WO2018133610A1 - 包含聚氨酯改性羧基丁苯共聚物的胶乳及其制备方法 - Google Patents

包含聚氨酯改性羧基丁苯共聚物的胶乳及其制备方法 Download PDF

Info

Publication number
WO2018133610A1
WO2018133610A1 PCT/CN2017/117257 CN2017117257W WO2018133610A1 WO 2018133610 A1 WO2018133610 A1 WO 2018133610A1 CN 2017117257 W CN2017117257 W CN 2017117257W WO 2018133610 A1 WO2018133610 A1 WO 2018133610A1
Authority
WO
WIPO (PCT)
Prior art keywords
latex
copolymer
parts
polyurethane
modified
Prior art date
Application number
PCT/CN2017/117257
Other languages
English (en)
French (fr)
Inventor
江一明
陈卓熊
蔡辉
董巍
伍云俊
Original Assignee
新辉(中国)新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新辉(中国)新材料有限公司 filed Critical 新辉(中国)新材料有限公司
Publication of WO2018133610A1 publication Critical patent/WO2018133610A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/006Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polymers provided for in C08G18/00
    • C08F283/008Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polymers provided for in C08G18/00 on to unsaturated polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • C08F2/24Emulsion polymerisation with the aid of emulsifying agents
    • C08F2/26Emulsion polymerisation with the aid of emulsifying agents anionic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • C08F2/24Emulsion polymerisation with the aid of emulsifying agents
    • C08F2/30Emulsion polymerisation with the aid of emulsifying agents non-ionic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4266Polycondensates having carboxylic or carbonic ester groups in the main chain prepared from hydroxycarboxylic acids and/or lactones
    • C08G18/4269Lactones
    • C08G18/4277Caprolactone and/or substituted caprolactone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4825Polyethers containing two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4854Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6633Compounds of group C08G18/42
    • C08G18/6637Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/664Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6633Compounds of group C08G18/42
    • C08G18/6659Compounds of group C08G18/42 with compounds of group C08G18/34
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/667Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6674Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/667Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6681Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/32 or C08G18/3271 and/or polyamines of C08G18/38
    • C08G18/6685Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/32 or C08G18/3271 and/or polyamines of C08G18/38 with compounds of group C08G18/3225 or polyamines of C08G18/38
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/6692Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/34
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/671Unsaturated compounds having only one group containing active hydrogen
    • C08G18/672Esters of acrylic or alkyl acrylic acid having only one group containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/675Low-molecular-weight compounds
    • C08G18/677Low-molecular-weight compounds containing heteroatoms other than oxygen and the nitrogen of primary or secondary amino groups
    • C08G18/678Low-molecular-weight compounds containing heteroatoms other than oxygen and the nitrogen of primary or secondary amino groups containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/753Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
    • C08G18/755Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • C08G18/7671Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups containing only one alkylene bisphenyl group
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J151/00Adhesives based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers
    • C09J151/08Adhesives based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds

Definitions

  • the present invention relates to a latex comprising a urethane-modified carboxybutylbenzene copolymer and a process for the preparation thereof.
  • the invention also relates to the use of the latex as a binder in carpet production, construction, papermaking, leather, textile printing and cement.
  • Carpet is a special kind of fabric. It needs to be back-coated with adhesive in the production process. Its main function is not only anchoring tufted and fixed fiber backing, but also giving the carpet a feel, stable size, waterproof and resistant. Grinding, increasing strength and service life. For decades, carpet backing rubber has gradually evolved from the earliest natural latex to the synthetic latex based on styrene-butadiene latex. Especially the carboxylated styrene-butadiene latex has become the mainstream product of carpet rubber with its excellent cost performance.
  • the styrene-butadiene latex is prepared by emulsion polymerization of butadiene and styrene, and is a synthetic latex used earlier as a carpet rubber. Later, it was found that the unsaturated acid monomer was introduced into the butylbenzene copolymer system as the third component, and the obtained carboxylated styrene-butadiene latex can significantly improve the bonding strength of the latex to the carpet fabric; in addition, the carboxylated styrene-butadiene latex raw material is easy to obtain, and the investment Less, lower production costs, and therefore quickly occupied the carpet rubber market.
  • Polyurethane latex has the advantages of high bonding strength, low temperature resistance, wear resistance and adjustable performance. It has been widely used in coatings, adhesives, fabric finishing, leather finishing, automotive paints and other fields. A method for synthesizing polyurethane latex has been reported in many patents and literature, for example, see US 5221710, CN 201410139090.2. CN 1250497A describes the preparation of carpet rubber from polyurethane latex as a binder. Although polyurethane latex can meet the comprehensive performance requirements of high-grade carpets, it is expensive compared with carboxylated styrene-butadiene latex and is difficult to be widely used in the carpet industry.
  • the inventors of the present invention conducted extensive and intensive studies, and as a result, found that when the latex containing the urethane-modified carboxybutyl benzene copolymer of the present invention is used for carpet production, the resulting carpet has good mechanical stability. Properties, chemical stability, dimensional stability of water immersion, high peel strength, high tuft pull-out force and good aging resistance.
  • the latex comprising the urethane-modified carboxybutyl benzene copolymer of the invention has the advantages of the carboxylated styrene-butadiene latex and the polyurethane latex, and is a new material with good cost performance.
  • the latex of the present invention comprising a urethane-modified carboxybutylbenzene copolymer can be prepared with little or no emulsifier.
  • the water resistance of the product can also be improved without or with the addition of an emulsifier.
  • a small amount of free-radically polymerizable carbon-carbon double bond is introduced into the above-mentioned polyurethane molecule, styrene, butadiene, unsaturated acid and other olefins can be obtained by a radical polymerization mechanism in the presence of an initiator.
  • the monomer is copolymerized onto the molecular chain of the polyurethane, and the polymerization process is stable, and the obtained polyurethane-carboxybutylbenzene copolymer latex has good stability and is easy to be industrialized.
  • the present invention has been completed based on the above findings.
  • the latex of the present invention is used in carpet production, the resulting carpet has good mechanical stability, chemical stability, dimensional stability of water immersion, high peel strength, high tuft pull-out force and good aging resistance.
  • Another object of the present invention is to provide a process for preparing the synthetic latex.
  • a latex comprising a urethane-modified carboxybutyl benzene copolymer, wherein the urethane-modified carboxybutyl benzene copolymer is bonded via a covalent bond, and the polyurethane comprises a hydrophilic group.
  • the latex comprising a urethane-modified carboxybutylbenzene copolymer according to Item 1, wherein a weight ratio of the polyurethane to the carboxybutylbenzene copolymer in the urethane-modified carboxybutyl benzene copolymer is 40:60 to 3:97 Preferably, 30:70-5:95, more preferably 25:75-8:92; and/or the hydrophilic group on the polyurethane is selected from the group consisting of a carboxyl group, a sulfonic acid group, and a salt thereof.
  • the latex comprising a urethane-modified carboxybutylbenzene copolymer according to Item 1 or 2, wherein the polyurethane is subjected to polyaddition reaction of a polyol and a polyisocyanate, and further to a chain extender containing the hydrophilic group.
  • Another small molecule chain extender and a monomer having a group reactive with an isocyanate group and a radically polymerizable carbon-carbon double bond are subjected to addition polymerization.
  • the latex comprising a urethane-modified carboxybutyl benzene copolymer according to item 3, wherein the polyol has a molecular weight of from 400 to 4000 g/mol, preferably from 600 to 3000 g/mol; and/or wherein the polyol is selected from the group consisting of
  • the polyester polyol and the polyether polyol have a hydroxyl value of from 20 to 200 mgKOH/g, preferably from 40 to 120 mgKOH/g, more preferably from 50 to 100 mgKOH/g.
  • the latex comprising a urethane-modified carboxybutylbenzene copolymer according to Item 3 or 4, wherein the chain extender comprising a hydrophilic group is selected from the group consisting of 2,2-dimethylolpropionic acid, 2,2-di Hydroxymethyl butyric acid, sodium 1,2-dihydroxy-3-propane sulfonate, sodium 1,4-butanediol-2-sulfonate, sodium ethanediaminoethanesulfonate and sodium ethanedihydroxyethane sulfonate.
  • the latex comprising a urethane-modified carboxybutylbenzene copolymer according to any one of items 3-5, wherein the monomer having a group reactive with an isocyanate group and a radically polymerizable carbon-carbon double bond is selected
  • the amount of the monomer capable of radically polymerizing a carbon-carbon double bond is from 0.1 to 5% by weight, preferably from 0.2 to 2% by weight, more preferably from 0.3
  • the latex comprising a urethane-modified carboxybutylbenzene copolymer according to any one of items 1 to 6, wherein the carboxybutyl benzene copolymer comprises 1 to 15% by weight, preferably 1.5, based on the weight of the carboxybutylbenzene copolymer. -12% by weight, more preferably 2-8% by weight of monoethylenically unsaturated carboxylic acid monomer units; and/or wherein the monoethylenically unsaturated carboxylic acid is selected from monoolefins having no more than 10 carbon atoms An unsaturated carboxylic acid, preferably a monoethylenically unsaturated carboxylic acid of not more than 6 carbon atoms.
  • a carboxylated styrene-butadiene copolymer is prepared by emulsion polymerization in the presence of a polyurethane having a radically polymerizable carbon-carbon double bond and a hydrophilic group obtained in the step a) to obtain a latex comprising a urethane-modified carboxybutylbenzene copolymer.
  • step b) 9. The method according to item 8, wherein the emulsion polymerization in step b) can be carried out without adding an emulsifier.
  • a latex comprising a urethane-modified carboxybutyl benzene copolymer as defined in any one of items 1 to 7 as a binder in carpet production, construction, papermaking, leather, textile printing and cement.
  • One aspect of the invention relates to a latex comprising a urethane-modified carboxybutyl benzene copolymer, wherein the urethane-modified carboxybutyl benzene copolymer has a polyurethane and a carboxy butyl benzene copolymer linked via a covalent bond, and the polyurethane comprises Hydrophilic group.
  • the polyurethane-modified carboxybutyl benzene copolymer has a weight ratio of the polyurethane to the carboxybutyl benzene copolymer of 40:60 to 3:97, preferably 30:70 to 5:95. More preferably, it is 25:75-8:92.
  • the hydrophilic group on the polyurethane may be selected from the group consisting of a carboxyl group, a sulfonic acid group and salts thereof.
  • the polyurethane is subjected to polyaddition reaction of a polyol with a polyisocyanate, and then further with a chain extender containing the hydrophilic group, another small molecule chain extender, and
  • a chain extender containing the hydrophilic group, another small molecule chain extender and
  • the isocyanate-reactive group and the monomer capable of radically polymerizing a carbon-carbon double bond are prepared by addition polymerization.
  • Polyols can be those commonly used in the art to prepare polyurethanes. However, it is preferred that the polyol has a molecular weight of from 400 to 4000 g/mol, preferably from 600 to 3000 g/mol. Preferably, the polyol is selected from the group consisting of polyester polyols and polyether polyols having a hydroxyl number of from 20 to 200 mg KOH/g, preferably from 40 to 120 mg KOH/g, more preferably from 50 to 100 mg KOH/g.
  • polyester polyol obtained by reacting a diol with a dicarboxylic acid.
  • the corresponding dicarboxylic anhydride can also be used to prepare the polyester polyol.
  • the dicarboxylic acid can be aliphatic, cycloaliphatic, araliphatic, aromatic or heterocyclic.
  • Examples are suberic acid, azelaic acid, phthalic acid and isophthalic acid, phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, tetrachlorophthalic anhydride, Endomethyltetrahydrophthalic anhydride, glutaric anhydride and maleic anhydride, maleic acid, fumaric acid and dimer fatty acids.
  • dicarboxylic acids of the formula HOOC-(CH 2 ) y -COOH, wherein y is a number from 1 to 20, preferably an even number from 2 to 20, examples being succinic acid, adipic acid, sebacic acid and dodecanedicarboxylic acid .
  • glycols examples include ethylene glycol, 1,2-propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol.
  • bis(hydroxymethyl)cyclohexane such as 1,4-bis(hydroxymethyl)cyclohexane, 2-methyl-1,3-propanediol, methylpentanediol, and diethylene glycol
  • triethylene glycol tetraethylene glycol
  • alcohols of the formula HO-(CH 2 ) x -OH Preference is given to alcohols of the formula HO-(CH 2 ) x -OH, wherein x is a number from 1 to 20, preferably an even number from 2 to 20.
  • examples of such alcohols are ethylene glycol, 1,4-butanediol, 1,6-hexanediol, 1,8-octanediol and 1,12-dodecanediol.
  • polycarbonate diols which can be obtained, for example, by reacting phosgene with an excess of a low molecular weight diol which is mentioned as a synthetic component of the polyester polyol.
  • lactone-based polyester diols which are homopolymers or copolymers of lactones, preferably terminal hydroxyl adducts of lactones with suitable difunctional starter molecules.
  • Suitable lactones are preferably those derived from compounds of the formula HO-(CH 2 ) z -COOH wherein z is from 1 to 20 and one of the hydrogens in the methylene unit can also be substituted by C 1 -C 4 alkyl.
  • An example of a suitable starting component is the low molecular weight diol mentioned as a synthetic component of the polyester polyol. Polycaprolactone diol is especially preferred.
  • polyether diols are polyether diols. They can be obtained, inter alia, by the addition polymerization of ethylene oxide, propylene oxide, butylene oxide, tetrahydrofuran, styrene oxide or epichlorohydrin in the presence of BF 3 ; or if these compounds are suitable, if appropriate
  • the addition reaction is carried out as a mixture or sequentially on a starting component containing a reactive hydrogen such as an alcohol or an amine, wherein the starting component is, for example, water, ethylene glycol, 1,2-propylene glycol, 1,3-propanediol 1,2-bis(4-hydroxydiphenyl)propane or aniline.
  • preferred polyols for preparing polyurethanes are, for example, polyoxyethylene diols, polyoxypropylene diols, poly(ethylene oxide-propylene oxide) diols, polytetrahydrofuran diols, polycarbonate diols, polyhexans.
  • Polyisocyanates may be those commonly used in the art for the preparation of polyurethanes, especially diisocyanate X(NCO) 2 , where X is an aliphatic hydrocarbon group having 4 to 12 carbons, a cycloaliphatic or aromatic group having 6 to 15 carbons. A hydrocarbon group or an araliphatic hydrocarbon group having 7 to 15 carbons.
  • diisocyanates examples include tetramethylene diisocyanate, hexamethylene diisocyanate, dodecamethylene diisocyanate, 1,4-diisocyanatocyclohexane, isophorone diisocyanate, 2 ,2-bis(4-isocyanatocyclohexyl)-propane, trimethylhexane diisocyanate, 1,4-diisocyanatobenzene, 2,4-toluene diisocyanate, 2,6-toluene Isocyanate, diphenylmethane diisocyanate, phenyldimethylene diisocyanate, tetramethylbenzene dimethylene diisocyanate (TMXDI), polyphenylpolymethylene polyisocyanate, and mixtures thereof.
  • isocyanates are commercially available.
  • the molar ratio of polyol to polyisocyanate is from 0.1:1 to 0.6:1, preferably from 0.2:1 to 0.4:1.
  • the polyurethane comprises a hydrophilic group.
  • the hydrophilic group may be derived from a chain extender comprising a hydrophilic group.
  • the chain extender comprising a hydrophilic group is, for example, selected from the group consisting of 2,2-dimethylolpropionic acid, 2,2-dimethylolbutanoic acid, sodium 1,2-dihydroxy-3-propanesulfonate, 1 , sodium 4-butanediol-2-sulfonate, sodium ethanediaminoethanesulfonate and sodium ethanedihydroxyethanesulfonate.
  • the chain extender containing a hydrophilic group is used, for example, in an amount of from 1 to 10% by weight, preferably from 2 to 8% by weight, more preferably from 4 to 7% by weight, based on the sum of the weights of the components used for the preparation of the polyurethane.
  • a small molecular chain extender commonly used for the preparation of polyurethane is added in the process of preparing the polyurethane.
  • the molecular weight chain extender typically has a molecular weight of less than 300 g/mol, preferably from 60 to 200 g/mol.
  • the chain extender preferably has two hydroxyl or amino groups reactive toward isocyanate.
  • Possible chain extenders are, for example, aliphatic, cycloaliphatic and/or araliphatic diols having 2 to 14, preferably 2 to 10, carbon atoms, for example ethylene glycol, 1,3-propanediol, 1,10 -decanediol, 1,2-, 1,3-, 1,4-dihydroxycyclohexane, diethylene glycol, dipropylene glycol and 1,4-butanediol, 1,6-hexanediol and di(2) -hydroxyethyl)hydroquinone, triols such as 1,2,4- and 1,3,5-trihydroxycyclohexane, glycerol and trimethylolpropane, and based on ethylene oxide and/or 1,2- A low molecular weight hydroxyl-containing polyoxyalkylene of propylene oxide and the above-mentioned diol and/or triol as a starter.
