WO2018135069A1 - 送風機 - Google Patents
送風機 Download PDFInfo
- Publication number
- WO2018135069A1 WO2018135069A1 PCT/JP2017/039157 JP2017039157W WO2018135069A1 WO 2018135069 A1 WO2018135069 A1 WO 2018135069A1 JP 2017039157 W JP2017039157 W JP 2017039157W WO 2018135069 A1 WO2018135069 A1 WO 2018135069A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fan
- blower
- air
- blower fan
- housing
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/28—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
Definitions
- the embodiment of the present invention relates to a blower applicable to, for example, a ventilator.
- blower that discharges air sucked from an intake port to an exhaust port
- a blower including an air dynamic pressure bearing in which a rotor and a stator are not in contact with each other during rotation for example, Japanese Patent No. 5588747.
- a blower provided with an air dynamic pressure bearing has a long life and low sound compared to a blower provided with a ball bearing type bearing in which the rotor and the stator are in direct contact. Therefore, it is suitable as a blower for a ventilator.
- a pressure difference is generated between the upper surface and the lower surface of the blower fan (blade), and the blower fan moves in a thrust direction from a predetermined position due to the generated pressure difference. It is necessary to prevent contact with a certain housing.
- a blower that can improve the reliability by suppressing the pressure difference generated between the upper surface and the lower surface of the blower fan is provided.
- the blower according to the embodiment includes a housing, a motor, and a fan.
- the housing includes an intake port that takes in external air, a storage chamber that communicates with the intake port, and an exhaust port that discharges the air in the storage chamber to the outside.
- the motor is provided in a housing and a housing chamber of the housing, and includes a coil.
- the fan is provided on the rotating shaft of the motor, takes in external air from the intake port into the storage chamber, and blows air from the storage chamber to the exhaust port.
- the fan includes a plurality of plate-shaped blades provided radially on the first surface of the fan from the center of rotation toward the periphery, and a plurality of adjacent blades on the second surface of the fan facing the first surface. And a plurality of grooves provided radially from the center toward the periphery at positions facing between the blades.
- the pressure difference generated between the upper surface and the lower surface of the blower fan can be suppressed, and the reliability of the blower can be improved.
- FIG. 1 is a side view showing an example of a blower according to the first embodiment.
- FIG. 2 is a top view illustrating an example of a blower according to the first embodiment.
- FIG. 3 is a cross-sectional view taken along line III-III in FIG.
- FIG. 4 is a cross-sectional view showing an enlarged example near the broken line area A of FIG.
- FIG. 5A is a perspective view illustrating an example of an upper surface side of the blower fan according to the first embodiment.
- FIG. 5B is a perspective view illustrating an example of a lower surface side of the blower fan according to the first embodiment.
- FIG. 6 is a block diagram illustrating an example of a configuration of a control system of the blower according to the first embodiment.
- FIG. 7 is a cross-sectional view illustrating an example of a pressure state generated by the blowing operation of the blower according to the first embodiment.
- FIG. 8 is a cross-sectional view illustrating an example of a flow path generated by the blowing operation of the blower according to the first embodiment.
- FIG. 9 is a cross-sectional view illustrating an example of movement of the blower fan in the blowing operation of the blower according to the comparative example.
- FIG. 10 is a cross-sectional view illustrating an example of movement of the blower fan in the blowing operation of the blower according to the first embodiment.
- FIG. 1 is a side view showing an example of a blower 10 according to the first embodiment.
- FIG. 2 is a top view illustrating an example of the blower 10 according to the first embodiment.
- the blower 10 includes a housing 11 and a blower fan 13.
- the blower fan 13 has a plurality of blower blades 131 provided on a rotating shaft of a motor disposed in a housing chamber in the housing 11.
- the housing 11 has an intake port 17a and an exhaust port 17b, and is constituted by two divided housing members 11a and 11c.
- the intake port 17a is provided in the upper part of the housing 11, and is comprised from the housing member 11a.
- the exhaust port 17b is provided in the side part of the housing 11, and is comprised by the housing members 11a and 11b.
- FIG. 3 is a sectional view taken along the line III-III in FIG. 2 as seen from the direction of the arrow.
- FIG. 4 is a cross-sectional view showing an enlarged example near the broken line area A of FIG.
- a housing chamber LR for housing the fan unit 51 is provided in the housing 11 so as to communicate with the air inlet 17a and the air outlet.
- the fan unit 51 includes a blower fan 13 and a motor 12 for driving the blower fan 13.
- the motor 12 may be a coreless motor, for example.
- the motor 12 includes at least a shaft (fixed shaft) 121, a minute gap 122, a sleeve 123, a back yoke 124, a coil 126, a magnet 125, a hub 127, and thrust magnets 128a and 128b.
- the shaft 121, the coil 126, and the thrust magnet 128a are stators
- the sleeve 123, the back yoke 124, the magnet 125, the hub 127, and the thrust magnet 128b are rotors.
- the shaft 121 is fixed to the base plate 200 via the pedestal 190.
- the minute gap 122 is a very small gap provided between the shaft 121 and the sleeve 123.
- the sleeve 123 is provided on the outer periphery of the shaft 121 through a minute gap 122.
- the back yoke 124 is provided on the outer periphery of the sleeve 123.
- the coil 126 is provided on the outer periphery of the back yoke 124.
- the hub 127 is a rotating member that supports the side surfaces of the sleeve 123 and the magnet 125 and covers the upper portion of the shaft 121.
