WO2018138824A1 - 蒸着用マスク、蒸着用マスクの製造方法及び有機el表示装置の製造方法 - Google Patents

蒸着用マスク、蒸着用マスクの製造方法及び有機el表示装置の製造方法 Download PDF

Info

Publication number
WO2018138824A1
WO2018138824A1 PCT/JP2017/002693 JP2017002693W WO2018138824A1 WO 2018138824 A1 WO2018138824 A1 WO 2018138824A1 JP 2017002693 W JP2017002693 W JP 2017002693W WO 2018138824 A1 WO2018138824 A1 WO 2018138824A1
Authority
WO
WIPO (PCT)
Prior art keywords
vapor deposition
deposition mask
substrate
convex portion
active matrix
Prior art date
Application number
PCT/JP2017/002693
Other languages
English (en)
French (fr)
Inventor
伸一 川戸
学 二星
英士 小池
井上 智
井上 毅
勇毅 小林
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US15/779,102 priority Critical patent/US10711338B2/en
Priority to PCT/JP2017/002693 priority patent/WO2018138824A1/ja
Priority to CN201780084480.6A priority patent/CN110214198A/zh
Publication of WO2018138824A1 publication Critical patent/WO2018138824A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask

Definitions

  • the present invention relates to a vapor deposition mask, a method for producing the vapor deposition mask, and a method for producing an organic EL display device.
  • an organic EL (Electro luminescence) display device is excellent as an excellent flat panel display because it can realize low power consumption, thinning, and high image quality. Has attracted attention.
  • a coating vapor deposition method is often used in order to form a vapor deposition film including a high-definition light emitting layer on a substrate.
  • a red light emitting layer is formed on a substrate using a red light emitting layer forming separate deposition mask, and then the red light emitting layer forming separate vapor deposition mask.
  • the green light emitting layer In the case of forming a green light emitting layer on a substrate using a green light emitting layer forming coating evaporation mask having openings formed at positions different from the above, the green light emitting layer forming separate evaporation mask and When vapor deposition is performed with the substrate on which the red light emitting layer is formed being completely adhered, the non-opening portion of the coating mask for forming the green light emitting layer is in direct contact with the red light emitting layer on the substrate. When the coating vapor deposition mask for forming the green light emitting layer is separated from the substrate, a defect occurs in the red light emitting layer.
  • edge covers 108a and 108b having different heights are formed in the same active matrix substrate 100, and the active matrix substrate 100 and the separate deposition mask 101 are completely separated by the edge cover 108b having a high height. It is a figure for demonstrating the case where it does not contact
  • a high edge cover 108b is provided on the surface of the active matrix substrate 100 facing the separate deposition mask 101, and this edge cover 108b The constant distance can be maintained so that the active matrix substrate 100 and the coating vapor deposition mask 101 do not completely adhere to each other.
  • vapor deposition particles emitted from a vapor deposition source pass through the openings 103 of the separate vapor deposition mask 101. Thus, it is formed in a predetermined shape on the active matrix substrate 100.
  • FIG. 18B is a diagram showing a schematic configuration of the active matrix substrate 100.
  • the active matrix substrate 100 has a structure in which a TFT element 105, an interlayer insulating film 106 as a planarizing film, an electrode 107, and edge covers 108a and 108b are provided on a substrate 104. It has become.
  • the original role of the edge cover (also referred to as a bank) is to prevent a short circuit between the electrode 107 and an electrode (not shown) opposite to the electrode 107 by forming a thin deposited film such as a light emitting layer at the end of the electrode 107. Therefore, it is formed so as to cover the end portion of the electrode 107. Further, the height of the edge cover is difficult to form at a predetermined height or more in consideration of forming a common layer (for example, an electrode layer facing the electrode 107) flush in a later step. is there.
  • the edge cover formed at the boundary of the active area where the plurality of electrodes 107 are regularly formed is the edge cover 108b (height 2 ⁇ m) having a high height,
  • the edge cover to be formed was a low edge cover 108a (height 1 ⁇ m).
  • the edge cover 108b allows a certain distance so that the active matrix substrate 100 and the separate vapor deposition mask 101 do not completely adhere to each other. Therefore, when the coating vapor deposition mask 101 is separated from the active matrix substrate 100, it is possible to suppress the occurrence of defects in the light emitting layer that is a vapor deposition film.
  • Patent Document 1 describes a configuration in which a convex portion is provided on the coating vapor deposition mask side.
  • FIG. 19 is a diagram showing a schematic configuration of a coating vapor deposition mask 201 disclosed in Patent Document 1. As shown in FIG. 19
  • the coating vapor deposition mask 201 is composed of a mask body 202 and a frame body 203.
  • the mask body 202 on the surface facing the substrate on which the vapor deposition film is to be formed, Protrusions 205 are formed between openings 204 adjacent in the vertical direction in the figure.
  • the separate vapor deposition mask 201 When performing vapor deposition using the separate vapor deposition method, by using the separate vapor deposition mask 201, the separate vapor deposition mask 201 and the substrate on which the vapor deposition film is to be formed can be prevented from being completely adhered. Therefore, it is described that it is possible to suppress the occurrence of defects in the light-emitting layer or the like that is the vapor deposition film when separating the coating vapor deposition mask 201 from the substrate that is the target for forming the vapor deposition film.
  • the height of the edge cover 108b having a high height is different for each position in the same active matrix substrate 100 or active. Since an error may occur for each matrix substrate 100, it is difficult to maintain the active matrix substrate 100 and the coating vapor deposition mask 101 at a certain distance by using the edge cover 108b provided on the active matrix substrate 100 side. is there.
  • the edge cover is formed.
  • the material is different from the material for forming the interlayer insulating film 106 shown in FIG. 18B, which is a planarizing film, and is relatively thin as described above.
  • the flatness of the surface is not high.
  • the height of the edge cover is not uniform because there is an error for each position in the same active matrix substrate or for each active matrix substrate.
  • the rigidity of the separate evaporation mask 201 is determined by the separate evaporation mask. It becomes non-uniform in the surface 201 and it becomes difficult to attach the mask body 202 to the frame body 203 while finely adjusting the opening 204. Therefore, it is difficult to form a uniform vapor deposition film on the active matrix substrate through the openings 204 of the separate vapor deposition mask 201.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a vapor deposition mask capable of forming a uniform vapor deposition film on an active matrix substrate and a method for manufacturing the vapor deposition mask. .
  • the vapor deposition mask of the present invention is a vapor deposition mask including a substrate provided with a plurality of openings through which vapor deposition particles pass. At least a part of the plurality of openings includes The opening is composed of one or more opening groups that are repeatedly arranged according to a certain rule, and the opening group forming region includes at least a plurality of openings belonging to each of the opening groups and a plurality of openings belonging to the opening groups.
  • a plurality of protrusions having the same height are arranged so as to support the entire substrate from one side, and are located outside the opening group formation region. It is characterized by being provided only in.
  • the plurality of convex portions having the same height are disposed only on the outside of the opening group forming region of the substrate in an arrangement that can support the entire substrate from one side, and thus are provided on the active matrix substrate.
  • a vapor deposition mask capable of forming a uniform vapor deposition film can be realized.
  • a method for manufacturing a vapor deposition mask according to the present invention is a method for manufacturing a vapor deposition mask including a substrate provided with a plurality of openings through which vapor deposition particles pass. At least a part of the aperture group is composed of one or more aperture groups in which the apertures are repeatedly arranged according to a certain rule, and the aperture group formation region includes at least a plurality of apertures belonging to the aperture groups, and And an area between adjacent openings in a plurality of openings belonging to each opening group, and is an area that can support the entire substrate from one side, and is the same only on the outside of the opening group forming area It is characterized by including the convex part formation process which forms the several convex part of height.
  • the whole substrate can be supported from one side, and includes a convex portion forming step of forming a plurality of convex portions having the same height only on the outside of the opening group forming region of the substrate, It is possible to realize a method for manufacturing a vapor deposition mask capable of forming a uniform vapor deposition film on an active matrix substrate.
  • a vapor deposition mask capable of forming a uniform vapor deposition film on an active matrix substrate and a method for manufacturing the vapor deposition mask can be provided.
  • FIG. 1 shows another example of the manufacturing method of the mask for vapor deposition which formed the layer which covers a convex part, after forming the convex part which consists of material containing a bead in a recessed part. It is a figure for demonstrating each process of the manufacturing method of the organic electroluminescent display apparatus using the mask for vapor deposition. It is a figure corresponding to each process of the manufacturing method of the organic electroluminescence display using the mask for vapor deposition shown in FIG. It is a figure for demonstrating the case where the conventional active matrix substrate provided with the edge cover from which height differs, and the conventional coating vapor deposition mask do not adhere
  • FIGS. 1 to 17 Embodiments of the present invention will be described with reference to FIGS. 1 to 17 as follows.
  • components having the same functions as those described in the specific embodiment may be denoted by the same reference numerals and description thereof may be omitted.
  • Embodiment 1 A first embodiment of the present invention will be described with reference to FIGS.
  • FIG. 1 is a view showing a vapor deposition mask 1 provided with a plurality of convex portions 5 outside the opening group forming region 3.
  • the deposition mask 1 is a metal mask that does not deform at the temperature of the deposited film forming process
  • the deformation occurs at the temperature of the deposited film forming process.
  • the material of the mask is not particularly limited.
  • the vapor deposition mask 1 includes a metal substrate 2 provided with a plurality of openings 4 (also referred to as through holes) through which vapor deposition particles pass.
  • the plurality of openings 4 in the opening group forming region 3 are arranged along a certain rule, and a plurality of opening group forming regions 3 are formed in the metal substrate 2.
  • the opening group formation region 3 is a mask region corresponding to the sub-substrate.
  • the case where 30 opening group formation regions 3 are formed in the vapor deposition mask 1 is taken as an example, but the number of the opening group formation regions 3 is the size of one opening group formation region 3 or It can be set as appropriate according to the size of the evaporation mask 1 and may be one.
  • the size of one opening group formation region 3 is one of the 30 organic EL display devices obtained by dividing the active matrix substrate including the deposited film deposited using the deposition mask 1. This corresponds to the size of the display area of the display device.
  • the vapor deposition mask 1 is a red light emitting layer vapor deposition mask
  • the plurality of openings 4 in each aperture group forming region 3 of the vapor deposition mask 1 are described.
  • the arrangement is according to the shape of the red light emitting layer of 30 organic EL display devices obtained by dividing the active matrix substrate including the deposited film deposited using the deposition mask 1.
  • a red picture element made of a red light emitting layer, a green picture element made of a green light emitting layer, and a blue picture element made of a blue light emitting layer form an organic EL display device.
  • a case where the arrangement of the plurality of openings 4 in the opening group forming region 3 is arranged according to a certain rule according to the arrangement of the picture elements will be described.
  • the arrangement of the plurality of openings 4 in the opening group formation region 3 is also in accordance with this. Needless to say, the arrangement is different.
  • the deposition mask 1 As shown in FIG. 1, in the deposition mask 1, a plurality of convex portions 5 are formed on the surface 2 a facing the active matrix substrate (not shown) and outside the opening group formation region 3. Has been. In the case of the vapor deposition mask 1, the convex portions 5 are provided at the four corners of the opening group forming region 3. However, as will be described later, the vapor deposition mask 1 may be arranged so as to support the entire vapor deposition mask from one side. There is no limit.
  • FIG. 2 is a view for explaining a case where a vapor deposition film is formed on the active matrix substrate 100a using the vapor deposition mask 1 shown in FIG.
  • a plurality of convex portions 5 are formed on the surface 2 a facing the active matrix substrate 100 a and outside the opening group formation region 3. Each is arranged at a height of 4 ⁇ m so that the entire deposition mask 1 can be supported from one side (active matrix substrate 100a side).
  • an interval of 4 ⁇ m can be secured between the surface 2a of the deposition mask 1 facing the active matrix substrate 100a and the surface of the active matrix substrate 100a facing the deposition mask 1.
  • 2A does not illustrate the entire deposition mask 1 and the active matrix substrate 100a, but illustrates only a portion corresponding to one opening group forming region 3.
  • the convex portion 5 is formed with a height of 4 ⁇ m has been described as an example.
  • the height of the convex portion 5 is higher than 2 ⁇ m and lower than 5 ⁇ m for the following reason. It is preferable to do.
  • the height of the convex portion 5 is 2 ⁇ m or less, there is an increased risk of contact between the vapor deposition mask 1 and the active matrix substrate 100a, and when the height of the convex portion 5 is 5 ⁇ m or more, This is because the actual deposition pattern is blurred and the deposition accuracy is lowered.
  • the convex portion 5 can maintain a constant distance so that the active matrix substrate 100a and the vapor deposition mask 1 do not completely adhere to each other.
  • vapor deposition particles emitted from a vapor deposition source are passed through the openings 4 of the vapor deposition mask 1 through Since a predetermined shape is formed on the active matrix substrate 100a, a uniform vapor deposition film can be formed on the active matrix substrate 100a.
  • the convex portion 5 of the vapor deposition mask 1 allows the active matrix substrate 100a and the vapor deposition mask 1 to be maintained at a constant distance.
  • the edge cover 108a having a height of 1 ⁇ m may be provided in the active matrix substrate 100a.
  • the active region of the active matrix substrate 100a that overlaps the opening group forming region 3 of the evaporation mask 1 in plan view is a region including the electrode 107 and the edge cover 108a. It is.
  • the convex portion 5 of the vapor deposition mask 1 does not contact the active region of the active matrix substrate 100a. It is in contact with the upper surface of the interlayer insulating film 106 which is a planarizing film in the active matrix substrate 100a.
  • the active matrix substrate 100a and the vapor deposition mask 1 can be accurately maintained at a certain distance.
  • FIG. 3 is a partially enlarged view of the opening group formation region 3 of the evaporation mask 1.
  • the vapor deposition mask 1 is an organic material in which a red picture element made of a red light emitting layer, a green picture element made of a green light emitting layer, and a blue picture element made of a blue light emitting layer form one pixel. Since it is a mask for vapor deposition of a red light emitting layer used for manufacturing an EL display device, the plurality of openings 4 in the opening group formation region 3 are formed at a first opening pitch in the left-right direction in the figure, and in the up-down direction in the figure. Are formed at a second opening pitch.
  • the opening 4 ′ indicated by a dotted line in the drawing is an organic EL display device in which a red picture element made of a red light emitting layer, a green picture element made of a green light emitting layer, and a blue picture element made of a blue light emitting layer form one pixel. It is an opening that exists in the vapor deposition mask of the green light emitting layer used for manufacturing, and is a virtual opening that does not exist in the vapor deposition mask 1.
  • an opening 4 ′′ indicated by a dotted line in the drawing also represents an organic EL display device in which a red picture element made of a red light emitting layer, a green picture element made of a green light emitting layer, and a blue picture element made of a blue light emitting layer form one pixel.
  • This is an opening that exists in the vapor deposition mask of the blue light emitting layer used in the manufacture of the above, and is a virtual opening that does not exist in the vapor deposition mask 1.
  • the opening group formation region 3 includes at least a plurality of openings 4, a region between the openings 4 in the left-right direction in the drawing, and a region between the openings 4 in the vertical direction in the drawing.
  • the right end of the opening group forming area 3 is formed at the right end of the opening group forming area 3 in order to avoid the convex portion 5 from coming into contact with the edge cover of the active matrix substrate having various shapes.
  • a width A is expanded from the right end of the opening 4 located at the right end in the region 3, and the upper end of the opening group forming region 3 is expanded by a width B from the upper end of the opening 4 positioned at the upper end in the opening group forming region 3.
  • the left end of the opening group forming region 3 is widened by a width C from the left end of the opening 4 positioned at the left end in the opening group forming region 3, and the lower end of the opening group forming region 3 is positioned at the lower end in the opening group forming region 3.
  • a width D is expanded from the lower end of the opening 4 to be opened.
  • the convex part 5 is not provided in the expanded opening group formation area 3.
  • the edge cover 108a disposed at the top, bottom, left, and right end portions is taken into consideration, and the opening group formation region 3 is set so that the edge cover 108a disposed at the top, bottom, left and right end portions and the opening group formation Avoiding contact with the plurality of protrusions 5 arranged outside the region 3, the protrusions 5 can be brought into contact with the upper surface of the interlayer insulating film 106 which is a planarizing film in the active matrix substrate 100a.
  • FIG. 4 is a diagram for explaining a contact area of the convex portion 5 of the vapor deposition mask 1 illustrated in FIG. 3 in the active matrix substrate 100b.
  • the active matrix substrate 100b includes a planarization film included in a formation layer of an inorganic film 109 and a TFT element (not shown) as an active element on the substrate 104.
  • the interlayer insulating film 106, the edge cover 108a, and the protrusions 108a ′, 108a ′′, 108c, and 108d are provided.
  • the edge cover 108a is provided on the interlayer insulating film 106, which is a planarizing film, in the active area (display region), and the protrusion 108a ′ is outside the active area adjacent to the edge cover 108a.
  • the protrusion 108a '' is provided on the interlayer insulating film 106, which is a flattening film, adjacent to the protrusion 108a ', and the protrusion 108c is provided on the interlayer insulating film 106, which is a flattening film.
  • the interlayer insulating film 106 which is a flattening film, it is provided on the inorganic film 109, and the protrusion 108d is provided on the interlayer insulating film 106 which is a flattening film.
  • the projection 5 of the vapor deposition mask 1 may be brought into contact with the interlayer insulating film 106 in the contact area of the projection in the drawing of the active matrix substrate 100b.
  • the convex portion 5 of the vapor deposition mask 1 may be brought into contact with the active matrix substrate 100b in the contact region of the convex portion shown in FIG. 4A, but is not limited thereto.
  • the active matrix substrate 100b may be brought into contact with the convex contact region shown in FIG.
  • the contact area of the convex portion shown in FIG. 4B is regulated by the protrusion 108c and the interlayer insulating film 106 which is a planarizing film within the opening formed by the interlayer insulating film 106 which is a planarizing film.
  • the protrusions 5 of the vapor deposition mask 1 are interlayer insulating layers that are planarization films included in the TFT element (not shown) formation layer in the active matrix substrate 100b. It is in contact with an inorganic film 109 as an insulating film formed below the film 106.
  • the gap (GAP) between the vapor deposition mask 1 and the active matrix substrate 100b is made smaller. it can.
  • the size of the vapor deposition film formed on the active matrix substrate 100a side becomes larger than the size of the opening 4, and therefore the aperture group when the height of the convex portion 5 is high.
  • the formation region 3 is preferably set wider than the opening group formation region 3 when the height of the convex portion 5 is low.
  • the plurality of openings 4 in the vapor deposition mask 1 includes 30 opening groups in which the openings 4 are repeatedly arranged according to a certain rule. Since the region including each of the aperture groups is the aperture group forming region 3, there are 30 aperture group forming regions 3 in the vapor deposition mask 1.
  • Each opening group forming region 3 is an active region that is a display region of each of 30 organic EL display devices obtained by dividing an active matrix substrate including a deposited film deposited using the deposition mask 1. Specifically, as shown in FIG. 2C, the region includes the region where the electrode 107 and the edge cover 108a are formed in the active matrix substrate 100a.
  • a plurality of protrusions 5 are formed on the surface 2 a of the metal substrate 2 facing the active matrix substrate 100 a and outside the opening group formation region 3 as described below.
  • the present invention is not limited to this.
  • the convex portion 5 is formed with the metal substrate 2. It may be formed of the same material or a metal material different from the metal substrate 2.
  • FIG. 5 is a diagram showing a method of manufacturing the vapor deposition mask 1 provided with the convex portions 5 formed through the exposure process after dropping the photocurable resin material 6 using the ink jet dropping device 7.
  • the metallic substrate 2 provided with a plurality of openings 4 through which the vapor deposition particles pass is opposed to the active matrix substrate by using an ink-jet dropping device 7.
  • the photocurable resin material 6 is dropped onto a predetermined position on the surface 2 a and outside the opening group forming region 3.
  • the photocurable resin material 6 for example, an acrylic resin (acrylic polymer) containing polymethyl methacrylate and the like and a photoinitiator are dissolved in a predetermined solvent, and ink-jet dropping is performed.
  • a photo-curable resin material that is adjusted to a viscosity that allows film thickness adjustment on the metal substrate 2 according to the amount of dripping was used.
  • the photo-curable resin material 6 is adjusted to a viscosity that allows the film thickness to be adjusted. According to the dripping amount, it can be formed in a certain film thickness.
  • pre-baking heat treatment
  • this pre-baking may not be performed. .
  • FIG. 5 (c) exposure is performed using light in a wavelength region where the photoinitiator starts to react, and the photocurable resin material 6 is photocured, so that FIG.
  • (d) of FIG. 4 a convex portion 5 having a height of 4 ⁇ m was formed outside the opening group forming region 3 on the surface 2a of the metal substrate 2 facing the active matrix substrate.