  • the small molecular chain extender is used in an amount of, for example, 1 to 10% by weight, preferably 2 to 8% by weight, more preferably 3 to 6% by weight, based on the sum of the weights of the components used for the preparation of the polyurethane.
  • a monomer such as styrene or butadiene can be subsequently copolymerized onto the polyurethane molecular chain by radical polymerization.
  • the radically polymerizable carbon-carbon double bond on the polyurethane molecule can be introduced by adding a monomer having a group reactive with an isocyanate group and a radically polymerizable carbon-carbon double bond during the preparation of the polyurethane.
  • the monomer having a group reactive with an isocyanate group and a radically polymerizable carbon-carbon double bond is, for example, selected from the group consisting of a diol having 1 to 10 carbon atoms and ⁇ , ⁇ - having 3 to 10 carbon atoms.
  • An ester of an ethylenically unsaturated mono- and/or dicarboxylic acid and its anhydride examples include acrylic acid, methacrylic acid, fumaric acid, maleic acid, maleic anhydride, crotonic acid, Itaconic acid and the like.
  • diols having from 1 to 10, preferably from 2 to 8, more preferably from 2 to 6 carbon atoms, such as ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1, 1-Dimethyl-1,2-ethanediol, 2-butyl-2-ethyl-1,3-propanediol, 2-ethyl-1,3-propanediol, 2-methyl-1,3- Propylene glycol, neopentyl glycol, neopentyl glycol hydroxypivalate, 1,2-butanediol, 1,3-butanediol or 1,4-butanediol, 1,6-hexanediol, 1 , 10-decanediol, cyclohexanediol, and the like.
  • a C 1 -C 8 hydroxyalkyl (meth)acrylate is preferred, and a C 2 -
  • the monomer having a group reactive with an isocyanate group and a radically polymerizable carbon-carbon double bond may also be an acrylamide bearing a hydroxyl group, such as N,N-bis(C 2 -C 6 hydroxyalkyl). Acrylamide.
  • the monomer having a group reactive with an isocyanate group and a radically polymerizable carbon-carbon double bond is selected from the group consisting of hydroxyethyl acrylate, hydroxyethyl methacrylate, and hydroxy acrylate.
  • hydroxyethyl acrylate hydroxyethyl methacrylate
  • hydroxy acrylate hydroxy acrylate
  • Propyl ester, hydroxypropyl methacrylate and N,N-bis(2-hydroxyethyl)acrylamide is selected from the group consisting of hydroxyethyl acrylate, hydroxyethyl methacrylate, and hydroxy acrylate.
  • the monomer having a group reactive with an isocyanate group and a radically polymerizable carbon-carbon double bond is used, for example, in an amount of from 0.1 to 5% by weight, preferably from 0.2 to 2% by weight, more preferably from 0.3 to 1% by weight, for use
  • the sum of the weights of the components of the polyurethane is based on the sum.
  • the polyurethane and the carboxybutyl benzene copolymer are linked via a covalent bond.
  • the carboxybutylbenzene copolymer comprises from 1 to 15% by weight, preferably from 1.5 to 12% by weight, more preferably from 2 to 8% by weight, based on the weight of the carboxybutylbenzene copolymer, of monoolefins. Saturated carboxylic acid monomer unit.
  • the monoethylenically unsaturated carboxylic acid is selected from the group consisting of monoethylenically unsaturated C 3 -C 10 monocarboxylic acids, monoethylenically unsaturated C 4 -C 10 dicarboxylic acids and anhydrides thereof, preferably monoethylenically unsaturated C 3 -C 6 monocarboxylic acid, monoethylenically unsaturated C 4 -C 8 dicarboxylic acid and anhydrides thereof.
  • the monoethylenically unsaturated monocarboxylic acid may be selected from the group consisting of acrylic acid and methacrylic acid.
  • the monoethylenically unsaturated C 4 -C 10 dicarboxylic acid may be selected from the group consisting of itaconic acid, fumaric acid, methyl fumaric acid, maleic acid, methyl maleic acid, and dimethyl maleic acid.
  • the carboxybutyl benzene copolymer may optionally comprise one or more other monoethylenically unsaturated monomer units.
  • the monomer is, for example, a vinyl ester of a saturated carboxylic acid having 1 to 6 carbon atoms such as vinyl formate, vinyl acetate, vinyl propionate and vinyl butyrate, and a vinyl ether such as C 1 -C 6 An alkyl vinyl ether such as methyl vinyl ether or ethyl vinyl ether.
  • Suitable comonomers are ethylenically unsaturated C 3 -C esters, amides and nitriles 6 carboxylic acids, such as methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate and Butyl methacrylate, acrylamide and methacrylamide, and acrylonitrile and methacrylonitrile.
  • the carboxybutylbenzene copolymer may contain 0 to 15% by weight, preferably 0 to 10% by weight, more preferably 3 to 8% by weight, based on the weight of the carboxybutylbenzene copolymer, of other monoethylenically unsaturated monomers. unit.
  • the carboxybutyl benzene copolymer may further comprise a crosslinker monomer unit.
  • Suitable crosslinking agents include di(meth)acrylates of saturated diols having 2 to 6 carbon atoms, (meth) acrylates of alcohols having more than 2 hydroxyl groups, oligomerization of ethylene oxide and/or propylene oxide Di(meth) acrylate, (meth) acrylate vinyl ester, butane diol divinyl ether, trimethylolpropane trivinyl ether, allyl (meth) acrylate, pentaerythritol triene Ether, methylene di(meth)acrylamide, divinylbenzene, and the like.
  • the di(meth) acrylate of a saturated diol having 2 to 6 carbon atoms may be selected from the group consisting of ethylene glycol diacrylate, ethylene glycol dimethacrylate, 1,2-propylene glycol diacrylate, 1, 2-propanediol dimethacrylate, butanediol di(meth)acrylate, such as butane-1,4-diol diacrylate, butane-1,4-diol dimethacrylate, Diol diacrylate, hexanediol dimethacrylate, neopentyl glycol diacrylate, neopentyl glycol dimethacrylate, 3-methyl pentanediol diacrylate and 3-methylpentane Alcohol dimethacrylate.
  • Examples of the (meth) acrylate having an alcohol having more than 2 hydroxyl groups include trimethylolpropane triacrylate and trimethylolpropane trimethacrylate.
  • di(meth)acrylates of ethylene oxide and/or propylene oxide oligomers are diethylene glycol diacrylate, diethylene glycol dimethacrylate, triethylene glycol diacrylate, triethylene glycol dimethyl Acrylate, tetraethylene glycol diacrylate and tetraethylene glycol dimethacrylate.
  • the carboxybutylbenzene copolymer contains from 0 to 3% by weight, preferably from 0 to 1% by weight, more preferably from 0.1 to 0.5% by weight, based on the weight of the carboxybutylbenzene copolymer, of crosslinking agent monomer units.
  • the sum of the weights of butadiene and styrene monomer units in the carboxybutylbenzene copolymer is from 70 to 98% by weight, preferably from 80 to 97% by weight, based on the weight of the carboxybutylbenzene copolymer. More preferably, it is 85 to 96% by weight.
  • the weight ratio of the butadiene unit to the styrene unit may be from 0.5:1 to 5:1, preferably from 0.7:1 to 3:1, more preferably from 0.9:1 to 2:1.
  • the present invention also provides a method of preparing a latex comprising a urethane-modified carboxybutylbenzene copolymer according to the present invention, which comprises
  • a carboxylated styrene-butadiene copolymer is prepared by emulsion polymerization in the presence of a polyurethane having a radically polymerizable carbon-carbon double bond and a hydrophilic group obtained in the step a) to obtain a latex comprising a urethane-modified carboxybutylbenzene copolymer.
  • step a) can be carried out in which the polyol is polyaddition with a polyisocyanate in the presence of a catalyst, and then further with a hydrophilic group-containing chain extender, another small molecule chain extender and The isocyanate group-reactive group and the radically polymerizable carbon-carbon double bond monomer are subjected to addition polymerization.
  • a conventional catalyst can be used.
  • Those which are suitable in principle are all catalysts commonly used in polyurethane chemistry.
  • Lewis metal organometallic compounds include tin compounds such as tin (II) salts of organic carboxylic acids such as tin (II) acetate, tin (II) octoate, tin (II) ethyl hexanoate and tin laurate ( II), and dialkyltin (IV) salts of organic carboxylic acids, such as dimethyltin diacetate, dibutyltin diacetate, dibutyltin dibutoxide, dibutyltin bis(2-ethylhexanoate), dilaurin Dibutyltin acid, dibutyltin maleate, dioctyltin dilaurate and dioctyltin diacetate.
  • Metal complexes such as acet
  • Preferred organometallic compounds of Lewis acid are tin(II) octoate, dimethyltin diacetate, dibutyltin dibutoxide, dibutyltin bis(2-ethylhexanoate), dibutyltin dilaurate, dilaurate Zinyltin, zirconium acetylacetonate and zirconium 2,2,6,6-tetramethyl-3,5-heptanedione.
  • Suitable onium salts include those in which the following anions are used: F - , Cl - , ClO - , ClO 3 - , ClO 4 - , Br - , I - , IO 3 - , CN - , OCN - , NO 2 - , NO 3 - , HCO 3 - , CO 3 2- , S 2 - , SH - , HSO 3 - , SO 3 2- , HSO 4 - , SO 4 2- , S 2 O 2 2- , S 2 O 4 2 - , S 2 O 5 2- , S 2 O 6 2- , S 2 O 7 2- , S 2 O 8 2- , H 2 PO 2 - , H 2 PO 4 - , HPO 4 2- , PO 4 3 - , P 2 O 7 4- , (OC n H 2n
  • Palladium carboxylate is preferred wherein the anion conforms to the formula (C n H 2n-1 O 2 ) - and (C n+1 H 2n-2 O 4 ) 2- , n is a number from 1 to 20.
  • Particularly preferred are phosphonium salts containing a monocarboxylic acid anion of the formula (C n H 2n-1 O 2 ) - wherein n represents a number from 1 to 20.
  • the catalyst can be used in an amount of from 0.05 to 1% by weight, preferably from 0.08 to 0.5% by weight, based on the sum of the weights of the polyol component and the polyisocyanate component used to prepare the polyurethane.
  • the polyaddition reaction in step a) can be carried out at a temperature of from 40 to 90 ° C, preferably from 60 to 85 ° C.
  • the reaction time may be from 1.5 to 10 hours, preferably from 2 to 8 hours, more preferably from 3 to 6 hours.
  • step b) comprises preparing a carboxylated styrene-butadiene copolymer by emulsion polymerization in the presence of a polyurethane having a radically polymerizable carbon-carbon double bond and a hydrophilic group obtained in step a) to obtain a urethane-modified carboxyl group. Latex of benzene copolymer.
  • the polyurethane obtained in the step a) contains a radically polymerizable carbon-carbon double bond, styrene, butadiene, an unsaturated acid and other ethylenic monomers can be copolymerized to the polyurethane molecule by a radical polymerization mechanism by a graft reaction. On the chain.
  • the emulsion polymerization in step b) is carried out in the presence of an emulsifier.
  • Suitable emulsifiers include anionic, cationic and nonionic surfactants.
  • Anionic surfactants and nonionic surfactants as well as anionic-nonionic composite surfactants are preferably used.
  • Preferred anionic surfactants include C 8 -C 18 saturated or unsaturated fatty acid salts, such as oleic acid, linoleic acid, linolenic acid, palmitic acid, stearic acid, myristic acid, lauric acid, rosin acid sodium salt Or a potassium salt; an alkali metal salt and an ammonium salt of an alkyl sulphate (alkyl: C 8 -C 12 ), such as sodium lauryl sulfate; an alkyl aryl sulfonic acid (alkyl: C 9 -C 18 ) Alkali metal salts and ammonium salts, such as sodium dodecylbenzene sulfonate; sodium alkyl diphenyl ether disulfonate; etc.; common nonionic surfactants such as ethoxylated fatty alcohols (EO units: 3-50) , alkyl: C 8 -C 36 ), ethoxylated mono-, di
  • the emulsion polymerization in step b) is carried out in the presence of from 0 to 1% by weight, preferably from 0.1 to 0.5% by weight, based on the total weight of the system, of an emulsifier.
  • a carboxylated styrene-butadiene copolymer can be produced with little or no use of an emulsifier.
  • the emulsion polymerization in step b) can be carried out without the addition of an emulsifier.
  • the process according to the invention comprises, after the end of step a), introducing a portion, preferably from 3 to 50% by weight, more preferably from 10 to 30% by weight, to the reaction system before carrying out step b)
  • a polyurethane emulsion is obtained by preparing a monomer of a carboxybutyl benzene copolymer, an optional agent, and water.
  • an initiator may be added to the polyurethane emulsion for emulsion polymerization, and then a monomer, an optional emulsifier, and an initiator for preparing a carboxylated styrene-butadiene copolymer may be added to carry out polymerization to obtain a urethane-modified carboxybutylbenzene. Latex of copolymer.
  • a neutralizing agent may be added for neutralization.
  • the neutralizing agent may be selected from the group consisting of organic amines, alkali metal hydroxides and aqueous ammonia, preferably triethylamine, tripropylamine, sodium hydroxide and aqueous ammonia.
  • the free radical initiator is one or more of a water soluble and oil soluble free radical initiator, preferably a persulphate and redox initiator system.
  • the water-soluble initiator mainly comprises: ammonium persulfate, potassium persulfate, sodium persulfate, azobisisobutylphosphonium hydrochloride, azobisisobutyrazoline hydrochloride; oil-soluble initiator mainly includes: azo Diisobutyronitrile, azobisisoheptanenitrile, dimethyl azobisisobutyrate, azoisobutylcyanoformamide, dibenzoyl peroxide, t-butyl hydroperoxide, isopropyl hydrogen peroxide benzene.
  • the redox initiator system consists of a reducing agent and an oxidizing agent.
  • the oxidizing component includes, for example, the above-mentioned initiators mentioned for emulsion polymerization.
  • the reducing component includes, for example, an alkali metal salt of sulfurous acid such as sodium sulfite, sodium hydrogen sulfite, an alkali metal salt of pyrosulfite such as sodium metabisulfite, a bisulfite adduct of an aliphatic aldehyde and a ketone such as sodium formaldehyde sulfoxylate or Reducing agents such as hydroxymethanesulfinic acid and its salts or ascorbic acid, ferrous sulfate, glucose.
  • an alkali metal salt of sulfurous acid such as sodium sulfite, sodium hydrogen sulfite
  • an alkali metal salt of pyrosulfite such as sodium metabisulfite
  • a bisulfite adduct of an aliphatic aldehyde and a ketone such as sodium formaldehyde sulfoxylate or Reducing agents
  • Examples of conventional redox initiator systems include ascorbic acid/ferrous sulfate/sodium persulfate, t-butyl hydroperoxide/sodium metabisulfite, t-butyl hydroperoxide/sodium hydroxymethanesulfinate, cumene hydroperoxide / ferrous sulfate / glucose.
  • the amount of the initiator is usually from 0.1 to 5% by weight, based on the total weight of the monomers to be polymerized for preparing the carboxybutylbenzene copolymer, preferably from 0.5 to 2% by weight.
  • 0 to 0.8 parts by weight of a regulator may be used per 100 parts of the monomer to be polymerized.
  • the modifier reduces the molar mass of the polymer.
