BiTE measured by SEC at 4C (time points TO, 2w, 4w), 25°C (TO, 1w, 2w, 4w) and 37C (TO, 1w, 2w, 4w) in three different formulations - G4SuT, G4TrT and G4MSuT: G4SuT comprises 10mM glutamate, 9% (w/v) Sucrose, 0.01 % polysorbate 80, G4TrT comprises 10 mM glutamate, 9% (w/v) Trehalose, 0.01 % Polysorbate 80, and G4MSuT comprises 10mM glutamate, 4% (w/v) Mannitol, 2% Sucrose, 0.01 % polysorbate 80.
- Figure 6 shows percentage main peak of CD33-scFc antibody construct at different concentrations in different formulations at 4°C.
- the "ccHFC” stands for a specifically modified cys-clamed scFc domain. Low pH formulations consistently have higher monomeric species
- (b) shows percentage main peak of CD33-scFc antibody construct at different concentrations in different formulations at 25°C.
- the "ccHFC” stands for a specifically modified cys-clamed scFc domain Low pH formulations consistently have higher monomeric species.
- Figure 7 Percentage aggregation of canonical (non-HLE) CD19xCD3 BiTE® antibody construct as measured by SEC as a function of pH at TO, 7 days, 14 days and 1 month. The figure demonstrates that at low pH the amount of aggregation is dramatically lower.
- Figure 8 Profiles for predicted values and desirability in function of formulation parameters generated by Statistica software (Statsoft).
- Figure 9 Overview on percentaged content of high molecular weight species (HMWS) in MSLN-scFc preparations determined by size exclusion ultra-high performance chromatography (SE-UPLC) in function of formulation
- HMWS high molecular weight species
- Figure 10 Overview on percentaged content of high molecular weight species (HMWS) in CD33cc-scFc preparations determined by size exclusion ultra-high performance chromatography (SE-UPLC) in function of formulation.
- HMWS high molecular weight species
- a general concept underlying the present invention is the finding that colloidal stability of a liquid pharmaceutical composition comprising an antibody constructs according to the present invention is improved at low pH.
- the antibody constructs of the present invention typically have different isoelectric point (pi) values for their first and second domain.
- the pi of the third domain typically differs from the pi of the second domain.
- the first and/or the third domain may normally be negatively charged as the pi is more to the acid side, e.g. having a pi of about 4.0, 4.5, 5.0, 5.5, 6.0, or 6,5. Even if the first domain had a pi above 6,5, e.g.
- the third domain normally has a slightly acidic pi pf 6.0 to 7.0, which means that even if the pi of the first domain is slightly basic, there remains a difference in pi between the second and the third domain. In consequence, any pi difference wherein at least one domain has an acidic pi and another domain as a basic pi, a dipole will result under physiologic conditions because the different domains are differently, i.e. oppositely charged.
- Said opposite charges may lead to intra- nad intermolecular electrostatic attractions which in turn may lead to aggregation and, thus, to the formation of undesired high molecular weight (HMW) species. Said formation may crucially impact the stability of the solution or the colloidal stability of the dispersion.
- HMW high molecular weight
- Said formation may crucially impact the stability of the solution or the colloidal stability of the dispersion.
- pH of the medium is lowered, all domains get protonated and electrostatic repulsion takes place (see Fig. 2).
- an antibody construct comprising a first domain against CD19 and a second domain against CD3 forms a dipole due to the positive charge on the T-cell engaging domain and negative charge on the CD19 domain. This leads to attractive forces and consequently aggregation which leads to colloidal instability.
- both domains are positively charged and charge repulsion improves colloidal stability.
- the first domain of an antibody construct according to the present invention which is typically a scFv domain for an oncology target, normally has a different pi than the second domain, which is typically anti-CD3 domain.
- the second domain e.g. an anti-CD3 domain, has a pi in the range of 8 to 10, preferably about 8.5 to 9.5, most preferably about 9.2.
- the first domain may have a pi of about 4.9 to 5.3 if the first domain is an anti-CD19 or anti-CD33 domain.
- the first domain may have a pi of about 6 to 8 or about 9.0 if the first domain is an anti-DLL3 or anti-EGFRvlll domain.
- the first domain may have a pi of about 8.0 to 8.5 if the first domain is an anti-CD70 domain.
- the first domain may have a pi of about 7.0 to 7.5 if the first domain is an anti-CDH19 domain.
- the first domain may have a pi of about 7.0 to 7.5 if the first domain is an anti-PSMA domain.
- the first domain may have a pi of about 9.0 to 9.5 if the first domain is an anti-MSLN domain.
- the first domain may have a pi of about 8.5 to 9.5 if the first domain is an anti-Flt3 domain.
- the concept of a formulation which stabilizes domains of different pi may be applied to any antibody construct.
- bispecific antibody constructs comprising a third domain as described herein are especially suitable to be stabilized by a formulation as described herein.
- other bispecific antibody constructs e.g. without such a third domain, may be efficiently stabilized according to the present invention.
- an antibody construct according to the present invention may have a first domain comprising HCDRs of SEQ ID NOs 1954-1956 and LCDRs of SEQ ID NOs 1958-1960.
- an antibody construct according to the present invention may have a first domain comprising VH of SEQ ID NO 1957 and VL of SEQ ID NOs 1961 . It is even more envisaged that the first domain of an antibody construct according to the present invention may have a first domain according to SEQ ID NO 1962. It is also envisaged that an antibody construct according to the present invention may have a sequence according to SEQ ID NO 1963. [63] However, in the context of the present invention, the stabilizing effect of the pharmaceutical composition is not restricted to antibody constructs having (binding) domains of different pi. Accordingly, it is also envisaged that the present pharmaceutical composition provides a stabilizing formulation to antibody constructs which are provided with moieties of different pi which may, thus, be stabilized by the formulations as described herein.
- Such moieties may comprise masking moieties which mask binding domains of such antibody constructs, even where the binding domains themselves to not differ in pi in such a way that they would require additional stabilization as provided according to a pharmaceutical composition in the context of the present invention.
- such antibody constructs comprising masking moieties are activatable antibody constructs.
- an activatable antibody construct my bind to any target cell surface antigen such as a tumor antigen, preferably selected from the group consisting of CDH19, MSLN, DLL3, FLT3, EGFR, EGFRvlll, BCMA, PSMA, CD33, CD19, CD20, and CD70.
- Such an activatable antibody construct may be an antibody or an antigen binding fragment thereof that typically comprises (i) at least two binding domains each comprising a heavy chain amino acid sequence and a light chain amino acid sequence, (ii) a masking moiety that inhibits the binding of each binding domain in an uncleaved state to the respective binding partner such as a target cell surface, and (iii) a cleavable moiety positioned between (i) and (ii), wherein the cleavable moiety is a polypeptide that functions as a substrate e.g. for a protease.
- the activatable antibody in the uncleaved state has the structural arrangement from N-terminus to C-terminus as follows: masking moiety - cleavable moiety -binding domain or binding domain - cleavable moiety - masking moiety.
- a pharmaceutical composition according to the present invention may be especially beneficial in conferring stability to the activatable antibody construct where the pi of the at least two masking moieties of the at least two binding domains differ.
- the pi of one masking moiety may be in the range of 3 to 5, preferably 3.5 to 4.5, more preferably 3.9 to 4.5, while the pi of the other masking moiety is in the range of 5.0 to 7.0, preferably 5.5 to 6.0.
- the aggregation of said antibody construct can be significantly reduced.
- the aggregation in terms of percentile high molecular weight (HMW) species can be significantly reduced, e.g. from about 10% to about 6, 5, 4 or even below 4% due to the same protonation at a low pH and the supplemental stabilizing function of the excipients in a pharmaceutical composition according to the present invention.
- Percentile HMW species below 4% are typically found in a pharmaceutical composition according to the present invention with a pH of about 4.2 to 4.8.
- the (solution) pH of a pharmaceutical composition according to the present invention should be lower than the pi of any of the two or three domains of the antibody construct according to the present invention to create a net positive charge for both domains to create both inter and intra domain repulsion.
- Preferred is a pH value of about 4.0 to 5.5, more preferred 4.2 to 4.8.
- a pharmaceutical composition according to the present invention may comprise an antibody construct according to the present invention at a higher concertation than expected. Normally, antibody constructs as described herein are stored and/or employed in a liquid pharmaceutical composition only at a concentration of about 1 mg/ ml. At higher concentrations, aggregation tendencies are observed.
- a lower pH contributes to electrostatic inter and intramolecular repulsion which reduces the risk for aggregation and may allow for a higher antibody construct concentration such as 1 .5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0. 7.5 or 8.0 mg/ml without (colloidal) instability.
- compositions of the present invention are preferred which are free of anorganic anions or salts comprising inorganic anions such as sodium chloride.
- Tonicity of the pharmaceutical composition of the present invention is preferably adjusted by non-ionic excipients (e.g. sucrose) within the stock keeping unit (SKU).
- SKU stock keeping unit
- a pharmaceutical composition according to the present invention is preferably free of inorganic anions.
- Required buffer compounds preferably only comprise organic anions such as glutamate and/or acetate.
- a pharmaceutical composition according to the present invention is preferably free of inorganic anions such as F “ , CI " , and Br " .
- a pharmaceutical composition according to the present invention is preferably free of NaCI.
- the increased stability of the antibody construct in a liquid formulation according to the present invention may contribute to save the expensive and laborious step of lyophilisation to obtain a storable solid, i.e. dry pharmaceutical composition.
- the low pH pharmaceutical composition may be suitable for i.v. administration. However, if e.g. s.c. or i.m. administration is required or if the low pH is not acceptable for other medical reasons, a solid pharmaceutical composition may still be obtained from the liquid pharmaceutical composition according to the present invention.
- the thus obtained lyophilisate may be reconstituted in an pharmaceutically acceptable medium suitable for the required form of administration or individual medical need.
- further stabilizing agents such as Captisol® may be saved by the employment of the present pharmaceutical composition at low pH.
- the pharmaceutical composition as presented herein enables the stability of the formulated bispecific antibody constructs. Evaluation of the impact of formulation parameters on different bispecific antibody constructs shows that formulation can be optimized dependent on molecular characteristics including but not limited to the presence of a half-life extending moiety, the IEP or a cys-clamp in target binder. Careful selection of pH optimum and salt content as described herein are critical. As far as stability is concerned, it is possible to correlate isothermal long-term stability study at accelerated storage conditions and stability predicting methods for investigated bispecific antibody constructs, as it also has been shown for monoclonal antibodies before.
- Bispecific antibody constructs as described herein are overall stable during long-term storage at 30°C as well as during stability predicting methods, so that part of the investigated parameters remained quite robust, making it challenging to find correlations including e.g. DLS hydrodynamic radius. This phenomenon is compensated by varying formulation conditions in pH and ionic strength, inducing different response of the bispecific antibodies to storage and temperature stress.
- stability predicting methods especially temperature-ramped nanoDSF and temperature-ramped DLS as well as hydrophobic interaction chromatography whose parameters show quite strong and comprehensible correlation to some parameters assessed during isothermal stability study e.g. subvisible particle count, IF ratio 350 nm/330 nm and amount of acidic charge variants.
- Stability predicting techniques as used herein give useful forecast on stability of bispecific antibody constructs in pharmaceutical compositions according to the present invention.
- the term “stability” or “stabilization” relates to the stability of the pharmaceutical composition in total and in particular to the stability of the active ingredient (e.g. the bispecific single chain antibody construct) itself, specifically during formulation, filling, shipment, storage and administration.
- the terms “stability” or “stable” in the context of the pharmaceutical composition of the invention and the bispecific single chain antibody construct particularly refers to the reduction or prevention of the formation of protein aggregates (HMWS).
- HMWS protein aggregates
- the term “stability” also relates to the colloidal stability of the bispecific single chain antibody constructs comprised within the pharmaceutical composition described herein.
- Cold stability is the ability of colloidal particles (such as proteins) to remain dispersed in liquids for a prolonged period of time (days to years).
- (protein) aggregate generally encompasses protein species of higher molecular weight such as “oligomers” or “multimers” instead of the desired defined species (e.g., a monomer).
- the term is used interchangeably herein with the terms “high molecular weight species” and "HMWS”.
- Protein aggregates may generally differ in size (ranging from small (dimers) to large assemblies (subvisible or even visible particles) and from the nanometer to micrometer range in diameter), morphology (approximately spherical to fibrillar), protein structure (native vs. non-native/denatured), type of intermolecular bonding (covalent vs. non-covalent), reversibility and solubility.
- Soluble aggregates cover the size range of roughly 1 to 100 nm, and protein particulates cover subvisible ( ⁇ 0.1-100 .m) and visible (>100 .m) ranges. All of the aforementioned types protein aggregates are generally encompassed by the term.
- the term "(protein) aggregate” thus refers to all kinds physically- associated or chemically linked non-native species of two or more protein monomers.
- the term "protein aggregation” or “non-native aggregation” thus denotes the process(es) by which protein molecules assemble into complexes composed of two or more proteins, with the individual proteins denoted as the monomer. There are multiple pathways leading to protein aggregation that can be induced by a wide variety of conditions, including temperature, mechanical stress such as shaking and stirring, pumping, freezing and/or thawing and formulation.
- Temperatures referred to in the present application typically are deep freezing temperature for long term storage of delicate protein-based pharmaceuticals (-70°C), regular freezing temperature (-20°C), refrigeration temperature (4°C), room temperature (25°C) and physiologic temperature (37°C).
- Protein denaturation and aggregation can occur during freeze/thawing due to complex physical and chemical changes such as creation of new ice/solution interfaces, adsorption to container surfaces, cryoconcentration of the protein and solutes, and pH changes due to crystallization of buffer components.
- Antimicrobial preservatives such as benzyl alcohol and phenol
- Antimicrobial preservatives are often needed in protein liquid formulations to ensure sterility during its shelf life, and in addition required in multidose formulations and certain drug delivery systems, e.g., injection pens, minipumps and topical applications.
- Many preservatives have been reported to induce protein aggregation, although the underlying mechanism is not well understood. It has been proposed that preservatives bind to and populate unfolded protein states that are prone to aggregation.
- the pharmaceutical compositions of the invention are envisaged to be stable, i.e.
- compositions of the invention are preferably homogenous solutions of protein-based pharmaceuticals such as dispersed and preferably monomeric bispecific bispecific antibody constructs. [78] It is envisaged in the context of the present invention to provide a formulation suitable for bispecific (and/or multispecific) antibodies that bind to two (or more) different antigens simultaneously.
- the bispecific antibody binds a first target antigen while the second antigen is a cell surface molecule present on an effector cell, i.e., a leukocyte which expresses one or more FcRs (e.g., FCYRI I I) and performs one or more effector functions attributable to the Fc region of an antibody.
- effector functions include, but are not limited to, Clq binding and complement dependent cytotoxicity (CDC), Fc receptor binding, antibody-dependent cell-mediated cytotoxicity (ADCC), phagocytosis, down regulation of cell surface receptors, and B cell activation.
- effector cells involved in ADCC include, but are not limited to, cytotoxic T cells, peripheral blood mononuclear cells (PBMC), natural killer (NK) cells, monocytes, and neutrophils.
- the pharmaceutical composition effectively provides for stabilization of the active ingredient (i.e. reduces or inhibits formation of protein aggregates of the bispecific antibody construct), some aggregates or conformers may occasionally form, however without substantially compromising overall usability of the pharmaceutical composition.
- substantially free of aggregates means that the amount of aggregates remains lower than 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2% or 1 % (w/v), particularly also when being subjected to environmental stress, e.g. as evaluated in the appended Examples.
- Methods for determining the presence of soluble and insoluble protein aggregates have been, inter alia, reviewed by Mahler et al., J Pharm Sci.
- SEC size exclusion ultra high performance liquid chromatography
- Protein solutions show an optical property, called opalescence or turbidity.
- the optical property of a solution is a function of the particles present to scatter and absorb light.
- Proteins are natural colloids and the turbidity of aqueous formulations depends on protein concentration, the presence of nondissolved particles, particle size and particle number per volume unit. Turbidity can be measured by UV-Vis spectroscopy as optical density in the 340-360 nm range and be used to detect both soluble and insoluble aggregates;.
- the inspection of samples by visual means is still an important aspect of assessing protein aggregates. Visual evaluation for the absence or presence of visible aggregates is preferably performed according to Deutscher Arzneiffen Codex (DAC) Test 5.
- composition of the invention -most likely by the action of a low pH and optionally further stabilizing agents comprised therein- favor an increased colloidal stability of the bispecific antibody constructs, and thus exhibit a reduced or even absent liquid-liquid phase separation (LLPS).
- LLPS is a thermodynamically driven event, in which a homogenous protein solution separates into a protein-poor phase (usually the top layer) and a protein-rich phase (usually the bottom layer) with decreasing temperatures.
- LLPS is typically fully reversible simply by mixing the two phases and raising the temperature of the solution. The occurrence of LLPS has been attributed to short-range attractive protein-protein interactions -making it a measure of strength of protein -protein attraction.
- compositions comprising ⁇ - cyclodextrins according to the invention have been found to comprise higher concentrations of the bispecific antibody construct in the LLPS protein-poor phase, as compared to pharmaceutical compositions not comprising ⁇ -cyclodextrins. Accordingly, pharmaceutical compositions of the invention are envisaged to exhibit reduced LLPS or no LLPS at all when compared to controls, and thus promoting an increased colloidal stability of the bispecific antibody constructs of the present invention. LLPS can be induced and the protein content of the different phases can be examined as described in the appended Examples.
- the stable pharmaceutical composition of the present invention comprises a bispecific antibody construct, binding to a target cell surface antigen via a first binding domain and to the T Cell surface antigen CD3 via a second binding domain.
- antibody construct refers to a molecule in which the structure and/or function is/are based on the structure and/or function of an antibody, e.g., of a full-length or whole immunoglobulin molecule and/or is/are drawn from the variable heavy chain (VH) and/or variable light chain (VL) domains of an antibody or fragment thereof.
- VH variable heavy chain
- VL variable light chain
- An antibody construct is hence capable of binding to its specific target or antigen.
- the binding domain of an antibody construct according to the invention comprises the minimum structural requirements of an antibody which allow for the target binding. This minimum requirement may e.g. be defined by the presence of at least the three light chain CDRs (i.e.
- CDR1 , CDR2 and CDR3 of the VL region and/or the three heavy chain CDRs (i.e. CDR1 , CDR2 and CDR3 of the VH region), preferably of all six CDRs.
- An alternative approach to define the minimal structure requirements of an antibody is the definition of the epitope of the antibody within the structure of the specific target, respectively, the protein domain of the target protein composing the epitope region (epitope cluster) or by reference to an specific antibody competing with the epitope of the defined antibody.
- the antibodies on which the constructs according to the invention are based include for example monoclonal, recombinant, chimeric, deimmunized, humanized and human antibodies.
- the binding domain of an antibody construct according to the invention may e.g. comprise the above referred groups of CDRs.
- those CDRs are comprised in the framework of an antibody light chain variable region (VL) and an antibody heavy chain variable region (VH); however, it does not have to comprise both.
- Fd fragments for example, have two VH regions and often retain some antigen-binding function of the intact antigen- binding domain.
- Additional examples for the format of antibody fragments, antibody variants or binding domains include (1 ) a Fab fragment, a monovalent fragment having the VL, VH, CL and CH1 domains; (2) a F(ab') 2 fragment, a bivalent fragment having two Fab fragments linked by a disulfide bridge at the hinge region; (3) an Fd fragment having the two VH and CH1 domains; (4) an Fv fragment having the VL and VH domains of a single arm of an antibody, (5) a dAb fragment (Ward et al., (1989) Nature 341 :544-546), which has a VH domain; (6) an isolated complementarity determining region (CDR), and (7) a single chain Fv (scFv) , the latter being preferred (for example, derived from an scFV-library).
- a Fab fragment a monovalent fragment having the VL, VH, CL and CH1 domains
- a F(ab') 2 fragment a bivalent
- Examples for embodiments of antibody constructs according to the invention are e.g. described in WO 00/006605, WO 2005/040220, WO 2008/1 19567, WO 2010/037838, WO 2013/026837, WO 2013/026833, US 2014/0308285, US 2014/0302037, WO 2014/144722, WO 2014/151910, and WO 2015/048272.
- Alternative bispecific antigen-binding formats are described in, e.g., U.S. Patent Application Publication No. 201 1/0054151 , incorporated by reference herein.
- the bispecific antigen-binding protein may comprise a mAb-Fv format, wherein an IgG antibody is fused at the C-terminus with an Fv fragment.
- a mAb-Fab format may be used wherein an IgG antibody is fused at the C-terminus with a Fab.
- the mAb-Fab construct contains CH and CL constant domains C-terminal to the C-terminal Fv fusion, whereas mAb-Fv does not. See Figure 8 of U.S. Patent Application Publication No. 201 1/0054151.
- the N-terminal binding region of the mAb-Fv and mAb-Fab constructs lack a light chain and a CH 1 domain (i.e., comprise a single domain VHH region).
- mAb-Fv and mAb-Fab constructs contain three variable regions, such that they bind a first antigen bivalently and a second antigen monovalently.
- Suitable bispecific antigen-binding formats also include Fab-Fv and Fab-Fab constructs described in U.S. Patent Application Publication No. 201 1/0054151.
- the Fab-Fv and Fab-Fab immunoglobulins comprise an N- terminal Fab fragment that binds a first antigen and a C-terminal Fv or Fab fragment binds a second antigen.
- the heterodimeric antibody is preferably of the IgG class, which has several subclasses, including, but not limited to lgG1 , lgG2, lgG3, and lgG4, although IgM, IgD, IgG, IgA, and IgE also are contemplated. It should be understood that antibodies can also comprise hybrids of isotypes and/or subclasses. For example, pi engineering of lgG1/G2 hybrids, as shown in U.S. Patent Publication No. 2009/0163699, incorporated by reference, is contemplated as part of the disclosure.
- binding domain or "domain which binds” are fragments of full-length antibodies, such as VH, VHH, VL, (s)dAb, Fv, Fd, Fab, Fab', F(ab')2 or "r IgG" ("half antibody”).
- Antibody constructs according to the invention may also comprise modified fragments of antibodies, also called antibody variants, such as scFv, di-scFv or bi(s)-scFv, scFv-Fc, scFv-zipper, scFab, Fab 2 , Fab 3 , diabodies, single chain diabodies, tandem diabodies (Tandab's), tandem di-scFv, tandem tri-scFv, "multibodies” such as triabodies or tetrabodies, and single domain antibodies such as nanobodies or single variable domain antibodies comprising merely one variable domain, which might be VHH, VH or VL, that specifically bind an antigen or epitope independently of other V regions or domains.
- antibody variants such as scFv, di-scFv or bi(s)-scFv, scFv-Fc, scFv-zipper, scFab, Fab 2 , Fab 3 ,
- single-chain Fv single polypeptide chain antibody fragments that comprise the variable regions from both the heavy and light chains, but lack the constant regions.
- a single-chain antibody further comprises a polypeptide linker between the VH and VL domains which enables it to form the desired structure which would allow for antigen binding.
- Single chain antibodies are discussed in detail by Pluckthun in The Pharmacology of Monoclonal Antibodies, vol. 1 13, Rosenburg and Moore eds. Springer-Verlag, New York, pp. 269-315 (1994).
- Various methods of generating single chain antibodies are known, including those described in U.S. Pat. Nos.
- single-chain antibodies can also be bispecific, multispecific, human, and/or humanized and/or synthetic.
- antibody construct includes monovalent, bivalent and polyvalent / multivalent constructs and, thus, bispecific constructs, specifically binding to only two antigenic structure, as well as polyspecific / multispecific constructs, which specifically bind more than two antigenic structures, e.g. three, four or more, through distinct binding domains.
- antibody construct includes molecules consisting of only one polypeptide chain as well as molecules consisting of more than one polypeptide chain, which chains can be either identical (homodimers, homotrimers or homo oligomers) or different (heterodimer, heterotrimer or heterooligomer).
- bispecific refers to an antibody construct which is "at least bispecific", i.e., it comprises at least a first binding domain and a second binding domain, wherein the first binding domain binds to one antigen or target (here: the target cell surface antigen), and the second binding domain binds to another antigen or target (e.g. CD3).
- antibody constructs according to the invention comprise specificities for at least two different antigens or targets.
- the first domain does preferably not bind to an extracellular epitope of CD3s of one or more of the species as described herein.
- target cell surface antigen refers to an antigenic structure expressed by a cell and which is present at the cell surface such that it is accessible for an antibody construct as described herein. It may be a protein, preferably the extracellular portion of a protein, or a carbohydrate structure, preferably a carbohydrate structure of a protein, such as a glycoprotein. It is preferably a tumor antigen.
- bispecific antibody construct of the invention also encompasses multispecific antibody constructs such as trispecific antibody constructs, the latter ones including three binding domains, or constructs having more than three (e.g. four, five...) specificities.
- Bispecific antibodies and/or antibody constructs as understood herein include, but are not limited to, traditional bispecific immunoglobulins (e.g., BslgG), IgG comprising an appended antigen-binding domain (e.g., the amino or carboxy termini of light or heavy chains are connected to additional antigen-binding domains, such as single domain antibodies or paired antibody variable domains (e.g., Fv or scFv)), BsAb fragments (e.g., bispecific single chain antibodies), bispecific fusion proteins (e.g., antigen binding domains fused to an effector moiety), and BsAb conjugates.
- BslgG traditional bispecific immunoglobulins
- IgG comprising an appended antigen-binding domain
- additional antigen-binding domains such as single domain antibodies or paired antibody variable domains (e.g., Fv or scFv)
- BsAb fragments e.g., bispecific single chain antibodies
- bispecific constructs include, but are not limited to, diabodies, single chain diabodies, tandem scFvs, bispecific T cell engager (BiTE) format (a fusion protein consisting of two single-chain variable fragments (scFvs) joined by a linker), and Fab2 bispecifics, as well as engineered constructs comprising full length antibodies.
- BiTE bispecific T cell engager
- bispecific antibody constructs are (at least) bispecific, they do not occur naturally and they are markedly different from naturally occurring products.
- a "bispecific" antibody construct or immunoglobulin is hence an artificial hybrid antibody or immunoglobulin having at least two distinct binding sides with different specificities.
- Bispecific antibody constructs can be produced by a variety of methods including fusion of hybridomas or linking of Fab' fragments. See, e.g., Songsivilai & Lachmann, Clin. Exp. Immunol. 79:315- 321 (1990).
- the at least two binding domains and the variable domains (VH / VL) of the antibody construct of the present invention may or may not comprise peptide linkers (spacer peptides).
- peptide linker comprises in accordance with the present invention an amino acid sequence by which the amino acid sequences of one (variable and/or binding) domain and another (variable and/or binding) domain of the antibody construct of the invention are linked with each other.
- the peptide linkers can also be used to fuse the third domain to the other domains of the antibody construct of the invention.
- An essential technical feature of such peptide linker is that it does not comprise any polymerization activity.
- suitable peptide linkers are those described in U.S. Patents 4,751 ,180 and 4,935,233 or WO 88/09344.
- the peptide linkers can also be used to attach other domains or modules or regions (such as half-life extending domains) to the antibody construct of the invention.
- the antibody constructs of the present invention are preferably "in vitro generated antibody constructs".
- This term refers to an antibody construct according to the above definition where all or part of the variable region (e.g., at least one CDR) is generated in a non-immune cell selection, e.g., an in vitro phage display, protein chip or any other method in which candidate sequences can be tested for their ability to bind to an antigen.
- a non-immune cell selection e.g., an in vitro phage display, protein chip or any other method in which candidate sequences can be tested for their ability to bind to an antigen.
- a "recombinant antibody” is an antibody made through the use of recombinant DNA technology or genetic engineering.
- mAb monoclonal antibody
- monoclonal antibody construct refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally occurring mutations and/or post-translation modifications (e.g., isomerizations, amidations) that may be present in minor amounts.
- Monoclonal antibodies are highly specific, being directed against a single antigenic side or determinant on the antigen, in contrast to conventional (polyclonal) antibody preparations which typically include different antibodies directed against different determinants (or epitopes).
- the monoclonal antibodies are advantageous in that they are synthesized by the hybridoma culture, hence uncontaminated by other immunoglobulins.
- the modifier "monoclonal” indicates the character of the antibody as being obtained from a substantially homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method.
- monoclonal antibodies for the preparation of monoclonal antibodies, any technique providing antibodies produced by continuous cell line cultures can be used.
- monoclonal antibodies to be used may be made by the hybridoma method first described by Koehler et al., Nature, 256: 495 (1975), or may be made by recombinant DNA methods (see, e.g., U.S. Patent No. 4,816,567).
- further techniques to produce human monoclonal antibodies include the trioma technique, the human B-cell hybridoma technique (Kozbor, Immunology Today 4 (1983), 72) and the EBV-hybridoma technique (Cole et al., Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc.
- Hybridomas can then be screened using standard methods, such as enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (BIACORETM) analysis, to identify one or more hybridomas that produce an antibody that specifically binds with a specified antigen.
- ELISA enzyme-linked immunosorbent assay
- BIACORETM surface plasmon resonance
- Any form of the relevant antigen may be used as the immunogen, e.g., recombinant antigen, naturally occurring forms, any variants or fragments thereof, as well as an antigenic peptide thereof.
- Another exemplary method of making monoclonal antibodies includes screening protein expression libraries, e.g., phage display or ribosome display libraries.
- Phage display is described, for example, in Ladner et al., U.S. Patent No. 5,223,409; Smith (1985) Science 228:1315-1317, Clackson et al., Nature, 352: 624-628 (1991 ) and Marks et al., J. Mol. Biol., 222: 581 -597 (1991 ).
- the relevant antigen can be used to immunize a non-human animal, e.g., a rodent (such as a mouse, hamster, rabbit or rat).
- the non-human animal includes at least a part of a human immunoglobulin gene.
- antigen-specific monoclonal antibodies derived from the genes with the desired specificity may be produced and selected. See, e.g., XENOMOUSETM, Green et al. (1994) Nature Genetics 7:13-21 , US 2003-0070185, WO 96/34096, and WO 96/33735.
- a monoclonal antibody can also be obtained from a non-human animal, and then modified, e.g., humanized, deimmunized, rendered chimeric etc., using recombinant DNA techniques known in the art.
- modified antibody constructs include humanized variants of non-human antibodies, "affinity matured” antibodies (see, e.g. Hawkins et al. J. Mol. Biol. 254, 889-896 (1992) and Lowman et al., Biochemistry 30, 10832- 10837 (1991 )) and antibody mutants with altered effector function(s) (see, e.g., US Patent 5,648,260, Kontermann and Dubel (2010), loc. cit. and Little (2009), loc. cit).
- affinity maturation is the process by which B cells produce antibodies with increased affinity for antigen during the course of an immune response. With repeated exposures to the same antigen, a host will produce antibodies of successively greater affinities.
- the in vitro affinity maturation is based on the principles of mutation and selection. The in vitro affinity maturation has successfully been used to optimize antibodies, antibody constructs, and antibody fragments. Random mutations inside the CDRs are introduced using radiation, chemical mutagens or error-prone PCR. In addition, the genetic diversity can be increased by chain shuffling. Two or three rounds of mutation and selection using display methods like phage display usually results in antibody fragments with affinities in the low nanomolar range.
- a preferred type of an amino acid substitutional variation of the antibody constructs involves substituting one or more hypervariable region residues of a parent antibody (e. g. a humanized or human antibody).
- a parent antibody e. g. a humanized or human antibody
- the resulting variant(s) selected for further development will have improved biological properties relative to the parent antibody from which they are generated.
- a convenient way for generating such substitutional variants involves affinity maturation using phage display. Briefly, several hypervariable region sides (e. g. 6-7 sides) are mutated to generate all possible amino acid substitutions at each side.
- the antibody variants thus generated are displayed in a monovalent fashion from filamentous phage particles as fusions to the gene III product of M13 packaged within each particle.
- the phage-displayed variants are then screened for their biological activity (e. g. binding affinity) as herein disclosed.
- alanine scanning mutagenesis can be performed to identify hypervariable region residues contributing significantly to antigen binding.
- the panel of variants is subjected to screening as described herein and antibodies with superior properties in one or more relevant assays may be selected for further development.
- the monoclonal antibodies and antibody constructs of the present invention specifically include "chimeric" antibodies (immunoglobulins) in which a portion of the heavy and/or light chain is identical with or homologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is/are identical with or homologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as well as fragments of such antibodies, so long as they exhibit the desired biological activity (U.S. Patent No. 4,816,567; Morrison et al., Proc. Natl. Acad. Sci. USA, 81 : 6851 -6855 (1984)).
- chimeric antibodies immunoglobulins
- Chimeric antibodies of interest herein include "primitized" antibodies comprising variable domain antigen-binding sequences derived from a non-human primate (e.g., Old World Monkey, Ape etc.) and human constant region sequences.
- a non-human primate e.g., Old World Monkey, Ape etc.
- human constant region sequences e.g., human constant region sequences.
- a variety of approaches for making chimeric antibodies have been described. See e.g., Morrison et al., Proc. Natl. Acad. Sci U.S.A. 81 :6851 , 1985; Takeda et al., Nature 314:452, 1985, Cabilly et al., U.S. Patent No. 4,816,567; Boss et al., U.S. Patent No. 4,816,397; Tanaguchi et al., EP 0171496; EP 0173494; and GB 2177096.
- An antibody, antibody construct, antibody fragment or antibody variant may also be modified by specific deletion of human T cell epitopes (a method called "deimmunization") by the methods disclosed for example in WO 98/52976 or WO 00/34317. Briefly, the heavy and light chain variable domains of an antibody can be analyzed for peptides that bind to MHC class II; these peptides represent potential T cell epitopes (as defined in WO 98/52976 and WO 00/34317).
- peptide threading For detection of potential T cell epitopes, a computer modeling approach termed "peptide threading" can be applied, and in addition a database of human MHC class II binding peptides can be searched for motifs present in the VH and VL sequences, as described in WO 98/52976 and WO 00/34317. These motifs bind to any of the 18 major MHC class II DR allotypes, and thus constitute potential T cell epitopes.
- Potential T cell epitopes detected can be eliminated by substituting small numbers of amino acid residues in the variable domains, or preferably, by single amino acid substitutions. Typically, conservative substitutions are made. Often, but not exclusively, an amino acid common to a position in human germline antibody sequences may be used.
- Humanized antibodies are antibodies or immunoglobulins of mostly human sequences, which contain (a) minimal sequence(s) derived from non-human immunoglobulin.
- humanized antibodies are human immunoglobulins (recipient antibody) in which residues from a hypervariable region (also CDR) of the recipient are replaced by residues from a hypervariable region of a non- human (e.g., rodent) species (donor antibody) such as mouse, rat, hamster or rabbit having the desired specificity, affinity, and capacity.
- Fv framework region (FR) residues of the human immunoglobulin are replaced by corresponding non-human residues.
- "humanized antibodies” as used herein may also comprise residues which are found neither in the recipient antibody nor the donor antibody. These modifications are made to further refine and optimize antibody performance.
- the humanized antibody may also comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin.
- Fc immunoglobulin constant region
- Humanized antibodies or fragments thereof can be generated by replacing sequences of the Fv variable domain that are not directly involved in antigen binding with equivalent sequences from human Fv variable domains.