  • the photocurable resin material 6 includes, for example, an epoxy resin (epoxy polymer) that is a thermosetting resin in order to increase the strength of the convex portion 5 and the like. It is preferable that at least one of the siloxane polymer and a thermal acid generator as a polymerization initiator are further contained. In such a case, the thermosetting resin is cured at a relatively high temperature. Post bake (heat treatment) may be performed.
  • an epoxy resin epoxy polymer
  • thermosetting resin is cured at a relatively high temperature. Post bake (heat treatment) may be performed.
  • the vapor deposition mask 1 is a mask used in the vapor deposition process
  • post-baking performed at a relatively high temperature
  • the heat treatment is preferably performed, and the post-baking (heat treatment) temperature is preferably set higher than the temperature at which the vapor deposition mask 1 is used in the vapor deposition step. This is because in the case of an organic film that has not been post-baked (heat treatment) performed at a relatively high temperature, the film thickness may change during the vapor deposition process.
  • the post-baking (heat treatment) temperature may be set so as to change stepwise.
  • the deposition mask 1 in the deposition step is at least one or more of a plurality of steps. It is preferable to set higher than the temperature used.
  • the surface 2a of the metal substrate 2 facing the active matrix substrate is treated with, for example, a silane coupling agent.
  • a silane coupling agent for example, the adhesion between the metal and the organic film may be improved.
  • FIG. 6 is a diagram showing vapor deposition masks 1a and 1b in which convex portions 5 are arranged at different positions from the vapor deposition mask 1 shown in FIG.
  • the convex portions 5 are provided at the four corner portions of the opening group formation region 3. However, as illustrated in FIG. Further, it may be provided outside the opening group forming region 3 and in the vicinity of the middle position of the four sides of the opening group forming region 3. Further, as shown in FIG. 6B, the 15 opening group forming regions 3 on the left side in the drawing are set as the large first opening group forming regions, and the 15 opening group forming regions on the right side in the drawing are used. 3 is a large second opening group forming region, the convex portion 5 includes four corner portions of each of the first opening group forming region and the second opening group forming region, and both ends of an intermediate portion in the vertical direction. May be provided.
  • the arrangement of the protrusions 5 is not particularly limited as long as it is an arrangement outside the opening group formation region 3 and capable of supporting the entire vapor deposition masks 1, 1 a, 1 b from one side.
  • the convex portion 5 of the vapor deposition mask 1 is formed through the exposure process after dropping the photocurable resin material 6 using the ink jet dropping device 7 has been described as an example.
  • the convex part 5 of the vapor deposition mask 1 may be formed through a heat treatment step after the thermosetting resin material 8 is dropped using an ink jet type dropping device 7.
  • FIG. 7 is a diagram showing a method for manufacturing a vapor deposition mask 10 provided with convex portions 9 formed through a heat treatment step after the thermosetting resin material 8 is dropped using an ink jet dropping device 7.
  • the metallic substrate 2 provided with a plurality of openings 4 through which the vapor deposition particles pass is opposed to the active matrix substrate by using an ink jet dropping device 7.
  • the thermosetting resin material 8 is dropped on the surface 2 a at a predetermined position outside the opening group formation region 3.
  • thermosetting resin material 8 for example, at least one of an epoxy resin (epoxy polymer) and a siloxane polymer and a thermal acid generator as a polymerization initiator are dissolved in a predetermined solvent.
  • a thermosetting resin material having a viscosity that can be used in the ink jet type dropping device 7 and adjusted to a viscosity capable of adjusting the film thickness on the metal substrate 2 is used according to the dropping amount. .
  • thermosetting resin material 8 is adjusted to have a viscosity that allows the film thickness to be adjusted. According to the dripping amount, it can be formed in a certain film thickness.
  • thermosetting resin material 8 is thermally cured.
  • a 4 ⁇ m-high convex portion 9 is provided outside the opening group forming region 3 on the surface 2a of the metal substrate 2 facing the active matrix substrate. The mask 10 was completed.
  • the temperature of the heat treatment illustrated in FIG. 7C is set higher than the temperature at which the evaporation mask 10 is used in the evaporation process. It is preferable to do. This is because in the case of a film not subjected to heat treatment performed at a relatively high temperature, the film thickness may change during the vapor deposition process.
  • the temperature of the heat treatment illustrated in FIG. 7C may be set so as to change stepwise. In this case, at least one or more of the plurality of steps in the vapor deposition step. It is preferable to set the temperature higher than the temperature at which the vapor deposition mask 10 is used.
  • thermosetting resin material 8 is dropped on the surface 2a of the metal substrate 2 facing the active matrix substrate
  • the surface 2a of the metal substrate 2 facing the active matrix substrate is treated with, for example, a silane coupling agent.
  • a silane coupling agent for example, the adhesion between the metal and the organic film may be improved.
  • thermosetting resin material 8 is an organic-inorganic hybrid material, and is a film having high heat resistance after thermosetting. It is preferable to increase the content of the siloxane polymer that forms the.
  • FIG. 8 shows a vapor deposition including a convex portion 12 formed through an exposure / development process after applying a photocurable resin material 11 to the surface 2a of the metal substrate 2 facing the active matrix substrate using a slit coater. It is a figure which shows the manufacturing method of the mask 13 for water.
  • the opening 4 on the surface 2a of the metal substrate 2 facing the active matrix substrate of the metal substrate 2 using a slit coater (not shown). It apply
  • the photocurable resin material 11 for example, an acrylic resin (acrylic polymer) containing polymethyl methacrylate and a photoinitiator are dissolved in a predetermined solvent, and the exposed portion is light.
  • an acrylic resin (acrylic polymer) containing polymethyl methacrylate and a photoinitiator are dissolved in a predetermined solvent, and the exposed portion is light.
  • the negative type photocurable resin material to be cured is used, the present invention is not limited to this, and a positive type photocurable resin material may be used.
  • the present invention is not limited to this, and the photocuring property is considered in consideration of the size of the opening 4 and the arrangement of the opening 4.
  • a method capable of uniformly applying the resin material 11 to the entire surface of the metal substrate 2 excluding the opening 4 portion of the surface 2a facing the active matrix substrate can be appropriately selected. For example, a screen printing method or a spin coater is used. Also good.
  • FIG. 8B by performing exposure, development and heat treatment using a mask 32 having an opening 32a, as shown in FIG. A vapor deposition mask 13 having a convex portion 12 having a height of 4 ⁇ m outside the opening group forming region 3 on the surface 2a of the substrate 2 facing the active matrix substrate was completed.
  • the heat treatment can be omitted, but considering that the vapor deposition mask 13 is a mask used in the vapor deposition step, the heat treatment is preferably performed, and the temperature of the heat treatment is the vapor deposition mask in the vapor deposition step. It is preferable to set 13 higher than the temperature used. Further, the temperature of the heat treatment may be set so as to change stepwise. In this case, the vapor deposition mask 13 is used in the vapor deposition step in at least one of the plural steps. It is preferable to set the temperature higher than the temperature.
  • the surface 2a of the metal substrate 2 facing the active matrix substrate is treated with, for example, a silane coupling agent.
  • a silane coupling agent for example, the adhesion between the metal and the organic film may be improved.
  • FIG. 9 is a view showing a vapor deposition mask 14, 20, 20 a including a plurality of divided masks 16 and provided with a convex portion 5.
  • the vapor deposition masks 14, 20, and 20 a illustrated in FIGS. 9A, 9 B, and 9 C have a plurality of divided portions in a frame 15 having a large opening 15 a in the central portion.
  • the mask 16 is fixed (stretched) in a tensioned state, and the opening group forming region 18 in each of the plurality of divided masks 16 has a large opening 15a in the center portion of the frame 15 in plan view. They are arranged so as to overlap.
  • Each of the plurality of divided masks 16 is composed of, for example, a metal plate 17 such as an invar material, and a surface 16a on one side of the divided mask 16 is a surface facing the active matrix substrate.
  • Each of the plurality of divided masks 16 includes a plurality of opening group forming regions 18 similar to the opening group forming region 3 illustrated in FIG. 3, and a region other than the opening group forming region 18 is surrounded on the metal plate 17. Region 19.
  • the convex portions 5 having a height of 4 ⁇ m are provided at the four corner portions of the frame 15 outside the opening group forming region 18.
  • the arrangement position of the convex part 5 is not limited to this, For example, along the shape of the frame 15, the convex part 5 is arrange
  • the projections 5 are provided on the frame 15, the distance between the frame 15 and the active matrix substrate is maintained at 4 ⁇ m, but the divided mask 16 and the active matrix substrate If the distance between the two is to be maintained at 4 ⁇ m, a convex portion 5 having a height of 4 ⁇ m is provided on the divided mask 16 as shown in FIGS.
  • the raised portion 5 having a height obtained by adding the thickness of the divided mask 16 may be provided on the frame 15.
  • the convex portion 5 has a plurality of divided masks 16 fixed to the frame 15 before the plurality of divided masks 16 are fixed to the frame 15, that is, after the convex portions 5 are first provided on the frame 15 alone.
  • the convex portions 5 may be provided on the frame 15.
  • the convex portion 5 is formed using a method similar to the method illustrated in FIG. 5, but the present invention is not limited thereto.
  • the material and the material of the convex portion 5 can be taken into consideration and can be selected as appropriate.
  • the convex portions 5 are provided near both ends in the vertical direction of each of the plurality of divided masks 16. In the case of the evaporation mask 20, since the convex portion 5 is provided on the divided mask 16, the distance between the divided mask 16 and the active matrix substrate can be maintained at a predetermined distance.
  • the convex portion 5 is formed on the frame 15 before the plurality of divided masks 16 are fixed to the frame 15, that is, after the convex portions 5 are first provided on the divided mask 16 alone.
  • the plurality of divided masks 16 may be fixed to each other. After the plurality of divided masks 16 are fixed to the frame 15, the convex portions 5 may be provided on the divided mask 16.
  • the convex portion 5 is the surface 16a facing the active matrix substrate of the divided mask 16, and is a peripheral region that is a region other than the opening group forming region 18. 19 is provided.
  • the convex portion 5 is also provided in the center portion of the divided mask 16 in the vertical direction in the drawing, the distance between the divided mask 16 and the active matrix substrate is increased with higher accuracy. It can be maintained at a predetermined distance.
  • the convex portion 5 is formed on the frame before fixing the plurality of divided masks 16 to the frame 15, that is, after the convex portions 5 are first provided on the divided mask 16 alone.
  • the plurality of divided masks 16 may be fixed to 15, and the plurality of divided masks 16 may be fixed to the frame 15, and then the convex portions 5 may be provided on the divided mask 16.
  • the convex portion 5 may be provided on both the frame 15 and the divided mask 16.
  • the thickness of the divided mask 16 is taken into consideration in the frame. What is necessary is just to set the height of the convex part 5 provided in the divided mask 16 lower than the height of the convex part 5 provided in 15 by the thickness of the divided mask 16.
  • the active matrix substrate is formed on the front surface of the frame 15, that is, in the frame 15.
  • the opening group forming region 18 in each of the plurality of divided masks 16 includes: If the central portion of the frame 15 is arranged so as to overlap the large opening 15a in a plan view, the divided mask 16 has a back surface of the frame 15, that is, a surface of the frame 15 that faces the active matrix substrate. May be fixed to the opposite surface.
  • the convex portion 5 is formed using a material that does not include beads is described as an example.
  • the convex portion 5 includes beads. It may be formed of a material.
  • the case where the convex portions 5 are formed in a dot shape has been described as an example.
  • the opening group forming region 3 on the surface 2a facing the active matrix substrate of the metal substrate 2 is described.
  • the shape is not particularly limited as long as it can be provided on the outer side, and may be formed in a linear shape, for example.
  • Embodiment 2 of the present invention will be described based on FIGS.
  • the first resin layers 23 and 23a having recesses are formed on the surface 2a of the metal substrate 2 facing the active matrix substrate, and the protrusions 5 are formed in the recesses.
  • the other points are as described in the first embodiment.
  • members having the same functions as those shown in the drawings of Embodiment 1 are given the same reference numerals, and descriptions thereof are omitted.
  • FIG. 10 shows a recess (metal substrate) in which the surface 2 a facing the active matrix substrate of the metal substrate 2 is exposed on the entire outer surface of the opening group forming region 3 on the surface 2 a facing the active matrix substrate of the metal substrate 2.
  • 2 is a view showing a manufacturing method of a deposition mask 10a in which a first resin layer 23 having an opening exposing a surface 2a facing two active matrix substrates is formed and a convex portion 5 is formed in the concave portion.
  • the opening 4 on the surface 2a of the metal substrate 2 facing the active matrix substrate using a slit coater (not shown). It apply
  • the photocurable resin material 21 for example, an acrylic resin (acrylic polymer) containing polymethyl methacrylate and a photoinitiator are dissolved in a predetermined solvent, and the exposed portion is light.
  • an acrylic resin (acrylic polymer) containing polymethyl methacrylate and a photoinitiator are dissolved in a predetermined solvent, and the exposed portion is light.
  • the negative type photocurable resin material to be cured is used, the present invention is not limited to this, and a positive type photocurable resin material may be used.
  • the exposure is performed using a mask 22 having a light shielding portion 22a and an opening 22c, and then development is performed.
  • the first resin layer 23 having a recess in which the surface 2a facing the active matrix substrate of the metal substrate 2 is exposed can be formed.
  • the shape Is not particularly limited.
  • the photocurable resin material 6 is dropped into the concave portion surrounded by the first resin layer 23 using the ink jet dropping device 7.
  • the photocurable resin material 6 is adjusted to a viscosity capable of adjusting the film thickness, so that it does not spread greatly on the metal substrate 2. According to the dripping amount, it can be formed in a certain film thickness.
  • pre-baking is performed at a relatively low temperature in order to remove the solvent, and then exposure is performed, so that the photocurable resin material 6 is obtained. Photocured.
  • post-baking is performed at a relatively high temperature, and as shown in FIG. 10 (f), a vapor deposition mask provided with a convex portion 5 having a height of 4 ⁇ m in the concave portion surrounded by the first resin layer 23. 10a was completed.
  • the photocurable resin material 6 is dropped into the recess surrounded by the first resin layer 23, the spread of the photocurable resin material 6 on the metal substrate 2 is prevented. Since it is not necessary to consider greatly, the viscosity range of the photocurable resin material 6 which can be used can be expanded.
  • the thickness of the first resin layer 23 surrounding the concave portion is not particularly limited as long as the thickness is less than 4 ⁇ m.
  • the first resin The thickness of the layer 23 is preferably 50% or more and less than 100% of the height of the protrusion 5, and more preferably 80% or more and less than 100% of the height of the protrusion 5.
  • the thickness of the first resin layer 23 is 2 ⁇ m, which is 50% of the height of the convex portion 5.
  • FIG. 11 shows a first portion in which the surface 2 a facing the active matrix substrate of the metal substrate 2 is not exposed on the entire outer surface of the opening group forming region 3 on the surface 2 a facing the active matrix substrate of the metal substrate 2. It is a figure which shows the manufacturing method of the mask 10b for vapor deposition which formed the resin layer 23a and formed the convex part 5 in the said recessed part.
  • a slit coater (not shown) is used to open the photocurable resin material 21 on the surface 2a of the metal substrate 2 facing the active matrix substrate 4a. It apply
  • a mask 22 having a light shielding portion 22a, a slit opening 22b that transmits 30% of exposure light, and an opening 22c that transmits 100% of exposure light is used.
  • the first resin layer 23a having a recess in which the surface 2a facing the active matrix substrate of the metal substrate 2 is not exposed is developed by developing as shown in FIG. Can be formed. That is, the first resin layer 23a remains in the concave portion with a constant film thickness.
  • the manufacturing process of the evaporation mask 10b includes a half exposure process, and the first resin layer 23a having the recess formed by the half exposure process is the same as the active matrix substrate of the metal substrate 2. It is a film formed on the entire outer surface of the opening group forming region 3 on the facing surface 2a, and the size and shape of the recesses are also the opening group forming region 3 on the surface 2a facing the active matrix substrate of the metal substrate 2. As long as it is formed outside and surrounded by the first resin layer 23a, there is no particular limitation.
  • the photocurable resin material 6 is dropped into the concave portion surrounded by the first resin layer 23 a by using an inkjet dropping device 7.
  • the photocurable resin material 6 is adjusted to a viscosity capable of adjusting the film thickness, it does not spread widely, It can be formed in a certain film thickness.
  • pre-baking is performed at a relatively low temperature in order to remove the solvent, and then exposure is performed, so that the photocurable resin material 6 is obtained. Photocured.
  • post-baking is performed at a relatively high temperature, and as shown in FIG. 11F, a vapor deposition mask 10b having a convex portion 5 in the concave portion surrounded by the first resin layer 23a is completed. did.
  • the height of the convex part 5 was set so that the film thickness of the first resin layer 23a remaining in the concave part and the height of the convex part 5 might be 4 ⁇ m.
  • the convex portion 5 is formed on the first resin layer 23a remaining in the concave portion, it is possible to prevent the convex portion 5 from being peeled off from the vapor deposition mask 10b.
  • the thickness of the first resin layer 23a surrounding the concave portion is less than 4 ⁇ m.
  • the active resin is also suppressed by the first resin layer 23a when the spread of the photocurable resin material 6 is more effectively suppressed and when the convex portion 5 is pushed by the load of the active matrix substrate.
  • the thickness of the first resin layer 23a is 50% of the total value of the thickness of the first resin layer 23a remaining in the concave portion and the height of the convex portion 5. It is preferably less than 100%, more preferably 80% or more and less than 100% of the total value of the thickness of the first resin layer 23a remaining in the recess and the height of the protrusion 5.
  • the thickness of the first resin layer 23a is 2 ⁇ m, which is 50% of the sum of the thickness of the first resin layer 23a remaining in the concave portion and the height of the convex portion 5. did.
  • thermosetting resin material 8 may be used.
  • Embodiment 3 of the present invention will be described with reference to FIGS.
  • the first resin layers 23 and 23a having recesses are formed on the surface 2a of the metal substrate 2 facing the active matrix substrate, and the photocurable resin material 25 including the beads 24 is used in the recesses.
  • the point which forms the convex part 26 unlike Embodiment 2, others are as having demonstrated in Embodiment 2.
  • FIG. For convenience of explanation, members having the same functions as those shown in the drawings of the second embodiment are given the same reference numerals, and descriptions thereof are omitted.
  • FIG. 12 shows a recess (metal substrate) in which the surface 2a facing the active matrix substrate of the metal substrate 2 is exposed on the entire outer surface of the opening group forming region 3 on the surface 2a facing the active matrix substrate of the metal substrate 2.
  • 2 is a view showing a method of manufacturing a deposition mask 27 in which a first resin layer 23 having an opening exposing the surface 2a facing the active matrix substrate 2 is formed and a convex portion 26 including beads 24 is formed in the concave portion. is there.
  • a slit coater (not shown) is used to open the photocurable resin material 21 on the surface 2a of the metal substrate 2 facing the active matrix substrate. It apply
  • the first resin layer 23 having a recess in which the surface 2a facing the active matrix substrate of the metal substrate 2 is exposed can be formed.
  • the shape Is not particularly limited.
  • the photocurable resin material 25 including the beads 24 is dropped into the recess surrounded by the first resin layer 23 using the inkjet dropping device 7. To do.
  • the average particle size and shape of the beads 24 can be appropriately selected in consideration of the height of the convex portion 26.
  • the photocurable resin material 25 including the beads 24 is adjusted to have a viscosity that allows the film thickness to be adjusted. Without spreading, it can be formed in a certain film thickness according to the amount of dripping.
  • pre-baking is performed at a relatively low temperature in order to remove the solvent, and then exposure is performed.
  • the containing photocurable resin material 25 was photocured.
  • post-baking is performed at a relatively high temperature.
  • a convex portion 26 having a height of 4 ⁇ m including beads 24 is formed in the concave portion surrounded by the first resin layer 23.
  • the provided deposition mask 27 was completed.
  • the photocurable resin material 25 including the beads 24 is dropped into the concave portion surrounded by the first resin layer 23, so that the photocurable resin material 25 including the beads 24 is made of metal. Since it is not necessary to consider the spread on the substrate 2 greatly, the viscosity range of the photocurable resin material 25 including the beads 24 that can be used can be widened.
  • the thickness of the 1st resin layer 23 surrounding the said recessed part is less than 4 micrometers, it will not specifically limit, However, The photocurable resin material 25 containing the bead 24 is included. Considering that the spread of the substrate is more effectively suppressed and that the active matrix substrate is also supported by the first resin layer 23 when the convex portion 26 is pushed in by the load of the active matrix substrate.
  • the thickness of the first resin layer 23 is preferably 50% or more and less than 100% of the height of the convex portion 26, and more preferably 80% or more and less than 100% of the height of the convex portion 26.
  • the thickness of the first resin layer 23 is 2 ⁇ m, which is 50% of the height of the convex portion 26.
  • the convex portion 26 includes the beads 24, the height accuracy of the convex portion 26 and the strength of the convex portion 26 can be improved.
  • FIG. 13 shows a first recess having a surface 2 a facing the active matrix substrate of the metal substrate 2 that is not exposed on the entire outer surface of the opening group forming region 3 on the surface 2 a facing the active matrix substrate of the metal substrate 2. It is a figure which shows the manufacturing method of the mask 27a for vapor deposition which formed the resin layer 23a and formed the convex part 26 which contains the bead 24 in the said recessed part.
  • the opening 4 on the surface 2a of the metal substrate 2 facing the active matrix substrate using a slit coater (not shown). It apply
  • a mask 22 having a light shielding portion 22a, a slit opening 22b that transmits 30% of exposure light, and an opening 22c that transmits 100% of exposure light is used.