- the thrust magnet 128 a is a ring-shaped magnet fixed to the inside of the upper portion of the shaft 121.
- the thrust magnet 128b is a ring-shaped magnet fixed to the outside of the upper portion of the hub 127 so as to face the outer peripheral portion of the thrust magnet 128a.
- another coil as an inductor electrically connected to the coil 126 via the substrate 230 may be provided in the vicinity of the motor 12.
- the blower fan 13 is disposed in the storage chamber LR, and is fixed to the hub 127 so that the rotation axis including the center of rotation CO coincides with the rotation axis of the motor 12.
- a plurality of blower blades 131 are provided for blowing external air taken in from the intake port 17 a to the exhaust port 17 b with a predetermined output (blow pressure and flow rate).
- the plurality of blower blades 131 are formed of plate-like members that are provided radially from the center CO with respect to the blower fan 13 at predetermined intervals and protrude in the axial direction. Details of the blower fan 13 will be described later.
- FIG. 4 is a cross-sectional view showing an enlarged example in the vicinity of the broken line area A of FIG. 3, and a predetermined gap (gap) is provided between the upper surface 13a of the blower fan 13 and the housing member 11a constituting the housing chamber LR.
- GP1 is provided, and a predetermined gap (gap) GP2 is provided between the lower surface 13b of the blower fan 13 and the housing member 11b constituting the accommodation chamber LR.
- the housing member 11b is provided on the base plate 200 arranged at the bottom.
- the base plate 200 and the housing member 11b are fixed by mounting screws 200n that pass through them. Further, the base plate 200 and the substrate 230 are fixed by mounting screws 230n penetrating them.
- FIG. 5A is a perspective view illustrating an example of the upper surface 13 a side of the blower fan 13.
- FIG. 5B is a perspective view illustrating an example of the lower surface 13 b side of the blower fan 13.
- a plurality of blowing blades (blowing blades) 131 are provided on the upper surface 13 a of the blowing fan 13.
- the plurality of blower blades 131 are configured by plate-like members that are provided at predetermined intervals on the upper surface 13a radially from the central portion including the center of rotation CO toward the peripheral portion and project in the axial direction. That is, in the plurality of blower blades 131, the height near the center CO is higher than the height on the side portion (circumferential side).
- the plurality of blower blades 131 are configured to bend in a direction (clockwise) opposite to the rotation direction of the blower fan 13 (here, counterclockwise indicated by an arrow in the drawing). With this configuration, air is sucked from the upper intake port 17a, and the air that has been sucked is scrolled to exhaust air from the side exhaust port 17b. Further, by configuring the air blowing blade 131 to be curved, the surface area of the air blowing blade 131 disposed on the upper surface 13a can be increased, and the amount of air entering between the air blowing blades 131 by the rotation of the air blowing fan 13 can be increased.
- convex portions 132 are provided on the lower surface 13b facing the upper surface 13a of the blower fan 13 at positions facing the plurality of blades 131, respectively, so that the radial direction from the center CO toward the peripheral portion is obtained.
- a plurality of groove portions 133 are provided in the upper surface. In other words, on the lower surface 13 b of the blower fan 13, a plurality of groove portions 133 are provided radially from the center CO toward the peripheral portion at positions facing between the adjacent blades 131.
- the plurality of convex portions 132 and the plurality of groove portions 133 are provided only in the peripheral portion (circumferential side portion) on the lower surface 13 b of the blower fan 13, and are not provided in the central portion including the center CO of the blower fan 13. Also good.
- the blower fan 13 has a central portion, is concentric with the central portion, has a peripheral portion disposed via the central portion and the cavity OP, and has a hollow OP between the central portion and the peripheral portion, A configuration in which a portion and a peripheral portion are connected by a plurality of blades 131 may be employed.
- the plurality of grooves 133 are configured to curve in a direction opposite to the direction in which the blower fan 13 rotates. In other words, the plurality of grooves 133 are provided curved in the same direction as the plurality of blades 131.
- the air flow path Wb generated along each groove 133 indicated by an arrow in FIG. 5B can be increased during the air blowing operation, and the pressure in the storage chamber LR can be effectively increased. The pressure can be reduced. Details will be described later.
- the height H132 from the lower surface 13b of the convex portion 132 is lower than the height H131 from the upper surface 13a of the blade 133 (H132 ⁇ H131).
- the width W132 of the convex portion 132 is wider than the width W131 of the blade 133 (W132> W131).
- FIG. 6 is a block diagram schematically showing an example of the configuration of the control system of the blower 10 according to the first embodiment.
- the electrical configuration of the control system of the blower 10 includes a fan unit 51 including the motor 12 provided with the blower fan 13 and a drive control unit 52 for controlling the drive of the fan unit 51.
- the drive control unit 52 includes a power MOS-FET 32 for switching driving power for driving the motor 12 and a control circuit 31 for controlling the operation of the power MOS-FET 32.
- the control circuit 31 and the power MOS-FET 32 are mounted on the substrate 230 as predetermined circuit components, for example.
- the power MOS-FET 32 is, for example, a high-voltage power MOS-FET or the like, and one end of a current path (not shown) is electrically connected to a predetermined power source, and the other end is electrically connected to the coil 126 via the substrate 230. And the control terminal is electrically connected to the control circuit 31.
- the control circuit 31 transmits a control signal to the control terminal of the power MOS-FET 32 based on the driving state of the fan unit 51 and controls the power supplied to the motor 12. Therefore, the control circuit 31 may include a controller or the like for controlling the operation of the power MOS-FET 32, for example.