- Exemplary methods for generating humanized antibodies or fragments thereof are provided by Morrison (1985) Science 229:1202-1207; by Oi et al. (1986) BioTechniques 4:214; and by US 5,585,089; US 5,693,761 ; US 5,693,762; US 5,859,205; and US 6,407,213. Those methods include isolating, manipulating, and expressing the nucleic acid sequences that encode all or part of immunoglobulin Fv variable domains from at least one of a heavy or light chain.
- Such nucleic acids may be obtained from a hybridoma producing an antibody against a predetermined target, as described above, as well as from other sources.
- the recombinant DNA encoding the humanized antibody molecule can then be cloned into an appropriate expression vector.
- Humanized antibodies may also be produced using transgenic animals such as mice that express human heavy and light chain genes, but are incapable of expressing the endogenous mouse immunoglobulin heavy and light chain genes. Winter describes an exemplary CDR grafting method that may be used to prepare the humanized antibodies described herein (U.S. Patent No. 5,225,539).
- All of the CDRs of a particular human antibody may be replaced with at least a portion of a non-human CDR, or only some of the CDRs may be replaced with non-human CDRs. It is only necessary to replace the number of CDRs required for binding of the humanized antibody to a predetermined antigen.
- a humanized antibody can be optimized by the introduction of conservative substitutions, consensus sequence substitutions, germline substitutions and/or back mutations.
- Such altered immunoglobulin molecules can be made by any of several techniques known in the art, (e.g., Teng et al., Proc. Natl. Acad. Sci. U.S.A., 80: 7308-7312, 1983; Kozbor et al., Immunology Today, 4: 7279, 1983; Olsson et al., Meth. Enzymol., 92: 3- 16, 1982, and EP 239 400).
- human antibody includes antibodies, antibody constructs and binding domains having antibody regions such as variable and constant regions or domains which correspond substantially to human germline immunoglobulin sequences known in the art, including, for example, those described by Kabat et al. (1991 ) (loc. cit.).
- the human antibodies, antibody constructs or binding domains of the invention may include amino acid residues not encoded by human germline immunoglobulin sequences (e.g., mutations introduced by random or side-specific mutagenesis in vitro or by somatic mutation in vivo), for example in the CDRs, and in particular, in CDR3.
- human antibodies, antibody constructs or binding domains can have at least one, two, three, four, five, or more positions replaced with an amino acid residue that is not encoded by the human germline immunoglobulin sequence.
- a "fully human antibody” does not include amino acid residues not encoded by human germline immunoglobulin sequences.
- the antibody constructs of the invention are “isolated” or “substantially pure” antibody constructs.
- “Isolated” or “substantially pure”, when used to describe the antibody constructs disclosed herein, means an antibody construct that has been identified, separated and/or recovered from a component of its production environment.
- the antibody construct is free or substantially free of association with all other components from its production environment. Contaminant components of its production environment, such as that resulting from recombinant transfected cells, are materials that would typically interfere with diagnostic or therapeutic uses for the polypeptide, and may include enzymes, hormones, and other proteinaceous or non-proteinaceous solutes.
- the antibody constructs may e.g constitute at least about 5%, or at least about 50% by weight of the total protein in a given sample. It is understood that the isolated protein may constitute from 5% to 99.9% by weight of the total protein content, depending on the circumstances.
- the polypeptide may be made at a significantly higher concentration through the use of an inducible promoter or high expression promoter, such that it is made at increased concentration levels.
- the definition includes the production of an antibody construct in a wide variety of organisms and/or host cells that are known in the art.
- the antibody construct will be purified (1 ) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of a spinning cup sequenator, or (2) to homogeneity by SDS-PAGE under non-reducing or reducing conditions using Coomassie blue or, preferably, silver stain.
- an isolated antibody construct will be prepared by at least one purification step.
- binding domain characterizes in connection with the present invention a domain which (specifically) binds to / interacts with / recognizes a given target epitope or a given target side on the target molecules (antigens), e.g. CD33 and CD3, respectively.
- the structure and function of the first binding domain (recognizing e.g. CD33), and preferably also the structure and/or function of the second binding domain (recognizing CD3), is/are based on the structure and/or function of an antibody, e.g. of a full-length or whole immunoglobulin molecule and/or is/are drawn from the variable heavy chain (VH) and/or variable light chain (VL) domains of an antibody or fragment thereof.
- VH variable heavy chain
- VL variable light chain
- the first binding domain is characterized by the presence of three light chain CDRs (i.e. CDR1 , CDR2 and CDR3 of the VL region) and/or three heavy chain CDRs (i.e. CDR1 , CDR2 and CDR3 of the VH region).
- the second binding domain preferably also comprises the minimum structural requirements of an antibody which allow for the target binding. More preferably, the second binding domain comprises at least three light chain CDRs (i.e. CDR1 , CDR2 and CDR3 of the VL region) and/or three heavy chain CDRs (i.e. CDR1 , CDR2 and CDR3 of the VH region). It is envisaged that the first and/or second binding domain is produced by or obtainable by phage-display or library screening methods rather than by grafting CDR sequences from a pre-existing (monoclonal) antibody into a scaffold.
- binding domains are in the form of one or more polypeptides.
- polypeptides may include proteinaceous parts and non-proteinaceous parts (e.g. chemical linkers or chemical cross-linking agents such as glutaraldehyde).
- Proteins including fragments thereof, preferably biologically active fragments, and peptides, usually having less than 30 amino acids) comprise two or more amino acids coupled to each other via a covalent peptide bond (resulting in a chain of amino acids).
- polypeptide as used herein describes a group of molecules, which usually consist of more than 30 amino acids. Polypeptides may further form multimers such as dimers, trimers and higher oligomers, i.e., consisting of more than one polypeptide molecule. Polypeptide molecules forming such dimers, trimers etc. may be identical or non-identical. The corresponding higher order structures of such multimers are, consequently, termed homo- or heterodimers, homo- or heterotrimers etc.
- An example for a heteromultimer is an antibody molecule, which, in its naturally occurring form, consists of two identical light polypeptide chains and two identical heavy polypeptide chains.
- peptide also refer to naturally modified peptides / polypeptides / proteins wherein the modification is effected e.g. by post-translational modifications like glycosylation, acetylation, phosphorylation and the like.
- a “peptide”, “polypeptide” or “protein” when referred to herein may also be chemically modified such as pegylated. Such modifications are well known in the art and described herein below.
- the binding domain which binds to the target cell surface antigen and/or the binding domain which binds to CD3s is/are human binding domains.
- Antibodies and antibody constructs comprising at least one human binding domain avoid some of the problems associated with antibodies or antibody constructs that possess non-human such as rodent (e.g. murine, rat, hamster or rabbit) variable and/or constant regions. The presence of such rodent derived proteins can lead to the rapid clearance of the antibodies or antibody constructs or can lead to the generation of an immune response against the antibody or antibody construct by a patient.
- rodent derived antibodies or antibody constructs human or fully human antibodies / antibody constructs can be generated through the introduction of human antibody function into a rodent so that the rodent produces fully human antibodies.
- Fully human antibodies or antibody constructs are expected to minimize the immunogenic and allergic responses intrinsic to mouse or mouse-derivatized mAbs and thus to increase the efficacy and safety of the administered antibodies / antibody constructs.
- the use of fully human antibodies or antibody constructs can be expected to provide a substantial advantage in the treatment of chronic and recurring human diseases, such as inflammation, autoimmunity, and cancer, which require repeated compound administrations.
- the XenoMouse strains were engineered with yeast artificial chromosomes (YACs) containing 245 kb and 190 kb-sized germline configuration fragments of the human heavy chain locus and kappa light chain locus, respectively, which contained core variable and constant region sequences.
- YACs yeast artificial chromosomes
- the human Ig containing YACs proved to be compatible with the mouse system for both rearrangement and expression of antibodies and were capable of substituting for the inactivated mouse Ig genes. This was demonstrated by their ability to induce B cell development, to produce an adult-like human repertoire of fully human antibodies, and to generate antigen-specific human mAbs.
- minilocus an exogenous Ig locus is mimicked through the inclusion of pieces (individual genes) from the Ig locus.
- VH genes, one or more DH genes, one or more JH genes, a mu constant region, and a second constant region are formed into a construct for insertion into an animal.
- Kirin has also demonstrated the generation of human antibodies from mice in which, through microcell fusion, large pieces of chromosomes, or entire chromosomes, have been introduced. See European Patent Application Nos. 773 288 and 843 961 .
- Xenerex Biosciences is developing a technology for the potential generation of human antibodies.
- SCID mice are reconstituted with human lymphatic cells, e.g., B and/or T cells. Mice are then immunized with an antigen and can generate an immune response against the antigen. See U.S. Pat. Nos. 5,476,996; 5,698,767; and 5,958,765.
- HAMA Human anti-mouse antibody
- HACA human anti- chimeric antibody
- the terms “(specifically) binds to”, (specifically) recognizes”, “is (specifically) directed to”, and “(specifically) reacts with” mean in accordance with this invention that a binding domain interacts or specifically interacts with a given epitope or a given target side on the target molecules (antigens), here: target cell surface antigen and CD3s, respectively.
- epitope refers to a side on an antigen to which a binding domain, such as an antibody or immunoglobulin, or a derivative, fragment or variant of an antibody or an immunoglobulin, specifically binds.
- a binding domain such as an antibody or immunoglobulin, or a derivative, fragment or variant of an antibody or an immunoglobulin, specifically binds.
- An “epitope” is antigenic and thus the term epitope is sometimes also referred to herein as “antigenic structure” or “antigenic determinant”.
- the binding domain is an "antigen interaction side”. Said binding/interaction is also understood to define a "specific recognition”.
- Epitopes can be formed both by contiguous amino acids or non-contiguous amino acids juxtaposed by tertiary folding of a protein.
- a “linear epitope” is an epitope where an amino acid primary sequence comprises the recognized epitope.
- a linear epitope typically includes at least 3 or at least 4, and more usually, at least 5 or at least 6 or at least 7, for example, about 8 to about 10 amino acids in a unique sequence.
- a “conformational epitope”, in contrast to a linear epitope, is an epitope wherein the primary sequence of the amino acids comprising the epitope is not the sole defining component of the epitope recognized (e.g., an epitope wherein the primary sequence of amino acids is not necessarily recognized by the binding domain).
- a conformational epitope comprises an increased number of amino acids relative to a linear epitope.
- the binding domain recognizes a three- dimensional structure of the antigen, preferably a peptide or protein or fragment thereof (in the context of the present invention, the antigenic structure for one of the binding domains is comprised within the target cell surface antigen protein).
- a protein molecule folds to form a three-dimensional structure
- certain amino acids and/or the polypeptide backbone forming the conformational epitope become juxtaposed enabling the antibody to recognize the epitope.
- Methods of determining the conformation of epitopes include, but are not limited to, x-ray crystallography, two-dimensional nuclear magnetic resonance (2D-NMR) spectroscopy and site-directed spin labelling and electron paramagnetic resonance (EPR) spectroscopy.
- 2D-NMR two-dimensional nuclear magnetic resonance
- EPR electron paramagnetic resonance
- a method for epitope mapping is described in the following: When a region (a contiguous amino acid stretch) in the human target cell surface antigen protein is exchanged / replaced with its corresponding region of a non-human and non-primate target cell surface antigen (e.g., mouse target cell surface antigen, but others like chicken, rat, hamster, rabbit etc. might also be conceivable), a decrease in the binding of the binding domain is expected to occur, unless the binding domain is cross-reactive for the non-human, non-primate target cell surface antigen used.
- a non-human and non-primate target cell surface antigen e.g., mouse target cell surface antigen, but others like chicken, rat, hamster, rabbit etc. might also be conceivable
- Said decrease is preferably at least 10%, 20%, 30%, 40%, or 50%; more preferably at least 60%, 70%, or 80%, and most preferably 90%, 95% or even 100% in comparison to the binding to the respective region in the human target cell surface antigen protein, whereby binding to the respective region in the human target cell surface antigen protein is set to be 100%.
- the aforementioned human target cell surface antigen / non-human target cell surface antigen chimeras are expressed in CHO cells. It is also envisaged that the human target cell surface antigen / non-human target cell surface antigen chimeras are fused with a transmembrane domain and/or cytoplasmic domain of a different membrane-bound protein such as EpCAM.
- truncated versions of the human target cell surface antigen extracellular domain can be generated in order to determine a specific region that is recognized by a binding domain.
- the different extracellular target cell surface antigen domains / sub-domains or regions are stepwise deleted, starting from the N-terminus.
- the truncated target cell surface antigen versions may be expressed in CHO cells. It is also envisaged that the truncated target cell surface antigen versions may be fused with a transmembrane domain and/or cytoplasmic domain of a different membrane-bound protein such as EpCAM.
- the truncated target cell surface antigen versions may encompass a signal peptide domain at their N-terminus, for example a signal peptide derived from mouse IgG heavy chain signal peptide. It is furthermore envisaged that the truncated target cell surface antigen versions may encompass a v5 domain at their N-terminus (following the signal peptide) which allows verifying their correct expression on the cell surface. A decrease or a loss of binding is expected to occur with those truncated target cell surface antigen versions which do not encompass any more the target cell surface antigen region that is recognized by the binding domain.
- the decrease of binding is preferably at least 10%, 20%, 30%, 40%, 50%; more preferably at least 60%, 70%, 80%, and most preferably 90%, 95% or even 100%, whereby binding to the entire human target cell surface antigen protein (or its extracellular region or domain) is set to be 100.
- a further method to determine the contribution of a specific residue of a target cell surface antigen to the recognition by an antibody construct or binding domain is alanine scanning (see e.g. Morrison KL & Weiss GA. Cur Opin Chem Biol. 2001 Jun;5(3):302-7), where each residue to be analyzed is replaced by alanine, e.g. via site-directed mutagenesis.
- Alanine is used because of its non-bulky, chemically inert, methyl functional group that nevertheless mimics the secondary structure references that many of the other amino acids possess. Sometimes bulky amino acids such as valine or leucine can be used in cases where conservation of the size of mutated residues is desired.
- Alanine scanning is a mature technology which has been used for a long period of time.
- the interaction between the binding domain and the epitope or the region comprising the epitope implies that a binding domain exhibits appreciable affinity for the epitope / the region comprising the epitope on a particular protein or antigen (here: target cell surface antigen and CD3, respectively) and, generally, does not exhibit significant reactivity with proteins or antigens other than the target cell surface antigen or CD3.
- "Appreciable affinity” includes binding with an affinity of about 10 "6 M (KD) or stronger.
- binding is considered specific when the binding affinity is about 10 "12 to 10 "8 M, 10 "12 to 10 “9 M, 10 "12 to 10 “10 M, 10 "11 to 10 “8 M, preferably of about 10 "11 to 10 "9 M.
- Whether a binding domain specifically reacts with or binds to a target can be tested readily by, inter alia, comparing the reaction of said binding domain with a target protein or antigen with the reaction of said binding domain with proteins or antigens other than the target cell surface antigen or CD3.
- a binding domain of the invention does not essentially or substantially bind to proteins or antigens other than the target cell surface antigen or CD3 (i.e., the first binding domain is not capable of binding to proteins other than the target cell surface antigen and the second binding domain is not capable of binding to proteins other than CD3).
- the first binding domain is not capable of binding to proteins other than the target cell surface antigen and the second binding domain is not capable of binding to proteins other than CD3.
- the longer half-life of the antibody constructs according to the present invention may reduce the duration and frequency of administration which typically contributes to improved patient compliance. This is of particular importance as the antibody constructs of the present invention are particularly beneficial for highly weakened or even multimorbide cancer patients.
- the term "does not essentially / substantially bind” or “is not capable of binding” means that a binding domain of the present invention does not bind a protein or antigen other than the target cell surface antigen or CD3, i.e., does not show reactivity of more than 30%, preferably not more than 20%, more preferably not more than 10%, particularly preferably not more than 9%, 8%, 7%, 6% or 5% with proteins or antigens other than the target cell surface antigen or CD3, whereby binding to the target cell surface antigen or CD3, respectively, is set to be 100%.
- binding is believed to be effected by specific motifs in the amino acid sequence of the binding domain and the antigen.
- binding is achieved as a result of their primary, secondary and/or tertiary structure as well as the result of secondary modifications of said structures.
- the specific interaction of the antigen-interaction-side with its specific antigen may result in a simple binding of said side to the antigen.
- the specific interaction of the antigen-interaction-side with its specific antigen may alternatively or additionally result in the initiation of a signal, e.g. due to the induction of a change of the conformation of the antigen, an oligomerization of the antigen, etc.
- variable refers to the portions of the antibody or immunoglobulin domains that exhibit variability in their sequence and that are involved in determining the specificity and binding affinity of a particular antibody (i.e., the "variable domain(s)").
- VH variable heavy chain
- VL variable light chain
- variable domains of antibodies are not evenly distributed throughout the variable domains of antibodies; it is concentrated in sub-domains of each of the heavy and light chain variable regions. These sub-domains are called “hypervariable regions” or “complementarity determining regions” (CDRs).
- CDRs complementarity determining regions
- the more conserved (i.e., non-hypervariable) portions of the variable domains are called the "framework" regions (FRM or FR) and provide a scaffold for the six CDRs in three dimensional space to form an antigen-binding surface.
- variable domains of naturally occurring heavy and light chains each comprise four FRM regions (FR1 , FR2, FR3, and FR4), largely adopting a ⁇ -sheet configuration, connected by three hypervariable regions, which form loops connecting, and in some cases forming part of, the ⁇ -sheet structure.
- the hypervariable regions in each chain are held together in close proximity by the FRM and, with the hypervariable regions from the other chain, contribute to the formation of the antigen-binding side (see Kabat et al., loc. cit.).
- CDR refers to the complementarity determining region of which three make up the binding character of a light chain variable region (CDR-L1 , CDR-L2 and CDR-L3) and three make up the binding character of a heavy chain variable region (CDR-H1 , CDR-H2 and CDR-H3).
- CDRs contain most of the residues responsible for specific interactions of the antibody with the antigen and hence contribute to the functional activity of an antibody molecule: they are the main determinants of antigen specificity.
- CDRs may therefore be referred to by Kabat, Chothia, contact or any other boundary definitions, including the numbering system described herein. Despite differing boundaries, each of these systems has some degree of overlap in what constitutes the so called "hypervariable regions" within the variable sequences. CDR definitions according to these systems may therefore differ in length and boundary areas with respect to the adjacent framework region. See for example Kabat (an approach based on cross-species sequence variability), Chothia (an approach based on crystallographic studies of antigen-antibody complexes), and/or MacCallum (Kabat et al., loc. cit; Chothia et al., J. Mol.
- CDRs form a loop structure that can be classified as a canonical structure.
- canonical structure refers to the main chain conformation that is adopted by the antigen binding (CDR) loops. From comparative structural studies, it has been found that five of the six antigen binding loops have only a limited repertoire of available conformations. Each canonical structure can be characterized by the torsion angles of the polypeptide backbone. Correspondent loops between antibodies may, therefore, have very similar three dimensional structures, despite high amino acid sequence variability in most parts of the loops (Chothia and Lesk, J. Mol.
- the term "canonical structure” may also include considerations as to the linear sequence of the antibody, for example, as catalogued by Kabat (Kabat et al., loc. cit).
- Kabat numbering scheme system
- the Kabat numbering scheme is a widely adopted standard for numbering the amino acid residues of an antibody variable domain in a consistent manner and is the preferred scheme applied in the present invention as also mentioned elsewhere herein. Additional structural considerations can also be used to determine the canonical structure of an antibody. For example, those differences not fully reflected by Kabat numbering can be described by the numbering system of Chothia et al. and/or revealed by other techniques, for example, crystallography and two- or three-dimensional computational modeling.
- a given antibody sequence may be placed into a canonical class which allows for, among other things, identifying appropriate chassis sequences (e.g., based on a desire to include a variety of canonical structures in a library).
- Kabat numbering of antibody amino acid sequences and structural considerations as described by Chothia et al., loc. cit. and their implications for construing canonical aspects of antibody structure are described in the literature.
- the subunit structures and three-dimensional configurations of different classes of immunoglobulins are well known in the art. For a review of the antibody structure, see Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, eds. Harlow et al., 1988.
- the CDR3 of the light chain and, particularly, the CDR3 of the heavy chain may constitute the most important determinants in antigen binding within the light and heavy chain variable regions.
- the heavy chain CDR3 appears to constitute the major area of contact between the antigen and the antibody.
- CDR3 is typically the greatest source of molecular diversity within the antibody-binding side.
- H3 for example, can be as short as two amino acid residues or greater than 26 amino acids.
- each light (L) chain is linked to a heavy (H) chain by one covalent disulfide bond, while the two H chains are linked to each other by one or more disulfide bonds depending on the H chain isotype.
- the CH domain most proximal to VH is usually designated as CH 1.
- the constant (“C") domains are not directly involved in antigen binding, but exhibit various effector functions, such as antibody- dependent, cell-mediated cytotoxicity and complement activation.
- the Fc region of an antibody is comprised within the heavy chain constant domains and is for example able to interact with cell surface located Fc receptors.
- the sequence of antibody genes after assembly and somatic mutation is highly varied, and these varied genes are estimated to encode 10 10 different antibody molecules (Immunoglobulin Genes, 2 ed., eds. Jonio et al., Academic Press, San Diego, CA, 1995). Accordingly, the immune system provides a repertoire of immunoglobulins.
- the term "repertoire” refers to at least one nucleotide sequence derived wholly or partially from at least one sequence encoding at least one immunoglobulin.
- the sequence(s) may be generated by rearrangement in vivo of the V, D, and J segments of heavy chains, and the V and J segments of light chains.
- sequence(s) can be generated from a cell in response to which rearrangement occurs, e.g., in vitro stimulation.
- part or all of the sequence(s) may be obtained by DNA splicing, nucleotide synthesis, mutagenesis, and other methods, see, e.g., U.S. Patent 5,565,332.
- a repertoire may include only one sequence or may include a plurality of sequences, including ones in a genetically diverse collection.
- Fc portion or "Fc monomer” means in connection with this invention a polypeptide comprising at least one domain having the function of a CH2 domain and at least one domain having the function of a CH3 domain of an immunoglobulin molecule.
- the polypeptide comprising those CH domains is a "polypeptide monomer”.
- An Fc monomer can be a polypeptide comprising at least a fragment of the constant region of an immunoglobulin excluding the first constant region immunoglobulin domain of the heavy chain (CH1 ), but maintaining at least a functional part of one CH2 domain and a functional part of one CH3 domain, wherein the CH2 domain is amino terminal to the CH3 domain.
- an Fc monomer can be a polypeptide constant region comprising a portion of the Ig-Fc hinge region, a CH2 region and a CH3 region, wherein the hinge region is amino terminal to the CH2 domain. It is envisaged that the hinge region of the present invention promotes dimerization.
- Such Fc polypeptide molecules can be obtained by papain digestion of an immunoglobulin region (of course resulting in a dimer of two Fc polypeptide), for example and not limitation.
- an Fc monomer can be a polypeptide region comprising a portion of a CH2 region and a CH3 region.
- Fc polypeptide molecules can be obtained by pepsin digestion of an immunoglobulin molecule, for example and not limitation.
- the polypeptide sequence of an Fc monomer is substantially similar to an Fc polypeptide sequence of: an Igd Fc region, an lgG 2 Fc region, an lgG 3 Fc region, an lgG 4 Fc region, an IgM Fc region, an IgA Fc region, an IgD Fc region and an IgE Fc region.
- Fc monomer refers to the last two heavy chain constant region immunoglobulin domains of IgA, IgD, and IgG, and the last three heavy chain constant region immunoglobulin domains of IgE and IgM. As mentioned, the Fc monomer can also include the flexible hinge N-terminal to these domains. For IgA and IgM, the Fc monomer may include the J chain. For IgG, the Fc portion comprises immunoglobulin domains CH2 and CH3 and the hinge between the first two domains and CH2.
- CH2 and CH3 domain can be defined e.g. to comprise residues D231 (of the hinge domain - corresponding to D234 in Table 1 below)) to P476, respectively L476 (for lgG 4 ) of the carboxyl-terminus of the CH3 domain, wherein the numbering is according to Kabat.
- the two Fc portions or Fc monomers, which are fused to each other via a peptide linker define the third domain of the antibody construct of the invention, which may also be defined as scFc domain.
- a scFc domain as disclosed herein, respectively the Fc monomers fused to each other are comprised only in the third domain of the antibody construct.
- an IgG hinge region can be identified by analogy using the Kabat numbering as set forth in Table 1 .
- a hinge domain/region of the present invention comprises the amino acid residues corresponding to the IgGi sequence stretch of D234 to P243 according to the Kabat numbering.
- a hinge domain/region of the present invention comprises or consists of the lgG1 hinge sequence DKTHTCPPCP (SEQ ID NO: 1449) (corresponding to the stretch D234 to P243 as shown in Table 1 below - variations of said sequence are also envisaged provided that the hinge region still promotes dimerization ).
- the glycosylation site at Kabat position 314 of the CH2 domains in the third domain of the antibody construct is removed by a N314X substitution, wherein X is any amino acid excluding Q.
- Said substitution is preferably a N314G substitution.
- said CH2 domain additionally comprises the following substitutions (position according to Kabat) V321 C and R309C (these substitutions introduce the intra domain cysteine disulfide bridge at Kabat positions 309 and 321 ).
- the third domain of the antibody construct of the invention comprises or consists in an amino to carboxyl order: DKTHTCPPCP (SEQ ID NO: 1449) (i.e. hinge) - CH2-CH3-linker- DKTHTCPPCP (SEQ ID NO: 1449) (i.e. hinge) -CH2-CH3.
- the peptide linker of the aforementioned antibody construct is in a preferred embodiment characterized by the amino acid sequence Gly-Gly-Gly-Gly-Ser, i.e. Gly 4 Ser (SEQ ID NO: 1 ), or polymers thereof, i.e. (Gly 4 Ser)x, where x is an integer of 5 or greater (e.g. 5, 6, 7, 8 etc.
- Said construct may further comprise the aforementioned substitutions N314X, preferably N314G, and/or the further substitutions V321 C and R309C.
- the second domain binds to an extracellular epitope of the human and/or the Macaca CD3e chain.
- the hinge domain/region comprises or consists of the lgG2 subtype hinge sequence ERKCCVECPPCP (SEQ ID NO: 1450), the lgG3 subtype hinge sequence ELKTPLDTTHTCPRCP (SEQ ID NO: 1451 ) or ELKTPLGDTTHTCPRCP (SEQ ID NO: 1458), and/or the lgG4 subtype hinge sequence ESKYGPPCPSCP (SEQ ID NO: 1452).
- the lgG1 subtype hinge sequence may be the following one EPKSCDKTHTCPPCP (as shown in Table 1 and SEQ ID NO: 1459).
- the peptide linker by whom the polypeptide monomers ("Fc portion" or "Fc monomer") of the third domain are fused to each other, preferably comprises at least 25 amino acid residues (25, 26, 27, 28, 29, 30 etc.). More preferably, this peptide linker comprises at least 30 amino acid residues (30, 31 , 32, 33, 34, 35 etc.). It is also preferred that the linker comprises up to 40 amino acid residues, more preferably up to 35 amino acid residues, most preferably exactly 30 amino acid residues.
- a preferred embodiment of such peptide linker is characterized by the amino acid sequence Gly-Gly-Gly-Gly-Ser, i.e.
- Gly 4 Ser SEQ ID NO: 1
- polymers thereof i.e. (Gly 4 Ser)x
- x is an integer of 5 or greater (e.g. 6, 7 or 8).
- the integer is 6 or 7, more preferably the integer is 6.
- this linker is preferably of a length and sequence sufficient to ensure that each of the first and second domains can, independently from one another, retain their differential binding specificities.
- those peptide linkers are preferred which comprise only a few number of amino acid residues, e.g. 12 amino acid residues or less.
- peptide linkers of 12, 1 1 , 10, 9, 8, 7, 6 or 5 amino acid residues are preferred.
- An envisaged peptide linker with less than 5 amino acids comprises 4, 3, 2 or one amino acid(s), wherein Gly-rich linkers are preferred.
- a preferred embodiment of the peptide linker for a fusion the first and the second domain is depicted in SEQ ID NO:1 .
- a preferred linker embodiment of the peptide linker for a fusion the second and the third domain is a (Gly) 4 -linker, respectively G 4 -linker.
- a particularly preferred "single" amino acid in the context of one of the above described “peptide linker” is Gly. Accordingly, said peptide linker may consist of the single amino acid Gly.
- a peptide linker is characterized by the amino acid sequence Gly-Gly-Gly-Gly-Ser, i.e. Gly 4 Ser (SEQ ID NO: 1 ), or polymers thereof, i.e. (Gly 4 Ser)x, where x is an integer of 1 or greater (e.g. 2 or 3).
- Preferred linkers are depicted in SEQ ID NOs: 1 to 12.
- the first and second domain form an antibody construct in a format selected from the group consisting of (scFv) 2 , scFv-single domain mAb, diabody and oligomers of any of the those formats [152]
- the first and the second domain of the antibody construct of the invention is a "bispecific single chain antibody construct", more prefereably a bispecific "single chain Fv" (scFv).
- the two domains of the Fv fragment, VL and VH are coded for by separate genes, they can be joined, using recombinant methods, by a synthetic linker - as described hereinbefore - that enables them to be made as a single protein chain in which the VL and VH regions pair to form a monovalent molecule; see e.g., Huston et al. (1988) Proc. Natl. Acad. Sci USA 85:5879-5883).
- These antibody fragments are obtained using conventional techniques known to those with skill in the art, and the fragments are evaluated for function in the same manner as are whole or full-length antibodies.
- a single- chain variable fragment is hence a fusion protein of the variable region of the heavy chain (VH) and of the light chain (VL) of immunoglobulins, usually connected with a short linker peptide of about ten to about 25 amino acids, preferably about 15 to 20 amino acids.
- the linker is usually rich in glycine for flexibility, as well as serine or threonine for solubility, and can either connect the N-terminus of the VH with the C-terminus of the VL, or vice versa. This protein retains the specificity of the original immunoglobulin, despite removal of the constant regions and introduction of the linker.
- Bispecific single chain antibody constructs are known in the art and are described in WO 99/54440, Mack, J. Immunol. (1997), 158, 3965-3970, Mack, PNAS, (1995), 92, 7021 - 7025, Kufer, Cancer Immunol. Immunother., (1997), 45, 193-197, Loffler, Blood, (2000), 95, 6, 2098-2103, Bruhl, Immunol., (2001 ), 166, 2420-2426, Kipriyanov, J. Mol. Biol., (1999), 293, 41 -56. Techniques described for the production of single chain antibodies (see, inter alia, US Patent 4,946,778, Kontermann and Dubel (2010), loc. cit. and Little (2009), loc.
- Bivalent (also called divalent) or bispecific single-chain variable fragments (bi-scFvs or di-scFvs having the format (scFv) 2 can be engineered by linking two scFv molecules (e.g. with linkers as described hereinbefore). If these two scFv molecules have the same binding specificity, the resulting (scFv) 2 molecule will preferably be called bivalent (i.e. it has two valences for the same target epitope). If the two scFv molecules have different binding specificities, the resulting (scFv) 2 molecule will preferably be called bispecific.
- the linking can be done by producing a single peptide chain with two VH regions and two VL regions, yielding tandem scFvs (see e.g. Kufer P. et al., (2004) Trends in Biotechnology 22(5):238- 244).
- Another possibility is the creation of scFv molecules with linker peptides that are too short for the two variable regions to fold together (e.g. about five amino acids), forcing the scFvs to dimerize. This type is known as diabodies (see e.g. Hollinger, Philipp et al., (July 1993) Proceedings of the National Academy of Sciences of the United States of America 90 (14): 6444-8).
- either the first, the second or the first and the second domain may comprise a single domain antibody, respectively the variable domain or at least the CDRs of a single domain antibody.
- Single domain antibodies comprise merely one (monomeric) antibody variable domain which is able to bind selectively to a specific antigen, independently of other V regions or domains.
- the first single domain antibodies were engineered from havy chain antibodies found in camelids, and these are called V H H fragments.
- Cartilaginous fishes also have heavy chain antibodies (IgNAR) from which single domain antibodies called V NA R fragments can be obtained.
- An alternative approach is to split the dimeric variable domains from common immunoglobulins e.g.
- VH or VL as a single domain Ab.
- nanobodies derived from light chains have also been shown to bind specifically to target epitopes. Examples of single domain antibodies are called sdAb, nanobodies or single variable domain antibodies.
- a (single domain mAb) 2 is hence a monoclonal antibody construct composed of (at least) two single domain monoclonal antibodies, which are individually selected from the group comprising V H , V L , V H H and V NA R.
- the linker is preferably in the form of a peptide linker.
- an "scFv-single domain mAb" is a monoclonal antibody construct composed of at least one single domain antibody as described above and one scFv molecule as described above. Again, the linker is preferably in the form of a peptide linker.
- an antibody construct competes for binding with another given antibody construct can be measured in a competition assay such as a competitive ELISA or a cell-based competition assay.
- Avidin-coupled microparticles can also be used. Similar to an avidin-coated ELISA plate, when reacted with a biotinylated protein, each of these beads can be used as a substrate on which an assay can be performed. Antigen is coated onto a bead and then precoated with the first antibody. The second antibody is added and any additional binding is determined. Possible means for the read-out includes flow cytometry.
- T cells or T lymphocytes are a type of lymphocyte (itself a type of white blood cell) that play a central role in cell-mediated immunity. There are several subsets of T cells, each with a distinct function. T cells can be distinguished from other lymphocytes, such as B cells and NK cells, by the presence of a T cell receptor (TCR) on the cell surface.
- TCR T cell receptor
- the TCR is responsible for recognizing antigens bound to major histocompatibility complex (MHC) molecules and is composed of two different protein chains. In 95% of the T cells, the TCR consists of an alpha (a) and beta ( ⁇ ) chain.
- the T lymphocyte When the TCR engages with antigenic peptide and MHC (peptide / MHC complex), the T lymphocyte is activated through a series of biochemical events mediated by associated enzymes, co-receptors, specialized adaptor molecules, and activated or released transcription factors.
- the CD3 receptor complex is a protein complex and is composed of four chains. In mammals, the complex contains a CD3y (gamma) chain, a CD35 (delta) chain, and two CD3e (epsilon) chains. These chains associate with the T cell receptor (TCR) and the so- called ⁇ (zeta) chain to form the T cell receptor CD3 complex and to generate an activation signal in T lymphocytes.
- the CD3y (gamma), CD35 (delta), and CD3e (epsilon) chains are highly related cell-surface proteins of the immunoglobulin superfamily containing a single extracellular immunoglobulin domain.
- the intracellular tails of the CD3 molecules contain a single conserved motif known as an immunoreceptor tyrosine-based activation motif or ITAM for short, which is essential for the signaling capacity of the TCR.
- the CD3 epsilon molecule is a polypeptide which in humans is encoded by the CD3E gene which resides on chromosome 1 1.
- the most preferred epitope of CD3 epsilon is comprised within amino acid residues 1 -27 of the human CD3 epsilon extracellular domain. It is envisaged that antibody constructs according to the present invention typically and advantageously show less unspecific T cell activation, which is not desired in specific immunotherapy. This translates to a reduced risk of side effects.
- the redirected lysis of target cells via the recruitment of T cells by a multispecific, at least bispecific, antibody construct involves cytolytic synapse formation and delivery of perforin and granzymes.
- the engaged T cells are capable of serial target cell lysis, and are not affected by immune escape mechanisms interfering with peptide antigen processing and presentation, or clonal T cell differentiation; see, for example, WO 2007/042261 .