  • Suitable examples include thiol-containing compounds such as t-butyl mercaptan, mercaptopropyl trimethoxysilane, and t-dodecyl mercaptan.
  • auxiliaries such as one or more of an electrolyte, a chelating agent, a pH adjusting agent or a buffering agent, and an antifoaming agent may be added.
  • an electrolyte increases stability, reduces the amount of emulsifier, and controls particle size.
  • electrolytes are, for example, sodium chloride or potassium chloride.
  • the amount of the electrolyte is usually less than 0.1% by weight, preferably 0.02 to 0.5% by weight, more preferably 0.08 to 0.4% by weight, based on the total weight of the monomers to be polymerized for preparing the carboxybutylbenzene copolymer.
  • the emulsion polymerization is usually carried out at 30 to 130 ° C, preferably 50 to 90 ° C.
  • the polymerization medium may consist of only water or a mixture of water and a water-miscible liquid such as methanol. It is preferred to use only water.
  • the preparation process of the latex comprising the urethane-modified carboxybutylbenzene copolymer includes a one-time feeding method, a semi-continuous method, a pre-emulsification method, and a continuous method.
  • a semi-continuous method and a pre-emulsification method are preferably employed.
  • a portion, preferably 3 to 50% by weight, more preferably 10 to 30% by weight, of the grafting monomer i.e., the monomer used to prepare the carboxylated styrene-butadiene copolymer
  • a neutralizing agent is added for neutralization.
  • the mixture is heated to the reaction temperature.
  • a part, preferably 20-50% by weight of an initiator is added, wherein the water-soluble initiator can be previously dissolved in water, and the oil-soluble initiator can be previously dissolved in the graft monomer.
  • the remaining grafting monomer and the remaining initiator are added dropwise to the polymerization system at a certain rate, for example, for 2 to 5 hours, and the reaction is continued for 3-5 hours after the completion of the dropwise addition.
  • a portion, preferably 3 to 50% by weight, more preferably 10 to 30% by weight, of the grafting monomer i.e., the monomer used to prepare the carboxylated styrene-butadiene copolymer
  • a neutralizing agent is added for neutralization.
  • the mixture is heated to the reaction temperature.
  • a part, preferably 20-50% by weight of an initiator is added, wherein the water-soluble initiator can be previously dissolved in water, and the oil-soluble initiator can be previously dissolved in the graft monomer.
  • the optional emulsifier solution, the remaining graft monomer, and the remaining initiator are then added to the polymerization system at a rate, for example, via a pipe emulsifier, for example, over a period of 2-5 hours, after the addition is complete.
  • the reaction is carried out for 2-5 hours.
  • the resulting latex comprising the urethane-modified carboxybutylbenzene copolymer has a solid content of usually 20 to 60% by weight, preferably 30 to 50% by weight.
  • the average particle diameter of the polymer particles is preferably less than 300 nm, especially less than 250 nm, and particularly preferably the average particle diameter is between 100 and 250 nm.
  • the particle size can be measured, for example, using the internationally renowned precision instrument Zetasize 3000HS (Malvern, UK).
  • the graft ratio of the polyurethane on the butylbenzene copolymer is from 90 to 99.5% by weight, for example from 94 to 99% by weight, or from 95 to 98% by weight.
  • the graft ratio can be determined, for example, by an acetone extraction method. Since acetone is a good solvent for polyurethane, the extracted polyurethane is not grafted with styrene-butadiene copolymer:
  • the graft ratio of the polyurethane on the carboxybutylbenzene copolymer (weight of the polyurethane grafted onto the carboxybutylbenzene copolymer / total weight of the monomer used to prepare the polyurethane) x 100%.
  • Weight of polyurethane grafted onto carboxyl styrene-butadiene copolymer weight of polymer remaining after extraction - total weight of monomer used to prepare carboxylated styrene-butadiene copolymer
  • the latex of the present invention can be used as an adhesive for carpet production, construction, papermaking, leather, textile printing and cement, especially for carpet production.
  • Example 1 Latex comprising a polyurethane modified carboxybutyl benzene copolymer
  • reaction was carried out for 2 hours; then, 29.6 parts of dimethylolbutanoic acid and 31.5 parts of 1,4-butanediol were added and reacted at 80 ° C for 4 hours; after cooling to 70 ° C, 3.48 parts of hydroxyethyl acrylate was added, and the reaction was continued for 2 hours; After cooling to 30 ° C, 150 parts of styrene and 350 parts of butadiene were added to mix and reduce the viscosity, then add 15.2 parts of triethylamine to neutralize. After 20 minutes, add 11880 parts of deionized water and stir for 40 minutes to obtain A polyurethane emulsion capable of free radical polymerization of carbon-carbon double bonds and carboxyl groups.
  • the above system was stirred and heated to 80 ° C, and after stirring for 20 minutes, 2000 parts of an aqueous initiator solution (prepared by pre-dissolving 101 parts of ammonium persulfate in 2980 parts of deionized water) was added to the system to initiate a reaction.
  • an aqueous initiator solution prepared by pre-dissolving 101 parts of ammonium persulfate in 2980 parts of deionized water
  • an aqueous emulsifier solution (56 parts of sodium lauryl sulfate, 18 parts of potassium chloride and 8900 parts of deionized water) was added, and then the remaining grafting monomer (4400 parts of styrene, 4776 parts of butadiene, 204) a mixture of acrylic acid, 300 parts of acrylonitrile, 25 parts of divinylbenzene) and 30 parts of t-dodecyl mercaptan and the remaining aqueous initiator solution were respectively added dropwise to the system, and the dropping time was 2 hours, after the completion of the dropwise addition.
  • the reaction was continued for 5 hours, and then degassed under vacuum at 80 ° C for 3 hours to obtain a latex containing a urethane-modified carboxybutylbenzene copolymer, and the graft ratio of the polyurethane on the styrene-butadiene copolymer was determined by acetone extraction to be 96.4%.
  • the solid content, viscosity and particle size data of the obtained product are shown in Table 1, wherein the particle size was measured using an internationally renowned precision instrument Zetasize 3000HS (Malvern, UK).
  • Example 2 Latex comprising a polyurethane modified carboxybutyl benzene copolymer
  • aqueous emulsifier solution 82 parts of sodium dodecylbenzene sulfonate, 18 parts of potassium chloride and 5670 parts of deionized water
  • 1000 parts of an aqueous initiator solution were added.
  • the aqueous initiator solution was prepared by pre-dissolving 106 parts of potassium persulfate in 1890 parts of deionized water) to initiate the reaction while leaving the remaining grafting monomer (3820 parts of styrene, 3,530 parts of butadiene, 360 parts).
  • Example 3 Latex comprising a polyurethane modified carboxybutyl benzene copolymer
  • the above system was stirred and heated to 85 ° C, and after stirring for 50 minutes, 400 parts of an aqueous initiator solution (prepared by dissolving 55 parts of sodium persulfate in 700 parts of deionized water in advance) was added to the system to initiate a reaction.
  • an aqueous initiator solution prepared by dissolving 55 parts of sodium persulfate in 700 parts of deionized water in advance
  • an aqueous emulsifier solution 35 parts of sodium alkyl diphenyl ether disulfonate, 7 parts of sodium chloride and 2100 parts of deionized water
  • the remaining grafting monomer (1950 parts of styrene, 1550 parts of dibutyl) a mixture of aene, 286 parts of methacrylic acid, 12 parts of 1,6-hexanediol diacrylate, and 9 parts of t-dodecyl mercaptan and an aqueous solution of the remaining initiator are respectively added dropwise to the system, and the dropping time is 2.5 hours, the reaction was continued for 5 hours after the end of the dropwise addition, and then vacuum degassed at 80 ° C for 3 hours to obtain a latex containing a urethane-modified carboxybutylbenzene copolymer, and the polyurethane was measured on the styrene-butadiene copolymer by ace
  • Example 4 Latex comprising a polyurethane modified carboxybutyl benzene copolymer
  • the above system was stirred and heated to 75 ° C, and after stirring for 15 minutes, 500 parts of the initiator aqueous solution (the initiator aqueous solution was previously dissolved in 770 parts by dissolving 9 parts of cumene hydroperoxide, 5 parts of ferrous sulfate, 5 parts of glucose). Prepared in ionic water) to initiate the reaction.
  • the emulsifier aqueous solution (18 parts of sodium laurate, 8 parts of Span-60, 8 parts of potassium chloride and 2311 parts of deionized water), residual grafting a mixture of 920 parts of styrene, 880 parts of butadiene, 212 parts of acrylic acid, 106 parts of acrylonitrile, 6 parts of divinylbenzene, and 2.6 parts of t-dodecyl mercaptan and an aqueous solution of the remaining initiator are emulsified through a pipe After emulsification in-line, the mixture was added dropwise to the polymerization reaction system for 2 hours.
  • Example 5 Latex comprising a polyurethane modified carboxybutyl benzene copolymer
  • the ester was further reacted for 1 hour; after cooling to 30 ° C, a mixture of 120 parts of styrene and 420 parts of butadiene was added and stirred to reduce viscosity, and then 25.2 parts of triethylamine was added for neutralization. After 26 minutes, 1857 parts of deionized water was added. The mixture was stirred for 50 minutes to obtain a polyurethane emulsion containing both a radically polymerizable carbon-carbon double bond and a carboxyl group.
  • the above system was stirred and heated to 80 ° C, and after stirring for 30 minutes, 300 parts of an aqueous initiator solution (the aqueous initiator solution was dissolved in 464 parts by dissolving 17 parts of cumene hydroperoxide, 9 parts of ferrous sulfate, and 9 parts of glucose). Prepared in ionic water) to initiate the reaction.
  • the emulsifier aqueous solution (10 parts sodium oleate, 6 parts Span-20, 3 parts sodium chloride and 1393 parts deionized water), residual grafting a mixture of 670 parts of styrene, 850 parts of butadiene, 114 parts of acrylic acid, 60 parts of butyl methacrylate and 3 parts of t-dodecyl mercaptan and the remaining aqueous initiator solution were emulsified in-line by a pipe emulsifier The mixture was added dropwise to the reaction system for 2 hours, and the reaction was continued for 4.5 hours after the completion of the dropwise addition, followed by vacuum degassing at 80 ° C for 3 hours to obtain a latex containing a urethane-modified carboxybutylbenzene copolymer, and acetone extraction method.
  • the graft ratio of the polyurethane to the styrene-butadiene copolymer was measured to be 98.1%.
  • the solid content, viscosity and particle size data of the obtained product are shown in Table 1, wherein the particle size was measured using an internationally renowned precision instrument Zetasize 3000HS (Malvern, UK).
  • Example 6 Latex comprising a polyurethane modified carboxybutyl benzene copolymer
  • the above system was stirred and heated to 70 ° C, and after stirring for 20 minutes, 1400 parts of an aqueous initiator solution (prepared by pre-dissolving 65 parts of sodium persulfate in 2353 parts of deionized water) was added to the system to initiate a reaction.
  • an aqueous initiator solution prepared by pre-dissolving 65 parts of sodium persulfate in 2353 parts of deionized water
  • the sodium chloride solution 14 parts of sodium chloride dissolved in 7061 parts of deionized water
  • the remaining grafting monomer 835 parts of styrene, 1020 parts of butadiene, 217 parts of acrylic acid, 110 parts of butyl acrylate, A mixture of 10 parts of divinylbenzene) and 14 parts of t-dodecyl mercaptan and an aqueous solution of the remaining initiator are emulsified in-line by a pipe emulsifier and then added dropwise to the polymerization system, and the dropping time is 2.5 hours, after the completion of the dropwise addition.
  • the reaction was continued for 5.5 hours, and then degassed under vacuum at 70 ° C for 3 hours to obtain a latex containing a urethane-modified carboxybutylbenzene copolymer, and the graft ratio of the polyurethane on the styrene-butadiene copolymer was determined by acetone extraction to be 95.2%.
  • the solid content, viscosity and particle size data of the obtained product are shown in Table 1, wherein the particle size was measured using an internationally renowned precision instrument Zetasize 3000HS (Malvern, UK).
  • styrene 160 parts of styrene, 5 parts of sodium laurate and 1300 parts of water were added to the autoclave. After 10 minutes of passing nitrogen, 380 parts of butadiene was introduced into the autoclave, pre-emulsified at room temperature for 1 hour, and then the system was heated. After stirring for 15 minutes at 75 ° C, 500 parts of an aqueous initiator solution (prepared by preparing 9 parts of cumene hydroperoxide, 5 parts of ferrous sulfate, 5 parts of glucose in 770 parts of deionized water) The reaction was initiated by adding to the system.
  • an aqueous initiator solution prepared by preparing 9 parts of cumene hydroperoxide, 5 parts of ferrous sulfate, 5 parts of glucose in 770 parts of deionized water
  • the aqueous emulsifier solution 13 parts of sodium laurate, 8 parts of Span-60, 8 parts of potassium chloride and 1000 parts of deionized water
  • the remaining grafting monomer 920 parts of benzene
  • a mixture of ethylene, 880 parts of butadiene, 212 parts of acrylic acid, 106 parts of acrylonitrile, 6 parts of divinylbenzene) and 2.6 parts of t-dodecyl mercaptan and an aqueous solution of the remaining initiator are emulsified in-line by a pipe emulsifier.
  • the polymerization reaction system was added, and the dropwise addition time was 2 hours.
  • Comparative Example 1 and the product of Comparative Example 2 were stirred and mixed at room temperature for 20 minutes at a mass ratio of polyurethane to carboxybutylbenzene copolymer to obtain a polyurethane/carboxy styrene-butadiene blend latex.
  • the solid content, viscosity and particle size data of the obtained product are shown in Table 1, wherein the particle size was measured using an internationally renowned precision instrument Zetasize 3000HS (Malvern, UK).
  • the tufted carpet used in the test was a loop pile 400 type tufted carpet (purchased from Xinhui District Xinkui Carpet Co., Ltd., Jiangmen City).
  • Table 1 contains latex modified polyurethane styrene-butadiene copolymer latex, polyurethane emulsion, carboxylated styrene-butadiene emulsion, polyurethane / carboxyl styrene-butadiene blend latex performance index

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

包含聚氨酯改性羧基丁苯共聚物的胶乳以及制备所述胶乳的方法,其中所述聚氨酯改性羧基丁苯共聚物中聚氨酯和羧基丁苯共聚物经由共价键连接,并且所述聚氨酯包含亲水基。包含聚氨酯改性羧基丁苯共聚物的胶乳兼具了羧基丁苯胶乳和聚氨酯胶乳两者的优点,性能优异,可作为粘合剂用于地毯生产、建筑、造纸、皮革、纺织印染和水泥。

Description

包含聚氨酯改性羧基丁苯共聚物的胶乳及其制备方法 技术领域
本发明涉及一种包含聚氨酯改性羧基丁苯共聚物的胶乳及其制备方法。本发明还涉及所述胶乳在地毯生产、建筑、造纸、皮革、纺织印染和水泥中作为粘合剂的用途。
技术背景
地毯是一种特殊的织品,生产过程中需要用粘合剂进行背面涂覆,其主要作用不仅仅是锚固簇绒和固定纤维背衬,而且赋予地毯以手感,起到稳定尺寸、防水、耐磨、提高强度和使用寿命的作用。数十年来,地毯背衬胶也从最早的天然胶乳逐渐发展到现在以丁苯胶乳为主的合成胶乳,尤其是羧基丁苯胶乳以其优良的性价比而成为地毯胶的主流产品。
丁苯胶乳是由丁二烯和苯乙烯通过乳液聚合而制得,是较早用作地毯胶的合成胶乳。后来人们发现,将不饱和酸单体作为第三组分引入到丁苯共聚体系中,所得羧基丁苯胶乳可以显著提高胶乳对地毯织物的粘接强度;另外羧基丁苯胶乳原料易得,投资少,生产成本较低,因而很快占领了地毯胶市场。关于羧基丁苯胶乳的合成方法,许多专利和文献中已有报道,如US4876293、US5726259、CN87105487A、CN103755872A。但是,发现羧基丁苯胶乳生产的地毯在湿剥离强度、抗龟裂和手感方面比较欠缺,不能满足高档地毯的要求。
聚氨酯胶乳具有粘接强度高、耐低温、耐磨、性能可调等优点,已在涂料、粘合剂、织物整理、皮革涂饰、汽车漆等领域得到了广泛应用。关于聚氨酯胶乳的合成方法,许多专利和文献中已有详细报道,例如参见US 5221710、CN 201410139090.2。CN 1250497A描述了聚氨酯胶乳作为粘合剂制备地毯胶。尽管聚氨酯胶乳能够满足高级地毯对综合性能的要求,但与羧基丁苯胶乳相比价格昂贵,难以在地毯行业得到广泛应用。
发明内容
鉴于上述现有技术状况,本发明的发明人进行了广泛深入的研究,结 果发现当将本发明的包含聚氨酯改性羧基丁苯共聚物的胶乳用于地毯生产时,所得地毯具有良好的机械稳定性、化学稳定性、浸水尺寸稳定性、剥离强度高、绒簇拔出力高且耐老化性能好。本发明的包含聚氨酯改性羧基丁苯共聚物的胶乳兼具羧基丁苯胶乳和聚氨酯胶乳优点,是一种具有良好性价比的新材料。另外还发现,本发明的包含聚氨酯改性羧基丁苯共聚物的胶乳可以在少加甚至不加乳化剂的条件下来制备。不加或少加乳化剂也可以提高产品的耐水性。进一步发现,若在上述聚氨酯分子中引入少量可自由基聚合的碳碳双键,则可以在引发剂的存在下,通过自由基聚合机理将苯乙烯、丁二烯、不饱和酸和其它烯类单体共聚到聚氨酯分子链上,而且聚合过程稳定,所得聚氨酯-羧基丁苯共聚胶乳稳定性好,易于产业化。
本发明正是基于以上发现得以完成。
本发明的目的是提供一种性能优异、性价比高的合成胶乳。当将本发明胶乳用于地毯生产中时,所得地毯具有良好的机械稳定性、化学稳定性、浸水尺寸稳定性、剥离强度高、绒簇拔出力高且耐老化性能好。
本发明的另一目的是提供一种制备所述合成胶乳的方法。
实现本发明目的的技术方案可以概括如下:
1.一种包含聚氨酯改性羧基丁苯共聚物的胶乳,其中所述聚氨酯改性羧基丁苯共聚物中聚氨酯和羧基丁苯共聚物经由共价键连接,并且所述聚氨酯包含亲水基。
2.根据第1项的包含聚氨酯改性羧基丁苯共聚物的胶乳,其中在所述聚氨酯改性羧基丁苯共聚物中聚氨酯和羧基丁苯共聚物的重量比为40:60-3:97,优选30:70-5:95,更优选25:75-8:92;和/或所述聚氨酯上的亲水基选自羧基、磺酸基及其盐。
3.根据第1或2项的包含聚氨酯改性羧基丁苯共聚物的胶乳,其中所述聚氨酯通过使多元醇与多异氰酸酯进行加聚反应,然后进一步与含所述亲水基的扩链剂、另一小分子扩链剂以及具有可与异氰酸酯基反应的基团和可自由基聚合碳碳双键的单体进行加聚反应而制备。
4.根据第3项的包含聚氨酯改性羧基丁苯共聚物的胶乳,其中所述多元醇的分子量为400-4000g/mol,优选600-3000g/mol;和/或其中所述多 元醇选自羟值为20-200mgKOH/g,优选40-120mgKOH/g,更优选50-100mgKOH/g的聚酯多元醇和聚醚多元醇。
5.根据第3或4项的包含聚氨酯改性羧基丁苯共聚物的胶乳,其中所述包含亲水基的扩链剂选自2,2-二羟甲基丙酸、2,2-二羟甲基丁酸、1,2-二羟基-3-丙磺酸钠、1,4-丁二醇-2-磺酸钠、乙二氨基乙磺酸钠和乙二羟基乙磺酸钠。
6.根据第3-5项中任一项的包含聚氨酯改性羧基丁苯共聚物的胶乳,其中所述具有可与异氰酸酯基反应的基团和可自由基聚合碳碳双键的单体选自具有1-10个碳原子的二醇与具有3-10个碳原子的α,β-烯属不饱和单-和/或二羧酸及其酸酐的酯或带有羟基的丙烯酰胺,优选(甲基)丙烯酸C 2-C 6羟基烷基酯,以及N,N-双(C 2-C 6羟烷基)丙烯酰胺;和/或其中所述具有可与异氰酸酯基反应的基团和可自由基聚合碳碳双键的单体的量为0.1-5重量%,优选0.2-2重量%,更优选0.3-1重量%,以用于制备聚氨酯的各组分重量之和为基准。
7.根据第1-6项中任一项的包含聚氨酯改性羧基丁苯共聚物的胶乳,其中所述羧基丁苯共聚物基于该羧基丁苯共聚物重量包含1-15重量%,优选1.5-12重量%,更优选2-8重量%的单烯属不饱和羧酸单体单元;和/或其中所述单烯属不饱和羧酸选自含有不超过10个碳原子的单烯属不饱和羧酸,优选不超过6个碳原子的单烯属不饱和羧酸。
8.一种制备如第1-7项中任一项所定义的包含聚氨酯改性羧基丁苯共聚物的胶乳的方法,其包括
a)通过加聚反应制备具有可自由基聚合碳碳双键和亲水基的聚氨酯,和
b)在由步骤a)得到的具有可自由基聚合碳碳双键和亲水基的聚氨酯存在下,通过乳液聚合制备羧基丁苯共聚物,得到包含聚氨酯改性羧基丁苯共聚物的胶乳。
9.根据第8项的方法,其中步骤b)中的乳液聚合可在不加入乳化剂下进行。
10.如第1-7项中任一项所定义的包含聚氨酯改性羧基丁苯共聚物的 胶乳在地毯生产、建筑、造纸、皮革、纺织印染和水泥中作为粘合剂的用途。
具体实施方式
本发明的一个方面涉及一种包含聚氨酯改性羧基丁苯共聚物的胶乳,其中所述聚氨酯改性羧基丁苯共聚物中聚氨酯和羧基丁苯共聚物经由共价键连接,并且所述聚氨酯包含亲水基。
在本发明的一个优选实施方案中,所述聚氨酯改性羧基丁苯共聚物中,聚氨酯和羧基丁苯共聚物的重量比为40:60-3:97,优选30:70-5:95,更优选25:75-8:92。
根据本发明,所述聚氨酯上的亲水基可选自羧基、磺酸基及其盐。
在本发明的一个优选实施方案中,所述聚氨酯通过使多元醇与多异氰酸酯进行加聚反应,然后进一步与含所述亲水基的扩链剂、另一小分子扩链剂以及具有可与异氰酸酯基反应的基团和可自由基聚合碳碳双键的单体进行加聚反应而制备。
多元醇可以是本领域常用于制备聚氨酯的那些。但是,优选所述多元醇的分子量为400-4000g/mol,优选600-3000g/mol。优选多元醇选自羟值为20-200mgKOH/g,优选40-120mgKOH/g,更优选50-100mgKOH/g的聚酯多元醇和聚醚多元醇。
优选使用通过使二元醇与二元羧酸反应而获得的聚酯多元醇。除游离的二元羧酸外,还可使用相应的二元羧酸酐来制备聚酯多元醇。二元羧酸可为脂族、环脂族、芳脂族、芳族或杂环的。实例为辛二酸、壬二酸、邻苯二甲酸和间苯二甲酸,邻苯二甲酸酐、四氢邻苯二甲酸酐、六氢邻苯二甲酸酐、四氯邻苯二甲酸酐、内亚甲基四氢邻苯二甲酸酐、戊二酸酐和马来酸酐,马来酸,富马酸和二聚脂肪酸。优选式HOOC-(CH 2) y-COOH的二羧酸,其中y为1-20的数,优选2-20的偶数,实例为琥珀酸、己二酸、癸二酸和十二烷二甲酸。合适二元醇实例为乙二醇、1,2-丙二醇、1,3-丙二醇、1,3-丁二醇、1,4-丁二醇、1,5-戊二醇、新戊二醇、双(羟基甲基)环己烷如1,4-双(羟基甲基)环己烷、2-甲基-1,3-丙二醇、甲基戊二醇,以及二甘醇、三甘醇、四甘醇、分子量小于1000g/mol的聚乙二醇、二丙二醇、分子量 小于1000g/mol的聚丙二醇、二丁二醇和分子量小于1000g/mol的聚丁二醇。优选式HO-(CH 2) x-OH的醇,其中x为1-20的数,优选2-20的偶数。这类醇的实例为乙二醇、1,4-丁二醇、1,6-己二醇、1,8-辛二醇和1,12-十二烷二醇。
还合适的是聚碳酸酯二醇,其例如可通过使光气与过量的作为聚酯多元醇的合成组分提及的低分子量二元醇反应而得到。
基于内酯的聚酯二醇也是合适的,这些聚酯二醇为内酯的均聚物或共聚物,优选内酯与合适的双官能起始分子的端羟基加合物。合适内酯优选为那些源自式HO-(CH 2) z-COOH的化合物的内酯,其中z为1-20且亚甲基单元中的一个氢也可由C 1-C 4烷基取代。合适起始组分的实例为作为聚酯多元醇的合成组分提及的低分子量二元醇。尤其优选聚己内酯二醇。
其它的合适多元醇为聚醚二醇。它们尤其可通过如下方法获得:例如在BF 3存在下使环氧乙烷、环氧丙烷、环氧丁烷、四氢呋喃、氧化苯乙烯或表氯醇自身加成聚合;或使这些化合物如果合适的话以混合物形式或依次在含有反应性氢的起始组分如醇或胺上加成反应,其中所述起始组分例如为水、乙二醇、1,2-丙二醇、1,3-丙二醇、1,2-双(4-羟基二苯基)丙烷或苯胺。
根据本发明,优选用于制备聚氨酯的多元醇例如为聚氧化乙烯二醇、聚氧化丙烯二醇、聚(氧化乙烯-氧化丙烯)二醇、聚四氢呋喃二醇、聚碳酸酯二醇、聚己二酸丁二醇酯二醇、聚己二酸新戊二醇酯二醇、聚己二酸己二醇酯二醇、聚己内酯二醇及其混合物,优选聚四氢呋喃二醇,特别优选分子量为500-4 000g/mol,尤其是800-3500g/mol的聚四氢呋喃二醇。
多异氰酸酯可以是本领域常用于制备聚氨酯的那些,尤其为二异氰酸酯X(NCO) 2,其中X为具有4-12个碳的脂族烃基,具有6-15个碳的环脂族或芳族烃基或具有7-15个碳的芳脂族烃基。
这类二异氰酸酯的实例为四亚甲基二异氰酸酯、六亚甲基二异氰酸酯、十二亚甲基二异氰酸酯、1,4-二异氰酸根合环己烷、异佛尔酮二异氰酸酯、2,2-双(4-异氰酸根合环己基)-丙烷、三甲基己烷二异氰酸酯、1,4-二异氰酸根合苯、2,4-甲苯二异氰酸酯、2,6-甲苯二异氰酸酯、二苯甲烷二异氰酸酯、 苯二亚甲基二异氰酸酯、四甲代苯二亚甲基二异氰酸酯(TMXDI)、多苯基多亚甲基多异氰酸酯及其混合物。这些异氰酸酯可以市购。
多元醇与多异氰酸酯的摩尔比为0.1:1-0.6:1,优选0.2:1-0.4:1。
根据本发明,聚氨酯包含亲水基。亲水基可以来自包含亲水基的扩链剂。所述包含亲水基的扩链剂例如选自2,2-二羟甲基丙酸、2,2-二羟甲基丁酸、1,2-二羟基-3-丙磺酸钠、1,4-丁二醇-2-磺酸钠、乙二氨基乙磺酸钠和乙二羟基乙磺酸钠。
所述包含亲水基的扩链剂的用量例如为1-10重量%,优选2-8重量%,更优选4-7重量%,以用于制备聚氨酯的各组分重量之和为基准。
除了上述包含亲水基的扩链剂之外,在制备聚氨酯的过程中还加入常用于聚氨酯制备的小分子扩链剂。所述小分子扩链剂的分子量通常小于300g/mol,优选60-200g/mol。扩链剂优选具有2个对异氰酸酯呈反应性的羟基或氨基。可能的扩链剂例如为具有2-14个,优选2-10个碳原子的脂族、脂环族和/或芳脂族二醇,例如乙二醇,1,3-丙二醇,1,10-癸二醇,1,2-、1,3-、1,4-二羟基环己烷,二甘醇,二丙二醇和1,4-丁二醇,1,6-己二醇和二(2-羟基乙基)氢醌,三醇,如1,2,4-和1,3,5-三羟基环己烷、甘油和三羟甲基丙烷,以及基于氧化乙烯和/或1,2-氧化丙烯和作为起始剂的上述二醇和/或三醇的低分子量含羟基聚氧化烯。作为扩链剂,还可以使用结构通式为H 2N-(CH 2) m-NH 2(m=2-10)的二元胺类化合物、2-甲基-1,5-戊二胺等。特别优选使用乙二醇、1,4-丁二醇、1,6-丁二醇和2-甲基-1,5-戊二胺或其混合物作为小分子扩链剂。
所述小分子扩链剂的用量例如为1-10重量%,优选2-8重量%,更优选3-6重量%,以用于制备聚氨酯的各组分重量之和为基准。
根据本发明,在聚氨酯分子中引入少量可自由基聚合的碳碳双键,则可以随后通过自由基聚合将苯乙烯、丁二烯等单体共聚到聚氨酯分子链上。聚氨酯分子上的可自由基聚合碳碳双键可通过在聚氨酯的制备过程中加入具有可与异氰酸酯基反应的基团和可自由基聚合的碳碳双键的单体而引入。
所述具有可与异氰酸酯基反应的基团和可自由基聚合的碳碳双键的单 体例如选自具有1-10个碳原子的二醇与具有3-10个碳原子的α,β-烯属不饱和单-和/或二羧酸及其酸酐的酯。可以利用的α,β-烯属不饱和单-和/或二羧酸及其酸酐的实例包括丙烯酸、甲基丙烯酸、富马酸、顺丁烯二酸、顺丁烯二酸酐、巴豆酸、衣康酸等。合适的二醇的实例为具有1-10个,优选2-8个,更优选2-6个碳原子的二醇,如乙二醇、1,2-丙二醇、1,3-丙二醇、1,1-二甲基-1,2-乙二醇、2-丁基-2-乙基-1,3-丙二醇、2-乙基-1,3-丙二醇、2-甲基-1,3-丙二醇、新戊二醇、新戊二醇羟基新戊酸酯、1,2-丁二醇、1,3-丁二醇或1,4-丁二醇、1,6-己二醇、1,10-癸二醇,环己烷二醇等。优选(甲基)丙烯酸C 1-C 8羟基烷基酯,更优选(甲基)丙烯酸C 2-C 6羟基烷基酯。
所述具有可与异氰酸酯基反应的基团和可自由基聚合的碳碳双键的单体还可以是带有羟基的丙烯酰胺,例如N,N-双(C 2-C 6羟烷基)丙烯酰胺。
在本发明的一个优选实施方案中,所述具有可与异氰酸酯基反应的基团和可自由基聚合的碳碳双键的单体选自丙烯酸羟乙酯、甲基丙烯酸羟乙酯、丙烯酸羟丙酯、甲基丙烯酸羟丙酯和N,N-双(2-羟乙基)丙烯酰胺。
所述具有可与异氰酸酯基反应的基团和可自由基聚合碳碳双键的单体的用量例如为0.1-5重量%,优选0.2-2重量%,更优选0.3-1重量%,以用于制备聚氨酯的各组分重量之和为基准。
在本发明的聚氨酯改性羧基丁苯共聚物中聚氨酯和羧基丁苯共聚物经由共价键连接。
在本发明的一个实施方案中,所述羧基丁苯共聚物基于该羧基丁苯共聚物重量包含1-15重量%,优选1.5-12重量%,更优选2-8重量%的单烯属不饱和羧酸单体单元。
所述单烯属不饱和羧酸选自单烯属不饱和C 3-C 10单羧酸、单烯属不饱和C 4-C 10二羧酸及其酸酐,优选单烯属不饱和C 3-C 6单羧酸、单烯属不饱和C 4-C 8二羧酸及其酸酐。例如,所述单烯属不饱和单羧酸可选自丙烯酸和甲基丙烯酸。所述单烯属不饱和C 4-C 10二羧酸可选自衣康酸、富马酸、甲基富马酸、马来酸、甲基马来酸和二甲基马来酸。
除了苯乙烯、丁二烯和单烯属不饱和羧酸单体单元之外,所述羧基丁苯共聚物可任选包含一种或多种其他单烯属不饱和单体单元。所述单体例 如为具有1-6个碳原子的饱和羧酸的乙烯基酯如甲酸乙烯酯、乙酸乙烯酯、丙酸乙烯酯和丁酸乙烯酯,以及乙烯基醚如C 1-C 6烷基乙烯基醚如甲基乙烯基醚或乙基乙烯基醚。其它适合的共聚单体是烯属不饱和C 3-C 6羧酸的酯、酰胺和腈,例如丙烯酸甲酯、甲基丙烯酸甲酯、丙烯酸乙酯、甲基丙烯酸乙酯、丙烯酸丁酯和甲基丙烯酸丁酯,丙烯酰胺和甲基丙烯酰胺以及丙烯腈和甲基丙烯腈。
根据本发明,所述羧基丁苯共聚物可基于该羧基丁苯共聚物重量含有0-15重量%,优选0-10重量%,更优选3-8重量%的其他单烯属不饱和单体单元。
在本发明的一个实施方案中,所述羧基丁苯共聚物还可以包含交联剂单体单元。合适的交联剂包括含有2-6个碳原子的饱和二元醇的二(甲基)丙烯酸酯,具有超过2个羟基的醇的(甲基)丙烯酸酯,氧化乙烯和/氧化丙烯低聚物的二(甲基)丙烯酸酯,(甲基)丙烯酸酯乙烯酯,丁二醇二乙烯基醚,三羟甲基丙烷三乙烯基醚,(甲基)丙烯酸烯丙酯,季戊四醇三烯丙基醚,亚甲基二(甲基)丙烯酰胺,二乙烯基苯等。
含有2-6个碳原子的饱和二元醇的二(甲基)丙烯酸酯可选自乙二醇二丙烯酸酯,乙二醇二甲基丙烯酸酯,1,2-丙二醇二丙烯酸酯,1,2-丙二醇二甲基丙烯酸酯,丁二醇二(甲基)丙烯酸酯,如丁烷-1,4-二醇二丙烯酸酯,丁烷-1,4-二醇二甲基丙烯酸酯,己二醇二丙烯酸酯,己二醇二甲基丙烯酸酯,新戊二醇二丙烯酸酯,新戊二醇二甲基丙烯酸酯,3-甲基戊二醇二丙烯酸酯和3-甲基戊二醇二甲基丙烯酸酯。
具有超过2个羟基的醇的(甲基)丙烯酸酯的实例包括三羟甲基丙烷三丙烯酸酯和三羟甲基丙烷三甲基丙烯酸酯。
氧化乙烯和/或氧化丙烯低聚物的二(甲基)丙烯酸酯的实例为二甘醇二丙烯酸酯、二甘醇二甲基丙烯酸酯、三甘醇二丙烯酸酯、三甘醇二甲基丙烯酸酯、四甘醇二丙烯酸酯和四甘醇二甲基丙烯酸酯。
根据本发明,所述羧基丁苯共聚物基于该羧基丁苯共聚物重量含有0-3重量%,优选0-1重量%,更优选0.1-0.5重量%的交联剂单体单元。
在本发明的一个实施方案中,所述羧基丁苯共聚物中丁二烯和苯乙烯 单体单元重量之和基于该羧基丁苯共聚物重量为70-98重量%,优选80-97重量%,更优选85-96重量%。
在所述羧基丁苯共聚物中,丁二烯单元与苯乙烯单元的重量比可以为0.5:1-5:1,优选0.7:1-3:1,更优选0.9:1-2:1。
本发明还提供了一种制备根据本发明的包含聚氨酯改性羧基丁苯共聚物的胶乳的方法,其包括
a)通过加聚反应制备具有可自由基聚合碳碳双键和亲水基的聚氨酯,和
b)在由步骤a)得到的具有可自由基聚合碳碳双键和亲水基的聚氨酯存在下,通过乳液聚合制备羧基丁苯共聚物,得到包含聚氨酯改性羧基丁苯共聚物的胶乳。
根据本发明,步骤a)可以如下进行,其中使多元醇与多异氰酸酯在催化剂存在下进行加聚反应,然后进一步与含亲水基的扩链剂、另一小分子扩链剂以及具有可与异氰酸酯基反应的基团和可自由基聚合碳碳双键的单体进行加聚反应。
为了加速异氰酸酯的反应,可以使用常规的催化剂。原则上适当的那些是聚氨酯化学中常用的所有催化剂。
这些例如是有机胺,特别是叔脂肪族、脂环族或芳香族的胺,和/或路易斯酸的有机金属化合物。适当的路易斯酸的有机金属化合物的例子包括锡化合物,如有机羧酸的锡(II)盐如乙酸锡(II)、辛酸锡(II)、乙基己酸锡(II)和月桂酸锡(II),以及有机羧酸的二烷基锡(IV)盐,如二乙酸二甲基锡、二乙酸二丁基锡、二丁酸二丁基锡、双(2-乙基己酸)二丁基锡、二月桂酸二丁基锡、马来酸二丁基锡、二月桂酸二辛锡和二乙酸二辛锡。也可使用金属络合物如铁、钛、铝、锆、镁、镍和钴的乙酰丙酮化物。
优选的路易斯酸的有机金属化合物是辛酸锡(II)、二乙酸二甲基锡、二丁酸二丁基锡、双(2-乙基己酸)二丁基锡、二月桂酸二丁基锡、二月桂酸二辛基锡、乙酰丙酮化锆和2,2,6,6-四甲基-3,5-庚烷二酮化锆。
还有铋和钴催化剂,以及铯盐,可用作催化剂。适当的铯盐包括其中使用如下阴离子的那些化合物:F -、Cl -、ClO -、ClO 3 -、ClO 4 -、Br -、I -、IO 3 -、 CN -、OCN -、NO 2 -、NO 3 -、HCO 3 -、CO 3 2-、S 2-、SH -、HSO 3 -、SO 3 2-、HSO 4 -、SO 4 2-、S 2O 2 2-、S 2O 4 2-、S 2O 5 2-、S 2O 6 2-、S 2O 7 2-、S 2O 8 2-、H 2PO 2 -、H 2PO 4 -、HPO 4 2-、PO 4 3-、P 2O 7 4-、(OC nH 2n+1) -、(C nH 2n-1O 2) -、(C nH 2n-3O 2) -和(C n+1H 2n-2O 4) 2-,n表示1到20的数。
优选羧酸铯,其中阴离子符合式(C nH 2n-1O 2) -和(C n+1H 2n-2O 4) 2-,n为1到20的数。特别优选含有通式为(C nH 2n-1O 2) -的单羧酸阴离子的铯盐,其中n表示1到20的数。本文中特别应提到甲酸盐、乙酸盐、丙酸盐、己酸盐和2-乙基己酸盐。
根据本发明,催化剂可以基于用于制备聚氨酯的多元醇组分和多异氰酸酯组分重量之和以0.05-1重量%,优选0.08-0.5重量%使用。
步骤a)中的加聚反应可以在40-90℃,优选60-85℃的温度下进行。反应时间可以为1.5-10小时,优选2-8小时,更优选3-6小时。
根据本发明,步骤b)包括在由步骤a)得到的具有可自由基聚合碳碳双键和亲水基的聚氨酯存在下,通过乳液聚合制备羧基丁苯共聚物,得到包含聚氨酯改性羧基丁苯共聚物的胶乳。
由于由步骤a)得到的聚氨酯含有可自由基聚合碳碳双键,故可通过接枝反应通过自由基聚合机理将苯乙烯、丁二烯、不饱和酸以及其他烯类单体共聚到聚氨酯分子链上。
在本发明的一个实施方案中,步骤b)中的乳液聚合在乳化剂存在下进行。合适的乳化剂包括阴离子、阳离子和非离子表面活性剂。优选使用阴离子表面活性剂和非离子表面活性剂以及阴离子-非离子复合表面活性剂。
优选的阴离子表面活性剂包括C 8-C 18饱和或不饱和脂肪酸盐,如油酸、亚油酸、亚麻酸、棕榈酸、硬脂酸、肉豆蔻酸、月桂酸、松香酸的钠盐或钾盐;烷基硫酸(烷基:C 8-C 12)的碱金属盐和铵盐,如十二烷基硫酸钠;烷基芳基磺酸(烷基:C 9-C 18)的碱金属盐和铵盐,如十二烷基苯磺酸钠;烷基联苯醚二磺酸钠等;普通的非离子表面活性剂例如为乙氧基化脂肪醇(EO单元:3-50,烷基:C 8-C 36),乙氧基化单-、二-和三烷基酚(EO单元:3-50,烷基:C 4-C 9),优选的非离子乳化剂包括OP系列、Tween系列和Span系列,例如OP-10、OP-20、Tween-20、Tween-60、Span-60、Span-80等。
根据一个实施方案,步骤b)中的乳液聚合在基于体系总重量为0-1重量%,优选0.1-0.5重量%的乳化剂存在下进行。
根据本发明,可以少使用,甚至不使用乳化剂而制备羧基丁苯共聚物。在本发明的另一优选实施方案中,步骤b)中的乳液聚合可以在不加入乳化剂下进行。
在本发明的一个优选实施方案中,本发明方法包括在步骤a)结束之后在进行步骤b)之前,向反应体系中引入一部分,优选3-50重量%,更优选10-30重量%的用于制备羧基丁苯共聚物的单体、任选中和剂和水得到聚氨酯乳液。
随后,可向所述聚氨酯乳液中加入引发剂进行乳液聚合,然后再加入剩余用于制备羧基丁苯共聚物的单体、任选乳化剂、引发剂进行聚合,得到包含聚氨酯改性羧基丁苯共聚物的胶乳。
在聚氨酯上的亲水基为酸性基团,如羧基或磺酸基的情况下,可加入中和剂进行中和。中和剂可选自有机胺,碱金属氢氧化物和氨水,优选三乙胺、三丙胺、氢氧化钠和氨水。
自由基引发剂为水溶性和油溶性自由基引发剂中的一种或几种,优选过硫酸盐和氧化还原引发剂体系。其中水溶性引发剂主要包括:过硫酸铵、过硫酸钾、过硫酸钠、偶氮二异丁脒盐酸盐、偶氮二异丁咪唑啉盐酸盐;油溶性引发剂主要包括:偶氮二异丁腈、偶氮二异庚腈、偶氮二异丁酸二甲酯、偶氮异丁氰基甲酰胺、过氧化二苯甲酰、叔丁基过氧化氢、过氧化氢异丙苯。
氧化还原引发剂体系由还原剂以及氧化剂组成。
氧化组分例如包括用于乳液聚合的已提及的上述引发剂。
还原组分例如包括亚硫酸的碱金属盐如亚硫酸钠、亚硫酸氢钠,焦亚硫酸的碱金属盐如焦亚硫酸钠,脂族醛和酮的亚硫酸氢盐加合物如甲醛次硫酸氢钠或还原剂如羟基甲烷亚磺酸及其盐或抗坏血酸,硫酸亚铁,葡萄糖。
常规的氧化还原引发剂体系的实例包括抗坏血酸/硫酸亚铁/过硫酸钠、叔丁基过氧化氢/焦亚硫酸钠、叔丁基过氧化氢/羟基甲烷亚磺酸钠、过氧化 氢异丙苯/硫酸亚铁/葡萄糖。
引发剂的量通常基于用于制备羧基丁苯共聚物的待聚合单体总重量为0.1-5重量%,优选0.5-2重量%。
对于聚合每100份待聚合单体还可使用例如0-0.8重量份调节剂。
所述调节剂降低了聚合物的摩尔质量。合适的实例包括含有硫羟基的化合物如叔丁基硫醇、巯基丙基三甲氧基硅烷和叔十二烷基硫醇。
合适的话,还可以加入其他助剂,如电解质、螯合剂、pH调节剂或缓冲剂、消泡剂中的一种或多种。
在乳液聚合中,加入电解质可提高稳定性、减少乳化剂用量和控制粒径。这些电解质例如为氯化钠或氯化钾。电解质的用量通常小于0.1重量%,优选0.02-0.5重量%,更优选0.08-0.4重量%,以用于制备羧基丁苯共聚物的待聚合单体总重量为基准。
乳液聚合通常在30-130℃,优选50-90℃下进行。
聚合介质可以仅由水组成或由水和水溶混性液体如甲醇的混合物组成。优选仅使用水。
所述包含聚氨酯改性羧基丁苯共聚物的胶乳的制备工艺包括一次性投料法、半连续法、预乳化法和连续法。优选采用半连续法和预乳化法。
所述半连续法的具体过程是:
在制备聚氨酯之后,加入部分,优选3-50重量%,更优选10-30重量%接枝单体(即用于制备羧基丁苯共聚物的单体)降低粘度并加入中和剂进行中和,然后将此混合液加热至反应温度。加入一部分,优选20-50重量%的引发剂,其中对于水溶性引发剂可以预先溶于水,对于油溶性引发剂可以预先溶于接枝单体。最后将剩余的接枝单体和剩余引发剂按照一定的速率,例如经2-5小时分别滴加到聚合体系中,滴加结束后继续反应3-5小时。
所述预乳化法的具体过程是:
在制备聚氨酯之后,加入部分,优选3-50重量%,更优选10-30重量%接枝单体(即用于制备羧基丁苯共聚物的单体)降低粘度并加入中和剂进 行中和,然后将此混合液加热至反应温度。加入一部分,优选20-50重量%的引发剂,其中对于水溶性引发剂可以预先溶于水,对于油溶性引发剂可以预先溶于接枝单体。然后将任选乳化剂溶液、剩余接枝单体以及剩余引发剂通过在线乳化(例如经由一管道乳化器)后按一定速率,例如经2-5小时加入到聚合反应体系中,加料结束后继续反应2-5小时。
所得包含聚氨酯改性羧基丁苯共聚物的胶乳的固含量通常为20-60重量%,优选30-50重量%。
在所得包含聚氨酯改性羧基丁苯共聚物的胶乳中,聚合物颗粒的平均粒径优选小于300nm,尤其小于250nm,特别优选平均粒径位于100-250nm之间。粒径例如可使用国际通用的精密仪器Zetasize 3000HS(英国Malvern公司)测量。
在本发明的包含聚氨酯改性羧基丁苯共聚物的胶乳中,聚氨酯在丁苯共聚物上的接枝率为90-99.5重量%,例如94-99重量%,或95-98重量%。所述接枝率例如可通过丙酮抽提法测定。由于丙酮是聚氨酯的良溶剂,抽提下来的是没有和丁苯共聚物接枝的聚氨酯:
聚氨酯在羧基丁苯共聚物上的接枝率=(接枝到羧基丁苯共聚物上的聚氨酯的重量/用于制备聚氨酯的单体的总重量)×100%。
接枝到羧基丁苯共聚物上的聚氨酯的重量=抽提后剩余的聚合物重量-用于制备羧基丁苯共聚物的单体的总重量
本发明胶乳可作为粘合剂用于地毯生产、建筑、造纸、皮革、纺织印染和水泥,特别是用于地毯生产。
具体实施例
下面将结合实例对本发明的方案进行解释。本领域的技术人员将会理解,下面的实施例仅用于说明本发明,而不应视为限定本发明的范围。实施例中未注明具体技术或条件的,按照本领域文献所描述的技术或条件或产品说明书进行。本文中提及的份指重量份。
实施例1—包含聚氨酯改性羧基丁苯共聚物的胶乳
将250份聚醚二醇N210(购自北京林氏精化新材料有限公司)、222份 异佛尔酮二异氰酸酯和1份二月桂酸二丁基锡加入高压反应釜中,搅拌加热至80℃后反应2小时;然后加入29.6份二羟甲基丁酸、31.5份1,4-丁二醇于80℃下反应4小时;降温至70℃后加入3.48份丙烯酸羟乙酯,继续反应2小时;降温至30℃后加入150份苯乙烯与350份丁二烯的混合液搅拌降粘,然后加入15.2份三乙胺中和,20分钟后加入11880份去离子水,搅拌40分钟,得到同时含有可自由基聚合碳碳双键和羧基的聚氨酯乳液。
将上述体系搅拌升温至80℃,搅拌20分钟后,将2000份引发剂水溶液(引发剂水溶液通过将101份过硫酸铵预先溶于2980份去离子水中而制备)加入到体系中引发反应,反应1小时后加入乳化剂水溶液(56份十二烷基硫酸钠、18份氯化钾和8900份去离子水),然后将剩余接枝单体(4400份苯乙烯、4776份丁二烯、204份丙烯酸、300份丙烯腈、25份二乙烯基苯)和30份叔十二烷基硫醇的混合物和剩余引发剂水溶液分别滴加到体系中,滴加时间为2小时,滴加结束后继续反应5小时,然后在80℃下真空脱气3小时得到包含聚氨酯改性羧基丁苯共聚物的胶乳,丙酮抽提法测得聚氨酯在丁苯共聚物上的接枝率为96.4%。所得产物的固含量、粘度和粒径数据见表1,其中粒径使用国际通用的精密仪器Zetasize 3000HS(英国Malvern公司)测量。
实施例2—包含聚氨酯改性羧基丁苯共聚物的胶乳
将700份聚醚二醇N220(购自北京林氏精化新材料有限公司)、250份二苯甲烷二异氰酸酯和1份二月桂酸二丁基锡加入高压反应釜中,搅拌加热至80℃后反应1.5小时;然后加入22.2份二羟甲基丁酸、31.6份1,4-丁二醇于75℃下反应4小时;降温至70℃后加入5.2份甲基丙烯酸羟乙酯,继续反应2小时;降温至30℃后加入360份苯乙烯与540份丁二烯的混合液搅拌降粘,然后加入14.3份三乙胺中和,20分钟后加入7560份去离子水,搅拌45分钟,得到同时含有可自由基聚合碳碳双键和羧基的聚氨酯乳液。
将上述体系搅拌升温至75℃,随后加入乳化剂水溶液(82份十二烷基苯磺酸钠、18份氯化钾和5670份去离子水),搅拌30分钟后,将1000份引发剂水溶液(引发剂水溶液通过将106份过硫酸钾预先溶于1890份去离 子水中而制备)加入到体系中引发反应,同时将剩余接枝单体(3820份苯乙烯、3530份丁二烯、360份甲基丙烯酸、108份乙二醇二甲基丙烯酸酯)和7份叔十二烷基硫醇的混合物和剩余引发剂水溶液分别滴加到体系中,滴加时间为2小时,滴加结束后继续反应6小时,然后在75℃下真空脱气3小时,得到包含聚氨酯改性羧基丁苯共聚物的胶乳,丙酮抽提法测得聚氨酯在丁苯共聚物上的接枝率为95.3%。所得产物的固含量、粘度和粒径数据见表1,其中粒径使用国际通用的精密仪器Zetasize 3000HS(英国Malvern公司)测量。
实施例3—包含聚氨酯改性羧基丁苯共聚物的胶乳
将600份聚己内酯二醇(分子量2000,羟值约50mg KOH/g)、168份六亚甲基二异氰酸酯和0.8份辛酸亚锡加入高压反应釜中,搅拌加热至80℃后反应1.5小时;然后加入40.2份二羟甲基丙酸、29.5份1,6-己二醇于85℃下反应3小时;降温至75℃后加入7份甲基丙烯酸羟丙酯,继续反应2.5小时;降温至35℃后加入250份苯乙烯与460份丁二烯的混合液搅拌降粘,然后加入26.2份三乙胺中和,20分钟后加入2813份去离子水,搅拌40分钟,得到同时含有可自由基聚合碳碳双键和羧基的聚氨酯乳液。
将上述体系搅拌升温至85℃,搅拌50分钟后,将400份引发剂水溶液(引发剂水溶液通过将55份过硫酸钠预先溶于700份去离子水中而制备)加入到体系中引发反应,反应2小时后加入乳化剂水溶液(35份烷基联苯醚二磺酸钠、7份氯化钠和2100份去离子水),同时将剩余接枝单体(1950份苯乙烯、1550份丁二烯、286份甲基丙烯酸、12份二丙烯酸-1,6-己二醇酯)和9份叔十二烷基硫醇的混合物和剩余引发剂水溶液分别滴加到体系中,滴加时间为2.5小时,滴加结束后继续反应5小时,然后在80℃下真空脱气3小时,得到包含聚氨酯改性羧基丁苯共聚物的胶乳,丙酮抽提法测得聚氨酯在丁苯共聚物上的接枝率为97.6%。所得产物的固含量、粘度和粒径数据见表1,其中粒径使用国际通用的精密仪器Zetasize 3000HS(英国Malvern公司)测量。
实施例4—包含聚氨酯改性羧基丁苯共聚物的胶乳
将400份聚醚二醇N210(购自北京林氏精化新材料有限公司)、222份 异佛尔酮二异氰酸酯和0.8份辛酸亚锡加入高压反应釜中,搅拌加热至80℃后反应2小时;然后加入17.4份二羟甲基丁酸、28份乙二醇于80℃下反应3小时;降温至70℃后加入4.9份甲基丙烯酸羟乙酯,继续反应2小时;降温至30℃后加入160份苯乙烯与380份丁二烯的混合液搅拌降粘,然后加入5.5份三乙胺中和,40分钟后加入3082份去离子水,搅拌60分钟,得到同时含有可自由基聚合碳碳双键和羧基的聚氨酯乳液。
将上述体系搅拌升温至75℃,搅拌15分钟后,将500份引发剂水溶液(引发剂水溶液通过将9份过氧化氢异丙苯、5份硫酸亚铁、5份葡萄糖预先溶于770份去离子水中而制备)加入到体系中引发反应,反应1小时后将乳化剂水溶液(18份月桂酸钠、8份Span-60、8份氯化钾和2311份去离子水)、剩余接枝单体(920份苯乙烯、880份丁二烯、212份丙烯酸、106份丙烯腈、6份二乙烯基苯)和2.6份叔十二烷基硫醇的混合物和剩余引发剂水溶液通过一管道乳化器在线乳化后滴加进入聚合反应体系,滴加时间为2小时,滴加结束后继续反应4.5小时,然后在75℃下真空脱气3小时,得到包含聚氨酯改性羧基丁苯共聚物的胶乳,丙酮抽提法测得聚氨酯在丁苯共聚物上的接枝率为96.6%。所得产物的固含量、粘度和粒径数据见表1,其中粒径使用国际通用的精密仪器Zetasize 3000HS(英国Malvern公司)测量。
实施例5—包含聚氨酯改性羧基丁苯共聚物的胶乳
将500份聚四氢呋喃二醇(分子量为2000,羟值约50mg KOH/g)、174份2,4-甲苯二异氰酸酯和1份二月桂酸二丁基锡加入高压反应釜中,搅拌加热至80℃后反应3小时;然后加入37份二羟甲基丁酸、46.4份2-甲基-1,5-戊二胺于73℃下反应4小时;降温至70℃后加入2.6份甲基丙烯酸羟乙酯,继续反应1小时;降温至30℃后加入120份苯乙烯与420份丁二烯的混合液搅拌降粘,然后加入25.2份三乙胺中和,26分钟后加入1857份去离子水,搅拌50分钟,得到同时含有可自由基聚合碳碳双键和羧基的聚氨酯乳液。
将上述体系搅拌升温至80℃,搅拌30分钟后,将300份引发剂水溶液(引发剂水溶液通过将17份过氧化氢异丙苯、9份硫酸亚铁、9份葡萄糖 先溶于464份去离子水中而制备)加入到体系中引发反应,反应1小时后将乳化剂水溶液(10份油酸钠、6份Span-20、3份氯化钠和1393份去离子水)、剩余接枝单体(670份苯乙烯、850份丁二烯、114份丙烯酸、60份甲基丙烯酸丁酯)和3份叔十二烷基硫醇的混合物和剩余引发剂水溶液通过一管道乳化器在线乳化后滴加到反应体系,滴加时间为2小时,滴加结束后继续反应4.5小时,然后在80℃下真空脱气3小时,得到包含聚氨酯改性羧基丁苯共聚物的胶乳,丙酮抽提法测得聚氨酯在丁苯共聚物上的接枝率为98.1%。所得产物的固含量、粘度和粒径数据见表1,其中粒径使用国际通用的精密仪器Zetasize 3000HS(英国Malvern公司)测量。
实施例6—包含聚氨酯改性羧基丁苯共聚物的胶乳
将500份聚醚二醇N220(购自北京林氏精化新材料有限公司)、250份二苯甲烷二异氰酸酯和1份二月桂酸二丁基锡加入高压反应釜中,搅拌加热至80℃后反应3小时;然后加入45份二羟甲基丙酸、12.6份1,4-丁二醇于75℃下反应4小时;降温至70℃后加入8份N,N-双(2-羟乙基)丙烯酰胺,继续反应2小时;降温至30℃后加入550份苯乙烯与1620份丁二烯的混合液搅拌降粘,然后加入30.5份三乙胺中和,20分钟后加入9415份去离子水,搅拌40分钟,得到同时含有可自由基聚合碳碳双键和羧基的聚氨酯乳液。
将上述体系搅拌升温至70℃,搅拌20分钟后,将1400份引发剂水溶液(引发剂水溶液通过将65份过硫酸钠预先溶于2353份去离子水中而制备)加入到体系中引发反应,反应1.5小时后将氯化钠溶液(14份氯化钠溶于7061份去离子水中)、剩余接枝单体(835份苯乙烯、1020份丁二烯、217份丙烯酸、110份丙烯酸丁酯、10份二乙烯基苯)和14份叔十二烷基硫醇的混合物和剩余引发剂水溶液通过一管道乳化器在线乳化后滴加到聚合反应体系,滴加时间为2.5小时,滴加结束后继续反应5.5小时,然后在70℃下真空脱气3小时,得到包含聚氨酯改性羧基丁苯共聚物的胶乳,丙酮抽提法测得聚氨酯在丁苯共聚物上的接枝率为95.2%。所得产物的固含量、粘度和粒径数据见表1,其中粒径使用国际通用的精密仪器Zetasize 3000HS(英国Malvern公司)测量。
对比例1-聚氨酯乳液
将400份聚醚二醇N210(购自北京林氏精化新材料有限公司)、222份异佛尔酮二异氰酸酯和0.8份辛酸亚锡加入高压反应釜中,搅拌加热至80℃后反应2小时;然后加入17.4份二羟甲基丁酸、28份乙二醇于80℃下反应3小时;降温至30℃加入70份丙酮搅拌降粘,然后加入5.5份三乙胺中和,40分钟后加入1732份去离子水,搅拌60分钟后减压蒸馏除去丙酮,得到聚氨酯乳液。所得产物的固含量、粘度和粒径数据见表1,其中粒径使用国际通用的精密仪器Zetasize 3000HS(英国Malvern公司)测量。
对比例2-羧基丁苯乳液
将160份苯乙烯、5份月桂酸钠和1300份水加入高压反应釜中,通氮气10分钟后,将380份丁二烯引入高压釜中,在室温下搅拌预乳化1小时,然后体系升温至75℃,搅拌15分钟后,将500份引发剂水溶液(引发剂水溶液通过将9份过氧化氢异丙苯、5份硫酸亚铁、5份葡萄糖预先溶于770份去离子水中而制备)加入到体系中引发反应,反应1小时后将乳化剂水溶液(13份月桂酸钠、8份Span-60、8份氯化钾和1000份去离子水)、剩余接枝单体(920份苯乙烯、880份丁二烯、212份丙烯酸、106份丙烯腈、6份二乙烯基苯)和2.6份叔十二烷基硫醇的混合物和剩余引发剂水溶液通过一管道乳化器在线乳化后滴加进入聚合反应体系,滴加时间为2小时,滴加结束后继续反应4.5小时,然后在75℃下真空脱气3小时,得到羧基丁苯乳液。所得产物的固含量、粘度和粒径数据见表1,其中粒径使用国际通用的精密仪器Zetasize 3000HS(英国Malvern公司)测量。
对比例3—聚氨酯/羧基丁苯共混胶乳
将对比例1产品和对比例2产品按照聚氨酯和羧基丁苯共聚物质量比为1:4的比例在室温下搅拌混合20分钟,得到聚氨酯/羧基丁苯共混胶乳。所得产物的固含量、粘度和粒径数据见表1,其中粒径使用国际通用的精密仪器Zetasize 3000HS(英国Malvern公司)测量。
性能测试
根据表2中的标准测试了实施例和对比例所得胶乳的各项性能,结果示于表1。
测试中所用簇绒地毯为圈绒400型簇绒地毯(购自江门市新会区新葵地毯有限公司)。
表1包含聚氨酯改性羧基丁苯共聚物的胶乳、聚氨酯乳液、羧基丁苯乳液、聚氨酯/羧基丁苯共混胶乳性能指标
Figure PCTCN2017117257-appb-000001
表2:所用标准
Figure PCTCN2017117257-appb-000002

Claims (10)

  1. 一种包含聚氨酯改性羧基丁苯共聚物的胶乳,其中所述聚氨酯改性羧基丁苯共聚物中聚氨酯和羧基丁苯共聚物经由共价键连接,并且所述聚氨酯包含亲水基。
  2. 根据权利要求1的包含聚氨酯改性羧基丁苯共聚物的胶乳,其中在所述聚氨酯改性羧基丁苯共聚物中聚氨酯和羧基丁苯共聚物的重量比为40:60-3:97,优选30:70-5:95,更优选25:75-8:92;和/或所述聚氨酯上的亲水基选自羧基、磺酸基及其盐。
  3. 根据权利要求1或2的包含聚氨酯改性羧基丁苯共聚物的胶乳,其中所述聚氨酯通过使多元醇与多异氰酸酯进行加聚反应,然后进一步与含所述亲水基的扩链剂、另一小分子扩链剂以及具有可与异氰酸酯基反应的基团和可自由基聚合碳碳双键的单体进行加聚反应而制备。
  4. 根据权利要求3的包含聚氨酯改性羧基丁苯共聚物的胶乳,其中所述多元醇的分子量为400-4000g/mol,优选600-3000g/mol;和/或其中所述多元醇选自羟值为20-200mg KOH/g,优选40-120mg KOH/g,更优选50-100mg KOH/g的聚酯多元醇和聚醚多元醇。
  5. 根据权利要求3或4的包含聚氨酯改性羧基丁苯共聚物的胶乳,其中所述包含亲水基的扩链剂选自2,2-二羟甲基丙酸、2,2-二羟甲基丁酸、1,2-二羟基-3-丙磺酸钠、1,4-丁二醇-2-磺酸钠、乙二氨基乙磺酸钠和乙二羟基乙磺酸钠。
  6. 根据权利要求3-5中任一项的包含聚氨酯改性羧基丁苯共聚物的胶乳,其中所述具有可与异氰酸酯基反应的基团和可自由基聚合碳碳双键的单体选自具有1-10个碳原子的二醇与具有3-10个碳原子的α,β-烯属不饱和单-和/或二羧酸及其酸酐的酯或带有羟基的丙烯酰胺,优选(甲基)丙烯酸C 2-C 6羟基烷基酯,以及N,N-双(C 2-C 6羟烷基)丙烯酰胺;和/或其中所述具有可与异氰酸酯基反应的基团和可自由基聚合碳碳双键的单体的量为0.1-5重量%,优选0.2-2重量%,更优选0.3-1重量%,以用于制备聚氨酯的各组分重量之和为基准。
  7. 根据权利要求1-6中任一项的包含聚氨酯改性羧基丁苯共聚物的胶乳,其中所述羧基丁苯共聚物基于该羧基丁苯共聚物重量包含1-15重量%,优选1.5-12重量%,更优选2-8重量%的单烯属不饱和羧酸单体单元;和/或其中所述单烯属不饱和羧酸选自含有不超过10个碳原子的单烯属不饱和羧酸,优选不超过6个碳原子的单烯属不饱和羧酸。
  8. 一种制备如权利要求1-7中任一项所定义的包含聚氨酯改性羧基丁苯共聚物的胶乳的方法,其包括
    a)通过加聚反应制备具有可自由基聚合碳碳双键和亲水基的聚氨酯,和
    b)在由步骤a)得到的具有可自由基聚合碳碳双键和亲水基的聚氨酯存在下,通过乳液聚合制备羧基丁苯共聚物,得到包含聚氨酯改性羧基丁苯共聚物的胶乳。
  9. 根据权利要求8的方法,其中步骤b)中的乳液聚合可在不加入乳化剂下进行。
  10. 如权利要求1-7中任一项所定义的包含聚氨酯改性羧基丁苯共聚物的胶乳在地毯生产、建筑、造纸、皮革、纺织印染和水泥中作为粘合剂的用途。
PCT/CN2017/117257 2017-01-18 2017-12-19 包含聚氨酯改性羧基丁苯共聚物的胶乳及其制备方法 WO2018133610A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710038048.5 2017-01-18
CN201710038048.5A CN106832139B (zh) 2017-01-18 2017-01-18 包含聚氨酯改性羧基丁苯共聚物的胶乳及其制备方法

Publications (1)

Publication Number Publication Date
WO2018133610A1 true WO2018133610A1 (zh) 2018-07-26

Family

ID=59124782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/117257 WO2018133610A1 (zh) 2017-01-18 2017-12-19 包含聚氨酯改性羧基丁苯共聚物的胶乳及其制备方法

Country Status (2)

Country Link
CN (1) CN106832139B (zh)
WO (1) WO2018133610A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106832139B (zh) * 2017-01-18 2019-10-08 新辉(中国)新材料有限公司 包含聚氨酯改性羧基丁苯共聚物的胶乳及其制备方法
JP6965994B2 (ja) * 2018-06-25 2021-11-10 Dic株式会社 水性樹脂組成物及びその製造方法
CN112552452B (zh) * 2020-12-09 2022-09-06 珠海金鸡化工有限公司 一种改性丁苯胶乳及其制备方法
CN114181371B (zh) * 2022-01-20 2023-11-21 星宇医疗科技股份有限公司 一种耐油型复合胶乳及其制备方法,一次性耐油手套及其制备方法
CN115057988A (zh) * 2022-06-21 2022-09-16 惠州市浩明科技股份有限公司 热塑性弹性体和保护膜
CN115232250A (zh) * 2022-08-20 2022-10-25 河北昊泽化工有限公司 一种高强度造纸涂布用丁苯胶乳及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5721035A (en) * 1996-11-01 1998-02-24 The Goodyear Tire & Rubber Company Foam structure
CN1250497A (zh) * 1997-03-17 2000-04-12 陶氏化学公司 制备具有由聚氨酯胶乳制剂制得的聚氨酯背衬的地毯的方法
US20010046581A1 (en) * 2000-01-14 2001-11-29 Shaw Industries, Inc. Carpet with a polymer layer
CN102317538A (zh) * 2008-12-22 2012-01-11 陶氏环球技术有限责任公司 织造地毯涂料混合物、相关的使用方法、和由该混合物制得的制品
CN102731724A (zh) * 2012-07-24 2012-10-17 江苏利田科技股份有限公司 一种耐水洗耐老化地毯背涂用羧基丁苯胶乳及其制备方法和应用
CN103755872A (zh) * 2013-12-23 2014-04-30 日照广大建筑材料有限公司 印花地毯羧基丁苯胶乳的制备方法
CN106832139A (zh) * 2017-01-18 2017-06-13 新辉(中国)新材料有限公司 包含聚氨酯改性羧基丁苯共聚物的胶乳及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101838457B (zh) * 2010-05-11 2011-12-28 陕西科技大学 高固含量交联聚氨酯水分散体的制备方法
CN103665311B (zh) * 2013-08-22 2016-04-13 常州大学 一种改性聚氨酯/不饱和聚酯树脂的二元醇制备方法
KR101784048B1 (ko) * 2013-11-18 2017-11-06 주식회사 엘지화학 카르본산 변성 니트릴계 공중합체 라텍스 조성물, 이의 제조방법 및 이를 포함하는 딥 성형용 라텍스 조성물
CN104072716B (zh) * 2014-07-18 2016-05-11 浙江奥康鞋业股份有限公司 聚氨酯弹性体以及由其制成的鞋底

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5721035A (en) * 1996-11-01 1998-02-24 The Goodyear Tire & Rubber Company Foam structure
CN1250497A (zh) * 1997-03-17 2000-04-12 陶氏化学公司 制备具有由聚氨酯胶乳制剂制得的聚氨酯背衬的地毯的方法
US20010046581A1 (en) * 2000-01-14 2001-11-29 Shaw Industries, Inc. Carpet with a polymer layer
CN102317538A (zh) * 2008-12-22 2012-01-11 陶氏环球技术有限责任公司 织造地毯涂料混合物、相关的使用方法、和由该混合物制得的制品
CN102731724A (zh) * 2012-07-24 2012-10-17 江苏利田科技股份有限公司 一种耐水洗耐老化地毯背涂用羧基丁苯胶乳及其制备方法和应用
CN103755872A (zh) * 2013-12-23 2014-04-30 日照广大建筑材料有限公司 印花地毯羧基丁苯胶乳的制备方法
CN106832139A (zh) * 2017-01-18 2017-06-13 新辉(中国)新材料有限公司 包含聚氨酯改性羧基丁苯共聚物的胶乳及其制备方法

Also Published As

Publication number Publication date
CN106832139A (zh) 2017-06-13
CN106832139B (zh) 2019-10-08

Similar Documents

Publication Publication Date Title
WO2018133610A1 (zh) 包含聚氨酯改性羧基丁苯共聚物的胶乳及其制备方法
CA2134043C (en) Aqueous, autocrosslinking polyurethane-vinyl hybrid dispersions
CA2254603C (en) Self crosslinkable polyurethane-polyacrylate hybrid dispersions
JP3334908B2 (ja) ポリウレタン分散物
JP4929175B2 (ja) 脂肪酸から誘導されたヒドロキシメチル含有ポリエステルポリオールから製造される水性ポリウレタン分散体
US6031045A (en) Water-based sulfonated polymer compositions
EP2247633B1 (en) Aqueous polyurethane hybrid compositions
EP2268687B1 (en) Aqueous polymer compositions obtained from epoxidized natural oils
CN102702450B (zh) 一种水性聚氨酯‑丙烯酸酯乳液的制法
JP2013545836A (ja) ソフトな感触特性を有する水性配合物
EP0849295A2 (en) Nonionic aqueous polyurethane dispersions and processes for making same
WO1998006768A9 (en) Water-based sulfonated polymer compositions
EP0918807A1 (en) Water-based sulfonated polymer compositions
WO2002000792A1 (en) A polymer dispersion comprising particles of polyurethane and a copolymer or terpolymer produced by emulsion polymerisation of olefinically unsaturated monomers
JP4004678B2 (ja) 複合樹脂エマルジヨンの製造方法
WO2003102080A1 (fr) Dispersions aqueuses hybrides a base de polymeres urethannes/olefiniques, leur procede de preparation et leur utilisation
JP4132416B2 (ja) 複合樹脂エマルジョンの製造方法
JP6658984B1 (ja) 樹脂組成物、及び、合成皮革
JP4226755B2 (ja) 複合樹脂エマルジヨンの製造方法
JPH08165318A (ja) 水系ポリウレタン樹脂の製造方法
JPH09165425A (ja) 水性ウレタン化合物の製造方法
JP2001302714A (ja) 複合樹脂エマルジョンの製造方法
JP2006104315A (ja) 水性アクリル変性ウレタン樹脂およびその製造方法
JPH0987972A (ja) 繊維加工用組成物
JP2004269700A (ja) 複合樹脂エマルジョンおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17892724

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17892724

Country of ref document: EP

Kind code of ref document: A1