  • the first resin layer 23a having a recess in which the surface 2a facing the active matrix substrate of the metal substrate 2 is not exposed is developed by developing, as shown in FIG. 13C. Can be formed. That is, the first resin layer 23a remains in the concave portion with a constant film thickness.
  • the photocurable resin material 25 including the beads 24 is dropped into the concave portion surrounded by the first resin layer 23 a using the inkjet dropping device 7. To do.
  • the photocurable resin material 25 including the beads 24 is adjusted to have a viscosity capable of adjusting the film thickness. Accordingly, the film can be formed with a constant film thickness.
  • pre-baking is performed at a relatively low temperature in order to remove the solvent, and then exposure is performed.
  • the containing photocurable resin material 25 was photocured.
  • post-baking is performed at a relatively high temperature, and as shown in FIG. 13 (f), the concave portion surrounded by the first resin layer 23a is provided with a convex portion 26 including beads 24, for vapor deposition.
  • the mask 27a was completed.
  • the height of the convex part 26 including the beads 24 was set to be 4 ⁇ m by adding the film thickness of the first resin layer 23 a remaining in the concave part and the height of the convex part 26 including the beads 24.
  • the convex portion 26 including the beads 24 is formed on the first resin layer 23a remaining in the concave portion, it is possible to suppress the convex portion 26 including the beads 24 from being peeled off from the vapor deposition mask 27a. It has a configuration.
  • the thickness of the first resin layer 23a surrounding the recess is 4 ⁇ m. If it is less, there is no particular limitation, but the spread of the photocurable resin material 25 including the beads 24 is more effectively suppressed, and the convex portion 26 including the beads 24 is pushed in by the load of the active matrix substrate. In this case, considering that the active matrix substrate is also supported by the first resin layer 23a, the thickness of the first resin layer 23a is equal to the thickness of the first resin layer 23a remaining in the recess and the bead.
  • the thickness of the first resin layer 23a is 50% of the sum of the thickness of the first resin layer 23a remaining in the recess and the height of the protrusion 26 including the beads 24. It was formed with a certain 2 ⁇ m.
  • thermosetting resin material including beads may be used.
  • Embodiment 4 Next, based on FIG.14 and FIG.15, Embodiment 4 of this invention is demonstrated.
  • the first resin layers 23 and 23a having recesses are formed on the surface 2a of the metal substrate 2 facing the active matrix substrate, the photocurable resin material 25 including the beads 24 in the recesses, and the heat
  • the point which forms the convex part 29 using the curable resin material 28 is different from Embodiment 3, and others are as having demonstrated in Embodiment 2.
  • members having the same functions as those shown in the drawings of the third embodiment are given the same reference numerals, and descriptions thereof are omitted.
  • FIG. 14 shows a recess (metal substrate) in which the surface 2a facing the active matrix substrate of the metal substrate 2 is exposed on the entire outer surface of the opening group forming region 3 on the surface 2a facing the active matrix substrate of the metal substrate 2.
  • the photocurable resin material 25 including the beads 24 is dropped into the concave portion surrounded by the first resin layer 23 by using the ink jet dropping device 7.
  • the photocurable resin material 25 including the beads 24 is adjusted to have a viscosity capable of adjusting the film thickness. Without spreading, it can be formed in a certain film thickness according to the amount of dripping.
  • pre-baking is performed at a relatively low temperature in order to remove the solvent, and then exposure is performed.
  • the containing photocurable resin material 25 was photocured.
  • thermosetting resin material 28 is used by using the ink jet dropping device 7 so as to cover the photocurable resin material 25 including the cured beads 24. Is dripped. At this time, the thermosetting resin material 28 is dropped so as to cover a part of the upper surface of the first resin layer 23.
  • a vapor deposition mask 30 in which a convex portion 29 having a height of 4 ⁇ m was formed using the photocurable resin material 25 including the beads 24 and the thermosetting resin material 28 was completed. Note that the convex portion 29 is formed with a wider upper surface by the thermosetting resin material 28 and is also in contact with the upper surface of the first resin layer 23.
  • the active matrix substrate comes into contact with the convex portions 29, so that the scratches are difficult to be scratched and the convex portions 29 are difficult to peel off from the vapor deposition mask 30.
  • the thickness of the first resin layer 23 surrounding the concave portion is not particularly limited as long as the thickness is less than 4 ⁇ m, but the photocurable resin material 25 including the beads 24 is not limited. Considering that the spread of the substrate is more effectively suppressed and that the active matrix substrate is also supported by the first resin layer 23 when the convex portion 29 is pushed by the load of the active matrix substrate.
  • the thickness of the first resin layer 23 is preferably 50% or more and less than 100% of the height of the convex portion 29, and more preferably 80% or more and less than 100% of the height of the convex portion 29.
  • the thickness of the first resin layer 23 is 2 ⁇ m, which is 50% of the height of the convex portion 29.
  • the formation width of the photocurable resin material 25 including the beads 24 is narrower than the width of the concave portion surrounded by the first resin layer 23.
  • the formation width of the photocurable resin material 25 including the beads 24 may be the same as the width of the concave portion surrounded by the first resin layer 23.
  • the convex part 29 was formed using the photocurable resin material 25 containing the bead 24 and the thermosetting resin material 28 was mentioned as an example, it is limited to this.
  • the convex portion 29 is formed using only a photocurable resin material containing beads, only a thermosetting resin material containing beads, a thermosetting resin material containing beads, and a photocurable resin material. Also good.
  • FIG. 15 shows a first portion in which the surface 2 a facing the active matrix substrate of the metal substrate 2 is not exposed on the entire outer surface of the opening group forming region 3 on the surface 2 a facing the active matrix substrate of the metal substrate 2.
  • the figure which shows the manufacturing method of the mask 30a for vapor deposition which formed the resin layer 23a and formed the convex part 29a in the said recessed part using the photocurable resin material 25 containing the bead 24, and the thermosetting resin material 28. It is.
  • the photocurable resin material 25 including the beads 24 is dropped into the concave portion surrounded by the first resin layer 23 a by using the inkjet dropping device 7.
  • the photocurable resin material 25 including the beads 24 is adjusted to have a viscosity that allows the film thickness to be adjusted. Without spreading, it can be formed in a certain film thickness according to the amount of dripping.
  • pre-baking is performed at a relatively low temperature in order to remove the solvent, and then exposure is performed.
  • the containing photocurable resin material 25 was photocured.
  • thermosetting resin material 28 is used by using the ink jet dropping device 7 so as to cover the photocurable resin material 25 including the cured beads 24. Is dripped. At this time, the thermosetting resin material 28 is dropped so as to cover a part of the upper surface of the first resin layer 23a.
  • a vapor deposition mask 30a in which a convex portion 29 having a height of 4 ⁇ m was formed by using a photocurable resin material 25 including beads 24 and a thermosetting resin material 28 was completed. Note that the convex portion 29 is formed with a wider upper surface by the thermosetting resin material 28 and is also in contact with the upper surface of the first resin layer 23a.
  • the active matrix substrate comes into contact with the convex portions 29, so that it is difficult to be damaged and the convex portions 29 are difficult to peel off from the vapor deposition mask 30a.
  • the thickness of the first resin layer 23a surrounding the recess is 4 ⁇ m. If it is less, there is no particular limitation, but when the spread of the photocurable resin material 25 including the beads 24 is more effectively suppressed, and the convex portion 29 is pushed in by the load of the active matrix substrate, the first Considering that the active matrix substrate is supported also by the one resin layer 23a, the thickness of the first resin layer 23a is the convexity including the thickness of the first resin layer 23a remaining in the recess and the beads 24.
  • the thickness of the first resin layer 23a is 50% of the total height of the thickness of the first resin layer 23a remaining in the recess and the height of the protrusion 29 including the beads 24. 2 ⁇ m.
  • the formation width of the photocurable resin material 25 including the beads 24 is narrower than the width of the recess surrounded by the first resin layer 23a.
  • variety of the photocurable resin material 25 containing the bead 24 may be the same as the width
  • the convex part 29 was formed using the photocurable resin material 25 containing the bead 24 and the thermosetting resin material 28 was mentioned as an example, it is limited to this.
  • the convex portion 29 is formed using only a photocurable resin material containing beads, only a thermosetting resin material containing beads, a thermosetting resin material containing beads, and a photocurable resin material. Also good.
  • the convex part 29 including the beads 24 is formed on the first resin layer 23a remaining in the concave part, it is possible to suppress the convex part 29 including the beads 24 from being peeled off from the vapor deposition mask 30a. It has a configuration.
  • Embodiment 5 of the present invention will be described with reference to FIGS.
  • a method for manufacturing an organic EL display device using the vapor deposition mask 1 will be described.
  • members having the same functions as those shown in the drawings of Embodiments 1 to 4 are denoted by the same reference numerals and description thereof is omitted.
  • FIG. 16 is a diagram for explaining each step of the manufacturing method of the organic EL display device using the vapor deposition mask 1
  • FIG. 17 is an organic EL display device using the vapor deposition mask 1 illustrated in FIG. It is a figure corresponding to each process of this manufacturing method.
  • the convex portion 5 of the vapor deposition mask 1 and a dummy substrate (planar substrate) 110 first, the convex portion 5 of the vapor deposition mask 1 and a dummy substrate (planar substrate) 110. And a step (S1) of aligning the position of the opening 4 of the vapor deposition mask 1 with respect to the dummy substrate 110.
  • the dummy substrate 110 is a substrate on which a vapor deposition film or the like used for manufacturing the active matrix substrate 100a is not formed.
  • the position of the opening 4 of the deposition mask 1 with respect to the dummy substrate 110 is brought into contact with the convex portion 5 of the deposition mask 1 and the dummy substrate 110.
  • the evaporation mask 1 is supported by a movable mask holder, and the dummy substrate 110 is supported by a fixed substrate holder.
  • the alignment of the opening 4 of the vapor deposition mask 1 is performed in advance in a state where the convex portion 5 of the vapor deposition mask 1 and the dummy substrate 110 are in contact with each other.
  • the position of the opening 4 of the vapor deposition mask 1 is displaced. Can be suppressed.
  • a step (S3) of forming a vapor deposition film on the active matrix substrate 100a using the vapor deposition mask 1 is performed.
  • the vapor deposition particles emitted from the vapor deposition source (not shown) are activated via the vapor deposition mask 1 in a state where the active matrix substrate 100a and the vapor deposition mask 1 are in contact with each other.
  • a predetermined shape is formed on the matrix substrate 100a.
  • the active matrix is formed in a state where the convex portion 5 of the deposition mask 1 and the interlayer insulating film 106 which is a planarizing film of the active matrix substrate 100a are in contact with each other. You may align, moving one of the board
  • the vapor deposition mask according to the first aspect of the present invention is a vapor deposition mask including a substrate provided with a plurality of openings through which vapor deposition particles pass, and at least a part of the plurality of openings has a regular opening rule.
  • the opening group forming region includes at least a plurality of openings belonging to each of the opening groups and an adjacent among the plurality of openings belonging to the opening groups.
  • a plurality of protrusions having the same height are arranged only on the outer side of the opening group forming region in an arrangement capable of supporting the entire substrate from one side. It is characterized by being.
  • the plurality of convex portions having the same height are disposed only on the outside of the opening group forming region of the substrate in an arrangement that can support the entire substrate from one side, and thus are provided on the active matrix substrate.
  • a vapor deposition mask capable of forming a uniform vapor deposition film can be realized.
  • the convex portion may be formed of a resin containing a photocurable resin material.
  • the convex portion can be formed using photocuring.
  • the convex portion may be formed of a resin including a thermosetting resin material.
  • the convex portion can be formed using thermosetting.
  • the convex portion may be formed of a resin containing beads.
  • a vapor deposition mask according to Aspect 5 of the present invention is the vapor deposition mask according to any one of Aspects 1 to 4, wherein a plurality of divided substrates, which are substrates provided with a plurality of openings through which the vapor deposition particles are passed, and a central portion are open. A plurality of divided sections so that the plurality of openings through which the vapor deposition particles pass in each of the plurality of divided substrates and the opening of the frame overlap in plan view. Each of the formed substrates may be fixed to the frame.
  • the vapor deposition mask according to Aspect 6 of the present invention is the vapor deposition mask according to any one of Aspects 1 to 5, wherein the first resin layer provided with a recess exposing the substrate is formed outside the opening group formation region of the substrate. It is formed and the said convex part may be provided in the said recessed part with the height which protrudes from the said recessed part.
  • the vapor deposition mask according to Aspect 7 of the present invention is the deposition mask according to any one of Aspects 1 to 5, wherein a first resin layer having a recess having the same depth is formed outside the opening group formation region of the substrate. And the said convex part may be provided in the said recessed part on the said 1st resin layer by the height which protrudes from the said recessed part.
  • the convex portion is provided in the concave portion, it is easy to control the width of the convex portion, and the convex portion is formed on the first resin layer. Becomes difficult to peel off from the evaporation mask.
  • the height of the first resin layer surrounding the concave portion may be 50% or more and less than 100% of the height of the convex portion.
  • the active matrix substrate is also supported by the first resin layer when the convex portion is pushed in by a load of the active matrix substrate.
  • the vapor deposition mask according to aspect 9 of the present invention is the vapor deposition mask according to aspect 7, in which the height of the first resin layer surrounding the concave portion is determined by the thickness of the first resin layer in the concave portion and the height of the convex portion. It may be 50% or more and less than 100% of the combined value.
  • the active matrix substrate is also supported by the first resin layer when the convex portion is pushed in by a load of the active matrix substrate.
  • the vapor deposition mask according to aspect 10 of the present invention is the vapor deposition mask according to any one of the aspects 6 to 9, wherein the convex portion is formed on the concave portion and a part of the upper surface of the first resin layer surrounding the concave portion. Also good.
  • the active matrix substrate in contact with the convex portion is hardly damaged, and the convex portion is difficult to peel off from the evaporation mask.
  • the convex portion may be formed in a dot shape.
  • the convex portion is formed in a dot shape, the contact with the edge cover of the active matrix substrate can be suppressed compared to the case where the convex portion is formed in a linear shape. it can.
  • the method for manufacturing a vapor deposition mask according to aspect 12 of the present invention is a method for manufacturing a vapor deposition mask including a substrate provided with a plurality of openings through which vapor deposition particles are passed, wherein at least a part of the plurality of openings includes:
  • the opening is composed of one or more opening groups that are repeatedly arranged according to a certain rule, and the opening group forming region belongs to at least a plurality of openings belonging to each of the opening groups and to each of the opening groups.
  • An area between adjacent openings in the plurality of openings, and an area in the substrate that can support the entire substrate from one side, and a plurality of the same height only outside the opening group formation area It is characterized by including the convex part formation process which forms a convex part.
  • the whole substrate can be supported from one side, and includes a convex portion forming step of forming a plurality of convex portions having the same height only on the outside of the opening group forming region of the substrate, It is possible to realize a method for manufacturing a vapor deposition mask capable of forming a uniform vapor deposition film on an active matrix substrate.
  • a liquid resin material containing a photocurable resin material is dropped onto a predetermined portion and photocured.
  • the convex portion may be formed.
  • the convex portion can be formed by using a dropping method of a liquid resin material and photocuring.
  • the liquid resin material containing the thermosetting resin material is dropped onto a predetermined portion and thermoset in the convex portion forming step.
  • the convex portion may be formed.
  • the convex portion can be formed using a dropping method of a liquid resin material and thermosetting.
  • a liquid resin material containing beads may be used in the convex forming step.
  • a method for manufacturing a vapor deposition mask according to aspect 16 of the present invention is the method for producing a vapor deposition mask according to any one of the aspects 12 to 15, wherein a plurality of divided substrates, each of which is a substrate provided with a plurality of openings through which the vapor deposition particles pass, A plurality of the plurality of openings through which the vapor deposition particles in each of the plurality of divided substrates and the openings of the frame overlap in plan view.
  • the stretching step of fixing each of the divided substrates to the frame may be performed before the convex portion forming step.
  • a vapor deposition mask manufacturing method is the method according to any one of aspects 12 to 15, wherein a plurality of divided substrates, each having a plurality of openings through which the vapor deposition particles are passed, and a center A plurality of the plurality of openings through which the vapor deposition particles in each of the plurality of divided substrates and the openings of the frame overlap in plan view.
  • the stretching step of fixing each of the divided substrates to the frame may be performed after the convex portion forming step.
  • the method for manufacturing an evaporation mask according to Aspect 18 of the present invention is the first resin according to any one of Aspects 12 to 17, wherein a recess for exposing the substrate is provided outside the opening group formation region of the substrate.
  • the convex portion may be formed by dropping a liquid resin material onto a predetermined portion of the concave portion and curing the resin material.
  • the liquid resin material is dropped onto a predetermined portion of the concave portion and cured to form the convex portion, so that the width of the convex portion can be easily controlled.
  • the method for manufacturing an evaporation mask according to aspect 19 of the present invention is the first resin layer according to any one of the above aspects 12 to 17, wherein a recess having the same depth is provided outside the opening group formation region of the substrate.
  • a step of forming the convex portion in the concave portion on the first resin layer at a height protruding from the concave portion, and the convex portion on the concave portion on the first resin layer may be formed by dropping a liquid resin material onto a predetermined portion of the concave portion and curing.
  • the liquid resin material is dropped onto a predetermined portion of the concave portion on the first resin layer and cured to form the convex portion, so that the width of the convex portion can be controlled. While being easy, the said convex part is hard to peel from the said mask for vapor deposition.
  • the height of the first resin layer surrounding the recess is the height of the protrusion. It may be formed at 50% or more and less than 100% of the height.
  • the height of the first resin layer surrounding the recess is within the recess.
  • the thickness may be 50% or more and less than 100% of the total value of the thickness of the first resin layer and the height of the protrusion.
  • the vapor deposition mask manufacturing method according to Aspect 22 of the present invention is any one of Aspects 18 to 21, wherein the convex portion is formed on the concave portion and a part of the upper surface of the first resin layer surrounding the concave portion. May be.
  • the convex part in any one of Aspects 12 to 22, in the convex part forming step, the convex part may be formed in a dot shape.
  • a method for manufacturing an organic EL display device is such that the projection of the evaporation mask according to any one of the above aspects 1 to 11 is brought into contact with the flat substrate, and the vapor deposition with respect to the flat substrate is performed. A step of aligning the position of the opening of the mask for use.
  • the opening of the vapor deposition mask is aligned with the flat substrate.
  • the positional deviation of the opening of the mask for use can be suppressed.
  • the method for manufacturing an organic EL display device according to aspect 25 of the present invention is the method for manufacturing an organic EL display device according to aspect 24, wherein the step of replacing the planar substrate with an active matrix substrate, the convex portion of the evaporation mask, and the active matrix substrate are brought into contact with each other. In this state, a step of forming a vapor deposition film on the active matrix substrate using the vapor deposition mask may be included.
  • the method in the step of forming a vapor deposition film on the active matrix substrate using the vapor deposition mask in a state where the convex portion of the vapor deposition mask and the active matrix substrate are in contact with each other, It is possible to suppress the positional deviation of the opening of the evaporation mask.
  • a method for manufacturing an organic EL display device is a method including a step of bringing the convex portion of the evaporation mask according to any one of Aspects 1 to 11 and an active matrix substrate into contact with each other.
  • a method for manufacturing an organic EL display device capable of forming a uniform vapor deposition film on an active matrix substrate can be realized.
  • the convex part of the vapor deposition mask in the step of bringing the convex part of the vapor deposition mask into contact with the active matrix substrate, the convex part of the vapor deposition mask is used.
  • the insulating film may be in contact with an insulating film below the interlayer insulating film included in the active element formation layer provided on the active matrix substrate.
  • the gap (GAP) between the vapor deposition mask and the active matrix substrate can be further reduced.
  • the convex part of the vapor deposition mask in the aspect 26, in the step of bringing the convex part of the vapor deposition mask into contact with the active matrix substrate, the convex part of the vapor deposition mask is used.
  • the active element may be included in the active element formation layer provided on the active matrix substrate and may be in contact with an interlayer insulating film formed near the display region of the active matrix substrate.
  • the gap (GAP) between the vapor deposition mask and the active matrix substrate can be reliably ensured.
  • the present invention can be used for an evaporation mask, an evaporation mask manufacturing method, and an organic EL display device manufacturing method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

