WO2018135411A1 - 光導波路部材及び光結合構造 - Google Patents
光導波路部材及び光結合構造 Download PDFInfo
- Publication number
- WO2018135411A1 WO2018135411A1 PCT/JP2018/000673 JP2018000673W WO2018135411A1 WO 2018135411 A1 WO2018135411 A1 WO 2018135411A1 JP 2018000673 W JP2018000673 W JP 2018000673W WO 2018135411 A1 WO2018135411 A1 WO 2018135411A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical waveguide
- optical
- waveguide member
- mode field
- face
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/122—Basic optical elements, e.g. light-guiding paths
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/30—Optical coupling means for use between fibre and thin-film device
Definitions
- the present invention relates to an optical waveguide member and an optical coupling structure.
- Non-Patent Document 1 discloses a fan-out component connected to a PC (Physical Contact) to an LC connector type multi-core fiber (MCF).
- This fan-out component is a fiber bundle formed by bundling the tips of a plurality of single core fibers.
- the cores of the plurality of single-core fibers are arranged two-dimensionally when viewed from the optical axis direction, and the cores of the MCF are also arranged two-dimensionally when viewed from the optical axis direction. .
- the cores of the plurality of single core fibers and the core of the MCF are opposed to each other.
- Non-Patent Document 2 discloses a mode-field-converting fiber (MFC fiber).
- the MFC fiber is provided between an optical waveguide chip and an optical fiber having different mode field shapes and dimensions.
- One end of the MFC fiber is butt-connected to the optical fiber, and the other end of the MFC fiber is butt-connected to the optical waveguide chip.
- This MFC fiber has a tapered portion formed by heat treatment. In this taper portion, the shape and size of the mode field at one end of the MFC fiber are matched to the shape and size of the mode field of each optical fiber, respectively, and the shape and size of the mode field at the other end of the MFC fiber are The shape and size of the mode field of the MFC fiber have been converted to match the shape and size of the mode field, respectively.
- the optical waveguide member of the present disclosure relates to an optical waveguide member that is connected to a first optical waveguide component having a plurality of light incident / exit portions and a second optical waveguide component having a plurality of light incident / exit portions.
- the optical waveguide member includes a main body having first and second end surfaces, and a plurality of optical waveguides extending from the first end surface to the second end surface in the main body.
- the first ends of the plurality of optical waveguides are exposed on the first end face in a one-dimensional array, and the second ends of the plurality of optical waveguides are exposed on the second end face in a two-dimensional array, respectively. is doing.
- the mode field diameter at the first end of each optical waveguide is different from the mode field diameter at the second end of each optical waveguide.
- each core arrangement of each optical waveguide component is limited. This is because, in the fiber bundle that is one of the optical waveguide components, each core can be arranged only so that the existence density of the plurality of single core fibers is highest (closest arrangement) when viewed from the optical axis direction. It is. Therefore, in this method, when the core arrangement of one optical waveguide component is different from the core arrangement of the other optical waveguide component, for example, the core arrangement of one optical waveguide component is one-dimensional, and the other optical waveguide component When the core arrangement of the waveguide components is two-dimensional, it becomes difficult to connect them.
- Non-Patent Document 2 a tapered portion formed by heat treatment is provided in the MFC fiber, thereby realizing connection between optical waveguide chips and optical fibers having different mode field shapes and dimensions.
- a tapered portion formed by heat treatment is provided in the MFC fiber, thereby realizing connection between optical waveguide chips and optical fibers having different mode field shapes and dimensions.
- the plurality of light input / output portions of one optical waveguide component are arranged one-dimensionally, and the other optical waveguide Even when a plurality of light incident / exit portions of a component are arranged two-dimensionally, the mode field diameter of the light incident / exit portion of one optical waveguide component and the light incident / exit portion of the other optical waveguide component Even when the mode field diameters are different from each other, they can be suitably connected.
- An optical waveguide member is a light that is connected to a first optical waveguide component having a plurality of light incident / exit portions and a second optical waveguide component having a plurality of light incident / exit portions.
- the present invention relates to a waveguide member.
- the optical waveguide member includes a main body having first and second end surfaces, and a plurality of optical waveguides extending from the first end surface to the second end surface in the main body.
- the first ends of the plurality of optical waveguides are exposed on the first end face in a one-dimensional array, and the second ends of the plurality of optical waveguides are exposed on the second end face in a two-dimensional array, respectively. is doing.
- the mode field diameter at the first end of each optical waveguide is different from the mode field diameter at the second end of each optical waveguide.
- the first end of each optical waveguide is arranged one-dimensionally and the second end is arranged two-dimensionally. Therefore, the arrangement of the light incident / exit portions of the first optical waveguide component is arranged one-dimensionally, and the arrangement of the light incident / exit portions of the second optical waveguide component is arranged two-dimensionally Even so, these light incident / exit portions can be optically coupled to each other.
- the mode field diameter at the first end and the mode field diameter at the second end of each optical waveguide are different from each other, the mode field diameters of the light input / output portions of the first and second optical waveguide components are different from each other. Even so, they can be connected efficiently.
- the optical waveguide member described above when the first and second optical waveguide components are connected, the light incident / exit portions of the first optical waveguide component are arranged one-dimensionally, and the second Even if the light incident / exit portions of the optical waveguide parts are arranged two-dimensionally and the mode field diameters of these light incident / exit portions are different from each other, these are preferably used. Can be connected.
- the above-described arrangement of the optical waveguide in the optical waveguide member can be suitably formed using an ultrashort pulse laser such as a femtosecond laser.
- the first end surface and the second end surface face each other, and the distance between the first end surface and the second end surface is the arrangement direction of the plurality of optical waveguides on the first end surface.
- the width of the first end face may be 80 times or less.
- the main body and the plurality of optical waveguides may be made of quartz glass.
- a plurality of optical waveguides of the optical waveguide member can be suitably realized using the above-described pulse laser.
- the main body portion and the plurality of optical waveguides are made of quartz glass to which at least one refractive index adjusting material selected from the group consisting of potassium, germanium, fluorine, boron, and phosphorus is added. May be.
- each optical waveguide may further include a mode field conversion unit, and in each mode field conversion unit, the mode field diameter is changed from the size at the first end to the size at the second end. It may be changed at a change rate of 17 ⁇ m / mm or less.
- the mode field diameter at the first end of the plurality of optical waveguides may be 3 ⁇ m or more and 5 ⁇ m or less, and the mode field diameter at the second end of the plurality of optical waveguides is 5 ⁇ m or more and 20 ⁇ m or less. May be.
- the mode field diameter at the second end of the plurality of optical waveguides may be larger than the mode field diameter at the first end of the plurality of optical waveguides.
- the optical axes at the first ends of the plurality of optical waveguides may be shifted within an angle of 10 ° or less with respect to the normal direction of the first end surface, and the optical axes at the second ends of the plurality of optical waveguides are The angle may be shifted within a range of 10 ° or less with respect to the normal direction of the second end face.
- Each of the plurality of optical waveguides may intersect with another optical waveguide at least partially when viewed from a direction orthogonal to the opposing direction of the first and second end faces.
