WO2018135111A1 - Needle wire - Google Patents

Needle wire Download PDF

Info

Publication number
WO2018135111A1
WO2018135111A1 PCT/JP2017/040755 JP2017040755W WO2018135111A1 WO 2018135111 A1 WO2018135111 A1 WO 2018135111A1 JP 2017040755 W JP2017040755 W JP 2017040755W WO 2018135111 A1 WO2018135111 A1 WO 2018135111A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
latch
wire
needle
Prior art date
Application number
PCT/JP2017/040755
Other languages
French (fr)
Japanese (ja)
Inventor
智弘 山川
Original Assignee
トクセン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トクセン工業株式会社 filed Critical トクセン工業株式会社
Priority to CN201780063288.9A priority Critical patent/CN109844155B/en
Publication of WO2018135111A1 publication Critical patent/WO2018135111A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21GMAKING NEEDLES, PINS OR NAILS OF METAL
    • B21G1/00Making needles used for performing operations
    • B21G1/06Making needles used for performing operations of needles with hook or barb, e.g. crochet hooks
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B35/00Details of, or auxiliary devices incorporated in, knitting machines, not otherwise provided for
    • D04B35/02Knitting tools or instruments not provided for in group D04B15/00 or D04B27/00

Definitions

  • the present invention relates to various needles such as knitted needles, felt needles, sewing needles, fishing hooks, and lines that can be processed into parts of these needles.
  • Needles are used for various purposes.
  • a typical material for the needle is metal.
  • Various proposals regarding the needle material have been made.
  • JP-A-4-88149 discloses a needle that is applied to a textile machine. This needle is formed from carbon steel having a predetermined composition. As examples of needles, sewing needles, knitted needles and felt needles are disclosed.
  • Japanese Patent Laid-Open No. 5-320824 discloses a line for a fishing hook. This line is formed from carbon steel having a predetermined composition.
  • a general knitted needle has a main part and a latch.
  • the latch is pivotally attached to the main portion and can swing with respect to the main portion.
  • a loop formed by the main portion and the latch holds the yarn.
  • Knitting can be manufactured by an automatic knitting machine having the knit needle.
  • the main part is formed by plastic working (punching, bending, etc.) on the plate.
  • the latch is formed by plastic working on the wire from the viewpoint of manufacturing cost. This wire is obtained by drawing or rolling. The latch is attached to the main part. Thereafter, the assembly of the main part and the latch is quenched and tempered to obtain a knitted needle.
  • the material of the main part is suitable for punching.
  • the material of the latch is suitable for wire drawing.
  • the material of the main part is different from the material of the latch. Therefore, quenching conditions suitable for the main part are not suitable for latches. On the other hand, the quenching conditions suitable for the latch are not suitable for the main part.
  • a knitted needle obtained by quenching and tempering an assembly of a main part and a latch either the main part or the latch has insufficient hardness. When this knitted needle is used repeatedly, wear proceeds at an early stage in either the main portion or the latch. In a knitted needle that has undergone wear, a meshing failure occurs between the main portion and the latch. Knitted needles that have become worn must be replaced. The durability of this knitted needle is insufficient.
  • An object of the present invention is to provide a wire from which a needle having excellent durability can be obtained.
  • the wire for a needle according to the present invention is 0.95 mass% or more and 1.03 mass% or less C, 0.15 mass% or more and 0.35 mass% or less Si, 0.60 mass% or more and 0.80 mass% or less.
  • This line contains carbide particles in its metallographic structure.
  • the average particle size of the carbide is 0.10 ⁇ m or more and 1.0 ⁇ m or less.
  • the area ratio of carbide is 10% or more and 30% or less.
  • the S content in the steel is 0.003% or less.
  • the Vickers hardness of the wire is 200 or more and 300 or less.
  • ⁇ A suitable application for this line is the latch of knitted needles.
  • the method for manufacturing a needle wire according to the present invention includes: A step of preparing a bus bar and a step of repeatedly applying heat treatment and plastic working to the bus bar to lengthen and reduce the diameter of the bus bar.
  • This line contains carbide particles in its metallographic structure.
  • the average particle size of the carbide is 0.10 ⁇ m or more and 1.0 ⁇ m or less.
  • the area ratio of this carbide is 10% or more and 30% or less.
  • the manufacturing method comprises: The method further includes a step of annealing the elongated and thinned bus bar to obtain a spheroidized structure.
  • the composition and structure are appropriate.
  • the needle obtained from this line is excellent in durability.
  • FIG. 1 is a perspective view showing a part of a needle line according to an embodiment of the present invention.
  • FIG. 2 is a front view of a portion of a knitted needle having a latch obtained from the line of FIG.
  • FIG. 3 is a photomicrograph showing the metallographic structure of the line of FIG.
  • FIG. 4 is a histogram showing the relationship between the carbide particle size and the number of particles in the metal structure of FIG.
  • the needle wire 2 shown in FIG. 1 is made of steel.
  • this line 2 is the material of the latch of the knitted needle.
  • the line 2 is cut to a predetermined length, and plastic processing is performed on the line 2 to obtain a latch.
  • FIG. 2 shows a part of the knitted needle 6 having the latch 4.
  • the knitted needle 6 has a main portion 8 and a shaft 10 in addition to the latch 4.
  • the latch 4 is attached to the main portion 8 by a shaft 10. As indicated by an arrow in FIG. 2, the latch 4 can swing with respect to the main portion 8 about the shaft 10.
  • the fallen latch 4 is indicated by a solid line 2
  • the raised latch 4 is indicated by a virtual line.
  • a loop 12 is formed by the latch 4 and the main portion 8.
  • the loop 12 holds a yarn for knitting.
  • the latch 4 may swing by means other than the shaft 10.
  • the plate is punched and the plate is bent to obtain the main portion 8.
  • the latch 4 is obtained from the line 2.
  • the latch 4 is attached to the main portion 8. Thereafter, the assembly of the main portion 8 and the latch 4 is quenched and tempered.
  • composition of the steel of this wire 2 is as follows.
  • C 0.95 mass% or more and 1.03 mass% or less Si: 0.15 mass% or more and 0.35 mass% or less
  • Mn 0.60 mass% or more and 0.80 mass% or less
  • Cr 0.35 mass% or more 0.45 mass% or less
  • Mo 0.01 mass% or more and 0.05 mass% or less
  • P 0.026 mass% or less
  • Remaining Fe and inevitable impurities
  • C is an interstitial solid solution element.
  • the latch 4 including an appropriate amount of C has a high hardness.
  • C contributes to the strength of the latch 4.
  • C generates carbides in the tissue. This carbide contributes to the wear resistance of the latch 4.
  • the amount of C is preferably 0.95% by mass or more, particularly preferably 0.97% by mass or more. From the viewpoint of the cold workability of the wire 2, this amount is preferably 1.03% by mass or less, and particularly preferably 1.01% by mass or less.
  • Si functions as a deoxidizer during refining.
  • the latch 4 containing an appropriate amount of Si has a high hardness. Si contributes to the strength of the latch 4. From these viewpoints, the amount of Si is preferably 0.15% by mass or more, particularly preferably 0.20% by mass or more. From the viewpoint of the cold workability of the wire 2, this amount is preferably 0.35% by mass or less, particularly preferably 0.30% by mass or less.
  • Mn functions as a deoxidizer during ingot melting. Further, Mn suppresses the adverse effect of S, which is an impurity. From these viewpoints, the amount of Mn is preferably 0.60% by mass or more, and particularly preferably 0.65% by mass or more. From the viewpoint of the workability of the wire 2, this amount is preferably 0.80% by mass or less, and particularly preferably 0.75% by mass or less.
  • the latch 4 containing Cr is excellent in corrosion resistance. Cr combines with C to form a carbide. This carbide contributes to the wear resistance of the latch 4.
  • the amount of Cr is preferably 0.35% by mass or more, and particularly preferably 0.37% by mass or more. From the viewpoint of the cold workability of the wire 2 and the material cost of the knitted needle 6, this amount is preferably 0.45% by mass or less, particularly preferably 0.43% by mass or less.
  • the latch 4 is obtained through quenching and tempering.
  • the latch 4 containing Mo has a sufficient hardness after tempering.
  • the latch 4 is excellent in strength.
  • Mo combines with C to form a carbide. This carbide contributes to the wear resistance of the latch 4.