- FIG. 7 is a cross-sectional view illustrating an example of a pressure state generated by the blowing operation of the blower according to the first embodiment.
- FIG. 8 is a cross-sectional view illustrating an example of a flow path generated by the blowing operation of the blower according to the first embodiment.
- the air taken into the storage chamber LR is scrolled through the storage chamber LR by the blower blade 131 and exhausted from the exhaust port 17b to the outside with a predetermined output.
- the plurality of grooves 133 are provided radially on the lower surface 13b of the blower blade 13 from the center CO toward the periphery. Therefore, as shown in FIG. 5B, when the blower fan 13 rotates, air collides with the convex portion 132 and air is collected in each groove portion 133, and an air flow path Wb is generated along each groove portion 133. .
- the air in the housing chamber LR of the housing 11 is sucked out from the exhaust port 17b to the outside through the air flow path Wb. More specifically, it is accommodated between the housing 11a on the side surface of the motor 12 and the hub 127 along with the air flow path Wb generated in the gap (gap GP2) between the lower surface 13b of the blower fan 13 and the housing 11a. An air flow path Wb1 is generated so as to suck out the air in the chamber LR.
- FIG. 9 is a cross-sectional view illustrating an example of a blower 100 according to a comparative example, and illustrates a blower including a blower fan in which a groove 133 is not formed on the lower surface side 13b as in the present embodiment.
- the upper surface side of the blower fan has a negative pressure and the lower surface side has a positive pressure, and between the upper and lower surfaces of the blower fan. Pressure difference occurs.
- the cause of this pressure difference is that the upper surface of the blower fan communicates with the intake port and is open to the atmosphere, so the pressure becomes atmospheric pressure, but the pressure on the lower surface of the blower fan is equivalent to the internal pressure in the housing. It depends.
- the blower 100 according to the comparative example does not include the configuration of the groove 133 according to the present embodiment. For this reason, the generated pressure difference gradually increases, and the force to float on the negative pressure side acting on the blower fan also increases. Therefore, the gap GP12 between the lower surface of the blower fan and the housing increases, and the blower fan moves in the thrust direction until the gap GP11 between the upper surface and the housing becomes substantially zero, and the blower fan comes into contact with the housing. There is a fear. Moreover, if the lower surface side of the blower fan is opened to the atmosphere and the pressure is set to atmospheric pressure, the blower efficiency is reduced.
- the blower 10 includes a plurality of grooves 133 provided radially on the lower surface 13b of the blower blade 13 from the center CO toward the peripheral portion.
- the blower fan 13 rotates, air is collected in each groove 133, and an air flow path Wb from the center CO toward the periphery is generated in each groove 133 (FIG. 5B).
- the air flow path Wb the air in the housing chamber LR of the housing 11 is sucked out from the exhaust port 17b by the scroll of the blower blade 131 (FIG. 8).
- the positive pressure generated in the gap GP2 on the lower surface 13b side of the blower fan 13 is reduced and generated in the gap GP1 on the upper surface 13a side and the gap GP2 on the lower surface 13b side of the blower fan 13.
- Pressure can be equalized.
- the gap GP1 on the upper surface 13a side and the gap GP2 on the lower surface 13b side of the blower fan 13 can be maintained regardless of before and after the blower operation, and the movement of the blower fan 13 in the thrust direction can be prevented. This is advantageous in that the property can be improved.
- the pressure on the lower surface 13b side of the blower fan 13 is connected to the upper surface 13a side without releasing to the atmosphere, the drive efficiency of the motor 12 with respect to the supplied power can be prevented from being lowered, and the output of the blower 10 can be reduced. There is no decline.
- the flow rate of the air flow path Wb generated in the groove 133 is configured to increase according to the rotational speed of the blower fan 13, the air flow in the thrust direction according to the rotational speed of the blower fan 13.
- the displacement amount of the fan 13 can be effectively suppressed.
- blower blade 131, the convex part 132, and the groove part 133 are integrally formed of a predetermined resin or the like, it is possible to form a desired shape precisely and easily.
- the displacement amount of the blower fan 13 in the thrust direction can be controlled by selecting the number, depth (height H132 of the convex portion 132), and width (height W132 of the convex portion) of the groove 133.
- the plurality of convex portions 132 and the plurality of groove portions 133 are provided only in the peripheral portion of the lower surface 13b of the blower fan 13, and between the central portion including the center CO of the blower fan 13 and the peripheral portion.
- blower 10 according to the present embodiment when used as a ventilator for a ventilator or the like, unlike a general blower, it is not necessary to frequently turn on / off the blowing operation, but it is longer and stable. A blowing operation is required. Therefore, when the blower 10 according to the present embodiment is applied as a blower for the artificial respirator, a pressure difference between the upper surface 13a and the lower surface 13b of the blower fan can be suppressed, so that reliable blowing operation is performed stably. It becomes possible.
- control circuit 31 and the power MOS-FET 32 that are heat generating elements during the blowing operation are arranged on the substrate 230, these heat generating elements can be cooled by the air flow paths Wb and Wb1. Therefore, the temperature rise of the coil 126 of the motor 12 due to the heat generated from the control circuit 31 and the power MOS-FET 32 can be suppressed, and the output of the blower 10 can be prevented from being lowered.
- the number of the groove portions 133 is the same as the number of the blower blades 131, but is not limited thereto. Further, the depth (height H132 of the convex portion 132) and the width (width W132 of the convex portion) of the groove portion 133 can be selected as necessary.