- the main body may have a substantially rectangular parallelepiped shape defined by the first and second end surfaces, the upper and lower surfaces facing each other, and the first and second side surfaces facing each other, and between the upper and lower surfaces.
- the distance may be not less than 80 ⁇ m and not more than 1000 ⁇ m, and the distance between the first and second side surfaces may be not less than 80 ⁇ m and not more than 1000 ⁇ m.
- An optical coupling structure includes an optical waveguide member having any of the above-described configurations, and a first optical waveguide component or an optical waveguide member disposed on the first end face side of the optical waveguide member. 2 and at least one of the second optical waveguide components disposed on the end face side.
- the first optical waveguide component has a plurality of light incident / exit portions arranged one-dimensionally, and each first end of the optical waveguide member is opposed to each light incident / exit portion of the first optical waveguide component.
- the optical waveguide member is abutted and connected so as to be optically coupled.
- the second optical waveguide component has a plurality of light incident / exit portions arranged two-dimensionally, and each second end of the optical waveguide member is opposed to each light incident / exit portion of the second optical waveguide component.
- the optical waveguide member is abutted and connected so as to be optically coupled.
- the first optical waveguide component in which the respective light incident / exit portions are arranged one-dimensionally, and the respective light incident / exit portions having a mode field diameter different from that of the first optical waveguide component Can be configured to be suitably connected to the second optical waveguide component in which are two-dimensionally arranged.
- the first optical waveguide component may be a silicon photonics chip.
- the second optical waveguide component may be a multi-core fiber having a plurality of cores and a clad covering the plurality of cores.
- the structure provided with both the 1st optical waveguide component and the 2nd optical waveguide component may be sufficient as the optical coupling structure mentioned above.
- FIG. 1 is a perspective view of an optical waveguide member 1 according to this embodiment.
- FIG. 1 shows an XYZ orthogonal coordinate system for easy understanding.
- the optical waveguide member 1 includes a main body 10 and a plurality of optical waveguides 20.
- the main body 10 has a substantially rectangular parallelepiped appearance.
- the plurality of optical waveguides 20 are provided in the main body 10.
- the main body 10 and the plurality of optical waveguides 20 are made of the same material.
- the main body 10 and the plurality of optical waveguides 20 are made of, for example, quartz glass.
- the main-body part 10 and the some optical waveguide 20 are at least 1 refraction selected from the group which consists of potassium (K), germanium (Ge), fluorine (F), boron (B), and phosphorus (P), for example.
- You may be comprised with the quartz glass to which the additive for refractive index adjustment (refractive index adjusting material) is added.
- the additive may be added throughout the main body 10 and the plurality of optical waveguides 20 or may be added to a part of the main body 10 including the plurality of optical waveguides 20.
- the main body 10 has an end surface 10a, an end surface 10b, an upper surface 10c, a lower surface 10d, a side surface 10e, and a side surface 10f.
- the end surface 10a and the end surface 10b are provided to face each other in the Z direction.
- the end faces 10a and 10b are flat surfaces and are parallel to each other.
- the upper surface 10c and the lower surface 10d are provided to face each other in the Y direction and extend along the Z direction.
- the upper surface 10c and the lower surface 10d are flat surfaces and are parallel to each other.
- the side surface 10e and the side surface 10f are provided to face each other in the X direction and extend along the Z direction.
- the side surfaces 10e and 10f are flat surfaces and are parallel to each other.
- the distance between the end surface 10a and the end surface 10b is 1 mm or more and 80 times or less of the width of the end surface 10a in the arrangement direction of the plurality of optical waveguides 20 on the end surface 10a, and is 5 mm in one embodiment.
- the distance between the upper surface 10c and the lower surface 10d and the distance between the side surface 10e and the side surface 10f are 80 ⁇ m or more and 1000 ⁇ m or less, and in one embodiment is 125 ⁇ m.
- the volume of the main body 10 is 0.16 mm 3 or less. It becomes.
- the plurality of optical waveguides 20 extend from the end surface 10a to the end surface 10b.
- One end face (one end) 20a of the plurality of optical waveguides 20 is included in the end face 10a, and the other end face (other end) 20b of the plurality of optical waveguides 20 is included in the end face 10b.
- One end surface 20a and the other end surface 20b according to the difference in refractive index between the light incident / exit portions 31 and 41 (see FIG. 4 to be described later) of the optical waveguide components 30 and 40 to be connected and the one end surface 20a and the other end surface 20b. Since each light is refracted in FIG.
- the direction of the optical axis at each end face 20a and the normal direction of the end face 10a do not always coincide with each other. That is, the optical axis in the one end surface 20a of the plurality of optical waveguides 20 may be shifted with respect to the normal direction of the end surface 10a, and the shift amount is preferably 10 ° or less. Similarly, the direction of the optical axis in each other end face 20b and the normal direction of the end face 10b do not necessarily match each other. That is, the optical axes of the other end faces 20b of the plurality of optical waveguides 20 may be deviated with respect to the normal direction of the end face 10b, and the deviation amount is preferably 10 ° or less.
- the mode field diameter of each other end face 20b in the end face 10b is different from the mode field diameter of each one end face 20a in the end face 10a.
- FIG. 2 is a front view showing the end face 10 a of the optical waveguide member 1.
- the shape of the plurality of one end faces 20a is circular, and the shape of the mode field is also circular.
- the mode field diameter of the plurality of one end faces 20a is, for example, 3 ⁇ m or more and 5 ⁇ m or less.
- the plurality of one end surfaces 20a are respectively exposed at positions corresponding to the arrangement of light incident / exit portions 31 (see FIG. 4) of the optical waveguide component 30 described later. Specifically, a plurality of one end surfaces 20a are arranged in a one-dimensional manner on the end surface 10a.
- FIG. 3 is a rear view showing the end face 10 b of the optical waveguide member 1.
- the plurality of other end faces 20b are circular, and the mode field is similarly circular.
- the mode field diameter of the plurality of other end faces 20b is, for example, 5 ⁇ m or more and 20 ⁇ m or less, and is larger than the mode field diameter of the plurality of one end faces 20a.
- the plurality of other end surfaces 20b are respectively exposed at positions corresponding to the arrangement of light incident / exit portions 41 (see FIG. 4) of the optical waveguide component 40 described later.
- the plurality of other end surfaces 20b are arranged two-dimensionally on the end surface 10b.
- two other end faces 20b arranged along the X direction are arranged in two rows along the Y direction.
- the optical waveguide 20 is converted from a one-dimensional array to a two-dimensional array, at least a part of the optical waveguide 20 is viewed from the Y direction orthogonal to the facing direction (Z direction) of the end faces 10a and 10b. May be configured to cross other optical waveguides (see FIG. 4).
- Each optical waveguide 20 includes a mode field conversion unit 20c in which the mode field diameter of each optical waveguide 20 changes between the end surface 10a and the end surface 10b.
- the entire range of each optical waveguide 20 from the end face 10a to the end face 10b is the mode field conversion section 20c.