  • the amount of Mo is preferably 0.01% by mass or more, and particularly preferably 0.02% by mass or more. From the viewpoint of the cold workability of the wire 2, this amount is preferably 0.05% by mass or less, particularly preferably 0.04% by mass or less.
  • Ni increases the hardenability of steel.
  • the latch 4 containing Ni is excellent in toughness.
  • the amount of Ni is preferably 0.01% by mass or more, and particularly preferably 0.02% by mass or more.
  • Ni is expensive. From the viewpoint of the material cost of the knitted needle 6, the amount of Ni is preferably 0.10% by mass or less, and particularly preferably 0.07% by mass or less.
  • a typical impurity is P.
  • P segregates at the grain boundaries.
  • P inhibits the cold workability of the wire 2.
  • P decreases the strength of the latch 4. From these viewpoints, the smaller the amount of P, the better.
  • this amount is preferably 0.026% by mass or less, particularly preferably 0.010% by mass or less.
  • the amount of P is zero.
  • S inhibits the cold workability of the wire 2.
  • S combines with Mn or the like to form inclusions. This inclusion reduces the strength of the latch 4. From this viewpoint, the smaller the amount of S, the better. Specifically, this amount is preferably 0.003% by mass or less, and particularly preferably 0.001% by mass or less. Ideally, the amount of S is zero.
  • This line 2 includes a large number of carbide particles in its metal structure. These carbide particles have an average particle size of 0.10 ⁇ m or more and 1.0 ⁇ m or less.
  • the contact area between the carbide and the matrix is not excessive. Therefore, the amount of C dissolved in the matrix at the time of quenching and tempering of the knitted needle 6 is not excessive. Therefore, the hardness of the latch 4 is not too high.
  • the average particle size is particularly preferably 0.11 ⁇ m or more.
  • the average particle size is more preferably equal to or less than 0.6 ⁇ m, and particularly preferably equal to or less than 0.42 ⁇ m.
  • the latch 4 obtained from the wire 2 in which the average particle diameter of the carbide particles is 0.10 ⁇ m or more and 1.0 ⁇ m or less has an appropriate hardness.
  • the difference between the hardness of the latch 4 and the hardness of the main portion 8 can be reduced. With this knitted needle 6, uneven wear is unlikely to occur. This knitted needle 6 is excellent in durability.
  • the area ratio of carbide particles in the metal structure is 10% or more and 30% or less.
  • the area ratio is more preferably 15% or more, and particularly preferably 17% or more.
  • the area ratio is more preferably equal to or less than 25%, and particularly preferably equal to or less than 22%.
  • the latch 4 obtained from the line 2 having an area ratio of 10% or more and 30% or less has an appropriate hardness.
  • the difference between the hardness of the latch 4 and the hardness of the main portion 8 can be reduced. With this knitted needle 6, uneven wear is unlikely to occur. This knitted needle 6 is excellent in durability.
  • Image analysis software “Image J” is used to measure the average particle size and area ratio of carbides.
  • a cross section along the radial direction of the line 2 is taken with a scanning electron microscope, and an SEM photograph with a magnification of 5000 times is obtained.
  • An example of this photograph is shown in FIG.
  • the image file of this photograph is binarized by the image analysis software, and the region of carbide particles and the other region are color-coded.
  • the area of each carbide particle is calculated. A circle having the same area as this area is assumed, and the diameter of this circle is the diameter of this particle.
  • the diameter and the number of carbides having a diameter of 0.05 ⁇ m or more are histogrammed. An example of a histogram is shown in FIG.
  • the reason for excluding carbides with a diameter less than 0.05 ⁇ m from the count is: (1) Carbides having a diameter of less than 0.05 ⁇ m are extremely small, and therefore do not have a significant effect on the area ratio and the characteristics of the wire 2. And (2) It is difficult to detect a carbide having a diameter of less than 0.05 ⁇ m. There are two points.
  • the average particle size of the carbide is calculated. Further, the ratio of the total area of carbides having a diameter of 0.05 ⁇ m or more to the total area of the photograph in FIG. 3 is calculated as the area ratio.
  • the number of carbide particles is 480
  • the maximum carbide particle diameter is 2.49 ⁇ m
  • the average particle diameter of the carbide particles is 0.42 ⁇ m
  • the area ratio is 16. 5%.
  • the Vickers hardness of the wire 2 is preferably 200 or more and 300 or less.
  • the latch 4 having an appropriate hardness can be obtained by quenching and tempering the wire 2 having a hardness within this range.
  • the difference between the hardness of the latch 4 and the hardness of the main portion 8 can be reduced. With this knitted needle 6, uneven wear is unlikely to occur.
  • This knitted needle 6 is excellent in durability.
  • plastic processing of the line 2 to the latch 4 is easy. From these viewpoints, the hardness is particularly preferably not less than 210 and not more than 250.
  • Vickers hardness is measured according to the provisions of “JIS Z 2244”. The measurement is made with a hardness meter “MVK-G1” manufactured by Akashi Seisakusho. The load at the time of measurement is 200 gf.
  • this wire 2 In the production of this wire 2, an ingot is first obtained by melting. The ingot is hot-rolled to obtain a bus bar. The bus bar is repeatedly subjected to heat treatment and plastic working. A typical heat treatment is patenting. A pearlite structure is obtained by patenting. Typical plastic working includes cold drawing and cold rolling. Cold wire drawing is preferred. By repeating the heat treatment and the plastic working, the bus bar is elongated and the diameter is reduced. This bus bar is annealed. The structure is spheroidized by annealing, and a line 2 is obtained. After annealing, plastic processing may be further performed to obtain the wire 2. A typical diameter of the wire 2 is 0.1 mm or greater and 1.0 mm or less.
  • the annealing temperature is preferably 630 ° C. or higher and 850 ° C. or lower.
  • a spheroidized structure can be obtained by annealing at a temperature of 630 ° C. or higher. In other words, it is possible to obtain a structure in which distortion caused by plastic working is removed by annealing at a temperature of 630 ° C. or higher.
  • the hardness of the latch 4 obtained from this line 2 is not excessive.
  • the annealing temperature is more preferably 640 ° C. or higher, and particularly preferably 660 ° C. or higher.
  • the annealing with a temperature of 850 ° C. or lower suppresses the formation of a pearlite structure.
  • the hardness of the latch 4 obtained from this line 2 is not too small.
  • the annealing temperature is preferably 830 ° C. or lower, and particularly preferably 810 ° C. or lower.
  • the bus bar is held at the above temperature for a predetermined time.
  • the holding time is preferably 2.0 hours or more and 24 hours or less. In annealing in which the holding time is 2.0 hours or more, an appropriate temperature can be adopted. From this viewpoint, the holding time is preferably 3.0 hours or more, particularly preferably 3.5 hours or more. In annealing where the holding time is 24 hours or less, the energy cost is low. From this viewpoint, the holding time is particularly preferably 20 hours or less.
  • Example 1 An ingot was obtained from the molten metal prepared with the components. The ingot was hot-rolled to obtain a bus bar. The diameter of this bus bar was 5.5 mm. The bus bar was repeatedly subjected to patenting and cold drawing. By these cold wire drawing, the bus bar was elongated and reduced in diameter. The bus bar was annealed to obtain a latch line. In this annealing, the temperature was 670 ° C. and the holding time was 4.0 hours. A spheroidized structure was obtained by annealing.
  • the composition of this line was as follows: C: 0.97 mass% Si: 0.24 mass% Mn: 0.69% by mass Cr: 0.40 mass% Mo: 0.03 mass% Ni: 0.02 mass% P: 0.01% by mass S: 0.002 mass% Remainder: Fe and inevitable impurities
  • the diameter of this line was 0.4 mm.
  • the average particle size of the carbide having a particle size of 0.05 ⁇ m or more was 0.11 ⁇ m, and the area ratio was 17.3%.
  • the Vickers hardness of this line measured at a load of 200 gf was 240.
  • Example 2 and 3 and Comparative Examples 1 and 2 The wires of Examples 2 and 3 and Comparative Examples 1 and 2 were obtained in the same manner as in Example 1 except that the conditions for patenting, cold drawing and annealing were changed.
  • Various needles can be manufactured from the wire according to the present invention.
  • Various needle parts can be made from the lines according to the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Textile Engineering (AREA)
  • Knitting Machines (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