- the structure in which the side surface is substantially perpendicular to the horizontal plane is given as an example, but the present invention is not limited to this.
- the side surface of the groove part 133 has a predetermined taper angle with respect to the horizontal plane. It may be configured.
- the use of the air blower 10 disclosed in the present embodiment is not limited to a ventilator. Needless to say, the present invention is widely applicable to other air blowing applications such as medical use for continuous positive pressure respiratory therapy (CPAP) for the treatment of sleep apnea syndrome.
- CPAP continuous positive pressure respiratory therapy
- the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying constituent elements without departing from the scope of the invention in the implementation stage.
- various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above embodiments. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
本実施形態において、送風機10は、ハウジング11と、モータ12と、ファン13とを備える。ハウジング11は、外部の空気を取り込む吸気口17aと、吸気口17aに連通する収容室LRと、収容室LR内の空気を外部に排出する排気口17bとを備える。モータ12は、ハウジング11の収容室LR内に設けられ、コイル126を備える。ファン13は、モータ12の回転軸に設けられ、外部の空気を吸気口17aから収容室LR内に取り込み、収容室LRから排気口17bに送風する。ファン13は、ファン13の第1面13a上に回転の中心COから周辺部へ向かって放射状に設けられる板形状の複数のブレード131と、第1面と対向するファン13の第2面13b上であって隣接する複数のブレード131の間と対向する位置に中心COから周辺部へ向かって放射状に設けられる複数の溝133とを備える。
Description
本発明の実施形態は、例えば人工呼吸器等に適用可能な送風機に関する。
吸気口から吸気した空気を排気口に排出する送風機において、例えば回転時にロータとステータとが非接触である空気動圧軸受を備える送風機等がある(例えば、特許第5588747号公報)。
空気動圧軸受を備える送風機は、ロータとステータとが直接的に接触するボールベアリング式の軸受を備える送風機等と比べて、長寿命かつ低音である。そのため、人工呼吸器用等の送風機として好適である。
空気動圧軸受を備える送風機では、送風ファン(ブレード)の上面と下面と間に圧力差が生じ、発生した圧力差により送風ファンが所定の位置よりスラスト方向に移動し、送風ファンがケース体であるハウジングに接触することを防止する必要がある。
本発明の実施形態では、送風ファンの上面と下面との間に発生する圧力差を抑制して信頼性を向上させることができる送風機を提供する。
実施形態に係る送風機は、ハウジングと、モータと、ファンとを備える。ハウジングは、外部の空気を取り込む吸気口と、吸気口に連通する収容室と、収容室内の空気を外部に排出する排気口とを備える。モータは、ハウジングと、ハウジングの収容室内に設けられ、コイルを備える。ファンは、モータの回転軸に設けられ、外部の空気を吸気口から収容室内に取り込み、収容室から排気口に送風する。ファンは、ファンの第1面上に回転の中心から周辺部へ向かって放射状に設けられる板形状の複数のブレードと、第1面と対向するファンの第2面上であって隣接する複数のブレードの間と対向する位置に中心から周辺部へ向かって放射状に設けられる複数の溝とを備える。
本発明の実施形態によれば、送風ファンの上面と下面との間に発生する圧力差を抑制し、送風機の信頼性を向上させることができる。
以下、実施の形態について、図面を参照して説明する。なお、以下の説明において、実質的に同一の機能及び要素については、同一符号を付し、必要に応じて説明を行う。また、図面は模式的なものであり、厚みと平面寸法との関係や各層の厚みの比率などは現実のものと異なることがある。
(第1実施形態)
[構成]
全体構成
図1、図2を用いて第1実施形態に係る送風機の全体構成について説明する。図1は、第1実施形態に係る送風機10の一例を示す側面図である。図2は、第1実施形態に係る送風機10の一例を示す上面図である。
[構成]
全体構成
図1、図2を用いて第1実施形態に係る送風機の全体構成について説明する。図1は、第1実施形態に係る送風機10の一例を示す側面図である。図2は、第1実施形態に係る送風機10の一例を示す上面図である。
図1、図2に示すように、第1実施形態に係る送風機10は、ハウジング11、および送風ファン13を備えている。送風ファン13は、ハウジング11内の収容室内に配置されるモータの回転軸に設けられた複数の送風ブレード131を有する。ハウジング11は、吸気口17aおよび排気口17bを有しており、分割された2つのハウジング部材11a、11cにより構成される。吸気口17aは、ハウジング11の上部に設けられ、ハウジング部材11aより構成される。排気口17bは、ハウジング11の側部に設けられ、ハウジング部材11aおよび11bにより構成される。
断面構成
図3、図4を用いて第1実施形態に係る送風機の断面構成について詳細に説明する。図3は、図2のIII-III線に沿って矢印の方向から見た断面図である。図4は、図3の破線領域A近傍の拡大例を示す断面図である。
図3、図4を用いて第1実施形態に係る送風機の断面構成について詳細に説明する。図3は、図2のIII-III線に沿って矢印の方向から見た断面図である。図4は、図3の破線領域A近傍の拡大例を示す断面図である。
