WO2018141502A1 - Faseroptische erfassungseinrichtung sowie verfahren zum betreiben einer solchen faseroptischen erfassungseinrichtung - Google Patents

Faseroptische erfassungseinrichtung sowie verfahren zum betreiben einer solchen faseroptischen erfassungseinrichtung Download PDF

Info

Publication number
WO2018141502A1
WO2018141502A1 PCT/EP2018/050309 EP2018050309W WO2018141502A1 WO 2018141502 A1 WO2018141502 A1 WO 2018141502A1 EP 2018050309 W EP2018050309 W EP 2018050309W WO 2018141502 A1 WO2018141502 A1 WO 2018141502A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
detection device
fiber optic
length
temperature
Prior art date
Application number
PCT/EP2018/050309
Other languages
English (en)
French (fr)
Inventor
Johannes Roths
Barbara Hopf
Thomas Bosselmann
Michael Willsch
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2018141502A1 publication Critical patent/WO2018141502A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35309Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
    • G01D5/35316Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Bragg gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/18Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying effective impedance of discharge tubes or semiconductor devices
    • G01D5/183Sensing rotation or linear movement using strain, force or pressure sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/3537Optical fibre sensor using a particular arrangement of the optical fibre itself
    • G01D5/35374Particular layout of the fiber
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/36Forming the light into pulses
    • G01D5/38Forming the light into pulses by diffraction gratings