- Cytotoxicity mediated by antibody constructs of the invention can be measured in various ways.
- Effector cells can be e.g. stimulated enriched (human) CD8 positive T cells or unstimulated (human) peripheral blood mononuclear cells (PBMC). If the target cells are of macaque origin or express or are transfected with macaque target cell surface antigen which is bound by the first domain, the effector cells should also be of macaque origin such as a macaque T cell line, e.g. 41 19LnPx. The target cells should express (at least the extracellular domain of) the target cell surface antigen, e.g. human or macaque target cell surface antigen.
- PBMC peripheral blood mononuclear cells
- Target cells can be a cell line (such as CHO) which is stably or transiently transfected with target cell surface antigen, e.g. human or macaque target cell surface antigen.
- the target cells can be a target cell surface antigen positive natural expresser cell line.
- E:T effector to target cell
- Cytotoxic activity of target cell surface antigenxCD3 bispecific antibody constructs can be measured in a 51 Cr-release assay (incubation time of about 18 hours) or in a in a FACS-based cytotoxicity assay (incubation time of about 48 hours).
- Modifications of the assay incubation time are also possible.
- Other methods of measuring cytotoxicity are well-known to the skilled person and comprise MTT or MTS assays, ATP-based assays including bioluminescent assays, the sulforhodamine B (SRB) assay, WST assay, clonogenic assay and the ECIS technology.
- the cytotoxic activity mediated by target cell surface antigenxCD3 bispecific antibody constructs of the present invention is preferably measured in a cell-based cytotoxicity assay. It may also be measured in a 51 Cr-release assay. It is represented by the EC 50 value, which corresponds to the half maximal effective concentration (concentration of the antibody construct which induces a cytotoxic response halfway between the baseline and maximum).
- the EC 50 value of the target cell surface antigenxCD3 bispecific antibody constructs is ⁇ 5000 pM or ⁇ 4000 pM, more preferably ⁇ 3000 pM or ⁇ 2000 pM, even more preferably ⁇ 1000 pM or ⁇ 500 pM, even more preferably ⁇ 400 pM or ⁇ 300 pM, even more preferably ⁇ 200 pM, even more preferably ⁇ 100 pM, even more preferably ⁇ 50 pM, even more preferably ⁇ 20 pM or ⁇ 10 pM, and most preferably ⁇ 5 pM.
- EC 50 values can be measured in different assays.
- the skilled person is aware that an EC 50 value can be expected to be lower when stimulated / enriched CD8 + T cells are used as effector cells, compared with unstimulated PBMC. It can furthermore be expected that the EC 50 values are lower when the target cells express a high number of the target cell surface antigen compared with a low target expression rat.
- the EC 50 value of the target cell surface antigenxCD3 bispecific antibody construct is preferably ⁇ 1000 pM, more preferably ⁇ 500 pM, even more preferably ⁇ 250 pM, even more preferably ⁇ 100 pM, even more preferably ⁇ 50 pM, even more preferably ⁇ 10 pM, and most preferably ⁇ 5 pM.
- the EC 50 value of the target cell surface antigenxCD3 bispecific antibody construct is preferably ⁇ 5000 pM or ⁇ 4000 pM (in particular when the target cells are target cell surface antigen positive human cell lines), more preferably ⁇ 2000 pM (in particular when the target cells are target cell surface antigen transfected cells such as CHO cells), more preferably ⁇ 1000 pM or ⁇ 500 pM, even more preferably ⁇ 200 pM, even more preferably ⁇ 150 pM, even more preferably ⁇ 100 pM, and most preferably ⁇ 50 pM, or lower.
- the EC 50 value of the target cell surface antigenxCD3 bispecific antibody construct is preferably ⁇ 2000 pM or ⁇ 1500 pM, more preferably ⁇ 1000 pM or ⁇ 500 pM, even more preferably ⁇ 300 pM or ⁇ 250 pM, even more preferably ⁇ 100 pM, and most preferably ⁇ 50 pM.
- the target cell surface antigenxCD3 bispecific antibody constructs of the present invention do not induce / mediate lysis or do not essentially induce / mediate lysis of target cell surface antigen negative cells such as CHO cells.
- the term "do not induce lysis”, “do not essentially induce lysis”, “do not mediate lysis” or “do not essentially mediate lysis” means that an antibody construct of the present invention does not induce or mediate lysis of more than 30%, preferably not more than 20%, more preferably not more than 10%, particularly preferably not more than 9%, 8%, 7%, 6% or 5% of target cell surface antigen negative cells, whereby lysis of a target cell surface antigen positive human cell line is set to be 100%. This usually applies for concentrations of the antibody construct of up to 500 nM. The skilled person knows how to measure cell lysis without further ado. Moreover, the present specification teaches specific instructions how to measure cell lysis.
- Potency gap The difference in cytotoxic activity between the monomeric and the dimeric isoform of individual target cell surface antigenxCD3 bispecific antibody constructs is referred to as "potency gap".
- This potency gap can e.g. be calculated as ratio between EC 5 o values of the molecule's monomeric and dimeric form.
- Potency gaps of the target cell surface antigenxCD3 bispecific antibody constructs of the present invention are preferably ⁇ 5, more preferably ⁇ 4, even more preferably ⁇ 3, even more preferably ⁇ 2 and most preferably ⁇ 1 .
- the first and/or the second (or any further) binding domain(s) of the antibody construct of the invention is/are preferably cross-species specific for members of the mammalian order of primates.
- Cross-species specific CD3 binding domains are, for example, described in WO 2008/1 19567.
- the first and/or second binding domain in addition to binding to human target cell surface antigen and human CD3, respectively, will also bind to target cell surface antigen / CD3 of primates including (but not limited to) new world primates (such as Callithrix jacchus, Saguinus Oedipus or Saimiri sciureus), old world primates (such baboons and macaques), gibbons, and non-human homininae.
- the first domain binds to human target cell surface antigen and further binds to macaque target cell surface antigen, such as target cell surface antigen of Macaca fascicularis, and more preferably, to macaque target cell surface antigen expressed on the surface macaque cells.
- the affinity of the first binding domain for macaque target cell surface antigen is preferably ⁇ 15 nM, more preferably ⁇ 10 nM, even more preferably ⁇ 5 nM, even more preferably ⁇ 1 nM, even more preferably ⁇ 0.5 nM, even more preferably ⁇ 0.1 nM, and most preferably ⁇ 0.05 nM or even ⁇ 0.01 nM.
- the affinity gap of the antibody constructs according to the invention for binding macaque target cell surface antigen versus human target cell surface antigen is ⁇ 100, preferably ⁇ 20, more preferably ⁇ 15, further preferably ⁇ 10, even more preferably ⁇ 8, more preferably ⁇ 6 and most preferably ⁇ 2.
- Preferred ranges for the affinity gap of the antibody constructs according to the invention for binding macaque target cell surface antigen versus human target cell surface antigen are between 0.1 and 20, more preferably between 0.2 and 10, even more preferably between 0.3 and 6, even more preferably between 0.5 and 3 or between 0.5 and 2.5, and most preferably between 0.5 and 2 or between 0.6 and 2.
- the second (binding) domain of the antibody construct of the invention binds to human CD3 epsilon and/or to Macaca CD3 epsilon.
- the second domain further bind to Callithrix jacchus, Saguinus Oedipus or Saimiri sciureus CD3 epsilon.
- Callithrix jacchus and Saguinus oedipus are both new world primate belonging to the family of Callitrichidae, while Saimiri sciureus is a new world primate belonging to the family of Cebidae.
- the second domain which binds to an extracellular epitope of the human and/or the Macaca CD3 on the comprises a VL region comprising CDR-L1 , CDR-L2 and CDR-L3 selected from:
- the second domain which binds to an extracellular epitope of the human and/or the Macaca CD3 epsilon chain comprises a VH region comprising CDR-H 1 , CDR-H2 and CDR-H3 selected from:
- the second domain which binds to CD3 comprises a VL region selected from the group consisting of a VL region as depicted in SEQ ID NO: 17, 21 , 35, 39, 53, 57, 71 , 75, 89, 93, 107, 1 1 1 , 125, 129, 143, 147, 161 , 165, 179 or 183 of WO 2008/1 19567 or as depicted in SEQ ID NO: 13.
- the second domain which binds to CD3 comprises a VH region selected from the group consisting of a VH region as depicted in SEQ ID NO: 15, 19, 33, 37, 51 , 55, 69, 73, 87, 91 , 105, 109, 123, 127, 141 , 145, 159, 163, 177 or 181 of WO 2008/1 19567 or as depicted in SEQ ID NO: 14.
- the antibody construct of the present invention is characterized by a second domain which binds to CD3 comprising a VL region and a VH region selected from the group consisting of:
- a second domain which binds to CD3 comprising a VL region as depicted in SEQ ID NO: 13 and a VH region as depicted in SEQ ID NO: 14.
- the first and/or the second domain have the following format:
- the pairs of VH regions and VL regions are in the format of a single chain antibody (scFv).
- the VH and VL regions are arranged in the order VH-VL or VL-VH. It is preferred that the VH-region is positioned N-terminally of a linker sequence, and the VL-region is positioned C-terminally of the linker sequence.
- a preferred embodiment of the above described antibody construct of the present invention is characterized by the second domain which binds to CD3 comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 23, 25, 41 , 43, 59, 61 , 77, 79, 95, 97, 1 13, 1 15, 131 , 133, 149, 151 , 167, 169, 185 or 187 of WO 2008/1 19567 or depicted in SEQ ID NO: 15.
- Covalent modifications of the antibody constructs are also included within the scope of this invention, and are generally, but not always, done post-translationally.
- several types of covalent modifications of the antibody construct are introduced into the molecule by reacting specific amino acid residues of the antibody construct with an organic derivatizing agent that is capable of reacting with selected side chains or the N- or C-terminal residues.
- Cysteinyl residues most commonly are reacted with ohaloacetates (and corresponding amines), such as chloroacetic acid or chloroacetamide, to give carboxymethyl or carboxyamidomethyl derivatives. Cysteinyl residues also are derivatized by reaction with bromotrifluoroacetone, a-bromo-3-(5-imidozoyl)propionic acid, chloroacetyl phosphate, N- alkylmaleimides, 3-nitro-2-pyridyl disulfide, methyl 2-pyridyl disulfide, p- chloromercuribenzoate, 2-chloromercuri-4-nitrophenol, or chloro-7-nitrobenzo-2-oxa-1 ,3- diazole.
- Histidyl residues are derivatized by reaction with diethylpyrocarbonate at pH 5.5-7.0 because this agent is relatively specific for the histidyl side chain.
- Para-bromophenacyl bromide also is useful; the reaction is preferably performed in 0.1 M sodium cacodylate at pH 6.0.
- Lysinyl and amino terminal residues are reacted with succinic or other carboxylic acid anhydrides. Derivatization with these agents has the effect of reversing the charge of the lysinyl residues.
- Suitable reagents for derivatizing alpha-amino-containing residues include imidoesters such as methyl picolinimidate; pyridoxal phosphate; pyridoxal; chloroborohydride; trinitrobenzenesulfonic acid; O-methylisourea; 2,4-pentanedione; and transaminase-catalyzed reaction with glyoxylate.
- imidoesters such as methyl picolinimidate; pyridoxal phosphate; pyridoxal; chloroborohydride; trinitrobenzenesulfonic acid; O-methylisourea; 2,4-pentanedione; and transaminase-catalyzed reaction with glyoxylate.
- Arginyl residues are modified by reaction with one or several conventional reagents, among them phenylglyoxal, 2,3-butanedione, 1 ,2-cyclohexanedione, and ninhydrin. Derivatization of arginine residues requires that the reaction be performed in alkaline conditions because of the high pKa of the guanidine functional group. Furthermore, these reagents may react with the groups of lysine as well as the arginine epsilon-amino group.
- tyrosyl residues may be made, with particular interest in introducing spectral labels into tyrosyl residues by reaction with aromatic diazonium compounds or tetranitromethane.
- aromatic diazonium compounds or tetranitromethane Most commonly, N-acetylimidizole and tetranitromethane are used to form O-acetyl tyrosyl species and 3-nitro derivatives, respectively.
- Tyrosyl residues are iodinated using 125 l or 131 1 to prepare labeled proteins for use in radioimmunoassay, the chloramine T method described above being suitable.
- R and R' are optionally different alkyl groups, such as 1 -cyclohexyl-3-(2-morpholinyl-4-ethyl) carbodiimide or 1 -ethyl-3-(4-azonia-4,4- dimethylpentyl) carbodiimide.
- aspartyl and glutamyl residues are converted to asparaginyl and glutaminyl residues by reaction with ammonium ions.
- Derivatization with bifunctional agents is useful for crosslinking the antibody constructs of the present invention to a water-insoluble support matrix or surface for use in a variety of methods.
- Commonly used crosslinking agents include, e.g., 1 ,1 -bis(diazoacetyl)-2- phenylethane, glutaraldehyde, N-hydroxysuccinimide esters, for example, esters with 4- azidosalicylic acid, homobifunctional imidoesters, including disuccinimidyl esters such as 3,3'-dithiobis(succinimidylpropionate), and bifunctional maleimides such as bis-N-maleimido- 1 ,8-octane.
- Derivatizing agents such as methyl-3-[(p-azidophenyl)dithio]propioimidate yield photoactivatable intermediates that are capable of forming crosslinks in the presence of light.
- reactive water-insoluble matrices such as cyanogen bromide-activated carbohydrates and the reactive substrates as described in U.S. Pat. Nos. 3,969,287; 3,691 ,016; 4,195,128; 4,247,642; 4,229,537; and 4,330,440 are employed for protein immobilization.
- Glutaminyl and asparaginyl residues are frequently deamidated to the corresponding glutamyl and aspartyl residues, respectively. Alternatively, these residues are deamidated under mildly acidic conditions. Either form of these residues falls within the scope of this invention.
- glycosylation patterns can depend on both the sequence of the protein (e.g., the presence or absence of particular glycosylation amino acid residues, discussed below), or the host cell or organism in which the protein is produced. Particular expression systems are discussed below.
- N-linked refers to the attachment of the carbohydrate moiety to the side chain of an asparagine residue.
- the tri-peptide sequences asparagine-X-serine and asparagine-X-threonine, where X is any amino acid except proline, are the recognition sequences for enzymatic attachment of the carbohydrate moiety to the asparagine side chain.
- O-linked glycosylation refers to the attachment of one of the sugars N-acetylgalactosamine, galactose, or xylose, to a hydroxyamino acid, most commonly serine or threonine, although 5- hydroxyproline or 5-hydroxylysine may also be used.
- Addition of glycosylation sites to the antibody construct is conveniently accomplished by altering the amino acid sequence such that it contains one or more of the above- described tri-peptide sequences (for N-linked glycosylation sites).
- the alteration may also be made by the addition of, or substitution by, one or more serine or threonine residues to the starting sequence (for O-linked glycosylation sites).
- the amino acid sequence of an antibody construct is preferably altered through changes at the DNA level, particularly by mutating the DNA encoding the polypeptide at preselected bases such that codons are generated that will translate into the desired amino acids.
- the sugar(s) may be attached to (a) arginine and histidine, (b) free carboxyl groups, (c) free sulfhydryl groups such as those of cysteine, (d) free hydroxyl groups such as those of serine, threonine, or hydroxyproline, (e) aromatic residues such as those of phenylalanine, tyrosine, or tryptophan, or (f) the amide group of glutamine.
- Removal of carbohydrate moieties present on the starting antibody construct may be accomplished chemically or enzymatically.
- Chemical deglycosylation requires exposure of the protein to the compound trifluoromethanesulfonic acid, or an equivalent compound. This treatment results in the cleavage of most or all sugars except the linking sugar (N- acetylglucosamine or N-acetylgalactosamine), while leaving the polypeptide intact.
- Chemical deglycosylation is described by Hakimuddin et al., 1987, Arch. Biochem. Biophys. 259:52 and by Edge et al., 1981 , Anal. Biochem. 1 18:131.
- Enzymatic cleavage of carbohydrate moieties on polypeptides can be achieved by the use of a variety of endo- and exo- glycosidases as described by Thotakura et al., 1987, Meth. Enzymol. 138:350. Glycosylation at potential glycosylation sites may be prevented by the use of the compound tunicamycin as described by Duskin et al., 1982, J. Biol. Chem. 257:3105. Tunicamycin blocks the formation of protein-N-glycoside linkages.
- Another type of covalent modification of the antibody construct comprises linking the antibody construct to various non-proteinaceous polymers, including, but not limited to, various polyols such as polyethylene glycol, polypropylene glycol, polyoxyalkylenes, or copolymers of polyethylene glycol and polypropylene glycol, in the manner set forth in U.S. Patent Nos. 4,640,835; 4,496,689; 4,301 ,144; 4,670,417; 4,791 ,192 or 4,179,337.
- amino acid substitutions may be made in various positions within the antibody construct, e.g.
- the covalent modification of the antibody constructs of the invention comprises the addition of one or more labels.
- the labelling group may be coupled to the antibody construct via spacer arms of various lengths to reduce potential steric hindrance.
- Various methods for labelling proteins are known in the art and can be used in performing the present invention.
- label or “labelling group” refers to any detectable label. In general, labels fall into a variety of classes, depending on the assay in which they are to be detected - the following examples include, but are not limited to:
- isotopic labels which may be radioactive or heavy isotopes, such as radioisotopes or radionuclides (e.g., 3 H, 14 C, 15 N, 35 S, 89 Zr, 90 Y, 99 Tc, 111 ln, 125 l, 131 l)
- magnetic labels e.g., magnetic particles
- optical dyes including, but not limited to, chromophores, phosphors and fluorophores
- fluorescent groups e.g., FITC, rhodamine, lanthanide phosphors
- chemiluminescent groups e.g., FITC, rhodamine, lanthanide phosphors
- fluorophores which can be either "small molecule" fluores or proteinaceous fluores
- enzymatic groups e.g. horseradish peroxidase, ⁇ -galactosidase, luciferase, alkaline phosphatase
- predetermined polypeptide epitopes recognized by a secondary reporter e.g., leucine zipper pair sequences, binding sides for secondary antibodies, metal binding domains, epitope tags, etc.
- fluorescent label any molecule that may be detected via its inherent fluorescent properties. Suitable fluorescent labels include, but are not limited to, fluorescein, rhodamine, tetramethylrhodamine, eosin, erythrosin, coumarin, methyl-coumarins, pyrene, Malacite green, stilbene, Lucifer Yellow, Cascade BlueJ, Texas Red, IAEDANS, EDANS, BODIPY FL, LC Red 640, Cy 5, Cy 5.5, LC Red 705, Oregon green, the Alexa-Fluor dyes (Alexa Fluor 350, Alexa Fluor 430, Alexa Fluor 488, Alexa Fluor 546, Alexa Fluor 568, Alexa Fluor 594, Alexa Fluor 633, Alexa Fluor 660, Alexa Fluor 680), Cascade Blue, Cascade Yellow and R-phycoerythrin (PE) (Molecular Probes, Eugene, OR), FITC, Rhod
- Suitable proteinaceous fluorescent labels also include, but are not limited to, green fluorescent protein, including a Renilla, Ptilosarcus, or Aequorea species of GFP (Chalfie et a/., 1994, Science 263:802-805), EGFP (Clontech Laboratories, Inc., Genbank Accession Number U55762), blue fluorescent protein (BFP, Quantum Biotechnologies, Inc. 1801 de Maisonneuve Blvd. West, 8th Floor, Montreal, Quebec, Canada H3H 1 J9; Stauber, 1998, Biotechniques 24:462-471 ; Heim et al., 1996, Curr. Biol.
- green fluorescent protein including a Renilla, Ptilosarcus, or Aequorea species of GFP (Chalfie et a/., 1994, Science 263:802-805), EGFP (Clontech Laboratories, Inc., Genbank Accession Number U55762), blue fluorescent protein (BFP, Quantum Biotechnologies, Inc. 18
- EYFP enhanced yellow fluorescent protein
- luciferase lchiki et al., 1993, J. Immunol. 150:5408-5417
- ⁇ galactosidase Nolan et al., 1988, Proc. Natl. Acad. Sci. U.S.A. 85:2603-2607
- Renilla W092/15673, WO95/07463, WO98/14605, W098/26277, WO99/49019, U.S. Patent Nos. 5,292,658; 5,418,155; 5,683,888; 5,741 ,668; 5,777,079; 5,804,387; 5,874,304; 5,876,995; 5,925,558).
- the antibody construct of the invention may also comprise additional domains, which are e.g. helpful in the isolation of the molecule or relate to an adapted pharmacokinetic profile of the molecule.
- Domains helpful for the isolation of an antibody construct may be selected from peptide motives or secondarily introduced moieties, which can be captured in an isolation method, e.g. an isolation column.
- additional domains comprise peptide motives known as Myc-tag, HAT-tag, HA-tag, TAP-tag, GST-tag, chitin binding domain (CBD-tag), maltose binding protein (MBP-tag), Flag-tag, Strep-tag and variants thereof (e.g. Strepll-tag) and His-tag.
- All herein disclosed antibody constructs characterized by the identified CDRs may comprise a His-tag domain, which is generally known as a repeat of consecutive His residues in the amino acid sequence of a molecule, preferably of five, and more preferably of six His residues (hexa-histidine).
- the His-tag may be located e.g. at the N- or C-terminus of the antibody construct, preferably it is located at the C-terminus.
- a hexa-histidine tag (HHHHHH) (SEQ ID NO:16) is linked via peptide bond to the C-terminus of the antibody construct according to the invention.
- a conjugate system of PLGA-PEG-PLGA may be combined with a poly-histidine tag for sustained release application and improved pharmacokinetic profile.
- Amino acid sequence modifications of the antibody constructs described herein are also contemplated. For example, it may be desirable to improve the binding affinity and/or other biological properties of the antibody construct.
- Amino acid sequence variants of the antibody constructs are prepared by introducing appropriate nucleotide changes into the antibody constructs nucleic acid, or by peptide synthesis. All of the below described amino acd sequence modifications should result in an antibody construct which still retains the desired biological activity (binding to the target cell surface antigen and to CD3) of the unmodified parental molecule.
- amino acid typically refers to an amino acid having its art recognized definition such as an amino acid selected from the group consisting of: alanine (Ala or A); arginine (Arg or R); asparagine (Asn or N); aspartic acid (Asp or D); cysteine (Cys or C); glutamine (Gin or Q); glutamic acid (Glu or E); glycine (Gly or G); histidine (His or H); isoleucine (He or I): leucine (Leu or L); lysine (Lys or K); methionine (Met or M); phenylalanine (Phe or F); pro line (Pro or P); serine (Ser or S); threonine (Thr or T); tryptophan (Trp or W); tyrosine (Tyr or Y); and valine (Val or V), although modified, synthetic, or rare amino acids may be used as desired.
- amino acids can be grouped as having a nonpolar side chain (e.g., Ala, Cys, He, Leu, Met, Phe, Pro, Val); a negatively charged side chain (e.g., Asp, Glu); a positively charged sidechain (e.g., Arg, His, Lys); or an uncharged polar side chain (e.g., Asn, Cys, Gin, Gly, His, Met, Phe, Ser, Thr, Trp, and Tyr).
- a nonpolar side chain e.g., Ala, Cys, He, Leu, Met, Phe, Pro, Val
- a negatively charged side chain e.g., Asp, Glu
- a positively charged sidechain e.g., Arg, His, Lys
- an uncharged polar side chain e.g., Asn, Cys, Gin, Gly, His, Met, Phe, Ser, Thr, Trp, and Tyr.
- Amino acid modifications include, for example, deletions from, and/or insertions into, and/or substitutions of, residues within the amino acid sequences of the antibody constructs. Any combination of deletion, insertion, and substitution is made to arrive at the final construct, provided that the final construct possesses the desired characteristics.
- the amino acid changes also may alter post-translational processes of the antibody constructs, such as changing the number or position of glycosylation sites.
- amino acids may be inserted, substituted or deleted in each of the CDRs (of course, dependent on their length), while 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 1 , 12, 13, 14, 15, 16, 17, 18, 19, 20, or 25 amino acids may be inserted, substituted or deleted in each of the FRs.
- amino acid sequence insertions into the antibody construct include amino- and/or carboxyl-terminal fusions ranging in length from 1 , 2, 3, 4, 5, 6, 7, 8, 9 or 10 residues to polypeptides containing a hundred or more residues, as well as intra- sequence insertions of single or multiple amino acid residues. Corresponding modifications may also performed within the third domain of the antibody construct of the invention.
- An insertional variant of the antibody construct of the invention includes the fusion to the N- terminus or to the C-terminus of the antibody construct of an enzyme or the fusion to a polypeptide.
- the sites of greatest interest for substitutional mutagenesis include (but are not limited to) the CDRs of the heavy and/or light chain, in particular the hypervariable regions, but FR alterations in the heavy and/or light chain are also contemplated. The substitutions are preferably conservative substitutions as described herein.
- 1 , 2, 3, 4, 5, 6, 7, 8, 9, or 10 amino acids may be substituted in a CDR, while 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 1 , 12, 13, 14, 15, 16, 17, 18, 19, 20, or 25 amino acids may be substituted in the framework regions (FRs), depending on the length of the CDR or FR.
- FRs framework regions
- a CDR sequence encompasses 6 amino acids, it is envisaged that one, two or three of these amino acids are substituted.
- a CDR sequence encompasses 15 amino acids it is envisaged that one, two, three, four, five or six of these amino acids are substituted.
- a useful method for identification of certain residues or regions of the antibody constructs that are preferred locations for mutagenesis is called "alanine scanning mutagenesis" as described by Cunningham and Wells in Science, 244: 1081 -1085 (1989).
- a residue or group of target residues within the antibody construct is/are identified (e.g. charged residues such as arg, asp, his, lys, and glu) and replaced by a neutral or negatively charged amino acid (most preferably alanine or polyalanine) to affect the interaction of the amino acids with the epitope.
- Those amino acid locations demonstrating functional sensitivity to the substitutions are then refined by introducing further or other variants at, or for, the sites of substitution.
- the site or region for introducing an amino acid sequence variation is predetermined, the nature of the mutation per se needs not to be predetermined.
- alanine scanning or random mutagenesis may be conducted at a target codon or region, and the expressed antibody construct variants are screened for the optimal combination of desired activity.
- Techniques for making substitution mutations at predetermined sites in the DNA having a known sequence are well known, for example, M13 primer mutagenesis and PCR mutagenesis. Screening of the mutants is done using assays of antigen binding activities, such as the target cell surface antigen or CD3 binding.
- the then-obtained "substituted" sequence is at least 60% or 65%, more preferably 70% or 75%, even more preferably 80% or 85%, and particularly preferably 90% or 95% identical to the "original" CDR sequence.
- a CDR having 5 amino acids is preferably 80% identical to its substituted sequence in order to have at least one amino acid substituted.
- the CDRs of the antibody construct may have different degrees of identity to their substituted sequences, e.g., CDRL1 may have 80%, while CDRL3 may have 90%.
- Preferred substitutions are conservative substitutions. However, any substitution (including non-conservative substitution or one or more from the "exemplary substitutions” listed in Table 3, below) is envisaged as long as the antibody construct retains its capability to bind to the target cell surface antigen via the first domain and to CD3, respectively CD3 epsilon, via the second domain and/or its CDRs have an identity to the then substituted sequence (at least 60% or 65%, more preferably 70% or 75%, even more preferably 80% or 85%, and particularly preferably 90% or 95% identical to the "original" CDR sequence).
- Conservative substitutions are shown in Table 3 under the heading of "preferred substitutions". If such substitutions result in a change in biological activity, then more substantial changes, denominated "exemplary substitutions" in Table 3, or as further described below in reference to amino acid classes, may be introduced and the products screened for a desired characteristic.
- Substantial modifications in the biological properties of the antibody construct of the present invention are accomplished by selecting substitutions that differ significantly in their effect on maintaining (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain.
- Naturally occurring residues are divided into groups based on common side-chain properties: (1 ) hydrophobic: norleucine, met, ala, val, leu, ile; (2) neutral hydrophilic: cys, ser, thr, asn, gin; (3) acidic: asp, glu; (4) basic: his, lys, arg; (5) residues that influence chain orientation: gly, pro; and (6) aromatic : trp, tyr, phe.
- Non-conservative substitutions will entail exchanging a member of one of these classes for another class. Any cysteine residue not involved in maintaining the proper conformation of the antibody construct may be substituted, generally with serine, to improve the oxidative stability of the molecule and prevent aberrant crosslinking. Conversely, cysteine bond(s) may be added to the antibody to improve its stability (particularly where the antibody is an antibody fragment such as an Fv fragment).
- sequence identity and/or similarity is determined by using standard techniques known in the art, including, but not limited to, the local sequence identity algorithm of Smith and Waterman, 1981 , Adv. Appl. Math. 2:482, the sequence identity alignment algorithm of Needleman and Wunsch, 1970, J. Mol. Biol. 48:443, the search for similarity method of Pearson and Lipman, 1988, Proc. Nat. Acad. Sci. U.S.A. 85:2444, computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Drive, Madison, Wis.), the Best Fit sequence program described by Devereux et al., 1984, Nucl.
- Acid Res. 12:387-395 preferably using the default settings, or by inspection.
- percent identity is calculated by FastDB based upon the following parameters: mismatch penalty of 1 ; gap penalty of 1 ; gap size penalty of 0.33; and joining penalty of 30, "Current Methods in Sequence Comparison and Analysis," Macromolecule Sequencing and Synthesis, Selected Methods and Applications, pp 127-149 (1988), Alan R. Liss, Inc.
- PILEUP creates a multiple sequence alignment from a group of related sequences using progressive, pairwise alignments. It can also plot a tree showing the clustering relationships used to create the alignment. PILEUP uses a simplification of the progressive alignment method of Feng & Doolittle, 1987, J. Mol. Evol. 35:351 -360; the method is similar to that described by Higgins and Sharp, 1989, CABIOS 5:151 -153.
- Useful PILEUP parameters including a default gap weight of 3.00, a default gap length weight of 0.10, and weighted end gaps.
- BLAST algorithm Another example of a useful algorithm is the BLAST algorithm, described in: Altschul et al., 1990, J. Mol. Biol. 215:403-410; Altschul et al., 1997, Nucleic Acids Res. 25:3389- 3402; and Karin et al., 1993, Proc. Natl. Acad. Sci. U.S.A. 90:5873-5787.
- a particularly useful BLAST program is the WU-BLAST-2 program which was obtained from Altschul et al., 1996, Methods in Enzymology 266:460-480. WU-BLAST-2 uses several search parameters, most of which are set to the default values.
- the HSP S and HSP S2 parameters are dynamic values and are established by the program itself depending upon the composition of the particular sequence and composition of the particular database against which the sequence of interest is being searched; however, the values may be adjusted to increase sensitivity. [213] An additional useful algorithm is gapped BLAST as reported by Altschul et al., 1993, Nucl. Acids Res. 25:3389-3402.
- Gapped BLAST uses BLOSUM-62 substitution scores; threshold T parameter set to 9; the two-hit method to trigger ungapped extensions, charges gap lengths of k a cost of 10+k; Xu set to 16, and Xg set to 40 for database search stage and to 67 for the output stage of the algorithms. Gapped alignments are triggered by a score corresponding to about 22 bits.
- amino acid homology, similarity, or identity between individual variant CDRs or VH / VL sequences are at least 60% to the sequences depicted herein, and more typically with preferably increasing homologies or identities of at least 65% or 70%, more preferably at least 75% or 80%, even more preferably at least 85%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, and almost 100%.
- percent (%) nucleic acid sequence identity with respect to the nucleic acid sequence of the binding proteins identified herein is defined as the percentage of nucleotide residues in a candidate sequence that are identical with the nucleotide residues in the coding sequence of the antibody construct.
- a specific method utilizes the BLASTN module of WU-BLAST-2 set to the default parameters, with overlap span and overlap fraction set to 1 and 0.125, respectively.
- nucleic acid sequence homology, similarity, or identity between the nucleotide sequences encoding individual variant CDRs or VH / VL sequences and the nucleotide sequences depicted herein are at least 60%, and more typically with preferably increasing homologies or identities of at least 65%, 70%, 75%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%, and almost 100%.
- a "variant CDR” or a “variant VH / VL region” is one with the specified homology, similarity, or identity to the parent CDR / VH / VL of the invention, and shares biological function, including, but not limited to, at least 60%, 65%, 70%, 75%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% of the specificity and/or activity of the parent CDR or VH / VL.
- the percentage of identity to human germline of the antibody constructs according to the invention is ⁇ 70% or ⁇ 75%, more preferably ⁇ 80% or ⁇ 85%, even more preferably ⁇ 90%, and most preferably ⁇ 91 %, ⁇ 92%, ⁇ 93%, ⁇ 94%, ⁇ 95% or even ⁇ 96%.
- Identity to human antibody germline gene products is thought to be an important feature to reduce the risk of therapeutic proteins to elicit an immune response against the drug in the patient during treatment.
- Hwang & Foote (“Immunogenicity of engineered antibodies”; Methods 36 (2005) 3-10) demonstrate that the reduction of non- human portions of drug antibody constructs leads to a decrease of risk to induce anti-drug antibodies in the patients during treatment.
- the V-regions of VL can be aligned with the amino acid sequences of human germline V segments and J segments (http://vbase.mrc-cpe.cam.ac.uk/) using Vector NTI software and the amino acid sequence calculated by dividing the identical amino acid residues by the total number of amino acid residues of the VL in percent.
- the same can be for the VH segments (http://vbase.mrc-cpe.cam.ac.uk/) with the exception that the VH CDR3 may be excluded due to its high diversity and a lack of existing human germline VH CDR3 alignment partners.
- Recombinant techniques can then be used to increase sequence identity to human antibody germline genes.
- the bispecific antibody constructs of the present invention exhibit high monomer yields under standard research scale conditions, e.g., in a standard two-step purification process.
- the monomer yield of the antibody constructs according to the invention is ⁇ 0.25 mg/L supernatant, more preferably ⁇ 0.5 mg/L, even more preferably ⁇ 1 mg/L, and most preferably ⁇ 3 mg/L supernatant.
- the yield of the dimeric antibody construct isoforms and hence the monomer percentage (i.e., monomer : (monomer+dimer)) of the antibody constructs can be determined.
- the productivity of monomeric and dimeric antibody constructs and the calculated monomer percentage can e.g. be obtained in the SEC purification step of culture supernatant from standardized research-scale production in roller bottles.
- the monomer percentage of the antibody constructs is ⁇ 80%, more preferably ⁇ 85%, even more preferably ⁇ 90%, and most preferably ⁇ 95%.
- the antibody constructs have a preferred plasma stability (ratio of EC50 with plasma to EC50 w/o plasma) of ⁇ 5 or ⁇ 4, more preferably ⁇ 3.5 or ⁇ 3, even more preferably ⁇ 2.5 or ⁇ 2, and most preferably ⁇ 1 .5 or ⁇ 1.
- the plasma stability of an antibody construct can be tested by incubation of the construct in human plasma at 37°C for 24 hours followed by EC50 determination in a 51 chromium release cytotoxicity assay.
- the effector cells in the cytotoxicity assay can be stimulated enriched human CD8 positive T cells.
- Target cells can e.g. be CHO cells transfected with the human target cell surface antigen.
- the effector to target cell (E:T) ratio can be chosen as 10:1 .