図3に示すように、ハウジング11内には、吸気口17aおよび排気口と連通し、ファンユニット51を収容するための収容室LRが設けられている。ファンユニット51は、送風ファン13および送風ファン13を駆動するためのモータ12を備える。
本実施形態において、モータ12は、例えば、コアレスモータとしてもよい。モータ12は、シャフト(固定軸)121、微小隙間122、スリーブ123、バックヨーク124、コイル126、マグネット125、ハブ127、およびスラストマグネット128a、128bを少なくとも備える。上記構成のうち、シャフト121、コイル126、およびスラストマグネット128aは固定子であり、スリーブ123、バックヨーク124、マグネット125、ハブ127、スラストマグネット128bは回転子である。
シャフト121は、台座190を介してベース板200に固定される。微小隙間122は、シャフト121とスリーブ123との間に設けられるごくわずかな間隙である。スリーブ123は、微小隙間122を介してシャフト121の外周に設けられる。バックヨーク124は、スリーブ123の外周に設けられる。コイル126は、バックヨーク124の外周に設けられる。ハブ127は、スリーブ123およびマグネット125の側面等を支持するとともに、シャフト121の上部を覆う回転部材である。スラストマグネット128aは、シャフト121の上部の内側に固定されたリング状のマグネットである。スラストマグネット128bは、上記スラストマグネット128aの外周部と対向するように、ハブ127の上部の外側に固定されたリング状のマグネットである。本実施形態では、上記構成により、空気動圧軸受を構成している。
尚、モータ12の近傍に、基板230を介してコイル126と電気的に接続されたインダクタとしての別コイルを設けてもよい。
送風ファン13は、収容室LRに配置され、回転の中心COを含む回転軸がモータ12の回転軸と一致するようにハブ127に固定される。送風ファン13の上面には、吸気口17aから取り込んだ外部の空気を、所定の出力(送風圧力および送風流量)にて排気口17bへ送風するための複数の送風ブレード131が設けられている。複数の送風ブレード131は、送風ファン13に対して中心COから放射状に所定の間隔で設けられ、軸方向に突出した板状の部材で構成される。送風ファン13の詳細については、後述する。
さらに、図4は、図3の破線領域A近傍の拡大例を示す断面図であり、送風ファン13の上面13aと収容室LRを構成するハウジング部材11aとの間には所定のギャップ(隙間)GP1が設けられ、送風ファン13の下面13bと収容室LRを構成するハウジング部材11bとの間には所定のギャップ(隙間)GP2が設けられている。これらのギャップGP1、GP2が設けられていることにより、送風ファン13が回転しても、送風ファン13とハウジング11とが接触することなく、正常な送風動作を行うことができる。
尚、ハウジング部材11bは、底部に配置されたベース板200上に設けられる。ベース板200およびハウジング部材11bは、これらを貫通する取付ネジ200nにより固定される。また、ベース板200および基板230は、これらを貫通する取付ネジ230nにより固定される。
送風ファンの詳細構成
図5A、図5Bを用いて第1実施形態に係る送風機10が備える送風ファン13の詳細構成について説明する。図5Aは、送風ファン13の上面13a側の一例を示す斜視図である。図5Bは、送風ファン13の下面13b側の一例を示す斜視図である。
図5A、図5Bを用いて第1実施形態に係る送風機10が備える送風ファン13の詳細構成について説明する。図5Aは、送風ファン13の上面13a側の一例を示す斜視図である。図5Bは、送風ファン13の下面13b側の一例を示す斜視図である。
図5Aに示すように、送風ファン13の上面13a上には、複数の送風ブレード(送風羽)131が設けられている。複数の送風ブレード131は、回転の中心COを含む中央部から周辺部へ向かって放射状に上面13a上に所定の間隔で設けられ、軸方向に突出した板状の部材で構成される。すなわち、複数の送風ブレード131は、中心COに近い側の高さが、側部側(円周側)の高さより高い。
さらに、複数の送風ブレード131は、送風ファン13の回転方向(ここでは、図中の矢印で示す反時計回り)と反対の方向(時計回り)に湾曲して構成されている。このように構成することで、上部の吸気口17aから空気を吸気し、吸気した空気をスクロールして側部の排気口17bから空気を排気する。また、送風ブレード131を湾曲構成することで、上面13aに配置される送風ブレード131の表面積を増大させ、送風ファン13の回転により送風ブレード131の間に入り込む空気の量を増大することができる。
図5Bに示すように、送風ファン13の上面13aと対向する下面13b上には、複数のブレード131と対向する位置に凸部132がそれぞれ設けられることにより、中心COから周辺部へ向かって放射状に複数の溝部133が設けられている。換言すると、送風ファン13の下面13b上には、隣接する複数のブレード131の間と対向する位置に、中心COから周辺部へ向かって放射状に複数の溝部133が設けられている。複数の凸部132および複数の溝部133は、送風ファン13の下面13b上の周辺部(円周側部分)のみに設けられ、送風ファン13の中心COを含む中央部には設けられていなくてもよい。送風ファン13の中心COを含む中央部と周辺部との間には空洞OPがあり、空洞OPをまたいで上面13a上に複数のブレード131が設けられることで送風ファン13の中央部と周辺部とを接続してもよい。すなわち、送風ファン13は、中央部があり、中央部と同心であり中央部と空洞OPを介して配置される周辺部があり、中央部と周辺部との間には空洞OPがあり、中央部と周辺部との間が複数のブレード131で連結される構成でもよい。
しかも、複数の溝部133は、送風ファン13が回転する方向と反対の方向に湾曲して構成されている。換言すると、複数の溝部133は、複数のブレード131と同じ方向に湾曲して設けられている。このように溝部133を構成することで、送風動作の際に、図5Bに矢印で示す各溝部133に沿って生成される空気の流路Wbを増大でき、収容室LR内の圧力を効果的に減圧することができる。詳細については、後述する。
また、図5Bに拡大して示すように、凸部132の下面13bからの高さH132は、ブレード133の上面13aからの高さH131よりも低い(H132<H131)。凸部132の幅W132は、ブレード133の幅W131よりも広い(W132>W131)。