Needle wire (2) is formed from steel that comprises 0.95 mass% to 1.03 mass% of C, 0.15 mass% to 0.35 mass% of Si, 0.60 mass% to 0.80 mass% of Mn, 0.35 mass% to 0.45 mass% or Cr, 0.01 mass% to 0.05 mass% of Mo, 0.10 mass% or less of Ni, and 0.026 mass% or less of P, the balance being Fe and unavoidable impurities. Said wire (2) contains multiple carbide particles in the metal structure thereof. The average particle diameter of said carbides is 0.10 µm to 1.0 µm. The area ratio of said carbides is 10% to 30%. The S content in the steel is 0.003% or less. The Vickers hardness of the wire (2) is 200 to 300.

Description

針用の線Needle wire
 本発明は、メリヤス針、フェルト針、ミシン針、釣り針等の、様々な針及びこれらの針の部品に加工されうる線に関する。 The present invention relates to various needles such as knitted needles, felt needles, sewing needles, fishing hooks, and lines that can be processed into parts of these needles.
 針は、様々な用途に用いられている。針の典型的な材質は、金属である。針の材質に関する種々の提案が、なされている。 針 Needles are used for various purposes. A typical material for the needle is metal. Various proposals regarding the needle material have been made.
 特開平4-88149号公報には、繊維機械に適用される針が開示されている。この針は、所定の組成を有する炭素鋼から形成されている。針の例として、ミシン針、メリヤス針及びフェルト針が開示されている。 JP-A-4-88149 discloses a needle that is applied to a textile machine. This needle is formed from carbon steel having a predetermined composition. As examples of needles, sewing needles, knitted needles and felt needles are disclosed.
 特開平5-320824号公報には、釣り針用の線が開示されている。この線は、所定の組成を有する炭素鋼から形成されている。 Japanese Patent Laid-Open No. 5-320824 discloses a line for a fishing hook. This line is formed from carbon steel having a predetermined composition.
 一般的なメリヤス針は、主部とラッチとを有している。ラッチは主部に軸着されており、この主部に対して揺動しうる。この主部とラッチとによって形成されたループは、糸を保持する。このメリヤス針を有する自動編み機により、編み物が製造されうる。 A general knitted needle has a main part and a latch. The latch is pivotally attached to the main portion and can swing with respect to the main portion. A loop formed by the main portion and the latch holds the yarn. Knitting can be manufactured by an automatic knitting machine having the knit needle.
 このメリヤス針では、主部は板に対する塑性加工(打ち抜き加工、曲げ加工等)によって形成される。一方、ラッチは、製造コストの観点から、線材に対する塑性加工によって形成される。この線材は、伸線又は圧延によって得られる。ラッチは、主部に取り付けられる。その後に、主部とラッチとの組み立て体に焼入れ及び焼戻しが施され、メリヤス針が得られる。 In this knitted needle, the main part is formed by plastic working (punching, bending, etc.) on the plate. On the other hand, the latch is formed by plastic working on the wire from the viewpoint of manufacturing cost. This wire is obtained by drawing or rolling. The latch is attached to the main part. Thereafter, the assembly of the main part and the latch is quenched and tempered to obtain a knitted needle.
特開平4-88149号公報Japanese Patent Laid-Open No. 4-88149 特開平5-320824号公報JP-A-5-320824
 主部の材質は、打ち抜きに適している。一方、ラッチの材質は、伸線に適している。主部の材質は、ラッチの材質と異なる。従って、主部に適した焼入れ条件は、ラッチには適していない。一方、ラッチに適した焼入れ条件は、主部に適していない。主部とラッチとの組み立て体に焼入れ及び焼戻しが施されて得られるメリヤス針では、主部及びラッチのうちのいずれかにおいて、硬度が不十分である。このメリヤス針が繰り返し使用されると、主部及びラッチのうちのいずれかにおいて、早期に摩耗が進行する。摩耗が進行したメリヤス針では、主部とラッチとの噛み合わせ不良が生じる。摩耗が進行したメリヤス針は、取り替えられる必要がある。このメリヤス針の耐久性は、不十分である。 The material of the main part is suitable for punching. On the other hand, the material of the latch is suitable for wire drawing. The material of the main part is different from the material of the latch. Therefore, quenching conditions suitable for the main part are not suitable for latches. On the other hand, the quenching conditions suitable for the latch are not suitable for the main part. In a knitted needle obtained by quenching and tempering an assembly of a main part and a latch, either the main part or the latch has insufficient hardness. When this knitted needle is used repeatedly, wear proceeds at an early stage in either the main portion or the latch. In a knitted needle that has undergone wear, a meshing failure occurs between the main portion and the latch. Knitted needles that have become worn must be replaced. The durability of this knitted needle is insufficient.
 本発明の目的は、耐久性に優れた針が得られうる線の提供にある。 An object of the present invention is to provide a wire from which a needle having excellent durability can be obtained.
 本発明に係る針用の線は、0.95質量%以上1.03質量%以下のC、0.15質量%以上0.35質量%以下のSi、0.60質量%以上0.80質量%以下のMn、0.35質量%以上0.45質量%以下のCr、0.01質量%以上0.05質量%以下のMo、0.10質量%以下のNi及び0.026質量%以下のPを含み、残部がFe及び不可避的不純物である鋼から形成される。この線は、その金属組織内に炭化物粒子を含んでいる。この炭化物の平均粒径は、0.10μm以上1.0μm以下である。炭化物の面積率は、10%以上30%以下である。 The wire for a needle according to the present invention is 0.95 mass% or more and 1.03 mass% or less C, 0.15 mass% or more and 0.35 mass% or less Si, 0.60 mass% or more and 0.80 mass% or less. % Mn, 0.35 mass% or more and 0.45 mass% or less Cr, 0.01 mass% or more and 0.05 mass% or less Mo, 0.10 mass% or less Ni and 0.026 mass% or less And the balance is formed from steel which is Fe and inevitable impurities. This line contains carbide particles in its metallographic structure. The average particle size of the carbide is 0.10 μm or more and 1.0 μm or less. The area ratio of carbide is 10% or more and 30% or less.
 好ましくは、鋼におけるSの含有率は、0.003%以下である。 Preferably, the S content in the steel is 0.003% or less.
 好ましくは、線のビッカース硬度は、200以上300以下である。 Preferably, the Vickers hardness of the wire is 200 or more and 300 or less.
 この線が適する用途として、メリヤス針のラッチが挙げられる。 ¡A suitable application for this line is the latch of knitted needles.
 本発明に係る針用の線の製造方法は、
 母線を準備する工程
及び
 この母線に熱処理と塑性加工とを繰り返し施してこの母線を長尺化及び細径化させる工程
を含む。この線は、その金属組織内に炭化物粒子を含む。この炭化物の平均粒径は、0.10μm以上1.0μm以下である。この炭化物の面積率は、10%以上30%以下である。
The method for manufacturing a needle wire according to the present invention includes:
A step of preparing a bus bar and a step of repeatedly applying heat treatment and plastic working to the bus bar to lengthen and reduce the diameter of the bus bar. This line contains carbide particles in its metallographic structure. The average particle size of the carbide is 0.10 μm or more and 1.0 μm or less. The area ratio of this carbide is 10% or more and 30% or less.
 好ましくは、この製造方法は、
 長尺化及び細径化された母線に焼鈍を施して球状化組織を得る工程
をさらに含む。
Preferably, the manufacturing method comprises:
The method further includes a step of annealing the elongated and thinned bus bar to obtain a spheroidized structure.
 本発明に係る針用の線では、組成及び組織が適正である。この線から得られた針は、耐久性に優れる。 In the needle wire according to the present invention, the composition and structure are appropriate. The needle obtained from this line is excellent in durability.
図1は、本発明の一実施形態に係る針用の線の一部が示された斜視図である。FIG. 1 is a perspective view showing a part of a needle line according to an embodiment of the present invention. 図2は、図1の線から得られたラッチを有するメリヤス針の一部が示された正面図である。FIG. 2 is a front view of a portion of a knitted needle having a latch obtained from the line of FIG. 図3は、図1の線の金属組織が示された顕微鏡写真である。FIG. 3 is a photomicrograph showing the metallographic structure of the line of FIG. 図4は、図3の金属組織における、炭化物の粒径と粒子数との関係が示されたヒストグラムである。FIG. 4 is a histogram showing the relationship between the carbide particle size and the number of particles in the metal structure of FIG.