蒸着粒子を通す複数の開口(4)が設けられた金属製基板(2)を含む蒸着用マスク(1)であって、複数の開口(4)は、その開口(4)が一定の規則に沿って繰り返し配置された複数の開口群で構成されており、同一高さの複数の凸部(5)は、基板(2)全体を一方側から支持できる配置で、開口群形成領域(3)の外側にのみ設けられている。

Description

蒸着用マスク、蒸着用マスクの製造方法及び有機EL表示装置の製造方法
 本発明は、蒸着用マスクと、この蒸着用マスクの製造方法と、有機EL表示装置の製造方法とに関するものである。
 近年、さまざまなフラットパネルディスプレイが開発されており、特に、有機EL(Electro luminescence)表示装置は、低消費電力化、薄型化および高画質化などを実現できる点から、優れたフラットパネルディスプレイとして高い注目を浴びている。
 このような有機EL表示装置の製造工程においては、基板上に高精細な発光層を含む蒸着膜を形成するため、塗分け蒸着方法を用いる場合が多い。
 このような塗分け蒸着方法を用いて蒸着を行う際に、塗分け蒸着用マスクと、蒸着膜が形成される対象である基板とを、完全に密着させて蒸着を行うと、蒸着後に、塗分け蒸着用マスクを基板から離す際に、蒸着膜に欠損が生じてしまうという問題がある。具体的に例を挙げて説明すると、先ず、赤色発光層形成用の塗分け蒸着用マスクを用いて、基板上に赤色発光層を形成した後、上記赤色発光層形成用の塗分け蒸着用マスクとは異なる位置に開口が形成された緑色発光層形成用の塗分け蒸着用マスクを用いて、基板上に緑色発光層を形成する場合において、上記緑色発光層形成用の塗分け蒸着用マスクと、赤色発光層が形成された基板とを完全に密着させて蒸着を行うと、上記緑色発光層形成用の塗分け蒸着用マスクの非開口部分が基板上の赤色発光層と直接接触することとなり、上記緑色発光層形成用の塗分け蒸着用マスクを基板から離す際に、赤色発光層に欠損が生じてしまうのである。
 このような問題点を解消するため、従来から以下のような試みがなされている。
 図18は、同一のアクティブマトリクス基板100内において、高さの異なるエッジカバー108a・108bを形成し、高さの高いエッジカバー108bによって、アクティブマトリクス基板100と塗分け蒸着用マスク101とが、完全に密着しない場合を説明するための図である。
 図18の(a)に図示されているように、アクティブマトリクス基板100の塗分け蒸着用マスク101と対向する面には、高さの高いエッジカバー108bが設けられており、このエッジカバー108bによって、アクティブマトリクス基板100と塗分け蒸着用マスク101とが、完全に密着しないように一定の距離を維持することができる。
 アクティブマトリクス基板100と塗分け蒸着用マスク101とが、一定の距離に維持された状態で、蒸着源(図示せず)から射出された蒸着粒子が、塗分け蒸着用マスク101の開口103を介して、アクティブマトリクス基板100上に、所定形状に形成されることとなる。
 図18の(b)は、アクティブマトリクス基板100の概略構成を示す図である。
 図示されているように、アクティブマトリクス基板100は、基板104上に、TFT素子105と、平坦化膜である層間絶縁膜106と、電極107と、エッジカバー108a・108bとが設けられた構成となっている。
 エッジカバー(バンクとも称する)の本来の役割は、電極107の端部で発光層などの蒸着膜が薄く形成され、電極107と対向する電極(図示せず)との間で短絡するのを防止するために、電極107の端部を覆うように形成されるものである。そして、エッジカバーの高さは、後工程で、共通層(例えば、電極107と対向する電極層)を面一状に形成することを考慮すると、所定の高さ以上で形成するのは困難である。
 したがって、アクティブマトリクス基板100においては、複数の電極107が規則的に形成されるアクティブエリアの境界に形成されるエッジカバーは、高さが高いエッジカバー108b(高さ2μm)とし、アクティブエリア内に形成されるエッジカバーは、高さが低いエッジカバー108a(高さ1μm)とした。
 塗分け蒸着方法を用いて蒸着を行う際に、アクティブマトリクス基板100を用いることにより、エッジカバー108bによって、アクティブマトリクス基板100と塗分け蒸着用マスク101とが、完全に密着しないように一定の距離で維持できるので、塗分け蒸着用マスク101をアクティブマトリクス基板100から離す際に、蒸着膜である発光層などに欠損が生じるのを抑制できる。
 また、特許文献1においては、塗分け蒸着用マスク側に凸部を設けた構成について記載されている。
 図19は、特許文献1に開示されている塗分け蒸着用マスク201の概略構成を示す図である。
 図示されているように、塗分け蒸着用マスク201は、マスク本体202と枠体203とで構成されており、マスク本体202において、蒸着膜を形成する対象である基板と対向する面には、凸部205が図中上下方向に隣接する開口204間に形成されている。
 塗分け蒸着方法を用いて蒸着を行う際に、塗分け蒸着用マスク201を用いることにより、塗分け蒸着用マスク201と蒸着膜を形成する対象である基板とが、完全に密着しないようにできるので、塗分け蒸着用マスク201を蒸着膜を形成する対象である基板から離す際に、蒸着膜である発光層などに欠損が生じるのを抑制できると記載されている。
日本国公開特許公報「特開2003‐323980号」公報(2003年11月14日公開) 日本国公開特許公報「平10‐330910号」公報(1998年12月15日公開)
 しかしながら、図18の(a)及び図18の(b)に図示するアクティブマトリクス基板100において、高さが高いエッジカバー108bの高さは、同一アクティブマトリクス基板100内の位置毎に、または、アクティブマトリクス基板100毎に誤差が生じ得るので、アクティブマトリクス基板100側に備えられたエッジカバー108bを用いて、アクティブマトリクス基板100と塗分け蒸着用マスク101とを一定の距離で維持するのは困難である。
 また、特許文献1に開示されている塗分け蒸着用マスク201の場合は、図19に図示されているように、マスク本体202の蒸着膜を形成する対象である基板と対向する面全体において、凸部205が図中上下方向に隣接する開口204間に形成されている。
 したがって、このような塗分け蒸着用マスク201を、エッジカバーを有するアクティブマトリクス基板に適用した場合、全ての凸部205がエッジカバーと接触することとなるが、一般的に、エッジカバーを形成する材料は、平坦化膜である図18の(b)に図示する層間絶縁膜106を形成する材料とは異なるとともに、上述したように、比較的膜厚が薄く形成されるため、エッジカバーの上部面の平坦性は高くない。さらに、エッジカバーの高さは、同一アクティブマトリクス基板内の位置毎に、または、アクティブマトリクス基板毎に誤差が生じるので、均一性が落ちる。
 よって、塗分け蒸着用マスク201を、エッジカバーを有するアクティブマトリクス基板に適用した場合、塗分け蒸着用マスク201とエッジカバーを有するアクティブマトリクス基板とを一定距離で維持するのは困難であるので、エッジカバーを有するアクティブマトリクス基板に均一な蒸着膜を形成するのは困難であるという問題がある。
 さらに、特許文献1に開示されている塗分け蒸着用マスク201のように、凸部205が隣接する開口204間に形成されている場合、塗分け蒸着用マスク201の剛性が塗分け蒸着用マスク201面内で不均一となり、開口204を微調整しながら、マスク本体202を枠体203に貼り合せることが難しくなる。したがって、塗分け蒸着用マスク201の開口204を介して、アクティブマトリクス基板に均一な蒸着膜を形成するのは困難となる。
 本発明は、上記の問題点に鑑みてなされたものであり、アクティブマトリクス基板に均一な蒸着膜を形成することができる蒸着用マスク及び上記蒸着用マスクの製造方法を提供することを目的とする。
 本発明の蒸着用マスクは、上記の課題を解決するために、蒸着粒子を通す複数の開口が設けられた基板を含む蒸着用マスクであって、上記複数の開口中の少なくとも一部は、その開口が一定の規則に沿って繰り返し配置された一つ以上の開口群で構成されており、開口群形成領域は、少なくとも、上記各開口群に属する複数の開口と、上記各開口群に属する複数の開口中の隣接する開口間の領域と、を含む上記基板における領域であり、同一高さの複数の凸部は、上記基板全体を一方側から支持できる配置で、上記開口群形成領域の外側にのみ設けられていることを特徴としている。
 上記構成によれば、同一高さの複数の凸部は、上記基板全体を一方側から支持できる配置で、上記基板の上記開口群形成領域の外側にのみ設けられているので、アクティブマトリクス基板に均一な蒸着膜を形成することができる蒸着用マスクを実現できる。
 本発明の蒸着用マスクの製造方法は、上記の課題を解決するために、蒸着粒子を通す複数の開口が設けられた基板を含む蒸着用マスクの製造方法であって、上記複数の開口中の少なくとも一部は、その開口が一定の規則に沿って繰り返し配置された一つ以上の開口群で構成されており、開口群形成領域は、少なくとも、上記各開口群に属する複数の開口と、上記各開口群に属する複数の開口中の隣接する開口間の領域と、を含む上記基板における領域であり、上記基板全体を一方側から支持できる配置で、上記開口群形成領域の外側にのみ、同一高さの複数の凸部を形成する凸部形成工程を含むことを特徴としている。
 上記方法によれば、上記基板全体を一方側から支持できる配置で、上記基板の上記開口群形成領域の外側にのみ、同一高さの複数の凸部を形成する凸部形成工程を含むので、アクティブマトリクス基板に均一な蒸着膜を形成することができる蒸着用マスクの製造方法を実現できる。
 本発明の一態様によれば、アクティブマトリクス基板に均一な蒸着膜を形成することができる蒸着用マスク及び上記蒸着用マスクの製造方法を提供できる。
開口群形成領域外に複数の凸部が備えられている蒸着用マスクの一例を示す図である。 図1に図示した蒸着用マスクを用いて、蒸着を行う場合を説明するための図である。 図1に図示した蒸着用マスクの開口群形成領域の部分拡大図である。 アクティブマトリクス基板における、図3に図示した蒸着用マスクの凸部の当接領域を説明するための図である。 図1に図示した蒸着用マスクの製造方法の一例を示す図である。 図1に図示した蒸着用マスクとは、異なる位置に凸部を配置した他の蒸着用マスクの一例を示す図である。 蒸着用マスクの他の製造方法の一例を示す図である。 蒸着用マスクのさらに他の製造方法の一例を示す図である。 図1に図示した蒸着用マスクとは異なる形状の蒸着用マスクに凸部を形成した場合の一例を示す図である。 凹部内に凸部を形成した蒸着用マスクの製造方法の一例を示す図である。 凹部内に凸部を形成した蒸着用マスクの製造方法の他の一例を示す図である。 凹部内にビーズを含む材料からなる凸部を形成した蒸着用マスクの製造方法の一例を示す図である。 凹部内にビーズを含む材料からなる凸部を形成した蒸着用マスクの製造方法の他の一例を示す図である。 凹部内にビーズを含む材料からなる凸部を形成した後、凸部を覆う層をさらに形成した蒸着用マスクの製造方法の一例を示す図である。 凹部内にビーズを含む材料からなる凸部を形成した後、凸部を覆う層をさらに形成した蒸着用マスクの製造方法の他の一例を示す図である。 蒸着用マスクを用いた有機EL表示装置の製造方法の各工程を説明するための図である。 図16に図示した蒸着用マスクを用いた有機EL表示装置の製造方法の各工程に対応する図である。 高さの異なるエッジカバーが備えられた従来のアクティブマトリクス基板と、従来の塗分け蒸着用マスクとが、完全に密着しない場合を説明するための図である。 特許文献1に開示されている塗分け蒸着用マスクの概略構成を示す図である。
 本発明の実施の形態について図1から図17に基づいて説明すれば、次の通りである。以下、説明の便宜上、特定の実施形態にて説明した構成と同一の機能を有する構成については、同一の符号を付記し、その説明を省略する場合がある。
 〔実施形態1〕
 図1から図9に基づき、本発明の実施形態1について説明する。
 図1は、開口群形成領域3外に複数の凸部5が備えられている蒸着用マスク1を示す図である。
 本実施形態においては、蒸着用マスク1が、蒸着膜形成工程の温度において変形などが生じない金属製マスクである場合を一例に挙げて説明するが、蒸着膜形成工程の温度において変形などが生じないのであれば、マスクの材質は特に限定されない。
 図1に図示されているように、蒸着用マスク1は、蒸着粒子を通す複数の開口4(貫通孔ともいう)が設けられた金属製基板2を含む。そして、開口群形成領域3内の複数の開口4は、一定の規則に沿って配置されており、金属製基板2内において、開口群形成領域3は複数個形成されている。
 なお、有機EL表示装置を製造するとき、より低コストで製造するために、大きな母基板にサブ基板(例えば5インチ)を複数同時に作成し、それを切り出して個々のサブ基板を作成する方法が用いられる場合ある。開口群形成領域3は、そのサブ基板に対応するマスク領域のことである。
 本実施形態においては、蒸着用マスク1において、開口群形成領域3を30個形成している場合を一例に挙げるが、開口群形成領域3の数は、一つの開口群形成領域3のサイズや蒸着用マスク1のサイズに応じて適宜設定することができ、1つであってもよい。
 なお、一つの開口群形成領域3のサイズは、蒸着用マスク1を用いて蒸着された蒸着膜を含むアクティブマトリクス基板を分断して得られる30個の有機EL表示装置のうちの一つの有機EL表示装置の表示領域のサイズに該当する。
 また、本実施形態においては、蒸着用マスク1が赤色発光層の蒸着用マスクである場合を一例に挙げて説明するので、蒸着用マスク1の各々の開口群形成領域3内の複数の開口4の配置は、蒸着用マスク1を用いて蒸着された蒸着膜を含むアクティブマトリクス基板を分断して得られる30個の有機EL表示装置の赤色発光層の形状に応じた配置となっている。
 本実施形態においては、後述するように、赤色発光層からなる赤色絵素、緑色発光層からなる緑色絵素及び青色発光層からなる青色絵素が、1画素を形成する有機EL表示装置の製造に用いられる蒸着用マスクであるため、開口群形成領域3内の複数の開口4の配置が、絵素の配置に応じて一定の規則に沿って配置されている場合を一例に挙げて説明するが、例えば、各色絵素がペンタイル配置であったり、その他の配置である場合や各色絵素のサイズが異なる場合などには、開口群形成領域3内の複数の開口4の配置もこれに応じた配置となることは言うまでもない。
 図1に図示されているように、蒸着用マスク1において、アクティブマトリクス基板(図示せず)と対向する面2a上であって、開口群形成領域3の外には複数の凸部5が形成されている。蒸着用マスク1の場合においては、開口群形成領域3の4つの角部分に凸部5を設けているが、後述するように、蒸着用マスク全体を一方側から支持できる配置であればこれに限定されることはない。
 図2は、図1に図示した蒸着用マスク1を用いて、アクティブマトリクス基板100aに蒸着膜を形成する場合を説明するための図である。
 図2の(a)に図示されているように、蒸着用マスク1においては、アクティブマトリクス基板100aと対向する面2a上であって、開口群形成領域3の外には複数の凸部5の各々が、蒸着用マスク1全体を一方側(アクティブマトリクス基板100a側)から支持できるように、高さ4μmで配置されている。
 したがって、蒸着用マスク1のアクティブマトリクス基板100aと対向する面2aと、アクティブマトリクス基板100aの蒸着用マスク1と対向する面との間に、4μmの間隔を確保することができる。なお、図2の(a)は、蒸着用マスク1及びアクティブマトリクス基板100aの全体を図示するものではなく、一つの開口群形成領域3に該当する部分のみを図示したものである。
 本実施形態においては、凸部5を高さ4μmで形成している場合を一例に挙げて説明したが、凸部5の高さは、以下の理由から2μmよりは高く、5μmよりは低く形成することが好ましい。凸部5の高さを2μm以下で形成した場合には、蒸着用マスク1とアクティブマトリクス基板100aとが接触する危険性が高まり、凸部5の高さを5μm以上で形成した場合には、実際の蒸着パターンにぼやけが生じてしまい、蒸着精度が低下するからである。
 図2の(a)に図示されているように、この凸部5によって、アクティブマトリクス基板100aと蒸着用マスク1とが、完全に密着しないように一定の距離を維持することができる。
 そして、アクティブマトリクス基板100aと蒸着用マスク1とが、一定の距離に維持された状態で、蒸着源(図示せず)から射出された蒸着粒子が、蒸着用マスク1の開口4を介して、アクティブマトリクス基板100a上に、所定形状に形成されることとなるので、アクティブマトリクス基板100aに均一な蒸着膜を形成することができる。
 凸部5が備えられている蒸着用マスク1を用いる場合には、蒸着用マスク1の凸部5によって、アクティブマトリクス基板100aと蒸着用マスク1とが、一定の距離に維持できるので、図2の(b)に図示されているように、アクティブマトリクス基板100aにおいては、例えば、高さ1μmのエッジカバー108aのみを設ければよい。
 また、図2の(c)に図示されているように、蒸着用マスク1の開口群形成領域3と平面視において重なるアクティブマトリクス基板100aのアクティブ領域は、電極107及びエッジカバー108aが含まれる領域である。
 蒸着用マスク1においては、開口群形成領域3の外に複数の凸部5が設けられているので、蒸着用マスク1の凸部5は、アクティブマトリクス基板100aのアクティブ領域とは接触せず、アクティブマトリクス基板100aにおける平坦化膜である層間絶縁膜106の上面と接触する。
 したがって、蒸着用マスク1を用いることにより、アクティブマトリクス基板100aと蒸着用マスク1とを、一定の距離で精度高く維持できる。
 図3は、蒸着用マスク1の開口群形成領域3の部分拡大図である。
 図3に図示されているように、蒸着用マスク1は、赤色発光層からなる赤色絵素、緑色発光層からなる緑色絵素及び青色発光層からなる青色絵素が、1画素を形成する有機EL表示装置の製造に用いられる赤色発光層の蒸着用マスクであるため、開口群形成領域3内の複数の開口4は、図中左右方向には第1開口ピッチで形成され、図中上下方向には第2開口ピッチで形成されている。
 なお、図中点線で示す開口4’は、赤色発光層からなる赤色絵素、緑色発光層からなる緑色絵素及び青色発光層からなる青色絵素が、1画素を形成する有機EL表示装置の製造に用いられる緑色発光層の蒸着用マスクに存在する開口であり、蒸着用マスク1には存在しない仮想の開口である。また、図中点線で示す開口4’’も、赤色発光層からなる赤色絵素、緑色発光層からなる緑色絵素及び青色発光層からなる青色絵素が、1画素を形成する有機EL表示装置の製造に用いられる青色発光層の蒸着用マスクに存在する開口であり、蒸着用マスク1には存在しない仮想の開口である。
 図3に図示されているように、開口群形成領域3は、少なくとも、複数の開口4と、図中左右方向の各開口4間の領域と、図中上下方向の各開口4間の領域とを含む領域であればよいが、本実施形態においては、凸部5が、より多様な形状のアクティブマトリクス基板のエッジカバーと接触するのを避けるため、開口群形成領域3の右端を開口群形成領域3内の右端に位置する開口4の右端から幅A分広げており、開口群形成領域3の上端を開口群形成領域3内の上端に位置する開口4の上端から幅B分広げており、開口群形成領域3の左端を開口群形成領域3内の左端に位置する開口4の左端から幅C分広げており、開口群形成領域3の下端を開口群形成領域3内の下端に位置する開口4の下端から幅D分広げている。そして、広げた開口群形成領域3内には凸部5を設けていない。
 以上のように、上下左右の最端部に配置されるエッジカバー108aを考慮し、開口群形成領域3を設定することにより、上下左右の最端部に配置されるエッジカバー108aと開口群形成領域3の外に配置された複数の凸部5とが接触することを避けて、凸部5をアクティブマトリクス基板100aにおける平坦化膜である層間絶縁膜106の上面と接触させることができる。
 図4は、アクティブマトリクス基板100bにおける、図3に図示した蒸着用マスク1の凸部5の当接領域を説明するための図である。