Definitions

  • the invention relates to a fiber optic detection device and a method for operating such a fiber optic detection device.
  • Fiber-optic detection devices in the form of fiber-optic temperature sensors, as well as methods for operating such fiber-optic temperature sensors are already well known from the general state of the art.
  • Such a fiber optic temperature sensor based on fiber Bragg gratings (FBG) is usually used for multipoint
  • Temperature measurement used, for example, at various measuring points to detect respective temperatures, that is to measure.
  • fiber optic temperature sensors are at least almost immune to external electromagnetic see fields, but other external influences can affect a precise measurement.
  • Object of the present invention is therefore, to sheep fen a fiber optic sensing device and a method by means of which a particularly precise measurement is reali ⁇ sierbar.
  • a first aspect of the invention relates to a fiber optic
  • Detection device which has at least one fiber designed as a light guide.
  • the fiber has at least a first length region with a first outer circumference and less at least one in the longitudinal direction of the fiber to the first length range, in particular directly, subsequent second length range with a relation to the first outer circumference smaller second outer circumference.
  • the fiber optic sensing device includes at least a protective sheath ⁇ , in which at least the length ranges, and thus the fibers are at least partially received.
  • the fiber optic detection device has at least one sensor tandem which has at least one first fiber Bragg grating (first FBG) inscribed in the first length range and at least one second fiber Bragg grating (second FBG) inscribed in the second length range.
  • first FBG first fiber Bragg grating
  • second FBG second fiber Bragg grating
  • the sensor Tandem is to trained det also ilias to detect on a corresponding measuring point both at least one prevailing at the measuring point temperature than we ⁇ occurring at the measuring point and acting in Lijnser ⁇ stretch direction of the fiber and, in particular, acting on the fiber strength.
  • the respective force acting in the longitudinal direction of the fiber force for example, acting in the fiber longitudinal force, which can be detected by means of the sensor tether, that can be measured.
  • the invention is based in particular on the finding that fiber-optic temperature sensors based on fiber Bragg gratings (FBG) can be used for temperature measurement, in particular for multipoint temperature measurement.
  • FBG fiber Bragg gratings
  • a multipoint temperature measurement means for example, that by means of respective sensor tandems spaced apart from one another in the longitudinal direction of the fiber, The temperatures prevailing at respective corresponding measuring points can be detected.
  • a FBG is sensitive to both temperature and strain on and thus example ⁇ , on the fiber acting longitudinal forces.
  • DA forth is also referred to as the sensor fiber in the fiber cover, which is also as a protective tube or capillary ⁇ be distinguished added, wherein the fiber, for example, is loosely inserted into the protective sheath.
  • the respective sensor tandem is thus a sensor element for detecting a temperature.
  • a respective total length of the capillary and the fiber is usually limited. Further, in curved capillary a higher transmission due to friction is present, so that in general a measuring line formed for example by the fiber and the protective sheath not ge ⁇ curves may extend. Due to the friction effects described above, but also due to the dead weight of long, capillary sensor fibers, systematic uncertainties can occur during a temperature calibration, since a state of stress of the fiber in a state in which the temperature calibration is carried out need not be identical to a state of stress of the fiber in installed condition.
  • the respective FBG can be of the type I, IIa or of another type, for example, or be embodied, for example, as a regenerated FBG or as an FBG inscribed with an fs laser.
  • the protective cover ensures protection of the fiber, in particular of the sensor tether.
  • Example ⁇ it may come to a friction between the protective sleeve and the fiber, especially in the area of the sensor tandems, this friction can affect the detection of the temperature.
  • Fiber Bragg gratings are known as optical sensors for the measurement of stresses, strains and temperature and, due to their advantages, are used in systems that are difficult to access. These sensors are insensitive to electromagnetic fields and are therefore suitable for measurements in industrial power plants or medical applications where, for example, high field strengths prohibit the use of conventional thermocouples or electrical strain gauges.
  • the fiber has a plurality of sensor tandem, that is, at least one further sensor tandem, wherein the further sensor ⁇ tandem spaced in the longitudinal direction of the fiber from the first sensor tandem.
  • the first sensor tandem easily be transferred to the second sensor tandem and vice versa.
  • Fiber Bragg gratings are typically a periodic refractive index variation in the core of, for example, fiber-formed fiber having a grating period of about 530 nanometers. This firing index modulation acts like a dielectric mirror, so that in the fiber formed, for example, as a fiber, guided light in a very narrow wavelength range around the so-called Bragg
  • Wavelength is reflected, while all other Wellenlän ⁇ gen which is also referred to as a grating FBG unaffected passie ⁇ ren.
  • the Bragg wavelength depends only on the Git ⁇ terperiode and the effective modal index of refraction. Both variables are temperature as well as strain-dependent or dependent on internal stresses and thus, for example, longitudinal forces in the fiber, so that the measurement of a parameter such as the temperature in the presence of a further influence represents a great challenge.
  • a further influence is the aforementioned longitudinal force, in particular in the fiber, wherein the longitudinal force beispielswei ⁇ se can be caused by an elongation of the fiber and wherein the strain can be caused by an outer force acting on the fiber influence.
  • One method for separating strain and temperature influences is, for example, the use of the signals of fast and slow axis of a polarization-maintaining fiber, the use of two gratings with significantly different
  • the fiber ⁇ optical detection means enables precise temperature measuring ⁇ solution since for example in dependence on the detected longitudinal force to be determined temperature can be compensated at the measuring point, or as a result of detecting the longitudinal force elongation influences can be compensated in the temperature ⁇ measurement, for example, the detected temperature to the sensed longitudinal force or to ei ⁇ nen by the detected longitudinal force characterized Bezie ⁇ hung as induced strain influence can be corrected.
  • the inventive fiber optic it is possible to use the inventive fiber optic
  • Measuring device as a multi-point temperature sensor has a plurality, in particular in the longitudinal extension direction of the fiber spaced apart sensor tandems and point temperature measurements with high accuracy at different measuring points in the case allows while stress levels at the respective, also referred to as measuring points measuring points codetermined, wherein the stress levels by the detectable force or by the detectable forces are characterized and example ⁇ occur by friction effects at the measuring points.
  • stress levels at the respective also referred to as measuring points measuring points codetermined, wherein the stress levels by the detectable force or by the detectable forces are characterized and example ⁇ occur by friction effects at the measuring points.
  • the fiber-optic detection device comprises an electronic computing device, which is designed to receive a signal guided by the fiber and the detected temperature and the detected force characterizing signal and perform a computing process in which the computing device at least calculates a temperature value as a function of the signal.
  • the medium-means of the sensor tandems detected temperature is a temperature that must not necessarily correspond to the tat at the measuring point ⁇ plural prevailing temperature or an actual value of the actually prevailing at the measuring point temperature.
  • the detection of the temperature is impaired by means of the sensor tether by a longitudinal force in the fiber, wherein the longitudinal force can be effected by an elongation of the fiber and thus by external mechanical Einflüs ⁇ se on the fiber.
  • the said force that is, the longitudinal force is detected by the sensor tandem
  • ⁇ means of the electronic calculating device from the detected longitudinal force
  • a correction value by which the temperature detected by the sensor tandems is corrected the means of the sensor tandems he ⁇ summarized temperature, for example, said temperature is ⁇ turwert calculated and thus determined
  • the temperature for example, the actual value corresponds ⁇ value or clotting ⁇ ger than the load detected by the sensor tandems temperature from the actual Value deviates.
  • the protective cover is formed from a non-metallic material.
  • the non-metallic material is preferably quartz glass, polyimide (PI), PEEK (polyether ether ketone) or a fiber-reinforced plastic, which may be formed, for example, as a glass fiber reinforced plastic (GRP).
  • the protective cover is formed of a metallic material, in particular of a stainless steel or Inconel. This prop ⁇ nen particularly advantageous for use in gas and steam turbines.
  • a further embodiment is characterized in that the metallic material is a nickel-containing heat-resistant alloy coins ⁇ tion.
  • the protective cover has an outer diameter of not more than 1.5 millimeters.
  • the length ranges are formed by respective, separately formed fiber ⁇ pieces, which are interconnected. As a result, a particularly precise measurement can be realized.
  • the fiber pieces are joined together at a junction of the ⁇ le.
  • the fiber pieces preferably have the same field radius. It has proven to be particularly advantageous if the pieces of fiber are spliced together and thereby joined together, so that the aforementioned connection point is formed as a splice. As a result, a particularly precise measurement can be realized.
  • the fiber is arranged loosely in the protective cover, so that excessive frictional influence on the measurement can be avoided.
  • the fiber is secured to the protective cover, in particular cohesively, at least along its longitudinal extension direction.
  • the fiber is adhesively bonded, for example, to the protective sheath in order to avoid excessive relative movements between the fiber and the protective sheath in the longitudinal direction of the fiber.
  • the first length range has an outer diameter of at least 80 micrometers, in particular of exactly 80 micrometers.
  • the first length range has an outer diameter of at least 125 microns, in particular of exactly 125 microns, where ⁇ can be detected by the temperature particularly precise.
  • a second aspect of the invention relates to a method for operating a fiber optic detection device, in particular a fiber optic detection device according to the invention.
  • the fiber optic sensing device comprises at least one designed as a light guide fiber which we ⁇ réelles a is lower a first longitudinal region having a first outer periphery and at least in the longitudinal direction of the fiber at the first wavelength range, in particular directly following second length area with respect to the first outer circumference second outer circumference.
  • the fiber optic detection device comprises at least one protective cover, in which at least theconsbe ⁇ rich are added.
  • a sensor is provided at least tandem which ⁇ iquess comprises at least one inscribed in the first wavelength region first fiber Bragg grating and we a registered in the second wavelength region second fiber Bragg grating.
  • ⁇ iquess comprises at least one inscribed in the first wavelength region first fiber Bragg grating and we a registered in the second wavelength region second fiber Bragg grating.
  • FIG. 1 shows a detail of a schematic and partially sectioned side view of a fiber optic detection device according to the invention.
  • FIG. 2 shows a detail of a schematic and perspective view of the fiber optic detection device .
  • the same or functionally identical elements are provided with the same reference numerals.
  • Fig. 1 shows a detail in a schematic and partially sectioned side view of a fiber optic Er ⁇ detection device 10, which - as will be explained below - is designed as a fiber optic temperature measurement chain based on fiber Bragg gratings (FBG).
  • the fiber optic detection device 10 has a trained as Lichtlei- ter fiber 12, which is designed for guiding relationship ⁇ guide light.
  • the fiber 12 is also referred to as a sensor fiber and has a plurality of in the longitudinal direction of the fiber 12 from each other
  • the fiber 12 has a plurality of in the longitudinal direction of the fiber 12 spaced apart and thereby successive second length regions 16 having a respective second outer circumference, in particular with a respective second outer diameter on.
  • the respective second Au ⁇ . . Congress or the respective secondmother barnmes ⁇ ser is less than the respective first outer circumferential relationship ⁇ , the respective first outside diameter.
  • TheInternberei- che 14 and 16 are alternately or abwech ⁇ nately arranged in pairs so that a longitudinal area 16 is located exactly between the length preparation ⁇ chen fourteenth
  • the length of portions 14 are formed by respective first fiber ⁇ pieces 18th Furthermore, the respective length regions 16 are formed by respective second fiber pieces 20.
  • the jewei ⁇ lige fiber piece 18 and 20 is itself formed as a fiber and thereby as a light guide.
  • the respective fiber pieces 18 and 20 are arranged alternately or alternately in the longitudinal direction of extension of the fiber 12, wherein in FIGS. 1 and 2 the longitudinal extension direction of the fiber 12 is illustrated by a double arrow 22.
  • the respective fiber piece 18 is formed separately from the respective fiber piece 20 and thereby at a respective connection point V connected to the respective fiber piece 18. It is preferably provided that the respective length of fiber 18 spliced to the fiber per ⁇ réelle piece 20 at the junction of V, that is connected by splicing, so that the respective connecting point V is formed as a splice.
  • the respective first outer diameter is, for example, 125 micrometers, with the respective second outer diameter being, for example, 80 micrometers.
  • the fiber ⁇ piece 18 is, for example, on the particular piece of fiber 20 spliced Bezie ⁇ hung inversely.
  • a jewei ⁇ liges primary coating of each fiber piece 18 is, for example, relationship ⁇ , 20 completely or only in a range of egg Nigen centimeters around the respective splice around ent ⁇ removed.
  • Respective splicing parameters for splicing the respective fiber pieces 18 and 20 are selected, for example, such that mechanical stability, in particular of the respective connection point V and thus of the fiber 12 overall, up to elongation values of 2000 microstrain is ensured and ei ⁇ ne deformation of the respective splice avoided as possible becomes .
  • the fiber optic detector 10 includes at least one protective sheath 24, which is also referred to as a protective tube or capillary.
  • a protective sheath 24 that is to say in a closed hollow cross-section 26 of the protective sheath 24, at least the respective length regions 14 and 16 are received and thus protected by means of the protective sheath 24, wherein it is preferably provided that the fiber 12 is at least predominantly, in particular at least almost fully ⁇ constantly, is included in the protective cover 24.
  • the optical detection device 10 has a plurality of sensor cells arranged one after the other in the longitudinal direction of the fiber 12 and spaced from each other. tandems 28, so that the fiber optic Detektorseinrich ⁇ device is designed as a multipoint temperature sensor.
  • the respective sensor tandem 28 has at least one first fiber Bragg grating 30, which is inscribed in the respective length region 14, in particular in its core 32. Furthermore, the respective sensor tandem 28 has a second fiber Bragg grating 34 which, for example, follows the corresponding first fiber Bragg grating 30 in the longitudinal extension direction of the fiber 12 and is spaced therefrom and into the respective second longitudinal region 16, in particular in its core 32, is inscribed. In this case, for example, it is provided that only exactly one fiber Bragg grating 30 is inscribed in the respective length region 14, it being alternatively or additionally provided that only exactly one fiber Bragg grating 34 is inscribed in the respective length region 16.
  • the respective fiber Bragg grating 30 and 34 of the respective sensor tandems 28 are preferably put on the respective connecting V arranged as close as possible or written into the respective lengths ⁇ area 14 and sixteenth
  • the production of the respective fiber Bragg grating 30 or 34 he ⁇ follows, for example, by exposure of the core 32 in a sinusoidal interference pattern of a UV laser behind a suitable phase mask. This procedure can be repeated for any sensor tandems.
  • the respective sensor Tandem 28 is now adapted to a respective corresponding measuring point both a prevailing at the measuring point temperature and at least egg ⁇ ne occurring at the measuring point and acting in Lijnserstreckungs- direction of the fiber 12 force, in particular in the Fa ⁇ ser 12 capture.
  • the respective measuring point is also referred to as measuring point or measuring range at or in which the temperature and the force, also referred to as the longitudinal force, in the fiber 12 can be detected by means of the respective sensor tether 28.
  • a respective location or positioning or Reg ⁇ processing of splices depends, for example, after a desired distance ge ⁇ the respective measurement locations where a temperature measurement by the sensor tandems 28 may be performed.
  • ge ⁇ uses to 12 to protect the fiber from external influences mechanically and / or chemically and to the sensor fiber (fiber 12) to prevent transverse forces acting or at least to keep ge ⁇ ring.
  • the fiber 12 ent ⁇ long its longitudinal extension direction is pulled through the protective cover 24 to arrange the fiber 12 in the protective cover 24.
  • At at least one end of the capillary can be a fixation, in particular a point fix, done by means of which the fiber 12 is secured along its longitudinal direction to the protective cover 24.
  • a fixation in particular a point fix
  • an adhesive is used, by means of which the fiber 12 is glued to the protective cover 24, thereby securing the fiber 12 along its longitudinal direction to the protective cover 24.
  • the measuring principle for detecting the temperature and the longitudinal force by means of the respective sensor tether 28 is based on the assumption that in the immediate vicinity of the respective
  • Both temperature and axial force can be determined at each measuring point of the respective sensor tether 28. Since the fiber along its longitudinal direction 12 has the plurality of sensor tandems 28, the fiber 12 is rela ⁇ hung, the fiber optic sensing device 10 as a sensor including IMP EXP ⁇ chain, in particular as a temperature sensor chain is formed. Such a sensor chain, after its manufacture, can be arranged or attached at least almost as desired at desired or interesting points. In the fiber optic detection device 10 for temperature-power decoupling must not be waived a multiplexing ability of the sensor ⁇ chain while achieving a high accuracy of the temperature measurement.
  • temperature and force sensitivities of the respective measuring point that is to say of the respective sensor tandem 28 comprising the respective fiber Bragg gratings 30 and 34, are calibrated prior to installation. Since both the temperature and the longitudinal force can be detected in the fiber 12 by means of the respective Sen ⁇ sortandems 28, conditional longitudinal forces in the fiber 12 can be eliminated by calculation, for example by an installation situation, whereby a secure and accurate temperature measurement can be realized.
  • the respective fiber Bragg gratings 30 and 34 of the respective sensor tether 28 form a grating tandem, which is also referred to as an FBG grating tandem. It is preferably provided that the fiber Bragg gratings 30 and 34 of the respective sensor tether 28 differ from one another in their respective Bragg wavelength, so that, for example the fiber Bragg grating 30 has a first Bragg wavelength and the respective fiber Bragg grating 34 has a second Bragg wavelength different from the first Bragg wavelength.
  • a difference between the first wavelength and the second Bragg-Bragg wavelength is preferential ⁇ example at least five (5) nanometers. As a result, a particularly precise measurement can be realized.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Optical Transform (AREA)