 以下、適宜図面が参照されつつ、好ましい実施形態に基づいて本発明が詳細に説明される。 Hereinafter, the present invention will be described in detail based on preferred embodiments with appropriate reference to the drawings.
 図1に示された針用の線2は、鋼からなる。本実施形態では、この線2は、メリヤス針のラッチの材料である。線2が所定長さに切断され、この線2に塑性加工が施されることで、ラッチが得られる。 The needle wire 2 shown in FIG. 1 is made of steel. In this embodiment, this line 2 is the material of the latch of the knitted needle. The line 2 is cut to a predetermined length, and plastic processing is performed on the line 2 to obtain a latch.
 図2に、このラッチ4を有するメリヤス針6の一部が示されている。このメリヤス針6は、ラッチ4以外に、主部8及び軸10を有している。ラッチ4は、軸10によって主部8に取り付けられている。図2に矢印で示される通り、ラッチ4は、軸10を中心として、主部8に対して揺動しうる。図2では、倒れたラッチ4が実線2で示されており、起立したラッチ4が仮想線で示されている。ラッチ4が倒れたとき、このラッチ4と主部8とにより、ループ12が形成される。このループ12に、編み物用の糸が保持される。軸10以外の手段でラッチ4が揺動してもよい。 FIG. 2 shows a part of the knitted needle 6 having the latch 4. The knitted needle 6 has a main portion 8 and a shaft 10 in addition to the latch 4. The latch 4 is attached to the main portion 8 by a shaft 10. As indicated by an arrow in FIG. 2, the latch 4 can swing with respect to the main portion 8 about the shaft 10. In FIG. 2, the fallen latch 4 is indicated by a solid line 2, and the raised latch 4 is indicated by a virtual line. When the latch 4 falls, a loop 12 is formed by the latch 4 and the main portion 8. The loop 12 holds a yarn for knitting. The latch 4 may swing by means other than the shaft 10.
 このメリヤス針6の製造方法では、板が打ち抜かれ、かつこの板に曲げ加工が施されて、主部8が得られる。一方、前述の通り、ラッチ4は線2から得られる。このラッチ4は、主部8に取り付けられる。その後に、主部8とラッチ4との組み立て体に、焼入れ及び焼戻しが施される。 In the manufacturing method of the knitted needle 6, the plate is punched and the plate is bent to obtain the main portion 8. On the other hand, as described above, the latch 4 is obtained from the line 2. The latch 4 is attached to the main portion 8. Thereafter, the assembly of the main portion 8 and the latch 4 is quenched and tempered.
 この線2の鋼の組成は、以下の通りである。
  C:0.95質量%以上1.03質量%以下
  Si:0.15質量%以上0.35質量%以下
  Mn:0.60質量%以上0.80質量%以下
  Cr:0.35質量%以上0.45質量%以下
  Mo:0.01質量%以上0.05質量%以下
  Ni:0.10質量%以下
  P:0.026質量%以下
  残部:Fe及び不可避的不純物
The composition of the steel of this wire 2 is as follows.
C: 0.95 mass% or more and 1.03 mass% or less Si: 0.15 mass% or more and 0.35 mass% or less Mn: 0.60 mass% or more and 0.80 mass% or less Cr: 0.35 mass% or more 0.45 mass% or less Mo: 0.01 mass% or more and 0.05 mass% or less Ni: 0.10 mass% or less P: 0.026 mass% or less Remaining: Fe and inevitable impurities
 Cは、侵入型の固溶元素である。適量なCを含むラッチ4は、高い硬度を有する。Cは、ラッチ4の強度に寄与する。さらにCは、組織に炭化物を生成させる。この炭化物は、ラッチ4の耐摩耗性に寄与する。これらの観点から、Cの量は0.95質量%以上が好ましく、0.97質量%以上が特に好ましい。線2の冷間加工性の観点から、この量は1.03質量%以下が好ましく、1.01質量%以下が特に好ましい。 C is an interstitial solid solution element. The latch 4 including an appropriate amount of C has a high hardness. C contributes to the strength of the latch 4. Further, C generates carbides in the tissue. This carbide contributes to the wear resistance of the latch 4. From these viewpoints, the amount of C is preferably 0.95% by mass or more, particularly preferably 0.97% by mass or more. From the viewpoint of the cold workability of the wire 2, this amount is preferably 1.03% by mass or less, and particularly preferably 1.01% by mass or less.
 Siは、精錬時に脱酸剤として機能する。適量なSiを含むラッチ4は、高い硬度を有する。Siは、ラッチ4の強度に寄与する。これらの観点から、Siの量は0.15質量%以上が好ましく、0.20質量%以上が特に好ましい。線2の冷間加工性の観点から、この量は0.35質量%以下が好ましく、0.30質量%以下が特に好ましい。 Si functions as a deoxidizer during refining. The latch 4 containing an appropriate amount of Si has a high hardness. Si contributes to the strength of the latch 4. From these viewpoints, the amount of Si is preferably 0.15% by mass or more, particularly preferably 0.20% by mass or more. From the viewpoint of the cold workability of the wire 2, this amount is preferably 0.35% by mass or less, particularly preferably 0.30% by mass or less.
 Mnは、インゴットの溶製時に、脱酸剤として機能する。さらにMnは、不純物であるSの悪影響を抑制する。これらの観点から、Mnの量は0.60質量%以上が好ましく、0.65質量%以上が特に好ましい。線2の加工性の観点から、この量は0.80質量%以下が好ましく、0.75質量%以下が特に好ましい。 Mn functions as a deoxidizer during ingot melting. Further, Mn suppresses the adverse effect of S, which is an impurity. From these viewpoints, the amount of Mn is preferably 0.60% by mass or more, and particularly preferably 0.65% by mass or more. From the viewpoint of the workability of the wire 2, this amount is preferably 0.80% by mass or less, and particularly preferably 0.75% by mass or less.
 Crを含むラッチ4は、耐食性に優れる。Crは、Cと結合して炭化物を形成する。この炭化物は、ラッチ4の耐摩耗性に寄与する。この観点から、Crの量は0.35質量%以上が好ましく、0.37質量%以上が特に好ましい。線2の冷間加工性の観点及びメリヤス針6の材料コストの観点から、この量は0.45質量%以下が好ましく、0.43質量%以下が特に好ましい。 The latch 4 containing Cr is excellent in corrosion resistance. Cr combines with C to form a carbide. This carbide contributes to the wear resistance of the latch 4. In this respect, the amount of Cr is preferably 0.35% by mass or more, and particularly preferably 0.37% by mass or more. From the viewpoint of the cold workability of the wire 2 and the material cost of the knitted needle 6, this amount is preferably 0.45% by mass or less, particularly preferably 0.43% by mass or less.
 前述の通り、ラッチ4は焼入及び焼戻を経て得られる。Moを含むラッチ4は、焼戻後において、十分な硬度を有する。このラッチ4は、強度に優れる。Moは、Cと結合して炭化物を形成する。この炭化物は、ラッチ4の耐摩耗性に寄与する。これらの観点から、Moの量は0.01質量%以上が好ましく、0.02質量%以上が特に好ましい。線2の冷間加工性の観点から、この量は0.05質量%以下が好ましく、0.04質量%以下が特に好ましい。 As described above, the latch 4 is obtained through quenching and tempering. The latch 4 containing Mo has a sufficient hardness after tempering. The latch 4 is excellent in strength. Mo combines with C to form a carbide. This carbide contributes to the wear resistance of the latch 4. From these viewpoints, the amount of Mo is preferably 0.01% by mass or more, and particularly preferably 0.02% by mass or more. From the viewpoint of the cold workability of the wire 2, this amount is preferably 0.05% by mass or less, particularly preferably 0.04% by mass or less.
 Niは、鋼の焼入れ性を高める。Niを含むラッチ4は、靱性に優れる。この観点から、Niの量は0.01質量%以上が好ましく、0.02質量%以上が特に好ましい。Niは、高価である。メリヤス針6の材料コストの観点から、Niの量は0.10質量%以下が好ましく、0.07質量%以下が特に好ましい。 Ni increases the hardenability of steel. The latch 4 containing Ni is excellent in toughness. In this respect, the amount of Ni is preferably 0.01% by mass or more, and particularly preferably 0.02% by mass or more. Ni is expensive. From the viewpoint of the material cost of the knitted needle 6, the amount of Ni is preferably 0.10% by mass or less, and particularly preferably 0.07% by mass or less.
 典型的な不純物は、Pである。Pは、結晶粒界に偏析する。Pは、線2の冷間加工性を阻害する。Pは、ラッチ4の強度を低下させる。これらの観点から、Pの量は少ないほど好ましい。具体的には、この量は0.026質量%以下が好ましく、0.010質量%以下が特に好ましい。理想的には、Pの量はゼロである。 A typical impurity is P. P segregates at the grain boundaries. P inhibits the cold workability of the wire 2. P decreases the strength of the latch 4. From these viewpoints, the smaller the amount of P, the better. Specifically, this amount is preferably 0.026% by mass or less, particularly preferably 0.010% by mass or less. Ideally, the amount of P is zero.