- the mode field conversion unit 20c may be partially formed in the range from the end surface 10a to the end surface 10b.
- the mode field diameter smoothly changes from the size at each one end face 20a to the size at each other end face 20b (at a rate of change of 17 ⁇ m / mm or less as an example).
- the mode field diameter of each optical waveguide 20 changes so as to gradually approach the mode field diameter of each other end face 20b from the mode field diameter of each one end face 20a as it approaches the end face 10b.
- the plurality of optical waveguides 20 having such a configuration are formed in the main body 10 using, for example, laser processing using a pulse laser.
- the pulse laser is, for example, a titanium sapphire femtosecond laser (Ti-sapphire Femtosecond Laser).
- Ti-sapphire Femtosecond Laser Ti-sapphire Femtosecond Laser
- the main body 10 and the plurality of optical waveguides 20 are made of quartz glass to which the above-described additive is added, depending on the difference of the additive, the main body 10 at the condensing point of the light pulse.
- the change in refractive index is different.
- the additive is potassium, germanium, or phosphorus
- the refractive index at the condensing point of the light pulse is higher than the refractive index around it. Therefore, in this case, a plurality of optical waveguides 20 (core regions) are formed along the trajectory of the condensing point of the optical pulse.
- the amount of change in the refractive index at the condensing point of the light pulse varies depending on the difference between these additives.
- the refractive index at the condensing point of the light pulse is lower than the refractive index around it. Therefore, in this case, the periphery (cladding region) of the plurality of optical waveguides 20 is formed along the trajectory of the condensing point of the optical pulse. Further, the amount of change in the refractive index at the condensing point of the light pulse differs depending on the type of these additives.
- FIG. 4 is a top view showing how the optical waveguide components 30 and 40 are connected to each other through the optical waveguide member 1 according to the present embodiment.
- the XZ coordinate system shown in FIG. 4 corresponds to the XYZ orthogonal coordinate system shown in FIG.
- the optical waveguide member 1 is provided between the optical waveguide component 30 and the optical waveguide component 40 and is connected to the optical waveguide components 30 and 40 in the Z direction.
- An optical coupling structure is formed from the optical waveguide member 1 and at least one of the optical waveguide component 30 or the optical waveguide component 40.
- the optical waveguide component 30 is a first optical waveguide component in the present embodiment, and is, for example, a silicon photonics chip.
- the optical waveguide component 30 has a connection end face 30 a and a plurality of light incident / exit portions 31.
- the connection end face 30a faces the end face 10a, and in one embodiment, is connected to the end face 10a by PC.
- the plurality of light incident / exit portions 31 are end faces of an optical waveguide extending along the Z direction from the connection end face 30a, and are arranged one-dimensionally along the X direction.
- the plurality of light incident / exit portions 31 are optically coupled to face the plurality of one end faces 20a, respectively.
- the mode field diameter of each light incident / exit section 31 is matched (matched) with the mode field diameter of each end face 20a.
- the shape of each light incident / exit portion 31 is circular, and the shape of the mode field is also circular.
- the optical waveguide component 40 is the second optical waveguide component in the present embodiment, and is, for example, a multicore fiber having a plurality of cores and a clad covering the plurality of cores.
- the optical waveguide component 40 has a connection end surface 40 a and a plurality of light incident / exit portions 41.
- the connection end face 40a faces the end face 10b, and in one embodiment, is connected to the end face 10b by PC.
- the plurality of light incident / exit portions 41 are end surfaces of a plurality of cores extending in the Z direction from the connection end surface 40a, and are optically coupled to face the plurality of other end surfaces 20b, respectively.
- the mode field diameter of each light incident / exit section 41 is matched (matched) with the mode field diameter of each other end face 20b.
- the shape of each light incident / exit section 41 is circular, and the shape of the mode field is also circular.
- the light emitted from each light incident / exit section 31 of the optical waveguide component 30 is incident on one end surface 20a of each optical waveguide 20 and from the other end surface 20b of each optical waveguide 20.
- the light is emitted and incident on each light incident / exit portion 41 of the optical waveguide component 40.
- the light emitted from each light incident / exiting portion 41 is incident on the other end surface 20 b of each optical waveguide 20, is emitted from one end surface 20 a of each optical waveguide 20, and is incident on each light incident / exiting portion 31.
- each optical waveguide 20 is arranged in a one-dimensional shape
- the other end face 20b is arranged in a two-dimensional shape. Therefore, the arrangement of each light incident / exit section 31 is arranged in a one-dimensional manner as seen from the optical axis direction of the light incident / exit section 31 like a silicon photonics chip, for example. Even if, for example, a multi-core fiber is arranged two-dimensionally when viewed from the optical axis direction of the light incident / exiting part 41, the light incident / exiting parts 31, 41 can be optically coupled to each other. it can.
- the arrangement of the one end face 20a and the other end face 20b of each optical waveguide 20 can be freely designed. Therefore, the freedom degree of arrangement
- the optical waveguide member 1 when the optical waveguide component 30 and the optical waveguide component 40 are connected, the light incident / exit portions 31 are arranged one-dimensionally, Even if the emission parts 41 are arranged two-dimensionally and the mode field diameters of the light incident / exit parts 31 and 41 are different from each other, It can connect suitably, raising the freedom degree of arrangement
- the distance between the end surface 10a and the end surface 10b may be 80 times or less the width of the end surface 10a in the arrangement direction of the plurality of optical waveguides 20 on the end surface 10a.
- the optical waveguide member 1 can be reduced in size by reducing the distance between the end surface 10a and the end surface 10b. Thereby, size reduction of the optical module containing this optical waveguide member 1 is realizable.
- the main body 10 and the plurality of optical waveguides 20 may be made of quartz glass. Thereby, the some optical waveguide 20 of the optical waveguide member 1 is suitably realizable using the pulse laser mentioned above.
- the main body 10 and the plurality of optical waveguides 20 are made of quartz glass to which at least one additive selected from the group consisting of potassium, germanium, fluorine, boron, and phosphorus is added. May be. Thereby, since the refractive index of each optical waveguide 20 can be changed efficiently using the above-described pulse laser, a plurality of optical waveguides 20 of the optical waveguide member 1 can be suitably realized.
- each optical waveguide 20 may further include a mode field conversion unit 20c.
- a mode field conversion unit 20 c By providing such a mode field conversion unit 20 c in each optical waveguide 20, a rapid change in the mode field diameter of each optical waveguide 20 is suppressed, and generation of leakage light from each optical waveguide 20 is suppressed, thereby reducing connection loss. can do.