Abstract

Die Erfindung betrifft eine faseroptische Erfassungseinrichtung (10), mit wenigstens einer als Lichtleiter ausgebildeten Faser (12), welche wenigstens einen ersten Längenbereich (14) mit einem ersten Außenumfang und wenigstens einen sich in Längserstreckungsrichtung (22) der Faser (12) an den ersten Längenbereich (14) anschließenden zweiten Längenbereich (16) mit einem gegenüber dem ersten Außenumfang geringeren zweiten Außenumfang aufweist, mit wenigstens einer Schutzhülle (24), in welcher zumindest die Längenbereiche (14, 16) aufgenommen sind, und mit wenigstens einem Sensortandem (28), welches wenigstens ein in den ersten Längenbereich (14) eingeschriebenes erstes Faser-Bragg-Gitter (30) und wenigstens ein in den zweiten Längenbereich (16) eingeschriebenes zweites Faser-Bragg-Gitter (34) aufweist und dazu ausgebildet ist, an einer korrespondierenden Messstelle sowohl eine an der Messstelle herrschende Temperatur als auch wenigstens eine an der Messstelle auftretende und in Längserstreckungsrichtung (22) der Faser (12) wirkende Kraft zu erfassen.

Description

Beschreibung
Faseroptische Erfassungseinrichtung sowie Verfahren zum Betreiben einer solchen faseroptischen Erfassungseinrichtung
Die Erfindung betrifft eine faseroptische Erfassungseinrich¬ tung sowie ein Verfahren zum Betreiben einer solchen faseroptischen Erfassungseinrichtung. Faseroptische Erfassungseinrichtungen in Form von faseroptischen Temperatursensoren, sowie Verfahren zum Betreiben solcher faseroptischen Temperatursensoren sind bereits aus dem allgemeinen Stand der Technik hinlänglich bekannt. Ein solcher faseroptischer Temperatursensor auf Basis von Faser- Bragg-Gittern (FBG) wird üblicherweise zur Multipunkt-
Temperaturmessung eingesetzt, um beispielsweise an mehreren Messstellen jeweilige Temperaturen zu erfassen, das heißt zu messen. Zwar sind solche faseroptischen Temperatursensoren zumindest nahezu unanfällig gegenüber äußeren elektromagneti- sehen Feldern, jedoch können andere äußere Einflüsse eine exakte Messung beeinträchtigen.
Aufgabe der vorliegenden Erfindung ist es daher, eine faseroptische Erfassungseinrichtung sowie ein Verfahren zu schaf- fen, mittels welchen eine besonders präzise Messung reali¬ sierbar ist.
Diese Aufgabe wird durch eine faseroptische Erfassungsein¬ richtung mit den Merkmalen des Patentanspruchs 1 sowie durch ein Verfahren mit den Merkmalen des Patentanspruchs 12 ge¬ löst. Vorteilhafte Ausgestaltungen mit zweckmäßigen Weiterbildungen der Erfindung sind in den übrigen Ansprüchen angegeben . Ein erster Aspekt der Erfindung betrifft eine faseroptische
Erfassungseinrichtung, welche wenigstens eine als Lichtleiter ausgebildete Faser aufweist. Die Faser weist wenigstens einen ersten Längenbereich mit einem ersten Außenumfang und wenigs- tens einen sich in Längserstreckungsrichtung der Faser an den ersten Längenbereich, insbesondere direkt, anschließenden zweiten Längenbereich mit einem gegenüber dem ersten Außenumfang geringeren zweiten Außenumfang auf. Außerdem umfasst die faseroptische Erfassungseinrichtung wenigstens eine Schutz¬ hülle, in welcher zumindest die Längenbereiche und somit die Fasern zumindest teilweise aufgenommen sind.
Außerdem weist die faseroptische Erfassungseinrichtung we- nigstens ein Sensortandem auf, welches wenigstens ein in den ersten Längenbereich eingeschriebenes erstes Faser-Bragg- Gitter (erstes FBG) und wenigstens ein in den zweiten Längenbereich eingeschriebenes zweites Faser-Bragg-Gitter (zweites FBG) aufweist. Außerdem ist das Sensortandem dazu ausgebil- det, an einer korrespondierenden Messstelle sowohl wenigstens eine an der Messstelle herrschende Temperatur als auch we¬ nigstens eine an der Messstelle auftretende und in Längser¬ streckungsrichtung der Faser wirkende und dabei insbesondere auf die Faser wirkende Kraft zu erfassen. Die erfindungsgemä- ße faseroptische Erfassungseinrichtung ist somit als faserop¬ tischer Temperatursensor, insbesondere als faseroptische Tem¬ peraturmesskette, ausgebildet, welcher beziehungsweise welche auch dazu ausgebildet ist, an der Messstelle auftretende und in Längserstreckungsrichtung der Faser, insbesondere auf die Faser, wirkende Kräfte, das heißt sogenannte Längs- oder Axi¬ alkräfte zu erfassen. Mit anderen Worten ist die jeweilige, in Längserstreckungsrichtung der Faser wirkende Kraft beispielsweise eine in der Faser wirkende Längskraft, welche mittels des Sensortandems erfasst, das heißt gemessen werden kann.
Der Erfindung liegt insbesondere die Erkenntnis zugrunde, dass faseroptische Temperatursensoren auf der Basis von Fa- ser-Bragg-Gittern (FBG) zur Temperaturmessung, insbesondere zur Multipunkt-Temperaturmessung, verwendet werden können.
Unter eine Multipunkt-Temperaturmessung ist beispielsweise zu verstehen, dass mittels jeweiliger, in Längserstreckungsrichtung der Faser voneinander beabstandeter Sensortandems jewei- lige, an jeweiligen korrespondierenden Messstellen herrschende Temperaturen erfasst werden können. Dabei ist ein FBG sowohl auf Temperatur als auch auf Dehnung und somit beispiels¬ weise auf in der Faser wirkende Längskräfte empfindlich. Da- her wird die auch als Sensorfaser bezeichnete Faser in der Schutzhülle, welche auch als Schutzrohr oder Kapillare be¬ zeichnet wird, aufgenommen, wobei die Faser beispielsweise lose in die Schutzhülle eingelegt wird. Hierdurch kann eine Aufbautechnik realisiert werden, welche gewährleisten soll, dass das jeweilige Sensortandem frei von mechanischen Belas¬ tungen ist. Das jeweilige Sensortandem ist somit ein Sensorelement zum Erfassen einer Temperatur. Mechanische, auf das jeweilige Sensorelement wirkende Belastungen können die Er¬ fassung der Temperatur beeinträchtigen, was dadurch vermieden werden soll, dass das Sensortandem in der Schutzhülle ange¬ ordnet wird. Dies ist üblicherweise jedoch nur bedingt reali¬ sierbar, da aufgrund von Reibung zwischen der Schutzhülle und der Faser Längsspannungen, insbesondere in die Faser, eingebracht werden können. Eine Kraftübertragung zwischen Faser und Kapillare aufgrund von Reibung wächst mit zunehmender Fa¬ ser- beziehungsweise Kapillarlänge.
Daher ist eine jeweilige Gesamtlänge der Kapillare und der Faser üblicherweise begrenzt. Weiterhin ist bei gekrümmter Kapillare eine höhere Kraftübertragung aufgrund von Reibung vorhanden, sodass in der Regel eine beispielsweise durch die Faser und die Schutzhülle gebildete Messleitung nicht ge¬ krümmt verlaufen darf. Durch die zuvor beschriebenen Reibungseinflüsse, aber auch durch das Eigengewicht langer, in Kapillaren befindlicher Sensorfasern können bei einer Temperaturkalibrierung systematische Unsicherheiten auftreten, da ein Spannungszustand der Faser in einem Zustand, in welchem die Temperaturkalibrierung durchgeführt wird, nicht identisch sein muss mit einem Spannungszustand der Faser in eingebautem Zustand.