 他の典型的な不純物は、Sである。Sは、線2の冷間加工性を阻害する。Sは、Mn等と結合して介在物を形成する。この介在物は、ラッチ4の強度を低下させる。この観点から、Sの量は少ないほど好ましい。具体的には、この量は0.003質量%以下が好ましく、0.001質量%以下が特に好ましい。理想的には、Sの量はゼロである。 Another typical impurity is S. S inhibits the cold workability of the wire 2. S combines with Mn or the like to form inclusions. This inclusion reduces the strength of the latch 4. From this viewpoint, the smaller the amount of S, the better. Specifically, this amount is preferably 0.003% by mass or less, and particularly preferably 0.001% by mass or less. Ideally, the amount of S is zero.
 この線2は、その金属組織内に多数の炭化物粒子を含んでいる。これら炭化物粒子の平均粒径は、0.10μm以上1.0μm以下である。 This line 2 includes a large number of carbide particles in its metal structure. These carbide particles have an average particle size of 0.10 μm or more and 1.0 μm or less.
 平均粒径が0.10μm以上である線2では、炭化物とマトリクスとの接触面積が過大でない。従って、メリヤス針6の焼入れ時及び焼戻し時にマトリクスに固溶するCの量が、過大でない。よって、ラッチ4の硬度が高すぎない。この観点から、平均粒径は0.11μm以上が特に好ましい。 In the line 2 having an average particle diameter of 0.10 μm or more, the contact area between the carbide and the matrix is not excessive. Therefore, the amount of C dissolved in the matrix at the time of quenching and tempering of the knitted needle 6 is not excessive. Therefore, the hardness of the latch 4 is not too high. In this respect, the average particle size is particularly preferably 0.11 μm or more.
 平均粒径が1.0μm以下である線2では、炭化物とマトリクスとの接触面積が過小でない。従って、メリヤス針6の焼入れ時及び焼戻し時にマトリクスに固溶するCの量が、過小でない。よって、ラッチ4の硬度が低すぎない。この観点から、平均粒径は0.6μm以下がより好ましく、0.42μm以下が特に好ましい。 In the line 2 where the average particle diameter is 1.0 μm or less, the contact area between the carbide and the matrix is not too small. Therefore, the amount of C dissolved in the matrix at the time of quenching and tempering of the knitted needle 6 is not too small. Therefore, the hardness of the latch 4 is not too low. In this respect, the average particle size is more preferably equal to or less than 0.6 μm, and particularly preferably equal to or less than 0.42 μm.
 前述の通り、炭化物粒子の平均粒径が0.10μm以上1.0μm以下である線2から得られたラッチ4は、適切な硬度を有する。このラッチ4を有するメリヤス針6では、ラッチ4の硬度と主部8の硬度との差が小さくなり得る。このメリヤス針6では、偏った摩耗が生じにくい。このメリヤス針6は、耐久性に優れる。 As described above, the latch 4 obtained from the wire 2 in which the average particle diameter of the carbide particles is 0.10 μm or more and 1.0 μm or less has an appropriate hardness. In the knitted needle 6 having the latch 4, the difference between the hardness of the latch 4 and the hardness of the main portion 8 can be reduced. With this knitted needle 6, uneven wear is unlikely to occur. This knitted needle 6 is excellent in durability.
 この線2では、金属組織内の炭化物粒子の面積率は、10%以上30%以下である。 In this line 2, the area ratio of carbide particles in the metal structure is 10% or more and 30% or less.
 面積率が10%以上である線2では、メリヤス針6の焼入れ時及び焼戻し時にマトリクスに固溶するCの量が、過小でない。よって、ラッチ4の硬度が低すぎない。この観点から、面積率は15%以上がより好ましく、17%以上が特に好ましい。 In the line 2 where the area ratio is 10% or more, the amount of C dissolved in the matrix when the knitted needle 6 is quenched and tempered is not too small. Therefore, the hardness of the latch 4 is not too low. In this respect, the area ratio is more preferably 15% or more, and particularly preferably 17% or more.
 面積率が30%以下である線2では、メリヤス針6の焼入れ時及び焼戻し時にマトリクスに固溶するCの量が、過大でない。よって、ラッチ4の硬度が高すぎない。この観点から、面積率は25%以下がより好ましく、22%以下が特に好ましい。 In the line 2 where the area ratio is 30% or less, the amount of C dissolved in the matrix at the time of quenching and tempering of the knitted needle 6 is not excessive. Therefore, the hardness of the latch 4 is not too high. In this respect, the area ratio is more preferably equal to or less than 25%, and particularly preferably equal to or less than 22%.
 前述の通り、面積率が10%以上30%以下である線2から得られたラッチ4は、適切な硬度を有する。このラッチ4を有するメリヤス針6では、ラッチ4の硬度と主部8の硬度との差が小さくなり得る。このメリヤス針6では、偏った摩耗が生じにくい。このメリヤス針6は、耐久性に優れる。 As described above, the latch 4 obtained from the line 2 having an area ratio of 10% or more and 30% or less has an appropriate hardness. In the knitted needle 6 having the latch 4, the difference between the hardness of the latch 4 and the hardness of the main portion 8 can be reduced. With this knitted needle 6, uneven wear is unlikely to occur. This knitted needle 6 is excellent in durability.
 炭化物の平均粒径及び面積率の測定には、画像解析ソフト「Image J」が用いられる。測定では、線2の半径方向に沿った断面を走査型電子顕微鏡で撮影し、倍率が5000倍であるSEM写真が得られる。この写真の一例が、図3に示されている。この写真の画像ファイルが上記画像解析ソフトにて二値化され、炭化物粒子の領域と他の領域とが色分けされる。それぞれの炭化物粒子の面積が、算出される。この面積と同じ面積を有する円が想定され、この円の直径がこの粒子の径とされる。径が0.05μm以上である炭化物の径と個数とが、ヒストグラム化される。ヒストグラムの一例が、図4に示されている。径が0.05μm未満である炭化物をカウントから除外する理由は、
(1) 径が0.05μm未満である炭化物は極めて小さく、従って面積率や線2の特性に大きな影響を与えない。
及び
(2)径が0.05μm未満である炭化物の検出には困難を伴う。
の、2点にある。
Image analysis software “Image J” is used to measure the average particle size and area ratio of carbides. In the measurement, a cross section along the radial direction of the line 2 is taken with a scanning electron microscope, and an SEM photograph with a magnification of 5000 times is obtained. An example of this photograph is shown in FIG. The image file of this photograph is binarized by the image analysis software, and the region of carbide particles and the other region are color-coded. The area of each carbide particle is calculated. A circle having the same area as this area is assumed, and the diameter of this circle is the diameter of this particle. The diameter and the number of carbides having a diameter of 0.05 μm or more are histogrammed. An example of a histogram is shown in FIG. The reason for excluding carbides with a diameter less than 0.05 μm from the count is:
(1) Carbides having a diameter of less than 0.05 μm are extremely small, and therefore do not have a significant effect on the area ratio and the characteristics of the wire 2.
And (2) It is difficult to detect a carbide having a diameter of less than 0.05 μm.
There are two points.
 このヒストグラムに基づき、炭化物の平均粒径が算出される。さらに、図3の写真の全面積に対する、径が0.05μm以上である炭化物の合計面積の比率が、面積率として算出される。 平均 Based on this histogram, the average particle size of the carbide is calculated. Further, the ratio of the total area of carbides having a diameter of 0.05 μm or more to the total area of the photograph in FIG. 3 is calculated as the area ratio.
 図3及び4に示された例では、炭化物粒子の数は480であり、最大の炭化物粒子の径は2.49μmであり、炭化物粒子の平均径は0.42μmであり、面積率は16.5%である。 In the example shown in FIGS. 3 and 4, the number of carbide particles is 480, the maximum carbide particle diameter is 2.49 μm, the average particle diameter of the carbide particles is 0.42 μm, and the area ratio is 16. 5%.