 図4の(a)に図示されているように、アクティブマトリクス基板100bは、基板104上に、無機膜109と、アクティブ素子であるTFT素子(図示せず)の形成層に含まれる平坦化膜である層間絶縁膜106と、エッジカバー108aと、突起108a’・108a’’・108c・108dとが設けられた構成となっている。
 具体的に、エッジカバー108aは、アクティブエリア(表示領域)内において、平坦化膜である層間絶縁膜106上に設けられており、突起108a’は、エッジカバー108aと隣接するアクティブエリア外であって、平坦化膜である層間絶縁膜106上に設けられており、突起108a’’は、突起108a’と隣接して平坦化膜である層間絶縁膜106上に設けられており、突起108cは、平坦化膜である層間絶縁膜106が形成する開口内であって、無機膜109上に設けられており、突起108dは、平坦化膜である層間絶縁膜106上に設けられている。
 図示されているように、蒸着用マスク1の凸部5は、アクティブマトリクス基板100bにおける図中の凸部の当接領域で、層間絶縁膜106と当接させてもよい。
 図4の(a)に図示されている凸部の当接領域は、図3に図示した蒸着用マスク1の開口群形成領域3の近くであるので、蒸着用マスク1とアクティブマトリクス基板100bとの間の間隔(GAP)を確実に確保することができる。
 なお、蒸着用マスク1の凸部5は、図4の(a)に図示されている凸部の当接領域でアクティブマトリクス基板100bと当接させてもよいが、これに限定されることはなく、図4の(b)に図示されている凸部の当接領域でアクティブマトリクス基板100bと当接させてもよい。
 図4の(b)に図示されている凸部の当接領域は、平坦化膜である層間絶縁膜106が形成する開口内で、突起108cと平坦化膜である層間絶縁膜106とで規制される領域であり、この凸部の当接領域において、蒸着用マスク1の凸部5は、アクティブマトリクス基板100bにおけるTFT素子(図示せず)の形成層に含まれる平坦化膜である層間絶縁膜106よりも下層に形成される絶縁膜としての無機膜109と当接する。
 このように、蒸着用マスク1の凸部5をアクティブマトリクス基板100bにおける無機膜109と当接させた場合には、蒸着用マスク1とアクティブマトリクス基板100bとの間の間隔(GAP)をより小さくできる。
 また、凸部5の高さが高くなる程、開口4のサイズに比べ、アクティブマトリクス基板100a側に形成される蒸着膜のサイズが大きくなるため、凸部5の高さが高い場合の開口群形成領域3は、凸部5の高さが低い場合の開口群形成領域3より広く設定することが好ましい。
 図1及び図3に図示されているように、蒸着用マスク1における複数の開口4は、開口4が一定の規則に沿って繰り返し配置された30個の開口群で構成されており、30個の開口群の各々を含む領域が開口群形成領域3であるので、蒸着用マスク1においては、開口群形成領域3は30個存在する。
 そして、各々の開口群形成領域3は、蒸着用マスク1を用いて蒸着された蒸着膜を含むアクティブマトリクス基板を分断して得られる30個の有機EL表示装置の各々の表示領域であるアクティブ領域に該当する領域であり、具体的には、図2の(c)に図示されているように、アクティブマトリクス基板100aにおける電極107及びエッジカバー108aが形成された領域を含む領域である。
 本実施形態においては、以下のように、金属製基板2におけるアクティブマトリクス基板100aと対向する面2a上であって、開口群形成領域3の外に複数の凸部5を、金属製基板2とは異なる材料である樹脂材料を用いて形成する場合を一例に挙げて説明するが、これに限定されることはなく、例えば、電気鋳造などを用いて、凸部5は、金属製基板2と同一材料または、金属製基板2とは異なる金属材料によって形成されてもよい。
 図5は、インクジェット方式の滴下装置7を用いて、光硬化性樹脂材料6を滴下した後、露光工程を経て形成した凸部5を備えた蒸着用マスク1の製造方法を示す図である。
 先ず、図5の(a)に図示されているように、インクジェット方式の滴下装置7を用いて、蒸着粒子を通す複数の開口4が設けられた金属製基板2において、アクティブマトリクス基板と対向する面2a上であって、開口群形成領域3の外側の所定位置に光硬化性樹脂材料6を滴下する。
 本実施形態においては、光硬化性樹脂材料6として、例えば、ポリメタクリル酸メチルなどを含むアクリル系樹脂(アクリル系重合体)と光開始剤とを所定の溶媒に溶解させて、インクジェット方式の滴下装置7で用いることができる粘度であるとともに、滴下量に応じて、金属製基板2上において、膜厚調整が可能な粘度に調整した光硬化性樹脂材料を用いた。
 そして、図5の(b)に図示されているように、光硬化性樹脂材料6は、膜厚調整が可能な粘度に調整されているので、金属製基板2上において、大きく広がらずに、その滴下量に応じて、一定の膜厚に形成することができる。なお、本実施形態においては、光硬化性樹脂材料6を一定の膜厚に形成した後に、溶媒を除去するため比較的低温でプリーベーク(熱処理)を行ったが、このプリーベークは行わなくてもよい。
 それから、図5の(c)に図示されているように、上記光開始剤が反応を開始する波長領域の光を用いて露光を行い、光硬化性樹脂材料6を光硬化させて、図5の(d)に図示されているように、金属製基板2のアクティブマトリクス基板と対向する面2a上の開口群形成領域3の外側に高さ4μmの凸部5を形成した。
 なお、光硬化性樹脂材料6には、アクリル系樹脂及び光開始剤以外に、凸部5の強度などを増加させるため、例えば、熱硬化性樹脂であるエポキシ系樹脂(エポキシ系重合体)及びシロキサン重合体の少なくとも一方と、重合開始剤としての熱酸発生剤とがさらに含まれていることが好ましく、このような場合には、上記熱硬化性樹脂を熱硬化させるため比較的高温で行われるポストベーク(熱処理)を行えばよい。
 また、蒸着用マスク1は、蒸着工程において用いられるマスクであることを考慮すると、光硬化性樹脂材料6に熱硬化性樹脂が含まれていない場合においても、比較的高温で行われるポストベーク(熱処理)は行うことが好ましく、このポストベーク(熱処理)の温度は、蒸着工程において蒸着用マスク1が使用される温度より高く設定することが好ましい。比較的高温で行われるポストベーク(熱処理)を行っていない有機膜の場合、蒸着工程において膜厚の変化が生じる恐れがあるからである。
 なお、ポストベーク(熱処理)の温度は、段階的に変化するように設定されていてもよく、この場合においては、複数の段階中、少なくとも一つの段階以上で、蒸着工程において蒸着用マスク1が使用される温度より高く設定することが好ましい。
 また、金属製基板2のアクティブマトリクス基板と対向する面2a上に光硬化性樹脂材料6を滴下する前に、金属製基板2のアクティブマトリクス基板と対向する面2aを、例えば、シランカップリング剤などで処理し、金属と有機膜との接着性を向上させてもよい。
 図6は、図1に図示した蒸着用マスク1とは、異なる位置に凸部5を配置した蒸着用マスク1a・1bを示す図である。
 図1に図示した蒸着用マスク1においては、開口群形成領域3の4つの角部分に凸部5を設けていたが、図6の(a)に図示されているように、凸部5は、開口群形成領域3の外であって、開口群形成領域3の4辺の中間位置近方に設けられていてもよい。さらには、図6の(b)に図示されているように、図中左側の15個の開口群形成領域3を大きい第1開口群形成領域とし、図中右側の15個の開口群形成領域3を大きい第2開口群形成領域とした場合、凸部5は、上記第1開口群形成領域及び上記第2開口群形成領域の各々の4つの角部分と、上下方向の中間部分の両端とに設けられていてもよい。
 以上のように、凸部5の配置は、開口群形成領域3の外であって、蒸着用マスク1・1a・1b全体を一方側から支持できる配置であれば、特に限定されない。
 これまでは、蒸着用マスク1の凸部5が、インクジェット方式の滴下装置7を用いて、光硬化性樹脂材料6を滴下した後、露光工程を経て形成される場合を一例に挙げて説明したが、蒸着用マスク1の凸部5は、インクジェット方式の滴下装置7を用いて、熱硬化性樹脂材料8を滴下した後、熱処理工程を経て形成されてもよい。
 図7は、インクジェット方式の滴下装置7を用いて、熱硬化性樹脂材料8を滴下した後、熱処理工程を経て形成した凸部9を備えた蒸着用マスク10の製造方法を示す図である。
 先ず、図7の(a)に図示されているように、インクジェット方式の滴下装置7を用いて、蒸着粒子を通す複数の開口4が設けられた金属製基板2において、アクティブマトリクス基板と対向する面2a上であって、開口群形成領域3の外側の所定位置に熱硬化性樹脂材料8を滴下する。
 本実施形態においては、熱硬化性樹脂材料8として、例えば、エポキシ系樹脂(エポキシ系重合体)及びシロキサン重合体の少なくとも一方と、重合開始剤としての熱酸発生剤とを所定の溶媒に溶解させて、インクジェット方式の滴下装置7で用いることができる粘度であるとともに、滴下量に応じて、金属製基板2上において、膜厚調整が可能な粘度に調整した熱硬化性樹脂材料を用いた。
 そして、図7の(b)に図示されているように、熱硬化性樹脂材料8は、膜厚調整が可能な粘度に調整されているので、金属製基板2上において、大きく広がらずに、その滴下量に応じて、一定の膜厚に形成することができる。
 それから、図7の(c)に図示されているように、上記熱酸発生剤が重合を開始する温度以上で熱処理を行い、溶媒を除去するとともに、熱硬化性樹脂材料8を熱硬化させて、図7の(d)に図示されているように、金属製基板2のアクティブマトリクス基板と対向する面2a上の開口群形成領域3の外側に高さ4μmの凸部9を設けた蒸着用マスク10を完成させた。
 また、蒸着用マスク10は、蒸着工程において用いられるマスクであることを考慮すると、図7の(c)に図示した熱処理の温度は、蒸着工程において蒸着用マスク10が使用される温度より高く設定することが好ましい。比較的高温で行われる熱処理を行っていない膜の場合、蒸着工程において膜厚の変化が生じる恐れがあるからである。
 なお、図7の(c)に図示した熱処理の温度は、段階的に変化するように設定されていてもよく、この場合においては、複数の段階中、少なくとも一つの段階以上で、蒸着工程において蒸着用マスク10が使用される温度より高く設定することが好ましい。
 また、金属製基板2のアクティブマトリクス基板と対向する面2a上に熱硬化性樹脂材料8を滴下する前に、金属製基板2のアクティブマトリクス基板と対向する面2aを、例えば、シランカップリング剤などで処理し、金属と有機膜との接着性を向上させてもよい。
 また、蒸着用マスク10が、蒸着工程において比較的高温で用いられることが想定される場合には、熱硬化性樹脂材料8として、有機無機ハイブリッド材料であって、熱硬化後に耐熱性の高い膜を形成するシロキサン重合体の含有量を増やすことが好ましい。
 以下では、蒸着用マスク13の凸部12を、インクジェット方式の滴下装置7を用いずに形成する場合について、図8に基づいて説明する。
 図8は、スリットコーターを用いて、光硬化性樹脂材料11を金属製基板2のアクティブマトリクス基板と対向する面2aに塗布した後、露光・現像工程を経て形成した凸部12を備えた蒸着用マスク13の製造方法を示す図である。
 先ず、図8の(a)に図示されているように、スリットコーター(図示せず)を用いて、光硬化性樹脂材料11を金属製基板2のアクティブマトリクス基板と対向する面2aの開口4部分を除く全面に塗布した。
 インクジェット方式の滴下装置7の代わりにスリットコーターを用いているので、インクジェット方式の滴下装置7を用いる場合のように、滴下量に応じて、金属製基板2上において、膜厚調整が可能な粘度に調整する必要まではないので、光硬化性樹脂材料11の粘度調整の幅が大きくなる。
 本実施形態においては、光硬化性樹脂材料11として、例えば、ポリメタクリル酸メチルなどを含むアクリル系樹脂(アクリル系重合体)と光開始剤とを所定の溶媒に溶解させて、露光部分が光硬化するネガ型の光硬化性樹脂材料を用いたが、これに限定されることはなく、ポジ型の光硬化性樹脂材料を用いてもよい。
 また、本実施形態においては、スリットコーターを用いる場合を一例に挙げて説明したが、これに限定されることはなく、開口4のサイズや開口4の配置などを考慮した上で、光硬化性樹脂材料11を金属製基板2のアクティブマトリクス基板と対向する面2aの開口4部分を除く全面に均一に塗布できる方法を適宜選択することができ、例えば、スクリーン印刷法やスピンコーターなどを用いてもよい。
 そして、図8の(b)に図示されているように、開口32aを有するマスク32を用いて、露光、現像及び熱処理することによって、図8の(c)に図示されているように、金属製基板2のアクティブマトリクス基板と対向する面2a上の開口群形成領域3の外側に高さ4μmの凸部12を設けた蒸着用マスク13を完成させた。
 上記熱処理は、省略することもできるが、蒸着用マスク13が、蒸着工程において用いられるマスクであることを考慮すると、上記熱処理は行うことが好ましく、その熱処理の温度は、蒸着工程において蒸着用マスク13が使用される温度より高く設定することが好ましい。また、この熱処理の温度は、段階的に変化するように設定されていてもよく、この場合においては、複数の段階中、少なくとも一つの段階以上で、蒸着工程において蒸着用マスク13が使用される温度より高く設定することが好ましい。
 また、金属製基板2のアクティブマトリクス基板と対向する面2a上に光硬化性樹脂材料11を塗布する前に、金属製基板2のアクティブマトリクス基板と対向する面2aを、例えば、シランカップリング剤などで処理し、金属と有機膜との接着性を向上させてもよい。
 図9は、複数のディバイデッドマスク16を含み、凸部5が備えられた蒸着用マスク14・20・20aを示す図である。
 図9の(a)、図9の(b)及び図9の(c)に図示する蒸着用マスク14・20・20aは、中央部分に大きな開口15aを有するフレーム15に、複数のディバイデッドマスク16が、張力がかかった状態で固定(架張)されており、複数のディバイデッドマスク16の各々における開口群形成領域18が、平面視において、フレーム15の中央部分に大きな開口15aと重なるように配置されている。
 複数のディバイデッドマスク16の各々は、例えば、インバー材などの金属板17で構成され、ディバイデッドマスク16の一方側の面16aは、アクティブマトリクス基板と対向する面である。
 複数のディバイデッドマスク16の各々は、図3に図示した開口群形成領域3と同様の開口群形成領域18を、複数個含み、金属板17において、開口群形成領域18以外の領域が周囲領域19である。
 図9の(a)に図示する蒸着用マスク14においては、開口群形成領域18の外側であるフレーム15の4つの角部分に高さ4μmの凸部5を設けた。なお、凸部5の配置位置はこれに限定されることはなく、例えば、フレーム15の形状に沿って、ディバイデッドマスク16が固定される箇所以外の全体に一定間隔で凸部5を配置してもよい。
 なお、蒸着用マスク14においては、フレーム15に凸部5を設けているため、フレーム15とアクティブマトリクス基板との間の距離が4μmに維持されるが、ディバイデッドマスク16とアクティブマトリクス基板との間の距離を4μmに維持したい場合には、後述する図9の(b)及び図9の(c)のように、ディバイデッドマスク16上に高さ4μmの凸部5を設けるか、ディバイデッドマスク16の厚さを加えた高さの凸部5をフレーム15に設ければよい。
 また、凸部5は、フレーム15に複数のディバイデッドマスク16を固定する前、すなわち、フレーム15単体に先ず凸部5を設けた後に、フレーム15に複数のディバイデッドマスク16を固定してもよく、フレーム15に複数のディバイデッドマスク16を固定した後に、フレーム15に凸部5を設けてもよい。
 図9の(a)に図示する蒸着用マスク14においては、凸部5を、図5に図示した方法と同様の方法を用いて形成したが、これに限定されることはなく、フレーム15の材質と凸部5の材質とを考慮し、適宜選択することができる。
 図9の(b)に図示する蒸着用マスク20においては、凸部5が複数のディバイデッドマスク16の各々の図中上下方向の両端近方に設けられている。蒸着用マスク20の場合、凸部5がディバイデッドマスク16上に設けられているので、ディバイデッドマスク16とアクティブマトリクス基板との間の距離を所定距離に維持することができる。
 また、蒸着用マスク20の場合において、凸部5は、フレーム15に複数のディバイデッドマスク16を固定する前、すなわち、ディバイデッドマスク16単体に先ず凸部5を設けた後に、フレーム15に複数のディバイデッドマスク16を固定してもよく、フレーム15に複数のディバイデッドマスク16を固定した後に、ディバイデッドマスク16に凸部5を設けてもよい。
 図9の(c)に図示する蒸着用マスク20aにおいては、凸部5がディバイデッドマスク16のアクティブマトリクス基板と対向する面16aであって、開口群形成領域18以外の領域である周囲領域19に設けられている。蒸着用マスク20aの場合、凸部5がディバイデッドマスク16の図中上下方向の中央部分にも設けられているので、ディバイデッドマスク16とアクティブマトリクス基板との間の距離をより精度高く所定距離に維持することができる。
 また、蒸着用マスク20aの場合においても、凸部5は、フレーム15に複数のディバイデッドマスク16を固定する前、すなわち、ディバイデッドマスク16単体に先ず凸部5を設けた後に、フレーム15に複数のディバイデッドマスク16を固定してもよく、フレーム15に複数のディバイデッドマスク16を固定した後に、ディバイデッドマスク16に凸部5を設けてもよい。
 また、図示は省略するが、凸部5は、フレーム15とディバイデッドマスク16との両方に設けられていてもよく、この場合においては、ディバイデッドマスク16の厚さを考慮し、フレーム15に設ける凸部5の高さより、ディバイデッドマスク16に設ける凸部5の高さを、ディバイデッドマスク16の厚さ分、低く設定すればよい。
 また、図9の(a)、図9の(b)及び図9の(c)に図示する蒸着用マスク14・20・20aにおいては、フレーム15の前面、すなわち、フレーム15において、アクティブマトリクス基板と対向する面側にディバイデッドマスク16を固定した場合を一例に挙げて説明したが、これに限定されることはなく、複数のディバイデッドマスク16の各々における開口群形成領域18が、平面視において、フレーム15の中央部分に大きな開口15aと重なるように配置されるのであれば、ディバイデッドマスク16は、フレーム15の裏面、すなわち、フレーム15において、アクティブマトリクス基板と対向する面とは反対側の面に固定されていてもよい。
 なお、本実施形態においては、凸部5をビーズを含まない材料を用いて形成する場合を一例に挙げて説明しているが、後述する実施形態3のように、凸部5はビーズを含む材料によって形成されてもよい。
 なお、本実施形態においては、凸部5を点状に形成している場合を一例に挙げて説明したが、金属製基板2のアクティブマトリクス基板と対向する面2a上における開口群形成領域3の外側に設けることができる形状であれば、その形状は特に限定されず、例えば、直線形状などに形成されていてもよい。
 〔実施形態2〕
 次に、図10及び図11に基づき、本発明の実施形態2について説明する。本実施形態においては、金属製基板2のアクティブマトリクス基板と対向する面2aに凹部を有する第1樹脂層23・23aを形成し、上記凹部に凸部5を形成している点において、実施形態1とは異なり、その他については実施形態1において説明したとおりである。説明の便宜上、実施形態1の図面に示した部材と同じ機能を有する部材については、同じ符号を付し、その説明を省略する。
 図10は、金属製基板2のアクティブマトリクス基板と対向する面2a上の開口群形成領域3の外側全面に、金属製基板2のアクティブマトリクス基板と対向する面2aが露出する凹部(金属製基板2のアクティブマトリクス基板と対向する面2aが露出する開口)を有する第1樹脂層23を形成し、上記凹部に凸部5を形成した蒸着用マスク10aの製造方法を示す図である。
 先ず、図10の(a)に図示されているように、スリットコーター(図示せず)を用いて、光硬化性樹脂材料21を金属製基板2のアクティブマトリクス基板と対向する面2aの開口4部分を除く全面に塗布した。
 本実施形態においては、光硬化性樹脂材料21として、例えば、ポリメタクリル酸メチルなどを含むアクリル系樹脂(アクリル系重合体)と光開始剤とを所定の溶媒に溶解させて、露光部分が光硬化するネガ型の光硬化性樹脂材料を用いたが、これに限定されることはなく、ポジ型の光硬化性樹脂材料を用いてもよい。