Diese Probleme und Nachteile können mittels der erfindungsge¬ mäßen faseroptischen Erfassungseinrichtung vermieden werden, da an der Messstelle mittels des Sensortandems sowohl die Temperatur als auch die Längskraft in der Faser erfasst werden. Dabei kann das jeweilige FBG zum Beispiel vom Typ I, IIa oder von einem anderen Typ sein oder beispielsweise als rege- neriertes FBG oder als mit einem fs-Laser eingeschriebenes FBG ausgebildet sein. Die Schutzhülle gewährleistet einen Schutz der Faser, insbesondere des Sensortandems. Beispiels¬ weise kann es zu einer Reibung zwischen der Schutzhülle und der Faser, insbesondere im Bereich des Sensortandems, kommen, wobei diese Reibung Einfluss auf die Erfassung der Temperatur haben kann. Da nun jedoch nicht nur die Temperatur, sondern auch die Längskraft an derselben Messstelle mittels desselben Sensortandems gemessen wird, und da die Längskraft von der genannten Reibung zwischen der Faser und der Schutzhülle ab- hängt, können Reibungseinflüsse auf die Erfassung der Tempe¬ ratur durch die Erfassung der Längskraft ermittelt bezie¬ hungsweise abgeschätzt und schließlich kompensiert werden ebenso wie eventuell auftretende Längskräfte auf der Faser. Faser-Bragg-Gitter sind als optische Sensoren für die Messung von Spannungen, Dehnungen und Temperatur bekannt und finden aufgrund ihrer Vorteile Einsatz in schwer zugänglichen Systemen. Diese Sensoren sind unempfindlich gegenüber elektromagnetischen Feldern und eignen sich daher für Messungen in Industriekraftanlagen oder medizinischen Anwendungen, bei denen zum Beispiel hohe Feldstärken den Einsatz von konventionellen Thermoelementen beziehungsweise elektrischen Dehnungsmessstreifen verbieten. Ein wesentlicher Vorteil der FBG- basierten optischen Messtechnik ist die Möglichkeit, mehrere Messstellen in einer Faser integrieren zu können. Dadurch können Temperaturmessungen mit geringem Aufwand, geringem Platzverbrauch und geringem Verkabelungsaufwand flexibel durchgeführt werden. Somit ist es beispielsweise vorgesehen, dass die Faser mehrere Sensortandems, das heißt wenigstens ein weiteres Sensortandem aufweist, wobei das weitere Sensor¬ tandem in Längserstreckungsrichtung der Faser von dem ersten Sensortandem beabstandet ist. Dabei können die vorigen und folgenden Ausführungen zum ersten Sensortandem ohne weiteres auch auf das zweite Sensortandem übertragen werden und umgekehrt .
Bei Faser-Bragg-Gittern handelt es sich üblicherweise um eine periodische Brechungsindexvariation im Kern der beispielsweise als Glasfaser ausgebildeten Faser mit einer Gitterperiode von circa 530 Nanometer. Diese Brennungsindexmodulation wirkt wie ein dielektrischer Spiegel, sodass in der beispielsweise als Glasfaser ausgebildeten Faser geführtes Licht in einem sehr schmalen Wellenlängenbereich um die sogenannte Bragg-
Wellenlänge reflektiert wird, während alle anderen Wellenlän¬ gen das auch als Gitter bezeichnete FBG unbeeinflusst passie¬ ren. Die Bragg-Wellenlänge hängt dabei lediglich von der Git¬ terperiode und dem effektiven modalen Brechungsindex ab. Bei- de Größen sind sowohl temperatur- als auch dehnungsabhängig beziehungsweise abhängig von internen Spannungen und somit beispielsweise Längskräften in der Faser, sodass die Messung einer Kenngröße wie der Temperatur unter Vorhandensein eines weiteren Einflusses eine große Herausforderung darstellt. Ein solcher weiterer Einfluss ist die zuvor genannte Längskraft, insbesondere in der Faser, wobei die Längskraft beispielswei¬ se durch eine Dehnung der Faser bewirkt werden kann und wobei die Dehnung durch einen äußeren, auf die Faser wirkenden Einfluss bewirkt werden kann.
Eine Methode zur Trennung von Dehnungs- und Temperatureinflüssen ist beispielsweise die Verwendung der Signale von Fast- und Slow-Axis einer polarisationserhaltenden Faser, die Verwendung zweier Gitter mit deutlich unterschiedlichen
Bragg-Wellenlängen, die Verwendung von Fasern mit unterschiedlicher Dotierung und/oder Typ I und Typ IIa Gitter. Im Wesentlichen basieren alle diese Sensoren auf zwei Faser- Bragg-Gittern, die an einer Stelle mit gleicher Temperatur und Dehnung angebracht sind. Beide FBG reagieren dabei unter- schiedlich stark auf Einflüsse durch Änderung der Bragg- Wellenlänge. Aus den Wellenlängenwerten der beiden Gitter können sowohl die Temperatur als auch die Dehnung bestimmt werden. Möglichst unterschiedliche Sensoreigenschaften bezie- hungsweise Sensitivitäten der FBG sind dabei erwünscht, um genaue Messwerte zu erhalten. Ein Nachteil der oben aufge¬ führten Methoden sind jedoch geringe Unterschiede in den Sensitivitäten der zur Auswertung verwendeten zwei Sensorsigna- le . Dies führt zu großen Fehlern in der Temperaturbestimmung, wenn handelsübliche optische Interrogatoren zur Auswertung verwendet werden.
Ferner ist es grundsätzlich denkbar, die Faser in den Längen- bereichen und dem Sensortandem ohne Schutzhülle zu verwenden und dabei beispielsweise das Sensortandem mithilfe von zwei Punktklebungen auf einem zu untersuchenden Substrat zu fixieren. Hierbei führt jedoch eine Gesamtdehnung zwischen den Punktklebungen und somit zwischen den Klebepunkten, an denen das Sensortandem gegen das Substrat geklebt ist, zu unter¬ schiedlich starken Dehnungen in den Längenbereichen und damit zu deutlich unterschiedlichen Sensitivitäten der Faser beziehungsweise der Längenbereiche auf Gesamtdehnung. Vor diesem Hintergrund ermöglicht die erfindungsgemäße faser¬ optische Erfassungseinrichtung eine präzise Temperaturmes¬ sung, da beispielsweise in Abhängigkeit von der erfassten Längskraft die zu ermittelnde Temperatur an der Messstelle kompensiert werden kann beziehungsweise infolge des Erfassens der Längskraft können Dehnungseinflüsse auf die Temperatur¬ messung kompensiert werden, indem beispielsweise die erfasste Temperatur um die erfasste Längskraft beziehungsweise um ei¬ nen durch die erfasste Längskraft charakterisierten bezie¬ hungsweise bewirkten Dehnungseinfluss korrigiert werden kann. Somit ist es möglich, die erfindungsgemäße faseroptische
Messeinrichtung als Mehrpunkt-Temperatursensor auszubilden, der beispielsweise mehrere, insbesondere in Längserstre- ckungsrichtung der Faser voneinander beabstandete Sensortandems aufweist und Punkt-Temperaturmessungen mit hoher Genau- igkeit an unterschiedlichen Messstellen in der Schutzhülle ermöglicht und dabei Stresswerte an den jeweiligen, auch als Messpunkten bezeichneten Messstellen mitbestimmt, wobei die Stresswerte durch die erfassbare Kraft beziehungsweise durch die erfassbaren Kräfte charakterisiert werden und beispiels¬ weise durch Reibungseffekte an den Messstellen auftreten. Somit ist es möglich, einen durch die Kräfte beziehungsweise durch Stress verursachten Fehler in der Temperaturmessung zu kompensieren.
In besonders vorteilhafter Ausgestaltung der Erfindung um- fasst die faseroptische Erfassungseinrichtung eine elektronische Recheneinrichtung, welche dazu ausgebildet ist, ein mit- tels der Faser geführtes und die erfasste Temperatur und die erfasste Kraft charakterisierendes Signal zu empfangen und einen Rechenprozess durchzuführen, bei welchem die Recheneinrichtung wenigstens einen Temperaturwert in Abhängigkeit von dem Signal berechnet. Wie zuvor beschrieben stellt die mit- tels des Sensortandems erfasste Temperatur eine Temperatur dar, welche nicht notwendigerweise der an der Messstelle tat¬ sächlich herrschenden Temperatur beziehungsweise einem Ist- Wert der tatsächlich an der Messstelle herrschenden Temperatur entsprechen muss. Beispielsweise wird die Erfassung der Temperatur mittels des Sensortandems durch eine Längskraft in der Faser beeinträchtigt, wobei die Längskraft durch eine Dehnung der Faser und somit durch äußere mechanische Einflüs¬ se auf die Faser bewirkt werden kann. Da nun mittels des Sensortandems die genannte Kraft, das heißt die Längskraft, erfasst wird, kann beispielsweise mit¬ tels der elektronischen Recheneinrichtung aus der erfassten Längskraft ein Korrekturwert berechnet werden, um welchen die mittels des Sensortandems erfasste Temperatur korrigiert wird. Durch diese Korrektur der mittels des Sensortandems er¬ fassten Temperatur wird beispielsweise der genannte Tempera¬ turwert berechnet und somit ermittelt, wobei der Temperatur¬ wert beispielsweise dem Ist-Wert entspricht oder aber gerin¬ ger als die mittels des Sensortandems erfasste Temperatur von dem Ist-Wert abweicht. Somit ist es mittels der Rechenein¬ richtung möglich, eine Abweichung zwischen dem Ist-Wert der tatsächlich an der Messstelle herrschenden Temperatur und dem Temperaturwert zumindest besonders gering zu halten oder gar zu vermeiden, sodass eine besonders präzise Ermittlung der an der Messstelle herrschenden Temperatur realisierbar ist.