 線2のビッカース硬度は、200以上300以下が好ましい。硬度がこの範囲内である線2に焼入れ及び焼戻しが施されることにより、適正な硬度を有するラッチ4が得られうる。このラッチ4を有するメリヤス針6では、ラッチ4の硬度と主部8の硬度との差が小さくなり得る。このメリヤス針6では、偏った摩耗が生じにくい。このメリヤス針6は、耐久性に優れる。しかもこの線2の、ラッチ4への塑性加工は容易である。これらの観点から、硬度は210以上250以下が特に好ましい。 The Vickers hardness of the wire 2 is preferably 200 or more and 300 or less. The latch 4 having an appropriate hardness can be obtained by quenching and tempering the wire 2 having a hardness within this range. In the knitted needle 6 having the latch 4, the difference between the hardness of the latch 4 and the hardness of the main portion 8 can be reduced. With this knitted needle 6, uneven wear is unlikely to occur. This knitted needle 6 is excellent in durability. Moreover, plastic processing of the line 2 to the latch 4 is easy. From these viewpoints, the hardness is particularly preferably not less than 210 and not more than 250.
 ビッカース硬度は、「JIS Z 2244」の規定に準拠して測定される。測定は、明石製作所社の硬度計「MVK-G1」によってなされる。測定時の荷重は、200gfである。 Vickers hardness is measured according to the provisions of “JIS Z 2244”. The measurement is made with a hardness meter “MVK-G1” manufactured by Akashi Seisakusho. The load at the time of measurement is 200 gf.
 この線2の製造では、まず溶製により、インゴットが得られる。このインゴットに熱間圧延が施され、母線が得られる。この母線に、熱処理と塑性加工とが繰り返し施される。典型的な熱処理は、パテンティングである。パテンティングにより、パーライト組織が得られる。典型的な塑性加工として、冷間伸線及び冷間圧延が挙げられる。冷間伸線が好ましい。熱処理と塑性加工との繰り返しにより、母線が長尺化し、かつ細径化する。この母線に、焼鈍が施される。焼鈍により組織が球状化し、線2が得られる。焼鈍後に、さらに塑性加工が施され、線2が得られてもよい。典型的な線2の直径は、0.1mm以上1.0mm以下である。 In the production of this wire 2, an ingot is first obtained by melting. The ingot is hot-rolled to obtain a bus bar. The bus bar is repeatedly subjected to heat treatment and plastic working. A typical heat treatment is patenting. A pearlite structure is obtained by patenting. Typical plastic working includes cold drawing and cold rolling. Cold wire drawing is preferred. By repeating the heat treatment and the plastic working, the bus bar is elongated and the diameter is reduced. This bus bar is annealed. The structure is spheroidized by annealing, and a line 2 is obtained. After annealing, plastic processing may be further performed to obtain the wire 2. A typical diameter of the wire 2 is 0.1 mm or greater and 1.0 mm or less.
 焼鈍の温度は、630℃以上850℃以下が好ましい。温度が630℃以上である焼鈍により、球状化組織が得られうる。換言すれば、温度が630℃以上である焼鈍により、塑性加工に起因する歪みが除去された組織が得られうる。この線2から得られたラッチ4の硬度は、過大でない。この観点から、焼鈍の温度は640℃以上がより好ましく、660℃以上が特に好ましい。温度が850℃以下である焼鈍により、パーライト組織の生成が抑制される。この線2から得られたラッチ4の硬度は、過小でない。この観点から、焼鈍の温度は830℃以下が好ましく、810℃以下が特に好ましい。 The annealing temperature is preferably 630 ° C. or higher and 850 ° C. or lower. A spheroidized structure can be obtained by annealing at a temperature of 630 ° C. or higher. In other words, it is possible to obtain a structure in which distortion caused by plastic working is removed by annealing at a temperature of 630 ° C. or higher. The hardness of the latch 4 obtained from this line 2 is not excessive. In this respect, the annealing temperature is more preferably 640 ° C. or higher, and particularly preferably 660 ° C. or higher. The annealing with a temperature of 850 ° C. or lower suppresses the formation of a pearlite structure. The hardness of the latch 4 obtained from this line 2 is not too small. In this respect, the annealing temperature is preferably 830 ° C. or lower, and particularly preferably 810 ° C. or lower.
 焼鈍時には、母線が、上記温度に所定時間保持される。保持時間は、2.0時間以上24時間以下が好ましい。保持時間が2.0時間以上である焼鈍では、適正温度が採用されうる。この観点から、保持時間は3.0時間以上が好ましく、3.5時間以上が特に好ましい。保持時間が24時間以下である焼鈍では、エネルギーコストが低い。この観点から、保持時間は20時間以下が特に好ましい。 During annealing, the bus bar is held at the above temperature for a predetermined time. The holding time is preferably 2.0 hours or more and 24 hours or less. In annealing in which the holding time is 2.0 hours or more, an appropriate temperature can be adopted. From this viewpoint, the holding time is preferably 3.0 hours or more, particularly preferably 3.5 hours or more. In annealing where the holding time is 24 hours or less, the energy cost is low. From this viewpoint, the holding time is particularly preferably 20 hours or less.
 以下、実施例によって本発明の効果が明らかにされるが、この実施例の記載に基づいて本発明が限定的に解釈されるべきではない。 Hereinafter, the effects of the present invention will be clarified by examples. However, the present invention should not be interpreted in a limited manner based on the description of the examples.
 [実施例1]
 成分を調製した溶湯から、インゴットを得た。このインゴットに熱間圧延を施し、母線を得た。この母線の直径は、5.5mmであった。この母線にパテンティングと冷間伸線とを繰り返し施した。これらの冷間伸線により、母線は長尺化し、かつ細径化した。この母線に焼鈍を施して、ラッチ用の線を得た。この焼鈍では、温度は670℃であり、保持時間は4.0時間であった。焼鈍により、球状化組織が得られた。この線の組成は、以下の通りであった。
  C:0.97質量%
  Si:0.24質量%
  Mn:0.69質量%
  Cr:0.40質量%
  Mo:0.03質量%
  Ni:0.02質量%
  P:0.01質量%
  S:0.002質量%
  残部:Fe及び不可避的不純物
この線の直径は、0.4mmであった。この線では、粒径が0.05μm以上である炭化物の平均粒径は0.11μmであり、その面積率は17.3%であった。この線の、荷重が200gfの条件で測定されたビッカース硬度は、240であった。
[Example 1]
An ingot was obtained from the molten metal prepared with the components. The ingot was hot-rolled to obtain a bus bar. The diameter of this bus bar was 5.5 mm. The bus bar was repeatedly subjected to patenting and cold drawing. By these cold wire drawing, the bus bar was elongated and reduced in diameter. The bus bar was annealed to obtain a latch line. In this annealing, the temperature was 670 ° C. and the holding time was 4.0 hours. A spheroidized structure was obtained by annealing. The composition of this line was as follows:
C: 0.97 mass%
Si: 0.24 mass%
Mn: 0.69% by mass
Cr: 0.40 mass%
Mo: 0.03 mass%
Ni: 0.02 mass%
P: 0.01% by mass
S: 0.002 mass%
Remainder: Fe and inevitable impurities The diameter of this line was 0.4 mm. In this line, the average particle size of the carbide having a particle size of 0.05 μm or more was 0.11 μm, and the area ratio was 17.3%. The Vickers hardness of this line measured at a load of 200 gf was 240.
 [実施例2及び3並びに比較例1及び2]
 パテンティング、冷間伸線及び焼鈍の条件を変更した他は実施例1と同様にして、実施例2及び3並びに比較例1及び2の線を得た。
[Examples 2 and 3 and Comparative Examples 1 and 2]
The wires of Examples 2 and 3 and Comparative Examples 1 and 2 were obtained in the same manner as in Example 1 except that the conditions for patenting, cold drawing and annealing were changed.
 [メリヤス針の製作]
 各実施例及び各比較例の線から、ラッチを形成した。このラッチを主部に取り付けた後、このラッチ及び主部に焼入れ及び焼戻しを施して、メリヤス針を得た。このメリヤス針における、ラッチの硬度と主部の硬度を測定し、その差を算出した。この差の絶対値が、下記の表1に示されている。
[Production of knitted needles]
Latches were formed from the lines of each example and each comparative example. After the latch was attached to the main part, the latch and the main part were quenched and tempered to obtain a knitted needle. In this knitted needle, the hardness of the latch and the hardness of the main part were measured, and the difference was calculated. The absolute value of this difference is shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 表1に示されるように、各実施例に係る線から得られたラッチの硬度は、主部の硬度に近い。この評価結果から、本発明の優位性は明らかである。 As shown in Table 1, the hardness of the latch obtained from the line according to each example is close to the hardness of the main part. From this evaluation result, the superiority of the present invention is clear.
 本発明に係る線から、様々な針が製作されうる。本発明に係る線から、様々な針の部品が製作されうる。 Various needles can be manufactured from the wire according to the present invention. Various needle parts can be made from the lines according to the invention.
 2・・・線
 4・・・ラッチ
 6・・・メリヤス針
 8・・・主部
 10・・・軸
2 ... Line 4 ... Latch 6 ... Knitting needle 8 ... Main part 10 ... Axis