 そして、図10の(b)に図示されているように、遮光部分22aと開口22cとを有するマスク22を用いて露光を行った後に、現像することによって、図10の(c)に図示されているように、金属製基板2のアクティブマトリクス基板と対向する面2aが露出する凹部を有する第1樹脂層23を形成することができる。
 なお、上記凹部は、金属製基板2のアクティブマトリクス基板と対向する面2a上の開口群形成領域3の外側に形成され、かつ、第1樹脂層23に囲まれているのであれば、その形状は特に限定されない。
 それから、図10の(d)に図示されているように、インクジェット方式の滴下装置7を用いて、第1樹脂層23に囲まれた上記凹部に光硬化性樹脂材料6を滴下する。
 そして、図10の(e)に図示されているように、光硬化性樹脂材料6は、膜厚調整が可能な粘度に調整されているので、金属製基板2上において、大きく広がらずに、その滴下量に応じて、一定の膜厚に形成することができる。なお、本実施形態においては、光硬化性樹脂材料6を一定の膜厚に形成した後に、溶媒を除去するため比較的低温でプリーベークを行った後に、露光を行い、光硬化性樹脂材料6を光硬化させた。それから、比較的高温でポストベークを行い、図10の(f)に図示されているように、第1樹脂層23に囲まれた上記凹部に高さ4μmの凸部5を備えた蒸着用マスク10aを完成した。
 蒸着用マスク10aの製造工程においては、第1樹脂層23に囲まれた上記凹部に光硬化性樹脂材料6を滴下するので、光硬化性樹脂材料6の金属製基板2上での広がりなどを大きく考慮する必要がなくなるので、用いることができる光硬化性樹脂材料6の粘度幅を広げることができる。
 また、凸部5の高さが4μmである場合には、上記凹部を囲む第1樹脂層23の厚さは4μm未満であれば、特に限定されないが、光硬化性樹脂材料6の広がりをより効果的に抑制することと、凸部5がアクティブマトリクス基板の荷重などによって押し込まれた場合に、第1樹脂層23によってもアクティブマトリクス基板が支持される構成とすることを考慮すると、第1樹脂層23の厚さは、凸部5の高さの50%以上100%未満であることが好ましく、凸部5の高さの80%以上100%未満であることがさらに好ましい。
 なお、本実施形態においては、第1樹脂層23の厚さは、凸部5の高さの50%である2μmで形成した。
 図11は、金属製基板2のアクティブマトリクス基板と対向する面2a上の開口群形成領域3の外側全面に、金属製基板2のアクティブマトリクス基板と対向する面2aが露出しない凹部を有する第1樹脂層23aを形成し、上記凹部に凸部5を形成した蒸着用マスク10bの製造方法を示す図である。
 先ず、図11の(a)に図示されているように、スリットコーター(図示せず)を用いて、光硬化性樹脂材料21を金属製基板2のアクティブマトリクス基板と対向する面2aの開口4部分を除く全面に塗布した。
 そして、図11の(b)に図示されているように、遮光部分22aと、露光光を30%透過するスリット開口22bと、露光光を100%透過する開口22cとを有するマスク22を用いて露光を行った後に、現像することによって、図11の(c)に図示されているように、金属製基板2のアクティブマトリクス基板と対向する面2aが露出しない凹部を有する第1樹脂層23aを形成することができる。すなわち、上記凹部には、第1樹脂層23aが一定の膜厚で残っている。
 以上のように、蒸着用マスク10bの製造工程には、ハーフ露光工程が含まれるが、このハーフ露光工程によって形成される凹部を有する第1樹脂層23aは、金属製基板2のアクティブマトリクス基板と対向する面2a上の開口群形成領域3の外側全面に形成される膜であり、上記凹部のサイズや形状も、金属製基板2のアクティブマトリクス基板と対向する面2a上の開口群形成領域3の外側に形成され、かつ、第1樹脂層23aに囲まれているのであれば、特に限定されない。
 それから、図11の(d)に図示されているように、インクジェット方式の滴下装置7を用いて、第1樹脂層23aに囲まれた上記凹部に光硬化性樹脂材料6を滴下する。
 そして、図11の(e)に図示されているように、光硬化性樹脂材料6は、膜厚調整が可能な粘度に調整されているので、大きく広がらずに、その滴下量に応じて、一定の膜厚に形成することができる。なお、本実施形態においては、光硬化性樹脂材料6を一定の膜厚に形成した後に、溶媒を除去するため比較的低温でプリーベークを行った後に、露光を行い、光硬化性樹脂材料6を光硬化させた。それから、比較的高温でポストベークを行い、図11の(f)に図示されているように、第1樹脂層23aに囲まれた上記凹部に、凸部5を備えた蒸着用マスク10bを完成した。
 なお、凸部5の高さは、上記凹部に残った第1樹脂層23aの膜厚と凸部5の高さとを合わせて4μmとなるように設定した。
 蒸着用マスク10bの場合、凸部5が上記凹部に残った第1樹脂層23a上に形成されるので、凸部5が蒸着用マスク10bから剥がれるのを抑制できる構成となっている。
 また、上記凹部に残った第1樹脂層23aの膜厚と凸部5の高さとを合わせて4μmである場合には、上記凹部を囲む第1樹脂層23aの厚さは4μm未満であれば、特に限定されないが、光硬化性樹脂材料6の広がりをより効果的に抑制することと、凸部5がアクティブマトリクス基板の荷重などによって押し込まれた場合に、第1樹脂層23aによってもアクティブマトリクス基板が支持される構成とすることを考慮すると、第1樹脂層23aの厚さは、上記凹部に残った第1樹脂層23aの膜厚と凸部5の高さとを合わせた値の50%以上100%未満であることが好ましく、上記凹部に残った第1樹脂層23aの膜厚と凸部5の高さとを合わせた値の80%以上100%未満であることがさらに好ましい。
 なお、本実施形態においては、第1樹脂層23aの厚さは、上記凹部に残った第1樹脂層23aの膜厚と凸部5の高さとを合わせた値の50%である2μmで形成した。
 また、本実施形態においては、図10の(d)及び図11の(d)において、光硬化性樹脂材料6を用いる場合を一例に挙げて説明したが、これに限定されることはなく、熱硬化性樹脂材料8を用いてもよい。
 〔実施形態3〕
 次に、図12及び図13に基づき、本発明の実施形態3について説明する。本実施形態においては、金属製基板2のアクティブマトリクス基板と対向する面2aに凹部を有する第1樹脂層23・23aを形成し、上記凹部にビーズ24を含む光硬化性樹脂材料25を用いて凸部26を形成している点において、実施形態2とは異なり、その他については実施形態2において説明したとおりである。説明の便宜上、実施形態2の図面に示した部材と同じ機能を有する部材については、同じ符号を付し、その説明を省略する。
 図12は、金属製基板2のアクティブマトリクス基板と対向する面2a上の開口群形成領域3の外側全面に、金属製基板2のアクティブマトリクス基板と対向する面2aが露出する凹部(金属製基板2のアクティブマトリクス基板と対向する面2aが露出する開口)を有する第1樹脂層23を形成し、上記凹部にビーズ24を含む凸部26を形成した蒸着用マスク27の製造方法を示す図である。
 先ず、図12の(a)に図示されているように、スリットコーター(図示せず)を用いて、光硬化性樹脂材料21を金属製基板2のアクティブマトリクス基板と対向する面2aの開口4部分を除く全面に塗布した。
 そして、図12の(b)に図示されているように、遮光部分22aと開口22cとを有するマスク22を用いて露光を行った後に、現像することによって、図12の(c)に図示されているように、金属製基板2のアクティブマトリクス基板と対向する面2aが露出する凹部を有する第1樹脂層23を形成することができる。
 なお、上記凹部は、金属製基板2のアクティブマトリクス基板と対向する面2a上の開口群形成領域3の外側に形成され、かつ、第1樹脂層23に囲まれているのであれば、その形状は特に限定されない。
 それから、図12の(d)に図示されているように、インクジェット方式の滴下装置7を用いて、第1樹脂層23に囲まれた上記凹部にビーズ24を含む光硬化性樹脂材料25を滴下する。
 なお、ビーズ24の平均粒径や形状は、凸部26の高さを考慮した上で適宜選択することができる。
 そして、図12の(e)に図示されているように、ビーズ24を含む光硬化性樹脂材料25は、膜厚調整が可能な粘度に調整されているので、金属製基板2上において、大きく広がらずに、その滴下量に応じて、一定の膜厚に形成することができる。なお、本実施形態においては、ビーズ24を含む光硬化性樹脂材料25を一定の膜厚に形成した後に、溶媒を除去するため比較的低温でプリーベークを行った後に、露光を行い、ビーズ24を含む光硬化性樹脂材料25を光硬化させた。それから、比較的高温でポストベークを行い、図12の(f)に図示されているように、第1樹脂層23に囲まれた上記凹部に、ビーズ24を含む高さ4μmの凸部26を備えた蒸着用マスク27を完成した。
 蒸着用マスク27の製造工程においては、第1樹脂層23に囲まれた上記凹部にビーズ24を含む光硬化性樹脂材料25を滴下するので、ビーズ24を含む光硬化性樹脂材料25の金属製基板2上での広がりなどを大きく考慮する必要がなくなるので、用いることができるビーズ24を含む光硬化性樹脂材料25の粘度幅を広げることができる。
 また、凸部26の高さが4μmである場合には、上記凹部を囲む第1樹脂層23の厚さは4μm未満であれば、特に限定されないが、ビーズ24を含む光硬化性樹脂材料25の広がりをより効果的に抑制することと、凸部26がアクティブマトリクス基板の荷重などによって押し込まれた場合に、第1樹脂層23によってもアクティブマトリクス基板が支持される構成とすることを考慮すると、第1樹脂層23の厚さは、凸部26の高さの50%以上100%未満であることが好ましく、凸部26の高さの80%以上100%未満であることがさらに好ましい。
 なお、本実施形態においては、第1樹脂層23の厚さは、凸部26の高さの50%である2μmで形成した。
 以上のように、蒸着用マスク27においては、凸部26はビーズ24を含むので、凸部26の高さ精度の向上と凸部26の強度の向上を図ることができる。
 図13は、金属製基板2のアクティブマトリクス基板と対向する面2a上の開口群形成領域3の外側全面に、金属製基板2のアクティブマトリクス基板と対向する面2aが露出しない凹部を有する第1樹脂層23aを形成し、上記凹部にビーズ24を含む凸部26を形成した蒸着用マスク27aの製造方法を示す図である。
 先ず、図13の(a)に図示されているように、スリットコーター(図示せず)を用いて、光硬化性樹脂材料21を金属製基板2のアクティブマトリクス基板と対向する面2aの開口4部分を除く全面に塗布した。
 そして、図13の(b)に図示されているように、遮光部分22aと、露光光を30%透過するスリット開口22bと、露光光を100%透過する開口22cとを有するマスク22を用いて露光を行った後に、現像することによって、図13の(c)に図示されているように、金属製基板2のアクティブマトリクス基板と対向する面2aが露出しない凹部を有する第1樹脂層23aを形成することができる。すなわち、上記凹部には、第1樹脂層23aが一定の膜厚で残っている。
 それから、図13の(d)に図示されているように、インクジェット方式の滴下装置7を用いて、第1樹脂層23aに囲まれた上記凹部にビーズ24を含む光硬化性樹脂材料25を滴下する。
 そして、図13の(e)に図示されているように、ビーズ24を含む光硬化性樹脂材料25は、膜厚調整が可能な粘度に調整されているので、大きく広がらずに、その滴下量に応じて、一定の膜厚に形成することができる。なお、本実施形態においては、ビーズ24を含む光硬化性樹脂材料25を一定の膜厚に形成した後に、溶媒を除去するため比較的低温でプリーベークを行った後に、露光を行い、ビーズ24を含む光硬化性樹脂材料25を光硬化させた。それから、比較的高温でポストベークを行い、図13の(f)に図示されているように、第1樹脂層23aに囲まれた上記凹部に、ビーズ24を含む凸部26を備えた蒸着用マスク27aを完成した。
 なお、ビーズ24を含む凸部26の高さは、上記凹部に残った第1樹脂層23aの膜厚とビーズ24を含む凸部26の高さとを合わせて4μmとなるように設定した。
 蒸着用マスク27aの場合、ビーズ24を含む凸部26が上記凹部に残った第1樹脂層23a上に形成されるので、ビーズ24を含む凸部26が蒸着用マスク27aから剥がれるのを抑制できる構成となっている。
 また、上記凹部に残った第1樹脂層23aの膜厚とビーズ24を含む凸部26の高さとを合わせて4μmである場合には、上記凹部を囲む第1樹脂層23aの厚さは4μm未満であれば、特に限定されないが、ビーズ24を含む光硬化性樹脂材料25の広がりをより効果的に抑制することと、ビーズ24を含む凸部26がアクティブマトリクス基板の荷重などによって押し込まれた場合に、第1樹脂層23aによってもアクティブマトリクス基板が支持される構成とすることを考慮すると、第1樹脂層23aの厚さは、上記凹部に残った第1樹脂層23aの膜厚とビーズ24を含む凸部26の高さとを合わせた値の50%以上100%未満であることが好ましく、上記凹部に残った第1樹脂層23aの膜厚とビーズ24を含む凸部26の高さとを合わせた値の80%以上100%未満であることがさらに好ましい。
 なお、本実施形態においては、第1樹脂層23aの厚さは、上記凹部に残った第1樹脂層23aの膜厚とビーズ24を含む凸部26の高さとを合わせた値の50%である2μmで形成した。
 また、本実施形態においては、図12の(d)及び図13の(d)において、ビーズ24を含む光硬化性樹脂材料25を用いる場合を一例に挙げて説明したが、これに限定されることはなく、ビーズを含む熱硬化性樹脂材料を用いてもよい。
 〔実施形態4〕
 次に、図14及び図15に基づき、本発明の実施形態4について説明する。本実施形態においては、金属製基板2のアクティブマトリクス基板と対向する面2aに凹部を有する第1樹脂層23・23aを形成し、上記凹部にビーズ24を含む光硬化性樹脂材料25と、熱硬化性樹脂材料28とを用いて、凸部29を形成している点において、実施形態3とは異なり、その他については実施形態2において説明したとおりである。説明の便宜上、実施形態3の図面に示した部材と同じ機能を有する部材については、同じ符号を付し、その説明を省略する。
 図14は、金属製基板2のアクティブマトリクス基板と対向する面2a上の開口群形成領域3の外側全面に、金属製基板2のアクティブマトリクス基板と対向する面2aが露出する凹部(金属製基板2のアクティブマトリクス基板と対向する面2aが露出する開口)を有する第1樹脂層23を形成し、上記凹部に、ビーズ24を含む光硬化性樹脂材料25と、熱硬化性樹脂材料28とを用いて、凸部29を形成した蒸着用マスク30の製造方法を示す図である。
 図14の(a)に図示されているように、インクジェット方式の滴下装置7を用いて、第1樹脂層23に囲まれた上記凹部にビーズ24を含む光硬化性樹脂材料25を滴下する。
 なお、金属製基板2のアクティブマトリクス基板と対向する面2aが露出する凹部を有する第1樹脂層23の形成工程については、上述した実施形態3において既に説明しているので、ここではその説明を省略する。
 そして、図14の(b)に図示されているように、ビーズ24を含む光硬化性樹脂材料25は、膜厚調整が可能な粘度に調整されているので、金属製基板2上において、大きく広がらずに、その滴下量に応じて、一定の膜厚に形成することができる。なお、本実施形態においては、ビーズ24を含む光硬化性樹脂材料25を一定の膜厚に形成した後に、溶媒を除去するため比較的低温でプリーベークを行った後に、露光を行い、ビーズ24を含む光硬化性樹脂材料25を光硬化させた。
 その後、図14の(c)に図示されているように、硬化されたビーズ24を含む光硬化性樹脂材料25を覆うように、インクジェット方式の滴下装置7を用いて、熱硬化性樹脂材料28を滴下する。なお、この際に、熱硬化性樹脂材料28は、第1樹脂層23の上面の一部も覆うように滴下している。
 それから、図14の(d)に図示されているように、比較的高温でポストベークを行い、図14の(e)に図示されているように、第1樹脂層23に囲まれた上記凹部に、ビーズ24を含む光硬化性樹脂材料25と、熱硬化性樹脂材料28とを用いて、高さ4μmの凸部29を形成した蒸着用マスク30を完成した。なお、凸部29は、熱硬化性樹脂材料28によって、その上面がより広く形成されているとともに、第1樹脂層23の上面とも接触する。
 したがって、蒸着用マスク30を用いた場合、アクティブマトリクス基板は凸部29と接触するので、傷がつき難く、凸部29は蒸着用マスク30から剥がれ難い。
 また、凸部29の高さが4μmである場合には、上記凹部を囲む第1樹脂層23の厚さは4μm未満であれば、特に限定されないが、ビーズ24を含む光硬化性樹脂材料25の広がりをより効果的に抑制することと、凸部29がアクティブマトリクス基板の荷重などによって押し込まれた場合に、第1樹脂層23によってもアクティブマトリクス基板が支持される構成とすることを考慮すると、第1樹脂層23の厚さは、凸部29の高さの50%以上100%未満であることが好ましく、凸部29の高さの80%以上100%未満であることがさらに好ましい。
 なお、本実施形態においては、第1樹脂層23の厚さは、凸部29の高さの50%である2μmで形成した。
 本実施形態においては、図14の(b)に図示されているように、ビーズ24を含む光硬化性樹脂材料25の形成幅を、第1樹脂層23に囲まれた上記凹部の幅より狭く形成した場合を一例に挙げて説明したが、ビーズ24を含む光硬化性樹脂材料25の形成幅は第1樹脂層23に囲まれた上記凹部の幅と同じであってもよい。
 また、本実施形態においては、ビーズ24を含む光硬化性樹脂材料25と、熱硬化性樹脂材料28とを用いて凸部29を形成した場合を一例に挙げたが、これに限定されることはなく、ビーズを含む光硬化性樹脂材料のみやビーズを含む熱硬化性樹脂材料のみやビーズを含む熱硬化性樹脂材料と、光硬化性樹脂材料とを用いて、凸部29を形成してもよい。
 図15は、金属製基板2のアクティブマトリクス基板と対向する面2a上の開口群形成領域3の外側全面に、金属製基板2のアクティブマトリクス基板と対向する面2aが露出しない凹部を有する第1樹脂層23aを形成し、上記凹部に、ビーズ24を含む光硬化性樹脂材料25と、熱硬化性樹脂材料28とを用いて、凸部29aを形成した蒸着用マスク30aの製造方法を示す図である。
 図15の(a)に図示されているように、インクジェット方式の滴下装置7を用いて、第1樹脂層23aに囲まれた上記凹部にビーズ24を含む光硬化性樹脂材料25を滴下する。
 なお、金属製基板2のアクティブマトリクス基板と対向する面2aが露出しない凹部を有する第1樹脂層23aの形成工程については、上述した実施形態3において既に説明しているので、ここではその説明を省略する。
 そして、図15の(b)に図示されているように、ビーズ24を含む光硬化性樹脂材料25は、膜厚調整が可能な粘度に調整されているので、金属製基板2上において、大きく広がらずに、その滴下量に応じて、一定の膜厚に形成することができる。なお、本実施形態においては、ビーズ24を含む光硬化性樹脂材料25を一定の膜厚に形成した後に、溶媒を除去するため比較的低温でプリーベークを行った後に、露光を行い、ビーズ24を含む光硬化性樹脂材料25を光硬化させた。
 その後、図15の(c)に図示されているように、硬化されたビーズ24を含む光硬化性樹脂材料25を覆うように、インクジェット方式の滴下装置7を用いて、熱硬化性樹脂材料28を滴下する。なお、この際に、熱硬化性樹脂材料28は、第1樹脂層23aの上面の一部も覆うように滴下している。
 それから、図15の(d)に図示されているように、比較的高温でポストベークを行い、図15の(e)に図示されているように、第1樹脂層23aに囲まれた上記凹部に、ビーズ24を含む光硬化性樹脂材料25と、熱硬化性樹脂材料28とを用いて、高さ4μmの凸部29を形成した蒸着用マスク30aを完成した。なお、凸部29は、熱硬化性樹脂材料28によって、その上面がより広く形成されているとともに、第1樹脂層23aの上面とも接触する。
 したがって、蒸着用マスク30aを用いた場合、アクティブマトリクス基板は凸部29と接触するので、傷がつき難く、凸部29は蒸着用マスク30aから剥がれ難い。