- SYMBOLS 1 Optical waveguide member, 10 ... Main-body part, 10a, 10b ... End surface, 10c ... Upper surface, 10d ... Lower surface, 10e, 10f ... Side surface, 20 ... Optical waveguide, 20a ... One end surface, 20b ... Other end surface, 20c ... Mode field Conversion part, 30, 40 ... Optical waveguide component, 30a, 40a ... Connection end face, 31, 41 ... Light entrance / exit part.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Optical Couplings Of Light Guides (AREA)
- Optical Integrated Circuits (AREA)
Abstract
複数の光入出射部を有する第1の光導波路部品と、複数の光入出射部を有する第2の光導波路部品とに突き合わせて接続される光導波路部材を開示する。光導波路部材は、第1及び第2の端面を有する本体部と、本体部内において第1の端面から第2の端面まで延びる複数の光導波路と、を備える。複数の光導波路の第1端は、一次元状の配列で前記第1の端面にそれぞれ露出しており、複数の光導波路の第2端は、二次元状の配列で前記第2の端面にそれぞれ露出している。各光導波路の第1端のモードフィールド径と各光導波路の第2端のモードフィールド径とは互いに異なる。
Description
本発明は、光導波路部材及び光結合構造に関する。
本出願は、2017年1月19日出願の日本出願第2017-007374号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用する。
本出願は、2017年1月19日出願の日本出願第2017-007374号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用する。
非特許文献1は、LCコネクタ型のマルチコアファイバ(MCF:Multi Core Fiber)にPC(Physical Contact)接続されるファンアウト部品を開示する。このファンアウト部品は、複数のシングルコアファイバの先端部を束ねてファイババンドルとするものである。この先端部では、複数のシングルコアファイバのコアは、その光軸方向から見て二次元状に配置されており、MCFのコアも、その光軸方向から見て二次元状に配置されている。複数のシングルコアファイバのコアとMCFのコアとは、互いに対向している。
非特許文献2は、モードフィールド変換ファイバ(Mode-Field-Converting fiber:MFCファイバ)を開示する。このMFCファイバは、互いに異なるモードフィールドの形状及び寸法を有する光導波路チップと光ファイバとの間に設けられる。MFCファイバの一端は、光ファイバに突き合わせて接続され、MFCファイバの他端は、光導波路チップに突き合わせて接続される。このMFCファイバは、加熱処理をすることによって形成されるテーパ部を有する。このテーパ部では、MFCファイバの一端におけるモードフィールドの形状及び寸法が各光ファイバのモードフィールドの形状及び寸法にそれぞれ整合し、MFCファイバの他端におけるモードフィールドの形状及び寸法が、光導波路チップのモードフィールドの形状及び寸法にそれぞれ整合するように、MFCファイバのモードフィールドの形状及び寸法が変換されている。
島川修、他2名、「LCコネクタ型マルチコアファイバ用ファンアウト」、2015年電子情報通信学会通信ソサイエティ大会通信講演論文集、社団法人電子情報通信学会、B-13-34、2015年8月25日
柳川久治、「モードフィールド変換ファイバー」、光学、日本光学会、第24巻、第5号、284-285頁、1995年5月
本開示の光導波路部材は、複数の光入出射部を有する第1の光導波路部品と、複数の光入出射部を有する第2の光導波路部品とに突き合わせて接続される光導波路部材に関する。この光導波路部材は、第1及び第2の端面を有する本体部と、本体部内において第1の端面から第2の端面まで延びる複数の光導波路と、を備える。複数の光導波路の第1端は、一次元状の配列で第1の端面にそれぞれ露出しており、複数の光導波路の第2端は、二次元状の配列で第2の端面にそれぞれ露出している。各光導波路の第1端のモードフィールド径と各光導波路の第2端のモードフィールド径とは互いに異なる。
[本開示が解決しようとする課題]
非特許文献1に記載された、2つの光導波路部品(ファイババンドル及びMCF)を接続する方式では、各光導波路部品のコア配置が制限されてしまう。これは、一方の光導波路部品であるファイババンドルにおいて、光軸方向から見て複数のシングルコアファイバの存在密度が最も高くなる配置(最密配置)になるようにしか、各コアを配置できないからである。従って、この方式では、一方の光導波路部品のコア配置と他方の光導波路部品のコア配置とが異なるような場合、例えば、一方の光導波路部品のコア配置が一次元状であり、他方の光導波路部品のコア配置が二次元状であるような場合に、これらを接続することが困難となる。
非特許文献1に記載された、2つの光導波路部品(ファイババンドル及びMCF)を接続する方式では、各光導波路部品のコア配置が制限されてしまう。これは、一方の光導波路部品であるファイババンドルにおいて、光軸方向から見て複数のシングルコアファイバの存在密度が最も高くなる配置(最密配置)になるようにしか、各コアを配置できないからである。従って、この方式では、一方の光導波路部品のコア配置と他方の光導波路部品のコア配置とが異なるような場合、例えば、一方の光導波路部品のコア配置が一次元状であり、他方の光導波路部品のコア配置が二次元状であるような場合に、これらを接続することが困難となる。
非特許文献2に記載された方式では、加熱処理により形成されるテーパ部をMFCファイバに設けることによって、モードフィールドの形状及び寸法が互いに異なる光導波路チップ及び光ファイバの接続を実現している。しかし、このようなテーパ部をMFCファイバに形成するためには、MFCファイバの長さを或る程度確保する必要がある。従って、MFCファイバが長尺化し、デバイスが大型化する。
[本開示の効果]
本開示によれば、複数の光入出射部を有する光導波路部品同士を接続する際に、一方の光導波路部品の複数の光入出射部が一次元状に配列されており、他方の光導波路部品の複数の光入出射部が二次元状に配列されている場合であっても、且つ、一方の光導波路部品の光入出射部のモードフィールド径と他方の光導波路部品の光入出射部のモードフィールド径とが互いに異なる場合であっても、これらを好適に接続することができる。
本開示によれば、複数の光入出射部を有する光導波路部品同士を接続する際に、一方の光導波路部品の複数の光入出射部が一次元状に配列されており、他方の光導波路部品の複数の光入出射部が二次元状に配列されている場合であっても、且つ、一方の光導波路部品の光入出射部のモードフィールド径と他方の光導波路部品の光入出射部のモードフィールド径とが互いに異なる場合であっても、これらを好適に接続することができる。
[本発明の実施形態の説明]
最初に本願発明の実施形態の内容を列記して説明する。本願の一実施形態に係る光導波路部材は、複数の光入出射部を有する第1の光導波路部品と、複数の光入出射部を有する第2の光導波路部品とに突き合わせて接続される光導波路部材に関する。この光導波路部材は、第1及び第2の端面を有する本体部と、本体部内において第1の端面から第2の端面まで延びる複数の光導波路と、を備える。複数の光導波路の第1端は、一次元状の配列で第1の端面にそれぞれ露出しており、複数の光導波路の第2端は、二次元状の配列で第2の端面にそれぞれ露出している。各光導波路の第1端のモードフィールド径と各光導波路の第2端のモードフィールド径とは互いに異なる。
最初に本願発明の実施形態の内容を列記して説明する。本願の一実施形態に係る光導波路部材は、複数の光入出射部を有する第1の光導波路部品と、複数の光入出射部を有する第2の光導波路部品とに突き合わせて接続される光導波路部材に関する。この光導波路部材は、第1及び第2の端面を有する本体部と、本体部内において第1の端面から第2の端面まで延びる複数の光導波路と、を備える。複数の光導波路の第1端は、一次元状の配列で第1の端面にそれぞれ露出しており、複数の光導波路の第2端は、二次元状の配列で第2の端面にそれぞれ露出している。各光導波路の第1端のモードフィールド径と各光導波路の第2端のモードフィールド径とは互いに異なる。