- the human plasma pool used for this purpose is derived from the blood of healthy donors collected by EDTA coated syringes. Cellular components are removed by centrifugation and the upper plasma phase is collected and subsequently pooled. As control, antibody constructs are diluted immediately prior to the cytotoxicity assay in RPMI-1640 medium. The plasma stability is calculated as ratio of EC50 (after plasma incubation) to EC50 (control).
- the monomer to dimer conversion of antibody constructs of the invention is low.
- the conversion can be measured under different conditions and analyzed by high performance size exclusion chromatography.
- incubation of the monomeric isoforms of the antibody constructs can be carried out for 7 days at 37°C and concentrations of e.g. 100 ⁇ g ml or 250 ⁇ g ml in an incubator.
- the antibody constructs of the invention show a dimer percentage that is ⁇ 5%, more preferably ⁇ 4%, even more preferably ⁇ 3%, even more preferably ⁇ 2.5%, even more preferably ⁇ 2%, even more preferably ⁇ 1 .5%, and most preferably ⁇ 1 % or ⁇ 0.5% or even 0%.
- the bispecific antibody constructs of the present invention present with very low dimer conversion after a number of freeze/thaw cycles.
- the antibody construct monomer is adjusted to a concentration of 250 ⁇ g ml e.g. in generic formulation buffer and subjected to three freeze/thaw cycles (freezing at -80°C for 30 min followed by thawing for 30 min at room temperature), followed by high performance SEC to determine the percentage of initially monomeric antibody construct, which had been converted into dimeric antibody construct.
- the dimer percentages of the bispecific antibody constructs are ⁇ 5%, more preferably ⁇ 4%, even more preferably ⁇ 3%, even more preferably ⁇ 2.5%, even more preferably ⁇ 2%, even more preferably ⁇ 1 .5%, and most preferably ⁇ 1 % or even ⁇ 0.5%, for example after three freeze/thaw cycles.
- the bispecific antibody constructs of the present invention preferably show a favorable thermostability with aggregation temperatures ⁇ 45°C or ⁇ 50°C, more preferably ⁇ 52°C or ⁇ 54°C, even more preferably ⁇ 56°C or ⁇ 57°C, and most preferably ⁇ 58°C or ⁇ 59°C.
- the thermostability parameter can be determined in terms of antibody aggregation temperature as follows: Antibody solution at a concentration 250 ⁇ g ml is transferred into a single use cuvette and placed in a Dynamic Light Scattering (DLS) device. The sample is heated from 40°C to 70°C at a heating rate of 0.5°C/min with constant acquisition of the measured radius.
- DLS Dynamic Light Scattering
- temperature melting curves can be determined by Differential Scanning Calorimetry (DSC) to determine intrinsic biophysical protein stabilities of the antibody constructs. These experiments are performed using a MicroCal LLC (Northampton, MA, U.S.A) VP-DSC device. The energy uptake of a sample containing an antibody construct is recorded from 20°C to 90°C compared to a sample containing only the formulation buffer. The antibody constructs are adjusted to a final concentration of 250 ⁇ g ml e.g. in SEC running buffer. For recording of the respective melting curve, the overall sample temperature is increased stepwise.
- DSC Differential Scanning Calorimetry
- T energy uptake of the sample and the formulation buffer reference is recorded.
- the difference in energy uptake Cp (kcal/mole/°C) of the sample minus the reference is plotted against the respective temperature.
- the melting temperature is defined as the temperature at the first maximum of energy uptake.
- the target cell surface antigenxCD3 bispecific antibody constructs of the invention are also envisaged to have a turbidity (as measured by OD340 after concentration of purified monomeric antibody construct to 2.5 mg/ml and over night incubation) of ⁇ 0.2, preferably of ⁇ 0.15, more preferably of ⁇ 0.12, even more preferably of ⁇ 0.1 , and most preferably of ⁇ 0.08.
- the antibody construct according to the invention is stable at acidic pH.
- Recovery of the antibody construct from an ion (e.g., cation) exchange column at pH 5.5 is preferably ⁇ 30%, more preferably ⁇ 40%, more preferably ⁇ 50%, even more preferably ⁇ 60%, even more preferably ⁇ 70%, even more preferably ⁇ 80%, even more preferably ⁇ 90%, even more preferably ⁇ 95%, and most preferably ⁇ 99%.
- the bispecific antibody constructs of the present invention exhibit therapeutic efficacy or anti-tumor activity. This can e.g. be assessed in a study as disclosed in the following example of an advanced stage human tumor xenograft model: [227] The skilled person knows how to modify or adapt certain parameters of this study, such as the number of injected tumor cells, the site of injection, the number of transplanted human T cells, the amount of bispecific antibody constructs to be administered, and the timelines, while still arriving at a meaningful and reproducible result.
- the tumor growth inhibition T/C [%] is ⁇ 70 or ⁇ 60, more preferably ⁇ 50 or ⁇ 40, even more preferably ⁇ 30 or ⁇ 20 and most preferably ⁇ 10 or ⁇ 5 or even ⁇ 2.5.
- the antibody construct is a single chain antibody construct.
- said third domain comprises in an amino to carboxyl order:
- each of said polypeptide monomers of the third domain has an amino acid sequence that is at least 90% identical to a sequence selected from the group consisting of: SEQ ID NO: 17-24. In a preferred embodiment or the invention each of said polypeptide monomers has an amino acid sequence selected from SEQ ID NO: 17-24.
- the CH2 domain of one or preferably each (both) polypeptide monomers of the third domain comprises an intra domain cysteine disulfide bridge.
- cysteine disulfide bridge refers to a functional group with the general structure R-S-S-R.
- the linkage is also called an SS-bond or a disulfide bridge and is derived by the coupling of two thiol groups of cysteine residues.
- the cysteines forming the cysteine disulfide bridge in the mature antibody construct are introduced into the amino acid sequence of the CH2 domain corresponding to 309 and 321 (Kabat numbering).
- a glycosylation site in Kabat position 314 of the CH2 domain is removed. It is preferred that this removal of the glycosylation site is achieved by a N314X substitution, wherein X is any amino acid excluding Q. Said substitution is preferably a N314G substitution.
- said CH2 domain additionally comprises the following substitutions (position according to Kabat) V321 C and R309C (these substitutions introduce the intra domain cysteine disulfide bridge at Kabat positions 309 and 321 ).
- the preferred features of the antibody construct of the invention compared e.g. to the bispecific heteroFc antibody construct known in the art (figure 1 b) may be inter alia related to the introduction of the above described modifications in the CH2 domain.
- the CH2 domains in the third domain of the antibody construct of the invention comprise the intra domain cysteine disulfide bridge at Kabat positions 309 and 321 and/or the glycosylation site at Kabat position 314 is removed by a N314X substitution as above, preferably by a N314G substitution.
- the CH2 domains in the third domain of the antibody construct of the invention comprise the intra domain cysteine disulfide bridge at Kabat positions 309 and 321 and the glycosylation site at Kabat position 314 is removed by a N314G substitution.
- the polypeptide monomer of the third domain of the antibody construct of the invention has an amino acid sequence selected from the group consisting of SEQ ID NO: 17 and 18.
- the first domain comprises two antibody variable domains and the second domain comprises two antibody variable domains;
- the first domain comprises one antibody variable domain and the second domain comprises two antibody variable domains;
- the first domain comprises two antibody variable domains and the second domain comprises one antibody variable domain;
- the first domain comprises one antibody variable domain and the second domain comprises one antibody variable domain.
- the first and the second domain may be binding domains comprising each two antibody variable domains such as a VH and a VL domain.
- binding domains comprising two antibody variable domains where described herein above and comprise e.g. Fv fragments, scFv fragments or Fab fragments described herein above.
- either one or both of those binding domains may comprise only a single variable domain.
- single domain binding domains where described herein above and comprise e.g. nanobodies or single variable domain antibodies comprising merely one variable domain, which might be VHH, VH or VL, that specifically bind an antigen or epitope independently of other V regions or domains.
- first and second domain are fused to the third domain via a peptide linker.
- Preferred peptide linker have been described herein above and are characterized by the amino acid sequence Gly-Gly-Gly-Gly- Ser, i.e. Gly 4 Ser (SEQ ID NO: 1 ), or polymers thereof, i.e. (Gly 4 Ser)x, where x is an integer of 1 or greater (e.g. 2 or 3).
- SEQ ID NOs: 1 amino acid sequence
- Gly 4 Ser SEQ ID NO: 1
- polymers thereof i.e. (Gly 4 Ser)x
- x is an integer of 1 or greater (e.g. 2 or 3).
- a particularly preferred linker for the fusion of the first and second domain to the third domain is depicted in SEQ ID NOs: 1.
- the antibody construct of the invention is characterized to comprise in an amino to carboxyl order:
- the target cell surface antigen bound by the first domain is a tumor antigen, an antigen specific for an immunological disorder or a viral antigen.
- tumor antigen as used herein may be understood as those antigens that are presented on tumor cells. These antigens can be presented on the cell surface with an extracellular part, which is often combined with a transmembrane and cytoplasmic part of the molecule. These antigens can sometimes be presented only by tumor cells and never by the normal ones. Tumor antigens can be exclusively expressed on tumor cells or might represent a tumor specific mutation compared to normal cells. In this case, they are called tumor- specific antigens.
- tumor-associated antigens More common are antigens that are presented by tumor cells and normal cells, and they are called tumor-associated antigens. These tumor-associated antigens can be overexpressed compared to normal cells or are accessible for antibody binding in tumor cells due to the less compact structure of the tumor tissue compared to normal tissue.
- tumor antigens as used herein are CDH19, MSLN, DLL3, FLT3, EGFRvlll, CD33, CD19, CD20, and CD70.
- the tumor antigen is selected from the group consisting of CDH19, MSLN, DLL3, FLT3, EGFRvlll, CD33, CD19, CD20, CD70, PSMA and BCMA.
- the antibody construct comprises in an amino to carboxyl order:
- the first domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 52, 70, 58, 76, 88, 106, 124, 94, 1 12, 130, 142,160, 178, 148, 166, 184, 196, 214, 232, 202, 220, 238, 250, 266, 282, 298, 255, 271 , 287, 303, 322, 338, 354, 370, 386, 402, 418, 434, 450, 466, 482, 498, 514, 530, 546, 327, 343, 359, 375, 391 , 407, 423, 439, 455, 471 , 487, 503, 519, 353, 551 , 592, 608, 624, 640, 656, 672, 688,
- the second domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: SEQ ID NOs: 23, 25, 41 , 43, 59, 61 , 77, 79, 95, 97, 1 13, 1 15, 131 , 133, 149, 151 , 167, 169, 185 or 187 of WO 2008/1 19567 or of SEQ ID NO: 15;
- a peptide linker having an amino acid sequence selected from the group consisting of SEQ ID NOs: 1 , 2, 3, 9, 10, 1 1 and 12;
- first and second domain which are fused via a peptide linker to a single chain polypeptide comprise a sequence selected from the group consisting of:
- the antibody construct of the invention is characterized by having an amino acid sequence selected from the group consisting of:
- the invention further provides a polynucleotide / nucleic acid molecule encoding an antibody construct of the invention.
- a polynucleotide is a biopolymer composed of 13 or more nucleotide monomers covalently bonded in a chain.
- DNA such as cDNA
- RNA such as mRNA
- Nucleotides are organic molecules that serve as the monomers or subunits of nucleic acid molecules like DNA or RNA.
- the nucleic acid molecule or polynucleotide can be double stranded and single stranded, linear and circular. It is preferably comprised in a vector which is preferably comprised in a host cell.
- Said host cell is, e.g. after transformation or transfection with the vector or the polynucleotide of the invention, capable of expressing the antibody construct.
- the polynucleotide or nucleic acid molecule is operatively linked with control sequences.
- the genetic code is the set of rules by which information encoded within genetic material (nucleic acids) is translated into proteins. Biological decoding in living cells is accomplished by the ribosome which links amino acids in an order specified by mRNA, using tRNA molecules to carry amino acids and to read the mRNA three nucleotides at a time. The code defines how sequences of these nucleotide triplets, called codons, specify which amino acid will be added next during protein synthesis. With some exceptions, a three-nucleotide codon in a nucleic acid sequence specifies a single amino acid. Because the vast majority of genes are encoded with exactly the same code, this particular code is often referred to as the canonical or standard genetic code.
- the invention provides a vector comprising a polynucleotide / nucleic acid molecule of the invention.
- a vector is a nucleic acid molecule used as a vehicle to transfer (foreign) genetic material into a cell.
- the term "vector” encompasses - but is not restricted to - plasmids, viruses, cosmids and artificial chromosomes.
- engineered vectors comprise an origin of replication, a multicloning site and a selectable marker.
- the vector itself is generally a nucleotide sequence, commonly a DNA sequence that comprises an insert (transgene) and a larger sequence that serves as the "backbone" of the vector.
- Modern vectors may encompass additional features besides the transgene insert and a backbone: promoter, genetic marker, antibiotic resistance, reporter gene, targeting sequence, protein purification tag.
- Vectors called expression vectors (expression constructs) specifically are for the expression of the transgene in the target cell, and generally have control sequences.
- control sequences refers to DNA sequences necessary for the expression of an operably linked coding sequence in a particular host organism.
- the control sequences that are suitable for prokaryotes include a promoter, optionally an operator sequence, and a ribosome binding side.
- Eukaryotic cells are known to utilize promoters, polyadenylation signals, and enhancers.
- a nucleic acid is "operably linked" when it is placed into a functional relationship with another nucleic acid sequence.
- DNA for a presequence or secretory leader is operably linked to DNA for a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide;
- a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or
- a ribosome binding side is operably linked to a coding sequence if it is positioned so as to facilitate translation.
- "operably linked” means that the DNA sequences being linked are contiguous, and, in the case of a secretory leader, contiguous and in reading phase. However, enhancers do not have to be contiguous. Linking is accomplished by ligation at convenient restriction sites. If such sites do not exist, the synthetic oligonucleotide adaptors or linkers are used in accordance with conventional practice.
- Transfection is the process of deliberately introducing nucleic acid molecules or polynucleotides (including vectors) into target cells. The term is mostly used for non-viral methods in eukaryotic cells. Transduction is often used to describe virus-mediated transfer of nucleic acid molecules or polynucleotides. Transfection of animal cells typically involves opening transient pores or "holes" in the cell membrane, to allow the uptake of material. Transfection can be carried out using calcium phosphate, by electroporation, by cell squeezing or by mixing a cationic lipid with the material to produce liposomes, which fuse with the cell membrane and deposit their cargo inside.
- transformation is used to describe non-viral transfer of nucleic acid molecules or polynucleotides (including vectors) into bacteria, and also into non-animal eukaryotic cells, including plant cells. Transformation is hence the genetic alteration of a bacterial or non-animal eukaryotic cell resulting from the direct uptake through the cell membrane(s) from its surroundings and subsequent incorporation of exogenous genetic material (nucleic acid molecules). Transformation can be effected by artificial means. For transformation to happen, cells or bacteria must be in a state of competence, which might occur as a time-limited response to environmental conditions such as starvation and cell density.
- the invention provides a host cell transformed or transfected with the polynucleotide / nucleic acid molecule or with the vector of the invention.
- the terms "host cell” or “recipient cell” are intended to include any individual cell or cell culture that can be or has/have been recipients of vectors, exogenous nucleic acid molecules, and polynucleotides encoding the antibody construct of the present invention; and/or recipients of the antibody construct itself. The introduction of the respective material into the cell is carried out by way of transformation, transfection and the like.
- the term "host cell” is also intended to include progeny or potential progeny of a single cell.
- Suitable host cells include prokaryotic or eukaryotic cells, and also include but are not limited to bacteria, yeast cells, fungi cells, plant cells, and animal cells such as insect cells and mammalian cells, e.g., murine, rat, macaque or human.
- the antibody construct of the invention can be produced in bacteria. After expression, the antibody construct of the invention is isolated from the E. coli cell paste in a soluble fraction and can be purified through, e.g., affinity chromatography and/or size exclusion. Final purification can be carried out similar to the process for purifying antibody expressed e.g., in CHO cells.
- eukaryotic microbes such as filamentous fungi or yeast are suitable cloning or expression hosts for the antibody construct of the invention.
- Saccharomyces cerevisiae or common baker's yeast, is the most commonly used among lower eukaryotic host microorganisms.
- a number of other genera, species, and strains are commonly available and useful herein, such as Schizosaccharomyces pombe, Kluyveromyces hosts such as K. lactis, K. fragilis (ATCC 12424), K. bulgaricus (ATCC 16045), K. wickeramii (ATCC 24178), K. waltii (ATCC 56500), K.
- drosophilarum ATCC 36906
- K. thermotolerans K. marxianus
- yarrowia EP 402 226
- Pichia pastoris EP 183 070
- Candida Trichoderma reesia
- Neurospora crassa Schwanniomyces such as Schwanniomyces occidentalis
- filamentous fungi such as Neurospora, Penicillium, Tolypocladium, and Aspergillus hosts such as A nidulans and A. niger.
- Suitable host cells for the expression of glycosylated antibody construct of the invention are derived from multicellular organisms.
- invertebrate cells include plant and insect cells.
- Numerous baculoviral strains and variants and corresponding permissive insect host cells from hosts such as Spodoptera frugiperda (caterpillar), Aedes aegypti (mosquito), Aedes albopictus (mosquito), Drosophila melanogaster (fruit fly), and Bombyx mori have been identified.
- a variety of viral strains for transfection are publicly available, e.g., the L-1 variant of Autographa californica NPV and the Bm-5 strain of Bombyx mori NPV, and such viruses may be used as the virus herein according to the present invention, particularly for transfection of Spodoptera frugiperda cells.
- Plant cell cultures of cotton, corn, potato, soybean, petunia, tomato, Arabidopsis and tobacco can also be used as hosts.
- Cloning and expression vectors useful in the production of proteins in plant cell culture are known to those of skill in the art. See e.g. Hiatt et al., Nature (1989) 342: 76-78, Owen et al. (1992) Bio/Technology 10: 790-794, Artsaenko et al. (1995) The Plant J 8: 745-750, and Fecker ei a/. (1996) Plant Mol Biol 32: 979-986.
- vertebrate cells have been greatest in vertebrate cells, and propagation of vertebrate cells in culture (tissue culture) has become a routine procedure.
- useful mammalian host cell lines are monkey kidney CV1 line transformed by SV40 (COS-7, ATCC CRL 1651 ); human embryonic kidney line (293 or 293 cells subcloned for growth in suspension culture, Graham et al. , J. Gen Virol. 36 : 59 (1977)); baby hamster kidney cells (BHK, ATCC CCL 10); Chinese hamster ovary cells/-DHFR (CHO, Urlaub et al., Proc. Natl. Acad. Sci. USA 77: 4216 (1980)); mouse Sertoli cells (TM4, Mather, Biol.
- the invention provides a process for the production of an antibody construct of the invention, said process comprising culturing a host cell of the invention under conditions allowing the expression of the antibody construct of the invention and recovering the produced antibody construct from the culture.
- culturing refers to the in vitro maintenance, differentiation, growth, proliferation and/or propagation of cells under suitable conditions in a medium.
- the term "expression” includes any step involved in the production of an antibody construct of the invention including, but not limited to, transcription, post-transcriptional modification, translation, post-translational modification, and secretion.
- the antibody construct can be produced intracellularly, in the periplasmic space, or directly secreted into the medium. If the antibody construct is produced intracellularly, as a first step, the particulate debris, either host cells or lysed fragments, are removed, for example, by centrifugation or ultrafiltration. Carter et al., Bio/Technology 10: 163-167 (1992) describe a procedure for isolating antibodies which are secreted to the periplasmic space of E. coli.
- cell paste is thawed in the presence of sodium acetate (pH 3.5), EDTA, and phenylmethylsulfonylfluoride (PMSF) over about 30 min.
- PMSF phenylmethylsulfonylfluoride
- Cell debris can be removed by centrifugation.
- supernatants from such expression systems are generally first concentrated using a commercially available protein concentration filter, for example, an Amicon or Millipore Pellicon ultrafiltration unit.
- a protease inhibitor such as PMSF may be included in any of the foregoing steps to inhibit proteolysis and antibiotics may be included to prevent the growth of adventitious contaminants.
- the antibody construct of the invention prepared from the host cells can be recovered or purified using, for example, hydroxylapatite chromatography, gel electrophoresis, dialysis, and affinity chromatography.
- Other techniques for protein purification such as fractionation on an ion-exchange column, ethanol precipitation, Reverse Phase HPLC, chromatography on silica, chromatography on heparin SEPHAROSETM, chromatography on an anion or cation exchange resin (such as a polyaspartic acid column), chromato-focusing, SDS-PAGE, and ammonium sulfate precipitation are also available depending on the antibody to be recovered.
- the antibody construct of the invention comprises a CH3 domain
- the Bakerbond ABX resin J.T. Baker, Phillipsburg, NJ
- Affinity chromatography is a preferred purification technique.
- the matrix to which the affinity ligand is attached is most often agarose, but other matrices are available.
- Mechanically stable matrices such as controlled pore glass or poly (styrenedivinyl) benzene allow for faster flow rates and shorter processing times than can be achieved with agarose.
- the invention provides a pharmaceutical composition comprising an antibody construct of the invention or an antibody construct produced according to the process of the invention.
- the homogeneity of the antibody construct is ⁇ 80%, more preferably ⁇ 81 %, ⁇ 82%, ⁇ 83%, ⁇ 84%, or ⁇ 85%, further preferably ⁇ 86%, ⁇ 87%, ⁇ 88%, ⁇ 89%, or ⁇ 90%, still further preferably, ⁇ 91 %, ⁇ 92%, ⁇ 93%, ⁇ 94%, or ⁇ 95% and most preferably ⁇ 96%, ⁇ 97%, ⁇ 98% or ⁇ 99%.
- the term "pharmaceutical composition” relates to a composition which is suitable for administration to a patient, preferably a human patient.
- the particularly preferred pharmaceutical composition of this invention comprises one or a plurality of the antibody construct(s) of the invention, preferably in a therapeutically effective amount.
- the pharmaceutical composition further comprises suitable formulations of one or more (pharmaceutically effective) carriers, stabilizers, excipients, diluents, solubilizers, surfactants, emulsifiers, preservatives and/or adjuvants.
- Acceptable constituents of the composition are preferably nontoxic to recipients at the dosages and concentrations employed.
- Pharmaceutical compositions of the invention include, but are not limited to, liquid, frozen, and lyophilized compositions.
- compositions may comprise a pharmaceutically acceptable carrier.
- pharmaceutically acceptable carrier means any and all aqueous and non-aqueous solutions, sterile solutions, solvents, buffers, e.g. phosphate buffered saline (PBS) solutions, water, suspensions, emulsions, such as oil/water emulsions, various types of wetting agents, liposomes, dispersion media and coatings, which are compatible with pharmaceutical administration, in particular with parenteral administration.
- PBS phosphate buffered saline
- compositions comprising the antibody construct of the invention and further one or more excipients such as those illustratively described in this section and elsewhere herein.
- Excipients can be used in the invention in this regard for a wide variety of purposes, such as adjusting physical, chemical, or biological properties of formulations, such as adjustment of viscosity, and or processes of the invention to improve effectiveness and or to stabilize such formulations and processes against degradation and spoilage due to, for instance, stresses that occur during manufacturing, shipping, storage, pre-use preparation, administration, and thereafter.
- the pharmaceutical composition may contain formulation materials for the purpose of modifying, maintaining or preserving, e.g., the pH, osmolarity, viscosity, clarity, color, isotonicity, odor, sterility, stability, rate of dissolution or release, adsorption or penetration of the composition (see, REMINGTON'S PHARMACEUTICAL SCIENCES, 18" Edition, (A.R. Genrmo, ed.), 1990, Mack Publishing Company).
- suitable formulation materials may include, but are not limited to:
- amino acids such as glycine, alanine, glutamine, asparagine, threonine, proline, 2- phenylalanine, including charged amino acids, preferably lysine, lysine acetate, arginine, glutamate and/or histidine
- ⁇ antimicrobials such as antibacterial and antifungal agents
- antioxidants such as ascorbic acid, methionine, sodium sulfite or sodium hydrogen- sulfite
- buffers buffer systems and buffering agents which are used to maintain the composition at an acid pH of about 4.0 to 6.5, preferably 4.2 to 4.8;
- buffers are borate, citrates, phosphates or other organic acids, succinate, phosphate, histidine and acetate; for example, or acetate buffer of about pH 4.0-5.5;
- non-aqueous solvents such as propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable organic esters such as ethyl oleate;
- aqueous carriers including water, alcoholic/aqueous solutions, emulsions or suspensions, including saline and buffered media;
- biodegradable polymers such as polyesters
- chelating agents such as ethylenediamine tetraacetic acid (EDTA);
- ⁇ complexing agents such as caffeine, polyvinylpyrrolidone, beta-cyclodextrin or hydroxypropyl-beta-cyclodextrin
- carbohydrates may be non-reducing sugars, preferably trehalose, sucrose, octasulfate, sorbitol or xylitol;
- sulfur containing reducing agents such as glutathione, thioctic acid, sodium thioglycolate, thioglycerol, [alpha]-monothioglycerol, and sodium thio sulfate
- salt-forming counter-ions such as sodium
- preservatives such as antimicrobials, anti-oxidants, chelating agents, inert gases and the like; examples are: benzalkonium chloride, benzoic acid, salicylic acid, thimerosal, phenethyl alcohol, methylparaben, propylparaben, chlorhexidine, sorbic acid or hydrogen peroxide);
- metal complexes such as Zn-protein complexes
- solvents and co-solvents such as glycerin, propylene glycol or polyethylene glycol
- sugars and sugar alcohols such as trehalose, sucrose, octasulfate, mannitol, sorbitol or xylitol stachyose, mannose, sorbose, xylose, ribose, myoinisitose, galactose, lactitol, ribitol, myoinisitol, galactitol, glycerol, cyclitols (e.g., inositol), polyethylene glycol; and polyhydric sugar alcohols;
- sugar alcohols such as trehalose, sucrose, octasulfate, mannitol, sorbitol or xylitol stachyose, mannose, sorbose, xylose, ribose, myoinisitose, galactose, lactitol, ribitol, myoinisitol, gal
- surfactants or wetting agents such as pluronics, PEG, sorbitan esters, polysorbates such as polysorbate 20, polysorbate, triton, tromethamine, lecithin, cholesterol, tyloxapal
- surfactants may be detergents, preferably with a molecular weight of >1.2 KD and/or a polyether, preferably with a molecular weight of >3 KD
- non-limiting examples for preferred detergents are Tween 20, Tween 40, Tween 60, Tween 80 and Tween 85
- non-limiting examples for preferred polyethers are PEG 3000, PEG 3350, PEG 4000 and PEG 5000;
- stability enhancing agents such as sucrose or sorbitol
- tonicity enhancing agents such as alkali metal halides, preferably sodium or potassium chloride, mannitol sorbitol;
- parenteral delivery vehicles including sodium chloride solution, Ringer's dextrose, dextrose and sodium chloride, lactated Ringer's, or fixed oils;
- intravenous delivery vehicles including fluid and nutrient replenishers, electrolyte replenishers (such as those based on Ringer's dextrose).
- amino acid can act as a buffer, a stabilizer and/or an antioxidant
- mannitol can act as a bulking agent and/or a tonicity enhancing agent
- sodium chloride can act as delivery vehicle and/or tonicity enhancing agent; etc.
- composition of the invention might comprise, in addition to the polypeptide of the invention defined herein, further biologically active agents, depending on the intended use of the composition.
- agents might be drugs acting on the gastrointestinal system, drugs acting as cytostatica, drugs preventing hyperurikemia, drugs inhibiting immunoreactions (e.g. corticosteroids), drugs modulating the inflammatory response, drugs acting on the circulatory system and/or agents such as cytokines known in the art.
- the antibody construct of the present invention is applied in a co-therapy, i.e., in combination with another anti-cancer medicament.
- the optimal pharmaceutical composition will be determined by one skilled in the art depending upon, for example, the intended route of administration, delivery format and desired dosage. See, for example, REMINGTON'S PHARMACEUTICAL SCIENCES, supra. In certain embodiments, such compositions may influence the physical state, stability, rate of in vivo release and rate of in vivo clearance of the antibody construct of the invention.
- the primary vehicle or carrier in a pharmaceutical composition may be either aqueous or non-aqueous in nature.
- a suitable vehicle or carrier may be water for injection, physiological saline solution or artificial cerebrospinal fluid, possibly supplemented with other materials common in compositions for parenteral administration.
- Neutral buffered saline or saline mixed with serum albumin are further exemplary vehicles.
- the antibody construct of the invention compositions may be prepared for storage by mixing the selected composition having the desired degree of purity with optional formulation agents (REMINGTON'S PHARMACEUTICAL SCIENCES, supra) in the form of a lyophilized cake or an aqueous solution.
- the antibody construct of the invention may be formulated as a lyophilizate using appropriate excipients such as sucrose.
- the therapeutic compositions for use in this invention may be provided in the form of a pyrogen-free, parenterally acceptable aqueous solution comprising the desired antibody construct of the invention in a pharmaceutically acceptable vehicle.
- a particularly suitable vehicle for parenteral injection is sterile distilled water in which the antibody construct of the invention is formulated as a sterile, isotonic solution, properly preserved.
- the preparation can involve the formulation of the desired molecule with an agent, such as injectable microspheres, bio-erodible particles, polymeric compounds (such as polylactic acid or polyglycolic acid), beads or liposomes, that may provide controlled or sustained release of the product which can be delivered via depot injection.
- hyaluronic acid may also be used, having the effect of promoting sustained duration in the circulation.
- implantable drug delivery devices may be used to introduce the desired antibody construct.
- compositions will be evident to those skilled in the art, including formulations involving the antibody construct of the invention in sustained- or controlled-delivery / release formulations.
- Techniques for formulating a variety of other sustained- or controlled-delivery means such as liposome carriers, bio-erodible microparticles or porous beads and depot injections, are also known to those skilled in the art. See, for example, International Patent Application No. PCT/US93/00829, which describes controlled release of porous polymeric microparticles for delivery of pharmaceutical compositions.
- Sustained-release preparations may include semipermeable polymer matrices in the form of shaped articles, e.g., films, or microcapsules.
- Sustained release matrices may include polyesters, hydrogels, polylactides (as disclosed in U.S. Pat. No. 3,773,919 and European Patent Application Publication No. EP 058481 ), copolymers of L-glutamic acid and gamma ethyl-L-glutamate (Sidman et al., 1983, Biopolymers 2:547-556), poly (2-hydroxyethyl-methacrylate) (Langer et al., 1981 , J. Biomed. Mater. Res. 15:167-277 and Langer, 1982, Chem. Tech.
- Sustained release compositions may also include liposomes that can be prepared by any of several methods known in the art. See, e.g., Eppstein et al., 1985, Proc. Natl. Acad. Sci. U.S.A. 82:3688-3692; European Patent Application Publication Nos. EP 036,676; EP 088,046 and EP 143,949.
- the antibody construct may also be entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization (for example, hydroxymethylcellulose or gelatine-microcapsules and poly (methylmethacylate) microcapsules, respectively), in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nanoparticles and nanocapsules), or in macroemulsions.
- colloidal drug delivery systems for example, liposomes, albumin microspheres, microemulsions, nanoparticles and nanocapsules
- macroemulsions for example, liposomes, albumin microspheres, microemulsions, nanoparticles and nanocapsules
- Pharmaceutical compositions used for in vivo administration are typically provided as sterile preparations. Sterilization can be accomplished by filtration through sterile filtration membranes.
- compositions for parenteral administration can be stored in lyophilized form or in a solution.
- Parenteral compositions generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle.
- Another aspect of the invention includes self-buffering antibody construct of the invention formulations, which can be used as pharmaceutical compositions, as described in international patent application WO 06138181A2 (PCT/US2006/022599).
- a variety of expositions are available on protein stabilization and formulation materials and methods useful in this regard, such as Arakawa et al., "Solvent interactions in pharmaceutical formulations," Pharm Res. 8(3): 285-91 (1991 ); Kendrick et al., "Physical stabilization of proteins in aqueous solution” in: RATIONAL DESIGN OF STABLE PROTEIN FORMULATIONS: THEORY AND PRACTICE, Carpenter and Manning, eds. Pharmaceutical Biotechnology.
- Salts may be used in accordance with certain embodiments of the invention to, for example, adjust the ionic strength and/or the isotonicity of a formulation and/or to improve the solubility and/or physical stability of a protein or other ingredient of a composition in accordance with the invention.
- ions can stabilize the native state of proteins by binding to charged residues on the protein's surface and by shielding charged and polar groups in the protein and reducing the strength of their electrostatic interactions, attractive, and repulsive interactions.
- Ions also can stabilize the denatured state of a protein by binding to, in particular, the denatured peptide linkages (-CONH) of the protein.
- ionic interaction with charged and polar groups in a protein also can reduce intermolecular electrostatic interactions and, thereby, prevent or reduce protein aggregation and insolubility.
- Ionic species differ significantly in their effects on proteins.
- a number of categorical rankings of ions and their effects on proteins have been developed that can be used in formulating pharmaceutical compositions in accordance with the invention.
- One example is the Hofmeister series, which ranks ionic and polar non-ionic solutes by their effect on the conformational stability of proteins in solution.
- Stabilizing solutes are referred to as "kosmotropic”.
- Destabilizing solutes are referred to as "chaotropic”.
- Kosmotropes commonly are used at high concentrations (e.g., >1 molar ammonium sulfate) to precipitate proteins from solution (“salting-out”).
- Chaotropes commonly are used to denture and/or to solubilize proteins ("salting-in”).
- the relative effectiveness of ions to "salt-in” and "salt-out” defines their position in the Hofmeister series.
- Free amino acids can be used in the antibody construct of the invention formulations in accordance with various embodiments of the invention as bulking agents, stabilizers, and antioxidants, as well as other standard uses.
- Lysine, proline, serine, and alanine can be used for stabilizing proteins in a formulation.
- Glycine is useful in lyophilization to ensure correct cake structure and properties.
- Arginine may be useful to inhibit protein aggregation, in both liquid and lyophilized formulations.
- Methionine is useful as an antioxidant.
- Polyols include sugars, e.g., mannitol, sucrose, and sorbitol and polyhydric alcohols such as, for instance, glycerol and propylene glycol, and, for purposes of discussion herein, polyethylene glycol (PEG) and related substances.
- Polyols are kosmotropic. They are useful stabilizing agents in both liquid and lyophilized formulations to protect proteins from physical and chemical degradation processes. Polyols also are useful for adjusting the tonicity of formulations.
- polyols useful in select embodiments of the invention is mannitol, commonly used to ensure structural stability of the cake in lyophilized formulations. It ensures structural stability to the cake.
- a lyoprotectant e.g., sucrose.
- Sorbitol and sucrose are among preferred agents for adjusting tonicity and as stabilizers to protect against freeze-thaw stresses during transport or the preparation of bulks during the manufacturing process.
- Reducing sugars which contain free aldehyde or ketone groups, such as glucose and lactose, can glycate surface lysine and arginine residues. Therefore, they generally are not among preferred polyols for use in accordance with the invention.
- Embodiments of the antibody construct of the invention formulations further comprise surfactants. Protein molecules may be susceptible to adsorption on surfaces and to denaturation and consequent aggregation at air-liquid, solid-liquid, and liquid-liquid interfaces. These effects generally scale inversely with protein concentration.
- surfactants routinely are used to prevent, minimize, or reduce surface adsorption.