 また、上記凹部に残った第1樹脂層23aの膜厚とビーズ24を含む凸部29の高さとを合わせて4μmである場合には、上記凹部を囲む第1樹脂層23aの厚さは4μm未満であれば、特に限定されないが、ビーズ24を含む光硬化性樹脂材料25の広がりをより効果的に抑制することと、凸部29がアクティブマトリクス基板の荷重などによって押し込まれた場合に、第1樹脂層23aによってもアクティブマトリクス基板が支持される構成とすることを考慮すると、第1樹脂層23aの厚さは、上記凹部に残った第1樹脂層23aの膜厚とビーズ24を含む凸部29の高さとを合わせた高さの50%以上100%未満であることが好ましく、上記凹部に残った第1樹脂層23aの膜厚とビーズ24を含む凸部29の高さとを合わせた高さの80%以上100%未満であることがさらに好ましい。
 なお、本実施形態においては、第1樹脂層23aの厚さは、上記凹部に残った第1樹脂層23aの膜厚とビーズ24を含む凸部29の高さとを合わせた高さの50%である2μmで形成した。
 本実施形態においては、図15の(b)に図示されているように、ビーズ24を含む光硬化性樹脂材料25の形成幅を、第1樹脂層23aに囲まれた上記凹部の幅より狭く形成した場合を一例に挙げて説明したが、ビーズ24を含む光硬化性樹脂材料25の形成幅は第1樹脂層23aに囲まれた上記凹部の幅と同じであってもよい。
 また、本実施形態においては、ビーズ24を含む光硬化性樹脂材料25と、熱硬化性樹脂材料28とを用いて凸部29を形成した場合を一例に挙げたが、これに限定されることはなく、ビーズを含む光硬化性樹脂材料のみやビーズを含む熱硬化性樹脂材料のみやビーズを含む熱硬化性樹脂材料と、光硬化性樹脂材料とを用いて、凸部29を形成してもよい。
 蒸着用マスク30aの場合、ビーズ24を含む凸部29が上記凹部に残った第1樹脂層23a上に形成されるので、ビーズ24を含む凸部29が蒸着用マスク30aから剥がれるのを抑制できる構成となっている。
 〔実施形態5〕
 次に、図16及び図17に基づき、本発明の実施形態5について説明する。本実施形態においては、蒸着用マスク1を用いた有機EL表示装置の製造方法について説明する。説明の便宜上、実施形態1から4の図面に示した部材と同じ機能を有する部材については、同じ符号を付し、その説明を省略する。
 図16は、蒸着用マスク1を用いた有機EL表示装置の製造方法の各工程を説明するための図であり、図17は、図16に図示した蒸着用マスク1を用いた有機EL表示装置の製造方法の各工程に対応する図である。
 蒸着用マスク1を用いた有機EL表示装置の製造方法においては、図17の(a)に図示されているように、先ず、蒸着用マスク1の凸部5と、ダミー基板(平面基板)110とを当接させて、ダミー基板110に対する蒸着用マスク1の開口4の位置を合わせる工程(S1)を行う。なお、ダミー基板110とは、アクティブマトリクス基板100aの製造に用いられる蒸着膜などが形成されていない基板である。
 上記工程(S1)においては、ダミー基板110を用いているので、蒸着用マスク1の凸部5と、ダミー基板110とを当接させて、ダミー基板110に対する蒸着用マスク1の開口4の位置を合わせることができる。すなわち、蒸着用マスク1の凸部5と、ダミー基板110とを当接させた状態で、ダミー基板110に対して、蒸着用マスク1を移動させながら、位置合わせを行うことができる。ダミー基板110には、エッジカバー108aなどの突起部がないので、蒸着用マスク1の移動時に、蒸着用マスク1の凸部5との接触などを考慮する必要がない。
 なお、図17の(a)には図示していないが、蒸着用マスク1は、移動可能なマスクホルダーに支持されており、ダミー基板110は、固定された基板ホルダーに支持されている。
 以上のように、蒸着用マスク1の凸部5と、ダミー基板110とを当接させた状態で、事前に、蒸着用マスク1の開口4の位置合わせを行っているので、後述するアクティブマトリクス基板100aと蒸着用マスク1とを当接させた状態で、蒸着用マスク1を用いて、アクティブマトリクス基板100aに蒸着膜を形成する工程(S3)において、蒸着用マスク1の開口4の位置ずれが生じるのを抑制することができる。
 次に、図17の(b)に図示されているように、蒸着用マスク1は固定した状態で、固定された基板ホルダーに支持されているダミー基板110をアクティブマトリクス基板100aに置き換える工程(S2)を行う。
 それから、図17の(c)に図示されているように、蒸着用マスク1を用いて、アクティブマトリクス基板100aに蒸着膜を形成する工程(S3)を行う。
 上記工程(S3)においては、アクティブマトリクス基板100aと蒸着用マスク1とを当接させた状態で、蒸着源(図示せず)から射出された蒸着粒子が、蒸着用マスク1を介して、アクティブマトリクス基板100a上に、所定形状に形成されることとなる。
 なお、本実施形態においては、ダミー基板110を用いて、事前に、蒸着用マスク1の開口4の位置合わせを行う場合を一例に挙げて説明したが、これに限定されることはなく、例えば、図17の(b)に図示されているように、蒸着用マスク1の凸部5と、アクティブマトリクス基板100aの平坦化膜である層間絶縁膜106とを当接させた状態で、アクティブマトリクス基板100a及び蒸着用マスク1の一方を、他方に対して、移動させながら、位置合わせを行ってもよい。この場合においては、移動時に、アクティブマトリクス基板100aのエッジカバー108aと蒸着用マスク1の凸部5との接触などを考慮する必要がある。
 〔まとめ〕
 本発明の態様1に係る蒸着用マスクは、蒸着粒子を通す複数の開口が設けられた基板を含む蒸着用マスクであって、上記複数の開口中の少なくとも一部は、その開口が一定の規則に沿って繰り返し配置された一つ以上の開口群で構成されており、開口群形成領域は、少なくとも、上記各開口群に属する複数の開口と、上記各開口群に属する複数の開口中の隣接する開口間の領域と、を含む上記基板における領域であり、同一高さの複数の凸部は、上記基板全体を一方側から支持できる配置で、上記開口群形成領域の外側にのみ設けられていることを特徴としている。
 上記構成によれば、同一高さの複数の凸部は、上記基板全体を一方側から支持できる配置で、上記基板の上記開口群形成領域の外側にのみ設けられているので、アクティブマトリクス基板に均一な蒸着膜を形成することができる蒸着用マスクを実現できる。
 本発明の態様2に係る蒸着用マスクは、上記態様1において、上記凸部は、光硬化性樹脂材料を含む樹脂で形成されていてもよい。
 上記構成によれば、光硬化を用いて、上記凸部を形成することができる。
 本発明の態様3に係る蒸着用マスクは、上記態様1において、上記凸部は、熱硬化性樹脂材料を含む樹脂で形成されていてもよい。
 上記構成によれば、熱硬化を用いて、上記凸部を形成することができる。
 本発明の態様4に係る蒸着用マスクは、上記態様2または3において、上記凸部は、ビーズが含まれた樹脂で形成されていてもよい。
 上記構成によれば、凸部の高さ精度の向上と凸部の強度の向上を図ることができる。
 本発明の態様5に係る蒸着用マスクは、上記態様1から4の何れかにおいて、上記蒸着粒子を通す複数の開口が設けられた基板である複数個の分断された基板と、中心部が開口である枠状のフレームとを備え、上記複数個の分断された基板の各々における上記蒸着粒子を通す複数の開口と、上記フレームの開口とが、平面視において重なるように、上記複数個の分断された基板の各々は、上記フレームに固定されていてもよい。
 上記構成によれば、上記複数個の分断された基板の各々を、上記フレームに固定した蒸着用マスクを実現できる。
 本発明の態様6に係る蒸着用マスクは、上記態様1から5の何れかにおいて、上記基板の上記開口群形成領域の外側には、上記基板を露出する凹部が設けられた第1樹脂層が形成されており、上記凸部は、上記凹部に上記凹部から突出する高さで設けられていてもよい。
 上記構成によれば、上記凸部を、上記凹部に設けるので、上記凸部の幅の制御が容易である。
 本発明の態様7に係る蒸着用マスクは、上記態様1から5の何れかにおいて、上記基板の上記開口群形成領域の外側には、同一深さの凹部が設けられた第1樹脂層が形成されており、上記凸部は、上記第1樹脂層上の上記凹部に上記凹部から突出する高さで設けられていてもよい。
 上記構成によれば、上記凸部を、上記凹部に設けるので、上記凸部の幅の制御が容易であるとともに、上記凸部は、上記第1樹脂層上に形成されるので、上記凸部が上記蒸着用マスクから剥がれ難くなる。
 本発明の態様8に係る蒸着用マスクは、上記態様6において、上記凹部を囲む上記第1樹脂層の高さは、上記凸部の高さの50%以上100%未満であってもよい。
 上記構成によれば、上記凸部がアクティブマトリクス基板の荷重などによって押し込まれた場合に、上記第1樹脂層によってもアクティブマトリクス基板が支持される。
 本発明の態様9に係る蒸着用マスクは、上記態様7において、上記凹部を囲む上記第1樹脂層の高さは、上記凹部内の上記第1樹脂層の厚さと上記凸部の高さとを合わせた値の50%以上100%未満であってもよい。
 上記構成によれば、上記凸部がアクティブマトリクス基板の荷重などによって押し込まれた場合に、上記第1樹脂層によってもアクティブマトリクス基板が支持される。
 本発明の態様10に係る蒸着用マスクは、上記態様6から9の何れかにおいて、上記凸部は、上記凹部と上記凹部を囲む上記第1樹脂層の上面の一部とに形成されていてもよい。
 上記構成によれば、凸部と接触するアクティブマトリクス基板に傷がつき難く、凸部は蒸着用マスクから剥がれ難い。
 本発明の態様11に係る蒸着用マスクは、上記態様1から10の何れかにおいて、上記凸部は、点状に形成されていてもよい。
 上記構成によれば、上記凸部は、点状に形成されているので、上記凸部が直線形状に形成される場合などに比べると、アクティブマトリクス基板のエッジカバーとの接触を抑制することができる。
 本発明の態様12に係る蒸着用マスクの製造方法は、蒸着粒子を通す複数の開口が設けられた基板を含む蒸着用マスクの製造方法であって、上記複数の開口中の少なくとも一部は、その開口が一定の規則に沿って繰り返し配置された一つ以上の開口群で構成されており、開口群形成領域は、少なくとも、上記各開口群に属する複数の開口と、上記各開口群に属する複数の開口中の隣接する開口間の領域と、を含む上記基板における領域であり、上記基板全体を一方側から支持できる配置で、上記開口群形成領域の外側にのみ、同一高さの複数の凸部を形成する凸部形成工程を含むことを特徴としている。
 上記方法によれば、上記基板全体を一方側から支持できる配置で、上記基板の上記開口群形成領域の外側にのみ、同一高さの複数の凸部を形成する凸部形成工程を含むので、アクティブマトリクス基板に均一な蒸着膜を形成することができる蒸着用マスクの製造方法を実現できる。
 本発明の態様13に係る蒸着用マスクの製造方法は、上記態様12において、上記凸部形成工程においては、光硬化性樹脂材料を含む液状の樹脂材料を所定の箇所に滴下し、光硬化することで、上記凸部を形成してもよい。
 上記方法によれば、液状の樹脂材料の滴下方法と、光硬化とを用いて、上記凸部を形成することができる。
 本発明の態様14に係る蒸着用マスクの製造方法は、上記態様12において、上記凸部形成工程においては、熱硬化性樹脂材料を含む液状の樹脂材料を所定の箇所に滴下し、熱硬化することで、上記凸部を形成してもよい。
 上記方法によれば、液状の樹脂材料の滴下方法と、熱硬化とを用いて、上記凸部を形成することができる。
 本発明の態様15に係る蒸着用マスクの製造方法は、上記態様13または14において、上記凸部形成工程においては、ビーズが含まれた液状の樹脂材料を用いてもよい。
 上記方法によれば、凸部の高さ精度の向上と凸部の強度の向上を図ることができる。
 本発明の態様16に係る蒸着用マスクの製造方法は、上記態様12から15の何れかにおいて、上記蒸着粒子を通す複数の開口が設けられた基板である複数個の分断された基板と、中心部が開口である枠状のフレームとを備え、上記複数個の分断された基板の各々における上記蒸着粒子を通す複数の開口と、上記フレームの開口とが、平面視において重なるように、上記複数個の分断された基板の各々を、上記フレームに固定する架張工程は、上記凸部形成工程の前に行われてもよい。
 上記方法によれば、上記凸部を備えているとともに、上記複数個の分断された基板の各々を、上記フレームに固定した蒸着用マスクを実現できる。
 本発明の態様17に係る蒸着用マスクの製造方法は、上記態様12から15の何れかにおいて、上記蒸着粒子を通す複数の開口が設けられた基板である複数個の分断された基板と、中心部が開口である枠状のフレームとを備え、上記複数個の分断された基板の各々における上記蒸着粒子を通す複数の開口と、上記フレームの開口とが、平面視において重なるように、上記複数個の分断された基板の各々を、上記フレームに固定する架張工程は、上記凸部形成工程の後に行われてもよい。
 上記方法によれば、上記凸部を備えているとともに、上記複数個の分断された基板の各々を、上記フレームに固定した蒸着用マスクを実現できる。
 本発明の態様18に係る蒸着用マスクの製造方法は、上記態様12から17の何れかにおいて、上記基板の上記開口群形成領域の外側に、上記基板を露出する凹部が設けられた第1樹脂層を形成する工程と、上記凸部を上記凹部に上記凹部から突出する高さで形成する工程とを含み、上記凸部を上記凹部に上記凹部から突出する高さで形成する工程においては、液状の樹脂材料を、上記凹部の所定の箇所に滴下し、硬化することで、上記凸部を形成してもよい。
 上記方法によれば、液状の樹脂材料を、上記凹部の所定の箇所に滴下し、硬化することで、上記凸部を形成するので、上記凸部の幅の制御が容易である。
 本発明の態様19に係る蒸着用マスクの製造方法は、上記態様12から17の何れかにおいて、上記基板の上記開口群形成領域の外側に、同一深さの凹部が設けられた第1樹脂層を形成する工程と、上記凸部を上記第1樹脂層上の上記凹部に上記凹部から突出する高さで形成する工程とを含み、上記凸部を上記第1樹脂層上の上記凹部に上記凹部から突出する高さで形成する工程においては、液状の樹脂材料を、上記凹部の所定の箇所に滴下し、硬化することで、上記凸部を形成してもよい。
 上記方法によれば、液状の樹脂材料を、上記第1樹脂層上の上記凹部の所定の箇所に滴下し、硬化することで、上記凸部を形成するので、上記凸部の幅の制御が容易であるとともに、上記凸部が上記蒸着用マスクから剥がれ難い。
 本発明の態様20に係る蒸着用マスクの製造方法は、上記態様18において、上記第1樹脂層を形成する工程においては、上記凹部を囲む上記第1樹脂層の高さは、上記凸部の高さの50%以上100%未満で形成されていてもよい。
 上記方法によれば、上記凸部がアクティブマトリクス基板の荷重などによって押し込まれた場合に、上記第1樹脂層によってもアクティブマトリクス基板が支持される蒸着用マスクを実現できる。
 本発明の態様21に係る蒸着用マスクの製造方法は、上記態様19において、上記第1樹脂層を形成する工程においては、上記凹部を囲む上記第1樹脂層の高さは、上記凹部内の上記第1樹脂層の厚さと上記凸部の高さとを合わせた値の50%以上100%未満で形成されていてもよい。
 上記方法によれば、上記凸部がアクティブマトリクス基板の荷重などによって押し込まれた場合に、上記第1樹脂層によってもアクティブマトリクス基板が支持される蒸着用マスクを実現できる。
 本発明の態様22に係る蒸着用マスクの製造方法は、上記態様18から21の何れかにおいて、上記凸部は、上記凹部と上記凹部を囲む上記第1樹脂層の上面の一部とに形成されていてもよい。
 上記方法によれば、凸部と接触するアクティブマトリクス基板に傷がつき難く、凸部が蒸着用マスクから剥がれ難い、蒸着用マスクを実現できる。
 本発明の態様23に係る蒸着用マスクの製造方法は、上記態様12から22の何れかにおいて、上記凸部形成工程において、上記凸部は点状に形成されていてもよい。
 上記方法によれば、上記凸部が直線形状に形成される場合などに比べると、アクティブマトリクス基板のエッジカバーとの接触を抑制することができる蒸着用マスクを実現できる。
 本発明の態様24に係る有機EL表示装置の製造方法は、上記態様1から11の何れかに記載の蒸着用マスクの凸部と、平面基板とを当接させて、上記平面基板に対する上記蒸着用マスクの開口の位置を合わせる工程を含む。
 上記方法によれば、蒸着用マスクの凸部と、平面基板とを当接させて、上記平面基板に対する上記蒸着用マスクの開口の位置合わせを行うので、後工程である蒸着工程において、上記蒸着用マスクの開口の位置ずれが生じるのを抑制することができる。
 本発明の態様25に係る有機EL表示装置の製造方法は、上記態様24において、上記平面基板をアクティブマトリクス基板に置き換える工程と、上記蒸着用マスクの凸部と、上記アクティブマトリクス基板とを当接させた状態で、上記蒸着用マスクを用いて、上記アクティブマトリクス基板に蒸着膜を形成する工程とを含んでいてもよい。
 上記方法によれば、上記蒸着用マスクの凸部と、上記アクティブマトリクス基板とを当接させた状態で、上記蒸着用マスクを用いて、上記アクティブマトリクス基板に蒸着膜を形成する工程において、上記蒸着用マスクの開口の位置ずれが生じるのを抑制することができる。
 本発明の態様26に係る有機EL表示装置の製造方法は、上記態様1から11の何れかに記載の蒸着用マスクの凸部と、アクティブマトリクス基板とを当接させる工程を含む方法である。
 上記方法によれば、アクティブマトリクス基板に均一な蒸着膜を形成することができる有機EL表示装置の製造方法を実現できる。
 本発明の態様27に係る有機EL表示装置の製造方法は、上記態様26において、上記蒸着用マスクの凸部と、アクティブマトリクス基板とを当接させる工程においては、上記蒸着用マスクの凸部を、上記アクティブマトリクス基板上に設けられたアクティブ素子の形成層に含まれる層間絶縁膜よりも下層の絶縁膜と当接させてもよい。
 上記方法によれば、蒸着用マスクとアクティブマトリクス基板との間の間隔(GAP)をより小さくできる。
 本発明の態様28に係る有機EL表示装置の製造方法は、上記態様26において、上記蒸着用マスクの凸部と、アクティブマトリクス基板とを当接させる工程においては、上記蒸着用マスクの凸部を、上記アクティブマトリクス基板上に設けられたアクティブ素子の形成層に含まれるとともに、上記アクティブマトリクス基板における表示領域の近くに形成された層間絶縁膜と当接させてもよい。
 上記方法によれば、蒸着用マスクとアクティブマトリクス基板との間の間隔(GAP)を確実に確保することができる。
 〔付記事項〕
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
 本発明は、蒸着用マスクと、蒸着用マスクの製造方法と、有機EL表示装置の製造方法とに利用することができる。
 1     蒸着用マスク
 1a    蒸着用マスク
 1b    蒸着用マスク
 2     金属製基板(基板)
 2a    アクティブマトリクス基板と対向する面(基板の一方側の面)
 3     開口群形成領域
 4     開口(貫通孔)
 4’    開口(貫通孔)
 4’’   開口(貫通孔)
 5     凸部
 6     光硬化性樹脂材料
 7     インクジェット方式の滴下装置
 8     熱硬化性樹脂材料
 9     凸部
 10    蒸着用マスク
 10a   蒸着用マスク
 10b   蒸着用マスク
 11    光硬化性樹脂材料
 12    凸部
 13    蒸着用マスク
 14    蒸着用マスク
 15    フレーム
 15a   開口
 16    ディバイデッドマスク(分断された基板)
 17    金属板
 18    開口群形成領域
 19    周囲領域
 20    蒸着用マスク
 20a   蒸着用マスク
 21    光硬化性樹脂材料
 23    第1樹脂層
 23a   第1樹脂層
 24    ビーズ
 25    光硬化性樹脂材料
 26    凸部
 27    蒸着用マスク
 27a   蒸着用マスク
 28    熱硬化性樹脂材料
 29    凸部
 30    蒸着用マスク
 30a   蒸着用マスク
 100a  アクティブマトリクス基板
 100b  アクティブマトリクス基板
 106   層間絶縁膜
 109   無機膜(絶縁膜)
 110   ダミー基板(平面基板)