上述した光導波路部材では、各光導波路の第1端は一次元状に、第2端は二次元状に配列される。従って、第1の光導波路部品の各光入出射部の配置が一次元状に配列されており、第2の光導波路部品の各光入出射部の配置が二次元状に配列されている場合であっても、これらの光入出射部を相互に光結合させることができる。また、各光導波路の第1端のモードフィールド径と第2端のモードフィールド径とはそれぞれ互いに異なるので、第1及び第2の光導波路部品の光入出射部のモードフィールド径が互いに異なる場合であっても、これらを効率良く接続することができる。従って、上述した光導波路部材によれば、第1及び第2の光導波路部品の接続の際に、第1の光導波路部品の各光入出射部が一次元状に配列されており、第2の光導波路部品の各光入出射部が二次元状に配列されている場合であっても、且つ、これらの光入出射部のモードフィールド径が互いに異なる場合であっても、これらを好適に接続することができる。光導波路部材における光導波路の上述した配置は、例えばフェムト秒レーザといった超短パルスレーザを用いて好適に形成され得る。
上述した光導波路部材では、第1の端面と第2の端面とは、互いに対向し、第1の端面と第2の端面との距離は、第1の端面における複数の光導波路の配列方向での第1の端面の幅の80倍以下であってもよい。このように第1の端面と第2の端面との距離を小さくすることにより、光導波路部材を小型化することができる。これにより、この光導波路部材を含む光モジュールの小型化を実現することができる。
上述した光導波路部材では、本体部及び複数の光導波路は、石英ガラスにより構成されてもよい。これにより、例えば上述したパルスレーザを用いて光導波路部材の複数の光導波路を好適に実現することができる。
上述した光導波路部材では、本体部及び複数の光導波路は、カリウム、ゲルマニウム、フッ素、ホウ素、及びリンからなる群より選択される少なくとも一つの屈折率調整材が添加されている石英ガラスにより構成されてもよい。これにより、例えば上述したパルスレーザを用いて各光導波路の屈折率を効率良く変化させることができるので、光導波路部材の複数の光導波路を好適に実現することができる。
上述した光導波路部材では、各光導波路は、モードフィールド変換部を更に有してもよく、各モードフィールド変換部では、モードフィールド径が、第1端における大きさから第2端における大きさへ17μm/mm以下の変化率で変化してもよい。このようなモードフィールド変換部を各光導波路に設けることにより、各光導波路のモードフィールド径の急激な変化を抑え、各光導波路からの漏れ光の発生を抑えることができる。
上述した光導波路部材では、複数の光導波路の第1端のモードフィールド径は3μm以上5μm以下であってもよいし、複数の光導波路の第2端のモードフィールド径は5μm以上20μm以下であってもよい。複数の光導波路の第2端のモードフィールド径は、複数の光導波路の第1端のモードフィールド径よりも大きくてもよい。複数の光導波路の第1端における光軸は、第1の端面の法線方向に対して角度10°以下の範囲でずれていてもよいし、複数の光導波路の第2端における光軸は、第2の端面の法線方向に対して角度10°以下の範囲でずれていてもよい。 複数の光導波路のそれぞれは、第1及び第2の端面の対向方向に直交する方向から見た際に、少なくとも一部において他の光導波路と交差していてもよい。本体部は、第1及び第2の端面と、互いに対向する上面及び下面と、互いに対向する第1及び第2の側面とによって画定される略直方体形状を呈してもよく、上面及び下面間の距離は80μm以上1000μm以下であり、第1及び第2側面間の距離は80μm以上1000μm以下であってもよい。
本願の一実施形態に係る光結合構造は、上述した構成の何れかを備える光導波路部材と、光導波路部材の第1の端面側に配置される第1の光導波路部品又は光導波路部材の第2の端面側に配置される第2の光導波路部品の少なくとも何れか一方と、を備える。第1の光導波路部品は、一次元状に配置された複数の光入出射部を有し、光導波路部材の第1端それぞれが第1の光導波路部品の光入出射部それぞれに対向して光結合するように、光導波路部材に突き合わせて接続される。 第2の光導波路部品は、二次元状に配置された複数の光入出射部を有し、光導波路部材の第2端それぞれが第2の光導波路部品の光入出射部それぞれに対向して光結合するように、光導波路部材に突き合わせて接続される。この場合、上述した光導波路部材と同様に、各光入出射部が一次元状に配列された第1の光導波路部品と、モードフィールド径が第1の光導波路部品と異なる各光入出射部が二次元状に配列された第2の光導波路部品とを好適に接続した構造とすることができる。
上述した光結合構造では、第1の光導波路部品は、シリコンフォトニクスチップであってもよい。第2の光導波路部品は、複数のコア及び当該複数のコアを覆うクラッドを有するマルチコアファイバであってもよい。また、上述した光結合構造は、第1の光導波路部品と第2の光導波路部品の両方を備えた構成であってもよい。
[本発明の実施形態の詳細]
以下、本発明の実施形態について、図面を参照して詳細に説明する。本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。以下の説明では、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
以下、本発明の実施形態について、図面を参照して詳細に説明する。本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。以下の説明では、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
図1は、本実施形態に係る光導波路部材1の斜視図である。図1には、理解の容易のため、XYZ直交座標系が示されている。図1に示されるように、光導波路部材1は、本体部10と複数の光導波路20とを備えている。本体部10は、略直方体状の外観を有している。複数の光導波路20は、本体部10内に設けられている。本体部10及び複数の光導波路20は同じ材料にて構成される。本体部10及び複数の光導波路20は、例えば石英ガラスにより構成されている。或いは、本体部10及び複数の光導波路20は、例えばカリウム(K)、ゲルマニウム(Ge)、フッ素(F)、ホウ素(B)、及びリン(P)からなる群より選択される少なくとも1つの屈折率調整用の添加材(屈折率調整材)が添加されている石英ガラスにより構成されてもよい。この場合、当該添加物は、本体部10及び複数の光導波路20の全体にわたって添加されていてもよく、本体部10の複数の光導波路20を含む一部分に添加されていてもよい。
本体部10は、端面10a、端面10b、上面10c、下面10d、側面10e、及び側面10fを有する。端面10aと端面10bとは、Z方向において互いに対向して設けられている。一例では、端面10a及び10bは平坦面であり、互いに平行である。上面10cと下面10dとは、Y方向において互いに対向して設けられており、Z方向に沿って延びている。一例では、上面10c及び下面10dは平坦面であり、互いに平行である。側面10eと側面10fとは、X方向において互いに対向して設けられており、Z方向に沿って延びている。一例では、側面10e及び10fは平坦面であり、互いに平行である。端面10aと端面10bとの距離は1mm以上で且つ端面10aにおける複数の光導波路20の配列方向での端面10aの幅の80倍以下であり、一実施例では5mmである。上面10cと下面10dとの距離、及び側面10eと側面10fとの距離は80μm以上1000μm以下であり、一実施例では125μmである。端面10aと端面10bとの距離が10mm以下であり、上面10cと下面10dとの距離、及び側面10eと側面10fとの距離がそれぞれ125μmである場合、本体部10の体積は0.16mm3以下となる。
複数の光導波路20は、端面10aから端面10bまで延びている。複数の光導波路20の一端面(一端)20aは端面10aに含まれ、複数の光導波路20の他端面(他端)20bは端面10bに含まれる。接続される光導波路部品30,40の光入出射部31,41(後述する図4参照)と、一端面20a及び他端面20bとの屈折率の違いに応じて、一端面20a及び他端面20bにおいて光はそれぞれ屈折するので、各一端面20aにおける光軸の方向と端面10aの法線方向は互いに一致するとは限らない。すなわち、複数の光導波路20の一端面20aにおける光軸は、端面10aの法線方向に対してずれていてもよく、そのずれ量は10°以下が好ましい。同様に、各他端面20bにおける光軸の方向と端面10bの法線方向も互いに一致するとは限らない。すなわち、複数の光導波路20の他端面20bにおける光軸は、端面10bの法線方向に対してずれていてもよく、そのずれ量は10°以下が好ましい。端面10bにおける各他端面20bのモードフィールド径と、端面10aにおける各一端面20aのモードフィールド径とは、それぞれ互いに異なっている。