- Useful surfactants in the invention in this regard include polysorbate 20, polysorbate 80, other fatty acid esters of sorbitan polyethoxylates, and poloxamer 188.
- Surfactants also are commonly used to control protein conformational stability. The use of surfactants in this regard is protein-specific since, any given surfactant typically will stabilize some proteins and destabilize others.
- Polysorbates are susceptible to oxidative degradation and often, as supplied, contain sufficient quantities of peroxides to cause oxidation of protein residue side-chains, especially methionine. Consequently, polysorbates should be used carefully, and when used, should be employed at their lowest effective concentration. In this regard, polysorbates exemplify the general rule that excipients should be used in their lowest effective concentrations.
- Embodiments of the antibody construct of the invention formulations further comprise one or more antioxidants.
- Antioxidant excipients can be used as well to prevent oxidative degradation of proteins.
- useful antioxidants in this regard are reducing agents, oxygen/free-radical scavengers, and chelating agents.
- Antioxidants for use in therapeutic protein formulations in accordance with the invention preferably are water- soluble and maintain their activity throughout the shelf life of a product.
- EDTA is a preferred antioxidant in accordance with the invention in this regard.
- Antioxidants can damage proteins. For instance, reducing agents, such as glutathione in particular, can disrupt intramolecular disulfide linkages.
- antioxidants for use in the invention are selected to, among other things, eliminate or sufficiently reduce the possibility of themselves damaging proteins in the formulation.
- Formulations in accordance with the invention may include metal ions that are protein co-factors and that are necessary to form protein coordination complexes, such as zinc necessary to form certain insulin suspensions. Metal ions also can inhibit some processes that degrade proteins. However, metal ions also catalyze physical and chemical processes that degrade proteins. Magnesium ions (10-120 mM) can be used to inhibit isomerization of aspartic acid to isoaspartic acid. Ca +2 ions (up to 100 mM) can increase the stability of human deoxyribonuclease. Mg +2 , Mn +2 , and Zn +2 , however, can destabilize rhDNase.
- Embodiments of the antibody construct of the invention formulations further comprise one or more preservatives.
- Preservatives are necessary when developing multi-dose parenteral formulations that involve more than one extraction from the same container. Their primary function is to inhibit microbial growth and ensure product sterility throughout the shelf-life or term of use of the drug product. Commonly used preservatives include benzyl alcohol, phenol and m-cresol.
- preservatives have a long history of use with small- molecule parenterals
- the development of protein formulations that includes preservatives can be challenging.
- Preservatives almost always have a destabilizing effect (aggregation) on proteins, and this has become a major factor in limiting their use in multi-dose protein formulations.
- most protein drugs have been formulated for single-use only.
- multi-dose formulations are possible, they have the added advantage of enabling patient convenience, and increased marketability.
- a good example is that of human growth hormone (hGH) where the development of preserved formulations has led to commercialization of more convenient, multi-use injection pen presentations. At least four such pen devices containing preserved formulations of hGH are currently available on the market.
- Norditropin liquid, Novo Nordisk
- Nutropin AQ liquid, Genentech
- Genotropin lyophilized— dual chamber cartridge, Pharmacia & Upjohn
- Somatrope Eli Lilly
- the antibody constructs disclosed herein may also be formulated as immuno- liposomes.
- a "liposome” is a small vesicle composed of various types of lipids, phospholipids and/or surfactant which is useful for delivery of a drug to a mammal. The components of the liposome are commonly arranged in a bilayer formation, similar to the lipid arrangement of biological membranes. Liposomes containing the antibody construct are prepared by methods known in the art, such as described in Epstein et al., Proc. Natl. Acad. Sci. USA, 82: 3688 (1985); Hwang et al. , Proc. Natl Acad. Sci. USA, 77: 4030 (1980); US Pat. Nos.
- Liposomes with enhanced circulation time are disclosed in US Patent No. 5,013, 556.
- Particularly useful liposomes can be generated by the reverse phase evaporation method with a lipid composition comprising phosphatidylcholine, cholesterol and PEG-derivatized phosphatidylethanolamine (PEG-PE). Liposomes are extruded through filters of defined pore size to yield liposomes with the desired diameter.
- Fab' fragments of the antibody construct of the present invention can be conjugated to the liposomes as described in Martin et al. J. Biol. Chem. 257: 286-288 (1982) via a disulfide interchange reaction.
- a chemotherapeutic agent is optionally contained within the liposome. See Gabizon et al. J. National Cancer Inst. 81 (19) 1484 (1989).
- the pharmaceutical composition may be stored in sterile vials as a solution, suspension, gel, emulsion, solid, crystal, or as a dehydrated or lyophilized powder. Such formulations may be stored either in a ready-to-use form or in a form (e.g., lyophilized) that is reconstituted prior to administration.
- the biological activity of the pharmaceutical composition defined herein can be determined for instance by cytotoxicity assays, as described in the following examples, in WO 99/54440 or by Schlereth et al.
- Efficacy or "in vivo efficacy” as used herein refers to the response to therapy by the pharmaceutical composition of the invention, using e.g. standardized NCI response criteria.
- the success or in vivo efficacy of the therapy using a pharmaceutical composition of the invention refers to the effectiveness of the composition for its intended purpose, i.e. the ability of the composition to cause its desired effect, i.e. depletion of pathologic cells, e.g. tumor cells.
- the in vivo efficacy may be monitored by established standard methods for the respective disease entities including, but not limited to white blood cell counts, differentials, Fluorescence Activated Cell Sorting, bone marrow aspiration.
- positron-emission tomography scanning white blood cell counts, differentials, Fluorescence Activated Cell Sorting, bone marrow aspiration, lymph node biopsies/histologies, and various lymphoma specific clinical chemistry parameters (e.g. lactate dehydrogenase) and other established standard methods may be used.
- pharmacokinetic profile of the drug candidate i.e. a profile of the pharmacokinetic parameters that affect the ability of a particular drug to treat a given condition
- Pharmacokinetic parameters of the drug influencing the ability of a drug for treating a certain disease entity include, but are not limited to: half-life, volume of distribution, hepatic first-pass metabolism and the degree of blood serum binding.
- the efficacy of a given drug agent can be influenced by each of the parameters mentioned above.
- "Half-life" means the time where 50% of an administered drug are eliminated through biological processes, e.g.
- hepatic first-pass metabolism is meant the propensity of a drug to be metabolized upon first contact with the liver, i.e. during its first pass through the liver.
- Volume of distribution means the degree of retention of a drug throughout the various compartments of the body, like e.g. intracellular and extracellular spaces, tissues and organs, etc. and the distribution of the drug within these compartments.
- Degree of blood serum binding means the propensity of a drug to interact with and bind to blood serum proteins, such as albumin, leading to a reduction or loss of biological activity of the drug.
- Pharmacokinetic parameters also include bioavailability, lag time (Tlag), Tmax, absorption rates, more onset and/or Cmax for a given amount of drug administered.
- Bioavailability means the amount of a drug in the blood compartment.
- Lag time means the time delay between the administration of the drug and its detection and measurability in blood or plasma.
- Tmax is the time after which maximal blood concentration of the drug is reached, and
- Cmax is the blood concentration maximally obtained with a given drug. The time to reach a blood or tissue concentration of the drug which is required for its biological effect is influenced by all parameters.
- the pharmaceutical composition is stable for at least four weeks at about -20°C.
- the quality of an antibody construct of the invention vs. the quality of corresponding state of the art antibody constructs may be tested using different systems. Those tests are understood to be in line with the "ICH Harmonised Tripartite Guideline: Stability Testing of Biotechnological/Biological Products Q5C and Specifications: Test procedures and Acceptance Criteria for Biotech Biotechnological/Biological Products Q6B" and, thus are elected to provide a stability- indicating profile that provides certainty that changes in the identity, purity and potency of the product are detected. It is well accepted that the term purity is a relative term.
- the absolute purity of a biotechnological/biological product should be typically assessed by more than one method and the purity value derived is method-dependent.
- tests for purity should focus on methods for determination of degradation products.
- HMWS per size exclusion For the assessment of the quality of a pharmaceutical composition comprising an antibody construct of the invention may be analyzed e.g. by analyzing the content of soluble aggregates in a solution (HMWS per size exclusion). It is preferred that stability for at least four weeks at about -20°C is characterized by a content of less than 1 .5% HMWS, preferably by less than 1 %HMWS.
- Said temperature stability may relate both to decreased (below room temperature including freezing) and increased (above room temperature including temperatures up to or above body temperature) temperature.
- improved stability with regard to stress, which is hardly avoidable in clinical practice, makes the antibody construct safer because less degradation products will occur in clinical practice.
- increased stability means increased safety.
- One embodiment provides the antibody construct of the invention or the antibody construct produced according to the process of the invention for use in the prevention, treatment or amelioration of a proliferative disease, a tumorous disease, a viral disease or an immunological disorder.
- the formulations described herein are useful as pharmaceutical compositions in the treatment, amelioration and/or prevention of the pathological medical condition as described herein in a patient in need thereof.
- treatment refers to both therapeutic treatment and prophylactic or preventative measures.
- Treatment includes the application or administration of the formulation to the body, an isolated tissue, or cell from a patient who has a disease/disorder, a symptom of a disease/disorder, or a predisposition toward a disease/disorder, with the purpose to cure, heal, alleviate, relieve, alter, remedy, ameliorate, improve, or affect the disease, the symptom of the disease, or the predisposition toward the disease.
- amelioration refers to any improvement of the disease state of a patient having a tumor or cancer or a metastatic cancer as specified herein below, by the administration of an antibody construct according to the invention to a subject in need thereof.
- prevention means the avoidance of the occurrence or re-occurrence of a patient having a tumor or cancer or a metastatic cancer as specified herein below, by the administration of an antibody construct according to the invention to a subject in need thereof.
- disease refers to any condition that would benefit from treatment with the antibody construct or the pharmaceutic composition described herein. This includes chronic and acute disorders or diseases including those pathological conditions that predispose the mammal to the disease in question.
- Neoplasm is an abnormal growth of tissue, usually but not always forming a mass. When also forming a mass, it is commonly referred to as a "tumor". Neoplasms or tumors or can be benign, potentially malignant (pre-cancerous), or malignant. Malignant neoplasms are commonly called cancer. They usually invade and destroy the surrounding tissue and may form metastases, i.e., they spread to other parts, tissues or organs of the body. Hence, the term “metatstatic cancer” encompasses metastases to other tissues or organs than the one of the original tumor. Lymphomas and leukemias are lymphoid neoplasms. For the purposes of the present invention, they are also encompassed by the terms “tumor” or “cancer”. [300] The term “viral disease” describes diseases, which are the result of a viral infection of a subject.
- the term "immunological disorder” as used herein describes in line with the common definition of this term immunological disorders such as autoimmune diseases, hypersensitivities, immune deficiencies.
- the invention provides a method for the treatment or amelioration of a proliferative disease, a tumorous disease, a viral disease or an immunological disorder, comprising the step of administering to a subject in need thereof the antibody construct of the invention, or produced according to the process of the invention.
- the terms "subject in need” or those "in need of treatment” includes those already with the disorder, as well as those in which the disorder is to be prevented.
- the subject in need or "patient” includes human and other mammalian subjects that receive either prophylactic or therapeutic treatment.
- the antibody construct of the invention will generally be designed for specific routes and methods of administration, for specific dosages and frequencies of administration, for specific treatments of specific diseases, with ranges of bio-availability and persistence, among other things.
- the materials of the composition are preferably formulated in concentrations that are acceptable for the site of administration.
- Formulations and compositions thus may be designed in accordance with the invention for delivery by any suitable route of administration.
- routes of administration include, but are not limited to
- topical routes such as epicutaneous, inhalational, nasal, opthalmic, auricular / aural, vaginal, mucosal
- enteral routes such as oral, gastrointestinal, sublingual, sublabial, buccal, rectal
- parenteral routes such as intravenous, intraarterial, intraosseous, intramuscular, intracerebral, intracerebroventricular, epidural, intrathecal, subcutaneous, intraperitoneal, extra-amniotic, intraarticular, intracardiac, intradermal, intralesional, intrauterine, intravesical, intravitreal, transdermal, intranasal, transmucosal, intrasynovial, intraluminal).
- compositions and the antibody construct of this invention are particularly useful for parenteral administration, e.g., subcutaneous or intravenous delivery, for example by injection such as bolus injection, or by infusion such as continuous infusion.
- Pharmaceutical compositions may be administered using a medical device. Examples of medical devices for administering pharmaceutical compositions are described in U.S. Patent Nos. 4,475,196; 4,439,196; 4,447,224; 4,447, 233; 4,486,194; 4,487,603; 4,596,556; 4,790,824; 4,941 ,880; 5,064,413; 5,312,335; 5,312,335; 5,383,851 ; and 5,399,163.
- the present invention provides for an uninterrupted administration of the suitable composition.
- uninterrupted or substantially uninterrupted, i.e. continuous administration may be realized by a small pump system worn by the patient for metering the influx of therapeutic agent into the body of the patient.
- the pharmaceutical composition comprising the antibody construct of the invention can be administered by using said pump systems.
- Such pump systems are generally known in the art, and commonly rely on periodic exchange of cartridges containing the therapeutic agent to be infused.
- a temporary interruption of the otherwise uninterrupted flow of therapeutic agent into the body of the patient may ensue.
- the phase of administration prior to cartridge replacement and the phase of administration following cartridge replacement would still be considered within the meaning of the pharmaceutical means and methods of the invention together make up one "uninterrupted administration" of such therapeutic agent.
- the continuous or uninterrupted administration of the antibody constructs of the invention may be intravenous or subcutaneous by way of a fluid delivery device or small pump system including a fluid driving mechanism for driving fluid out of a reservoir and an actuating mechanism for actuating the driving mechanism.
- Pump systems for subcutaneous administration may include a needle or a cannula for penetrating the skin of a patient and delivering the suitable composition into the patient's body. Said pump systems may be directly fixed or attached to the skin of the patient independently of a vein, artery or blood vessel, thereby allowing a direct contact between the pump system and the skin of the patient.
- the pump system can be attached to the skin of the patient for 24 hours up to several days.
- the pump system may be of small size with a reservoir for small volumes. As a non-limiting example, the volume of the reservoir for the suitable pharmaceutical composition to be administered can be between 0.1 and 50 ml.
- the continuous administration may also be transdermal by way of a patch worn on the skin and replaced at intervals.
- a patch worn on the skin worn on the skin and replaced at intervals.
- patch systems for drug delivery suitable for this purpose. It is of note that transdermal administration is especially amenable to uninterrupted administration, as exchange of a first exhausted patch can advantageously be accomplished simultaneously with the placement of a new, second patch, for example on the surface of the skin immediately adjacent to the first exhausted patch and immediately prior to removal of the first exhausted patch. Issues of flow interruption or power cell failure do not arise.
- the lyophilized material is first reconstituted in an appropriate liquid prior to administration.
- the lyophilized material may be reconstituted in, e.g., bacteriostatic water for injection (BWFI), physiological saline, phosphate buffered saline (PBS), or the same formulation the protein had been in prior to lyophilization.
- BWFI bacteriostatic water for injection
- PBS phosphate buffered saline
- the compositions of the present invention can be administered to the subject at a suitable dose which can be determined e.g. by dose escalating studies by administration of increasing doses of the antibody construct of the invention exhibiting cross-species specificity described herein to non-chimpanzee primates, for instance macaques.
- the antibody construct of the invention exhibiting cross-species specificity described herein can be advantageously used in identical form in preclinical testing in non-chimpanzee primates and as drug in humans.
- the dosage regimen will be determined by the attending physician and clinical factors. As is well known in the medical arts, dosages for any one patient depend upon many factors, including the patient's size, body surface area, age, the particular compound to be administered, sex, time and route of administration, general health, and other drugs being administered concurrently.
- the term "effective dose” or “effective dosage” is defined as an amount sufficient to achieve or at least partially achieve the desired effect.
- therapeutically effective dose is defined as an amount sufficient to cure or at least partially arrest the disease and its complications in a patient already suffering from the disease. Amounts or doses effective for this use will depend on the condition to be treated (the indication), the delivered antibody construct, the therapeutic context and objectives, the severity of the disease, prior therapy, the patient's clinical history and response to the therapeutic agent, the route of administration, the size (body weight, body surface or organ size) and/or condition (the age and general health) of the patient, and the general state of the patient's own immune system. The proper dose can be adjusted according to the judgment of the attending physician such that it can be administered to the patient once or over a series of administrations, and in order to obtain the optimal therapeutic effect.
- a typical dosage may range from about 0.1 ⁇ g kg to up to about 30 mg/kg or more, depending on the factors mentioned above. In specific embodiments, the dosage may range from 1 .0 ⁇ g kg up to about 20 mg/kg, optionally from 10 ⁇ g/kg up to about 10 mg/kg or from 100 ⁇ g/kg up to about 5 mg/kg.
- a therapeutic effective amount of an antibody construct of the invention preferably results in a decrease in severity of disease symptoms, an increase in frequency or duration of disease symptom-free periods or a prevention of impairment or disability due to the disease affliction.
- a therapeutically effective amount of the antibody construct of the invention e.g. an anti-target cell antigen/anti-CD3 antibody construct, preferably inhibits cell growth or tumor growth by at least about 20%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, or at least about 90% relative to untreated patients.
- the ability of a compound to inhibit tumor growth may be evaluated in an animal model predictive of efficacy
- the pharmaceutical composition can be administered as a sole therapeutic or in combination with additional therapies such as anti-cancer therapies as needed, e.g. other proteinaceous and non-proteinaceous drugs. These drugs may be administered simultaneously with the composition comprising the antibody construct of the invention as defined herein or separately before or after administration of said antibody construct in timely defined intervals and doses.
- the term "effective and non-toxic dose” as used herein refers to a tolerable dose of an inventive antibody construct which is high enough to cause depletion of pathologic cells, tumor elimination, tumor shrinkage or stabilization of disease without or essentially without major toxic effects. Such effective and non-toxic doses may be determined e.g. by dose escalation studies described in the art and should be below the dose inducing severe adverse side events (dose limiting toxicity, DLT).
- toxicity refers to the toxic effects of a drug manifested in adverse events or severe adverse events. These side events might refer to a lack of tolerability of the drug in general and/or a lack of local tolerance after administration. Toxicity could also include teratogenic or carcinogenic effects caused by the drug.
- safety means the administration of a drug without inducing severe adverse events directly after administration (local tolerance) and during a longer period of application of the drug.
- Safety can be evaluated e.g. at regular intervals during the treatment and follow-up period. Measurements include clinical evaluation, e.g. organ manifestations, and screening of laboratory abnormalities. Clinical evaluation may be carried out and deviations to normal findings recorded/coded according to NCI-CTC and/or MedDRA standards.
- Organ manifestations may include criteria such as allergy/immunology, blood/bone marrow, cardiac arrhythmia, coagulation and the like, as set forth e.g. in the Common Terminology Criteria for adverse events v3.0 (CTCAE).
- Laboratory parameters which may be tested include for instance hematology, clinical chemistry, coagulation profile and urine analysis and examination of other body fluids such as serum, plasma, lymphoid or spinal fluid, liquor and the like.
- Safety can thus be assessed e.g. by physical examination, imaging techniques (i.e. ultrasound, x-ray, CT scans, Magnetic Resonance Imaging (MRI), other measures with technical devices (i.e. electrocardiogram), vital signs, by measuring laboratory parameters and recording adverse events.
- adverse events in non-chimpanzee primates in the uses and methods according to the invention may be examined by histopathological and/or histochemical methods.
- kits comprising an antibody construct of the invention or produced according to the process of the invention, a pharmaceutical composition of the invention, a polynucleotide of the invention, a vector of the invention and/or a host cell of the invention.
- kit means two or more components - one of which corresponding to the antibody construct, the pharmaceutical composition, the vector or the host cell of the invention - packaged together in a container, recipient or otherwise.
- a kit can hence be described as a set of products and/or utensils that are sufficient to achieve a certain goal, which can be marketed as a single unit.
- the kit may comprise one or more recipients (such as vials, ampoules, containers, syringes, bottles, bags) of any appropriate shape, size and material (preferably waterproof, e.g. plastic or glass) containing the antibody construct or the pharmaceutical composition of the present invention in an appropriate dosage for administration (see above).
- the kit may additionally contain directions for use (e.g. in the form of a leaflet or instruction manual), means for administering the antibody construct of the present invention such as a syringe, pump, infuser or the like, means for reconstituting the antibody construct of the invention and/or means for diluting the antibody construct of the invention.
- kits for a single-dose administration unit may also contain a first recipient comprising a dried / lyophilized antibody construct and a second recipient comprising an aqueous formulation.
- kits containing single-chambered and multi-chambered pre-filled syringes are provided.
- the pharmaceutical composition of the invention further comprises a buffer, which may be selected from the group consisting of potassium phosphate, acetic acid/sodium acetate, citric acid/sodium citrate, succinic acid/sodium succinate, tartaric acid/sodium tartrate, histidine/histidine HCI, glycine, Tris, glutamate, acetate and mixtures thereof, and in particular from potassium phosphate, citric acid/sodium citrate, succinic acid, histidine, glutamate, acetate and combinations thereof.
- a buffer which may be selected from the group consisting of potassium phosphate, acetic acid/sodium acetate, citric acid/sodium citrate, succinic acid/sodium succinate, tartaric acid/sodium tartrate, histidine/histidine HCI, glycine, Tris, glutamate, acetate and mixtures thereof, and in particular from potassium phosphate, citric acid/sodium citrate, succ
- Suitable buffer concentrations encompass concentrations of about 200 mM or less, such as about 190, 180, 170, 160, 150, 140, 130, 120, 1 10, 100, 80, 70, 60, 50, 40, 30, 20, 10 or 5 mM.
- Envisaged buffer concentrations in the pharmaceutical composition of the invention specifically rangefrom about 5 to about 200 mM, preferably from about 5 to about 100 mM, and more preferably from about 10 to about 50 mM.
- the term "pharmaceutical composition” relates to a composition which is suitable for administration to a subject in need thereof.
- subject or “individual” or “animal” or “patient” are used interchangeably herein to refer to any subject, particularly a mammalian subject, for whom administration of the pharmaceutical composition of the invention is desired.
- Mammalian subjects include humans, non-human primates, dogs, cats, guinea pigs, rabbits, rats, mice, horses, cattle, cows, and the like, with humans being preferred.
- the pharmaceutical composition of the present invention is stable and pharmaceutically acceptable, i.e. capable of eliciting the desired therapeutic effect without causing any undesirable local or systemic effects in the subject to which the pharmaceutical composition is administered.
- compositions of the invention may in particular be sterile and/or pharmaceutically inert.
- pharmaceutically acceptable can mean approved by a regulatory agency or other generally recognized pharmacopoeia for use in animals, and more particularly in humans.
- the pharmaceutical composition of the invention comprises one or a plurality of the bispecific single chain antibody construct(s) described herein, preferably in a therapeutically effective amount, a ⁇ -cyclodextrin and a buffer.
- therapeutically effective amount is meant an amount of said construct that elicits the desired therapeutic effect.
- Therapeutic efficacy and toxicity can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., ED50 (the dose therapeutically effective in 50% of the population) and LD50 (the dose lethal to 50% of the population). The dose ratio between therapeutic and toxic effects is the therapeutic index, and it can be expressed as the ratio, ED50/LD50. Pharmaceutical compositions that exhibit large therapeutic indices are generally preferred.
- the composition may comprise a ⁇ -cyclodextrin and the buffer described previously.
- the pharmaceutical composition may optionally comprise one or more further excipients as long as they do not reduce or abolish its advantageous properties as described herein, and in particular its stability.
- Excipients can be used in the invention for a wide variety of purposes, such as adjusting physical, chemical, or biological properties of formulations, such as adjustment of viscosity, and or processes of the invention to further improve effectiveness and or to further stabilize such formulations and processes against degradation and spoilage due to, for instance, stresses that occur during manufacturing, shipping, storage, pre-use preparation, administration, and thereafter.
- excipient generally includes fillers, binders, disintegrants, coatings, sorbents, antiadherents, glidants, preservatives, antioxidants, flavoring, coloring, sweeting agents, solvents, co-solvents, buffering agents, chelating agents, viscosity imparting agents, surface active agents, diluents, humectants, carriers, diluents, preservatives, emulsifiers, stabilizers and tonicity modifiers.
- amino acid can act as a buffer, a stabilizer and/or an antioxidant
- mannitol can act as a bulking agent and/or a tonicity enhancing agent
- sodium chloride can act as delivery vehicle and/or tonicity enhancing agent; etc.
- Polyols are useful stabilizing agents in both liquid and lyophilized formulations to protect proteins from physical and chemical degradation processes, and are also useful for adjusting the tonicity of formulations.
- Polyols include sugars, e.g., mannitol, sucrose, and sorbitol and polyhydric alcohols such as, for instance, glycerol and propylene glycol, and, for purposes of discussion herein, polyethylene glycol (PEG) and related substances.
- Mannitol is commonly used to ensure structural stability of the cake in lyophilized formulations. It ensures structural stability to the cake. It is generally used with a lyoprotectant, e.g., sucrose.
- Sorbitol and sucrose are commonly used agents for adjusting tonicity and as stabilizers to protect against freeze-thaw stresses during transport or the preparation of bulks during the manufacturing process.
- PEG is useful to stabilize proteins and as a cryoprotectant.
- Surfactants routinely are used to prevent, minimize, or reduce surface adsorption. Protein molecules may be susceptible to adsorption on surfaces and to denaturation and consequent aggregation at air-liquid, solid-liquid, and liquid-liquid interfaces. These effects generally scale inversely with protein concentration. These deleterious interactions generally scale inversely with protein concentration and typically are exacerbated by physical agitation, such as that generated during the shipping and handling of a product. Commonly used surfactants include polysorbate 20, polysorbate 80, other fatty acid esters of sorbitan polyethoxylates, and poloxamer 188. Surfactants also are commonly used to control protein conformational stability.
- surfactants in this regard is protein-specific since, any given surfactant typically will stabilize some proteins and destabilize others.
- Polysorbates are susceptible to oxidative degradation and often, as supplied, contain sufficient quantities of peroxides to cause oxidation of protein residue side-chains, especially methionine. Consequently, polysorbates should be used carefully, and when used, should be employed at their lowest effective concentration.
- Antioxidants can -to some extent- prevent deleterious oxidation of proteins in pharmaceutical formulations by maintaining proper levels of ambient oxygen and temperature and by avoiding exposure to light. Antioxidant excipients can be used as well to prevent oxidative degradation of proteins.
- antioxidants in this regard are reducing agents, oxygen/free-radical scavengers, and chelating agents.
- Antioxidants for use in therapeutic protein formulations are preferably water-soluble and maintain their activity throughout the shelf life of a product. EDTA is a useful example.
- Metal ions can act as protein co-factors and enable the formation of protein coordination complexes. Metal ions also can inhibit some processes that degrade proteins. However, metal ions also catalyze physical and chemical processes that degrade proteins. Magnesium ions (10-120 mM) can be used to inhibit isomerization of aspartic acid to isoaspartic acid. Ca+2 ions (up to 100 mM) can increase the stability of human deoxyribonuclease. Mg+2, Mn+2, and Zn+2, however, can destabilize rhDNase. Similarly, Ca+2 and Sr+2 can stabilize Factor VIII, it can be destabilized by Mg+2, Mn+2 and Zn+2, Cu+2 and Fe+2, and its aggregation can be increased by AI+3 ions.
- Preservatives have the primary function to inhibit microbial growth and ensure product sterility throughout the shelf-life or term of use of the drug product, and are in particular needed for multi-dose formulations.
- Commonly used preservatives include benzyl alcohol, phenol and m-cresol.
- Salts may be used in accordance with the invention to, for example, adjust the ionic strength and/or the isotonicity of the pharmaceutical formulation and/or to further improve the solubility and/or physical stability of the antibody construct or other ingredient.
- ions can stabilize the native state of proteins by binding to charged residues on the protein's surface and by shielding charged and polar groups in the protein and reducing the strength of their electrostatic interactions, attractive, and repulsive interactions.
- Ions also can stabilize the denatured state of a protein by binding to, in particular, the denatured peptide linkages (-CONH) of the protein.
- ionic interaction with charged and polar groups in a protein also can reduce intermolecular electrostatic interactions and, thereby, prevent or reduce protein aggregation and insolubility.
- Ionic species differ in their effects on proteins.
- a number of categorical rankings of ions and their effects on proteins have been developed that can be used in formulating pharmaceutical compositions in accordance with the invention.
- One example is the Hofmeister series, which ranks ionic and polar non-ionic solutes by their effect on the conformational stability of proteins in solution.
- Stabilizing solutes are referred to as "kosmotropic.”
- Destabilizing solutes are referred to as “chaotropic.”
- Kosmotropes commonly are used at high concentrations (e.g., >1 molar ammonium sulfate) to precipitate proteins from solution (“salting-out”).
- Chaotropes commonly are used to denture and/or to solubilize proteins ("salting-in”).
- the relative effectiveness of ions to "salt- in” and “salt-out” defines their position in the Hofmeister series.
- Free amino acids can be used in the pharmaceutical composition as bulking agents, stabilizers, and antioxidants, as well as other standard uses.
- Lysine, proline, serine, and alanine can be used for stabilizing proteins in a formulation.
- Glycine is useful in lyophilization to ensure correct cake structure and properties.
- Arginine may be useful to inhibit protein aggregation, in both liquid and lyophilized formulations.
- Methionine is useful as an antioxidant.
- excipients for formulating the pharmaceutical composition include sucrose, trehalose, mannitol, sorbitol, arginine, lysine, polysorbate 20, polysorbate 80, poloxamer 188, pluronic and combinations thereof. Said excipients may be present in the pharmaceutical composition in different concentrations, as long as the composition exhibits the desirable properties as exemplified herein, and in particular promotes stabilization of the contained bispecific single chain antibody constructs. For instance, sucrose may be present in the pharmaceutical composition in a concentration between 2% (w/v) and 12% (w/v), i.e.
- sucrose concentrations range between 4 % (w/v) and 10% (w/v) and more preferably between 6 % (w/v) and 10% (w/v).
- Polysorbate 80 may be present in the pharmaceutical composition in a concentration between 0.001 % (w/v) and 0.5% (w/v), i.e.
- Preferred Polysorbate 80 concentrations range between 0.002 % (w/v) and 0.5% (w/v), and preferably between 0.005 % (w/v) and 0.02% (w/v).
- Useful preservatives for formulating pharmaceutical compositions generally include antimicrobials (e.g. anti-bacterial or anti-fungal agents), anti-oxidants, chelating agents, inert gases and the like; examples are: benzalkonium chloride, benzoic acid, salicylic acid, thimerosal, phenethyl alcohol, methylparaben, propylparaben, chlorhexidine, sorbic acid or hydrogen peroxide).
- Antimicrobial preservatives are substances which are used to extend the shelf-life of medicines by reducing microbial proliferation.
- Preservatives that particularly useful for formulating the pharmaceutical composition of the invention include benzyl alcohol, chlorobutanol, phenol, meta-cresol, methylparaben, phenoxyethanol, propylparaben thiomerosal.
- the structure and typical concentration for the use of these preservatives are described in Table 1 of Meyer et al. J Pharm Sci. 96(12), 3155.
- the aforementioned preservatives may be present in the pharmaceutical composition in different concentrations.
- benzyl alcohol may be present in a concentration ranging between 0.2 and 1.1 % (v/v)
- chlorobutanol in a concentration ranging between 0.3- 0.5% (v/v)
- phenol in a concentration ranging between 0.07 and 0.5% (v/v)
- meta-cresol in a concentration ranging between 0.17 and 0-32%
- thiomerosal in a concentration ranging between 0.003 to 0.01 %(v/v).
- Preferred concentrations for methylparaben are in the range of 0.05 and 0.5 % (v/v), for phenoxyethanol in the range of 0.1 and 3 % (v/v) and for propylparaben in the range of 0.05 and 0.5 % (v/v).
- the pharmaceutical composition does not comprise any preservatives.
- the present invention inter alia provides a pharmaceutical composition being free of preservatives, comprising a bispecific single chain antibody construct in a concentration of about 0.5 mg/ml, sulfobutylether-3-cyclodextrin sodium salt in a concentration of about 1 % (w/v), and potassium phosphate in concentration of about 10 mM, and further sucrose in concentration of about 8% (w/v) of and polysorbate 80 in concentration of about 0.01 % (w/v) at a pH of about 6.0.
- the pharmaceutical compositions of the invention can be formulated in various forms, e.g.
- the primary vehicle or carrier in a pharmaceutical composition may be either aqueous or non-aqueous in nature.
- a suitable vehicle or carrier may be water for injection, physiological saline solution or artificial cerebrospinal fluid, possibly supplemented with other materials common in compositions for parenteral administration.
- Neutral buffered saline or saline mixed with serum albumin are further exemplary vehicles.
- the therapeutic compositions of the invention may be provided in the form of a pyrogen-free, parenterally acceptable aqueous solution comprising the desired antibody construct in a pharmaceutically acceptable vehicle.
- a particularly suitable vehicle for parenteral injection is sterile distilled water in which the antibody construct is formulated as a sterile, isotonic solution, properly preserved.
- the preparation can involve the formulation of the desired molecule with an agent, such as injectable microspheres, bio-erodible particles, polymeric compounds (such as polylactic acid or polyglycolic acid), beads or liposomes, that may provide controlled or sustained release of the product which can be delivered via depot injection.
- Hyaluronic acid may also be used, having the effect of promoting sustained duration in the circulation.
- Implantable drug delivery devices may be used to introduce the desired antibody construct.
- Sustained- or controlled-delivery / release formulations are also envisaged herein. Techniques for formulating a variety of other sustained- or controlled-delivery means, such as liposome carriers, bio-erodible microparticles or porous beads and depot injections, are also known to those skilled in the art. See, for example, International Patent Application No. PCT/US93/00829, which describes controlled release of porous polymeric microparticles for delivery of pharmaceutical compositions.
- Sustained-release preparations may include semipermeable polymer matrices in the form of shaped articles, e.g., films, or microcapsules. Sustained release matrices may include polyesters, hydrogels, polylactides (as disclosed in U.S. Pat.
- Sustained release compositions may also include liposomes that can be prepared by any of several methods known in the art. See, e.g., Eppstein et al., 1985, Proc. Natl. Acad. Sci. U.S.A. 82:3688-3692; European Patent Application Publication Nos.EP 036,676; EP 088,046 and EP 143,949.
- the antibody construct may also be entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization (for example, hydroxymethylcellulose or gelatine- microcapsules and poly (methylmethacylate) microcapsules, respectively), in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nanoparticles and nanocapsules), or in macroemulsions.
- colloidal drug delivery systems for example, liposomes, albumin microspheres, microemulsions, nanoparticles and nanocapsules
- compositions used for in vivo administration are typically provided as sterile preparations. Sterilization can be accomplished by filtration through sterile filtration membranes. When the composition is lyophilized, sterilization using this method may be conducted either prior to or following lyophilization and reconstitution.
- Compositions for parenteral administration can be stored in lyophilized form or in a solution. Parenteral compositions generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle.
- the antibody constructs disclosed herein may also be formulated as immuno- liposomes.
- a “liposome” is a small vesicle composed of various types of lipids, phospholipids and/or surfactant which is useful for delivery of a drug to a mammal.
- the components of the liposome are commonly arranged in a bilayer formation, similar to the lipid arrangement of biological membranes.