Bei einer weiteren vorteilhaften Ausführungsform der Erfin- dung ist die Schutzhülle aus einem nicht-metallischen Werkstoff gebildet. Diese eignet sich besonders vorteilhaft für die Anwendung in elektrischen Maschinen und Anlagen. Bei dem nicht-metallischen Werkstoff handelt es sich vorzugsweise um Quarzglas, Polyimid (PI), PEEK ( Polyetheretherketon) oder um einen faserverstärkten Kunststoff, welcher beispielsweise als glasfaserverstärkter Kunststoff (GFK) ausgebildet sein kann.
Eine weitere Ausführungsform zeichnet sich dadurch aus, dass die Schutzhülle aus einem metallischen Werkstoff, insbesonde- re aus einem Edelstahl oder Inconel, gebildet ist. Diese eig¬ nen sich besonders vorteilhaft für die Anwendung in Gas- und Dampfturbinen .
Eine weitere Ausführungsform zeichnet sich dadurch aus, dass der metallische Werkstoff eine nickelhaltige warmfeste Legie¬ rung ist. Ist es beispielsweise vorgesehen, die faseroptische Erfassungseinrichtung unter einer Isolierung einer Wicklung einer elektrischen Maschine anzuordnen, ist es von Vorteil, wenn die Schutzhülle einen Außendurchmesser von nicht mehr als 1,5 Millimeter aufweist.
In weiterer Ausgestaltung der Erfindung sind die Längenbereiche durch jeweilige, separat voneinander ausgebildete Faser¬ stücke gebildet, welche miteinander verbunden sind. Dadurch kann eine besonders präzise Messung realisiert werden.
Beispielsweise sind die Faserstücke an einer Verbindungsstel¬ le miteinander verbunden. Um dabei Transmissionsverluste an der Verbindungsstelle besonders gering zu halten oder zu ver- meiden, weisen die Faserstücke vorzugsweise den gleichen Mo- denfeldradius auf. Als besonders vorteilhaft hat es sich dabei gezeigt, wenn die Faserstücke miteinander verspleißt und dadurch miteinander verbunden sind, sodass die zuvor genannte Verbindungsstelle als Spleißstelle ausgebildet ist. Dadurch kann eine besonders präzise Messung realisiert werden.
In weiterer Ausgestaltung der Erfindung ist die Faser lose in der Schutzhülle angeordnet, sodass ein übermäßiger Reibungs- einfluss auf die Messung vermieden werden kann.
Als vorteilhaft hat es sich jedoch gezeigt, wenn die Faser zumindest entlang ihrer Längserstreckungsrichtung an der Schutzhülle, insbesondere Stoffschlüssig, gesichert ist.
Hierzu ist die Faser beispielsweise mit der Schutzhülle ver- klebt, um übermäßige Relativbewegungen zwischen der Faser und der Schutzhülle in Längserstreckungsrichtung der Faser vermeiden zu können.
Es wurde gefunden, dass sich eine besonders präzise Messung dadurch realisieren lässt, dass der erste Längenbereich einen Außendurchmesser von mindestens 80 Mikrometer, insbesondere von genau 80 Mikrometer, aufweist.
Als weiterhin vorteilhaft hat es sich gezeigt, wenn der erste Längenbereich einen Außendurchmesser von mindestens 125 Mikrometer, insbesondere von genau 125 Mikrometer, aufweist, wo¬ durch die Temperatur besonders präzise erfasst werden kann.
Ein zweiter Aspekt der Erfindung betrifft ein Verfahren zum Betreiben einer faseroptischen Erfassungseinrichtung, insbesondere einer erfindungsgemäßen faseroptischen Erfassungseinrichtung. Die faseroptische Erfassungseinrichtung umfasst wenigstens eine als Lichtleiter ausgebildete Faser, welche we¬ nigstens einen ersten Längenbereich mit einem ersten Außenum- fang und wenigstens einen sich in Längserstreckungsrichtung der Faser an den ersten Längenbereich, insbesondere direkt, anschließenden zweiten Längenbereich mit einem gegenüber dem ersten Außenumfang geringeren zweiten Außenumfang aufweist. Außerdem umfasst die faseroptische Erfassungseinrichtung wenigstens eine Schutzhülle, in welcher zumindest die Längenbe¬ reiche aufgenommen sind. Außerdem ist wenigstens ein Sensortandem vorgesehen, welches wenigstens ein in den ersten Län- genbereich eingeschriebenes erstes Faser-Bragg-Gitter und we¬ nigstens ein in den zweiten Längenbereich eingeschriebenes zweites Faser-Bragg-Gitter aufweist. Dabei werden mittels des Sensortandems an einer korrespondierenden Messstelle sowohl wenigstens eine an der Messstelle herrschende Temperatur als auch wenigstens eine an der Messstelle auftretende und in
Längserstreckungsrichtung der Faser wirkende Kraft erfasst. Vorteile und vorteilhafte Ausgestaltungen des ersten Aspekts der Erfindung sind als Vorteile und vorteilhafte Ausgestal¬ tungen des zweiten Aspekt der Erfindung anzusehen und umge- kehrt.
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung er¬ geben sich aus der nachfolgenden Beschreibung eines bevorzugten Ausführungsbeispiels sowie anhand der Zeichnung. Die vor- stehend in der Beschreibung genannten Merkmale und Merkmals¬ kombinationen sowie die nachfolgend in der Figurenbeschrei¬ bung genannten und/oder in den Figuren alleine gezeigten Merkmale und Merkmalskombinationen sind nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombi- nationen oder in Alleinstellung verwendbar, ohne den Rahmen der Erfindung zu verlassen.
Die Zeichnung zeigt in: Fig. 1 ausschnittsweise eine schematische und teilweise geschnittene Seitenansicht einer erfindungsgemäßen faseroptischen Erfassungseinrichtung; und
Fig. 2 ausschnittsweise eine schematische und perspektivi- sehe Seitenansicht der faseroptischen Erfassungs¬ einrichtung . In den Fig. sind gleiche oder funktionsgleiche Elemente mit gleichen Bezugszeichen versehen.
Fig. 1 zeigt ausschnittsweise in einer schematischen und teilweise geschnittenen Seitenansicht eine faseroptische Er¬ fassungseinrichtung 10, welche - wie im Folgenden noch erläutert wird - als faseroptische Temperaturmesskette auf Basis von Faser-Bragg-Gittern (FBG) ausgebildet ist. Dabei weist die faseroptische Erfassungseinrichtung 10 eine als Lichtlei- ter ausgebildete Faser 12 auf, welche zum Leiten beziehungs¬ weise Führen von Licht ausgebildet ist. Die Faser 12 wird auch als Sensorfaser bezeichnet und weist eine Mehrzahl von in Längserstreckungsrichtung der Faser 12 voneinander
beabstandeten und aufeinanderfolgenden ersten Längenbereichen 14 mit einem jeweiligen ersten Außenumfang, insbesondere mit einem jeweiligen ersten Außendurchmesser, auf. Ferner weist die Faser 12 eine Mehrzahl von in Längserstreckungsrichtung der Faser 12 voneinander beabstandeten und dabei aufeinanderfolgenden zweiten Längenbereichen 16 mit einem jeweiligen zweiten Außenumfang, insbesondere mit einem jeweiligen zweiten Außendurchmesser, auf. Dabei ist der jeweilige zweite Au¬ ßenumfang beziehungsweise der jeweilige zweite Außendurchmes¬ ser geringer als der jeweilige erste Außenumfang beziehungs¬ weise der jeweilige erste Außendurchmesser. Die Längenberei- che 14 und 16 sind dabei alternierend beziehungsweise abwech¬ selnd angeordnet, sodass paarweise zwischen den Längenberei¬ chen 14 genau ein Längenbereich 16 angeordnet ist.
Die Längenbereiche 14 sind dabei durch jeweilige erste Faser¬ stücke 18 gebildet. Ferner sind die jeweiligen Längenbereiche 16 durch jeweilige zweite Faserstücke 20 gebildet. Das jewei¬ lige Faserstück 18 beziehungsweise 20 ist selbst als Faser und dabei als Lichtleiter ausgebildet. Die jeweiligen Faserstücke 18 und 20 sind in Längserstreckungsrichtung der Faser 12 alternierend beziehungsweise abwechselnd angeordnet, wobei in Fig. 1 und 2 die Längserstreckungsrichtung der Faser 12 durch einen Doppelpfeil 22 veranschaulicht ist. Das jeweilige Faserstück 18 ist separat von dem jeweiligen Faserstück 20 ausgebildet und dabei an einer jeweiligen Verbindungsstelle V mit dem jeweiligen Faserstück 18 verbunden. Vorzugsweise ist es vorgesehen, dass das jeweilige Faserstück 18 mit dem je¬ weiligen Faserstück 20 an der Verbindungsstelle V verspleißt, das heißt durch Spleißen verbunden ist, sodass die jeweilige Verbindungsstelle V als eine Spleißstelle ausgebildet ist.
Der jeweilige erste Außendurchmesser beträgt beispielsweise 125 Mikrometer, wobei der jeweilige zweite Außendurchmesser beispielsweise 80 Mikrometer beträgt. Zum Verbinden der je- weiligen Faserstücke 18 und 20 wird beispielsweise das Faser¬ stück 18 auf das jeweilige Faserstück 20 gespleißt bezie¬ hungsweise umgekehrt. Hierfür wird beispielsweise ein jewei¬ liges Primärcoating des jeweiligen Faserstücks 18 beziehungs¬ weise 20 vollständig oder lediglich in einem Bereich von ei- nigen Zentimetern um die jeweilige Spleißstelle herum ent¬ fernt. Jeweilige Spleißparameter zum Verspleißen der jeweiligen Faserstücke 18 und 20 werden beispielsweise so gewählt, dass eine mechanische Stabilität, insbesondere der jeweiligen Verbindungsstelle V und somit der Faser 12 insgesamt, bis zu Dehnungswerten von 2000 Mikrostrain gewährleistet ist und ei¬ ne Verformung der jeweiligen Spleißstelle möglichst vermieden wird .
Außerdem umfasst die faseroptische Erfassungseinrichtung 10 wenigstens eine Schutzhülle 24, welche auch als Schutzrohr oder Kapillare bezeichnet wird. In der Schutzhülle 24, das heißt in einem geschlossenen Hohlquerschnitt 26 der Schutzhülle 24 sind zumindest die jeweiligen Längenbereiche 14 und 16 aufgenommen und somit mittels der Schutzhülle 24 ge- schützt, wobei es vorzugsweise vorgesehen ist, dass die Faser 12 zumindest überwiegend, insbesondere zumindest nahezu voll¬ ständig, in der Schutzhülle 24 aufgenommen ist.
Außerdem weist die optische Erfassungseinrichtung 10 - wie besonders gut in Zusammenschau mit Fig. 2 erkennbar ist - mehrere, in Längserstreckungsrichtung der Faser 12 hintereinander angeordnete und dabei voneinander beabstandete Sensor- tandems 28 auf, sodass die faseroptische Erfassungseinrich¬ tung als Multipunkt-Temperatursensor ausgebildet ist.
Das jeweilige Sensortandem 28 weist dabei wenigstens ein ers- tes Faser-Bragg-Gitter 30 auf, welches in den jeweiligen Längenbereich 14, insbesondere in dessen Kern 32, eingeschrieben ist. Ferner weist das jeweilige Sensortandem 28 ein zweites Faser-Bragg-Gitter 34 auf, welches beispielsweise in Längser- streckungsrichtung der Faser 12 auf das korrespondierende erste Faser-Bragg-Gitter 30 folgt und von diesem beabstandet ist und in den jeweiligen zweiten Längenbereich 16, insbesondere in dessen Kern 32, eingeschrieben ist. Dabei ist es beispielsweise vorgesehen, dass in dem jeweiligen Längenbereich 14 lediglich genau ein Faser-Bragg-Gitter 30 eingeschrieben ist, wobei alternativ oder zusätzlich vorgesehen ist, dass in dem jeweiligen Längenbereich 16 lediglich genau ein Faser- Bragg-Gitter 34 eingeschrieben ist. Die jeweiligen Faser- Bragg-Gitter 30 und 34 des jeweiligen Sensortandems 28 werden vorzugsweise möglichst nahe an der jeweiligen Verbindungs- stelle V angeordnet beziehungsweise in den jeweiligen Längen¬ bereich 14 beziehungsweise 16 eingeschrieben. Die Herstellung des jeweiligen Faser-Bragg-Gitters 30 beziehungsweise 34 er¬ folgt beispielsweise durch Belichtung des Kerns 32 in einem sinusförmigen Interferenzbild eines UV-Lasers hinter einer geeigneten Phasenmaske. Dieses Vorgehen kann für beliebige Sensortandems wiederholt werden.
Das jeweilige Sensortandem 28 ist nun dazu ausgebildet, an einer jeweiligen korrespondierenden Messstelle sowohl eine an der Messstelle herrschende Temperatur als auch wenigstens ei¬ ne an der Messstelle auftretende und in Längserstreckungs- richtung der Faser 12 wirkende Kraft, insbesondere in der Fa¬ ser 12, zu erfassen. Die jeweilige Messstelle wird auch als Messpunkt oder Messbereich bezeichnet, an beziehungsweise in dem mittels des jeweiligen Sensortandems 28 die Temperatur und die auch als Längskraft bezeichnete Kraft in der Faser 12 erfasst werden können. Um die jeweiligen Längenbereiche 14 und 16 beziehungsweise die Faserstücke 18 und 20 durch Splei- ßen zu verbinden, werden jeweilige Spleiße hergestellt. Eine jeweilige Lage beziehungsweise Positionierung oder Ausrich¬ tung der Spleiße richtet sich beispielsweise nach einem ge¬ wünschten Abstand der jeweiligen Messstellen, an denen eine Temperaturmessung mittels der Sensortandems 28 durchgeführt werden kann.
Die auch als Kapillare bezeichnete Schutzhülle 24 wird ge¬ nutzt, um die Faser 12 vor äußeren Einflüssen mechanisch und/oder chemisch zu schützen sowie auf die Sensorfaser (Faser 12) wirkende Querkräfte zu vermeiden oder zumindest ge¬ ring zu halten. Hierzu wird beispielsweise die Faser 12 ent¬ lang ihrer Längserstreckungsrichtung durch die Schutzhülle 24 gezogen, um die Faser 12 in der Schutzhülle 24 anzuordnen.
An wenigstens einem Ende der Kapillare kann eine Fixierung, insbesondere eine Punktfixierung, erfolgen, mittels welcher die Faser 12 entlang ihrer Längserstreckungsrichtung an der Schutzhülle 24 gesichert ist. Hierzu kommt beispielsweise ein Klebstoff zum Einsatz, mittels welchem die Faser 12 mit der Schutzhülle 24 verklebt wird, um dadurch die Faser 12 entlang ihrer Längserstreckungsrichtung an der Schutzhülle 24 zu sichern. Auf eine Sicherung der Faser 12 kann jedoch auch verzichtet werden, sodass es denkbar ist, dass die Faser 12 lose in der Schutzhülle 24 aufgenommen, insbesondere in die
Schutzhülle 24 eingelegt, ist.
Das Messprinzip zum Erfassen der Temperatur und der Längskraft mittels des jeweiligen Sensortandems 28 beruht auf der Annahme, dass in unmittelbarer Nähe der jeweiligen
Spleißstelle gleiche Temperatur und Längskräfte in der Faser 12 herrschen. Dabei dehnt sich beispielsweise das jeweilige Faserstück 20 gemäß dem Verhältnis ihrer Querschnittsflächen etwa um den Faktor 2,3 stärker als das zugehörige, jeweilige Faserstück 18 im Bereich der jeweiligen Spleißstelle. Dabei erfolgt die gleichzeitige Messung der Bragg-Wellenlängen der beiden Faser-Bragg-Gitter 30 und 34 des jeweiligen Sensortandems 28. Zwar hängen die Bragg-Wellenlängen beider Faser- Bragg-Gitter 30 und 34 von Temperatur und Spannung in der Faser 12 ab, eine Zugkraft auf der Faser 12 führt jedoch zu ei¬ ner dementsprechend höheren Bragg-Wellenlängenverschiebung in dem jeweiligen Faserstück 20 im Vergleich zu dem jeweiligen Faserstück 18. Temperaturänderungen verhalten sich dabei ähnlich. Es können sowohl Temperatur als auch axiale Kraft an jeder Messstelle des jeweiligen Sensortandems 28 bestimmt werden . Da die Faser 12 entlang ihrer Längserstreckungsrichtung die mehreren Sensortandems 28 aufweist, ist die Faser 12 bezie¬ hungsweise die faseroptische Erfassungseinrichtung 10 insge¬ samt als Sensorkette, insbesondere als Temperatursensorkette, ausgebildet. Eine solche Sensorkette kann nach ihrer Herstel- lung zumindest nahezu nach Belieben an gewünschten beziehungsweise interessanten Stellen angeordnet beziehungsweise angebracht werden. Auf eine Multiplexingfähigkeit der Sensor¬ kette muss bei der faseroptischen Erfassungseinrichtung 10 zur Temperatur-Kraft-Entkopplung nicht verzichtet werden bei gleichzeitiger Realisierung einer hohen Genauigkeit der Temperaturmessung .
Beispielsweise werden Temperatur- und Kraftempfindlichkeiten der jeweiligen Messstelle, das heißt des jeweiligen, die je- weiligen Faser-Bragg-Gitter 30 und 34 umfassenden Sensortandems 28 vor Einbau kalibriert. Da mittels des jeweiligen Sen¬ sortandems 28 sowohl die Temperatur als auch die Längskraft in der Faser 12 erfasst werden, können beispielsweise durch eine Einbausituation bedingte Längskräfte in der Faser 12 per Rechnung eliminiert werden, wodurch eine sichere und präzise Temperaturmessung realisiert werden kann.
Die jeweiligen Faser-Bragg-Gitter 30 und 34 des jeweiligen Sensortandems 28 bilden ein Gitter-Tandem, welches auch als FBG-Gitter-Tandem bezeichnet wird. Dabei ist es vorzugsweise vorgesehen, dass sich die Faser-Bragg-Gitter 30 und 34 des jeweiligen Sensortandems 28 in ihrer jeweiligen Bragg- Wellenlänge voneinander unterscheiden, sodass beispielsweise das Faser-Bragg-Gitter 30 eine erste Bragg-Wellenlänge und das jeweilige Faser-Bragg-Gitter 34 eine von der ersten Bragg-Wellenlänge unterschiedliche zweite Bragg-Wellenlänge aufweist. Dabei beträgt ein Unterschied zwischen der ersten Bragg-Wellenlänge und der zweiten Bragg-Wellenlänge vorzugs¬ weise mindestens fünf (5) Nanometer. Hierdurch kann eine besonders präzise Messung realisiert werden.

Claims

Patentansprüche
1. Faseroptische Erfassungseinrichtung (10), mit wenigstens einer als Lichtleiter ausgebildeten Faser (12), welche we- nigstens einen ersten Längenbereich (14) mit einem ersten Außenumfang und wenigstens einen sich in Längserstreckungsrich- tung (22) der Faser (12) an den ersten Längenbereich (14) anschließenden zweiten Längenbereich (16) mit einem gegenüber dem ersten Außenumfang geringeren zweiten Außenumfang auf- weist, mit wenigstens einer Schutzhülle (24), in welcher zu¬ mindest die Längenbereiche (14, 16) aufgenommen sind, und mit wenigstens einem Sensortandem (28), welches wenigstens ein in den ersten Längenbereich (14) eingeschriebenes erstes Faser- Bragg-Gitter (30) und wenigstens ein in den zweiten Längenbe- reich (16) eingeschriebenes zweites Faser-Bragg-Gitter (34) aufweist und dazu ausgebildet ist, an einer korrespondieren¬ den Messstelle sowohl eine an der Messstelle herrschende Tem¬ peratur als auch wenigstens eine an der Messstelle auftreten¬ de und in Längserstreckungsrichtung (22) der Faser (12) wir- kende Kraft zu erfassen.
2. Faseroptische Erfassungseinrichtung (10) nach Anspruch 1, mit einer elektronische Recheneinrichtung, welche dazu ausgebildet ist, ein mittels der Faser (12) geführtes und die erfasste Temperatur und die erfassten Kräfte charakterisie¬ rendes Signal zu empfangen und einen Rechenprozess durchzu¬ führen, bei welchem die Recheneinrichtung wenigstens einen Temperaturwert in Abhängigkeit von dem Signal berechnet.
3. Faseroptische Erfassungseinrichtung (10) nach Anspruch 1 oder 2, wobei die Schutzhülle (24) aus einem nicht¬ metallischen Werkstoff, insbesondere Quarzglas, Polyimid, PEEK oder einem faserverstärkten Kunststoff, gebildet ist.
4. Faseroptische Erfassungseinrichtung (10) nach Anspruch 1 oder 2, wobei die Schutzhülle (24) aus einem metallischen Werkstoff, insbesondere aus einem Edelstahl, gebildet ist.
5. Faseroptische Erfassungseinrichtung (10) nach Anspruch 4, wobei der metallische Werkstoff eine nickelhaltige warm¬ feste Legierung ist.
6. Faseroptische Erfassungseinrichtung (10) nach einem der vorhergehenden Ansprüche, wobei die Längenbereiche (14, 16) durch jeweilige, separat voneinander ausgebildete Faserstücke (18, 20) gebildet sind, welche miteinander verbunden sind.
7. Faseroptische Erfassungseinrichtung (10) nach Anspruch
6, wobei die Faserstücke (18, 20) miteinander verspleißt und dadurch miteinander verbunden sind.
8. Faseroptische Erfassungseinrichtung (10) nach einem der vorhergehenden Ansprüche, wobei die Faser (12) lose in der
Schutzhülle (24) angeordnet ist.
9. Faseroptische Erfassungseinrichtung (10) nach einem der Ansprüche 1 bis 7, wobei die Faser (12) zumindest entlang ih- rer Längserstreckungsrichtung (22) an der Schutzhülle (24), insbesondere Stoffschlüssig, gesichert ist.
10. Faseroptische Erfassungseinrichtung (10) nach einem der vorhergehenden Ansprüche, wobei der erste Längenbereich (14) einen Außendurchmesser von mindestens 125 Mikrometern aufweist.
11. Faseroptische Erfassungseinrichtung (10) nach einem der vorhergehenden Ansprüche, wobei der zweite Längenbereich (16) einen Außendurchmesser von mindestens 80 Mikrometern aufweist.
12. Verfahren zum Betreiben einer faseroptischen Erfassungseinrichtung (10), mit wenigstens einer als Lichtleiter ausge- bildeten Faser (12), welche wenigstens einen ersten Längenbereich (14) mit einem ersten Außenumfang und wenigstens einen sich in Längserstreckungsrichtung (22) der Faser (12) an den ersten Längenbereich (14) anschließenden zweiten Längenbe- reich (16) mit einem gegenüber dem ersten Außenumfang geringeren zweiten Außenumfang aufweist, mit wenigstens einer Schutzhülle (24), in welcher zumindest die Längenbereiche (14, 16) aufgenommen sind, und mit wenigstens einem Sensor- tandem (28), welches wenigstens ein in den ersten Längenbe¬ reich (14) eingeschriebenes erstes Faser-Bragg-Gitter (30) und wenigstens ein in den zweiten Längenbereich (16) eingeschriebenes zweites Faser-Bragg-Gitter (34) aufweist, wobei mittels des Sensortandems (28) an einer korrespondierenden Messstelle sowohl eine an der Messstelle herrschende Tempera¬ tur als auch wenigstens eine an der Messstelle auftretende und in Längserstreckungsrichtung (22) der Faser (12) wirkende Kraft erfasst werden.
PCT/EP2018/050309 2017-01-31 2018-01-08 Faseroptische erfassungseinrichtung sowie verfahren zum betreiben einer solchen faseroptischen erfassungseinrichtung WO2018141502A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017201524.1A DE102017201524A1 (de) 2017-01-31 2017-01-31 Faseroptische Erfassungseinrichtung sowie Verfahren zum Betreiben einer solchen faseroptischen Erfassungseinrichtung
DE102017201524.1 2017-01-31