Claims (28)

  1.  蒸着粒子を通す複数の開口が設けられた基板を含む蒸着用マスクであって、
     上記複数の開口中の少なくとも一部は、その開口が一定の規則に沿って繰り返し配置された一つ以上の開口群で構成されており、
     開口群形成領域は、少なくとも、上記各開口群に属する複数の開口と、上記各開口群に属する複数の開口中の隣接する開口間の領域と、を含む上記基板における領域であり、
     同一高さの複数の凸部は、上記基板全体を一方側から支持できる配置で、上記開口群形成領域の外側にのみ設けられていることを特徴とする蒸着用マスク。
  2.  上記凸部は、光硬化性樹脂材料を含む樹脂で形成されていることを特徴とする請求項1に記載の蒸着用マスク。
  3.  上記凸部は、熱硬化性樹脂材料を含む樹脂で形成されていることを特徴とする請求項1に記載の蒸着用マスク。
  4.  上記凸部は、ビーズが含まれた樹脂で形成されていることを特徴とする請求項2または3に記載の蒸着用マスク。
  5.  上記蒸着粒子を通す複数の開口が設けられた基板である複数個の分断された基板と、中心部が開口である枠状のフレームとを備え、
     上記複数個の分断された基板の各々における上記蒸着粒子を通す複数の開口と、上記フレームの開口とが、平面視において重なるように、上記複数個の分断された基板の各々は、上記フレームに固定されていることを特徴とする請求項1から4の何れか1項に記載の蒸着用マスク。
  6.  上記基板の上記開口群形成領域の外側には、上記基板を露出する凹部が設けられた第1樹脂層が形成されており、
     上記凸部は、上記凹部に上記凹部から突出する高さで設けられていることを特徴とする請求項1から5の何れか1項に記載の蒸着用マスク。
  7.  上記基板の上記開口群形成領域の外側には、同一深さの凹部が設けられた第1樹脂層が形成されており、
     上記凸部は、上記第1樹脂層上の上記凹部に上記凹部から突出する高さで設けられていることを特徴とする請求項1から5の何れか1項に記載の蒸着用マスク。
  8.  上記凹部を囲む上記第1樹脂層の高さは、上記凸部の高さの50%以上100%未満であることを特徴とする請求項6に記載の蒸着用マスク。
  9.  上記凹部を囲む上記第1樹脂層の高さは、上記凹部内の上記第1樹脂層の厚さと上記凸部の高さとを合わせた値の50%以上100%未満であることを特徴とする請求項7に記載の蒸着用マスク。
  10.  上記凸部は、上記凹部と上記凹部を囲む上記第1樹脂層の上面の一部とに形成されていることを特徴とする請求項6から9の何れか1項に記載の蒸着用マスク。
  11.  上記凸部は、点状に形成されていることを特徴とする請求項1から10の何れか1項に記載の蒸着用マスク。
  12.  蒸着粒子を通す複数の開口が設けられた基板を含む蒸着用マスクの製造方法であって、
     上記複数の開口中の少なくとも一部は、その開口が一定の規則に沿って繰り返し配置された一つ以上の開口群で構成されており、
     開口群形成領域は、少なくとも、上記各開口群に属する複数の開口と、上記各開口群に属する複数の開口中の隣接する開口間の領域と、を含む上記基板における領域であり、
     上記基板全体を一方側から支持できる配置で、上記開口群形成領域の外側にのみ、同一高さの複数の凸部を形成する凸部形成工程を含むことを特徴とする蒸着用マスクの製造方法。
  13.  上記凸部形成工程においては、光硬化性樹脂材料を含む液状の樹脂材料を所定の箇所に滴下し、光硬化することで、上記凸部を形成することを特徴とする請求項12に記載の蒸着用マスクの製造方法。
  14.  上記凸部形成工程においては、熱硬化性樹脂材料を含む液状の樹脂材料を所定の箇所に滴下し、熱硬化することで、上記凸部を形成することを特徴とする請求項12に記載の蒸着用マスクの製造方法。
  15.  上記凸部形成工程においては、ビーズが含まれた液状の樹脂材料を用いることを特徴とする請求項13または14に記載の蒸着用マスクの製造方法。
  16.  上記蒸着粒子を通す複数の開口が設けられた基板である複数個の分断された基板と、中心部が開口である枠状のフレームとを備え、
     上記複数個の分断された基板の各々における上記蒸着粒子を通す複数の開口と、上記フレームの開口とが、平面視において重なるように、上記複数個の分断された基板の各々を、上記フレームに固定する架張工程は、上記凸部形成工程の前に行われることを特徴とする請求項12から15の何れか1項に記載の蒸着用マスクの製造方法。
  17.  上記蒸着粒子を通す複数の開口が設けられた基板である複数個の分断された基板と、中心部が開口である枠状のフレームとを備え、
     上記複数個の分断された基板の各々における上記蒸着粒子を通す複数の開口と、上記フレームの開口とが、平面視において重なるように、上記複数個の分断された基板の各々を、上記フレームに固定する架張工程は、上記凸部形成工程の後に行われることを特徴とする請求項12から15の何れか1項に記載の蒸着用マスクの製造方法。
  18.  上記基板の上記開口群形成領域の外側に、上記基板を露出する凹部が設けられた第1樹脂層を形成する工程と、上記凸部を上記凹部に上記凹部から突出する高さで形成する工程とを含み、
     上記凸部を上記凹部に上記凹部から突出する高さで形成する工程においては、液状の樹脂材料を、上記凹部の所定の箇所に滴下し、硬化することで、上記凸部を形成することを特徴とする請求項12から17の何れか1項に記載の蒸着用マスクの製造方法。
  19.  上記基板の上記開口群形成領域の外側に、同一深さの凹部が設けられた第1樹脂層を形成する工程と、上記凸部を上記第1樹脂層上の上記凹部に上記凹部から突出する高さで形成する工程とを含み、
     上記凸部を上記第1樹脂層上の上記凹部に上記凹部から突出する高さで形成する工程においては、液状の樹脂材料を、上記凹部の所定の箇所に滴下し、硬化することで、上記凸部を形成することを特徴とする請求項12から17の何れか1項に記載の蒸着用マスクの製造方法。
  20.  上記第1樹脂層を形成する工程においては、上記凹部を囲む上記第1樹脂層の高さは、上記凸部の高さの50%以上100%未満で形成されていることを特徴とする請求項18に記載の蒸着用マスクの製造方法。
  21.  上記第1樹脂層を形成する工程においては、上記凹部を囲む上記第1樹脂層の高さは、上記凹部内の上記第1樹脂層の厚さと上記凸部の高さとを合わせた値の50%以上100%未満で形成されていることを特徴とする請求項19に記載の蒸着用マスクの製造方法。
  22.  上記凸部は、上記凹部と上記凹部を囲む上記第1樹脂層の上面の一部とに形成されていることを特徴とする請求項18から21の何れか1項に記載の蒸着用マスクの製造方法。
  23.  上記凸部形成工程において、上記凸部は点状に形成されていることを特徴とする請求項12から22の何れか1項に記載の蒸着用マスクの製造方法。
  24.  請求項1から11の何れか1項に記載の蒸着用マスクの凸部と、平面基板とを当接させて、上記平面基板に対する上記蒸着用マスクの開口の位置を合わせる工程を含むことを特徴とする有機EL表示装置の製造方法。
  25.  上記平面基板をアクティブマトリクス基板に置き換える工程と、
     上記蒸着用マスクの凸部と、上記アクティブマトリクス基板とを当接させた状態で、上記蒸着用マスクを用いて、上記アクティブマトリクス基板に蒸着膜を形成する工程とを含むことを特徴とする請求項24に記載の有機EL表示装置の製造方法。
  26.  請求項1から11の何れか1項に記載の蒸着用マスクの凸部と、アクティブマトリクス基板とを当接させる工程を含むことを特徴とする有機EL表示装置の製造方法。
  27.  上記蒸着用マスクの凸部と、アクティブマトリクス基板とを当接させる工程においては、上記蒸着用マスクの凸部を、上記アクティブマトリクス基板上に設けられたアクティブ素子の形成層に含まれる層間絶縁膜よりも下層の絶縁膜と当接させることを特徴とする請求項26に記載の有機EL表示装置の製造方法。
  28.  上記蒸着用マスクの凸部と、アクティブマトリクス基板とを当接させる工程においては、上記蒸着用マスクの凸部を、上記アクティブマトリクス基板上に設けられたアクティブ素子の形成層に含まれるとともに、上記アクティブマトリクス基板における表示領域の近くに形成された層間絶縁膜と当接させることを特徴とする請求項26に記載の有機EL表示装置の製造方法。
PCT/JP2017/002693 2017-01-26 2017-01-26 蒸着用マスク、蒸着用マスクの製造方法及び有機el表示装置の製造方法 WO2018138824A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/779,102 US10711338B2 (en) 2017-01-26 2017-01-26 Vapor deposition mask and manufacturing method for organic EL display device
PCT/JP2017/002693 WO2018138824A1 (ja) 2017-01-26 2017-01-26 蒸着用マスク、蒸着用マスクの製造方法及び有機el表示装置の製造方法
CN201780084480.6A CN110214198A (zh) 2017-01-26 2017-01-26 蒸镀用掩模、蒸镀用掩模的制造方法和有机el显示装置的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/002693 WO2018138824A1 (ja) 2017-01-26 2017-01-26 蒸着用マスク、蒸着用マスクの製造方法及び有機el表示装置の製造方法

Publications (1)

Publication Number Publication Date
WO2018138824A1 true WO2018138824A1 (ja) 2018-08-02

Family

ID=62979080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002693 WO2018138824A1 (ja) 2017-01-26 2017-01-26 蒸着用マスク、蒸着用マスクの製造方法及び有機el表示装置の製造方法

Country Status (3)

Country Link
US (1) US10711338B2 (ja)
CN (1) CN110214198A (ja)
WO (1) WO2018138824A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020098436A1 (zh) * 2018-11-13 2020-05-22 京东方科技集团股份有限公司 掩膜版、掩膜组件以及蒸镀方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI763818B (zh) * 2017-03-31 2022-05-11 日商大日本印刷股份有限公司 蒸鍍遮罩,附有框架的蒸鍍遮罩,蒸鍍遮罩準備體,蒸鍍圖案形成方法及有機半導體元件的製造方法
CN109778116B (zh) * 2019-03-28 2021-03-02 京东方科技集团股份有限公司 一种掩膜版及其制作方法、掩膜版组件
CN111575648B (zh) * 2020-06-23 2022-07-15 京东方科技集团股份有限公司 掩膜板组件及其制造方法
KR20220055538A (ko) * 2020-10-26 2022-05-04 삼성디스플레이 주식회사 마스크 어셈블리 및 마스크 어셈블리의 제작 방법
TWI825368B (zh) * 2020-12-07 2023-12-11 達運精密工業股份有限公司 金屬遮罩的製造方法
KR20230010121A (ko) * 2021-07-09 2023-01-18 삼성디스플레이 주식회사 마스크 조립체를 포함한 증착 설비 및 마스크 조립체 리페어 방법
KR20230020035A (ko) * 2021-08-02 2023-02-10 삼성디스플레이 주식회사 증착용 마스크

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289347A (ja) * 2001-03-27 2002-10-04 Sanyo Electric Co Ltd エレクトロルミネッセンス表示装置、その製造方法、被着マスク及びその製造方法
JP2006089793A (ja) * 2004-09-22 2006-04-06 Sharp Corp 成膜装置
JP2006284674A (ja) * 2005-03-31 2006-10-19 Toppan Printing Co Ltd カラーフィルタ
JP2008041327A (ja) * 2006-08-02 2008-02-21 Showa Denko Kk マスクおよびマスクを使用した表示素子ならびにマスクを使用した表示素子の製造方法
JP2010180476A (ja) * 2009-02-05 2010-08-19 Samsung Mobile Display Co Ltd マスク組立体及びこれを利用した平板表示装置用蒸着装置
JP2015214740A (ja) * 2014-05-13 2015-12-03 シャープ株式会社 蒸着装置用マスク、蒸着装置、蒸着方法、及び、有機エレクトロルミネッセンス素子の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10330910A (ja) 1997-06-04 1998-12-15 Toray Ind Inc シャドーマスクおよびその製造方法
JP4046268B2 (ja) 2002-04-26 2008-02-13 九州日立マクセル株式会社 有機el素子用蒸着マスクとその製造方法
US8882918B2 (en) * 2010-09-29 2014-11-11 Sharp Kabushiki Kaisha Vapor deposition apparatus
JP6087267B2 (ja) * 2013-12-06 2017-03-01 シャープ株式会社 蒸着装置、蒸着方法、及び、有機エレクトロルミネッセンス素子の製造方法
JP5846287B1 (ja) * 2013-12-27 2016-01-20 大日本印刷株式会社 フレーム付き蒸着マスクの製造方法、引張装置、有機半導体素子の製造装置及び有機半導体素子の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289347A (ja) * 2001-03-27 2002-10-04 Sanyo Electric Co Ltd エレクトロルミネッセンス表示装置、その製造方法、被着マスク及びその製造方法
JP2006089793A (ja) * 2004-09-22 2006-04-06 Sharp Corp 成膜装置
JP2006284674A (ja) * 2005-03-31 2006-10-19 Toppan Printing Co Ltd カラーフィルタ
JP2008041327A (ja) * 2006-08-02 2008-02-21 Showa Denko Kk マスクおよびマスクを使用した表示素子ならびにマスクを使用した表示素子の製造方法
JP2010180476A (ja) * 2009-02-05 2010-08-19 Samsung Mobile Display Co Ltd マスク組立体及びこれを利用した平板表示装置用蒸着装置
JP2015214740A (ja) * 2014-05-13 2015-12-03 シャープ株式会社 蒸着装置用マスク、蒸着装置、蒸着方法、及び、有機エレクトロルミネッセンス素子の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020098436A1 (zh) * 2018-11-13 2020-05-22 京东方科技集团股份有限公司 掩膜版、掩膜组件以及蒸镀方法

Also Published As

Publication number Publication date
CN110214198A (zh) 2019-09-06
US20190360086A1 (en) 2019-11-28
US10711338B2 (en) 2020-07-14

Similar Documents

Publication Publication Date Title
WO2018138824A1 (ja) 蒸着用マスク、蒸着用マスクの製造方法及び有機el表示装置の製造方法
US9904097B2 (en) Method for manufacturing quantum dot color filter substrate
US9502474B2 (en) Method of fabricating organic electroluminescent device
JP5094010B2 (ja) 液晶表示装置用カラーフィルタ基板及びその製造方法
KR102003269B1 (ko) 광학 필터의 제조 방법 및 광학 필터를 구비하는 유기 발광 표시 장치의 제조 방법
US20140176847A1 (en) Display device and method of manufacturing the same
US11968871B2 (en) Display substrate facilitating ink injection, method for manufacturing the display substrate and display device
JP5569772B2 (ja) カラーフィルタの製造方法
JP2007233059A (ja) 液晶表示装置及びその製造方法
US8736991B2 (en) Color filter array and manufacturing method thereof
KR101663818B1 (ko) 미세 패턴을 포함하는 포토마스크를 이용한 유기발광디스플레이용 새도우 마스크의 제조 방법,그 새도우 마스크 및 이를 이용한 유기발광디스플레이의 제조 방법
US8698984B2 (en) Color filter, liquid crystal display device, and color filter production method
JP6331250B2 (ja) ブラックマトリクス基板の製造方法、カラーフィルタの製造方法、ブラックマトリクス基板、カラーフィルタ、液晶表示装置及び有機エレクトロルミネッセンス表示装置。
JP4400558B2 (ja) カラーフィルタ基板、液晶表示装置および電子機器、カラーフィルタ基板の製造方法および液晶表示装置の製造方法
JP2011242705A (ja) 表示装置、および表示装置の製造方法
KR20070069829A (ko) 액정표시소자 및 그 제조방법
CN110993646B (zh) Oled背板的制备方法及oled背板
KR100701669B1 (ko) 액정패널의 컬러필터 기판 제조방법
US20120224276A1 (en) Color filter array and manufacturing method thereof
JP2004361933A (ja) カラーフィルタ基板およびその製造方法、ならびに表示装置
KR20070065072A (ko) 액정 표시 장치용 컬러 필터 기판 및 그 제조 방법
JP2020021017A (ja) カラーフィルタ及びその製造方法
CN110928030B (zh) 显示基板及其制作方法
KR101078696B1 (ko) 액정표시장치
JP5034450B2 (ja) カラーフィルタの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17893816

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17893816

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP