WO2018133813A1 - 一种用于电血栓形成的装置和方法 - Google Patents

一种用于电血栓形成的装置和方法 Download PDF

Info

Publication number
WO2018133813A1
WO2018133813A1 PCT/CN2018/073182 CN2018073182W WO2018133813A1 WO 2018133813 A1 WO2018133813 A1 WO 2018133813A1 CN 2018073182 W CN2018073182 W CN 2018073182W WO 2018133813 A1 WO2018133813 A1 WO 2018133813A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
power source
varistor
resistance
output
Prior art date
Application number
PCT/CN2018/073182
Other languages
English (en)
French (fr)
Inventor
李佑祥
江裕华
张红彬
高宝丰
Original Assignee
李佑祥
北京市神经外科研究所
江裕华
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 李佑祥, 北京市神经外科研究所, 江裕华 filed Critical 李佑祥
Priority to US16/476,527 priority Critical patent/US20190329033A1/en
Priority to EP18741676.3A priority patent/EP3560543B1/en
Priority to ES18741676T priority patent/ES2925183T3/es
Publication of WO2018133813A1 publication Critical patent/WO2018133813A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/20Applying electric currents by contact electrodes continuous direct currents
    • A61N1/205Applying electric currents by contact electrodes continuous direct currents for promoting a biological process
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/20Applying electric currents by contact electrodes continuous direct currents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12099Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder
    • A61B17/12109Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder in a blood vessel
    • A61B17/12113Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder in a blood vessel within an aneurysm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12131Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device
    • A61B17/1214Coils or wires
    • A61B17/1215Coils or wires comprising additional materials, e.g. thrombogenic, having filaments, having fibers, being coated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/025Digital circuitry features of electrotherapy devices, e.g. memory, clocks, processors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00404Blood vessels other than those in or around the heart
    • A61B2018/00416Treatment of aneurisms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00589Coagulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/08Arrangements or circuits for monitoring, protecting, controlling or indicating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/056Transvascular endocardial electrode systems
    • A61N1/057Anchoring means; Means for fixing the head inside the heart
    • A61N2001/058Fixing tools

Definitions

  • the present application relates to a set of electrotherapeutic devices for inducing thrombosis and the use of the device in the treatment of intracranial aneurysms.
  • the present application relates to the use of a stent releaser (eg, a Solitaire stent releaser) and a Traxcess series of guidewires (eg, Traxcess-14 guidewire) for the treatment of electrical thrombosis, particularly aneurysm.
  • the application also relates to a power source specifically for electrical thrombosis.
  • the method and device not only can form a thrombus well, but also are simple and easy to perform, can make the effect of the thrombus last, and solve the problems in the foregoing background art well.
  • the present application is directed to a method for forming a thrombus, the method comprising the steps of:
  • Electrothrombosis step Using a range of constant current direct current to attract negatively charged factors such as white blood cells, platelets, and blood coagulation factors in the blood to induce thrombosis;
  • thrombosis procedure The electrothermal effect is used to further accelerate the formation, degeneration and mechanization of thrombus formation, and transform unstable thrombus into stable thrombus.
  • the present application is directed to an apparatus for practicing the above methods.
  • the basic structure of the device is shown in Figure 1, including the power supply and the guidewire portion (or consisting of a power supply and a guidewire portion).
  • the power source 1 supplies a constant current, and conducts current from the power source anode 3 to the aneurysm through the output guide wire 2 to induce thrombus formation, while utilizing the electrocaloric effect to cause the thrombus to be denatured and converted into a stable thrombus. Thereafter, current flows through the input guide wire 4 into the power supply cathode 5, thereby forming a loop.
  • the power supply mode of the power supply 1 is not limited, and can be powered by a direct current such as a battery, or by being connected to an external alternating current power source and then converted into a direct current power supply.
  • One or more panels 6 are optionally provided on the power source 1 to display parameters such as current, voltage, and the like.
  • the method and device of the present application are convenient and simple to take.
  • the blood clot volume can be increased because there is no mechanical filling stimulation, thereby reducing the intravascular and intraoperative rebleeding factors of the ruptured aneurysm; in particular, the method and device of the present application make the microcatheter or microwire Limited to aneurysms, reducing the risk and difficulty of complicated operations due to vascular path distortion and insufficient support.
  • thrombosis and mechanization are further induced on the basis of thrombosis, which prevents the fibrinolytic process. Stabilizing the thrombus reduces the chance of secondary rupture of the ruptured aneurysm. At the same time, the method and apparatus of the present application saves a lot of money and is especially important for patients in areas with weak economic power.
  • This application can be used with special power supplies and guidewires, as well as the Solitaire stent releaser and the Traxcess-14 guidewire, which are commonly available on the market, as power and guidewires, respectively. Although the original use of the two has nothing to do with electrothrombotic, the applicant unexpectedly found that the combination of the two can achieve the purpose of electrothrombotic well.
  • Another aspect of the present application relates to the use of a stent releaser (e.g., a Solitaire stent releaser) and a Traxcess series of guidewires (e.g., Traxcess-14 guidewire) and combinations thereof for use in preparing a device for electrical thrombus.
  • the Applicant has devised a constant current power source specifically for use as a power supply device for the electrothrombotic of the present application.
  • the power source is specifically designed based on the resistance of the human body and the current required for the electrical thrombus.
  • there is no power source such as the power source designed in the present application, which can output the current required for the electrical thrombus after being connected to the human body. .
  • Figure 1 Schematic representation of the apparatus of the present application.
  • Figure 2 A circuit diagram of a power supply for use in the present application.
  • Figure 3A Contrast image of case 1 after application of an intracranial stent.
  • Case 1 is a contrast image of a guidewire.
  • Figure 3C Contrast image of Case 1 after 3 days of electrolysis with the Solitaire stent releaser for 6 minutes.
  • Figure 3D DSA image of Case 1 reviewed 6 months after electrotherapy.
  • Figure 4A Contrast image of the basilar artery perforating small aneurysm prior to the case 2 electrothrombotic procedure.
  • Figure 4B Contrast image of Case 2 after three days of electrolysis with the Solitaire stent releaser for six minutes.
  • Figure 5A Contrast image of case 3 prior to electrothrombotic procedure.
  • Figure 5B Contrast image of Case 3 after 3 days of energization by the Solitaire stent releaser for a total of six minutes.
  • the device of the present application includes a power source and a guidewire portion (or consists of a power source and a guidewire portion).
  • the power supply can be a commercially available constant current source or a constant voltage source. Applicants found in the clinical practice that the constant current power supply has a greater advantage than the constant voltage power supply: although the constant voltage power supply can provide a constant output voltage, since each person's human body resistance has individual differences and cannot be kept stable at all times, Will affect the stability of the current and controllable output.
  • the constant current power supply can directly supply a constant current, which is more conducive to the stability of the external conditions of thrombus formation and the controllability of heat.
  • the output current of the power supply is about 0.1-50 mA, 0.2-20 mA, 0.5-10 mA, and 0.8-5 mA. In another embodiment, the output current of the power supply is about 0.8 mA, 1 mA, 1.5 mA, 2 mA, 3 mA, or 5 mA.
  • stent releasers can be used as a power source for the present application, such as a Solitaire stent releaser.
  • the stent releaser mainly uses the principle of electrolysis for the release of the stent, and has nothing to do with thrombosis in general medical practice.
  • the inventors of the present application have surprisingly found that they can be advantageous in the electrothrombotic method of the present application because they have a stable, safe voltage (e.g., about 9 V) during energization, particularly a relatively constant current (e.g., about 0.8-1.0 mA).
  • a stent releaser e.g., a Solitaire stent releaser
  • electrothrombotic therapy e.g., electrothrombotic therapy
  • a device for thrombosis e.g., a Solitaire stent releaser
  • a power supply including the following components: internal power supply, voltage regulator, diode, first resistor, second resistor, third resistor, first varistor, ammeter, external electrode, and Two varistor.
  • the internal power source constitutes a power supply portion
  • the voltage regulator, the diode, the first resistor, the second resistor and the third resistor constitute a current control portion
  • the first resistor and the second varistor constitute an adjustment portion
  • the ammeter and the external electrode constitute an output portion
  • the adjustment section further includes a gear shifter to switch the current between the different gear positions to constantly output the corresponding current.
  • the resistance range of each resistor and varistor can be determined as described below.
  • the internal power supply can be directly powered by a DC power source or by converting an external AC power into a DC power source to form a DC power source.
  • the DC output voltage of the power supply can be about 10V, 2V, 14V, 16V, 18V, 20V, 22V, 24V, 26V, 28V, 30V, 32V, 34V, 36V, 38V or 40V, for example using a 24V DC power supply.
  • the regulator In the current control part, the regulator is used to ensure that the output part of the circuit voltage is relatively stable, which can be used in the market commonly used three-terminal regulator, such as LM117HVH three-terminal regulator.
  • the output of the voltage regulator is divided into two branches and respectively connected to a first resistor for voltage division and a third resistor for current limiting.
  • the reason why the third resistor for current limiting needs to be set is because the resistance values of different living bodies are very different, and the current fluctuation may be too large, so it is necessary to set the current limiting resistor here for safety.
  • the resistance of the first resistor may be about 200 ⁇ , 220 ⁇ , 230 ⁇ , 250 ⁇ , 280 ⁇ , 300 ⁇ , 320 ⁇ , 30 ⁇ , 350 ⁇ , 380 ⁇ , or 400 ⁇ .
  • the resistance of the third resistor may be about 500 ⁇ , 1000 ⁇ , 1500 ⁇ , 2000 ⁇ , 2500 ⁇ , 3000 ⁇ , 3500 ⁇ , or 4000 ⁇ .
  • a diode is coupled to the third terminal of the regulator and in series with the second resistor to protect the regulator from damage due to excessive output voltage.
  • the output of the regulator is connected to a large capacitor and the input terminal maintains a small voltage capability, the output potential is higher than the input after the power is turned off. Therefore, a diode is required to make the output capacitor The input discharges and protects the regulator.
  • One or more diodes may be connected in series depending on the need to regulate the current.
  • the resistance of the second resistor may be about 5 ⁇ , 10 ⁇ , 15 ⁇ , 20 ⁇ , 25 ⁇ , 30 ⁇ , 35 ⁇ , 40 ⁇ .
  • the first varistor is connected in series with the third resistor and together with the second varistor for regulating the current in a wide range between different living bodies (for example, between different patients).
  • the maximum resistance of the first varistor can be about 5k ⁇ , 5.5k ⁇ , 6k ⁇ , 6.5k ⁇ , 7k ⁇ , 7.5k ⁇ , 8k ⁇ , 8.5k ⁇ , 9k ⁇ , 9.5k ⁇ , 10k ⁇ , 10.5k ⁇ , 11k ⁇ , 11.5k ⁇ , 12k ⁇ , 12.5k ⁇ , 13k ⁇ , 13.5k ⁇ , 14k ⁇ , 14.5k ⁇ , 15k ⁇ .
  • the first varistor can have several (for example, three) gear positions, and the resistance values of each gear can be about 0.5k ⁇ , 1k ⁇ , 1.5k ⁇ , 2k ⁇ , 2.5k ⁇ , 3k ⁇ , 3.5k ⁇ , 4k ⁇ , 4.5k ⁇ , 5k ⁇ , 5.5k ⁇ , 6k ⁇ , 6.5k ⁇ , 7k ⁇ , 7.5k ⁇ , 8k ⁇ , 8.5k ⁇ , 9k ⁇ , 9.5k ⁇ , 10k ⁇ , 10.5k ⁇ , 11k ⁇ , 11.5k ⁇ , 12k ⁇ , 12.5k ⁇ , 13k ⁇ , 13.5k ⁇ , 14k ⁇ , 14.5k ⁇ , 15k ⁇ .
  • the second varistor is used to fine tune the current when the living body fluctuates in a small range (for example, when operating the same patient).
  • the maximum resistance of the second varistor can be about 10k ⁇ , 11k ⁇ , 12k ⁇ , 13k ⁇ , 14k ⁇ , 15k ⁇ , 16k ⁇ , 17k ⁇ , 18k ⁇ , 19k ⁇ , 20k ⁇ , 21k ⁇ , 22k ⁇ , 23k ⁇ , 24k ⁇ , 25k ⁇ , 26k ⁇ , 27k ⁇ , 28k ⁇ , 29k ⁇ or 30k.
  • the second varistor can also have several (for example, three) gear positions, and the resistance values of each gear can be about 1k ⁇ , 2k ⁇ , 3k ⁇ , 4k ⁇ , 5k ⁇ , 6k ⁇ , 7k ⁇ , 8k ⁇ , 9k ⁇ , 10k ⁇ , 11k ⁇ , 12k ⁇ , 13k ⁇ . , 14k ⁇ , 15k ⁇ , 16k ⁇ , 17k ⁇ , 18k ⁇ , 19k ⁇ , 20k ⁇ , 21k ⁇ , 22k ⁇ , 23k ⁇ , 24k ⁇ , 25k ⁇ , 26k ⁇ , 27k ⁇ , 28k ⁇ , 29k ⁇ or 30k ⁇ .
  • the adjustment portion may further include a gear position converter, which is connected in series with the first varistor and the third resistor, and realizes the function of switching the current gear by dialing the control switch to different gear positions, and the number of gear positions may be two or three. , four or five, and so on.
  • each gear position itself is connected with a certain resistance to adjust the current within the range of the aforementioned output current, and the resistance value of the resistor is related to the third resistor and the first varistor, and also to the resistance of different living bodies themselves.
  • the resistance values of the connection of each gear position can be set, for example, to about 0 k ⁇ , 0.3 k ⁇ , 0.5 k ⁇ , 1 k ⁇ , 2 k ⁇ , 3 k ⁇ , 4 k ⁇ , 5 k ⁇ , 6 k ⁇ , 7 k ⁇ , 8 k ⁇ , 9 k ⁇ , 10 k ⁇ , 11 k ⁇ , 12 k ⁇ , respectively.
  • the ammeter is a current meter commonly used in the industry to indicate the current in the electrothrombotic operation and can be used as part of the panel 6 described above.
  • the range of the current is consistent with the common current range of the electrothrombotic, such as 0-5 mA, 0-10 mA, 0-20 mA or 0-50 mA, etc., and the first varistor and/or the second varistor can be adjusted according to the indication of the ammeter when in use.
  • the external electrodes correspond to the aforementioned anode 3 and cathode 5.
  • the ammeter and the external electrode are connected in series with the first varistor and the third resistor.
  • FIG. 2 shows a specific embodiment.
  • the internal power supply is 24V DC power supply, and the output is connected to two series connected LM117HVH three-terminal regulators U1 and U2.
  • the output of U2 is divided into two parts, which are respectively connected with the first resistor R1 (330 ⁇ ) and the third resistor R6 (2000 ⁇ ).
  • one end of U2 is connected in series with two diodes D1 and D2 and a second resistor R5 (20 ⁇ ), so that the current is fed back to U1, thereby protecting U1 and U2.
  • the first varistor R2, the gear position converter, the ammeter XMM1 and the external electrode are connected in series with the third resistor R6, and the series circuit is connected in parallel with the second varistor R3, the maximum resistance of the first varistor R2 is 10k ⁇ , and the second varistor R3 The maximum resistance is 20k ⁇ .
  • the gear shifter is divided into three gears, and each gear is connected with resistors R4, R7, and R8, so that the output currents are about 1 mA, 2 mA, and 5 mA, respectively.
  • the output guide wire of the present application can adopt a guide wire commonly used in clinical practice.
  • the guide wire has a head end that has good electrical conductivity, moderate heat production, and resistance to electrolysis.
  • Traxcess-14 guidewires are well suited for use as the output guidewire of the present application.
  • the Traxcess guidewire was originally only used for general diagnosis or treatment with a microcatheter in the blood vessel, but there is no report of its use for thrombosis. Due to its good electrical performance and excellent electrolysis resistance (for example, the Traxcess-14 guide wire has an insulating coating on the proximal end of the guide wire of about 3cm except for the tail end, which facilitates the concentration of positive charge to the head end, and the head end is inlaid with platinum coil.
  • a Traxcess guidewire particularly a Traxcess-14 guidewire
  • electrothrombotic therapy and in the preparation of a device for electrothrombotic.
  • the output guidewire of the present application (e.g., at the head end) is optionally provided with means for measuring temperature or for temperature alarms, and/or an auxiliary device for introducing the microcatheter.
  • the input guidewire used in the present application can be a clinically used guide wire, for example, a conventional medical power source or a self-contained wire on the electrode of the stent releaser can serve as an input guide wire.
  • the input guide wire can be connected to the metal syringe needle under the human skin (for example, under the skin of the thigh), or the input guide wire can be attached to the proper position of the human body, or can be attached to the skin through the patch, thereby achieving circuit connection with the human body to form Loop.
  • the body's own resistance value will become larger.
  • the parameters of the power supply such as voltage and internal resistance, should be adjusted accordingly.
  • the present application also relates to the use of a combination of a Solitaire stent releaser and a Traxcess-14 guidewire for the treatment of electrothrombotic, and the use in the preparation of a thrombogenic device.
  • a commercially available Traxcess-14 guide wire is used as the output guide wire, and the tail end (ie, the uncoated conductive end) is attached to the anode of the Solitaire stent releaser, and the guide wire tip is superselected to the aneurysm lumen, the neck All the guidewire portions in the proximal body are isolated by the microcatheter outside the blood circulation range; a needle (a conductive metal needle, such as a common syringe needle) can be inserted into the skin at the thigh, and the Solitaire stent is released from the device.
  • a needle a conductive metal needle, such as a common syringe needle
  • the wires on the cathode of the power supply (acting as input wires) are connected such that a positive charge collects at the aneurysm lumen and current flows through the subcutaneous electrical resistance of the body through the thigh needle back to the cathode of the detacher, thereby forming a complete loop (complete with the principle of the detachment stent) the same).
  • the tip end of the guide wire is superselected into the aneurysm cavity, and the proximal end of the neck is protected by a microcatheter.
  • the power of the Solitaire stent is turned on to achieve electrothrombotic operation, intermittently energized, and the current is controlled at 1 mA during energization. about. Three times for one stage, one stage after the angiography, until the effect is satisfactory.
  • Case 1 Male, 15 years old, fell on a motorcycle. Bilateral carotid artery multiple dissection aneurysm, pseudoaneurysm. With the above operation, a simple electrical treatment is performed for a pseudoaneurysm inaccessible to the microcatheter.
  • Figures 3A-3D The course of treatment is shown in Figures 3A-3D.
  • Figure 3A shows that the intracranial stent is still imaged after placement of the intracranial stent at the ophthalmic artery pseudoaneurysm, and conventional microcatheters are unable to pass through the mesh.
  • Figure 3B shows the use of a Traxcess-14 guidewire that allows the tip to reach the lumen of the tumor and the microcatheter to follow the stent mesh.
  • Figure 3C shows that the Solitaire stent release device was energized three times for a total of six minutes and showed no obvious development of the tumor cavity, indicating that an electrical thrombus was well formed.
  • Figure 3D is a DSA image reviewed 6 months after electrotherapy, indicating that the electrothrombotic remains well, indicating that the thrombus formed by the device and method of the present application has a lasting effect.
  • Case 2 Male, 49 years old, admitted to hospital for subarachnoid hemorrhage (SAH). As shown in the angiography of Figure 4A, there is a minimally aneurysm of the basilar artery perforating at the arrow. Since the aneurysm is minute and the conventional microcatheter is difficult to enter, the above operation is used for electrotherapy. The Solitaire stent release was energized for 3 times for a total of six minutes and showed no significant development of the tumor cavity, as shown in Figure 4B, indicating that the electrical thrombus was equally well formed.
  • SAH subarachnoid hemorrhage
  • Case 3 Female, 51 years old, headache, vomiting for 10 days. Skull CT showed hemorrhage in the anterior pool, ring pool, and fourth ventricle; cranial CTA showed the presence of minimally small aneurysms of the basilar artery. The angiography of this aneurysm is shown in Figure 5A. The Solitaire stent release was energized for 3 times for a total of six minutes and showed no significant development of the tumor cavity, as shown in Figure 5B, indicating that the electrical thrombus was equally well formed.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Reproductive Health (AREA)
  • Vascular Medicine (AREA)
  • Neurosurgery (AREA)
  • Cardiology (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Otolaryngology (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Surgical Instruments (AREA)
  • Prostheses (AREA)

Abstract

本申请涉及用于诱导血栓形成的电治疗装置,包括电源和导丝部分。

Description

一种用于电血栓形成的装置和方法 技术领域
本申请涉及一套用于诱导血栓形成的电治疗装置,以及该装置在颅内动脉瘤治疗中的用途。本申请涉及支架解脱器(例如Solitaire支架解脱器)与Traxcess系列导丝(例如Traxcess-14导丝)在电血栓形成、特别是动脉瘤治疗中的用途。本申请还涉及一种特定用于电血栓的电源。
背景技术
“电血栓化”这一概念早在两个世纪前就已经出现了,其原理是利用电传导材料表面的正电荷,吸引血液中的带负电荷的血细胞、血小板、凝血因子等来形成血凝块。1824年,Scudamore发现阳极电极产生血栓,而阴极电极没有血栓形成,掀开了电血栓形成的研究序幕。1847年,Ciniselli用直流电针穿刺动脉瘤诱导血栓形成,首次将此技术应用在动脉瘤治疗的研究中。
然而,随着医疗技术的进步以及人类健康需求的不断提升,电血栓化的局限性也渐渐凸显出来。Mullan等在1965年对12例电血栓化治疗的颅内动脉瘤行术后6个月复查造影,结果显示电血栓化诱导形成血栓不能持久,只能临时起作用,达不到持久的栓塞动脉瘤效果;在随后的1969年,Mullan通过研究进一步指出,最初的颅内动脉瘤内部分电血栓不仅不能在合理的时间内成功地栓塞动脉瘤,甚至因为改变了动脉瘤内稳定的血液循环,更容易导致动脉瘤出血。由此可见,单纯电血栓化形成因为新鲜血栓的不稳定性,以及随即而来的纤维溶解过程,常常导致电血栓化治疗颅内动脉瘤的失败。
至2004年,Henkes H等通过研究电解脱弹簧圈表面血栓形成,得出电血栓化形成原理在电解弹簧圈颅内动脉瘤栓塞治疗中起不到确定性作用。自此,业内渐渐放弃了通过电血栓化来实现动脉瘤栓塞的思路,转而采用单纯的机械填塞为代表的常规血管内治疗方法。之后各种栓塞技术及辅助栓塞支架的飞速发展,更加奠定了弹簧圈栓塞颅内动脉瘤的霸主地位。
尽管以弹簧圈栓塞为代表的常规栓塞手段在封闭动脉瘤体,诱导血栓形成术效果肯 定,但在临床实践中也经常遇到诸多问题,包括但不限于:
①临床上的微小动脉瘤(尤其是微导管无法进入留腔的动脉瘤),常规血管内治疗方法往往不理想;
②对于血泡样动脉瘤,常规血管内栓塞治疗不理想,密网支架等费用太高、而且对路径血管条件要求高;
③对于大动脉瘤,常规栓塞常遇到瘤颈残余、难以达到致密栓塞,支架辅助也难以达到致密栓塞,常常很快复发;密网支架虽然可行,费用昂贵。
④对于烟雾状血管团内动脉瘤和动静脉畸形(AVM)团内动脉瘤,常规血管内治疗过程中常难以保留周围细小供血动脉,术后导致患者供血不足。
综上所述,时至今日,对于传统介入治疗方法治疗困难的动脉瘤,业内仍然需要一种有效、便利、持久的血栓诱导方法,以为此类动脉瘤患者带来更好的治疗。
发明内容
对于传统介入治疗方法治疗困难的动脉瘤,在其他业内人士纷纷寻找其他新的治疗途径时,本申请的发明人却出人意料地从已经被放弃的电血栓化入手并对此予以改进,摸索出了一种有效用于血栓的方法,并采用本领域内原本用于其他用途的材料进行出人意料的组合,从而设计了用于前述方法的装置。所述方法和装置不但能够很好地形成血栓,而且简便、易行,可以使血栓的效果持久,很好地解决了前述背景技术中存在的问题。
在一个方面中,本申请涉及一种用于形成血栓的方法,该方法包括以下步骤:
1.电血栓步骤。采用一定范围的恒流直流电吸引血液中的白细胞、血小板、凝血因子等带负电荷的因子,诱导血栓化形成;
2.血栓机化步骤。利用电热效应进一步促使血栓形成加速、变性、机化,将不稳定血栓转变成稳定血栓。
在另一个方面中,本申请涉及一种用于实践上述方法的装置。该装置的基本结构如图1所示,包括电源和导丝部分(或由电源和导丝部分组成)。电源1提供恒定电流,通过输出导丝2自电源阳极3将电流传导至动脉瘤以诱导血栓形成,同时利用电热效应使血栓 变性机化,转变为稳定血栓。此后,电流再通过输入导丝4流入电源阴极5,从而形成回路。电源1自身的供电方式不限,既可以通过电池之类的直流电来供电,也可以通过接入外部交流电源再转化为直流电的方式供电。电源1上任选配有一或多个面板6以显示电流、电压等参数。
本申请的方法和装置取材方便,简单易行。由于没有了机械填充的刺激而能够增加了血凝块体积,从而减少了破裂动脉瘤血管内治疗术中、术后再出血因素;特别是,本申请的方法和装置使微导管或微导丝局限在动脉瘤内,减少了因为血管路径迂曲、支撑力不够导致的复杂化操作带来的风险和难度。
此外,在血栓形成基础上进一步诱导血栓变性和机化,阻止了纤维溶解过程,稳定血栓减少了破裂动脉瘤近期二次破裂出血的机会。同时,本申请的方法和装置节省了大量费用,对于经济力量薄弱地区的患者尤其重要。
本申请既可以采用特制的电源与导丝,也可以采用市面上常见的Solitaire支架解脱器和Traxcess-14导丝分别用作电源和导丝。两者虽然原本的用途与电血栓毫无关系,但申请人出人意料地发现两者的组合可以很好地实现电血栓的目的。本申请的另一方面涉及支架解脱器(例如Solitaire支架解脱器)与Traxcess系列导丝(例如Traxcess-14导丝)及其组合在制备用于电血栓的装置中的用途。
此外,在另一个实施方式中,申请人设计了一种恒流电源,其专门用作本申请电血栓的供电装置。该电源是基于人体的电阻以及电血栓所需的电流而特定设计的,现有技术中也不存在像本申请所设计的电源这样在与人体接通后还能够输出电血栓所需电流的电源。
附图说明
图1:本申请的装置示意图。
图2:一种用于本申请的电源的电路图。
图3A:病例1的贴敷颅内支架后的造影图。
图3B:病例1采用导丝的造影图。
图3C:病例1经Solitaire支架解脱器通电3次共六分钟后的造影图。
图3D:病例1经电治疗6个月后复查的DSA图像。
图4A:病例2电血栓操作前的基底动脉穿支小动脉瘤的造影图。
图4B:病例2经Solitaire支架解脱器通电3次共六分钟后的造影图。
图5A:病例3电血栓操作前的造影图。
图5B:病例3经Solitaire支架解脱器通电3次共六分钟后的造影图。
具体实施方式
如前文所述,本申请的装置包括电源和导丝部分(或由电源和导丝部分组成)。
电源可以采用市售的恒流电源或恒压电源。申请人在临床实践中发现恒流电源相比于恒压电源具有更大的优势:恒压电源虽然能提供恒定的输出电压,但由于每个人的人体电阻都具有个体差异且不能时刻保持稳定,会影响电流的稳定及可控的输出。而恒流电源可以直接提供恒定的电流,更有助于血栓形成外部条件的稳定性和热量的可控性。
在一个具体实施方式中,所述电源的输出电流约为0.1-50mA,0.2-20mA,0.5-10mA,0.8-5mA。在另一个具体实施方式中,所述电源的输出电流约为0.8mA、1mA、1.5mA、2mA、3mA或5mA。
申请人还出人意料地发现,市售的支架解脱器可以用作本申请的电源,例如Solitaire支架解脱器。支架解脱器主要利用电解原理用于支架的解脱,在一般的医疗实践中与血栓形成毫无关联。然而,本申请的发明人出人意料地发现其能够有利于本申请的电血栓化方法中,因为其在通电过程中具有稳定、安全的电压(例如约9V),特别是相对恒定的电流(例如约0.8-1.0mA)。
因此,本申请的另一个方面涉及支架解脱器(例如Solitaire支架解脱器)在用于电血栓治疗中的用途,以及在制备用于血栓形成的装置中的用途。
除了可以采用支架解脱器“客串”电源之外,也可以采用其他合适的电源。例如,本申请的发明人设计了一种电源,该电源包括以下元件:内部电源、稳压器、二极管、第一电阻、第二电阻、第三电阻、第一变阻器、电流表、外接电极和第二变阻器。其中内部电源构成供电部分,稳压器、二极管、第一电阻、第二电阻和第三电阻构成控流部分,第一变 阻器和第二变阻器构成调节部分,电流表和外接电极构成输出部分。调节部分中任选还包括档位转换器,以使电流在不同档位之间切换,从而恒定地输出相应的电流。考虑到人体的皮下电阻一般不超过500Ω,可以按下文所述来确定各电阻与变阻器的阻值范围。
供电部分中,内部电源可以直接采用直流电源,或通过将外接交流电转换成直流电来形成直流电源进行供电。电源的直流输出电压可为约10V、2V、14V、16V、18V、20V、22V、24V、26V、28V、30V、32V、34V、36V、38V或40V,例如采用24V直流电源。
控流部分中,稳压器用于确保输出部分电路电压是相对稳定的,其可以采用市面上常用的三端稳压器,例如LM117HVH三端稳压器。稳压器的输出端分出两支并且分别连接用于分压的第一电阻和用于限流的第三电阻。之所以需要设置用于限流的第三电阻,是因为不同生命体阻值差异很大,也可能导致电流变动过大,因此出于安全起见需要在此设置限流电阻。第一电阻的阻值可为约200Ω、220Ω、230Ω、250Ω、280Ω、300Ω、320Ω、30Ω、350Ω、380Ω或400Ω。第三电阻的阻值可为约500Ω、1000Ω、1500Ω、2000Ω、2500Ω、3000Ω、3500Ω或4000Ω。
此外,二极管连接于稳压器的第三端并与第二电阻串联,用于保护稳压器因输出端电压过高而损坏。具体而言,当稳压器输出端接有很大电容而输入端保持电压能力较小时,断电后就会出现输出端电位高于输入端的情况,因此需要设置二极管以使其输出端电容向输入端放电,保护稳压器。根据调节电流的需要,可以将一个或多个二极管(例如一个、两个或三个)串联在一起。第二电阻的阻值可为约5Ω、10Ω、15Ω、20Ω、25Ω、30Ω、35Ω、40Ω。
调节部分中,第一变阻器与第三电阻串联并共同与第二变阻器形成并联,所述第一变阻器用于在不同生命体之间(例如在不同患者之间)大范围地调节电流。第一变阻器的最大阻值可以是大约5kΩ、5.5kΩ、6kΩ、6.5kΩ、7kΩ、7.5kΩ、8kΩ、8.5kΩ、9kΩ、9.5kΩ、10kΩ、10.5kΩ、11kΩ、11.5kΩ、12kΩ、12.5kΩ、13kΩ、13.5kΩ、14kΩ、14.5kΩ、15kΩ。该第一变阻器可以有若干个(例如三个)档位,各档位的阻值大约可为0.5kΩ、1kΩ、1.5kΩ、2kΩ、2.5kΩ、3kΩ、3.5kΩ、4kΩ、4.5kΩ、5kΩ、5.5kΩ、6kΩ、6.5kΩ、7kΩ、7.5kΩ、8kΩ、 8.5kΩ、9kΩ、9.5kΩ、10kΩ、10.5kΩ、11kΩ、11.5kΩ、12kΩ、12.5kΩ、13kΩ、13.5kΩ、14kΩ、14.5kΩ、15kΩ。
第二变阻器用于在生命体小范围波动时对电流进行微调(例如在对同一患者进行操作时)。第二变阻器的最大阻值可以是大约10kΩ、11kΩ、12kΩ、13kΩ、14kΩ、15kΩ、16kΩ、17kΩ、18kΩ、19kΩ、20kΩ、21kΩ、22kΩ、23kΩ、24kΩ、25kΩ、26kΩ、27kΩ、28kΩ、29kΩ或30k。第二变阻器也可以有若干个(例如三个)档位,各档位的阻值大约可为1kΩ、2kΩ、3kΩ、4kΩ、5kΩ、6kΩ、7kΩ、8kΩ、9kΩ、10kΩ、11kΩ、12kΩ、13kΩ、14kΩ、15kΩ、16kΩ、17kΩ、18kΩ、19kΩ、20kΩ、21kΩ、22kΩ、23kΩ、24kΩ、25kΩ、26kΩ、27kΩ、28kΩ、29kΩ或30kΩ。
调节部分中还可以包括档位转换器,其与第一变阻器和第三电阻串联,通过将控制开关拨动至不同档位来实现电流档位切换的功能,档位数可以有两个、三个、四个或五个等等。其中,每个档位自身连接一定的电阻以便在前述输出电流的范围内调节电流,该电阻的阻值大小与第三电阻和第一变阻器有关,也与不同生命体自身的电阻有关。例如,可将每个档位连接的电阻阻值例如分别设置为约0kΩ、0.3kΩ、0.5kΩ、1kΩ、2kΩ、3kΩ、4kΩ、5kΩ、6kΩ、7kΩ、8kΩ、9kΩ、10kΩ、11kΩ、12kΩ、13kΩ、14kΩ、15kΩ、16kΩ、17kΩ、18kΩ、19kΩ、20kΩ、21kΩ、22kΩ、23kΩ、24kΩ、25kΩ、26kΩ、27kΩ、28kΩ、29kΩ或30kΩ,从而将输出电流控制在约0.5mA、1mA、1.5mA、2mA、2.5mA、3mA、3.5mA、4mA、4.5mA或5mA。
输出部分中,电流表为业内常用的电流表,用于指示电血栓操作中的电流,可以作为前文所述面板6的一部分。其量程范围与电血栓的常用电流范围相符,例如为0-5mA、0-10mA、0-20mA或0-50mA等,使用时可以根据电流表的示数来调节第一变阻器和/或第二变阻器。外接电极则对应于前述阳极3和阴极5。电流表和外接电极与第一变阻器和第三电阻串联。
对于前述电源,图2给出了一种具体的实施例。内部电源为24V直流电源,输出端连接两个串联的LM117HVH三端稳压器U1和U2,U2的输出端分出两支分别连接第 一电阻R1(330Ω)和第三电阻R6(2000Ω)。此外U2的一端串联连接两个二极管D1和D2以及第二电阻R5(20Ω),使电流反馈U1,从而对U1和U2起到防护作用。第一变阻器R2、档位转换器、电流表XMM1和外接电极与第三电阻R6串联,且该串联线路与第二变阻器R3形成并联,第一变阻器R2的最大阻值为10kΩ,第二变阻器R3的最大阻值为20kΩ。档位转换器分三档,每档的分别连接电阻R4、R7、R8,从而使输出电流分别为约1mA、2mA和5mA。
此外,本申请的输出导丝可以采用临床常用的导丝。优选地,该导丝具有通电性能良好、产热适中且耐电解的头端。
本申请的发明人出人意料地发现,市售的Traxcess系列导丝,例如Traxcess-14导丝,非常适于用作本申请的输出导丝。Traxcess导丝原本仅用于一般性地在血管内配合微导管进行诊断或治疗,但没有任何将其用于血栓形成的报道。由于其具有良好的通电性能并且耐电解能力超强(例如Traxcess-14导丝近端除尾端约3cm外的140cm均有绝缘涂层,利于正电荷向头端集中,头端惰性铂金线圈覆盖),因此适于在本申请的电血栓化方法中用作通电的导丝。因此,本申请的另一个方面涉及Traxcess导丝、特别是Traxcess-14导丝在用于电血栓治疗中的用途,以及在制备用于电血栓的装置中的用途。
在本申请的输出导丝(例如在头端)任选安装有测温度或用于温度报警的装置,和/或用于引入微导管的辅助装置。
本申请所用的输入导丝可以采用临床常用的导丝,例如通常的医用电源或支架解脱器的电极上自带的导线即可充当输入导丝。输入导丝可以连接金属的注射器针头扎在人体皮下(例如股部皮下),或者将输入导丝绑在人体的适当位置,也可以通过贴片贴在皮肤上,从而与人体实现电路连通,形成回路。在不扎入皮下的情况下,应注意人体自身的电阻值会变大,为保证适当电流,应当相应地调整电源的参数,例如电压和内部电阻等。
本申请还涉及Solitaire支架解脱器和Traxcess-14导丝的组合用于电血栓治疗中的用途,以及在制备血栓形成装置中的用途。
实施例
利用本申请的方法和装置治疗以下病例,均为常规治疗方法难以治疗的动脉瘤,术后即时效果及复查效果均十分理想。
材料及方法
使用一根市售Traxcess-14导丝作为输出导丝,尾端(即无涂层可导电的一端)接在Solitaire支架解脱器的阳极上,导丝头端超选至动脉瘤腔,瘤颈以近体内所有导丝部分均被微导管隔离在血液循环范围之外;在股部将一根针头(能够导电的金属针头,例如普通注射器针头即可)刺入皮下,并与Solitaire支架解脱器的电源阴极上的导线(充当输入导丝)连接,这样正电荷在动脉瘤腔处汇集,电流通过人体皮下电阻经股部针头回到解脱器的阴极,从而形成完整的回路(与解脱支架原理完全相同)。
进行手术操作时,将导丝头端超选入动脉瘤腔,瘤颈近端全程用微导管保护,接通Solitaire支架解脱器的电源以实现电血栓操作,间断通电,通电时电流控制在1mA左右。3次为一阶段,一阶段后造影,直至效果满意。
病例描述
病例1:男性,15岁,骑摩托车摔伤。双侧颈动脉多发夹层动脉瘤、假性动脉瘤。采用上述操作,针对微导管无法进入的假性动脉瘤行单纯电治疗。
治疗过程如图3A-3D所示。图3A显示在眼动脉段假性动脉瘤处贴敷颅内支架后仍显影,且常规的微导管无法通过网孔。图3B显示使用Traxcess-14导丝,头端能到达瘤腔,微导管也能够跟至支架网孔处。图3C显示Solitaire支架解脱器通电3次共六分钟后显示瘤腔显影不明显,表明很好地形成了电血栓。图3D为电治疗6个月后复查的DSA图像,表明电血栓保持得很好,说明本申请的装置和方法所形成的血栓具有持久的效果。
病例2:男性,49岁,因蛛网膜下腔出血(SAH)入院。如图4A的造影显示,箭头处有基底动脉穿支微小假性动脉瘤。由于动脉瘤微小,常规的微导管难以进入,因此采用上述操作进行电治疗。Solitaire支架解脱器通电3次共六分钟后显示瘤腔显影不明显,如图4B所示,表明同样很好地形成了电血栓。
病例3:女性,51岁,头痛、呕吐10天。头颅CT表明桥前池、环池、四脑室积血;头颅CTA表明存在基底动脉干极其微小动脉瘤。该动脉瘤的造影如图5A所示。Solitaire支架解脱器通电3次共六分钟后显示瘤腔显影不明显,如图5B所示,表明同样很好地形成了电血栓。
上述实施例仅用于阐释或说明本申请的技术方案,不应理解为对本申请的构成任何限制。若对本申请作出任何不花费创造性劳动的改进与修饰,也应视为落在本申请的范围之内。

Claims (8)

  1. 一种装置,其包括电源(1)、输出导丝(2)、输入导丝(4),其中输出导丝(2)连接于电源(1)的阳极(3),输入导丝(4)连接于电源(1)的阴极(5)。
  2. 权利要求1的装置,其中电源(1)为支架解脱器。
  3. 权利要求2的装置,其中电源(1)为Solitaire支架解脱器。
  4. 权利要求1的装置,其中电源(1)包括以下部分:
    供电部分,其包括内部电源,所述内部电源为直流电源,电压为10-40V;
    控流部分,其包括稳压器、二极管、第一电阻、第二电阻和第三电阻,所述稳压器的输入端与所述内部电源连接,输出端分出两支分别连接第一电阻和第三电阻;所述二极管与稳压器的第三端连接并与第二电阻串联;第一电阻的阻值为200-400Ω,第二电阻的阻值为5-40Ω,第三电阻的阻值为500-4000Ω;
    调节部分,其包括第一变阻器和第二变阻器,第一变阻器与第三电阻串联并共同与第二变阻器形成并联;第一变阻器的最大阻值为5-15kΩ;第二变阻器的最大阻值为10-30kΩ;
    输出部分,其包括电流表和外接电极,两者与第一变阻器和第三电阻串联。
  5. 权利要求4的装置,其中电源(1)还包括档位转换器,所述档位转换器与第一变阻器串联且具有两个、三个、四个或五个档位,各档位自身连接电阻的阻值为0-30kΩ。
  6. 权利要求4的装置,其中在电源(1)中:内部电源的电压为24V;稳压器为两个LM117HVH三端稳压器串联连接;二极管为两个二极管串联连接;第一电阻阻值为330Ω;第二电阻阻值为20Ω;第三电阻阻值为2000Ω;第一变阻器最大阻值为10kΩ;第二变阻器最大阻值为20kΩ。
  7. 权利要求1-6中任一项的装置,其中输出导丝(2)为Traxcess导丝。
  8. 权利要求7的装置,其中输出导丝(2)为Traxcess-14导丝。
PCT/CN2018/073182 2017-01-22 2018-01-18 一种用于电血栓形成的装置和方法 WO2018133813A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/476,527 US20190329033A1 (en) 2017-01-22 2018-01-18 Device and method for electrothrombosis
EP18741676.3A EP3560543B1 (en) 2017-01-22 2018-01-18 Device and method for electrothrombosis
ES18741676T ES2925183T3 (es) 2017-01-22 2018-01-18 Dispositivo y método para electrotrombosis

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710053933.0A CN108339195B (zh) 2017-01-22 2017-01-22 一种用于电血栓形成的装置和方法
CN201710053933.0 2017-01-22

Publications (1)

Publication Number Publication Date
WO2018133813A1 true WO2018133813A1 (zh) 2018-07-26

Family

ID=62908417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/073182 WO2018133813A1 (zh) 2017-01-22 2018-01-18 一种用于电血栓形成的装置和方法

Country Status (5)

Country Link
US (1) US20190329033A1 (zh)
EP (1) EP3560543B1 (zh)
CN (1) CN108339195B (zh)
ES (1) ES2925183T3 (zh)
WO (1) WO2018133813A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11085951B2 (en) * 2018-05-03 2021-08-10 Keithley Instruments, Llc Non-linear active shunt ammeter

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130079693A1 (en) * 2011-09-26 2013-03-28 Northeastern University Customizable Embedded Sensors
CN105363117A (zh) * 2014-08-08 2016-03-02 柯惠有限合伙公司 植入物传送系统的电解分离元件
CN105511544A (zh) * 2016-01-15 2016-04-20 中山芯达电子科技有限公司 可调式稳压电路
CN106100371A (zh) * 2016-06-22 2016-11-09 河海大学 一种稳压恒流输出的开关电源电路
CN106137293A (zh) * 2015-05-11 2016-11-23 柯惠有限合伙公司 用于植入物递送的电解脱离与冲洗系统
CN106137294A (zh) * 2015-05-11 2016-11-23 柯惠有限合伙公司 植入物递送系统的电解脱离

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0058708B1 (en) * 1980-09-03 1985-05-08 The University Court Of The University Of Edinburgh Therapeutic device
US6083220A (en) * 1990-03-13 2000-07-04 The Regents Of The University Of California Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
EP0696902B1 (en) * 1994-03-03 2005-05-11 Boston Scientific Limited Apparatus for detecting separation of a vasoocclusion device
CN1066346C (zh) * 1997-11-17 2001-05-30 北京计然电子科技公司 金属离子电化学治疗仪
US6165193A (en) * 1998-07-06 2000-12-26 Microvention, Inc. Vascular embolization with an expansible implant
US7458974B1 (en) * 2000-07-25 2008-12-02 Endovascular Technologies, Inc. Apparatus and method for electrically induced thrombosis
US20020198567A1 (en) * 2001-06-07 2002-12-26 Yona Keisari Electro-endocytotic therapy as a treatment modality of cancer
WO2008097956A1 (en) * 2007-02-05 2008-08-14 Boston Scientific Limited Vascular sealing device and method using clot enhancing balloon and electric field generation
CN104665965B (zh) * 2013-11-29 2018-04-17 赛诺医疗科学技术有限公司 一种医疗器械的释放装置和释放方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130079693A1 (en) * 2011-09-26 2013-03-28 Northeastern University Customizable Embedded Sensors
CN105363117A (zh) * 2014-08-08 2016-03-02 柯惠有限合伙公司 植入物传送系统的电解分离元件
CN106137293A (zh) * 2015-05-11 2016-11-23 柯惠有限合伙公司 用于植入物递送的电解脱离与冲洗系统
CN106137294A (zh) * 2015-05-11 2016-11-23 柯惠有限合伙公司 植入物递送系统的电解脱离
CN105511544A (zh) * 2016-01-15 2016-04-20 中山芯达电子科技有限公司 可调式稳压电路
CN106100371A (zh) * 2016-06-22 2016-11-09 河海大学 一种稳压恒流输出的开关电源电路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3560543A4 *

Also Published As

Publication number Publication date
EP3560543A1 (en) 2019-10-30
CN108339195B (zh) 2020-06-26
CN108339195A (zh) 2018-07-31
EP3560543A4 (en) 2019-12-18
ES2925183T3 (es) 2022-10-14
US20190329033A1 (en) 2019-10-31
EP3560543B1 (en) 2022-05-18

Similar Documents

Publication Publication Date Title
TWI630011B (zh) 治療視覺疾病之微電流裝置
Guglielmi et al. Electrothrombosis of saccular aneurysms via endovascular approach: part 1: electrochemical basis, technique, and experimental results
Shellock Magnetic resonance safety update 2002: implants and devices
DE69534194T2 (de) Vorrichtung zum aufspüren der teilung bei einer vassookklusionsvorrichtung
US8197844B2 (en) Active electrode for transdermal medicament administration
JP2010534087A (ja) 移植可能装置を電解作用により分離するための時間変化信号を用いた電源
JP2005529689A (ja) 経皮電気神経刺激装置と微弱電流を用いる方法
Crow et al. Controlled multifocal frontal leucotomy for psychiatric illness
JP2017516608A (ja) 治療適用可能なマルチチャネル直流出力装置
WO1986007543A1 (en) Internally applied self energising healing electrodes
WO2018133813A1 (zh) 一种用于电血栓形成的装置和方法
CN111032146A (zh) 神经再生系统及方法
EA027111B1 (ru) Система, устройство и способ абляции сосудистой стенки изнутри
Woodward Platinum group metals (PGMs) for permanent implantable electronic devices
Fritsch et al. Transcranial electrical brain stimulation in alert rodents
Ughratdar et al. Use of pulsed radiofrequency energy device (PEAK Plasmablade) in neuromodulation implant revisions
CN108338816B (zh) 支架解脱器或其与医用导丝的组合在电血栓治疗中的用途
CN108338817B (zh) 导丝在电血栓治疗的用途
Kanaan et al. Evolution of endovascular therapy for aneurysm treatment: Historical overview
YONEDA et al. Electrothrombosis of Ateriovenous Malformation
CN207970142U (zh) 电血栓治疗的专用电源
JP2016055178A (ja) 電気刺激治療器
Mori Experimental studies on electrically induced arterial thrombosis in dogs, with special reference to the treatment of intracranial aneurysms and arteriovenous malformations
CN209108405U (zh) 一种用于探究血管周围电势差的外加电场装置
JPS6284775A (ja) 電気医学的治療装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18741676

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018741676

Country of ref document: EP

Effective date: 20190722