- Liposomes containing the antibody construct are prepared by methods known in the art, such as described in Epstein et al., Proc. Natl. Acad. Sci. USA, 82: 3688 (1985); Hwang et al. , Proc. Natl Acad. Sci. USA, 77: 4030 (1980); US Pat. Nos. 4,485,045 and 4,544,545; and W0 97/38731 .
- Liposomes with enhanced circulation time are disclosed in US Patent No. 5,013, 556.
- Particularly useful liposomes can be generated by the reverse phase evaporation method with a lipid composition comprising phosphatidylcholine, cholesterol and PEG-derivatized phosphatidylethanolamine (PEG-PE). Liposomes are extruded through filters of defined pore size to yield liposomes with the desired diameter.
- Fab' fragments of the antibody construct of the present invention can be conjugated to the liposomes as described in Martin et al. J. Biol. Chem. 257: 286-288 (1982) via a disulfide interchange reaction.
- a chemotherapeutic agent is optionally contained within the liposome. See Gabizon et al.
- composition of the invention might comprise, in addition to the bispecific single chained antibody construct defined herein, further biologically active agents, depending on the intended use of the composition.
- agents might be in particular drugs acting on tumors and/or malignant cells, but other active agents are also conceivable depending on the intended use of the pharmaceutical composition, including agents acting on on the gastro-intestinal system, drugs inhibiting immunoreactions (e.g. corticosteroids), drugs modulating the inflammatory response, drugs acting on the circulatory system and/or agents such as cytokines known in the art.
- the pharmaceutical composition of the present invention is applied in a co-therapy, i.e., in combination with another anti-cancer medicament.
- a co-therapy i.e., in combination with another anti-cancer medicament.
- the pharmaceutical composition may be stored in sterile vials as a solution, suspension, gel, emulsion, solid, crystal, or as a dehydrated or lyophilized powder.
- Such formulations may be stored either in a ready-to-use form or in a form (e.g., lyophilized) that is reconstituted prior to administration.
- lyophilized compositions may be reconstituted in, e.g., bacteriostatic water for injection (BWFI), physiological saline, phosphate buffered saline (PBS), or the same formulation the protein had been in prior to lyophilization.
- BWFI bacteriostatic water for injection
- PBS phosphate buffered saline
- the pharmaceutical composition of the invention may in general be formulated for delivery by any suitable route of administration.
- the routes of administration include, but are not limited totopical routes (such as epicutaneous, inhalational, nasal, opthalmic, auricular / aural, vaginal, mucosal);enteral routes (such as oral, gastrointestinal, sublingual, sublabial, buccal, rectal); and parenteral routes (such as intravenous, intraarterial, intraosseous, intramuscular, intracerebral, intracerebroventricular, epidural, intrathecal, subcutaneous, intraperitoneal, extra-amniotic, intraarticular, intracardiac, intradermal, intralesional, intrauterine, intravesical, intravitreal, transdermal, intranasal, transmucosal, intrasynovial, intraluminal).
- topical routes such as epicutaneous, inhalational, nasal, opthalmic, auricular / aural, vaginal, mucosal
- compositions described herein are particularly useful for parenteral administration, e.g., subcutaneous or intravenous delivery, for example by injection such as bolus injection, or by infusion such as continuous infusion.
- Pharmaceutical compositions may be administered using a medical device. Examples of medical devices for administering pharmaceutical compositions are described in U.S. Patent Nos. 4,475,196; 4,439,196; 4,447,224; 4,447, 233; 4,486,194; 4,487,603; 4,596,556; 4,790,824; 4,941 ,880; 5,064,413; 5,312,335; 5,312,335; 5,383,851 ; and 5,399,163.
- the pharmaceutical composition of the invention can also be administered uninterruptedly.
- uninterrupted or substantially uninterrupted, i.e. continuous administration may be realized by a small pump system worn by the patient for metering the influx of the antibody construct into the body of the patient.
- the pharmaceutical composition can be administered by using said pump systems.
- pump systems are generally known in the art, and commonly rely on periodic exchange of cartridges containing the therapeutic agent to be infused. When exchanging the cartridge in such a pump system, a temporary interruption of the otherwise uninterrupted flow of therapeutic agent into the body of the patient may ensue.
- the continuous or uninterrupted administration of the pharmaceutical composition of the invention may be intravenous or subcutaneous by way of a fluid delivery device or small pump system including a fluid driving mechanism for driving fluid out of a reservoir and an actuating mechanism for actuating the driving mechanism.
- Pump systems for subcutaneous administration may include a needle or a cannula for penetrating the skin of a patient and delivering the suitable composition into the patient's body.
- Said pump systems may be directly fixed or attached to the skin of the patient independently of a vein, artery or blood vessel, thereby allowing a direct contact between the pump system and the skin of the patient.
- the pump system can be attached to the skin of the patient for 24 hours up to several days.
- the pump system may be of small size with a reservoir for small volumes.
- the volume of the reservoir for the suitable pharmaceutical composition to be administered can be between 0.1 and 50 ml.
- transdermal administration may also be achieved transdermal ⁇ by way of a patch worn on the skin and replaced at intervals.
- patch systems for drug delivery suitable for this purpose. It is of note that transdermal administration is especially amenable to uninterrupted administration, as exchange of a first exhausted patch can advantageously be accomplished simultaneously with the placement of a new, second patch, for example on the surface of the skin immediately adjacent to the first exhausted patch and immediately prior to removal of the first exhausted patch. Issues of flow interruption or power cell failure do not arise.
- the pharmaceutical composition of the invention may in general comprise any of the aforementioned excipients, or additional active agents, or may be provided in any suitable form as long as it is stable and preferably exhibits the same advantageous properties as the pharmaceutical compositions comprising ⁇ - cyclodextrins that have been evaluated in the appended Examples.
- the skilled person will readily be able to adjust the various components so as to provide a pharmaceutical composition that is stable, i.e. is preferably substantially free from aggregates and/or conformers of the bispecific single chain antibody fragments comprised within.
- the term “less than” or “greater than” includes the concrete number. For example, less than 20 means less than or equal to. Similarly, more than or greater than means more than or equal to, or greater than or equal to, respectively.
- Canonical EGFRvlll BiTE® antibody construct was provided in a buffer solution of either pH 7.0 or pH 4.0 and subjected to DSC, respectively.
- the DSC melting temperature of the antibody construct was obtained as a single melting event.
- the Tm was 65°C while at pH 4 the Tm was 59.5°C, i.e. lower than in neutral medium (see thermogram in Fig. 3).
- a higher Tm stands for higher stability of a compound.
- MWCO molecular weight cut-off
- Resulting formulations for each construct are K60RTrT composed of 20 mM potassium phosphate, 150 mM L-arginine hydrochloride, 6% (w/V) trehalose dihydrate, 0.01 % (w/V) polysorbate 80 at pH 6.0 and G40MSuT composed of 10 mM glutamate, 4% (w/V) mannitol, 2% (w/V) sucrose, 0.01 % (w/V) polysorbate 80 at pH 4.0.
- FIG. 38717) resulting in a 25 ppm spike.
- An unspiked test solution served as control sample.
- the spiked test solution as well as the control sample were filled into 3cc type I glass vials and were incubated at 37°C for 24 hours. All samples were analyzed by SE-UPLC in order to quantify the amount of HMWS.
- Figure 4 (a) shows percentage of high molecular weight species of CDH19 scFc antibody constructs measured in pH 4 vs. pH 6. Lower aggregation is seen at the lower pH of 4.0.
- Figure 4 (b) shows percentage main peak of CDH19 scFc BiTE measured by SEC at 4°C (time points TO, 2w, 4w), 25°C (TO, 1w, 2w, 4w) and 37C (TO, 1w, 2w, 4w) in three different formulations - G4SuT, G4TrT and G4MSuT:
- G4SuT comprises 10mM glutamate, 9% (w/v) Sucrose, 0.01 % polysorbate 80
- G4TrT comprises 10 mM glutamate, 9% (w/v) Trehalose, 0.01 % Polysorbate 80
- G4MSuT comprises 10mM glutamate, 4% (w/v) Mannitol, 2% Sucrose, 0.01 % polysorbate 80.
- Figure 4 (c) shows percentage main peak of CDH19 scFc BiTE measured by SEC at -20°C (TO, 4w) in three different formulations - G4SuT, G4TrT and G4MSuT.
- Figure 4 (d) shows percentage high molecular weight (HMW) peak of CDH 19 scFc BiTE measured by SEC at 4C (TO, 2w, 4w), 25°C (TO, 1w, 2w, 4w) and 37°C (TO, 1w, 2w, 4w) in three different formulations: G4SuT, G4TrT and G4MSuT.
- HMW high molecular weight
- Figure 4 (e) shows percentage HMW peak of CDH19 scFc BiTE measured by SEC at -20°C (TO, 4w) in three different formulations - G4SuT, G4TrT and G4MSuT.
- Figure 4 (f) shows percentage low molecular weight peak of CDH19 scFc BiTE measured by SEC at 4C (TO, 2w, 4w), 25C (TO, 1w, 2w, 4w) and 37C (TO, 1w, 2w, 4w) in three different formulations - G4SuT, G4TrT and G4MSuT.
- Figure 5 shows percentage main peak of EGFRvlll non-scFC antibody construct in various buffers in the pH range 4 to 7 measured after 6 months.
- FIG. 6 shows percentage main peak of CD33-scFc antibody construct at different concentrations in different formulations at 4°C.
- the "ccHFC” stands for a specifically modified cys-clamed scFc domain. Low pH formulations consistently have higher monomeric species
- (b) shows percentage main peak of CD33-scFc antibody construct at different concentrations in different formulations at 25°C.
- the "ccHFC” stands for a specifically modified cys-clamed scFc domain Low pH formulations consistently have higher monomeric species.
- Figure 7 Percentage aggregation of canonical (non-HLE) CD19xCD3 BiTE® antibody construct as measured by SEC as a function of pH at TO, 7 days, 14 days and 1 month. The figure demonstrates that at low pH the amount of aggregation is dramatically lower.
- Example 3 EGFRvlll BiTE® antibody construct was purified using immobilized metal affinity chromatography (IMAC) followed by size exclusion chromatography (SEC).
- the SEC eluate contained 0.43 mg/mL EGFRvlll in 20 mM citric acid and 2% (w/v) trehalose dihydrate at pH 5.0.
- the material was splitted into three fractions. The first fraction was kept at pH 5.0. The pH of the other fractions was adjusted to 6.0 and 7.0 respectively. All fractions were filtered through a filter with a pore size of 0.2 ⁇ . Each fraction was finally formulated by spiking with concentrated excipient stock solutions.
- Table 4 The EGFRvlll concentration in each formulation equaled 0.1 mg/mL.
- the formulation were filled to 1 .0 mL in 2R type I glass vials which were closed with butyl rubber stoppers and aluminum flip off seals.
- Table 4 Overview on tested formulations. The plan below represents a four factor full factorial experimental design with 2(4-0) different formulations. Formulations marked with an asterix (*) represent center points of the experimental design and have been prepared in triplicates.
- the formulations were stored at 25°C for four days and then analyzed by optical density measurements at 350 nm, size exclusion ultra-high performance chromatography and weak cation exchange (WCX) chromatography.
- the optical density at 350 nm was measured in 96-well plate using Tecan Infinite M1000 plate reader from Tecan.
- the aggregation index (Al) was calculated using the following equation:
- HMWS high molecular weight species
- SE-UPLC was performed on an Aquity H-Class UPLC system (Waters) using an Acquity UPLC BEH200 SEC 150 mm column (Waters). Column temperature was set to 25°C. Separation of size variants was achieved by applying an isocratic method with a flow rate of 0.4 mL/min. The mobile phase was composed of 100 mM sodium phosphate, 250 mM NaCI pH 6.8. The run time totals 6.0 minutes. Samples were held at 8°C within the autosampler until analysis. A total amount of 3 ⁇ g protein was injected.
- Detection was based on fluorescence (excitation at 280 nm, emission at 325 nm) for the quantitation of HMWS.
- fluorescence excitation at 280 nm, emission at 325 nm
- peak integration was performed using Empower ® software. Relative area under the curve of HMWS was reported.
- WCX chromatography was performed on an Aquity H-Class UPLC system (Waters) using a Protein-Pak Hi Res CM 7 ⁇ column (Waters, cat No. 186004929). Column temperature was set to 30°C. Separation of charge variants was achieved by applying the gradient method depicted in Table 5 using a flow rate of 0.65 mL/min.
- the mobile phases A and B were composed of 20 mM sodium phosphate pH 6.5 and 20 mM sodium phosphate.
- Samples were held at 8°C within the autosampler until analysis. 5 ⁇ g of protein were injected onto the column. Samples were prediluted with mobile phase A. In order to avoid carry over an intermediate injection with 40% ACN was performed after each sample. Detection was based on fluorescence (Ex 280 nm, Ex 325 nm). Peak integration was performed using Empower ® software. Relative area under the curve (AUC) of the main peak (native species) was reported.
- AUC area under the curve
- Statistica software was used to statistically evaluate the impact of above formulation parameters on the measured aggregation index, percentaged content of HMWS, protein concentration, and the abundance of the WCX main peak.
- the profiles for predictive values and desirability are depicted Figure 8.
- An optimal formulation strives for a low aggregation index, low HMWS, high protein concentration, and a high main peak percentage.
- desirability is maximized by using L-Arginine, high PS 80 concentrations and formulation at low pH values.
- MSLN Mesothelin
- CEX cation exchange
- HA hydroxyapatite
- UFDF ultrafiltration/diafiltration
- SE-UPLC was performed on an Aquity H-Class UPLC system (Waters) using an Acquity UPLC BEH200 SEC 150 mm column (Waters). Column temperature was set to 25°C. Separation of size variants was achieved by applying an isocratic method with a flow rate of 0.4 mL/min. The mobile phase was composed of 100 mM sodium phosphate, 250 mM NaCI pH 6.8. The run time totals 6.0 minutes. Samples were held at 8°C within the autosampler until analysis. A total amount of 3 ⁇ g protein was injected. In order to avoid carry over an intermediate injection with 40% ACN was performed after each sample.
- Detection was based on fluorescence (excitation at 280 nm, emission at 325 nm). Peak integration was performed using Empower ® software. Relative area under the curve of HMWS was reported ( Figure 9). The abundance of chemical modifications upon heat stress (incubation at 37°C) was monitored by peptide mapping. Protein samples were enzymatically digested and the resulting peptides were separated using reversed phase chromatography. The column eluate was directly injected into the ion source of a mass spectrometer for identification and quantitation of the peptides.
- a load of 5 ⁇ g of each digest was separately injected onto a Zorbax SB-C18 (Agilent #859700-902) reversed phase column equilibrated in 0.1 % (V/V) formic acid (FA).
- a 156 minute gradient of up to 90% acetonitrile containing 0.1 % FA was used to elute the peptides directly into the electrospray ion source of a Q-Exactive Plus mass spectrometer (Thermo Scientific).
- Data was collected in data dependent mode using a top 12 method in which a full scan (resolution 70 000; scan range 200-2000 m/z) was followed by high energy collision dissociation (HCD) of the 12 most abundant ions (resolution 17 500).
- Peptides were identified based on accurate mass and tandem mass spectrum using in-house software. Identifications were manually verified. Relative quantities of modified and unmodified peptides were calculated based on ion abundance using Pinpoint software (Thermo Scientific).
- CD33cc-scFc BiTE antibody construct was purified using Protein A, cation exchange (CEX), and hydroxyapatite (HA) chromatography. The HA eluate was then preformulated using ultrafiltration/diafiltration (UFDF). Final formulation was achieved by spiking with concentrated excipient stock solutions.
- UFDF ultrafiltration/diafiltration
- SE-UPLC was performed on an Aquity H-Class UPLC system (Waters) using an Acquity UPLC BEH200 SEC 150 mm column (Waters). Column temperature was set to 25°C. Separation of size variants was achieved by applying an isocratic method with a flow rate of 0.4 mL/min. The mobile phase was composed of 100 mM sodium phosphate, 250 mM NaCI pH 6.8. The run time totals 6.0 minutes. Samples were held at 8°C within the autosampler until analysis. A total amount of 3 ⁇ g protein was injected. In order to avoid carry over an intermediate injection with 40% ACN was performed after each sample. Detection was based on fluorescence (excitation at 280 nm, emission at 325 nm). Peak integration was performed using Empower ® software. Relative area under the curve of HMWS was reported ( Figure 10).
- Samples were then buffer exchanged into 50 mM Tris pH 7.8 for digestion. Trypsin and chymotrypsin were added to separate reaction tubes at a ratio of 1 :10 (sample:enzyme) each. Samples were digested for 30 min at 37°C and the reaction was quenched by adding trifluoroacetic acid.
- a load of 5 ⁇ g of each digest was separately injected onto a Zorbax SB-C18 (Agilent #859700-902) reversed phase column equilibrated in 0.1 % (V/V) formic acid (FA).
- a 156 minute gradient of up to 90% acetonitrile containing 0.1 % FA was used to elute the peptides directly into the electrospray ion source of a Q-Exactive Plus mass spectrometer (Thermo Scientific).
- Data was collected in data dependent mode using a top 12 method in which a full scan (resolution 70 000; scan range 200-2000 m/z) was followed by high energy collision dissociation (HCD) of the 12 most abundant ions (resolution 17 500).
- Peptides were identified based on accurate mass and tandem mass spectrum using in-house software. Identifications were manually verified. Relative quantities of modified and unmodified peptides were calculated based on ion abundance using Pinpoint software (Thermo Scientific).
- CDRs complement determining regions
- CD33cc-scFc is less prone to chemical modifications when formulated at pH 4.0 if compared to pH 6.0 and 7.0.
- Example 6 Preformulated drug substances containing purified MSLN-hALB, MSLN-hFc, and MSLN-scFc respectively were buffer exchanged via ultrafiltration / diafiltration using membranes with a molecular weight cut-off (MWCO) of 10 kDa. Final formulation was achieved by adding concentrated stock solutions.
- MWCO molecular weight cut-off
- Resulting formulations for each construct are K60RTrT composed of 20 mM potassium phosphate, 150 mM L-arginine hydrochloride, 6% (w/V) trehalose dihydrate, 0.01 % (w/V) polysorbate 80 at pH 6.0 and G40MSuT composed of 10 mM glutamate, 4% (w/V) mannitol, 2% (w/V) sucrose, 0.01 % (w/V) polysorbate 80 at pH 4.0.
- MSLN-hALB was formulated in K60RTrT and MSLN-scFc was formulated in K60RTrT and G40MSuT. The protein concentration totaled 1 .0 mg/mL.
- Table 10 Overview on HMWS contents in MSLN-hALB, and -scFc preparations determined via SE-UPLC after spiking with 25 ppm silicon
- the found beneficial formulation is especially suitable for antibody constructs according to the present invention, such as scFc as third domain.
- An EGFRvlll targeting non-HLE (half-life extended) BiTE® antibody construct (BiTE ® A) exempt of a half-life extending moiety was formulated in 20 mM citric acid monohydrate, 100 mM L-Arginine monohydrochlorid at pH 4.8. Fractions of this solution were spiked with 0, 100, and 200 mM sodium chloride using a 4M stock solution. The concentration of each fraction was adjusted to 0.8 mg BiTE A per mL. The final solutions were aliquoted to 2.5 mL in ready-to-use 10R type I glass vials which were closed with butyl rubber stoppers and aluminum flip off seals. These solutions were stored at 30°C for 12 weeks and stability was assessed using different analytical methods.
- SE-UPLC was performed on an ACQUITY UPLC H-Class Bio System (Waters, Milford, MA, USA), consisting of Bio Sample Manager-FTN, Bio Quaternary Solvent Manager, and photo diode array (PDA) detector in order to determine protein concentration. Chromatographic separation was carried out using an Acquity UPLC Protein BEH 200 SEC column (packed 1 .7 ⁇ , 4.6 x 150 mm) (Waters, Milford, MA, USA). Column temperature was maintained at 25°C. 100 ⁇ _ of each sample solution were filled to Glass Screw Neck Vials with PTFE/silicone septum (Waters, Milford, MA, USA). Autosampler was temperature controlled at 8°C.
- Samples were measured in duplicates with 3 ⁇ g/sample loaded onto the column, corresponding to an injection volume of 3.8 ⁇ _ at a protein concentration of about 0.8 mg/mL per run.
- Sample elution was performed under isocratic conditions at a flow rate of 0.4 mL/min using a mobile phase of 100 mM sodium phosphate buffer, pH 6.8 with additional 250 mM sodium chloride buffer.
- the running buffer was automatically premixed by the system with 500 mM monobasic sodium phosphate loaded onto channel A, 500 mM dibasic sodium phosphate onto channel B, 1 M sodium chloride onto channel C and HPLC grade water onto channel D.
- 10 ⁇ _ of 40% acetonitrile were injected.
- Run time was set to 6 minutes.
- Eluted samples were detected by means UV absorption was determined at a wavelength of 280 nm. Acquisition and integration of chromatograms were performed using Empower Software (Waters, Milford, MA, USA). Chromatograms were analyzed regarding the area under the curve (AUC) for concentration determination of the sample. Values are given as mean values of independent sample triplicates with corresponding standard deviation.
- Protein concentration was calculated using the following equation:
- Equation Calculation of sample concentration in mg/mL from area under the curve (AUC) values in mAU*s. Parameters are outlined in Table 11.
- Protein concentration of BiTE ® A preparations as a function of formulation and storage time is given in Table 12. While protein concentration remained constant over time in absence of sodium chloride, significant protein losses were observed in salt containing preparations. Protein losses were most pronounced in formulations with 200 mM sodium chloride.
- Light obscuration was applied to measure the amount of subvisible particles larger than 10 and 25 ⁇ within BiTE ® A preparations. Light obscuration measurements were performed on a HIAC 9703+ Liquid Particle Counting System (Beckmann Coulter, Brea, CA, USA) equipped with HRLD 150 sensor. Data acquisition and analysis were conducted using the corresponding PharmSpec 3 Software. Prior to sample analysis, system suitability was verified by measurement of EZYTM-Cal Particle size standard 5 ⁇ (Thermo Fisher Scientific, Waltham, MA, USA) and EZYTM-Cal Particle size standard 15 ⁇ (Thermo Fisher Scientific, Waltham, MA, USA).
- Table 13 outlines subvisible particle counts for BiTE ® A containing preparations as a function of formulation and storage time. Subvisible particle counts were lowest in absence of sodium chloride and only marginally change over time. The addition of sodium chloride resulted in comparable initial particle counts. However, the amount of subvisible particles significantly increased over time in presence of salt. This demonstrates that colloidal stability of preparations containing is improved in absence of sodium chloride.
- BiTE ® A containing preparations were thermally analyzed by nano differential scanning calorimetry (nanoDSF). Unfolding and aggregation behavior of differently formulated BiTE ® A preparations were monitored using the Prometheus NT.48 instrument (NanoTemper Technologies, Kunststoff, Germany) and the corresponding PRThermControl Software (NanoTemper Technologies, Kunststoff, Germany). For analysis of protein unfolding temperature Tm and detection of aggregation temperature Tagg, 10 ⁇ _ per sample were filled to Prometheus NT.48 standard capillaries (NanoTemper Technologies, Kunststoff, Germany) by capillary forces and placed in the instrument. Samples were measured in triplicates. Temperature ramp was defined from 20°C to 95°C, with a heating rate of rc/min.
- Protein unfolding temperature (T m ) and aggregation temperature (T agg ) are given in Table 14 as average values with standard deviation calculated from triplicates. It was demonstrated that unfolding (T m ) and protein aggregation (T agg ) occured at higher temperatures in absence of sodium chloride. This indicates enhanced conformational and colloidal stability of formulation exempt of salt.
- SE-UPLC was performed as described in Example 7. Detection was carried out by measuring fluorescence emission intensity at 325 nm using an excitation wavelength of 280 nm.
- BiTE ® E and BiTE ® F preparations were thermally analyzed by nano differential scanning calorimetry (nanoDSF) using the method described under Example 7.
- Protein unfolding temperature (T m ) and aggregation temperature (T agg ) are given in Table 17 as average values with standard deviation calculated from triplicates. It was demonstrated that unfolding (T m ) and occured at higher temperatures in presence of 200 mM NaCI if compared to preparations containing 0 or 100 mM sodium chloride. Protein aggregation was not detected for salt free preparation in the tested temperature range. In contrast, protein aggregation was observed for preparations containing sodium chloride. Aggregation temperature decreased with higher salt concentrations. Above findings indicate enhanced conformational and colloidal stability of formulation exempt of salt.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Genetics & Genomics (AREA)
- Biophysics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Communicable Diseases (AREA)
- Oncology (AREA)
- Virology (AREA)
- Epidemiology (AREA)
- Microbiology (AREA)
- Mycology (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Medicinal Preparation (AREA)
- Peptides Or Proteins (AREA)
Priority Applications (23)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18706965.3A EP3576788A1 (de) | 2017-02-02 | 2018-02-02 | Pharmazeutische zusammensetzung mit niedrigem ph-wert und t-zell-aktivierenden antikörperkonstrukten |
BR112019016104A BR112019016104A2 (pt) | 2017-02-02 | 2018-02-02 | composição farmacêutica de baixo ph compreendendo construtos de anticorpo que empregam células t |
KR1020197025456A KR102658637B1 (ko) | 2017-02-02 | 2018-02-02 | T 세포 관여 항체 구축물을 포함하는 저 pH 약제학적 조성물 |
EA201991769A EA201991769A1 (ru) | 2017-02-02 | 2018-02-02 | ФАРМАЦЕВТИЧЕСКАЯ КОМПОЗИЦИЯ С НИЗКИМ ПОКАЗАТЕЛЕМ pH, СОДЕРЖАЩАЯ КОНСТРУКЦИИ НА ОСНОВЕ АНТИТЕЛА, ОСУЩЕСТВЛЯЮЩИЕ РЕКРУТИНГ Т-КЛЕТОК |
CR20190408A CR20190408A (es) | 2017-02-02 | 2018-02-02 | Composición farmacéutica de bajo ph que comprende construcciones de anticuerpos que activan linfocitos t antecedentes |
TNP/2019/000225A TN2019000225A1 (en) | 2017-02-02 | 2018-02-02 | Low ph pharmaceutical composition comprising t cell engaging antibody constructs |
SG11201907048UA SG11201907048UA (en) | 2017-02-02 | 2018-02-02 | Low ph pharmaceutical composition comprising t cell engaging antibody constructs |
KR1020247012375A KR20240055865A (ko) | 2017-02-02 | 2018-02-02 | T 세포 관여 항체 구축물을 포함하는 저 pH 약제학적 조성물 |
CA3052098A CA3052098A1 (en) | 2017-02-02 | 2018-02-02 | Low ph pharmaceutical composition comprising t cell engaging antibody constructs |
AU2018214223A AU2018214223A1 (en) | 2017-02-02 | 2018-02-02 | Low pH pharmaceutical composition comprising T cell engaging antibody constructs |
US16/482,603 US20200332000A1 (en) | 2017-02-02 | 2018-02-02 | Low ph pharmaceutical composition comprising t cell engaging antibody constructs |
MX2019009133A MX2019009133A (es) | 2017-02-02 | 2018-02-02 | Composicion farmaceutica de bajo ph que comprende construcciones de anticuerpos que activan linfocitos t. |
JP2019541303A JP7189141B2 (ja) | 2017-02-02 | 2018-02-02 | T細胞エンゲージ抗体コンストラクトを含む低pH医薬組成物 |
CN201880023948.5A CN110582297B (zh) | 2017-02-02 | 2018-02-02 | 包含T细胞接合抗体构建体的低pH药物组合物 |
NZ756016A NZ756016A (en) | 2017-02-02 | 2018-02-02 | Low ph pharmaceutical composition comprising t cell engaging antibody constructs |
PE2019001535A PE20200153A1 (es) | 2017-02-02 | 2018-02-02 | Composicion farmaceutica de bajo ph que comprende construcciones de anticuerpos que activan linfocitos t |
IL268351A IL268351A (en) | 2017-02-02 | 2019-07-30 | Low ph pharmaceutical composition containing t cells mixed with antibody constructs |
SA519402365A SA519402365B1 (ar) | 2017-02-02 | 2019-07-31 | تركيبة صيدلانية ذات درجة حموضة منخفضة تتضمن بنيات جسم مضاد يستهدف الخلية التائية |
PH12019501796A PH12019501796A1 (en) | 2017-02-02 | 2019-08-05 | Low ph pharmaceutical composition comprising t cell engaging antibody constructs |
ZA2019/05674A ZA201905674B (en) | 2017-02-02 | 2019-08-28 | Low ph pharmaceutical composition comprising t cell engaging antibody constructs |
CONC2019/0009480A CO2019009480A2 (es) | 2017-02-02 | 2019-08-30 | Composición farmacéutica de bajo ph que comprende construcciones de anticuerpos que activan linfocitos t |
JP2022192672A JP2023022235A (ja) | 2017-02-02 | 2022-12-01 | T細胞エンゲージ抗体コンストラクトを含む低pH医薬組成物 |
JP2024069493A JP2024099682A (ja) | 2017-02-02 | 2024-04-23 | T細胞エンゲージ抗体コンストラクトを含む低pH医薬組成物 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762453952P | 2017-02-02 | 2017-02-02 | |
US62/453,952 | 2017-02-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018141910A1 true WO2018141910A1 (en) | 2018-08-09 |
Family
ID=61274222
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2018/052665 WO2018141910A1 (en) | 2017-02-02 | 2018-02-02 | Low ph pharmaceutical composition comprising t cell engaging antibody constructs |
Country Status (26)
Country | Link |
---|---|
US (1) | US20200332000A1 (de) |
EP (1) | EP3576788A1 (de) |
JP (3) | JP7189141B2 (de) |
KR (2) | KR102658637B1 (de) |
CN (1) | CN110582297B (de) |
AR (1) | AR110955A1 (de) |
AU (1) | AU2018214223A1 (de) |