電気的構成
図6は、第1実施形態に係る送風機10の制御系の構成の一例を概略的に示すブロック図である。
図6は、第1実施形態に係る送風機10の制御系の構成の一例を概略的に示すブロック図である。
図6に示すように、送風機10の制御系の電気的構成は、送風ファン13が設けられたモータ12を備えるファンユニット51と、ファンユニット51の駆動を制御するための駆動制御ユニット52とにより構成される。駆動制御ユニット52は、モータ12を駆動する駆動電力を切り替えるためのパワーMOS-FET32と、パワーMOS-FET32の動作を制御するための制御回路31とを備える。制御回路31およびパワーMOS-FET32は、所定の回路部品として例えば基板230上に実装されている。
パワーMOS-FET32は、例えば高耐圧系のパワーMOS-FET等であって、図示せぬ電流経路の一端が所定の電源に電気的に接続され、他端が基板230を介してコイル126に電気的に接続され、制御端子が制御回路31に電気的に接続される。
制御回路31は、ファンユニット51の駆動状態等に基づき、パワーMOS-FET32の制御端子に制御信号を送信し、モータ12に供給する電力を制御する。そのため、制御回路31は、例えばパワーMOS-FET32の動作を制御するためのコントローラ等を含んでいてもよい。
[送風動作]
図7、図8を用いて第1実施形態に係る送風機10の送風動作を説明する。図7は、第1実施形態に係る送風機の送風動作によって発生する圧力状態の一例を示す断面図である。図8は、第1実施形態に係る送風機の送風動作によって発生する流路の一例を示す断面図である。
図7、図8を用いて第1実施形態に係る送風機10の送風動作を説明する。図7は、第1実施形態に係る送風機の送風動作によって発生する圧力状態の一例を示す断面図である。図8は、第1実施形態に係る送風機の送風動作によって発生する流路の一例を示す断面図である。
上記構成において、制御ユニット52によりモータ12が駆動されると、送風ファン13が回転することにより、送風機10内部の圧力が外部の大気圧と比べて負圧となることで、吸気口17aから収容室LRに外気が取り込まれる。
収容室LRに取り込まれた空気は、送風ブレード131により収容室LRをスクロールして所定の出力をもって排気口17bから外部へ排気される。
ここで、図7に示すように、送風ブレード131のスクロールが継続されると、送風ファン13の上面13a側が負圧、下面13b側が正圧となり、送風ファン13の上面13aと下面13bとの間に圧力差が発生する。この発生した圧力差により、図中の矢印で示すように、送風ファン13には圧力の低い領域である負圧側に移動しようとする力が働く。そのため、送風ファン13が、所定の位置より軸方向のスラスト方向に移動し、送風ファン13が異常浮上するおそれがある。
しかし、上述のように、本実施形態に係る送風機10では、送風ブレード13の下面13b上に、中心COから周辺部へ向かって放射状に複数の溝部133が設けられている。そのため、図5Bに示したように、送風ファン13が回転すると、凸部132に空気が衝突して各溝部133に空気が集められ、各溝部133に沿って空気の流路Wbが生成される。
そのため、図8に示すように、この空気の流路Wbにより、ハウジング11の収容室LR内の空気は、排気口17bから外部へ吸い出される。より具体的には、送風ファン13の下面13bとハウジング11aとの間の隙間(ギャップGP2)に発生した空気の流路Wbに伴い、モータ12の側面のハウジング11aとハブ127と間に、収容室LR内の空気を吸い出すように空気の流路Wb1が発生する。発生した流路WbおよびWb1により、下面13b側のギャップGP2に発生した正圧が減圧され、送風ファン13の上面13aと下面13bとの間の圧力差が抑制され、送風ファン13のスラスト方向への移動を防止できる。
[作用効果]
図9は、比較例にかかる送風機100の一例を示す断面図であり、本実施形態のように、下面側13bに溝133を形成していない送風ファンを備える送風機を例示している。図9に示す比較例に係る送風機100において、送風ブレードのスクロールが継続されると、上述したように、送風ファンの上面側が負圧、下面側が正圧となり、送風ファンの上面と下面との間に圧力差が発生する。この圧力差が発生する要因は、送風ファンの上面は吸気口と連通して大気開放されているためその圧力が大気圧となるが、送風ファンの下面の圧力はハウジング内の内圧と等価となることによる。しかし、比較例に係る送風機100は、本実施形態に係る溝部133等の構成を備えていない。そのため、発生した圧力差がしだいに増大し、送風ファンに働く負圧側に浮上しようとする力も大きくなる。そのため、送風ファンの下面とハウジングと間のギャップGP12が増大し、送風ファンは上面とハウジングとのギャップGP11が実質的に0となるまでスラスト方向に移動し、送風ファンがハウジングに接触してしまうおそれがある。また、送風ファンの下面側を大気開放してその圧力を大気圧とすると、送風効率が低減する。
図9は、比較例にかかる送風機100の一例を示す断面図であり、本実施形態のように、下面側13bに溝133を形成していない送風ファンを備える送風機を例示している。図9に示す比較例に係る送風機100において、送風ブレードのスクロールが継続されると、上述したように、送風ファンの上面側が負圧、下面側が正圧となり、送風ファンの上面と下面との間に圧力差が発生する。この圧力差が発生する要因は、送風ファンの上面は吸気口と連通して大気開放されているためその圧力が大気圧となるが、送風ファンの下面の圧力はハウジング内の内圧と等価となることによる。しかし、比較例に係る送風機100は、本実施形態に係る溝部133等の構成を備えていない。そのため、発生した圧力差がしだいに増大し、送風ファンに働く負圧側に浮上しようとする力も大きくなる。そのため、送風ファンの下面とハウジングと間のギャップGP12が増大し、送風ファンは上面とハウジングとのギャップGP11が実質的に0となるまでスラスト方向に移動し、送風ファンがハウジングに接触してしまうおそれがある。また、送風ファンの下面側を大気開放してその圧力を大気圧とすると、送風効率が低減する。
これに対して、第1実施形態に係る送風機10は、送風ブレード13の下面13b上に、中心COから周辺部へ向かって放射状に設けられた複数の溝部133を備える。上記構成において、送風ファン13が回転すると、空気が各溝部133に集められ、各溝部133に中心COから周辺部へ向かう空気の流路Wbが生成される(図5B)。この空気の流路Wbにより、ハウジング11の収容室LR内の空気は、送風ブレード131のスクロールにより、排気口17bから外部へ吸い出される(図8)。