ここで、図2は、光導波路部材1の端面10aを示す正面図である。図2に示されるように、一実施例では、複数の一端面20aの形状は円形状であり、モードフィールドの形状も同様に円形状である。複数の一端面20aのモードフィールド径は例えば3μm以上5μm以下である。複数の一端面20aは、後述する光導波路部品30の光入出射部31(図4参照)の配置に対応する位置にそれぞれ露出している。具体的には、端面10aにおいて複数の一端面20aは一次元状に配列されている。一実施例では、4つの一端面20aが、X方向に沿って等間隔に且つ一列に並んでいる。図3は、光導波路部材1の端面10bを示す背面図である。図3に示されるように、一実施例では、複数の他端面20bの形状は円形状であり、モードフィールドの形状も同様に円形状である。複数の他端面20bのモードフィールド径は例えば5μm以上20μm以下であり、複数の一端面20aのモードフィールド径よりも大きい。複数の他端面20bは、後述する光導波路部品40の光入出射部41(図4参照)の配置に対応する位置にそれぞれ露出している。具体的には、端面10bにおいて複数の他端面20bは二次元状に配列されている。一実施例では、X方向に沿って並ぶ2つの他端面20bが、Y方向に沿って2列にわたって配置されている。光導波路20では、一次元状の配列から二次元状の配列に変換される際に、端面10a,10bの対向方向(Z方向)に直交するY方向から見て、光導波路20の少なくとも一部が他の光導波路と交差するような構成であってもよい(図4参照)。
再び図1を参照する。各光導波路20は、端面10aから端面10bまでの間に、各光導波路20のモードフィールド径が変化するモードフィールド変換部20cを含む。一実施例では、図1に示されるように、端面10aから端面10bまでの各光導波路20の全範囲がモードフィールド変換部20cである。モードフィールド変換部20cは、端面10aから端面10bまでの範囲において部分的に形成されていてもよい。このモードフィールド変換部20cでは、モードフィールド径が、各一端面20aにおける大きさから各他端面20bにおける大きさへ滑らかに(一例として17μm/mm以下の変化率で)変化している。換言すれば、端面10bに近づくに従い、各一端面20aのモードフィールド径から、各他端面20bのモードフィールド径に次第に近づくように、各光導波路20のモードフィールド径が変化している。
このような構成を有する複数の光導波路20は、例えばパルスレーザによるレーザ加工を用いて本体部10内に形成される。パルスレーザは、例えばチタンサファイアフェムト秒レーザ(Ti-sapphire Femtosecond Laser)である。このパルスレーザから出力される光パルスの集光点が本体部10内に形成されると、その集光点において本体部10の屈折率が変化する。従って、この集光点を走査することによって、軌道がX方向だけでなくY方向にも変化するような三次元的な複数の光導波路20が、本体部10内に形成される。ここで、本体部10及び複数の光導波路20が、上述した添加材が添加されている石英ガラスにより構成されている場合、当該添加材の違いによって、光パルスの集光点における本体部10の屈折率の変化の様子が異なる。例えば当該添加材がカリウム、ゲルマニウム、又はリンである場合には、光パルスの集光点における屈折率は、その周囲の屈折率よりも高くなる。従って、この場合には、光パルスの集光点の軌道に沿って複数の光導波路20(コア領域)が形成される。また、これらの添加剤の違いによって、その光パルスの集光点における屈折率の変化量が異なる。これに対して、例えば当該添加材がフッ素又はホウ素である場合には、光パルスの集光点における屈折率は、その周囲の屈折率よりも低くなる。従って、この場合には、光パルスの集光点の軌道に沿って複数の光導波路20の周囲(クラッド領域)が形成される。また、これらの添加剤の種類によって、その光パルスの集光点における屈折率の変化量が異なる。
図4は、本実施形態に係る光導波路部材1を介して、光導波路部品30,40が互いに接続される様子を示す上面図である。また、図4に示されたXZ座標系は、図1に示されたXYZ直交座標系に対応している。図4に示されるように、光導波路部材1は、光導波路部品30と光導波路部品40との間に設けられ、Z方向に沿って光導波路部品30,40に突き合わせて接続される。光導波路部材1と光導波路部品30又は光導波路部品40の少なくとも一方とから光結合構造が形成される。光導波路部品30は、本実施形態における第1の光導波路部品であり、例えばシリコンフォトニクスチップ(Silicon Photonics chip)である。光導波路部品30は、接続端面30aと、複数の光入出射部31とを有している。接続端面30aは、端面10aに対向し、一実施例では端面10aとPC接続される。複数の光入出射部31は、接続端面30aからZ方向に沿って延びる光導波路の端面であり、X方向に沿って一次元状に並んでいる。複数の光入出射部31は、複数の一端面20aとそれぞれ対向して光結合される。各光入出射部31のモードフィールド径は、各一端面20aのモードフィールド径にそれぞれ整合(一致)している。一実施例では、各光入出射部31の形状は円形状であり、モードフィールドの形状もまた円形状である。
光導波路部品40は、本実施形態における第2の光導波路部品であり、例えば複数のコア及び当該複数のコアを覆うクラッドを有するマルチコアファイバである。光導波路部品40は、接続端面40aと、複数の光入出射部41とを有している。接続端面40aは、端面10bに対向し、一実施例では端面10bとPC接続される。複数の光入出射部41は、接続端面40aからZ方向に沿って延びる複数のコアの端面であり、複数の他端面20bとそれぞれ対向して光結合される。各光入出射部41のモードフィールド径は、各他端面20bのモードフィールド径にそれぞれ整合(一致)している。一実施例では、各光入出射部41の形状は円形状であり、モードフィールドの形状もまた円形状である。
本実施形態の光導波路部材1では、光導波路部品30の各光入出射部31から出射された光は、各光導波路20の一端面20aにそれぞれ入射し、各光導波路20の他端面20bからそれぞれ出射され、光導波路部品40の各光入出射部41にそれぞれ入射する。また、各光入出射部41から出射された光は、各光導波路20の他端面20bにそれぞれ入射し、各光導波路20の一端面20aからそれぞれ出射され、各光入出射部31にそれぞれ入射する。
以上に説明した、本実施形態に係る光導波路部材1によって得られる効果について説明する。図1~図3に示されるように、各光導波路20の一端面20aは一次元状に、他端面20bは二次元状に配列される。従って、各光入出射部31の配置が、例えばシリコンフォトニクスチップのように該光入出射部31の光軸方向から見て一次元状に配列されており、各光入出射部41の配置が、例えばマルチコアファイバのように該光入出射部41の光軸方向から見て二次元状に配列されている場合であっても、各光入出射部31,41を相互に光結合させることができる。また、非特許文献1に記載された構成とは異なり、各光導波路20の一端面20a及び他端面20bの配置を自由に設計することが可能である。従って、各光入出射部31,41の配置の自由度を高めることができる。また、各一端面20aのモードフィールド径と、各他端面20bのモードフィールド径とがそれぞれ互いに異なるので、各光入出射部31のモードフィールド径と、各光入出射部41のモードフィールド径とが互いに異なる場合であっても、これらを効率良く接続することができる。従って、本実施形態に係る光導波路部材1によれば、光導波路部品30と光導波路部品40との接続の際に、各光入出射部31が一次元状に配列されており、各光入出射部41が二次元状に配列されている場合であっても、且つ、各光入出射部31,41のモードフィールド径が互いに異なる場合であっても、各光入出射部31,41の配置の自由度を高めつつ、好適に接続することができる。
本実施形態のように、端面10aと端面10bとの距離は、端面10aにおける複数の光導波路20の配列方向での端面10aの幅の80倍以下であってもよい。このように端面10aと端面10bとの距離を小さくすることにより、光導波路部材1を小型化することができる。これにより、この光導波路部材1を含む光モジュールの小型化を実現することができる。
本実施形態のように、本体部10及び複数の光導波路20は、石英ガラスにより構成されてもよい。これにより、上述したパルスレーザを用いて光導波路部材1の複数の光導波路20を好適に実現することができる。