BR (1) | BR112019016104A2 (de) |
CA (1) | CA3052098A1 (de) |
CL (1) | CL2019002178A1 (de) |
CO (1) | CO2019009480A2 (de) |
CR (1) | CR20190408A (de) |
EA (1) | EA201991769A1 (de) |
IL (1) | IL268351A (de) |
JO (1) | JOP20190189A1 (de) |
MA (1) | MA47425A (de) |
MX (2) | MX2019009133A (de) |
NZ (1) | NZ756016A (de) |
PE (1) | PE20200153A1 (de) |
PH (1) | PH12019501796A1 (de) |
SA (1) | SA519402365B1 (de) |
SG (1) | SG11201907048UA (de) |
TN (1) | TN2019000225A1 (de) |
TW (1) | TWI840325B (de) |
WO (1) | WO2018141910A1 (de) |
ZA (1) | ZA201905674B (de) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020028401A1 (en) * | 2018-07-31 | 2020-02-06 | Amgen Inc. | Pharmaceutical formulations of masked antibodies |
WO2021091906A1 (en) | 2019-11-04 | 2021-05-14 | Amgen Inc. | Methods for treating leukemia |
WO2021222347A1 (en) | 2020-04-29 | 2021-11-04 | Amgen Inc. | Pharmaceutical formulation |
WO2021222355A1 (en) | 2020-04-29 | 2021-11-04 | Amgen Inc. | Pharmaceutical formulation |
WO2021247812A1 (en) * | 2020-06-04 | 2021-12-09 | Amgen Inc. | Bispecific binding constructs |
JP2022512636A (ja) * | 2018-10-11 | 2022-02-07 | アムジエン・インコーポレーテツド | 二重特異性抗体コンストラクトの下流プロセシング |
WO2022046651A1 (en) * | 2020-08-24 | 2022-03-03 | Amgen Inc. | Pharmaceutical formulation comprising a bite, bispecific antibody, and methionine |
WO2022060878A1 (en) | 2020-09-16 | 2022-03-24 | Amgen Inc. | Methods for treating prostate cancer |
WO2022060901A1 (en) | 2020-09-16 | 2022-03-24 | Amgen Inc. | Methods for administering therapeutic doses of bispecific t-cell engaging molecules for the treatment of cancer |
US11617767B2 (en) | 2020-11-20 | 2023-04-04 | Simcere Innovation, Inc. | Armed dual CAR-T compositions and methods for cancer immunotherapy |
WO2023183231A1 (en) | 2022-03-21 | 2023-09-28 | Amgen Inc. | Combination therapy methods with t-cell engaging molecules for treatment of prostate cancer |
WO2024077044A1 (en) | 2022-10-05 | 2024-04-11 | Amgen Inc. | Combination therapies comprising t-cell redirecting therapies and agonistic anti-il-2r antibodies or fragments thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EA039859B1 (ru) * | 2016-02-03 | 2022-03-21 | Эмджен Рисерч (Мюник) Гмбх | Биспецифические конструкты антител, связывающие egfrviii и cd3 |
Citations (148)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3180193A (en) | 1963-02-25 | 1965-04-27 | Benedict David | Machines for cutting lengths of strip material |
US3691016A (en) | 1970-04-17 | 1972-09-12 | Monsanto Co | Process for the preparation of insoluble enzymes |
US3773919A (en) | 1969-10-23 | 1973-11-20 | Du Pont | Polylactide-drug mixtures |
US3969287A (en) | 1972-12-08 | 1976-07-13 | Boehringer Mannheim Gmbh | Carrier-bound protein prepared by reacting the protein with an acylating or alkylating compound having a carrier-bonding group and reacting the product with a carrier |
US4179337A (en) | 1973-07-20 | 1979-12-18 | Davis Frank F | Non-immunogenic polypeptides |
US4195128A (en) | 1976-05-03 | 1980-03-25 | Bayer Aktiengesellschaft | Polymeric carrier bound ligands |
US4229537A (en) | 1978-02-09 | 1980-10-21 | New York University | Preparation of trichloro-s-triazine activated supports for coupling ligands |
US4247642A (en) | 1977-02-17 | 1981-01-27 | Sumitomo Chemical Company, Limited | Enzyme immobilization with pullulan gel |
EP0036676A1 (de) | 1978-03-24 | 1981-09-30 | The Regents Of The University Of California | Verfahren zur Herstellung von Liposomen gleicher Grösse und so hergestellte Liposome |
US4301144A (en) | 1979-07-11 | 1981-11-17 | Ajinomoto Company, Incorporated | Blood substitute containing modified hemoglobin |
US4330440A (en) | 1977-02-08 | 1982-05-18 | Development Finance Corporation Of New Zealand | Activated matrix and method of activation |
EP0058481A1 (de) | 1981-02-16 | 1982-08-25 | Zeneca Limited | Pharmazeutische Zusammensetzungen für die kontinuierliche Freigabe des Wirkstoffes |
EP0088046A2 (de) | 1982-02-17 | 1983-09-07 | Ciba-Geigy Ag | Lipide in wässriger Phase |
US4439196A (en) | 1982-03-18 | 1984-03-27 | Merck & Co., Inc. | Osmotic drug delivery system |
US4447224A (en) | 1982-09-20 | 1984-05-08 | Infusaid Corporation | Variable flow implantable infusion apparatus |
US4447233A (en) | 1981-04-10 | 1984-05-08 | Parker-Hannifin Corporation | Medication infusion pump |
US4475196A (en) | 1981-03-06 | 1984-10-02 | Zor Clair G | Instrument for locating faults in aircraft passenger reading light and attendant call control system |
US4485045A (en) | 1981-07-06 | 1984-11-27 | Research Corporation | Synthetic phosphatidyl cholines useful in forming liposomes |
US4486194A (en) | 1983-06-08 | 1984-12-04 | James Ferrara | Therapeutic device for administering medicaments through the skin |
US4487603A (en) | 1982-11-26 | 1984-12-11 | Cordis Corporation | Implantable microinfusion pump system |
US4496689A (en) | 1983-12-27 | 1985-01-29 | Miles Laboratories, Inc. | Covalently attached complex of alpha-1-proteinase inhibitor with a water soluble polymer |
EP0133988A2 (de) | 1983-08-02 | 1985-03-13 | Hoechst Aktiengesellschaft | Regulatorische Peptide enthaltende pharmazeutische Präparate mit protrahierter Freisetzung und Verfahren zu deren Herstellung |
EP0143949A1 (de) | 1983-11-01 | 1985-06-12 | TERUMO KABUSHIKI KAISHA trading as TERUMO CORPORATION | Pharmazeutische Zusammensetzung mit Gehalt an Urokinase |
US4544545A (en) | 1983-06-20 | 1985-10-01 | Trustees University Of Massachusetts | Liposomes containing modified cholesterol for organ targeting |
EP0171496A2 (de) | 1984-08-15 | 1986-02-19 | Research Development Corporation of Japan | Verfahren zur Herstellung von chimärischen monoklonalen Antikörpern |
EP0173494A2 (de) | 1984-08-27 | 1986-03-05 | The Board Of Trustees Of The Leland Stanford Junior University | Chimäre Rezeptoren durch Verbindung und Expression von DNS |
EP0183070A2 (de) | 1984-10-30 | 1986-06-04 | Phillips Petroleum Company | Transformation von Hefe des Genus Pichia |
US4596556A (en) | 1985-03-25 | 1986-06-24 | Bioject, Inc. | Hypodermic injection apparatus |
GB2177096A (en) | 1984-09-03 | 1987-01-14 | Celltech Ltd | Production of chimeric antibodies |
US4640835A (en) | 1981-10-30 | 1987-02-03 | Nippon Chemiphar Company, Ltd. | Plasminogen activator derivatives |
US4670417A (en) | 1985-06-19 | 1987-06-02 | Ajinomoto Co., Inc. | Hemoglobin combined with a poly(alkylene oxide) |
WO1987005330A1 (en) | 1986-03-07 | 1987-09-11 | Michel Louis Eugene Bergh | Method for enhancing glycoprotein stability |
US4694778A (en) | 1984-05-04 | 1987-09-22 | Anicon, Inc. | Chemical vapor deposition wafer boat |
EP0239400A2 (de) | 1986-03-27 | 1987-09-30 | Medical Research Council | Rekombinante Antikörper und Verfahren zu deren Herstellung |
EP0244234A2 (de) | 1986-04-30 | 1987-11-04 | Alko Group Ltd. | Transformation von Trichoderma |
WO1988001649A1 (en) | 1986-09-02 | 1988-03-10 | Genex Corporation | Single polypeptide chain binding molecules |
US4751180A (en) | 1985-03-28 | 1988-06-14 | Chiron Corporation | Expression using fused genes providing for protein product |
WO1988009344A1 (en) | 1987-05-21 | 1988-12-01 | Creative Biomolecules, Inc. | Targeted multifunctional proteins |
US4791192A (en) | 1986-06-26 | 1988-12-13 | Takeda Chemical Industries, Ltd. | Chemically modified protein with polyethyleneglycol |
US4790824A (en) | 1987-06-19 | 1988-12-13 | Bioject, Inc. | Non-invasive hypodermic injection device |
US4816567A (en) | 1983-04-08 | 1989-03-28 | Genentech, Inc. | Recombinant immunoglobin preparations |
US4816397A (en) | 1983-03-25 | 1989-03-28 | Celltech, Limited | Multichain polypeptides or proteins and processes for their production |
US4935233A (en) | 1985-12-02 | 1990-06-19 | G. D. Searle And Company | Covalently linked polypeptide cell modulators |
US4941880A (en) | 1987-06-19 | 1990-07-17 | Bioject, Inc. | Pre-filled ampule and non-invasive hypodermic injection device assembly |
US4946778A (en) | 1987-09-21 | 1990-08-07 | Genex Corporation | Single polypeptide chain binding molecules |
EP0402226A1 (de) | 1989-06-06 | 1990-12-12 | Institut National De La Recherche Agronomique | Transformationsvektoren für Hefe Yarrowia |
US5013556A (en) | 1989-10-20 | 1991-05-07 | Liposome Technology, Inc. | Liposomes with enhanced circulation time |
US5064413A (en) | 1989-11-09 | 1991-11-12 | Bioject, Inc. | Needleless hypodermic injection device |
EP0463151A1 (de) | 1990-01-12 | 1992-01-02 | Cell Genesys Inc | Erzeugung xenogener antikörper. |
WO1992003918A1 (en) | 1990-08-29 | 1992-03-19 | Genpharm International, Inc. | Transgenic non-human animals capable of producing heterologous antibodies |
WO1992015673A1 (en) | 1991-03-11 | 1992-09-17 | The University Of Georgia Research Foundation, Inc. | Cloning and expression of renilla luciferase |
WO1992022645A1 (en) | 1991-06-14 | 1992-12-23 | Genpharm International, Inc. | Transgenic immunodeficient non-human animals |
WO1992022670A1 (en) | 1991-06-12 | 1992-12-23 | Genpharm International, Inc. | Early detection of transgenic embryos |
WO1993012227A1 (en) | 1991-12-17 | 1993-06-24 | Genpharm International, Inc. | Transgenic non-human animals capable of producing heterologous antibodies |
US5223409A (en) | 1988-09-02 | 1993-06-29 | Protein Engineering Corp. | Directed evolution of novel binding proteins |
US5225539A (en) | 1986-03-27 | 1993-07-06 | Medical Research Council | Recombinant altered antibodies and methods of making altered antibodies |
US5260203A (en) | 1986-09-02 | 1993-11-09 | Enzon, Inc. | Single polypeptide chain binding molecules |
WO1994000569A1 (en) | 1992-06-18 | 1994-01-06 | Genpharm International, Inc. | Methods for producing transgenic non-human animals harboring a yeast artificial chromosome |
WO1994002602A1 (en) | 1992-07-24 | 1994-02-03 | Cell Genesys, Inc. | Generation of xenogeneic antibodies |
US5292658A (en) | 1989-12-29 | 1994-03-08 | University Of Georgia Research Foundation, Inc. Boyd Graduate Studies Research Center | Cloning and expressions of Renilla luciferase |
US5312335A (en) | 1989-11-09 | 1994-05-17 | Bioject Inc. | Needleless hypodermic injection device |
US5313198A (en) | 1987-12-09 | 1994-05-17 | Omron Tateisi Electronics Co. | Data communication apparatus |
WO1994025585A1 (en) | 1993-04-26 | 1994-11-10 | Genpharm International, Inc. | Transgenic non-human animals capable of producing heterologous antibodies |
US5383851A (en) | 1992-07-24 | 1995-01-24 | Bioject Inc. | Needleless hypodermic injection device |
WO1995007463A1 (en) | 1993-09-10 | 1995-03-16 | The Trustees Of Columbia University In The City Of New York | Uses of green fluorescent protein |
US5476996A (en) | 1988-06-14 | 1995-12-19 | Lidak Pharmaceuticals | Human immune system in non-human animal |
WO1996014436A1 (en) | 1994-11-04 | 1996-05-17 | Genpharm International, Inc. | Method for making recombinant yeast artificial chromosomes |
US5545806A (en) | 1990-08-29 | 1996-08-13 | Genpharm International, Inc. | Ransgenic non-human animals for producing heterologous antibodies |
US5545807A (en) | 1988-10-12 | 1996-08-13 | The Babraham Institute | Production of antibodies from transgenic animals |
US5565332A (en) | 1991-09-23 | 1996-10-15 | Medical Research Council | Production of chimeric antibodies - a combinatorial approach |
WO1996034096A1 (en) | 1995-04-28 | 1996-10-31 | Abgenix, Inc. | Human antibodies derived from immunized xenomice |
WO1996033735A1 (en) | 1995-04-27 | 1996-10-31 | Abgenix, Inc. | Human antibodies derived from immunized xenomice |
US5585089A (en) | 1988-12-28 | 1996-12-17 | Protein Design Labs, Inc. | Humanized immunoglobulins |
US5591669A (en) | 1988-12-05 | 1997-01-07 | Genpharm International, Inc. | Transgenic mice depleted in a mature lymphocytic cell-type |
US5612205A (en) | 1990-08-29 | 1997-03-18 | Genpharm International, Incorporated | Homologous recombination in mammalian cells |
WO1997013852A1 (en) | 1995-10-10 | 1997-04-17 | Genpharm International, Inc. | Transgenic non-human animals capable of producing heterologous antibodies |
US5625825A (en) | 1993-10-21 | 1997-04-29 | Lsi Logic Corporation | Random number generating apparatus for an interface unit of a carrier sense with multiple access and collision detect (CSMA/CD) ethernet data network |
US5625126A (en) | 1990-08-29 | 1997-04-29 | Genpharm International, Inc. | Transgenic non-human animals for producing heterologous antibodies |
EP0773288A2 (de) | 1995-08-29 | 1997-05-14 | Kirin Beer Kabushiki Kaisha | Chimäre-Tier und dessen Verfahren zur Herstellung |
US5633425A (en) | 1990-08-29 | 1997-05-27 | Genpharm International, Inc. | Transgenic non-human animals capable of producing heterologous antibodies |
US5648260A (en) | 1987-03-18 | 1997-07-15 | Scotgen Biopharmaceuticals Incorporated | DNA encoding antibodies with altered effector functions |
US5661016A (en) | 1990-08-29 | 1997-08-26 | Genpharm International Inc. | Transgenic non-human animals capable of producing heterologous antibodies of various isotypes |
WO1997038731A1 (en) | 1996-04-18 | 1997-10-23 | The Regents Of The University Of California | Immunoliposomes that optimize internalization into target cells |
US5683888A (en) | 1989-07-22 | 1997-11-04 | University Of Wales College Of Medicine | Modified bioluminescent proteins and their use |
WO1998014605A1 (en) | 1996-10-04 | 1998-04-09 | Loma Linda University | Renilla luciferase and green fluorescent protein fusion genes |
US5741668A (en) | 1994-02-04 | 1998-04-21 | Rutgers, The State University Of New Jersey | Expression of a gene for a modified green-fluorescent protein |
WO1998024893A2 (en) | 1996-12-03 | 1998-06-11 | Abgenix, Inc. | TRANSGENIC MAMMALS HAVING HUMAN IG LOCI INCLUDING PLURAL VH AND Vλ REGIONS AND ANTIBODIES PRODUCED THEREFROM |
WO1998024884A1 (en) | 1996-12-02 | 1998-06-11 | Genpharm International | Transgenic non-human animals capable of producing heterologous antibodies |
WO1998026277A2 (en) | 1996-12-12 | 1998-06-18 | Prolume, Ltd. | Apparatus and method for detecting and identifying infectious agents |
US5777079A (en) | 1994-11-10 | 1998-07-07 | The Regents Of The University Of California | Modified green fluorescent proteins |
US5789215A (en) | 1991-08-20 | 1998-08-04 | Genpharm International | Gene targeting in animal cells using isogenic DNA constructs |
US5789650A (en) | 1990-08-29 | 1998-08-04 | Genpharm International, Inc. | Transgenic non-human animals for producing heterologous antibodies |
US5804387A (en) | 1996-02-01 | 1998-09-08 | The Board Of Trustees Of The Leland Stanford Junior University | FACS-optimized mutants of the green fluorescent protein (GFP) |
US5814318A (en) | 1990-08-29 | 1998-09-29 | Genpharm International Inc. | Transgenic non-human animals for producing heterologous antibodies |
WO1998052976A1 (en) | 1997-05-21 | 1998-11-26 | Biovation Limited | Method for the production of non-immunogenic proteins |
US5859205A (en) | 1989-12-21 | 1999-01-12 | Celltech Limited | Humanised antibodies |
US5874299A (en) | 1990-08-29 | 1999-02-23 | Genpharm International, Inc. | Transgenic non-human animals capable of producing heterologous antibodies |
US5874304A (en) | 1996-01-18 | 1999-02-23 | University Of Florida Research Foundation, Inc. | Humanized green fluorescent protein genes and methods |
US5876995A (en) | 1996-02-06 | 1999-03-02 | Bryan; Bruce | Bioluminescent novelty items |
US5877397A (en) | 1990-08-29 | 1999-03-02 | Genpharm International Inc. | Transgenic non-human animals capable of producing heterologous antibodies of various isotypes |
US5925558A (en) | 1996-07-16 | 1999-07-20 | The Regents Of The University Of California | Assays for protein kinases using fluorescent protein substrates |
US5958765A (en) | 1995-06-07 | 1999-09-28 | Idec Pharmaceuticals Corporation | Neutralizing high affinity human monoclonal antibodies specific to RSV F-protein and methods for their manufacture and therapeutic use thereof |
WO1999049019A2 (en) | 1998-03-27 | 1999-09-30 | Prolume, Ltd. | Luciferases, fluorescent proteins, nucleic acids encoding the luciferases and fluorescent proteins and the use thereof in diagnostics |
WO1999054440A1 (en) | 1998-04-21 | 1999-10-28 | Micromet Gesellschaft Für Biomedizinische Forschung Mbh | CD19xCD3 SPECIFIC POLYPEPTIDES AND USES THEREOF |
US5981175A (en) | 1993-01-07 | 1999-11-09 | Genpharm Internation, Inc. | Methods for producing recombinant mammalian cells harboring a yeast artificial chromosome |
WO2000006605A2 (en) | 1998-07-28 | 2000-02-10 | Micromet Ag | Heterominibodies |
US6075181A (en) | 1990-01-12 | 2000-06-13 | Abgenix, Inc. | Human antibodies derived from immunized xenomice |
WO2000034317A2 (en) | 1998-12-08 | 2000-06-15 | Biovation Limited | Method for reducing immunogenicity of proteins |
US6150584A (en) | 1990-01-12 | 2000-11-21 | Abgenix, Inc. | Human antibodies derived from immunized xenomice |
US6162963A (en) | 1990-01-12 | 2000-12-19 | Abgenix, Inc. | Generation of Xenogenetic antibodies |
WO2000076310A1 (en) | 1999-06-10 | 2000-12-21 | Abgenix, Inc. | Transgenic animals for producing specific isotypes of human antibodies via non-cognate switch regions |
US6255458B1 (en) | 1990-08-29 | 2001-07-03 | Genpharm International | High affinity human antibodies and human antibodies against digoxin |
US6267958B1 (en) * | 1995-07-27 | 2001-07-31 | Genentech, Inc. | Protein formulation |
US6300064B1 (en) | 1995-08-18 | 2001-10-09 | Morphosys Ag | Protein/(poly)peptide libraries |
US6407213B1 (en) | 1991-06-14 | 2002-06-18 | Genentech, Inc. | Method for making humanized antibodies |
US20020103345A1 (en) | 2000-05-24 | 2002-08-01 | Zhenping Zhu | Bispecific immunoglobulin-like antigen binding proteins and method of production |
WO2003047336A2 (en) | 2001-11-30 | 2003-06-12 | Abgenix, Inc. | TRANSGENIC ANIMALS BEARING HUMAN Igμ LIGHT CHAIN GENES |
WO2005040220A1 (en) | 2003-10-16 | 2005-05-06 | Micromet Ag | Multispecific deimmunized cd3-binders |
WO2006020258A2 (en) | 2004-07-17 | 2006-02-23 | Imclone Systems Incorporated | Novel tetravalent bispecific antibody |
WO2006138181A2 (en) | 2005-06-14 | 2006-12-28 | Amgen Inc. | Self-buffering protein formulations |
WO2007042261A2 (en) | 2005-10-11 | 2007-04-19 | Micromet Ag | Compositions comprising cross-species-specific antibodies and uses thereof |
WO2008045373A2 (en) * | 2006-10-06 | 2008-04-17 | Amgen Inc. | Stable antibody formulations |
WO2008119567A2 (en) | 2007-04-03 | 2008-10-09 | Micromet Ag | Cross-species-specific cd3-epsilon binding domain |
WO2009032782A2 (en) | 2007-08-28 | 2009-03-12 | Biogen Idec Ma Inc. | Compositions that bind multiple epitopes of igf-1r |
WO2009070642A1 (en) * | 2007-11-28 | 2009-06-04 | Medimmune, Llc | Protein formulation |
US20090163699A1 (en) | 2004-11-12 | 2009-06-25 | Chamberlain Aaron Keith | Fc VARIANTS WITH ALTERED BINDING TO FcRn |
WO2010037838A2 (en) | 2008-10-01 | 2010-04-08 | Micromet Ag | Cross-species-specific single domain bispecific single chain antibody |
US20110054151A1 (en) | 2009-09-02 | 2011-03-03 | Xencor, Inc. | Compositions and methods for simultaneous bivalent and monovalent co-engagement of antigens |
US8209741B2 (en) | 2007-09-17 | 2012-06-26 | Microsoft Corporation | Human performance in human interactive proofs using partial credit |
US8234145B2 (en) | 2005-07-12 | 2012-07-31 | International Business Machines Corporation | Automatic computation of validation metrics for global logistics processes |
US8376279B2 (en) | 2008-01-23 | 2013-02-19 | Aurora Flight Sciences Corporation | Inflatable folding wings for a very high altitude aircraft |
WO2013026833A1 (en) | 2011-08-23 | 2013-02-28 | Roche Glycart Ag | Bispecific t cell activating antigen binding molecules |
WO2013026837A1 (en) | 2011-08-23 | 2013-02-28 | Roche Glycart Ag | Bispecific t cell activating antigen binding molecules |
US8430938B1 (en) | 2006-07-13 | 2013-04-30 | The United States Of America As Represented By The Secretary Of The Navy | Control algorithm for autothermal reformer |
US8463191B2 (en) | 2009-04-02 | 2013-06-11 | Qualcomm Incorporated | Beamforming options with partial channel knowledge |
US8462837B2 (en) | 1998-10-30 | 2013-06-11 | Broadcom Corporation | Constellation-multiplexed transmitter and receiver |
US8464584B2 (en) | 2007-10-19 | 2013-06-18 | Food Equipment Technologies Company, Inc. | Beverage dispenser with level measuring apparatus and display |
US8486853B2 (en) | 2009-03-04 | 2013-07-16 | Nissan Motor Co., Ltd. | Exhaust gas purifying catalyst and method for manufacturing the same |
US8486859B2 (en) | 2002-05-15 | 2013-07-16 | Bioenergy, Inc. | Use of ribose to enhance plant growth |
US8759620B2 (en) | 2001-08-31 | 2014-06-24 | Syngenta Participations Ag | Transgenic plants expressing modified CRY3A |
WO2014144722A2 (en) | 2013-03-15 | 2014-09-18 | Amgen Inc. | BISPECIFIC-Fc MOLECULES |
WO2014151910A1 (en) | 2013-03-15 | 2014-09-25 | Amgen Inc. | Heterodimeric bispecific antibodies |
US20140308285A1 (en) | 2013-03-15 | 2014-10-16 | Amgen Inc. | Heterodimeric bispecific antibodies |
WO2015048272A1 (en) | 2013-09-25 | 2015-04-02 | Amgen Inc. | V-c-fc-v-c antibody |
WO2016036678A1 (en) * | 2014-09-02 | 2016-03-10 | Medimmune, Llc | Formulations of bispecific antibodies |
US9300829B2 (en) | 2014-04-04 | 2016-03-29 | Canon Kabushiki Kaisha | Image reading apparatus and correction method thereof |
US9676298B2 (en) | 2010-12-30 | 2017-06-13 | C. Rob. Hammerstein Gmbh & Co. Kg | Longitudinal adjustment device for a motor vehicle seat, comprising two pairs of rails |
US11284898B2 (en) | 2014-09-18 | 2022-03-29 | Cilag Gmbh International | Surgical instrument including a deployable knife |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6297958B1 (en) * | 2000-05-26 | 2001-10-02 | General Bandwidth Inc. | System and method for housing telecommunications equipment |
GB0614780D0 (en) * | 2006-07-25 | 2006-09-06 | Ucb Sa | Biological products |
WO2011100403A1 (en) * | 2010-02-10 | 2011-08-18 | Immunogen, Inc | Cd20 antibodies and uses thereof |
KR102091297B1 (ko) * | 2012-02-03 | 2020-03-20 | 에프. 호프만-라 로슈 아게 | 항원-형질감염된 t 세포와 함께 사용되는 이중특이적 항체 분자 및 의약에서의 이들의 용도 |
JO3519B1 (ar) * | 2013-01-25 | 2020-07-05 | Amgen Inc | تركيبات أجسام مضادة لأجل cdh19 و cd3 |
CA2931356A1 (en) * | 2013-11-27 | 2015-06-04 | Zymeworks Inc. | Bispecific antigen-binding constructs targeting her2 |
EP4276116A3 (de) * | 2015-04-17 | 2024-01-17 | Amgen Research (Munich) GmbH | Bispezifische antikörperkonstrukte für cdh3 und cd3 |
TWI796283B (zh) * | 2015-07-31 | 2023-03-21 | 德商安美基研究(慕尼黑)公司 | Msln及cd3抗體構築體 |
JOP20170017B1 (ar) * | 2016-01-25 | 2021-08-17 | Amgen Res Munich Gmbh | تركيب صيدلي يتضمن تركيبات جسم مضاد ثنائي الاختصاص |
KR20240118898A (ko) * | 2016-02-03 | 2024-08-05 | 암젠 리서치 (뮌헨) 게엠베하 | Bcma 및 cd3 이중특이성 t 세포 맞물림 항체 작제물 |
EA201891753A1 (ru) * | 2016-02-03 | 2019-01-31 | Эмджен Рисерч (Мюник) Гмбх | Биспецифические конструкции антител к psma и cd3, вовлекающие т-клетки |
EA039859B1 (ru) * | 2016-02-03 | 2022-03-21 | Эмджен Рисерч (Мюник) Гмбх | Биспецифические конструкты антител, связывающие egfrviii и cd3 |
-
2017
- 2017-06-16 JO JOP/2019/0189A patent/JOP20190189A1/ar unknown
-
2018
- 2018-02-02 MX MX2019009133A patent/MX2019009133A/es unknown
- 2018-02-02 CA CA3052098A patent/CA3052098A1/en active Pending
- 2018-02-02 SG SG11201907048UA patent/SG11201907048UA/en unknown
- 2018-02-02 MA MA047425A patent/MA47425A/fr unknown
- 2018-02-02 EP EP18706965.3A patent/EP3576788A1/de active Pending
- 2018-02-02 US US16/482,603 patent/US20200332000A1/en active Pending
- 2018-02-02 KR KR1020197025456A patent/KR102658637B1/ko active IP Right Grant
- 2018-02-02 EA EA201991769A patent/EA201991769A1/ru unknown
- 2018-02-02 BR BR112019016104A patent/BR112019016104A2/pt unknown
- 2018-02-02 WO PCT/EP2018/052665 patent/WO2018141910A1/en unknown
- 2018-02-02 PE PE2019001535A patent/PE20200153A1/es unknown
- 2018-02-02 CR CR20190408A patent/CR20190408A/es unknown
- 2018-02-02 KR KR1020247012375A patent/KR20240055865A/ko not_active Application Discontinuation
- 2018-02-02 CN CN201880023948.5A patent/CN110582297B/zh active Active
- 2018-02-02 TN TNP/2019/000225A patent/TN2019000225A1/en unknown
- 2018-02-02 AU AU2018214223A patent/AU2018214223A1/en active Pending
- 2018-02-02 JP JP2019541303A patent/JP7189141B2/ja active Active
- 2018-02-02 TW TW107103902A patent/TWI840325B/zh active
- 2018-02-02 NZ NZ756016A patent/NZ756016A/en unknown
- 2018-02-02 AR ARP180100246A patent/AR110955A1/es unknown
-
2019
- 2019-07-30 IL IL268351A patent/IL268351A/en unknown
- 2019-07-31 SA SA519402365A patent/SA519402365B1/ar unknown
- 2019-07-31 MX MX2024004337A patent/MX2024004337A/es unknown
- 2019-08-02 CL CL2019002178A patent/CL2019002178A1/es unknown
- 2019-08-05 PH PH12019501796A patent/PH12019501796A1/en unknown
- 2019-08-28 ZA ZA2019/05674A patent/ZA201905674B/en unknown
- 2019-08-30 CO CONC2019/0009480A patent/CO2019009480A2/es unknown
-
2022
- 2022-12-01 JP JP2022192672A patent/JP2023022235A/ja active Pending
-
2024
- 2024-04-23 JP JP2024069493A patent/JP2024099682A/ja active Pending
Patent Citations (167)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3180193A (en) | 1963-02-25 | 1965-04-27 | Benedict David | Machines for cutting lengths of strip material |
US3773919A (en) | 1969-10-23 | 1973-11-20 | Du Pont | Polylactide-drug mixtures |
US3691016A (en) | 1970-04-17 | 1972-09-12 | Monsanto Co | Process for the preparation of insoluble enzymes |
US3969287A (en) | 1972-12-08 | 1976-07-13 | Boehringer Mannheim Gmbh | Carrier-bound protein prepared by reacting the protein with an acylating or alkylating compound having a carrier-bonding group and reacting the product with a carrier |
US4179337A (en) | 1973-07-20 | 1979-12-18 | Davis Frank F | Non-immunogenic polypeptides |
US4195128A (en) | 1976-05-03 | 1980-03-25 | Bayer Aktiengesellschaft | Polymeric carrier bound ligands |
US4330440A (en) | 1977-02-08 | 1982-05-18 | Development Finance Corporation Of New Zealand | Activated matrix and method of activation |
US4247642A (en) | 1977-02-17 | 1981-01-27 | Sumitomo Chemical Company, Limited | Enzyme immobilization with pullulan gel |
US4229537A (en) | 1978-02-09 | 1980-10-21 | New York University | Preparation of trichloro-s-triazine activated supports for coupling ligands |
EP0036676A1 (de) | 1978-03-24 | 1981-09-30 | The Regents Of The University Of California | Verfahren zur Herstellung von Liposomen gleicher Grösse und so hergestellte Liposome |
US4301144A (en) | 1979-07-11 | 1981-11-17 | Ajinomoto Company, Incorporated | Blood substitute containing modified hemoglobin |
EP0058481A1 (de) | 1981-02-16 | 1982-08-25 | Zeneca Limited | Pharmazeutische Zusammensetzungen für die kontinuierliche Freigabe des Wirkstoffes |
US4475196A (en) | 1981-03-06 | 1984-10-02 | Zor Clair G | Instrument for locating faults in aircraft passenger reading light and attendant call control system |
US4447233A (en) | 1981-04-10 | 1984-05-08 | Parker-Hannifin Corporation | Medication infusion pump |
US4485045A (en) | 1981-07-06 | 1984-11-27 | Research Corporation | Synthetic phosphatidyl cholines useful in forming liposomes |
US4640835A (en) | 1981-10-30 | 1987-02-03 | Nippon Chemiphar Company, Ltd. | Plasminogen activator derivatives |
EP0088046A2 (de) | 1982-02-17 | 1983-09-07 | Ciba-Geigy Ag | Lipide in wässriger Phase |
US4439196A (en) | 1982-03-18 | 1984-03-27 | Merck & Co., Inc. | Osmotic drug delivery system |
US4447224A (en) | 1982-09-20 | 1984-05-08 | Infusaid Corporation | Variable flow implantable infusion apparatus |
US4487603A (en) | 1982-11-26 | 1984-12-11 | Cordis Corporation | Implantable microinfusion pump system |
US4816397A (en) | 1983-03-25 | 1989-03-28 | Celltech, Limited | Multichain polypeptides or proteins and processes for their production |
US4816567A (en) | 1983-04-08 | 1989-03-28 | Genentech, Inc. | Recombinant immunoglobin preparations |
US4486194A (en) | 1983-06-08 | 1984-12-04 | James Ferrara | Therapeutic device for administering medicaments through the skin |
US4544545A (en) | 1983-06-20 | 1985-10-01 | Trustees University Of Massachusetts | Liposomes containing modified cholesterol for organ targeting |
EP0133988A2 (de) | 1983-08-02 | 1985-03-13 | Hoechst Aktiengesellschaft | Regulatorische Peptide enthaltende pharmazeutische Präparate mit protrahierter Freisetzung und Verfahren zu deren Herstellung |
EP0143949A1 (de) | 1983-11-01 | 1985-06-12 | TERUMO KABUSHIKI KAISHA trading as TERUMO CORPORATION | Pharmazeutische Zusammensetzung mit Gehalt an Urokinase |
US4496689A (en) | 1983-12-27 | 1985-01-29 | Miles Laboratories, Inc. | Covalently attached complex of alpha-1-proteinase inhibitor with a water soluble polymer |
US4694778A (en) | 1984-05-04 | 1987-09-22 | Anicon, Inc. | Chemical vapor deposition wafer boat |
EP0171496A2 (de) | 1984-08-15 | 1986-02-19 | Research Development Corporation of Japan | Verfahren zur Herstellung von chimärischen monoklonalen Antikörpern |
EP0173494A2 (de) | 1984-08-27 | 1986-03-05 | The Board Of Trustees Of The Leland Stanford Junior University | Chimäre Rezeptoren durch Verbindung und Expression von DNS |
GB2177096A (en) | 1984-09-03 | 1987-01-14 | Celltech Ltd | Production of chimeric antibodies |
EP0183070A2 (de) | 1984-10-30 | 1986-06-04 | Phillips Petroleum Company | Transformation von Hefe des Genus Pichia |
US4596556A (en) | 1985-03-25 | 1986-06-24 | Bioject, Inc. | Hypodermic injection apparatus |
US4751180A (en) | 1985-03-28 | 1988-06-14 | Chiron Corporation | Expression using fused genes providing for protein product |
US4670417A (en) | 1985-06-19 | 1987-06-02 | Ajinomoto Co., Inc. | Hemoglobin combined with a poly(alkylene oxide) |
US4935233A (en) | 1985-12-02 | 1990-06-19 | G. D. Searle And Company | Covalently linked polypeptide cell modulators |
WO1987005330A1 (en) | 1986-03-07 | 1987-09-11 | Michel Louis Eugene Bergh | Method for enhancing glycoprotein stability |
US5225539A (en) | 1986-03-27 | 1993-07-06 | Medical Research Council | Recombinant altered antibodies and methods of making altered antibodies |
EP0239400A2 (de) | 1986-03-27 | 1987-09-30 | Medical Research Council | Rekombinante Antikörper und Verfahren zu deren Herstellung |
EP0244234A2 (de) | 1986-04-30 | 1987-11-04 | Alko Group Ltd. | Transformation von Trichoderma |
US4791192A (en) | 1986-06-26 | 1988-12-13 | Takeda Chemical Industries, Ltd. | Chemically modified protein with polyethyleneglycol |
WO1988001649A1 (en) | 1986-09-02 | 1988-03-10 | Genex Corporation | Single polypeptide chain binding molecules |
US5260203A (en) | 1986-09-02 | 1993-11-09 | Enzon, Inc. | Single polypeptide chain binding molecules |
US5648260A (en) | 1987-03-18 | 1997-07-15 | Scotgen Biopharmaceuticals Incorporated | DNA encoding antibodies with altered effector functions |
WO1988009344A1 (en) | 1987-05-21 | 1988-12-01 | Creative Biomolecules, Inc. | Targeted multifunctional proteins |
US4790824A (en) | 1987-06-19 | 1988-12-13 | Bioject, Inc. | Non-invasive hypodermic injection device |
US4941880A (en) | 1987-06-19 | 1990-07-17 | Bioject, Inc. | Pre-filled ampule and non-invasive hypodermic injection device assembly |
US4946778A (en) | 1987-09-21 | 1990-08-07 | Genex Corporation | Single polypeptide chain binding molecules |
US5313198A (en) | 1987-12-09 | 1994-05-17 | Omron Tateisi Electronics Co. | Data communication apparatus |
US5476996A (en) | 1988-06-14 | 1995-12-19 | Lidak Pharmaceuticals | Human immune system in non-human animal |
US5698767A (en) | 1988-06-14 | 1997-12-16 | Lidak Pharmaceuticals | Human immune system in non-human animal |
US5223409A (en) | 1988-09-02 | 1993-06-29 | Protein Engineering Corp. | Directed evolution of novel binding proteins |
US5545807A (en) | 1988-10-12 | 1996-08-13 | The Babraham Institute | Production of antibodies from transgenic animals |
US5591669A (en) | 1988-12-05 | 1997-01-07 | Genpharm International, Inc. | Transgenic mice depleted in a mature lymphocytic cell-type |
US6023010A (en) | 1988-12-05 | 2000-02-08 | Genpharm International | Transgenic non-human animals depleted in a mature lymphocytic cell-type |
US5693761A (en) | 1988-12-28 | 1997-12-02 | Protein Design Labs, Inc. | Polynucleotides encoding improved humanized immunoglobulins |
US5693762A (en) | 1988-12-28 | 1997-12-02 | Protein Design Labs, Inc. | Humanized immunoglobulins |
US5585089A (en) | 1988-12-28 | 1996-12-17 | Protein Design Labs, Inc. | Humanized immunoglobulins |
EP0402226A1 (de) | 1989-06-06 | 1990-12-12 | Institut National De La Recherche Agronomique | Transformationsvektoren für Hefe Yarrowia |
US5683888A (en) | 1989-07-22 | 1997-11-04 | University Of Wales College Of Medicine | Modified bioluminescent proteins and their use |
US5013556A (en) | 1989-10-20 | 1991-05-07 | Liposome Technology, Inc. | Liposomes with enhanced circulation time |
US5064413A (en) | 1989-11-09 | 1991-11-12 | Bioject, Inc. | Needleless hypodermic injection device |
US5312335A (en) | 1989-11-09 | 1994-05-17 | Bioject Inc. | Needleless hypodermic injection device |
US5859205A (en) | 1989-12-21 | 1999-01-12 | Celltech Limited | Humanised antibodies |
US5292658A (en) | 1989-12-29 | 1994-03-08 | University Of Georgia Research Foundation, Inc. Boyd Graduate Studies Research Center | Cloning and expressions of Renilla luciferase |
US5418155A (en) | 1989-12-29 | 1995-05-23 | University Of Georgia Research Foundation, Inc. | Isolated Renilla luciferase and method of use thereof |
JP3068507B2 (ja) | 1990-01-12 | 2000-07-24 | アブジェニックス インコーポレイテッド | 異種抗体の生成 |
US6075181A (en) | 1990-01-12 | 2000-06-13 | Abgenix, Inc. | Human antibodies derived from immunized xenomice |
US5939598A (en) | 1990-01-12 | 1999-08-17 | Abgenix, Inc. | Method of making transgenic mice lacking endogenous heavy chains |
JP3068180B2 (ja) | 1990-01-12 | 2000-07-24 | アブジェニックス インコーポレイテッド | 異種抗体の生成 |
JP3068506B2 (ja) | 1990-01-12 | 2000-07-24 | アブジェニックス インコーポレイテッド | 異種抗体の生成 |
EP0463151A1 (de) | 1990-01-12 | 1992-01-02 | Cell Genesys Inc | Erzeugung xenogener antikörper. |
US6114598A (en) | 1990-01-12 | 2000-09-05 | Abgenix, Inc. | Generation of xenogeneic antibodies |
US6162963A (en) | 1990-01-12 | 2000-12-19 | Abgenix, Inc. | Generation of Xenogenetic antibodies |
US6150584A (en) | 1990-01-12 | 2000-11-21 | Abgenix, Inc. | Human antibodies derived from immunized xenomice |
WO1992003918A1 (en) | 1990-08-29 | 1992-03-19 | Genpharm International, Inc. | Transgenic non-human animals capable of producing heterologous antibodies |
US5612205A (en) | 1990-08-29 | 1997-03-18 | Genpharm International, Incorporated | Homologous recombination in mammalian cells |
US5770429A (en) | 1990-08-29 | 1998-06-23 | Genpharm International, Inc. | Transgenic non-human animals capable of producing heterologous antibodies |
US5814318A (en) | 1990-08-29 | 1998-09-29 | Genpharm International Inc. | Transgenic non-human animals for producing heterologous antibodies |
US5545806A (en) | 1990-08-29 | 1996-08-13 | Genpharm International, Inc. | Ransgenic non-human animals for producing heterologous antibodies |
US5625126A (en) | 1990-08-29 | 1997-04-29 | Genpharm International, Inc. | Transgenic non-human animals for producing heterologous antibodies |
US6255458B1 (en) | 1990-08-29 | 2001-07-03 | Genpharm International | High affinity human antibodies and human antibodies against digoxin |
US5633425A (en) | 1990-08-29 | 1997-05-27 | Genpharm International, Inc. | Transgenic non-human animals capable of producing heterologous antibodies |
US5874299A (en) | 1990-08-29 | 1999-02-23 | Genpharm International, Inc. | Transgenic non-human animals capable of producing heterologous antibodies |
US5877397A (en) | 1990-08-29 | 1999-03-02 | Genpharm International Inc. | Transgenic non-human animals capable of producing heterologous antibodies of various isotypes |
US5661016A (en) | 1990-08-29 | 1997-08-26 | Genpharm International Inc. | Transgenic non-human animals capable of producing heterologous antibodies of various isotypes |
EP0546073B1 (de) | 1990-08-29 | 1997-09-10 | GenPharm International, Inc. | Produktion und Nützung nicht-menschliche transgentiere zur Produktion heterologe Antikörper |
US5789650A (en) | 1990-08-29 | 1998-08-04 | Genpharm International, Inc. | Transgenic non-human animals for producing heterologous antibodies |
US5721367A (en) | 1990-08-29 | 1998-02-24 | Pharming B.V. | Homologous recombination in mammalian cells |
WO1992015673A1 (en) | 1991-03-11 | 1992-09-17 | The University Of Georgia Research Foundation, Inc. | Cloning and expression of renilla luciferase |
WO1992022670A1 (en) | 1991-06-12 | 1992-12-23 | Genpharm International, Inc. | Early detection of transgenic embryos |
WO1992022647A1 (en) | 1991-06-12 | 1992-12-23 | Genpharm International, Inc. | Early detection of transgenic emryros |
WO1992022645A1 (en) | 1991-06-14 | 1992-12-23 | Genpharm International, Inc. | Transgenic immunodeficient non-human animals |
US6407213B1 (en) | 1991-06-14 | 2002-06-18 | Genentech, Inc. | Method for making humanized antibodies |
US5789215A (en) | 1991-08-20 | 1998-08-04 | Genpharm International | Gene targeting in animal cells using isogenic DNA constructs |
US5565332A (en) | 1991-09-23 | 1996-10-15 | Medical Research Council | Production of chimeric antibodies - a combinatorial approach |
WO1993012227A1 (en) | 1991-12-17 | 1993-06-24 | Genpharm International, Inc. | Transgenic non-human animals capable of producing heterologous antibodies |
WO1994000569A1 (en) | 1992-06-18 | 1994-01-06 | Genpharm International, Inc. | Methods for producing transgenic non-human animals harboring a yeast artificial chromosome |
US5383851A (en) | 1992-07-24 | 1995-01-24 | Bioject Inc. | Needleless hypodermic injection device |
WO1994002602A1 (en) | 1992-07-24 | 1994-02-03 | Cell Genesys, Inc. | Generation of xenogeneic antibodies |
US5399163A (en) | 1992-07-24 | 1995-03-21 | Bioject Inc. | Needleless hypodermic injection methods and device |
US5981175A (en) | 1993-01-07 | 1999-11-09 | Genpharm Internation, Inc. | Methods for producing recombinant mammalian cells harboring a yeast artificial chromosome |
WO1994025585A1 (en) | 1993-04-26 | 1994-11-10 | Genpharm International, Inc. | Transgenic non-human animals capable of producing heterologous antibodies |
WO1995007463A1 (en) | 1993-09-10 | 1995-03-16 | The Trustees Of Columbia University In The City Of New York | Uses of green fluorescent protein |
US5625825A (en) | 1993-10-21 | 1997-04-29 | Lsi Logic Corporation | Random number generating apparatus for an interface unit of a carrier sense with multiple access and collision detect (CSMA/CD) ethernet data network |
US5741668A (en) | 1994-02-04 | 1998-04-21 | Rutgers, The State University Of New Jersey | Expression of a gene for a modified green-fluorescent protein |
US5643763A (en) | 1994-11-04 | 1997-07-01 | Genpharm International, Inc. | Method for making recombinant yeast artificial chromosomes by minimizing diploid doubling during mating |
WO1996014436A1 (en) | 1994-11-04 | 1996-05-17 | Genpharm International, Inc. | Method for making recombinant yeast artificial chromosomes |
US5777079A (en) | 1994-11-10 | 1998-07-07 | The Regents Of The University Of California | Modified green fluorescent proteins |
WO1996033735A1 (en) | 1995-04-27 | 1996-10-31 | Abgenix, Inc. | Human antibodies derived from immunized xenomice |
WO1996034096A1 (en) | 1995-04-28 | 1996-10-31 | Abgenix, Inc. | Human antibodies derived from immunized xenomice |
US5958765A (en) | 1995-06-07 | 1999-09-28 | Idec Pharmaceuticals Corporation | Neutralizing high affinity human monoclonal antibodies specific to RSV F-protein and methods for their manufacture and therapeutic use thereof |
US6267958B1 (en) * | 1995-07-27 | 2001-07-31 | Genentech, Inc. | Protein formulation |
US6300064B1 (en) | 1995-08-18 | 2001-10-09 | Morphosys Ag | Protein/(poly)peptide libraries |
EP0843961A1 (de) | 1995-08-29 | 1998-05-27 | Kirin Beer Kabushiki Kaisha | Chimäres tier und methode zu dessen herstellung |
EP0773288A2 (de) | 1995-08-29 | 1997-05-14 | Kirin Beer Kabushiki Kaisha | Chimäre-Tier und dessen Verfahren zur Herstellung |
WO1997013852A1 (en) | 1995-10-10 | 1997-04-17 | Genpharm International, Inc. | Transgenic non-human animals capable of producing heterologous antibodies |
US5874304A (en) | 1996-01-18 | 1999-02-23 | University Of Florida Research Foundation, Inc. | Humanized green fluorescent protein genes and methods |
US5804387A (en) | 1996-02-01 | 1998-09-08 | The Board Of Trustees Of The Leland Stanford Junior University | FACS-optimized mutants of the green fluorescent protein (GFP) |
US5876995A (en) | 1996-02-06 | 1999-03-02 | Bryan; Bruce | Bioluminescent novelty items |
WO1997038731A1 (en) | 1996-04-18 | 1997-10-23 | The Regents Of The University Of California | Immunoliposomes that optimize internalization into target cells |
US5925558A (en) | 1996-07-16 | 1999-07-20 | The Regents Of The University Of California | Assays for protein kinases using fluorescent protein substrates |
WO1998014605A1 (en) | 1996-10-04 | 1998-04-09 | Loma Linda University | Renilla luciferase and green fluorescent protein fusion genes |
WO1998024884A1 (en) | 1996-12-02 | 1998-06-11 | Genpharm International | Transgenic non-human animals capable of producing heterologous antibodies |
WO1998024893A2 (en) | 1996-12-03 | 1998-06-11 | Abgenix, Inc. | TRANSGENIC MAMMALS HAVING HUMAN IG LOCI INCLUDING PLURAL VH AND Vλ REGIONS AND ANTIBODIES PRODUCED THEREFROM |
US20030070185A1 (en) | 1996-12-03 | 2003-04-10 | Aya Jakobovits | Transgenic mammals having human Ig loci including plural Vh and Vk regions and antibodies produced therefrom |
WO1998026277A2 (en) | 1996-12-12 | 1998-06-18 | Prolume, Ltd. | Apparatus and method for detecting and identifying infectious agents |
WO1998052976A1 (en) | 1997-05-21 | 1998-11-26 | Biovation Limited | Method for the production of non-immunogenic proteins |
WO1999049019A2 (en) | 1998-03-27 | 1999-09-30 | Prolume, Ltd. | Luciferases, fluorescent proteins, nucleic acids encoding the luciferases and fluorescent proteins and the use thereof in diagnostics |
WO1999054440A1 (en) | 1998-04-21 | 1999-10-28 | Micromet Gesellschaft Für Biomedizinische Forschung Mbh | CD19xCD3 SPECIFIC POLYPEPTIDES AND USES THEREOF |
WO2000006605A2 (en) | 1998-07-28 | 2000-02-10 | Micromet Ag | Heterominibodies |
US8462837B2 (en) | 1998-10-30 | 2013-06-11 | Broadcom Corporation | Constellation-multiplexed transmitter and receiver |
WO2000034317A2 (en) | 1998-12-08 | 2000-06-15 | Biovation Limited | Method for reducing immunogenicity of proteins |
WO2000076310A1 (en) | 1999-06-10 | 2000-12-21 | Abgenix, Inc. | Transgenic animals for producing specific isotypes of human antibodies via non-cognate switch regions |
US20020103345A1 (en) | 2000-05-24 | 2002-08-01 | Zhenping Zhu | Bispecific immunoglobulin-like antigen binding proteins and method of production |
US8759620B2 (en) | 2001-08-31 | 2014-06-24 | Syngenta Participations Ag | Transgenic plants expressing modified CRY3A |
WO2003047336A2 (en) | 2001-11-30 | 2003-06-12 | Abgenix, Inc. | TRANSGENIC ANIMALS BEARING HUMAN Igμ LIGHT CHAIN GENES |
US8486859B2 (en) | 2002-05-15 | 2013-07-16 | Bioenergy, Inc. | Use of ribose to enhance plant growth |
WO2005040220A1 (en) | 2003-10-16 | 2005-05-06 | Micromet Ag | Multispecific deimmunized cd3-binders |
WO2006020258A2 (en) | 2004-07-17 | 2006-02-23 | Imclone Systems Incorporated | Novel tetravalent bispecific antibody |
US20090163699A1 (en) | 2004-11-12 | 2009-06-25 | Chamberlain Aaron Keith | Fc VARIANTS WITH ALTERED BINDING TO FcRn |
WO2006138181A2 (en) | 2005-06-14 | 2006-12-28 | Amgen Inc. | Self-buffering protein formulations |
US8234145B2 (en) | 2005-07-12 | 2012-07-31 | International Business Machines Corporation | Automatic computation of validation metrics for global logistics processes |
WO2007042261A2 (en) | 2005-10-11 | 2007-04-19 | Micromet Ag | Compositions comprising cross-species-specific antibodies and uses thereof |
US8430938B1 (en) | 2006-07-13 | 2013-04-30 | The United States Of America As Represented By The Secretary Of The Navy | Control algorithm for autothermal reformer |
WO2008045373A2 (en) * | 2006-10-06 | 2008-04-17 | Amgen Inc. | Stable antibody formulations |
WO2008119567A2 (en) | 2007-04-03 | 2008-10-09 | Micromet Ag | Cross-species-specific cd3-epsilon binding domain |
WO2009032782A2 (en) | 2007-08-28 | 2009-03-12 | Biogen Idec Ma Inc. | Compositions that bind multiple epitopes of igf-1r |
US8209741B2 (en) | 2007-09-17 | 2012-06-26 | Microsoft Corporation | Human performance in human interactive proofs using partial credit |
US8464584B2 (en) | 2007-10-19 | 2013-06-18 | Food Equipment Technologies Company, Inc. | Beverage dispenser with level measuring apparatus and display |
WO2009070642A1 (en) * | 2007-11-28 | 2009-06-04 | Medimmune, Llc | Protein formulation |
US8376279B2 (en) | 2008-01-23 | 2013-02-19 | Aurora Flight Sciences Corporation | Inflatable folding wings for a very high altitude aircraft |
WO2010037838A2 (en) | 2008-10-01 | 2010-04-08 | Micromet Ag | Cross-species-specific single domain bispecific single chain antibody |
US8486853B2 (en) | 2009-03-04 | 2013-07-16 | Nissan Motor Co., Ltd. | Exhaust gas purifying catalyst and method for manufacturing the same |
US8463191B2 (en) | 2009-04-02 | 2013-06-11 | Qualcomm Incorporated | Beamforming options with partial channel knowledge |
US20110054151A1 (en) | 2009-09-02 | 2011-03-03 | Xencor, Inc. | Compositions and methods for simultaneous bivalent and monovalent co-engagement of antigens |
US9676298B2 (en) | 2010-12-30 | 2017-06-13 | C. Rob. Hammerstein Gmbh & Co. Kg | Longitudinal adjustment device for a motor vehicle seat, comprising two pairs of rails |
WO2013026837A1 (en) | 2011-08-23 | 2013-02-28 | Roche Glycart Ag | Bispecific t cell activating antigen binding molecules |
WO2013026833A1 (en) | 2011-08-23 | 2013-02-28 | Roche Glycart Ag | Bispecific t cell activating antigen binding molecules |
WO2014151910A1 (en) | 2013-03-15 | 2014-09-25 | Amgen Inc. | Heterodimeric bispecific antibodies |
US20140302037A1 (en) | 2013-03-15 | 2014-10-09 | Amgen Inc. | BISPECIFIC-Fc MOLECULES |
US20140308285A1 (en) | 2013-03-15 | 2014-10-16 | Amgen Inc. | Heterodimeric bispecific antibodies |
WO2014144722A2 (en) | 2013-03-15 | 2014-09-18 | Amgen Inc. | BISPECIFIC-Fc MOLECULES |
WO2015048272A1 (en) | 2013-09-25 | 2015-04-02 | Amgen Inc. | V-c-fc-v-c antibody |
US9300829B2 (en) | 2014-04-04 | 2016-03-29 | Canon Kabushiki Kaisha | Image reading apparatus and correction method thereof |
WO2016036678A1 (en) * | 2014-09-02 | 2016-03-10 | Medimmune, Llc | Formulations of bispecific antibodies |
US11284898B2 (en) | 2014-09-18 | 2022-03-29 | Cilag Gmbh International | Surgical instrument including a deployable knife |
Non-Patent Citations (136)
Title |
---|
"Antibodies: A Laboratory Manual", 1988, COLD SPRING HARBOR LABORATORY |
"Antibody Engineering Lab Manual", SPRINGER-VERLAG, article "Protein Sequence and Structure Analysis of Antibody Variable Domains" |
"Genbank", Database accession no. U55762 |
"Immunoglobulin Genes", 1995, ACADEMIC PRESS |
"Macromolecule Sequencing and Synthesis, Selected Methods and Applications", 1988, ALAN R. LISS, INC, article "Current Methods in Sequence Comparison and Analysis", pages: 127 - 149 |
"Remington's Pharmaceutical Sciences", 1980 |
"REMINGTON'S PHARMACEUTICAL SCIENCES", 1990, MACK PUBLISHING COMPANY |
"Remington's Pharmaceutical Sciences", 2012 |
"Using Antibodies: a laboratory manual", 1999, CSHL PRESS |
ALTSCHUL ET AL., J. MOL. BIOL., vol. 215, 1990, pages 403 - 410 |
ALTSCHUL ET AL., METHODS IN ENZYMOLOGY, vol. 266, 1996, pages 460 - 480 |
ALTSCHUL ET AL., NUCL. ACIDS RES., vol. 25, 1993, pages 3389 - 3402 |
ALTSCHUL ET AL., NUCLEIC ACIDS RES., vol. 25, 1997, pages 3389 - 3402 |
APLIN; WRISTON, CRC CRIT. REV. BIOCHEM., 1981, pages 259 - 306 |
ARAKAWA ET AL.: "Solvent interactions in pharmaceutical formulations", PHARM RES., vol. 8, no. 3, 1991, pages 285 - 91, XP009052919, DOI: doi:10.1023/A:1015825027737 |
ARTSAENKO ET AL., THE PLANT J, vol. 8, 1995, pages 745 - 750 |
BINYAM BEZABEH ET AL: "Insertion of scFv into the hinge domain of full-length IgG1 monoclonal antibody results in tetravalent bispecific molecule with robust properties", MABS, vol. 9, no. 2, 16 December 2016 (2016-12-16), US, pages 240 - 256, XP055465779, ISSN: 1942-0862, DOI: 10.1080/19420862.2016.1270492 * |
BIRD, SCIENCE, vol. 242, 1988, pages 423 - 442 |
BRUHL, IMMUNOL., vol. 166, 2001, pages 2420 - 2426 |
CARTER ET AL., BIO/TECHNOLOGY, vol. 10, 1992, pages 163 - 167 |
CHALFIE ET AL., SCIENCE, vol. 263, 1994, pages 802 - 805 |
CHAMES; BATY, MABS, vol. 1, no. 6, 2009, pages 1 - 9 |
CHEADLE ET AL., MOL IMMUNOL, vol. 29, 1992, pages 21 - 30 |
CHESON BD; HORNING SJ; COIFFIER B; SHIPP MA; FISHER RI; CONNORS JM; LISTER TA; VOSE J; GRILLO-LOPEZ A; HAGENBEEK A: "Report of an international workshop to standardize response criteria for non-Hodgkin's lymphomas. NCI Sponsored International Working Group", J CLIN ONCOL, vol. 17, no. 4, April 1999 (1999-04-01), pages 1244 |
CHI ET AL., PHARM RES, vol. 20, no. 9, September 2003 (2003-09-01), pages 1325 - 1336 |
CHOTHIA ET AL., J. MOL. BIOL, vol. 196, 1987, pages 901 - 917 |
CHOTHIA ET AL., NATURE, vol. 342, 1989, pages 877 |
CHOTHIA; LESK, J. MOL. BIOL., vol. 196, 1987, pages 901 |
CLACKSON ET AL., NATURE, vol. 352, 1991, pages 624 - 628 |
COLE ET AL.: "Monoclonal Antibodies and Cancer Therapy", 1985, ALAN R. LISS, INC., pages: 77 - 96 |
COOK, G.P. ET AL., IMMUNOL. TODAY, vol. 16, no. 5, 1995, pages 237 - 242 |
CUNNINGHAM; WELLS, SCIENCE, vol. 244, 1989, pages 1081 - 1085 |
DALL'ACQUA ET AL., BIOCHEM., vol. 37, 1998, pages 9266 - 9273 |
DEVEREUX ET AL., NUCL. ACID RES., vol. 12, 1984, pages 387 - 395 |
DUSKIN ET AL., J. BIOL. CHEM., vol. 257, 1982, pages 3105 |
EDGE ET AL., ANAL. BIOCHEM., vol. 118, 1981, pages 131 |
EPPSTEIN ET AL., PROC. NATL. ACAD. SCI. U.S.A., vol. 82, 1985, pages 3688 - 3692 |
EPSTEIN ET AL., PROC. NATL. ACAD. SCI. USA, vol. 82, 1985, pages 3688 |
FECKER ET AL., PLANT MOL BIOL, vol. 32, 1996, pages 979 - 986 |
FENG; DOOLITTLE, J. MOL. EVOL., vol. 35, 1987, pages 351 - 360 |
GABIZON ET AL., J. NATIONAL CANCER INST, vol. 81, no. 19, 1989, pages 1484 |
GABIZON ET AL., J. NATIONAL CANCER INST., vol. 81, no. 19, 1989, pages 1484 |
GRAHAM ET AL., J. GEN VIROL., vol. 36, 1977, pages 59 |
GREEN ET AL., NATURE GENETICS, vol. 7, 1994, pages 13 - 21 |
GREEN; JAKOBOVITS, J. EXP. MED., vol. 188, 1998, pages 483 - 495 |
HAKIMUDDIN ET AL., ARCH. BIOCHEM. BIOPHYS., vol. 259, 1987, pages 52 |
HARLOW; LANE: "Antibodies a laboratory manual", 1988, CSHL PRESS |
HAWKINS ET AL., J. MOL. BIOL., vol. 254, 1992, pages 889 - 896 |
HEIM, CURR. BIOL., vol. 6, 1996, pages 178 - 182 |
HIATT ET AL., NATURE, vol. 342, 1989, pages 76 - 78 |
HIGGINS; SHARP, CABIOS, vol. 5, 1989, pages 151 - 153 |
HOLLIGER; HUDSON, NATURE BIOTECHNOLOGY, vol. 23, no. 9, 2005, pages 1126 - 1136 |
HOLLINGER, PHILIPP ET AL., PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, vol. 90, no. 14, July 1993 (1993-07-01), pages 6444 - 8 |
HUSTON ET AL., PROC. NATL. ACAD. SCI USA, vol. 85, 1988, pages 5879 - 5883 |
HUSTON ET AL., PROC. NATL. ACAD. SCI. USA, vol. 85, 1988, pages 5879 - 5883 |
HWANG ET AL., PROC. NATL ACAD. SCI. USA, vol. 77, 1980, pages 4030 |
HWANG; FOOTE: "Immunogenicity of engineered antibodies", METHODS, vol. 36, 2005, pages 3 - 10, XP004852548, DOI: doi:10.1016/j.ymeth.2005.01.001 |
ICHIKI ET AL., J. IMMUNOL., vol. 150, 1993, pages 5408 - 5417 |
JONES ET AL., NATURE, vol. 321, 1986, pages 522 - 525 |
KARIN ET AL., PROC. NATL. ACAD. SCI. U.S.A., vol. 90, 1993, pages 5873 - 5787 |
KARIN TAYLOR: "Engineering bispecific antibodies for targeted delivery of cytotoxin- loaded nanoparticles to tumour cells The Australian Institute for Bioengineering and Nanotechnology (AIBN)", 1 January 2015 (2015-01-01), XP055467126, Retrieved from the Internet <URL:https://espace.library.uq.edu.au/data/UQ_367158/s41860814_phd_submission_final.pdf?Expires=1523710136&Signature=YIxJJ-rcbcoSXDhNg4ta0pj1KUGwPOjxLnZS63wG0lU7zYALll219BN9KSSn6-ZxjDsQj3gttjbDIniYwagy1rsFUeYvXuv280phtApjsWbKd4Zu98IopkC9JxmkDTf7IBs~F915QyNaWh4CP8uBCn9FvHfjSUXX2YJAZ8df3P9PqUYtGLK3xZ2SjAWb> [retrieved on 20180413] * |
KENDRICK ET AL.: "RATIONAL DESIGN OF STABLE PROTEIN FORMULATIONS: THEORY AND PRACTICE", vol. 13, 2002, PHARMACEUTICAL BIOTECHNOLOGY, article "Physical stabilization of proteins in aqueous solution", pages: 61 - 84 |
KIPRIYANOV, J. MOL. BIOL., vol. 293, 1999, pages 41 - 56 |
KOEHLER ET AL., NATURE, vol. 256, 1975, pages 495 |
KONTERMANN, MABS, vol. 4, no. 2, 2012, pages 182 |
KONTERMANN; DUBEL: "Antibody Engineering", 2010, SPRINGER |
KOZBOR ET AL., IMMUNOLOGY TODAY, vol. 4, 1983, pages 7279 |
KOZBOR, IMMUNOLOGY TODAY, vol. 4, 1983, pages 72 |
KUFER P. ET AL., TRENDS IN BIOTECHNOLOGY, vol. 22, no. 5, 2004, pages 238 - 244 |
KUFER, CANCER IMMUNOL. IMMUNOTHER., vol. 45, 1997, pages 193 - 197 |
LANGER ET AL., J. BIOMED. MATER. RES., vol. 15, 1981, pages 167 - 277 |
LANGER ET AL., J. BIOMED.MATER. RES., vol. 15, 1981, pages 167 - 277 |
LANGER, CHEM. TECH., vol. 12, 1982, pages 98 - 105 |
LITTLE: "Recombinant Antibodies for Immunotherapy", 2009, UNIVERSITY PRESS |
LOFFLER, BLOOD, vol. 95, no. 6, 2000, pages 2098 - 2103 |
LOWMAN ET AL., BIOCHEMISTRY, vol. 30, 1991, pages 10832 - 10837 |
LU ET AL., J BIOL CHEM, vol. 280, no. 20, 2005, pages 19665 - 19672 |
MACCALLUM ET AL., J. MOL. BIOL, vol. 262, 1996, pages 732 |
MACK, J. IMMUNOL., vol. 158, 1997, pages 3965 - 3970 |
MACK, PNAS, vol. 92, 1995, pages 7021 - 7025 |
MAHLER ET AL., J PHARM SCI, vol. 98, no. 9, September 2009 (2009-09-01), pages 2909 - 34 |
MAHLER, J PHARM SCI, vol. 98, no. 9, September 2009 (2009-09-01), pages 2909 - 34 |
MAHLER, J PHARM SCI., vol. 98, no. 9, September 2009 (2009-09-01), pages 2909 - 34 |
MALMBORG, J. IMMUNOL. METHODS, vol. 183, 1995, pages 7 - 13 |
MARKS ET AL., J. MOL. BIOL., vol. 222, 1991, pages 581 - 597 |
MARTIN ET AL., J. BIOL. CHEM., vol. 257, 1982, pages 286 - 288 |
MARTIN; THORNTON, J. MOL. BIOL, vol. 263, 1996, pages 800 |
MATHER ET AL., ANNALS N. Y ACAD. SCI., vol. 383, 1982, pages 44 - 68 |
MATHER, BIOL. REPROD., vol. 23, 1980, pages 243 - 251 |
MENDEZ ET AL., NATURE GENETICS, vol. 15, 1997, pages 146 - 156 |
MEYER ET AL., J PHARM SCI, vol. 96, no. 12, pages 3155 |
MICHAELSON ET AL., MABS, vol. 1, no. 2, 2009, pages 128 - 141 |
MORRISON ET AL., PROC. NATL. ACAD. SCI U.S.A., vol. 81, 1985, pages 6851 |
MORRISON ET AL., PROC. NATL. ACAD. SCI. USA, vol. 81, 1984, pages 6851 - 6855 |
MORRISON KL; WEISS GA, CUR OPIN CHEM BIOL., vol. 5, no. 3, June 2001 (2001-06-01), pages 302 - 7 |
MORRISON, SCIENCE, vol. 229, 1985, pages 1202 - 1207 |
NEEDLEMAN; WUNSCH, J. MOL. BIOL., vol. 48, 1970, pages 443 |
NOLAN ET AL., PROC. NATL. ACAD. SCI. U.S.A., vol. 85, 1988, pages 2603 - 2607 |
OI ET AL., BIOTECHNIQUES, vol. 4, 1986, pages 214 |
OLSSON ET AL., METH. ENZYMOL., vol. 92, 1982, pages 3 - 16 |
OWEN ET AL., BIO/TECHNOLOGY, vol. 10, 1992, pages 790 - 794 |
PADLAN, MOLECULAR IMMUNOLOGY, vol. 31, no. 3, 1993, pages 169 - 217 |
PEARSON; LIPMAN, PROC. NAT. ACAD. SCI. U.S.A., vol. 85, 1988, pages 2444 |
PETRA MATT ET AL: "The European Medicines Agency Review of Tegafur/Gimeracil/Oteracil (Teysuno(TM)) for the Treatment of Advanced Gastric Cancer When Given in Combination with Cisplatin: Summary of the Scientific Assessment of the Committee for Medicinal Products for Human Use (CHMP)", THE ONCOLOGIST, 18 February 2009 (2009-02-18), Durham, NC, USA, pages 1451 - 1457, XP055467321, Retrieved from the Internet <URL:http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Public_assessment_report/human/000972/WC500051808.pdf> [retrieved on 20180416], DOI: 10.1634/theoncologist.2011-0224 * |
PLUCKTHUN: "The Pharmacology of Monoclonal Antibodies", vol. 113, 1994, SPRINGER-VERLAG, pages: 269 - 315 |
PRESTA, CURR. OP. STRUCT. BIOL., vol. 2, 1992, pages 593 - 596 |
RAAG; WHITLOW, FASEB, vol. 9, no. 1, 1995, pages 73 - 80 |
RANDOLPH ET AL.: "Surfactant-protein interactions", PHARM BIOTECHNOL, vol. 13, 2002, pages 159 - 75 |
REICHMANN ET AL., NATURE, vol. 332, 1988, pages 323 - 329 |
RICHARD P. HAUGLAND: "Molecular Probes Handbook" |
ROBERTS, TRENDS BIOTECHNOL, vol. 32, no. 7, July 2014 (2014-07-01), pages 372 - 80 |
SAMBROOK ET AL.: "Molecular Cloning: A Laboratory Manual", 2001, COLD SPRING HARBOR LABORATORY PRESS |
SCHIER, HUMAN ANTIBODIES HYBRIDOMAS, vol. 7, 1996, pages 97 - 105 |
SCHLERETH ET AL., CANCER IMMUNOL. IMMUNOTHER, vol. 20, 2005, pages 1 - 12 |
SCHLERETH ET AL., CANCER IMMUNOL. IMMUNOTHER., vol. 20, 2005, pages 1 - 12 |
SHEN ET AL., J BIOL CHEM, vol. 281, no. 16, 2006, pages 10706 - 10714 |
SIDMAN ET AL., BIOPOLYMERS, vol. 2, 1983, pages 547 - 556 |
SKERRA ET AL., SCIENCE, vol. 242, 1988, pages 1038 - 1041 |
SMITH, SCIENCE, vol. 228, 1985, pages 1315 - 1317 |
SMITH; WATERMAN, ADV. APPL. MATH., vol. 2, 1981, pages 482 |
SONGSIVILAI; LACHMANN, CLIN. EXP. IMMUNOL., vol. 79, 1990, pages 315 - 321 |
SPIESS ET AL., MOLECULAR IMMUNOLOGY, vol. 67, no. 2, 2015, pages 97 - 106 |
STAUBER, BIOTECHNIQUES, vol. 24, 1998, pages 462 - 471 |
T. E. CREIGHTON: "Proteins: Structure and Molecular Properties", 1983, W. H. FREEMAN & CO., pages: 79 - 86 |
TAKEDA ET AL., NATURE, vol. 314, 1985, pages 452 |
TENG ET AL., PROC. NATL. ACAD. SCI. U.S.A., vol. 80, 1983, pages 7308 - 7312 |
THOTAKURA ET AL., METH. ENZYMOL., vol. 138, 1987, pages 350 |
TOMLINSON ET AL., EMBO J., vol. 14, no. 14, 1995, pages 4628 - 4638 |
TOMLINSON ET AL., J. MOL. BIOL., vol. 227, 1992, pages 776 - 798 |
URLAUB ET AL., PROC. NATL. ACAD. SCI. USA, vol. 77, 1980, pages 4216 |
VON KREUDENSTEIN THOMAS SPRETER ET AL: "Improving biophysical properties of a bispecific antibody scaffold to aid developability Quality by molecular design", MABS, LANDES BIOSCIENCE, US, vol. 5, no. 5, 1 September 2013 (2013-09-01), pages 646 - 654, XP009176706, ISSN: 1942-0862, DOI: 10.4161/MABS.25632 * |
WANG, INT J PHARM, vol. 185, no. 2, 20 August 1999 (1999-08-20), pages 129 - 88 |
WARD ET AL., NATURE, vol. 334, 1989, pages 54454 |
WARD ET AL., NATURE, vol. 341, 1989, pages 544 - 546 |
WU ET AL., NATURE BIOTECHNOLOGY, vol. 25, no. 11, 2007, pages 1290 - 1297 |
ZUO ET AL., PROTEIN ENGINEERING, vol. 13, no. 5, 2000, pages 361 - 367 |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7412409B2 (ja) | 2018-07-31 | 2024-01-12 | アムジェン インコーポレイテッド | マスクされた抗体の医薬製剤 |
US20210236636A1 (en) * | 2018-07-31 | 2021-08-05 | Amgen Inc. | Pharmaceutical formulations of masked antibodies |
JP2021532156A (ja) * | 2018-07-31 | 2021-11-25 | アムジェン インコーポレイテッド | マスクされた抗体の医薬製剤 |
WO2020028401A1 (en) * | 2018-07-31 | 2020-02-06 | Amgen Inc. | Pharmaceutical formulations of masked antibodies |
JP2022512636A (ja) * | 2018-10-11 | 2022-02-07 | アムジエン・インコーポレーテツド | 二重特異性抗体コンストラクトの下流プロセシング |
WO2021091906A1 (en) | 2019-11-04 | 2021-05-14 | Amgen Inc. | Methods for treating leukemia |
WO2021222347A1 (en) | 2020-04-29 | 2021-11-04 | Amgen Inc. | Pharmaceutical formulation |
WO2021222355A1 (en) | 2020-04-29 | 2021-11-04 | Amgen Inc. | Pharmaceutical formulation |
WO2021247812A1 (en) * | 2020-06-04 | 2021-12-09 | Amgen Inc. | Bispecific binding constructs |
WO2022046651A1 (en) * | 2020-08-24 | 2022-03-03 | Amgen Inc. | Pharmaceutical formulation comprising a bite, bispecific antibody, and methionine |
WO2022060878A1 (en) | 2020-09-16 | 2022-03-24 | Amgen Inc. | Methods for treating prostate cancer |
WO2022060901A1 (en) | 2020-09-16 | 2022-03-24 | Amgen Inc. | Methods for administering therapeutic doses of bispecific t-cell engaging molecules for the treatment of cancer |
US11617767B2 (en) | 2020-11-20 | 2023-04-04 | Simcere Innovation, Inc. | Armed dual CAR-T compositions and methods for cancer immunotherapy |
WO2023183231A1 (en) | 2022-03-21 | 2023-09-28 | Amgen Inc. | Combination therapy methods with t-cell engaging molecules for treatment of prostate cancer |
WO2024077044A1 (en) | 2022-10-05 | 2024-04-11 | Amgen Inc. | Combination therapies comprising t-cell redirecting therapies and agonistic anti-il-2r antibodies or fragments thereof |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230192884A1 (en) | Bispecific t cell engaging antibody constructs | |
US20210070878A1 (en) | PSMA and CD3 Bispecific T Cell Engaging Antibody Constructs | |
US11352433B2 (en) | BCMA and CD3 bispecific T cell engaging antibody constructs | |
US11918650B2 (en) | Pharmaceutical composition comprising bispecific antibody constructs for improved storage and administration | |
KR102658637B1 (ko) | T 세포 관여 항체 구축물을 포함하는 저 pH 약제학적 조성물 | |
US20210395298A1 (en) | Downstream processing of bispecific antibody constructs | |
WO2024059675A2 (en) | Bispecific molecule stabilizing composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18706965 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 3052098 Country of ref document: CA Ref document number: 2019541303 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112019016104 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 2018214223 Country of ref document: AU Date of ref document: 20180202 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20197025456 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2018706965 Country of ref document: EP Effective date: 20190902 |
|
ENP | Entry into the national phase |
Ref document number: 112019016104 Country of ref document: BR Kind code of ref document: A2 Effective date: 20190802 |