Publications (1)

Publication Number Publication Date
WO2018141502A1 true WO2018141502A1 (de) 2018-08-09

Family

ID=61094393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/050309 WO2018141502A1 (de) 2017-01-31 2018-01-08 Faseroptische erfassungseinrichtung sowie verfahren zum betreiben einer solchen faseroptischen erfassungseinrichtung

Country Status (2)

Country Link
DE (1) DE102017201524A1 (de)
WO (1) WO2018141502A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110887580A (zh) * 2019-12-11 2020-03-17 湘潭大学 一种高精度fbg高温传感器及其工作和制作方法
CN112763124A (zh) * 2020-12-29 2021-05-07 广东精铟海洋工程股份有限公司 一种升降系统齿轮轴扭矩监测装置及齿轮轴

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7336862B1 (en) * 2007-03-22 2008-02-26 General Electric Company Fiber optic sensor for detecting multiple parameters in a harsh environment
US20100329602A1 (en) * 2009-01-30 2010-12-30 Nadir Shah Smart fastener and smart insert for a fastener using fiber bragg gratings to measure strain and temperature
US20110170823A1 (en) * 2007-03-22 2011-07-14 General Electric Company Fiber optic sensor for detecting multiple parameters in a harsh environment
US20140047926A1 (en) * 2012-08-15 2014-02-20 Evangelos V. Diatzikis Frame foot loading measurement system using fiber optic sensing technique
US20150247744A1 (en) * 2012-07-27 2015-09-03 East China University Of Science And Technology High-temperature-resistant metal-packaged fiber bragg grating sensor and manufacturing method therefor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10017946A1 (de) 2000-04-11 2002-01-17 Abb Research Ltd Faserlaser-Sensor
US6337737B1 (en) 2001-03-09 2002-01-08 Ciena Corporation Fiber-Bragg-grating-based strain measuring apparatus, system and method
US6795599B2 (en) 2001-05-11 2004-09-21 Vasilii V. Spirin Differential fiber optical sensor with interference energy analyzer
DE60119353D1 (de) 2001-11-02 2006-06-08 Aston Photonic Tech Ltd Optischer Sensor mit Fasergittern für zwei Messgrössen
CN102483337B (zh) 2009-07-16 2015-11-25 哈米德瑞萨·埃洛莫哈迈德 一种光纤传感器及制造方法
WO2015181155A1 (en) 2014-05-26 2015-12-03 Danmarks Tekniske Universitet Optical sensor for measuring humidity, strain and temperature

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7336862B1 (en) * 2007-03-22 2008-02-26 General Electric Company Fiber optic sensor for detecting multiple parameters in a harsh environment
US20110170823A1 (en) * 2007-03-22 2011-07-14 General Electric Company Fiber optic sensor for detecting multiple parameters in a harsh environment
US20100329602A1 (en) * 2009-01-30 2010-12-30 Nadir Shah Smart fastener and smart insert for a fastener using fiber bragg gratings to measure strain and temperature
US20150247744A1 (en) * 2012-07-27 2015-09-03 East China University Of Science And Technology High-temperature-resistant metal-packaged fiber bragg grating sensor and manufacturing method therefor
US20140047926A1 (en) * 2012-08-15 2014-02-20 Evangelos V. Diatzikis Frame foot loading measurement system using fiber optic sensing technique

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110887580A (zh) * 2019-12-11 2020-03-17 湘潭大学 一种高精度fbg高温传感器及其工作和制作方法
CN112763124A (zh) * 2020-12-29 2021-05-07 广东精铟海洋工程股份有限公司 一种升降系统齿轮轴扭矩监测装置及齿轮轴

Also Published As

Publication number Publication date
DE102017201524A1 (de) 2018-08-02

Similar Documents

Publication Publication Date Title
EP2059765B1 (de) Optische einrichtung zur überwachung einer drehbaren welle mit gerichteter achse
DE69912301T2 (de) Sensor zur messung mechanischer spannungen mit fiber-optischen bragg gittern
EP1899700B1 (de) Optischer dehnungsmesstreifen
EP1134566A1 (de) Verfahren zur faseroptischen Temperaturmessung und faseroptischer Temperatursensor
DE102015115925B3 (de) Lichtleiter-Einspannvorrichtung, faseroptischer Sensor und Herstellungsverfahren
DE102010044583B4 (de) Auslenkungsmessgerät nach dem Interferometrieprinzip
DE102016100432A1 (de) Automatisch vorgespannte und vollständig von einer Feder ummantelte Lichtleiter-Sensorstruktur
DE102009025989A1 (de) Faseroptisches Mehrfachparametermesssystem und- Verfahren für ein Turbomaschinensystem
DE102011050717B4 (de) Messsystem und Verfahren zum Validieren eines faseroptischen Sensor
DE69931270T2 (de) Optische fiberkopplungssensor und messverfahren
WO2019012083A1 (de) Dehnungs- und vibrations-messsystem zur überwachung von rotorblättern
WO2018141502A1 (de) Faseroptische erfassungseinrichtung sowie verfahren zum betreiben einer solchen faseroptischen erfassungseinrichtung
DE3418247A1 (de) Durchbiegungsmesser
EP2733474B1 (de) Dehnungsmessstreifen und mechanische Komponente
DE102008044810B4 (de) Faseroptisches Interferometer und Verfahren zur Bestimmung physikalischer Zustandsgrößen im Innern einer Faserspule eines faseroptischen Interferometers
DE102009039259B4 (de) Überwachung von Walzenlagern
DE102017115926A1 (de) Blattbiegemomentbestimmung mit zwei Lastsensoren pro Rotorblatt und unter Einbezug von Rotordaten
DE102016125730A1 (de) Vorrichtung und Verfahren zum Messen der Torsion eines Messobjekts
EP3353500B1 (de) Sensorpatch und verfahren zum herstellen eines sensorpatches
DE102017131388B4 (de) Faseroptischer Torsionswinkelsensor und Verfahren zum Erfassen eines Torsionswinkels
WO2018141501A1 (de) Faseroptische erfassungseinrichtung sowie verfahren zum betreiben einer solchen faseroptischen erfassungseinrichtung
WO2011072927A1 (de) Vorrichtung und verfahren zur schnellen dehnungsmessung
WO2014082965A2 (de) Verfahren zur ortsaufgelösten druckmessung
DE102015214749B4 (de) Vorrichtung und Verfahren zur Erfassung einer Last sowie mechanische Komponente
EP2564175B1 (de) VORRICHTUNG UND VERFAHREN ZUR QUASI-VERTEILTEN MESSUNG EINER MEßGRÖßE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18702060

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18702060

Country of ref document: EP

Kind code of ref document: A1