Claims (6)

  1.  0.95質量%以上1.03質量%以下のC、0.15質量%以上0.35質量%以下のSi、0.60質量%以上0.80質量%以下のMn、0.35質量%以上0.45質量%以下のCr、0.01質量%以上0.05質量%以下のMo、0.10質量%以下のNi、及び0.026質量%以下のPを含み、残部がFe及び不可避的不純物である鋼から形成されており、
     その金属組織内に多数の炭化物粒子を含んでおり、
     上記炭化物の平均粒径が0.10μm以上1.0μm以下であり、
     上記炭化物の面積率が10%以上30%以下である針用の線。
    0.95 mass% or more and 1.03 mass% or less C, 0.15 mass% or more and 0.35 mass% or less Si, 0.60 mass% or more and 0.80 mass% or less Mn, 0.35 mass% 0.45% by mass or less of Cr, 0.01% by mass or more and 0.05% by mass or less of Mo, 0.10% by mass or less of Ni, and 0.026% by mass or less of P, with the balance being Fe and Made of steel, an inevitable impurity,
    Contains many carbide particles in its metal structure,
    The carbide has an average particle size of 0.10 μm or more and 1.0 μm or less,
    A needle wire having an area ratio of the carbide of 10% or more and 30% or less.
  2.  上記鋼におけるSの含有率が0.003%以下である請求項1に記載の線。 The wire according to claim 1, wherein the S content in the steel is 0.003% or less.
  3.  そのビッカース硬度が200以上300以下である請求項1又は2に記載の線。 The wire according to claim 1 or 2, wherein the Vickers hardness is 200 or more and 300 or less.
  4.  その用途がメリヤス針のラッチである請求項1から3のいずれかに記載の線。 The wire according to any one of claims 1 to 3, wherein the use is a latch of a knitted needle.
  5.  母線を準備する工程
    及び
     この母線に熱処理と塑性加工とを繰り返し施してこの母線を長尺化及び細径化させる工程
    を含む針用の線の製造方法であって、
     上記線が、その金属組織内に炭化物粒子を含んでおり、
     上記炭化物の平均粒径が0.10μm以上1.0μm以下であり、
     上記炭化物の面積率が10%以上30%以下である製造方法。
    A method of manufacturing a wire for a needle, including a step of preparing a busbar and a step of repeatedly applying heat treatment and plastic working to the busbar to lengthen and narrow the busbar,
    The line contains carbide particles in its metal structure,
    The carbide has an average particle size of 0.10 μm or more and 1.0 μm or less,
    The manufacturing method whose area ratio of the said carbide | carbonized_material is 10% or more and 30% or less.
  6.  上記長尺化及び細径化された母線に焼鈍を施して球状化組織を得る工程をさらに含む請求項5に記載の製造方法。 The manufacturing method according to claim 5, further comprising a step of annealing the elongated and thinned bus bar to obtain a spheroidized structure.
PCT/JP2017/040755 2017-01-17 2017-11-13 Needle wire WO2018135111A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780063288.9A CN109844155B (en) 2017-01-17 2017-11-13 Needle thread