これにより、図10に示すように、送風ファン13の下面13b側のギャップGP2に発生した正圧が減圧され、送風ファン13の上面13a側のギャップGP1と下面13b側のギャップGP2とに発生した圧力を均等化できる。その結果、送風動作の前後にかかわらず、送風ファン13の上面13a側のギャップGP1と下面13b側のギャップGP2を維持でき、送風ファン13のスラスト方向への移動を防止することができるため、信頼性を向上することができる点で有利である。さらに、本実施形態では、送風ファン13の下面13b側の圧力を大気開放することなく、上面13a側と連結させるため、供給電力に対するモータ12の駆動効率の低下を防止でき、送風機10の出力が低下することもない。
しかも、溝部133に生成される空気の流路Wbの流量は、送風ファン13の回転数に応じて増大するように構成されるため、送風ファン13の回転数に応じて、スラスト方向への送風ファン13の変位量を効果的に抑制することができる。
さらに、送風ブレード131、凸部132、および溝部133は、所定の樹脂等により一体的に成形されるため、所望の形状を精密かつ容易に形成することが可能である。
また、溝部133の本数、深さ(凸部132の高さH132)、幅(凸部の幅W132)を選択することで、送風ファン13のスラスト方向への変位量を制御することができる。
さらに、本実施形態では、複数の凸部132および複数の溝部133は、送風ファン13の下面13bの周辺部のみに設けられ、送風ファン13の中心COを含む中央部と周辺部との間には空洞OPがあり、上面13a上の空洞OPをまたいで複数のブレード131が設けられることで、送風ファン13の中心部と周辺部とを接続している。そのため、送風ファン13を軽量化でき、消費電力を低減することができる。
加えて、本実施形態に係る送風機10を人工呼吸器用の送風機等として利用する場合、一般的な送風機と異なり送風動作のオン/オフを頻繁に行う必要がない一方で、より長時間かつ安定した送風動作が求められる。そのため、本実施形態に係る送風機10を当該人口呼吸器用の送風機として適用すると、送風ファンの上面13aと下面13bとの間における圧力差を抑制できるため、信頼性のある送風動作を安定的に行うことが可能となる。
尚、基板230に送風動作時に発熱体となる制御回路31およびパワーMOS-FET32を配置する場合、空気の流路Wb、Wb1により、これらの発熱体を冷却することも可能となる。そのため、制御回路31およびパワーMOS-FET32から発生した熱によるモータ12のコイル126の温度上昇を抑制することができ、送風機10の出力の低下を防止することも可能となる。
(変形例)
本発明の実施形態は、第1実施形態に開示した内容に限定されるものではなく、必要に応じて種々の変形が可能であることは勿論である。
本発明の実施形態は、第1実施形態に開示した内容に限定されるものではなく、必要に応じて種々の変形が可能であることは勿論である。
例えば、第1実施形態に係る送風機10では、溝部133の本数は、送風ブレード131の本数と同一であるが、これに限定されない。また、溝部133の深さ(凸部132の高さH132)および幅(凸部の幅W132)も必要に応じて選択することが可能である。
さらに、溝部133の形状において、その側面が水平面に対してほぼ垂直である構造を一例に挙げたがこれに限定されず、例えば溝部133の側面が水平面に対して所定のテーパ角を有するように構成してもよい。
尚、本実施形態に開示の送風機10の用途は、人工呼吸器用に限定されない。例えば睡眠時無呼吸症候群の治療のための持続陽圧呼吸療法(CPAP:Continuous Positive Airway Pressure)用の医療用途等、その他の送風用途に広く適用可能であることは勿論である。
その他、本発明は上記各実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記各実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
Claims (5)
- 外部の空気を取り込む吸気口と、前記吸気口に連通する収容室と、前記収容室内の空気を外部に排出する排気口とを備えるハウジングと、
前記ハウジングの前記収容室内に設けられ、コイルを備えるモータと、
前記モータの回転軸に設けられ、外部の空気を前記吸気口から前記収容室内に取り込み、前記収容室から前記排気口に送風するファンと、を具備し、
前記ファンは、前記ファンの第1面上に回転の中心から周辺部へ向かって放射状に設けられる板形状の複数のブレードと、前記第1面と対向する前記ファンの第2面上であって隣接する前記複数のブレードの間と対向する位置に前記中心から前記周辺部へ向かって放射状に設けられる複数の溝と、を備える
送風機。 - 前記複数の溝は、前記ファンの前記第2面上の周辺部に設けられている
請求項1の送風機。 - 前記複数の溝の数は、前記複数のブレードの数と同一である
請求項1の送風機。 - 前記複数のブレードは、前記ファンが回転する方向と反対の方向に湾曲して設けられ、
前記複数の溝は、前記複数のブレードと同じ方向に湾曲して設けられる
請求項1の送風機。 - 前記ファンは、前記中心を含む中央部と、前記中央部と同心であり空洞を介して配置される周辺部と、前記空洞をまたいで前記中央部と前記周辺部とを接続し前記ファンの上面上に設けられる複数のブレードとを具備する
請求項1の送風機。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017005943A JP2018115585A (ja) | 2017-01-17 | 2017-01-17 | 送風機 |
JP2017-005943 | 2017-01-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018135069A1 true WO2018135069A1 (ja) | 2018-07-26 |
Family
ID=62908897
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/039157 WO2018135069A1 (ja) | 2017-01-17 | 2017-10-30 | 送風機 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2018115585A (ja) |
WO (1) | WO2018135069A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3712439A1 (en) | 2019-03-22 | 2020-09-23 | Shinano Kenshi Kabushiki Kaisha | Blower |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59179297U (ja) * | 1983-05-18 | 1984-11-30 | 松下電器産業株式会社 | 電動送風機 |
JPS62195699U (ja) * | 1986-05-30 | 1987-12-12 | ||
JP2002202094A (ja) * | 2000-12-28 | 2002-07-19 | Mitsubishi Heavy Ind Ltd | 遠心送風機及びこれを備えた車両用空調装置 |
US20050134126A1 (en) * | 2003-12-20 | 2005-06-23 | Johnson Electric S.A. | Electric motor |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4560866B2 (ja) * | 1999-12-06 | 2010-10-13 | パナソニック電工株式会社 | ポンプ |
JP4017003B2 (ja) * | 2005-09-30 | 2007-12-05 | ダイキン工業株式会社 | 遠心ファン及びこれを用いた空気調和機 |
JP2008185000A (ja) * | 2007-01-31 | 2008-08-14 | Matsushita Electric Ind Co Ltd | 遠心ファン装置及びそれを備えた電子機器 |
JP4458109B2 (ja) * | 2007-03-27 | 2010-04-28 | 株式会社日立プラントテクノロジー | 溶接溝封止構造 |
JP2012202362A (ja) * | 2011-03-28 | 2012-10-22 | Minebea Co Ltd | 羽根車、およびそれを備えた遠心式ファン |
-
2017
- 2017-01-17 JP JP2017005943A patent/JP2018115585A/ja active Pending
- 2017-10-30 WO PCT/JP2017/039157 patent/WO2018135069A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59179297U (ja) * | 1983-05-18 | 1984-11-30 | 松下電器産業株式会社 | 電動送風機 |
JPS62195699U (ja) * | 1986-05-30 | 1987-12-12 | ||
JP2002202094A (ja) * | 2000-12-28 | 2002-07-19 | Mitsubishi Heavy Ind Ltd | 遠心送風機及びこれを備えた車両用空調装置 |
US20050134126A1 (en) * | 2003-12-20 | 2005-06-23 | Johnson Electric S.A. | Electric motor |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3712439A1 (en) | 2019-03-22 | 2020-09-23 | Shinano Kenshi Kabushiki Kaisha | Blower |
US11300134B2 (en) | 2019-03-22 | 2022-04-12 | Shinano Kenshi Kabushiki Kaisha | Blower |
Also Published As
Publication number | Publication date |
---|---|
JP2018115585A (ja) | 2018-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI381097B (zh) | 雙重反轉式軸流送風機 | |
CN113007106B (zh) | 叶轮和马达组件 | |
WO2018105206A1 (ja) | 送風機およびその送風機を備えた送風システム | |
WO2013176028A1 (ja) | バキュームポンプ | |
JP2008014302A (ja) | 軸流ファン | |
WO2018105207A1 (ja) | 送風機 | |
JP2007126976A (ja) | 遠心ファン | |
JP2008082328A (ja) | 遠心ファン | |
WO2006087829A1 (ja) | 送風機 | |
JPH0390119A (ja) | 電気掃除器及び類似物用エレクトロニクス整流モーター | |
JP6292241B2 (ja) | 遠心ファン | |
WO2018135069A1 (ja) | 送風機 | |
JP2010501783A (ja) | 張り出して支承された円盤電機子型同期モータを備えるブロック形式の回転翼形油回転真空ポンプないしベーン圧縮機 | |
JP2019112963A (ja) | 送風装置、及び、これを備える掃除機 | |
JP2004274800A (ja) | 電動モータの冷却機構 | |
US11982283B2 (en) | Air compressor for vehicle | |
JP2015113781A (ja) | 軸流ファンおよび直列型軸流ファン | |
JP6976000B2 (ja) | 冷却熱平衡が可能な高速ターボ機械 | |
JP2004036569A (ja) | 直列送風装置 | |
US20190191948A1 (en) | Blowing device and vacuum cleaner provided with same | |
JP2020033875A (ja) | 圧縮装置 | |
JP2009052485A (ja) | 送風機 | |
JP4849002B2 (ja) | 送風装置 | |
JP2008008185A (ja) | ポンプ | |
JP2014088772A (ja) | 軸流送風機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17892113 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17892113 Country of ref document: EP Kind code of ref document: A1 |