本実施形態のように、本体部10及び複数の光導波路20は、カリウム、ゲルマニウム、フッ素、ホウ素、及びリンからなる群より選択される少なくとも1つの添加剤が添加されている石英ガラスにより構成されてもよい。これにより、上述したパルスレーザを用いて、各光導波路20の屈折率を効率良く変化させることができるので、光導波路部材1の複数の光導波路20を好適に実現することができる。
本実施形態のように、各光導波路20は、モードフィールド変換部20cを更に有してもよい。このようなモードフィールド変換部20cを各光導波路20に設けることにより、各光導波路20のモードフィールド径の急激な変化を抑え、各光導波路20からの漏れ光の発生を抑えて接続損失を低減することができる。
1…光導波路部材、10…本体部、10a,10b…端面、10c…上面、10d…下面、10e,10f…側面、20…光導波路、20a…一端面、20b…他端面、20c…モードフィールド変換部、30,40…光導波路部品、30a,40a…接続端面、31,41…光入出射部。
Claims (15)
- 複数の光入出射部を有する第1の光導波路部品と、複数の光入出射部を有する第2の光導波路部品とに突き合わせて接続される光導波路部材であって、
第1及び第2の端面を有する本体部と、
前記本体部内において前記第1の端面から前記第2の端面まで延びる複数の光導波路と、
を備え、
前記複数の光導波路の第1端は、一次元状の配列で前記第1の端面にそれぞれ露出しており、
前記複数の光導波路の第2端は、二次元状の配列で前記第2の端面にそれぞれ露出しており、
各光導波路の前記第1端のモードフィールド径と各光導波路の前記第2端のモードフィールド径とは互いに異なる、光導波路部材。 - 前記第1の端面と前記第2の端面とは、互いに対向し、
前記第1の端面と前記第2の端面との距離は、前記第1の端面における前記複数の光導波路の配列方向での前記第1の端面の幅の80倍以下である、
請求項1に記載の光導波路部材。 - 前記本体部及び前記複数の光導波路は、石英ガラスにより構成される、
請求項1または請求項2に記載の光導波路部材。 - 前記本体部及び前記複数の光導波路は、カリウム、ゲルマニウム、フッ素、ホウ素、及びリンからなる群より選択される少なくとも一つの屈折率調整材が添加されている石英ガラスにより構成される、
請求項1または請求項2に記載の光導波路部材。 - 各光導波路は、モードフィールド変換部を更に有し、
各モードフィールド変換部では、モードフィールド径が、前記第1端における大きさから前記第2端における大きさへ17μm/mm以下の変化率で変化している、
請求項1~請求項4のいずれか1項に記載の光導波路部材。 - 前記複数の光導波路の前記第1端のモードフィールド径は、3μm以上5μm以下である、
請求項1~請求項5のいずれか1項に記載の光導波路部材。 - 前記複数の光導波路の前記第2端のモードフィールド径は、5μm以上20μm以下である、
請求項1~請求項6のいずれか1項に記載の光導波路部材。 - 前記複数の光導波路の前記第2端のモードフィールド径は、前記複数の光導波路の前記第1端のモードフィールド径よりも大きい、
請求項1~請求項7のいずれか1項に記載の光導波路部材。 - 前記複数の光導波路の前記第1端における光軸は、前記第1の端面の法線方向に対して角度10°以下の範囲でずれている、
請求項1~請求項8のいずれか1項に記載の光導波路部材。 - 前記複数の光導波路の前記第2端における光軸は、前記第2の端面の法線方向に対して角度10°以下の範囲でずれている、
請求項1~請求項9のいずれか1項に記載の光導波路部材。 - 前記複数の光導波路のそれぞれは、前記第1及び第2の端面の対向方向に直交する方向から見た際に、少なくとも一部において他の光導波路と交差する、
請求項1~請求項10のいずれか1項に記載の光導波路部材。 - 前記本体部は、前記第1及び第2の端面と、互いに対向する上面及び下面と、互いに対向する第1及び第2の側面とによって画定される略直方体形状を呈し、
前記上面及び下面間の距離は、80μm以上1000μm以下であり、
前記第1及び第2側面間の距離は、80μm以上1000μm以下である、
請求項1~請求項11のいずれか1項に記載の光導波路部材。 - 請求項1~12のいずれか1項に記載の光導波路部材と、
前記光導波路部材の前記第1の端面側に配置される第1の光導波路部品又は前記光導波路部材の前記第2の端面側に配置される第2の光導波路部品の少なくとも何れか一方と、
を備え、
前記第1の光導波路部品は、一次元状に配置された複数の光入出射部を有し、前記光導波路部材の前記第1端それぞれが前記第1の光導波路部品の前記光入出射部それぞれに対向して光結合するように、前記光導波路部材に突き合わせて接続され、
前記第2の光導波路部品は、二次元状に配置された複数の光入出射部を有し、前記光導波路部材の前記第2端それぞれが前記第2の光導波路部品の前記光入出射部それぞれに対向して光結合するように、前記光導波路部材に突き合わせて接続されている、光結合構造。 - 前記第1の光導波路部品は、シリコンフォトニクスチップである、
請求項13に記載の光結合構造。 - 前記第2の光導波路部品は、複数のコア及び当該複数のコアを覆うクラッドを有するマルチコアファイバである、
請求項13または請求項14に記載の光結合構造。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017007374 | 2017-01-19 | ||
JP2017-007374 | 2017-01-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018135411A1 true WO2018135411A1 (ja) | 2018-07-26 |
Family
ID=62908385
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/000673 WO2018135411A1 (ja) | 2017-01-19 | 2018-01-12 | 光導波路部材及び光結合構造 |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW201830071A (ja) |
WO (1) | WO2018135411A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021177367A1 (ja) | 2020-03-06 | 2021-09-10 | 住友電気工業株式会社 | 光導波路デバイスおよびそれを含む光通信システム |
CN113721323A (zh) * | 2021-08-19 | 2021-11-30 | 天津大学 | 新型多芯光纤耦合装置及制备方法 |
US11880071B2 (en) | 2021-08-23 | 2024-01-23 | Corning Research & Development Corporation | Optical assembly for interfacing waveguide arrays, and associated methods |
US11914193B2 (en) | 2021-06-22 | 2024-02-27 | Corning Research & Development Corporation | Optical assembly for coupling with two-dimensionally arrayed waveguides and associated methods |
EP4403967A1 (en) * | 2023-01-17 | 2024-07-24 | Corning Research & Development Corporation | Multicore optical fiber core configuration transformer |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230393352A1 (en) * | 2022-06-06 | 2023-12-07 | Taiwan Semiconductor Manufacturing Company | Multi-layer waveguide optical coupler |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60191208A (ja) * | 1984-03-12 | 1985-09-28 | Kawakami Shojiro | 光回路素子とその製造方法 |
US4703472A (en) * | 1985-03-14 | 1987-10-27 | Carl-Zeiss-Stiftung | Wavelength multi/demultiplexer |