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-005502 2017-01-17
JP2017005502A JP6467441B2 (en) 2017-01-17 2017-01-17 Needle wire

Publications (1)

Publication Number Publication Date
WO2018135111A1 true WO2018135111A1 (en) 2018-07-26

Family

ID=62908240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040755 WO2018135111A1 (en) 2017-01-17 2017-11-13 Needle wire

Country Status (3)

Country Link
JP (1) JP6467441B2 (en)
CN (1) CN109844155B (en)
WO (1) WO2018135111A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006063384A (en) * 2004-08-26 2006-03-09 Nisshin Steel Co Ltd High carbon steel member having excellent impact strength and production method therefor
JP2015190036A (en) * 2014-03-28 2015-11-02 日新製鋼株式会社 Steel sheet for fiber machine component and manufacturing method therefor
WO2017029922A1 (en) * 2015-08-14 2017-02-23 株式会社特殊金属エクセル High-carbon cold-rolled steel sheet and method for manufacturing same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0488149A (en) * 1990-07-30 1992-03-23 Kanai Hiroyuki Needle for textile machinery
JP2627373B2 (en) * 1991-07-08 1997-07-02 金井 宏之 High strength extra fine metal wire
JPH05320824A (en) * 1992-05-19 1993-12-07 Kanai Hiroyuki Wire rod for hook
US20160145702A1 (en) * 2014-11-24 2016-05-26 Hyundai Motor Company Bearing steel having improved fatigue durability and method of manufacturing the same
KR101685490B1 (en) * 2015-06-22 2016-12-13 현대자동차주식회사 Bearing alloy steel improved fatigue durability and the method of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006063384A (en) * 2004-08-26 2006-03-09 Nisshin Steel Co Ltd High carbon steel member having excellent impact strength and production method therefor
JP2015190036A (en) * 2014-03-28 2015-11-02 日新製鋼株式会社 Steel sheet for fiber machine component and manufacturing method therefor
WO2017029922A1 (en) * 2015-08-14 2017-02-23 株式会社特殊金属エクセル High-carbon cold-rolled steel sheet and method for manufacturing same

Also Published As

Publication number Publication date
JP6467441B2 (en) 2019-02-13
JP2018115353A (en) 2018-07-26
CN109844155A (en) 2019-06-04
CN109844155B (en) 2020-10-23

Similar Documents

Publication Publication Date Title
JP5350181B2 (en) Case-hardened steel with excellent grain coarsening prevention properties
TWI734291B (en) High-carbon cold-rolled steel sheet and manufacturing method thereof, and high-carbon steel mechanical parts
JP6089131B2 (en) High carbon cold rolled steel sheet and method for producing the same
TWI654318B (en) High speed tool steel and manufacturing method thereof
JP5576785B2 (en) Steel material excellent in cold forgeability and manufacturing method thereof
JP5449925B2 (en) High strength bolt with improved delayed fracture resistance and method for manufacturing the same
CN110945149B (en) Steel wire for flexible card clothing
JP6504330B2 (en) Wire for cutting
WO2007123164A1 (en) Piston ring material for internal combustion engine
CN105838981A (en) Steel for card clothing
JP6467441B2 (en) Needle wire
EP3173500B2 (en) Hot-working tool material, method for manufacturing hot-working tool, and hot-working tool
JP4031607B2 (en) Machine structural steel with reduced grain coarsening
JP6118872B1 (en) Textile machine parts
JP3882538B2 (en) Round steel for bearing element parts formed by hot working
JP2960496B2 (en) Cold tool steel
JP2007204803A (en) Steel parts for bearing, and manufacturing method therefor
JP2021080492A (en) Hot work tool steel excellent in high-temperature strength and toughness
JP3426495B2 (en) Long-life bearing steel excellent in delayed fracture resistance and method of manufacturing the same
JP2015127455A (en) Powder high speed tool steel
JP6345945B2 (en) Powdered high-speed tool steel with excellent wear resistance and method for producing the same
JPWO2014054130A1 (en) Piston ring wire
TWI806526B (en) Steel wire for mechanical structural parts and manufacturing method thereof
JP5937852B2 (en) Case-hardening steel parts
US20240167116A1 (en) Steel wire for machine structural parts and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17893301

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17893301

Country of ref document: EP

Kind code of ref document: A1