JP2005140821A (ja) * | 2003-11-04 | 2005-06-02 | Matsushita Electric Ind Co Ltd | 光導波路とその製造方法 |
JP2011018013A (ja) * | 2009-01-20 | 2011-01-27 | Sumitomo Electric Ind Ltd | 光通信システム及び配列変換器 |
JP2012004441A (ja) * | 2010-06-18 | 2012-01-05 | Furukawa Electric Co Ltd:The | 光増幅装置 |
JP2013076893A (ja) * | 2011-09-30 | 2013-04-25 | National Institute Of Advanced Industrial & Technology | 多層導波路型光入出力端子 |
-
2018
- 2018-01-12 WO PCT/JP2018/000673 patent/WO2018135411A1/ja active Application Filing
- 2018-01-16 TW TW107101525A patent/TW201830071A/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60191208A (ja) * | 1984-03-12 | 1985-09-28 | Kawakami Shojiro | 光回路素子とその製造方法 |
US4703472A (en) * | 1985-03-14 | 1987-10-27 | Carl-Zeiss-Stiftung | Wavelength multi/demultiplexer |
JP2005140821A (ja) * | 2003-11-04 | 2005-06-02 | Matsushita Electric Ind Co Ltd | 光導波路とその製造方法 |
JP2011018013A (ja) * | 2009-01-20 | 2011-01-27 | Sumitomo Electric Ind Ltd | 光通信システム及び配列変換器 |
JP2012004441A (ja) * | 2010-06-18 | 2012-01-05 | Furukawa Electric Co Ltd:The | 光増幅装置 |
JP2013076893A (ja) * | 2011-09-30 | 2013-04-25 | National Institute Of Advanced Industrial & Technology | 多層導波路型光入出力端子 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021177367A1 (ja) | 2020-03-06 | 2021-09-10 | 住友電気工業株式会社 | 光導波路デバイスおよびそれを含む光通信システム |
US11914193B2 (en) | 2021-06-22 | 2024-02-27 | Corning Research & Development Corporation | Optical assembly for coupling with two-dimensionally arrayed waveguides and associated methods |
CN113721323A (zh) * | 2021-08-19 | 2021-11-30 | 天津大学 | 新型多芯光纤耦合装置及制备方法 |
CN113721323B (zh) * | 2021-08-19 | 2023-07-14 | 天津大学 | 新型多芯光纤耦合装置及制备方法 |
US11880071B2 (en) | 2021-08-23 | 2024-01-23 | Corning Research & Development Corporation | Optical assembly for interfacing waveguide arrays, and associated methods |
EP4403967A1 (en) * | 2023-01-17 | 2024-07-24 | Corning Research & Development Corporation | Multicore optical fiber core configuration transformer |
Also Published As
Publication number | Publication date |
---|---|
TW201830071A (zh) | 2018-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018135411A1 (ja) | 光導波路部材及び光結合構造 | |
JP6013953B2 (ja) | マルチコアファイバ接続用ファンイン・ファンアウトデバイス及び光接続装置、並びに光接続方式 | |
US9703041B2 (en) | Multi-channel optical connector with coupling lenses | |
EP2998770B1 (en) | Optical connector and manufacturing method for optical connector | |
JP5876612B2 (ja) | 非円形状の光ビームに信号ビームを結合するための光ファイバーカプラー | |
US11022755B2 (en) | Demountable edge couplers with micro-mirror optical bench for photonic integrated circuits | |
CN103728696B (zh) | 一种1×n光纤耦合器 | |
CN107111085B (zh) | 绝热光学耦合系统 | |
US20140294339A1 (en) | Compact optical fiber splitters | |
JP7010244B2 (ja) | 光接続部品及び光結合構造 | |
US20220276452A1 (en) | Backside fiber attachment to silicon photonics chip | |
US9229170B1 (en) | Two-port optical devices using mini-collimators | |
Kopp et al. | Pitch reducing optical fiber array for dense optical interconnect | |
US20160238789A1 (en) | Compact optical fiber splitters | |
JP5790428B2 (ja) | 結合光学系、ファイバ光学系 | |
Kopp et al. | Vanishing core optical waveguides for coupling, amplification, sensing, and polarization control | |
US20170017040A1 (en) | Collimating lens | |
WO2006129774A1 (en) | Multimode optical combiner and process for producing the same | |
Wlodawski et al. | A new generation of ultra-dense optical I/O for silicon photonics | |
US20130272658A1 (en) | Multi-mode multi-fiber connection with expanded beam | |
US20150063765A1 (en) | Device-to-device optical connectors | |
US20230090783A1 (en) | Optical wiring component | |
US20230056995A1 (en) | Expanded beam optical ferrules | |
JP6554891B2 (ja) | 光コネクタ | |
Tekin et al. | Fibre-array optical interconnection for silicon photonics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18742313 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18742313 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |