WO2018131897A1 - 그래핀계 액정 분산액, 액정복합탄성섬유 및 이의 제조방법 - Google Patents

그래핀계 액정 분산액, 액정복합탄성섬유 및 이의 제조방법 Download PDF

Info

Publication number
WO2018131897A1
WO2018131897A1 PCT/KR2018/000499 KR2018000499W WO2018131897A1 WO 2018131897 A1 WO2018131897 A1 WO 2018131897A1 KR 2018000499 W KR2018000499 W KR 2018000499W WO 2018131897 A1 WO2018131897 A1 WO 2018131897A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
liquid crystal
polymer
composite elastic
crystal composite
Prior art date
Application number
PCT/KR2018/000499
Other languages
English (en)
French (fr)
Inventor
김상욱
김인호
윤태영
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to US16/476,344 priority Critical patent/US20210047496A1/en
Publication of WO2018131897A1 publication Critical patent/WO2018131897A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/105Earpiece supports, e.g. ear hooks
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/02Preparation of spinning solutions
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/06Wet spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/14Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of unsaturated alcohols, e.g. polyvinyl alcohol, or of their acetals or ketals
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/66Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyethers
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/70Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyurethanes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/24Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2420/00Details of connection covered by H04R, not provided for in its groups
    • H04R2420/07Applications of wireless loudspeakers or wireless microphones

Definitions

  • the present invention relates to a graphene-based liquid crystal dispersion, a liquid crystal composite elastic fiber and a method for producing the same. Specifically, the present invention relates to a graphene-based liquid crystal dispersion, a liquid crystal composite elastic fiber, and a method of manufacturing the dispersion or reaction, in which a polymer having a polar functional group is intercalated to a graphene-based material.
  • an electrically conductive fiber refers to a fibrous material capable of flowing a certain level of electricity by including an electrically conductive material in the fiber itself or an internal or external structure.
  • the method of manufacturing the conductive fiber can be classified into a method using a conductive polymer and a method of combining a conductive material.
  • the fiber manufactured by the former technique exhibits good conductivity above the semiconductor level, but has a low flexibility and is generally inferior. Difficult to use for textile applications.
  • the fiber made of a conductive polymer is low conductivity to use as a sensor or an electric conductor.
  • the conductive additive may be incorporated into the fiber to prepare a fiber, and may be divided into a method of coating a general fiber by using a plating technique.
  • Conductive composite fibers manufactured by incorporating fiber polymers have excellent durability and can realize various levels of physical properties and conductivity depending on the conductive additives and fiber polymers used, but it is difficult to achieve conductivity above 10 2 S / cm, which is the conductor level.
  • There are disadvantages of physical properties such as strength and elongation due to the increase of the additive content.
  • conductive fiber manufacturing by post-treatment coating has been tried variously due to the lack of technical difficulty. There is a problem.
  • the method of manufacturing a conductive fiber including a conductive additive material graphene oxide is a technical limitation until now to show a conductivity of the level of 10 0 S / cm (single site), which is the level of a semiconductor, and more than the expression of conductivity
  • the graphene oxide is prepared by dispersing on a conductive solvent and adding up to 1% by weight when preparing a solution for fiber spinning, agglomeration occurs and gelation occurs. Since low and inherent physical properties are not realized, commercialization is delayed.
  • an object of the present invention is to include a graphene-based liquid crystal dispersion having a liquid crystal phase by dispersing a polymer in a polymer solution containing a polymer having a polar group by intercalation or chemical reaction with a graphene-based material, and the same. It is to provide a spinning solution for fiber production.
  • Another object of the present invention is to disperse the graphene-based material in the graphene-based composition intercalated or chemically reacted with the polymer having a polar group, thereby containing a graphene-based liquid crystal dispersion having a high viscosity while containing a high concentration of graphene-based material in the polymer solution To provide.
  • Another object of the present invention is to provide a liquid crystal composite elastic fiber prepared by spinning a graphene-based composition comprising a polymer having a polar group and a graphene-based material and a method of manufacturing the same.
  • Another object of the present invention is that the polymer in the polymer solution containing the polymer having a polar group is dispersed by intercalation or chemical reaction to the graphene-based material, thereby inducing hydrogen bonding or covalent bond between the polymer and the graphene-based material does not cause phase separation
  • the present invention provides a liquid crystal composite elastic fiber and a method of manufacturing the same.
  • Another object of the present invention is that the graphene-based liquid crystal dispersion is spun in the state of maintaining the liquid crystal phase and excellent in orientation in the fiber axial direction, excellent elastic modulus, high thermal conductivity and electrical conductivity in the fiber axial direction even with a small amount of graphene-based material It is to provide a liquid crystal composite elastic fiber and a method for producing the same.
  • Another object of the present invention is to provide a liquid crystal composite elastic fiber having a superior electrical conductivity and elasticity when using the graphene-based composition in combination with carbon nanotubes and a method for producing the same.
  • a method for producing a liquid crystal composite elastic fiber according to the present invention is a) a polymer having a polar group by dispersing or chemically reacting a graphene-based material in a polymer solution containing a polymer having a polar group Preparing a graphene-based composition intercalated into the pin-based material;
  • the graphene-based composition may have liquid crystallinity.
  • the graphene-based composition may further include carbon nanotubes.
  • the graphene-based material and carbon nanotubes may be 1: 0.1 to 1: 1 by weight.
  • the graphene-based composition may include 0.8 wt% to 10 wt% of the graphene-based material.
  • the polymer solution may include 1 to 40% by weight of the polymer having a polar group with respect to the total weight.
  • the spinning may be wet spinning or electrospinning.
  • the polymer having a polar group may be any one or two or more polymers selected from polyalkylene glycol-based, polyurethane-based and polyvinyl alcohol-based.
  • the polyurethane-based polymer including the reactive functional group in step a) may further include forming a covalent bond with the graphene-based material.
  • Liquid crystal composite elastic fiber according to the present invention may be prepared by the above-described manufacturing method.
  • a polymer having a polar group is inserted between the graphene-based layers to be hydrogen-bonded or covalently bonded to the graphene-based material.
  • the graphene-based material may be compounded by further including carbon nanotubes.
  • the graphene-based material and the carbon nanotubes may be complexed in a ratio of 1: 0.1 to 1: 1 by weight.
  • the graphene-based material and the polymer having an equivalent polar group may be combined in a weight ratio of 1: 0.1 to 1: 1,000.
  • a graphene-based material and a polymer having a polar group may have a hydrogen bond or a covalent bond, intercalated, and have a viscosity that satisfies Equation 1 below.
  • ⁇ 1 is a viscosity obtained by mixing and dispersing only a graphene material and a solvent
  • ⁇ 2 is a viscosity obtained by mixing and dispersing a graphene material and a polymer solution.
  • SEM scanning electron microscope
  • FIG. 2 is a schematic view of a graphene-based composition in which a graphene-based material is dispersed in a polymer solution including a polymer having a polar group according to an embodiment of the present invention.
  • FIG 3 is a photograph of the liquid crystal phase behavior of the graphene-based composition according to one embodiment of the present invention observed with a polarizing microscope.
  • intercalation means that molecules, atoms, or ions are inserted between layers of a layered material, and the present invention relates to inserting a polymer having a polar group between layers of graphene-based materials. it means.
  • “combination” is a technique of deriving desirable complex properties by mixing materials having different properties.
  • the graphene-based material having a two-dimensional structure and the carbon nanotube having a one-dimensional structure may be combined with a polymer to maintain electrical conductivity even in a state where tensile-shrinkage is repeated.
  • the present invention for achieving the above object relates to a graphene-based liquid crystal dispersion, a liquid crystal composite elastic fiber and a manufacturing method thereof.
  • Method for producing a liquid crystal composite elastic fiber a) a graphene-based composition in which the polymer having a polar group intercalated in the graphene-based material by dispersing or chemically reacting the graphene-based material in a polymer solution containing a polymer having a polar group Preparing a;
  • the liquid crystal composite elastic fiber prepared by the manufacturing method according to the present invention conventionally contains graphene-based materials at a maximum of 1% by weight in the spinning solution, and contains various oxygen functional groups. Solving a problem that can not be included may include a graphene-based material in a high concentration, thereby providing a liquid crystal composite elastic fiber having more excellent electrical conductivity, flexibility and elasticity.
  • the graphene-based material may have a maximum diameter / thickness ratio of 30 or more, which is a ratio of the longest diameter and the thickness. Preferably it may be 10,000 to 500,000. More preferably, it may be 10,000 to 100,000, but is not limited thereto.
  • the graphene-based material having the longest diameter / thickness ratio is used, it may be prepared at a critical concentration for showing liquid crystallinity, thus showing a liquid crystal phase, and excellent in dispersibility in a polymer solution.
  • the graphene-based material is reduced graphene (RG, Reduced Graphene), reduced graphene oxide (RGO, Reduced Graphene Oxide), graphene (Graphene) and graphene oxide (GO, Graphene Oxide) ), Or a mixture of two or more thereof.
  • RG Reduced Graphene
  • RGO Reduced Graphene Oxide
  • Graphene graphene
  • GO graphene Oxide
  • the graphene oxide may be used as the same meaning as graphene oxide, graphene oxide, oxidized graphene, and the like.
  • the graphene oxide is not particularly limited if it is manufactured through a conventionally used graphene oxide manufacturing method, it may be specifically prepared by a method of oxidizing a carbon material such as graphite. More specifically, the graphite (graphite) can be used by the method of oxidizing using an oxidation method such as Hummer's method, Brodie's method or Staudenmaier method.
  • the graphene-based material may be oxidized to a carbon: oxygen ratio of 1: 0.1 to 1: 2, preferably 1: 0.2 to 1: 1.5, and more preferably. May be 1: 0.2 to 1: 1.
  • a graphene-based composition as a spinning solution with a graphene-based material having a carbon: oxygen ratio as described above, it is possible to maintain a low viscosity to prevent gelation and to contain a higher content of graphene-based materials in the spinning solution. desirable.
  • the polymer having a polar group is, but is not limited to, a hydroxyl group (-OH), a carboxyl group (-COOH), an amine group (-NH 2 ) sulfonic acid group (-SO 3 H), and an isocyanate group ( It may be a polymer containing a polar group selected from -NCO) group and salts thereof.
  • any one or two or more selected from polyalkylene glycol-based, polyurethane-based, and polyvinyl alcohol-based systems capable of maintaining a liquid crystal phase in a state in which phase separation between graphene-based materials in the graphene-based composition does not occur and imparting elasticity It may be a polymer.
  • the polyalkylene glycol-based polymer is a polyalkylene glycol-based polymer containing at least one hydroxyl group at the end, and may be a polyalkylene glycol-based polymer having C 1 to C 4 carbon atoms in a repeating unit. . More specifically, it may be any one or a mixture of two or more selected from polyethylene glycol, polypropylene glycol, polyethylene glycol-polypropylene glycol copolymer, polytetramethylene ether glycol, and the like, but is not limited thereto.
  • the polyurethane-based polymer may be a polymer including a reactive functional group at the terminal, for example, a polyurethane polymer including an isocyanate group at the terminal.
  • a polyurethane polymer including an isocyanate group at the terminal for example, a polyurethane polymer including an isocyanate group at the terminal.
  • the type of the polyurethane-based polymer is not particularly limited.
  • the solvent capable of dispersing the graphene-based material is selected from, for example, an ether solvent, an alcohol solvent, an aromatic solvent, an alicyclic solvent, a heteroaromatic solvent, a heteroalicyclic solvent, an alkane solvent, a ketone solvent, and a halogenated solvent.
  • the polyurethane-based polymer may be obtained by reacting an organic diisocyanate with any one or two or more compounds selected from the group consisting of polyether polyols, polyester polyols, polycarbonate polyols, and the like.
  • the polyether polyol may be polyalkylene glycol, or the like, and may be, for example, a polyalkylene glycol-based polymer having C 1 to C 4 carbon atoms in a repeating unit. More specifically, it may be any one or a mixture of two or more selected from polyethylene glycol, polypropylene glycol, polyethylene glycol-polypropylene glycol copolymer, and polytetramethylene ether glycol.
  • the polyester-based polyol is any one selected from polyethylene adipate diol, polybutylene adipate diol, poly (1,6-hexaadipate) diol, polydiethylene adipate diol, poly (e-caprolactone) diol, and the like. Or a mixture of two or more.
  • the polycarbonate polyol may be any one or a mixture of two or more selected from polyhexamethylene carbonateol, polyethylene carbonate diol, polypropylene carbonate diol, polybutylene carbonate diol, and the like.
  • the polyurethane-based polymer may be obtained by chain extension with a chain extender having two active hydrogens as necessary, and may further be a modified polyurethane-based polymer copolymerized with monomers such as fluorine, amino acids, and silicones, or a mixture thereof. However, it is not limited thereto.
  • the polyvinyl alcohol-based polymer is polyvinyl alcohol, polyvinylacetate-vinyl alcohol copolymer, polyethylene-vinyl alcohol copolymer, polyvinyl alcohol- (meth) acryl copolymer, polyvinyl alcohol-vinyl chloride copolymer and polyvinyl alcohol It may be any one selected from styrene copolymers or a mixture thereof, but is not limited thereto.
  • the polymer having a polar group can impart fluidity to the graphene-based composition which is a spinning solution containing a graphene-based material in high concentration.
  • the graphene-based material contains various oxygen functional groups, the graphene-based material may be intercalated between the graphene-based material layers to chemically and physically bond with the polymer having a polar functional group to prevent gelation between the graphene-based materials.
  • the polymer having a polar group is a polymer capable of hydrogen bonding with a polar group strongly present on a graphene-based material, and having a hydroxyl group at one end thereof; a polyalkylene glycol-based polymer; And a polyvinyl alcohol system including a polyvinyl alcohol homopolymer or a copolymer including 50 mol% or more of polyvinyl alcohol repeating units; Any one or two or more polymers selected from the like; Or it may be a polyurethane-based polymer capable of chemically bonding to the polar group present on the graphene-based material.
  • the polymer having a polar group may form an intercalated network structure between layers of graphene-based materials to improve the radioactivity and flowability of the graphene-based composition, and may be easily made of fibers through spinning. It can be done.
  • the fiber when the fiber is manufactured using a polyurethane-based polymer, it is more preferable because it can be used as a fiber which can further give elasticity to the fiber to produce a wearable device.
  • the polyurethane-based polymer when the polymer having a polar group in the step a), including a polyurethane-based polymer containing a reactive functional group, the polyurethane-based polymer may further comprise forming a covalent bond with the graphene-based material have.
  • a covalent bond is formed through a chemical bond between an isocyanate group and a hydroxyl group or a carboxyl group of a graphene-based material at the terminal of the polyurethane-based polymer so that the polyurethane-based polymer is intercalated between layers of graphene-based material to establish a strong bond.
  • the liquid crystal phase may be maintained in a state where phase separation does not occur, and it may be preferable because it prevents the phase behavior of gelation by inhibiting aggregation between graphene-based materials.
  • the graphene-based composition may have liquid crystallinity.
  • the liquid crystal composite elastic fiber prepared by spinning with a graphene-based composition having liquid crystal properties as described above can obtain the advantages of the graphene-based material and the advantages of the liquid crystal at the same time. It can control the direction by using, can exhibit macroscopic anisotropic optical, dielectric, mechanical properties, etc. can expand the utilization of graphene-based material, and can establish a new process.
  • the graphene-based material may include 0.8 to 10% by weight, preferably 1 to 8% by weight, more preferably 1.5 to 8% by weight.
  • the graphene-based material as described above is uniformly dispersed in the spinning solution is prepared in the mammary liquid crystal phase, it can give a liquid crystallinity, it is preferable because it can express more excellent electrical conductivity.
  • the graphene-based material containing a graphene-based material includes a graphene-based material containing up to 1% by weight
  • gelation occurs, the fluidity is limited to a high viscosity, so that the graphene-based material including a low concentration of graphene-based material in the spinning solution.
  • the composition is made of fibers, there is a limit in reducing process costs and improving electrical conductivity.
  • the spinning solution according to the present invention does not cause gelation by a polymer having a polar group intercalated between graphene-based material layers even though the graphene-based material contains a high concentration of graphene-based material of 1% by weight or more. It is possible to secure the fibers having, the viscosity of the graphene-based composition is further reduced to ensure excellent fluidity and spinning properties.
  • an increase in the content of a polymer having a polar group may increase liquid crystallinity.
  • the graphene-based composition according to the present invention may exhibit a viscosity that satisfies the following Equation 1 even if the graphene-based material content is mixed in a high concentration of 1% by weight or more, it is possible to ensure the fluidity of the spinning solution for fabrication.
  • ⁇ 1 is a viscosity obtained by mixing and dispersing only a graphene material and a solvent
  • ⁇ 2 is a viscosity obtained by mixing and dispersing a graphene material and a polymer solution.
  • the viscosity of Formula 1 may satisfy 0.1 to 0.7.
  • the graphene-based material in order to uniformly disperse the graphene-based material in the polymer solution, may be uniformly and stably dispersed in the polymer solution by an ultrasonic treatment method, a mechanical stirring method, a mixed method thereof, or the like. However, it is not limited thereto.
  • it in order to remove impurities contained in the graphene-based composition in which the graphene-based material is dispersed on the polymer solution, it may be removed using dialysis or centrifugation, but is not limited thereto.
  • the polymer solution may include 1 to 40 wt% of the polymer having a polar group, and preferably 5 to 25 wt%, based on the total weight.
  • the graphene-based material may be sufficiently intercalated.
  • the graphene-based material is dispersed, thereby inhibiting direct contact between the graphene-based materials, thereby reducing the gelation phenomenon caused by the rapid increase in viscosity.
  • the radiation of the spinning solution can be improved.
  • the liquid crystal composite elastic fibers prepared therefrom are excellent in toughness, flexibility, and mechanical strength.
  • the polymer solution may be prepared by including a polymer having a polar group and a solvent.
  • the solvent may be dispersed by dissolving the graphene-based material and at the same time dissolving the polymer having a polar group.
  • it may be selected from water, alcohol solvents, ether solvents and amide solvents.
  • it may be selected from water, ethylene glycol, dimethylformamide, dimethylacetamide, N-methylpyrrolidone and tetrahydrofuran, but is not limited thereto.
  • the graphene-based material and the polymer having the polar group of the graphene-based composition may be 1: 0.1 to 1: 1,000 weight ratio, preferably 1: 0.1 to 1: 500 weight ratio, more preferably 1: 0.1 to 1: 100 weight ratio, more preferably 1: 0.1 to 1:10 may be combined in a weight ratio, but is not limited thereto.
  • it may be desirable to improve the flowability and radioactivity of the graphene-based composition through viscosity reduction.
  • the liquid crystal phase may be exhibited in a state where phase separation between the graphene-based material and the polymer having a polar group does not occur in the graphene-based composition.
  • the graphene-based composition may further include carbon nanotubes.
  • the carbon nanotubes When the carbon nanotubes are further included, they may exhibit superior toughness than spider webs. Such excellent toughness can maximize the interaction between the carbon nanotubes (CNT) and the polymer by aligning the carbon nanotubes (CNT) in the fiber direction, which can be used as a fiber for manufacturing wearable devices. Do.
  • the carbon nanotubes are specifically selected from the group consisting of, for example, single-walled carbon nanotubes, hydrophobic-walled carbon nanotubes, multi-walled carbon nanotubes, or a combination thereof. It may be, but is not limited thereto.
  • the carbon nanotubes are single-walled CNTs (SWCNTs), single-walled CNTs having 2 to 10 carbon walls (Few-walled CNTs; FWCNTs), depending on the structure.
  • SWCNTs single-walled CNTs
  • FWCNTs single-walled CNTs having 2 to 10 carbon walls
  • the above-described multiple layers of carbon nanotubes may be classified into a multi-walled carbon nanotube (MWCNT), which forms a concentric circle, but is not limited thereto.
  • MWCNT multi-walled carbon nanotube
  • the graphene-based material and the carbon nanotubes may be used in combination in the graphene-based composition, and the graphene-based material and the carbon nanotubes may be 1: 0.1 to 1: 1 by weight, preferably 1: 0.1 to 1: 0.5 weight ratio.
  • the weight ratio can obtain a synergistic effect of the mechanical properties of the liquid crystal composite elastic fibers produced, excellent toughness and flexibility can be produced in a variety of fibers, or transformed into various forms to the material Can be applied.
  • the radiation may be wet spinning or electrospinning.
  • the wet spinning is applied to the graphene-based composition by spinning into a coagulation bath in which fibers are coagulated through a small spinneret to coagulate in the coagulation bath so that the solvent solidifies by diffusion of the solvent into the coagulation bath is leached Therefore, the fiber is formed.
  • the wet spinning may occur when a chemical reaction occurs in the spinning solution, and the polymer may not be dissolved or easily melted in a solvent that can be easily evaporated.
  • the liquid crystal composite elastic fiber manufactured as described above may have mechanical properties that can be sufficiently wound on a roller.
  • the spinning temperature of the spinning solution may be 10 to 100 °C, preferably 20 to 80 °C, but is not limited thereto.
  • the pressure during spinning of the spinning solution may be in the range of 1 to 50 psi, but is not limited thereto.
  • the temperature of the coagulating solution may be -5 to 50 °C, preferably 0 to 40 °C for the solidification of the fiber to be spun, but is not limited thereto.
  • the coagulant is any one selected from aqueous solution of calcium chloride (CaCl 2 ), N-methylpyrrolidone, formamide, methanol, ethanol, propanolmethyl sulfoxide, dimethylformamide and dimethylacetamide, ethyl acetate and acetone
  • a mixture of two or more may be used, and it is preferable to use a non-solvent which is not dissolved in a polymer having a polar group in the spinning solution and is excellent in compatibility with the solvent of the polymer solution. Therefore, it may be preferable to use a different kind of the solvent and the coagulation solution of the polymer solution.
  • the electrospinning may be manufactured in a fibrous structure in which a solvent is volatilized by a positive voltage, for example, and a polymer material is intercalated between graphene-based material layers. Electrospun fibers are collected by a collector with a relatively negative charge by the electric field.
  • the positive and negative voltages at the time of electrospinning may be appropriately selected depending on the polymer material and the solvent.
  • the thickness can be determined by the applied voltage (kV / cm), the injection amount of the solution (mL / min, mL / h, l / h), the nozzle (nozzle, needle) during electrospinning, and the quality of the fiber to be produced. Can be.
  • the positive applied voltage during electrospinning is controlled by the distance between the collector and the nozzle as well as the intrinsic properties of the polymer material, for example, but not particularly limited, 6 to 50 kV, more preferably 6 to 15 It may be kv, the distance between the injection port and the collector may be 8 to 30 cm, preferably 10 to 15 cm, the collector may be a conductor such as aluminum foil.
  • 6 to 50 kV more preferably 6 to 15 It may be kv
  • the distance between the injection port and the collector may be 8 to 30 cm, preferably 10 to 15 cm
  • the collector may be a conductor such as aluminum foil.
  • a faster injection requires a higher amount of applied voltage, and the preparation amount can be adjusted over time.
  • the diameter of the injection hole is generally in the range of 0.1 to 1.4 mm, but there are various sizes of injection holes, the electrospinning injection hole can be determined according to the polymer material, the uniformity and thickness of the fiber produced by the selection of the injection hole is determined Can be.
  • the liquid crystal composite elastic fiber produced by spinning according to one embodiment of the present invention may undergo a predetermined drying process after washing with water to completely remove the solvent remaining in the solid content.
  • the drying is not particularly limited, and may be dried by a drying means that is generally used, but is not limited thereto.
  • liquid crystal composite elastic fiber according to the present invention will be described in detail.
  • a polymer having a polar group is inserted between the graphene-based layers to be hydrogen-bonded or covalently bonded to the graphene-based material.
  • gelation occurs when the graphene-based material is included at a maximum of 1% by weight in the spinning solution.
  • Solving the problem of not containing the graphene-based material may include a graphene-based material in a high concentration of 1% by weight or more. This may provide a liquid crystal composite elastic fiber having more excellent electrical conductivity, flexibility, orientation and elasticity.
  • the graphene-based composition when the graphene-based composition has liquid crystallinity, the graphene composition may be spun into fibers in a state in which the liquid crystal phase is maintained, and the liquid crystal phase may be maintained even after spinning. Accordingly, the liquid crystal composite elastic fiber prepared by spinning the graphene-based composition has excellent orientation in the fiber axial direction, and even a small amount of graphene-based material can significantly improve the elastic modulus, thermal conductivity, and electrical conductivity in the axial direction.
  • the graphene-based material and the polymer having the polar group may be combined in a weight ratio of 1: 0.1 to 1:40.
  • the electrical conductivity is improved, but also the liquid crystal, the orientation and the toughness may be improved, and thus the fiber having excellent elasticity may be manufactured.
  • the graphene-based material may be a composite with carbon nanotubes.
  • the graphene-based material and carbon nanotubes may be compounded in a weight ratio of 1: 0.1 to 1: 1.
  • toughness is better than that of spider webs, and contacts between conductive materials may be increased, and thus electrical conductivity may be further improved.
  • the present invention is more preferable because it can be used as a fiber capable of manufacturing a wearable device having improved electrical conductivity and toughness by interaction with a polymer having a polar group.
  • Liquid crystal composite elastic fiber according to the present invention can obtain the advantages of the graphene-based material and the advantages of the liquid crystal at the same time, by using the external field such as magnetic field, flow field, which is an inherent characteristic of the liquid crystal, macroscopic It can exhibit anisotropic optical, dielectric, mechanical properties, etc., can expand the utilization of graphene-based materials and establish new processes.
  • the external field such as magnetic field, flow field, which is an inherent characteristic of the liquid crystal, macroscopic It can exhibit anisotropic optical, dielectric, mechanical properties, etc.
  • the graphene-based composition when the graphene-based composition has liquid crystallinity, the graphene-based composition may be used in the same meaning as the graphene-based liquid crystal dispersion described below.
  • the graphene-based liquid crystal dispersion according to the present invention is dispersed or chemically reacted so that the polymer in the polymer solution containing the polymer having a polar group is intercalated with the graphene-based material such that the graphene-based material and the polymer having the polar group are hydrogen-bonded or covalently bonded. It may have a viscosity that satisfies the following formula (1).
  • ⁇ 1 is a viscosity obtained by mixing and dispersing only a graphene material and a solvent
  • ⁇ 2 is a viscosity obtained by mixing and dispersing a graphene material and a polymer solution.
  • the viscosity of Formula 1 may satisfy 0.1 to 0.7 to ensure fluidity and radioactivity of the graphene-based liquid crystal dispersion.
  • the graphene-based liquid crystal dispersion as described above may have excellent radioactivity and fluidity even if it contains a high concentration of graphene-based material, and may have excellent electrical conductivity, toughness, elasticity and liquid crystal when the liquid crystal composite elastic fiber is produced by spinning it. It is preferable.
  • the unit of the additive which is not specifically described in the specification may be wt%.
  • the viscosity of the graphene composition prepared was 3 Pa.s when measured at 25 ° C. with a rotational viscometer (Brookfield DV-II).
  • the graphene-based composition in Preparation Example 1 was used in the same manner, except that 0.75g of single-walled carbon nanotubes was further included.
  • the viscosity of the graphene composition prepared was 8 Pa.s when measured at 25 ° C. with a rotational viscometer (Brookfield DV-II).
  • Graphene-based composition was prepared by dispersing 1.5 g of graphene oxide in 100 ml of distilled water.
  • the viscosity of the prepared graphene composition was 45 Pa ⁇ s when measured at 25 ° C. with a rotational viscometer (Brookfield DV-II).
  • the graphene composition prepared in Preparation Example 1 was wet-spun at 25 ° C. using a spinning nozzle having a spinning nozzle diameter of 250 ⁇ m. At a discharge rate of 0.1 m / min, 25 ° C. water and ethanol were spun into a coagulation solution, which is a mixed solution of calcium chloride (CaCl 2 ) and an aqueous solution mixed at a 3: 1 weight ratio, and wound at 0.1 m / min. The wound yarn was washed with water to remove residual calcium chloride, dried, and thermally stretched 1.3 times by adjusting the temperature to 70 ° C. using an infrared lamp.
  • a coagulation solution which is a mixed solution of calcium chloride (CaCl 2 ) and an aqueous solution mixed at a 3: 1 weight ratio
  • Graphene-based composition prepared in Preparation Example 1 is supplied to the spinning solution supply device connected to the nozzle.
  • the graphene composition was supplied at a rate of 4 ml / hr, and the nozzle inner diameter was 0.5 mm.
  • the applied voltage was 25 kV, the spinning distance between the spinning nozzle and the current collector was 18 cm, the temperature was 30 ° C., and the relative humidity was 60%. Electrospinning was performed in a spinning atmosphere.
  • the graphene-based composition prepared in Preparation Example 2 was wet-spun at 25 ° C. using a spinning nozzle having a spinning nozzle diameter of 250 ⁇ m. At a discharge rate of 0.1 m / min, dimethylformamide, ethyl acetate and acetone at 25 ° C. were spun into a mixed solution coagulation solution mixed with a weight ratio of 1: 1: 1, and wound up at 0.1 m / min. The wound yarn was washed with water to remove residual coagulant, dried, and thermally stretched 1.3 times by adjusting the temperature to 70 ° C. using an infrared lamp.
  • Example 1 The graphene-based composition in Example 1 was used in Comparative Preparation Example 5, except that the coagulation solution was mixed with ethyl acetate and acetone in a 1: 1 weight ratio.
  • Example 1 The graphene-based composition in Example 1 was used in Comparative Preparation Example 6, except that the coagulation solution was mixed with ethyl acetate and acetone in a 1: 1 weight ratio.
  • the liquid crystallinity can be observed by adjusting the concentration of the solution to 0.2 to 1% by weight and then placing the sample between the polarizing plates in a polarizing microscope to observe the orientation. In addition, as the concentration increases, the solution is gradually observed in the full nematic phase.
  • the electrical conductivity of the liquid crystal composite elastic fibers of Examples 1 to 8 and Comparative Examples 1 to 2 was measured using a 4-point probe measurement method using CMT-SR1000N manufactured by AIT Co., Ltd.
  • the tensile modulus was obtained from the initial slope of the starin stress curve obtained in the tensile test.
  • Radioactivity was evaluated based on the following criteria.
  • Fibers having excellent physical properties are prepared even by wet spinning and electrospinning having excellent spinning properties prepared in Examples 1 to 10, and the prepared liquid crystal composite elastic fibers have an excellent electrical conductivity, toughness and elasticity.
  • Example 1 to 10 Fibers having excellent physical properties are prepared even by wet spinning and electrospinning having excellent spinning properties prepared in Examples 1 to 10, and the prepared liquid crystal composite elastic fibers have an excellent electrical conductivity, toughness and elasticity.
  • liquid crystal composite elastic fiber prepared according to the embodiment of the present invention produces a spinning solution without phase separation by inducing hydrogen bonding or covalent bonding as polymers having polar groups are dispersed by intercalation or chemical reaction between graphene-based layers.
  • a spinning solution without phase separation by inducing hydrogen bonding or covalent bonding as polymers having polar groups are dispersed by intercalation or chemical reaction between graphene-based layers.
  • the graphene-based material is included in the graphene-based material in more than 0.8% by weight it was confirmed that the fiber is excellent in the spinning property is reduced compared to Comparative Example 1.
  • the polymer having a polar group according to the present invention is a polyurethane
  • the liquid crystal composite elastic fibers having more excellent electrical conductivity, toughness and elasticity are obtained.
  • the graphene-based composition according to the present invention was confirmed that the tensile strength is significantly improved when the carbon nanotubes are further included.
  • the graphene-based liquid crystal dispersion, the liquid crystal composite elastic fiber, and a method of manufacturing the same have been described through specific examples and limited embodiments, but the present invention is provided to help a more general understanding of the present invention.
  • the present invention is not limited to the above embodiments, and various modifications and variations can be made by those skilled in the art to which the present invention pertains.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Otolaryngology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Artificial Filaments (AREA)

Abstract

본 발명은 극성기를 갖는 고분자를 포함하는 고분자 용액에 그래핀계 물질을 분산시켜 상기 고분자가 그래핀계 물질에 인터칼레이션 또는 화학반응된 그래핀계 조성물을 방사하여 제조된 액정복합탄성섬유 및 이의 제조방법에 관한 것이다.

Description

그래핀계 액정 분산액, 액정복합탄성섬유 및 이의 제조방법
본 발명은 그래핀계 액정 분산액, 액정복합탄성섬유 및 이의 제조방법에 관한 것이다. 구체적으로, 그래핀계 물질에 극성 관능기를 갖는 고분자를 인터칼레이션되도록 분산 또는 반응시킨 그래핀계 액정 분산액, 액정복합탄성섬유 및 이의 제조방법에 관한 것이다.
일반적으로 전기 전도성 섬유(이하 전도성 섬유)는 섬유자체 또는 내 외부 구조에 전기를 통할 수 있는 물질이 포함되어 일정 수준의 전기를 흐르게 할 수 있는 섬유상 물질을 의미한다.
이러한 전도성 섬유의 제조방법으로는 크게 전도성 고분자를 사용하는 방법과 전도성 물질을 결합하는 방법으로 구분할 수 있으며, 현재까지 전자의 기술로 제조된 섬유는 반도체 수준이상의 양호한 전도성을 나타내나 유연성이 현저히 떨어져 일반 섬유제품용도로 사용하는 것이 어렵다. 또한, 전도성 고분자로 제조된 섬유는 센서 용도 또는 전기도선으로 활용하기에는 전도성이 낮다.
후자의 경우 더욱 구체적으로 구분하면 전도성 첨가물질을 섬유내부에 혼입하여 섬유를 제조하는 방법, 도금기법 등을 활용하여 일반 섬유에 코팅하는 방법으로 나눌 수 있다. 섬유고분자와 혼입하여 제조하는 전도성 복합섬유는 내구성이 우수하며 사용하는 전도성 첨가물질과 섬유고분자에 따라 다양한 수준의 물성 및 전도성 구현이 가능하지만 도체 수준의 전도성인 102S/cm 이상의 전도성 달성이 어렵고 첨가제 함량 증가에 따른 강도, 신도 등 물성저하의 단점이 있다, 반면 후처리 코팅에 의한 전도성 섬유제조는 기술적 난이도가 높지 않은 까닭에 다양하게 시도되고 있으나, 코팅에 따른 섬유 촉감의 저하와 내구성 저하의 문제점이 있다.
또한, 전도성 첨가 물질을 산화 그래핀을 포함하여 전도성 섬유를 제조하는 방법은 통상 반도체 정도인 100S/cm(단자리) 수준의 전도도를 나타내는 것이 현재까지의 기술적 한계이며, 그 이상의 전도성 발현을 위해 전도성 첨가물질 함량을 올리는 것은 높은 용융점도로 인한 분산성 저하, 고온 및 전단력 등에 의한 첨가물질 특성 변화가 불가피하여 매우 어려운 실정이다. 또한, 산화 그래핀은 전도성 용매상에 분산시켜 섬유 방사를 위하여 용액 제조 시 최대 1중량%를 첨가하여 제조되었을 때 응집이 발생하고, 겔화가 일어나, 전도성 섬유로 제조 시 낮은 농도에 따라 공정 효율이 낮고, 고유의 물성을 구현되지 않으므로, 상용화가 늦어지고 있다.
이에 따라 산화 그래핀 등과 같은 그래핀계 물질을 전도성 섬유로 활용하기 위하여 산화 그래핀 등과 같은 그래핀계 물질의 분산성 및 상용성을 향상시키기 위한 다양한 연구들이 필요한 실정이다.
상기와 같은 문제점을 해결하기 위하여 본 발명의 목적은 극성기를 갖는 고분자를 포함하는 고분자 용액 내의 고분자가 그래핀계 물질에 인터칼레이션되거나 화학반응하여 분산됨으로써, 액정상을 나타내는 그래핀계 액정 분산액 및 이를 포함하는 섬유제조를 위한 방사용액을 제공하는 것이다.
본 발명의 다른 목적은 그래핀계 조성물 내의 그래핀계 물질이 극성기를 갖는 고분자와 인터칼레이션되거나 화학반응하여 분산됨으로써, 고분자 용액 내에 그래핀계 물질이 고농도로 포함되면서도 동시에 낮은 점도를 가지는 그래핀계 액정 분산액을 제공하는 것이다.
본 발명의 다른 목적은 극성기를 갖는 고분자와 그래핀계 물질을 포함하는 그래핀계 조성물을 방사하여 제조된 액정복합탄성섬유 및 이의 제조방법을 제공하는 것이다.
본 발명의 다른 목적은 극성기를 갖는 고분자를 포함하는 고분자 용액 내의 고분자가 그래핀계 물질에 인터칼레이션 또는 화학반응하여 분산됨으로써, 고분자와 그래핀계 물질 간의 수소결합 또는 공유결합을 유도하여 상분리가 발생하지 않는 액정복합탄성섬유 및 이의 제조방법을 제공하는 것이다.
본 발명의 다른 목적은 상기 그래핀계 액정 분산액이 액정상을 유지하는 상태에서 방사되어 섬유 축방향으로 배향성이 우수하고, 소량의 그래핀계 물질로도 섬유 축방향으로 우수한 탄성율, 높은 열전도도 및 전기전도도를 갖는 액정복합탄성섬유 및 이의 제조방법을 제공하는 것이다.
본 발명의 다른 목적은 상기 그래핀계 조성물을 탄소나노튜브와 복합화하여 사용하였을 때, 더욱 우수한 전기전도성 및 탄성을 갖는 액정복합탄성섬유 및 이의 제조방법을 제공하는 것이다.
상기 목적을 달성하기 위하여 연구한 결과, 본 발명에 따른 액정복합탄성섬유의 제조방법은 a) 극성기를 갖는 고분자를 포함하는 고분자 용액에 그래핀계 물질을 분산 또는 화학반응 시켜 상기 극성기를 갖는 고분자가 그래핀계 물질에 인터칼레이션된 그래핀계 조성물을 준비하는 단계; 및
b) 상기 그래핀계 조성물을 방사하여 액정복합탄성섬유를 얻는 단계;
를 포함할 수 있다.
상기 그래핀계 조성물은 액정성을 갖는 것일 수 있다.
상기 그래핀계 조성물은 탄소나노튜브를 더 포함할 수 있다.
상기 그래핀계 물질과 탄소나노튜브는 1: 0.1 내지 1:1중량비일 수 있다.
상기 그래핀계 조성물 총 중량에 대하여, 그래핀계 물질 0.8 내지 10중량% 포함할 수 있다.
상기 고분자 용액은 총 중량에 대하여, 극성기를 갖는 고분자 1 내지 40중량% 포함할 수 있다.
상기 방사는 습식 방사 또는 전기 방사일 수 있다.
상기 극성기를 갖는 고분자는 폴리알킬렌글리콜계, 폴리우레탄계 및 폴리비닐알코올계에서 선택되는 어느 하나 또는 둘 이상의 고분자일 수 있다.
상기 a)단계에서 반응성 관능기를 포함하는 폴리우레탄계 고분자는 그래핀계 물질과 공유결합을 형성하는 단계를 더 포함할 수 있다.
본 발명에 따른 액정복합탄성섬유는 상술한 제조방법으로 제조된 것일 수 있다.
본 발명에 따른 액정복합탄성섬유는 그래핀계 물질 층간에 극성기를 갖는 고분자가 삽입되어 그래핀계 물질과 수소결합 또는 공유결합된 것일 수 있다.
상기 그래핀계 물질은 탄소나노튜브를 더 포함하여 복합화 된 것일 수 있다.
상기 그래핀계 물질과 상기 탄소나노튜브는 1: 0.1 내지 1:1중량비로 복합화될 수 있다.
상기 그래핀계 물질과 상가 극성기를 갖는 고분자는 1: 0.1 내지 1:1,000 중량비로 결합될 수 있다.
본 발명에 따른 그래핀계 액정 분산액은 그래핀계 물질과 극성기를 갖는 고분자가 수소결합 또는 공유결합되고, 인터칼레이션되며, 하기 식 1을 만족하는 점도를 가질 수 있다.
[식 1]
Figure PCTKR2018000499-appb-I000001
상기 식 1에 있어서, η1은 그래핀계 물질과 용매만 혼합하여 분산시킨 점도이고, η2는 그래핀계 물질과 고분자 용액을 혼합하여 분산시킨 점도이다.
본 발명에 따른 극성기를 갖는 고분자를 포함하는 고분자 용액 내의 고분자가 그래핀계 물질에 인터칼레이션되도록 분산됨으로써, 액정상을 나타내고, 점도를 감소시켜 그래핀계 물질을 고농도로 포함하는 그래핀계 조성물로 섬유를 제조하였을 때, 전도성이 우수하다는 장점이 있다.
또한, 극성기를 갖는 고분자를 포함하는 고분자 용액 내의 고분자가 그래핀계 물질에 인터칼레이션되도록 분산 또는 화학반응시킴으로써, 고분자와 그래핀계 물질 간의 수소결합 또는 공유결합을 유도하여 상분리가 발생하지 않아 섬유를 제조하였을 때, 탄성 및 전도성이 우수하다는 장점이 있다.
또한, 상기 그래핀계 물질을 탄소나노튜브와 복합화하여 사용하였을 때, 더욱 우수한 전기전도성 및 탄성을 가질 수 있다는 장점이 있다.
도 1은 본 발명의 일 실시예에 따른 전기방사된 섬유의 주사전자현미경(SEM) 관찰사진이다.
도 2는 본 발명의 일 실시예에 따른 극성기를 갖는 고분자를 포함하는 고분자 용액에 그래핀계 물질을 분산시킨 그래핀계 조성물의 모식도이다.
도 3은 본 발명의 일 실시예에 따른 그래핀계 조성물의 액정상 거동에 대하여 편광현미경으로 관찰한 사진이다.
이하 실시예를 통해 본 발명에 따른 그래핀계 액정 분산액, 액정복합탄성섬유 및 이의 제조방법에 대하여 더욱 상세히 설명한다. 다만 하기 실시예는 본 발명을 상세히 설명하기 위한 참조일 뿐 본 발명이 이에 제한되는 것은 아니며, 여러 형태로 구현 될 수 있다.
또한 달리 정의되지 않는 한, 모든 기술적 용어 및 과학적 용어는 본 발명이 속하는 당업자 중 하나에 의해 일반적으로 이해되는 의미와 동일한 의미를 갖는다. 본원에서 설명에 사용되는 용어는 단지 특정 실시예를 효과적으로 기술하기 위함이고, 본 발명을 제한하는 것으로 의도되지 않는다.
본 명세서에서 “인터칼레이션(intercalation)”이란, 층상구조가 있는 물질의 층간에 분자, 원자 또는 이온이 삽입되는 것을 의미하며, 본 발명은 그래핀계 물질의 층간에 극성기를 갖는 고분자가 삽입되는 것을 의미한다.
본 명세서에서 “복합화”는 성질이 다른 물질을 혼합하여 바람직한 복합적인 물성들을 도출해 내는 기법이다. 본 발명에서 2차원구조의 그래핀계 물질과 1차원구조의 탄소나노튜브를 고분자와 복합하여 인장-수축이 반복되는 상태에서도 전기 전도성이 유지 되도록 할 수 있다.
상기 목적을 달성하기 위한 본 발명은 그래핀계 액정 분산액, 액정복합탄성섬유 및 이의 제조방법에 관한 것이다.
본 발명을 구체적으로 설명하면 다음과 같다.
본 발명에 따른 액정복합탄성섬유의 제조방법은 a) 극성기를 갖는 고분자를 포함하는 고분자 용액에 그래핀계 물질을 분산 또는 화학반응시켜 상기 극성기를 갖는 고분자가 그래핀계 물질에 인터칼레이션된 그래핀계 조성물을 준비하는 단계; 및
b) 상기 그래핀계 조성물을 방사하여 액정복합탄성섬유를 얻는 단계;
를 포함할 수 있다.
본 발명에 따른 제조방법으로 제조된 액정복합탄성섬유는 종래에 방사용액 내에 최대 1중량%로 그래핀계 물질을 포함하였을 때, 다양한 산소 관능기를 함유하고 있어 겔화가 발생함에 따라 고농도로 그래핀계 물질을 포함하지 못하는 문제점을 해결하여 고농도로 그래핀계 물질을 포함할 수 있고, 이로 인하여 더욱 우수한 전기전도성, 유연성 및 탄성을 가지는 액정복합탄성섬유를 제공할 수 있다.
본 발명의 일 양태에 따라 그래핀계 물질은 최장직경과 두께의 비율인 최장직경/두께비가 30 이상일 수 있다. 바람직하게는 10,000 내지 500,000인 것일 수 있다. 더 바람직하게는 10,000 내지 100,000인 것일 수 있으나, 이에 제한되는 것은 아니다. 상기 최장직경/두께비를 갖는 그래핀계 물질을 사용할 경우 액정성을 나타내기 위한 임계농도로 제조될 수 있어 액정상을 나타내고, 고분자 용액 내에 분산성이 우수하여 바람직하다.
본 발명의 일 양태에 따라 상기 그래핀계 물질은 환원된 그래핀(RG, Reduced Graphene), 환원된 산화 그래핀(RGO, Reduced Graphene Oxide), 그래핀(Graphene) 및 산화 그래핀(GO, Graphene Oxide) 등에서 선택되는 어느 하나 또는 둘 이상의 혼합물일 수 있다. 비한정적인 일 예로, 분산성 및 상용성을 향상시키기 위하여 바람직하게는 산화 그래핀(GO, Graphene Oxide)일 수 있다.
본 발명의 일 양태에 따라 상기 산화 그래핀은 그래핀 옥사이드, 산화 그래핀, 산화된 그래핀 등과 같은 의미로 사용될 수 있다. 나아가 이러한 산화 그래핀은 통상적으로 이용되는 산화 그래핀 제조방법을 통하여 제조된 것인 경우 제한이 없으나, 구체적으로 흑연 등의 탄소 물질을 산화시키는 방법으로 제조할 수 있다. 더욱 구체적으로는 그라파이트(graphite)를 Hummer’s 방법, Brodie’s 방법 또는 Staudenmaier 방법 등의 산화방법을 이용하여 산화시키는 방법으로 제조된 것을 사용할 수 있다.
본 발명의 일 양태에 따라 상기 그래핀계 물질은 산화된 정도가 탄소:산소 원소비가 1:0.1 내지 1:2일 수 있고, 바람직하게는 1:0.2 내지 1:1.5일 수 있고, 더 바람직하게는 1:0.2 내지 1:1일 수 있다. 상기와 같이 탄소:산소 원소비를 갖는 그래핀계 물질로 방사용액인 그래핀계 조성물을 제조할 경우 낮은 점도를 유지할 수 있어 겔화를 방지하고, 더 높은 함량의 그래핀계 물질을 방사용액 내에 함유할 수 있어 바람직하다.
본 발명의 일 양태에 따라 상기 극성기를 갖는 고분자는 비한정적인 일예로, 수산화기(-OH), 카르복실기(-COOH), 아민기(-NH2) 술폰산기(-SO3H) 및 이소시아네이트기(-NCO)기 및 이의 염에서 선택되는 극성기를 포함하는 고분자일 수 있다. 바람직하게는 그래핀계 조성물 내의 그래핀계 물질간의 상분리가 발생하지 않은 상태에서 액정상을 유지할 수 있고, 신축성을 부여하는 폴리알킬렌글리콜계, 폴리우레탄계 및 폴리비닐알코올계에서 선택되는 어느 하나 또는 둘 이상의 고분자일 수 있다.
구체적인 예를 들어, 상기 폴리알킬렌글리콜계 고분자는 수산화기를 말단에 1개 이상 포함하는 폴리알킬렌글리콜계 고분자로서, 반복단위의 탄소수가 C1 내지 C4인 폴리알킬렌글리콜계 고분자일 수 있다. 더 구체적으로는 폴리에틸렌글리콜, 폴리프로필렌글리콜, 폴리에틸렌글리콜-폴리프로필렌글리콜 공중합체 및 폴리테트라메틸렌에테르글리콜 등에서 선택되는 어느 하나 또는 둘 이상의 혼합물일 수 있으나, 이에 제한되는 것은 아니다.
상기 폴리우레탄계 고분자는 말단에 반응성 관능기를 포함하는 고분자로서, 예를 들어, 말단에 이소시아네이트기를 포함하는 폴리우레탄계 고분자일 수 있다. 구체적으로는 그래핀계 물질이 분산될 수 있는 용매에 용해되는 폴리우레탄계 고분자라면, 상기 폴리우레탄계 고분자의 종류에는 특별히 제한되지 않는다.
상기 그래핀계 물질을 분산될 수 있는 용매는 예를 들어 에테르계 용매, 알코올계 용매, 방향족 용매, 지환족 용매, 헤테로방향족 용매, 헤테로지환족 용매, 알칸계 용매, 케톤계 용매 및 할로겐화 용매 등에서 선택될 수 있다. 구체적으로는 클로로포름, 아세톤, 에탄올, 메탄올, 벤젠, 톨루엔, 시클로 헥산(cyclohexane), 노말 헥산(n-hexane), 피리딘, 퀴놀린, 에틸렌글리콜, 디메틸포름아마이드, 디메틸아세트아마이드, N-메틸피롤리돈 및 테트라하이드로퓨란 등에서 선택될 수 있으나, 이에 제한되는 것은 아니다.
비한정적인 일예로, 상기 폴리우레탄계 고분자는 폴리에테르계 폴리올, 폴리에스테르계 폴리올 및 폴리카보네이트계 폴리올 등으로 이루어진 군으로부터 선택되는 어느 하나 또는 둘 이상의 화합물과 유기 디이소시아네이트가 반응됨으로써 얻을 수 있다. 구체적으로, 폴리에테르계 폴리올은 폴리알킬렌글리콜 등일 수 있으며, 예를 들어, 반복단위의 탄소수가 C1 내지 C4인 폴리알킬렌글리콜계 고분자일 수 있다. 더 구체적으로는 폴리에틸렌글리콜, 폴리프로필렌글리콜, 폴리에틸렌글리콜-폴리프로필렌글리콜 공중합체 및 폴리테트라메틸렌에테르글리콜에서 선택되는 어느 하나 또는 둘 이상의 혼합물일 수 있다. 상기 폴리에스테르계 폴리올은 폴리에틸렌아디페이트 디올, 폴리부틸렌아디페이트 디올, 폴리(1,6-헥사아디페이트) 디올, 폴리디에틸렌아디페이트 디올 및 폴리(e-카프로락톤) 디올 등에서 선택되는 어느 하나 또는 둘 이상의 혼합물일 수 있다. 상기 폴리카보네이트 폴리올은 폴리헥사메틸렌카보네이트올, 폴리에틸렌 카보네이트 디올, 폴리프로필렌 카보네이트 디올 및 폴리부틸렌 카보네이트 디올 등에서 선택되는 어느 하나 또는 둘 이상의 혼합물일 수 있다. 상기 폴리우레탄계 고분자는 필요에 따라 2개의 활성수소를 갖는 사슬연장제로 사슬연장시켜서 얻을 수 있으며, 더 나아가서는 불소, 아미노산, 실리콘 등의 모노머와 공중합한 변성 폴리우레탄계 고분자 또는 이들 고분자와의 혼합물일 수 있으나, 이에 제한되는 것은 아니다.
상기 폴리비닐알코올계 고분자는 폴리비닐알코올, 폴리비닐아세테이트-비닐알코올 공중합체, 폴리에틸렌-비닐알코올 공중합체, 폴리비닐알코올-(메타)아크릴 공중합체, 폴리비닐알코올-비닐클로라이드 공중합체 및 폴리비닐알코올-스티렌 공중합체 등에서 선택되는 어느 하나 또는 이들의 혼합물일 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 일 양태에 따른 상기 극성기를 갖는 고분자는 그래핀계 물질을 고농도로 포함하는 방사용액인 그래핀계 조성물에 유동성을 부여할 수 있다. 또한, 상기 그래핀계 물질은 다양한 산소 관능기를 함유하고 있어 상기 그래핀계 물질 층간에 인터칼레이션(intercalation)되어 극성 관능기를 갖는 고분자와 화학적 및 물리적 결합을 하여 그래핀계 물질 간의 겔화를 방지할 수 있다.
본 발명의 일 양태에 따라 상기 극성기를 갖는 고분자는 그래핀계 물질 상에 존재하는 극성기와 강하게 인력을 가져 수소결합할 수 있는 고분자로써, 수산화기를 말단에 1 내지 4개 포함하는 폴리알킬렌글리콜계; 및 폴리비닐알코올 단독 중합체 또는 폴리비닐알코올 반복단위가 50몰% 이상 포함되는 공중합체를 포함하는 폴리비닐알코올계; 등에서 선택되는 어느 하나 또는 둘 이상의 고분자; 또는 그래핀계 물질 상에 존재하는 극성기와 화학적 결합을 할 수 있는 폴리우레탄계 고분자일 수 있다.
본 발명의 일 양태에 따라 상기 극성기를 갖는 고분자를 그래핀계 물질의 층간에 인터칼레이션된 네트워크 구조를 형성하여 그래핀계 조성물의 방사성 및 유동성을 향상시킬 수 있으며, 방사를 통하여 섬유로 제조되는 것을 용이하게 할 수 있다.
또한, 본 발명에서 폴리우레탄계 고분자를 사용하여 섬유를 제조할 경우 섬유에 탄성을 더 부여할 수 있어 웨어러블(wearable)소자 등을 제작할 수 있는 섬유로써 사용할 수 있어 더욱 바람직하다.
본 발명의 일 양태에 따라 상기 a)단계에서 극성기를 갖는 고분자로, 반응성 관능기를 포함하는 폴리우레탄계 고분자를 포함하였을 때, 폴리우레탄계 고분자는 그래핀계 물질과 공유결합을 형성하는 단계를 더 포함할 수 있다. 구체적으로 예를 들면, 폴리우레탄계 고분자의 말단에 이소시아네이트기와 그래핀계 물질의 수산화기 또는 카르복실기 간의 화학적 결합을 통하여 공유결합이 형성되어 그래핀계 물질 층간에 폴리우레탄계 고분자가 인터칼레이션되어 강한 결합으로 자리잡음으로써 상분리가 발생하지 않은 상태로 액정상을 유지할 수 있고, 그래핀계 물질 간의 응집을 억제하여 겔화되는 상거동을 방지할 수 있어 바람직할 수 있다.
본 발명의 일 양태에 따라 상기 그래핀계 조성물은 액정성을 가질 수 있다.
상기와 같이 액정성을 갖는 그래핀계 조성물로 방사하여 제조된 액정복합탄성섬유는 그래핀계 물질의 장점과 액정의 장점을 동시에 얻을 수 있는 것으로, 액정의 고유한 특징인 자기장, 흐름장 등의 외부장을 이용하여 그 방향성을 조절할 수 있고, 거시적으로 이방적인 광학적, 유전적, 기계적 특성 등을 나타낼 수 있어 그래핀계 물질의 활용도를 넓힐 수 있으며, 새로운 공정을 확립할 수 있다.
본 발명의 일 양태에 따라 상기 그래핀계 조성물 총 중량에 대하여, 그래핀계 물질 0.8 내지 10중량%, 바람직하게는 1 내지 8중량%, 더 바람직하게는 1.5 내지 8중량% 포함할 수 있다. 상기와 같이 그래핀계 물질을 포함할 경우 방사용액 내에서 균일하게 분산되면서 유방성 액정상으로 제조되어, 액정성을 부여할 수 있고, 더욱 우수한 전기전도성을 발현할 수 있어 바람직하다.
또한, 종래의 그래핀계 물질을 포함하는 방사용액은 그래핀계 물질이 최대 1중량%를 포함하였을 때, 겔화가 발생하여 높은 점도로 유동성이 제한되어 방사용액 내에 저농도의 그래핀계 물질을 포함하는 그래핀계 조성물을 섬유로 제조함에 따라 공정 경비 절감 및 전기전도성 향상에 한계가 있었다. 이에 반해, 본 발명에 따른 방사용액은 그래핀계 물질이 1중량%이상의 고농도의 그래핀계 물질을 포함하여도 그래핀계 물질 층간에 인터칼레이션된 극성기를 갖는 고분자에 의하여 겔화가 발생하지 않고, 고배향성 갖는 섬유를 확보할 수 있고, 그래핀계 조성물의 점도가 더욱 감소하여 우수한 유동성 및 방사성을 확보할 수 있다.
또한, 상기 그래핀계 조성물이 액정성을 가질 경우 극성기를 갖는 고분자 함량이 증대할수록 더욱 우수한 액정성을 나타낼 수 있다.
본 발명에 따른 상기 그래핀계 조성물은 그래핀계 물질 함량이 1중량%이상의 고농도로 혼합되어도 하기 식 1을 만족하는 점도를 나타낼 수 있어, 섬유제조를 위한 방사용액의 유동성을 확보할 수 있다.
[식 1]
Figure PCTKR2018000499-appb-I000002
상기 식 1에 있어서, η1은 그래핀계 물질과 용매만 혼합하여 분산시킨 점도이고, η2는 그래핀계 물질과 고분자 용액을 혼합하여 분산시킨 점도이다.
바람직하게는 그래핀계 조성물의 유동성 및 방사성을 확보를 위하여 상기 식 1의 점도는 0.1 내지 0.7을 만족할 수 있다.
본 발명의 일 양태에 따라 고분자 용액상에 그래핀계 물질을 균일하게 분산시키기 위해서 초음파처리방법, 기계적 교반방법, 이들의 혼합된 방법 등으로 고분자 용액상에 그래핀계 물질을 균일하고 안정적으로 분산될 수 있으나, 이에 제한되는 것은 아니다. 또한, 일 양태에 따라 고분자 용액 상에 그래핀계 물질이 분산된 그래핀계 조성물에 함유된 불순물을 제거하기 위하여 투석 또는 원심분리를 이용하여 제거할 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 일 양태에 따라 상기 고분자 용액은 총 중량에 대하여, 극성기를 갖는 고분자 1 내지 40중량% 포함할 수 있고, 바람직하게는 5 내지 25중량% 포함할 수 있다. 상기 범위로 고분자 용액을 제조할 경우 그래핀계 물질 층간에 충분히 인터칼레이션될 수 있으며, 이에 따라 그래핀계 물질이 분산되면서 그래핀계 물질간의 직접적인 접촉을 억제하여, 점도가 급격히 증가함으로써 발생하는 겔화현상을 방지하여 방사용액의 방사성이 향상될 수 있다. 또한, 이로 제조된 액정복합탄성섬유는 인성, 유연성 및 기계적 강도가 우수하다.
본 발명의 일 양태에 따라 상기 고분자 용액은 극성기를 갖는 고분자와 용매를 포함하여 제조된 것일 수 있다. 상기 용매는 상기 그래핀계 물질이 분산됨과 동시에 극성기를 갖는 고분자를 용해하여 분산될 수 있는 것이다. 예를 들어 물, 알코올계 용매, 에테르계 용매 및 아미드계 용매 등에서 선택될 수 있다. 구체적으로는 물, 에틸렌글리콜, 디메틸포름아마이드, 디메틸아세트아마이드, N-메틸피롤리돈 및 테트라하이드로퓨란 등에서 선택될 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 일 양태에 따라 상기 그래핀계 조성물의 상기 그래핀계 물질과 상기 극성기를 갖는 고분자는 1: 0.1 내지 1:1,000 중량비, 바람직하게는 1: 0.1 내지 1:500 중량비, 더 바람직하게는 1: 0.1 내지 1:100 중량비, 더욱 바람직하게는 1:0.1 내지 1:10중량비로 결합된 것일 수 있으나, 이에 제한되는 것은 아니다. 상기와 같이 결합됨으로써 점도 감소를 통하여 그래핀계 조성물의 유동성 및 방사성이 향상될 수 있어 바람직할 수 있다. 또한, 그래핀계 조성물 내의 그래핀계 물질과 극성기를 갖는 고분자간의 상분리가 발생하지 않은 상태에서 액정상을 나타낼 수 있다.
본 발명의 일 양태에 따라 상기 그래핀계 조성물은 탄소나노튜브를 더 포함할 수 있다. 상기 탄소나노튜브를 더 포함할 경우 거미줄보다도 우수한 인성을 나타낼 수 있다. 이처럼 우수한 인성은 탄소나노튜브(CNT)를 섬유 방향으로 정렬함으로써 탄소나노튜브(CNT)와 고분자 사이의 상호작용을 극대화할 수 있어 웨어러블(wearable)소자 등을 제작할 수 있는 섬유로써 사용할 수 있어 더욱 바람직하다.
본 발명의 일 양태에 따라 상기 탄소나노튜브는 구체적인 예를 들어, 단일벽 탄소나노튜브, 소수벽 탄소나노튜브, 다중벽 탄소나노튜브 또는 이들의 조합으로 이루어진 군으로부터 선택되는 어느 하나 또는 둘이상의 혼합물일 수 있으나, 이에 제한되는 것은 아니다. 상기 탄소나노튜브는 구조에 따라 한 겹으로 된 단일벽 탄소나노튜브(Single-walled CNT; SWCNT), 탄소벽의 수가 2 내지 10개인 소수벽 탄소나노튜브(Few-walled CNT; FWCNT), 10개 이상의 여러 겹의 탄소나노튜브가 동심원 상을 이루는 다중벽 탄소나노튜브(Multi-walled CNT; MWCNT) 등으로 분류될 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 일 양태에 따라 상기 그래핀계 조성물 내에 그래핀계 물질과 탄소나노튜브를 복합화하여 사용할 수 있고, 상기 그래핀계 물질과 탄소나노튜브는 1: 0.1 내지 1:1 중량비일 수 있고, 바람직하게는 1:0.1 내지 1:0.5 중량비일 수 있다. 상기 중량비로 복합화된 것을 포함할 경우 제조되는 액정복합탄성섬유의 기계적 특성의 상승 효과를 얻을 수 있고, 인성과 유연성이 우수하여 다양한 형태의 섬유로 제조될 수 있고, 또는 다양한 형태로 변형하여 소재에 적용될 수 있다.
본 발명의 일 양태에 따라 상기 방사는 습식 방사 또는 전기 방사일 수 있다.
상기 습식 방사는 그래핀계 조성물에 압력을 가하여 작은 방사 구금을 통하여 섬유가 응고되는 응고욕 속으로 방사시켜 응고욕 내에서 응고되도록 하여 용매가 응고욕 속으로 용매의 확산에 의한 고화가 진행되어 침출됨에 따라 섬유가 형성되도록 하는 방법이다. 상기 습식방사는 방사용액 내에서 화학반응이 일어나기도 하며, 고분자가 쉽게 증발할 수 있는 용매에 녹지 않거나 쉽게 용융되지 않는 경우에 사용될 수 있다. 상기와 같이 제조된 액정복합탄성섬유는 롤러에 충분히 권취 될 수 있을 정도의 기계적 물성을 가질 수 있다.
본 발명의 일 양태에 따라, 상기 방사용액의 방사 온도는 10 내지 100 ℃일 수 있고, 바람직하게는 20 내지 80 ℃일 수 있으나, 이에 제한되는 것은 아니다. 또한, 상기 방사용액의 방사 시 압력은 1 내지 50 psi 범위일 수 있으나, 이에 제한되는 것은 아니다. 상기 응고액의 온도는 방사되는 섬유의 응고를 위하여 -5 내지 50 ℃일 수 있고, 바람직하게는 0 내지 40 ℃ 일 수 있으나, 이에 제한되는 것은 아니다. 또한, 상기 응고액은 염화칼슘(CaCl2)수용액, N-메틸피롤리돈, 포름아마이드물, 메탄올, 에탄올, 프로판올메틸설폭사이드, 디메틸포름아마이드 및 디메틸아세트아마이드, 에틸아세테이트 및 아세톤 등에서 선택되는 어느 하나 또는 둘 이상의 혼합물을 사용할 수 있으며, 방사용액 내의 극성기를 갖는 고분자에 대하여 용해되지 않고, 고분자 용액의 용매와는 상용성이 우수한 비용매를 사용하는 것이 바람직하다. 따라서, 상기 고분자 용액의 용매와 응고액의 종류는 상이한 것을 사용하는 것이 바람직할 수 있다.
본 발명의 일 양태에 따라 상기 전기방사는 구체적인 예를 들어, 양(+) 전압에 의하여 용매는 휘발되고 동시에 그래핀계 물질 층간에 고분자 물질이 인터칼레이션된 형태의 섬유 구조로 제조될 수 있다. 전기 방사된 섬유는 전기장에 의하여 상대적으로 음(-) 전하를 가진 수집기에 의하여 수집된다. 전기 방사시의 양(+) 전압 및 음(-) 전압은 고분자 물질 및 용매에 따라 적절히 선택될 수 있다. 또한, 전기방사 시 거리 당 인가전압(kV/cm), 용액 주사량(mL/min, mL/h, l/h), 분사구(nozzle, needle)에 의하여 두께 조절, 제조되는 섬유의 질 등이 결정될 수 있다. 전기방사 시 양(+)의 인가전압은 고분자 물질의 고유 특성과 더불어 수집기와 분사구 사이의 거리에 의하여 조절되는데, 예를 들면 특별히 제한되지는 않지만, 6 내지 50 kV, 더욱 바람직하게는 6 내지 15 kv일 수 있고, 상기 분사구와 수집기의 거리는 8 내지 30 cm, 바람직하게는 10 내지 15 cm일 수 있으며, 상기 수집기는 알루미늄 호일 등의 도체일 수 있다. 용액 주사량의 경우 빠르게 주사할 경우 더 높은 양(+)의 인가 전압을 필요로 하며, 시간에 따른 제조량 조절이 가능하다. 또한 분사구의 직경은 일반적으로 0.1 내지 1.4 mm에 이르기까지 다양한 크기의 분사구가 있으나, 전기방사용 분사구는 고분자 물질에 따라 결정할 수 있고, 상기 분사구의 선택에 따라 제조되는 섬유의 균일성 및 두께가 결정될 수 있다.
본 발명의 일 양태에 따라 방사되어 제조된 액정복합탄성섬유는 고형분에 잔존하는 용매를 완전히 제거하기 위해 수세 후에 소정의 건조 공정을 거칠 수 있다. 상기 건조는 특별히 한정하는 것은 아니며, 일반적으로 사용되는 건조 수단에 의해 건조할 수 있으나, 이에 제한되는 것은 아니다.
본 발명에 따른 액정복합탄성섬유를 구체적으로 설명하면 다음과 같다.
본 발명에 따른 액정복합탄성섬유는 그래핀계 물질 층간에 극성기를 갖는 고분자가 삽입되어 그래핀계 물질과 수소결합 또는 공유결합된 것일 수 있다. 상기와 같이 그래핀계 물질 층간에 극성기를 갖는 고분자가 삽입되어 그래핀계 물질과 수소결합 또는 공유결합되면, 종래에 방사용액 내에 최대 1중량%로 그래핀계 물질을 포함하였을 때 겔화가 발생함에 따라 고농도로 그래핀계 물질을 포함하지 못하는 문제점을 해결하여 1 중량%이상의 고농도로 그래핀계 물질을 포함할 수 있다. 이로 인하여 더욱 우수한 전기전도성, 유연성, 배향성 및 탄성을 가지는 액정복합탄성섬유를 제공할 수 있다.
또한, 상기 그래핀계 조성물이 액정성을 가질 경우, 액정상을 유지하고 있는 상태에서 섬유로 방사할 수 있고, 방사 이후에도 액정상을 유지할 수 있다. 이에 따라 상기 그래핀계 조성물을 방사하여 제조된 액정복합탄성섬유는 섬유 축방향으로 배향성이 우수하고, 소량의 그래핀계 물질로도 축방향으로 탄성율, 열전도도 및 전기전도도를 현저히 향상될 수 있다.
본 발명의 일 양태에 따라 상기 그래핀계 물질과 상기 극성기를 갖는 고분자는 1: 0.1 내지 1:40 중량비로 결합될 수 있다. 상기와 같이 결합되면 전기전도성이 향상될 뿐만 아니라, 액정성, 배향성 및 인성이 향상되어 탄성이 우수한 섬유가 제조될 수 있어 바람직하다.
본 발명의 일 양태에 있어서, 상기 그래핀계 물질은 탄소나노튜브와 복합화한 것일 수 있다. 본 발명의 일 양태에 따라 상기 그래핀계 물질과 탄소나노튜브는 1: 0.1 내지 1:1중량비로 복합화될 수 있다. 상기 그래핀계 물질에 탄소나노튜브를 상기와 같이 복합화할 경우 거미줄보다도 우수한 인성을 나타낼 수 있고, 도전성 물질간의 접점을 증가시킬 수 있어 더욱 전기전도성이 향상될 수 있어 바람직하다. 또한, 극성기를 갖는 고분자와의 상호작용으로 향상된 전기전도성 및 인성을 갖는 웨어러블(wearable)소자 등을 제작할 수 있는 섬유로써 사용할 수 있어 더욱 바람직하다.
본 발명에 따른 액정복합탄성섬유는 그래핀계 물질의 장점과 액정의 장점을 동시에 얻을 수 있는 것으로, 액정의 고유한 특징인 자기장, 흐름장 등의 외부장을 이용하여 그 방향성을 조절할 수 있고, 거시적으로 이방적인 광학적, 유전적, 기계적 특성 등을 나타낼 수 있어 그래핀계 물질의 활용도를 넓힐 수 있으며, 새로운 공정을 확립할 수 있다.
본 발명에서 상기 그래핀계 조성물은 액정성을 가질 경우 하기의 그래핀계 액정 분산액과 동일한 의미로 사용될 수 있으며, 구체적으로 설명하면 다음과 같다.
본 발명에 따른 그래핀계 액정 분산액은 극성기를 갖는 고분자를 포함하는 고분자 용액 내의 고분자가 그래핀계 물질에 인터칼레이션되도록 분산 또는 화학반응시켜 그래핀계 물질과 극성기를 갖는 고분자가 수소결합 또는 공유결합되고, 하기 식 1을 만족하는 점도를 가질 수 있다.
[식 1]
Figure PCTKR2018000499-appb-I000003
상기 식 1에 있어서, η1은 그래핀계 물질과 용매만 혼합하여 분산시킨 점도이고, η2는 그래핀계 물질과 고분자 용액을 혼합하여 분산시킨 점도이다.
바람직하게는 그래핀계 액정 분산액의 유동성 및 방사성을 확보를 위하여 상기 식 1의 점도는 0.1 내지 0.7을 만족할 수 있다.
상기와 같은 그래핀계 액정 분산액은 고농도의 그래핀계 물질을 포함하여도 우수한 방사성 및 유동성을 가질 수 있으며, 이를 방사하여 액정복합탄성섬유가 제조될 경우 우수한 전기전도성, 인성, 탄성 및 액정성을 가질 수 있어 바람직하다.
이하 실시예를 통해 본 발명에 따른 그래핀계 액정 분산액, 액정복합탄성섬유 및 이의 제조방법에 대하여 더욱 상세히 설명한다. 다만 하기 실시예는 본 발명을 상세히 설명하기 위한 하나의 참조일 뿐 본 발명이 이에 한정되는 것은 아니며, 여러 형태로 구현될 수 있다.
또한 달리 정의되지 않은 한, 모든 기술적 용어 및 과학적 용어는 본 발명이 속하는 당업자 중 하나에 의해 일반적으로 이해되는 의미와 동일한 의미를 갖는다. 본원에서 설명에 사용되는 용어는 단지 특정 실시예를 효과적으로 기술하기 위함이고 본 발명을 제한하는 것으로 의도되지 않는다.
또한 명세서에서 특별히 기재하지 않은 첨가물의 단위는 중량%일 수 있다.
[제조예 1]
10중량% 말단에 수산화기 2개를 갖는 폴리에틸렌글리콜 (중량평균분자량 400-200,000g/mol) 수용액 100g에 그래핀 산화물(스탠다드 그래핀 Co. Hummer’s 법으로 제조) 1.5g을 첨가한 다음, 45℃에서 하루 동안 교반하여 그래핀계 조성물을 제조하였다. 제조된 그래핀계 조성물의 점도는 rotational viscometer (Brookfield DV-II)로 25℃에서 측정하였을 때, 8Pa·s였다.
[제조예 2]
상기 제조예 1에서 10중량% 폴리에틸렌글리콜 수용액을 대신하여 디메틸포름아마이드에 10중량%로 용해한 말단에 이소시아네이트기 1개를 갖는 폴리우레탄(Lankaster Co, UK) 용액을 사용한 것을 제외하고는 동일하게 사용하였다. 제조된 그래핀계 조성물의 점도는 rotational viscometer (Brookfield DV-II)로 25℃에서 측정하였을 때, 10Pa·s였다.
[제조예 3]
상기 제조예 1에서 10중량% 폴리에틸렌글리콜 수용액을 대신하여 10중량% 폴리비닐알코올(400-200,000g/mol, Sigma-Aldrich)수용액을 사용한 것을 제외하고는 동일하게 사용하였다. 제조된 그래핀계 조성물의 점도는 rotational viscometer (Brookfield DV-II)로 25℃에서 측정하였을 때, 10Pa·s였다.
[제조예 4]
상기 제조예 2에서 그래핀 산화물(스탠다드 그래핀 Co. Hummer’s 법으로 제조) 0.6g 사용한 것을 제외하고는 동일하게 사용하였다. 제조된 그래핀계 조성물의 점도는 rotational viscometer (Brookfield DV-II)로 25℃에서 측정하였을 때, 5Pa·s였다.
[제조예 5]
상기 제조예 2에서 그래핀 산화물(스탠다드 그래핀 Co. Hummer’s 법으로 제조) 0.1g 사용한 것을 제외하고는 동일하게 사용하였다. 제조된 그래핀계 조성물의 점도는 rotational viscometer (Brookfield DV-II)로 25℃에서 측정하였을 때, 15Pa·s였다.
[제조예 6]
상기 제조예 2에서 그래핀 산화물(스탠다드 그래핀 Co. Hummer’s 법으로 제조) 3g 사용한 것을 제외하고는 동일하게 사용하였다. 제조된 그래핀계 조성물의 점도는 rotational viscometer (Brookfield DV-II)로 25℃에서 측정하였을 때, 15Pa·s였다.
[제조예 7]
상기 제조예 2에서 디메틸포름아마이드에 10중량%로 용해한 폴리우레탄 용액을 대신하여 디메틸포름아마이드에 20중량%로 용해한 폴리우레탄 용액을 사용한 것을 제외하고는 동일하게 사용하였다. 제조된 그래핀계 조성물의 점도는 rotational viscometer (Brookfield DV-II)로 25℃에서 측정하였을 때, 3Pa·s였다.
[제조예 8]
상기 제조예 2에서 디메틸포름아마이드에 10중량%로 용해한 폴리우레탄 용액을 대신하여 디메틸포름아마이드에 1중량%로 용해한 폴리우레탄 용액을 사용한 것을 제외하고는 동일하게 사용하였다. 제조된 그래핀계 조성물의 점도는 rotational viscometer (Brookfield DV-II)로 25℃에서 측정하였을 때, 30Pa·s였다.
[제조예 9]
상기 제조예 1에서 그래핀계 조성물에 단일벽 탄소나노튜브를 0.75g 더 포함하는 것을 제외하고는 동일하게 사용하였다. 제조된 그래핀계 조성물의 점도는 rotational viscometer (Brookfield DV-II)로 25℃에서 측정하였을 때, 8Pa·s였다.
[비교제조예 1]
그래핀 산화물 1.5g을 증류수 100ml에 분산한 그래핀계 조성물을 제조하였다. 제조된 그래핀계 조성물의 점도는 rotational viscometer (Brookfield DV-II)로 25℃에서 측정하였을 때, 45Pa·s였다.
[비교제조예 2]
상기 제조예 1에서 10중량% 폴리에틸렌글리콜 수용액을 대신하여 클로로포름에 10중량% 폴리메틸메타크릴레이트를 용해한 용액을 사용한 것을 제외하고는 동일하게 사용하였다. 제조된 그래핀계 조성물의 점도는 rotational viscometer (Brookfield DV-II)로 25℃에서 측정하였을 때, 38Pa·s였다.
[비교제조예 3]
상기 제조예 1에서 10중량% 폴리에틸렌글리콜 수용액을 대신하여 10중량% 폴리아크릴산 수용액을 사용한 것을 제외하고는 동일하게 사용하였다. 제조된 그래핀계 조성물의 점도는 rotational viscometer (Brookfield DV-II)로 25℃에서 측정하였을 때, 28Pa·s였다.
[비교제조예 4]
상기 제조예 2에서 10중량% 폴리우레탄 용액을 대신하여 디메틸포름아마이드에 10중량% 폴리스티렌을 용해한 용액을 사용한 것을 제외하고는 동일하게 사용하였다. 제조된 그래핀계 조성물의 점도는 rotational viscometer (Brookfield DV-II)로 25℃에서 측정하였을 때, 41Pa·s였다.
[비교제조예 5]
상기 제조예 1에서 10중량% 폴리에틸렌글리콜 수용액을 대신하여 톨루엔에 10중량% 폴리에틸렌을 용해한 용액을 사용한 것을 제외하고는 동일하게 사용하였다. 제조된 그래핀계 조성물의 점도는 rotational viscometer (Brookfield DV-II)로 25℃에서 측정하였을 때, 36Pa·s였다.
[비교제조예 6]
상기 제조예 1에서 10중량% 폴리에틸렌글리콜 수용액을 대신하여 클로로포름에 10중량% 폴리티오펜을 용해한 용액을 사용한 것을 제외하고는 동일하게 사용하였다. 제조된 그래핀계 조성물의 점도는 rotational viscometer (Brookfield DV-II)로 25℃에서 측정하였을 때, 47Pa·s였다.
[실시예 1]
상기 제조예 1로 제조된 그래핀계 조성물을 방사노즐 직경 250 μm인 방사노즐을 사용하여 25 ℃에서 습식 방사하였다. 토출속도를 0.1 m/min으로 25 ℃의 물과 에탄올이 3:1중량비로 혼합된 수용액과 염화칼슘(CaCl2)의 혼합용액인 응고액 속으로 방사하고 0.1 m/min으로 권취하였다. 권취사를 수세하여 잔류 염화칼슘을 제거한 후 건조시키고, 적외선램프로 온도를 70 ℃로 조절하여 1.3 배 열연신하였다.
[실시예 2]
상기 제조예 1로 제조된 그래핀계 조성물을 노즐과 연결된 방사용액 공급장치에 공급한다. 그래핀계 조성물을 4ml/hr 공급속도로 공급하고, 노즐 내경의 크기는 0.5㎜의 것을 사용하였으며, 인가전압 25kV, 방사노즐과 집전체와의 방사거리 18㎝, 온도 30℃, 상대습도 60%의 방사 분위기에서 전기방사를 실시하였다.
[실시예 3]
상기 제조예 2로 제조된 그래핀계 조성물을 방사노즐 직경 250 μm인 방사노즐을 사용하여 25 ℃에서 습식 방사하였다. 토출속도를 0.1 m/min으로 25 ℃의 디메틸포름아마이드, 에틸아세테이트 및 아세톤을 중량비 1:1:1로 혼합한 혼합용액 응고액 속으로 방사하고 0.1 m/min으로 권취하였다. 권취사를 수세하여 잔류 응고액을 제거한 후 건조시키고, 적외선램프로 온도를 70 ℃로 조절하여 1.3 배 열연신하였다.
[실시예 4]
상기 실시예 1에서 그래핀계 조성물을 제조예 3으로 제조된 것을 사용한 것을 제외하고는 동일하게 실시하였다.
[실시예 5]
상기 실시예 1에서 그래핀계 조성물을 제조예 4로 제조된 것을 사용한 것을 제외하고는 동일하게 실시하였다.
[실시예 6]
상기 실시예 1에서 그래핀계 조성물을 제조예 5로 제조된 것을 사용한 것을 제외하고는 동일하게 실시하였다.
[실시예 7]
상기 실시예 1에서 그래핀계 조성물을 제조예 6으로 제조된 것을 사용한 것을 제외하고는 동일하게 실시하였다.
[실시예 8]
상기 실시예 3에서 그래핀계 조성물을 제조예 7로 제조된 것을 사용한 것을 제외하고는 동일하게 실시하였다.
[실시예 9]
상기 실시예 3에서 그래핀계 조성물을 제조예 8로 제조된 것을 사용한 것을 제외하고는 동일하게 실시하였다.
[실시예 10]
상기 실시예 1에서 그래핀계 조성물을 제조예 9로 제조된 것을 사용한 것을 제외하고는 동일하게 실시하였다.
[비교예 1]
상기 실시예 1에서 그래핀계 조성물을 비교제조예 1로 제조된 것을 사용한 것을 제외하고는 동일하게 실시하였다. 상기 비교제조예 1의 용액은 겔화가 발생하여 방사가 불가능하였다.
[비교예 2]
상기 실시예 1에서 그래핀계 조성물을 비교제조예 2로 제조된 것을 사용한 것을 제외하고는 동일하게 실시하였다.
[비교예 3]
상기 실시예 1에서 그래핀계 조성물을 비교제조예 3으로 제조된 것을 사용한 것을 제외하고는 동일하게 실시하였다.
[비교예 4]
상기 실시예 3에서 그래핀계 조성물을 비교제조예 4로 제조된 것을 사용한 것을 제외하고는 동일하게 실시하였다.
[비교예 5]
상기 실시예 1에서 그래핀계 조성물을 비교제조예 5로 제조된 것을 사용하고, 응고액을 에틸아세테이트와 아세톤을 1:1중량비로 혼합한 혼합용액을 사용한 것을 제외하고는 동일하게 실시하였다.
[비교예 6]
상기 실시예 1에서 그래핀계 조성물을 비교제조예 6으로 제조된 것을 사용하고, 응고액을 에틸아세테이트와 아세톤을 1:1중량비로 혼합한 혼합용액을 사용한 것을 제외하고는 동일하게 실시하였다.
[실험예 1] 그래핀계 조성물의 액정성 측정
도 3에 도시된 바와 같이 액정성은 용액의 농도를 0.2~1중량%로 맞춘 후 편광현미경에서 시료를 편광판사이에 배치한 후 관측하면 배향성을 관찰 할 수 있다. 또 농도가 증가 할수록 용액이 점점 풀네마틱 상으로 관측이 되는 것을 확인 할 수 있다.
[실험예 2]
1. 액정복합탄성섬유의 전기전도도 측정
실시예 1 내지 실시예 8 및 비교예 1 내지 2의 액정복합탄성섬유의 전기전도도는 ㈜에이아이티 사의 CMT-SR1000N을 이용하여, 4-point probe 측정방법을 이용하였다.
2. 인성강도
인스트론(Instron) 5565(인스트론사제, 미국)를 이용하여, ASTM D 885의 규정에 따라 표준 상태(20℃, 65% 상대습도)하에서 250mm의 시료 길이, 300mm/분의 인장속도 및 80turns/m의 조건으로 강신도를 측정하였다.
인성강도(Toughness)(g/d) =
Figure PCTKR2018000499-appb-I000004
3. 탄성(탄성 모듈러스)
인장 실험에서 얻어진 starin-stress곡선의 초기 기울기로부터 인장 탄성율 (탄성 모듀러스)을 구하였다.
4. 방사성
방사성을 하기 판단 기준으로 평가를 실시하였다.
○ : 섬유 끊김 등 트러블도 없고, 권취 가능.
△ : 가끔 섬유 끊김은 있지만, 규정된 권취 속도로 권취 가능.
X : 규정된 권취 속도로 권취 불가능.
상기 실시예 1 내지 10으로 제조된 우수한 방사성을 가져 습식방사 및 전기방사로 제조되어도 우수함 물성을 가진 섬유가 제조되며, 상기 제조된 액정복합탄성섬유는 우수한 전기전도도, 인성강도 및 탄성을 가지는 것을 확인할 수 있었다.
또한, 본 발명의 실시예로 제조된 액정복합탄성섬유는 극성기를 갖는 고분자가 그래핀계 물질 층간에 인터칼레이션 또는 화학반응하여 분산됨 따라 수소결합 또는 공유결합을 유도하여 상분리가 없는 방사용액을 제조할 수 있었다. 또한, 상기 그래핀계 조성물 내에 그래핀계 물질이 0.8 중량%이상으로 포함되더라도 비교예 1 대비 점도가 감소하여 방사성이 우수한 섬유가 제조되는 것을 확인할 수 있었다.
특히, 본 발명에 따른 상기 극성기를 갖는 고분자가 폴리우레탄일 경우, 더욱 우수한 전기전도도, 인성강도 및 탄성을 갖는 액정복합탄성섬유가 제조되는 것을 확인할 수 있었다.
또한, 본 발명에 따른 그래핀계 조성물에 탄소나노튜브를 더 포함하여 제조될 경우 인장강도가 현저히 향상되는 것을 확인할 수 있었다.
또한, 본 발명의 극성기를 갖는 고분자가 아닌 다른 고분자를 사용한 비교예의 경우는 점도가 유지되거나, 미미하게 감소하는 것을 확인하였다. 또한, 이에 따라 비교예는 매우 낮은 전기전도도, 인성강도 및 탄성을 가지는 것을 확인하였다.
이상과 같이 본 발명에서는 특정된 사항들과 한정된 실시예를 통해 그래핀계 액정 분산액, 액정복합탄성섬유 및 이의 제조방법이 설명되었으나, 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.
따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.

Claims (15)

  1. a) 극성기를 갖는 고분자를 포함하는 고분자 용액에 그래핀계 물질을 분산 또는 화학반응시켜 상기 극성기를 갖는 고분자가 그래핀계 물질에 인터칼레이션된 그래핀계 조성물을 준비하는 단계; 및
    b) 상기 그래핀계 조성물을 방사하여 액정복합탄성섬유를 얻는 단계;
    를 포함하는 액정복합탄성섬유의 제조방법.
  2. 제 1항에 있어서,
    상기 그래핀계 조성물은 액정성을 갖는 것인 액정복합탄성섬유의 제조방법.
  3. 제 1항에 있어서,
    상기 그래핀계 조성물은 탄소나노튜브를 더 포함하는 액정복합탄성섬유의 제조방법.
  4. 제 3항에 있어서,
    상기 그래핀계 물질과 탄소나노튜브는 1: 0.1 내지 1:1중량비인 액정복합탄성섬유의 제조방법.
  5. 제 1항에 있어서,
    상기 그래핀계 조성물 총 중량에 대하여, 그래핀계 물질 0.8 내지 10중량% 포함하는 액정복합탄성섬유의 제조방법.
  6. 제 1항에 있어서,
    상기 고분자 용액은 총 중량에 대하여, 극성기를 갖는 고분자 1 내지 40중량% 포함하는 액정복합탄성섬유의 제조방법.
  7. 제 1항에 있어서,
    상기 방사는 습식 방사 또는 전기 방사인 액정복합탄성섬유의 제조방법.
  8. 제 1항에 있어서,
    상기 극성기를 갖는 고분자는 폴리알킬렌글리콜계, 폴리우레탄계 및 폴리비닐알코올계에서 선택되는 어느 하나 또는 둘 이상의 고분자인 액정복합탄성섬유의 제조방법.
  9. 제 8항에 있어서,
    상기 a)단계에서 반응성 관능기를 포함하는 폴리우레탄계 고분자는 상기 그래핀계 물질과 공유결합을 형성하는 단계;를 더 포함하는 액정복합탄성섬유의 제조방법.
  10. 제 1항 내지 제9항에서 선택되는 어느 한 항의 제조방법으로 제조된 액정복합탄성섬유.
  11. 그래핀계 물질 층간에 극성기를 갖는 고분자가 삽입되어 그래핀계 물질과 수소결합 또는 공유결합된 액정복합탄성섬유.
  12. 제11항에 있어서,
    상기 그래핀계 물질은 탄소나노튜브를 더 포함하여 복합화 된 것인 액정복합탄성섬유.
  13. 제 11항에 있어서,
    상기 그래핀계 물질과 상기 탄소나노튜브는 1: 0.1 내지 1:1중량비로 복합화된 액정복합탄성섬유.
  14. 제 11항에 있어서,
    상기 그래핀계 물질과 상기 극성기를 갖는 고분자는 1: 0.1 내지 1:1,000 중량비로 결합된 액정복합탄성섬유.
  15. 그래핀계 물질과 극성기를 갖는 고분자가 수소결합 또는 공유결합되고, 인터칼레이션되며, 하기 식 1을 만족하는 점도를 갖는 그래핀계 액정 분산액.
    [식 1]
    Figure PCTKR2018000499-appb-I000005
    상기 식 1에 있어서, η1은 그래핀계 물질과 용매만 혼합하여 분산시킨 점도이고, η2는 그래핀계 물질과 고분자 용액을 혼합하여 분산시킨 점도이다.
PCT/KR2018/000499 2017-01-10 2018-01-10 그래핀계 액정 분산액, 액정복합탄성섬유 및 이의 제조방법 WO2018131897A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/476,344 US20210047496A1 (en) 2017-01-10 2018-01-10 Graphene-Based Liquid Crystal Dispersion Liquid, Liquid Crystal Composite Elastic Fiber and Method for Preparing Same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0003311 2017-01-10
KR20170003311 2017-01-10

Publications (1)

Publication Number Publication Date
WO2018131897A1 true WO2018131897A1 (ko) 2018-07-19

Family

ID=62840516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/000499 WO2018131897A1 (ko) 2017-01-10 2018-01-10 그래핀계 액정 분산액, 액정복합탄성섬유 및 이의 제조방법

Country Status (3)

Country Link
US (1) US20210047496A1 (ko)
KR (1) KR101966109B1 (ko)
WO (1) WO2018131897A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11106064B2 (en) * 2018-06-15 2021-08-31 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Tuning the polar anchoring strength by doping graphene flakes and resulting accelerated electro-optic switching in liquid crystal devices
US20210112669A1 (en) * 2019-10-09 2021-04-15 National Taiwan University Of Science And Technology Conductive slurry and plating method using the same
CN111636117B (zh) * 2020-06-16 2022-09-02 广东石油化工学院 一种强韧聚氨酯纳米复合纤维的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110031826A (ko) * 2009-09-21 2011-03-29 성균관대학교산학협력단 그라핀/바이오 고분자 나노섬유 복합체 및 이의 제조방법
KR20110101352A (ko) * 2010-03-08 2011-09-16 한국과학기술원 액정성을 가지는 그래핀 조성물 및 그의 제조방법
KR101182380B1 (ko) * 2011-03-15 2012-09-12 한양대학교 산학협력단 그라핀 및 탄소나노튜브를 포함하는 하이브리드 고분자 복합 섬유 및 이의 제조 방법
KR20120105179A (ko) * 2011-03-15 2012-09-25 한양대학교 산학협력단 그라핀 복합 섬유 및 이의 제조 방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110078577A (ko) * 2009-12-31 2011-07-07 지씨에스커뮤니케이션(주) 팽창 흑연을 이용한 폴리우레탄 전도성 나노복합체의 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110031826A (ko) * 2009-09-21 2011-03-29 성균관대학교산학협력단 그라핀/바이오 고분자 나노섬유 복합체 및 이의 제조방법
KR20110101352A (ko) * 2010-03-08 2011-09-16 한국과학기술원 액정성을 가지는 그래핀 조성물 및 그의 제조방법
KR101182380B1 (ko) * 2011-03-15 2012-09-12 한양대학교 산학협력단 그라핀 및 탄소나노튜브를 포함하는 하이브리드 고분자 복합 섬유 및 이의 제조 방법
KR20120105179A (ko) * 2011-03-15 2012-09-25 한양대학교 산학협력단 그라핀 복합 섬유 및 이의 제조 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
POTTS, JEFFREY R.: "Graphene-based polymer nanocomposites", POLYMER, vol. 52, 21 December 2010 (2010-12-21), pages 5 - 25, XP027568561 *

Also Published As

Publication number Publication date
KR20180082364A (ko) 2018-07-18
US20210047496A1 (en) 2021-02-18
KR101966109B1 (ko) 2019-04-08

Similar Documents

Publication Publication Date Title
WO2018131897A1 (ko) 그래핀계 액정 분산액, 액정복합탄성섬유 및 이의 제조방법
WO2021080159A1 (ko) 유기 이온 전도성 폴리머 겔 탄성체 및 이의 제조방법
WO2018131896A1 (ko) 액정복합탄소섬유 및 이의 제조방법
WO2014204282A1 (ko) 탄소섬유용 폴리아크릴로니트릴계 전구체 섬유 및 그 제조방법
WO2021125798A1 (ko) 맥신 섬유 및 이의 제조방법
Maccaferri et al. Rubbery nanofibers by co-electrospinning of almost immiscible NBR and PCL blends
WO2019182331A1 (ko) 그래핀 복합 섬유 및 그 제조 방법
KR20100105179A (ko) 가요성 투명 전극 및 그의 제조방법
WO2014196689A1 (ko) 비대칭성 폴리비닐리덴플루오라이드 중공사막의 제조방법 및 이로부터 제조된 중공사막
Andreatta et al. Processing of conductive polyaniline-UHMW polyethylene blends from solutions in non-polar solvents
WO2015147550A1 (ko) 고분자 전해질막, 이를 포함하는 막-전극 어셈블리 및 연료전지
WO2019225848A1 (ko) 아라미드 나노 섬유 분산액의 제조방법
WO2017086609A1 (ko) 내재적 미세기공성 고분자를 이용한 다공성 탄소구조체 및 이를 포함하는 전지용 전극
WO2020080897A1 (ko) 시아노에틸 기 함유 중합체를 포함하는 비수전해질 전지 세퍼레이터용 분산제, 비수전해질 전지 세퍼레이터, 및 비수전해질 전지
WO2019132456A1 (ko) 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자
JPH05331306A (ja) 多孔質フィルム、その製造法およびその用途
WO2024128530A1 (ko) 기압을 이용한 고분자 분리막의 제조 방법
Armentano et al. Processing and properties of poly (ε-caprolactone)/carbon nanofibre composite mats and films obtained by electrospinning and solvent casting
WO2023080715A1 (ko) 탄소복합섬유의 제조 방법 및 탄소나노섬유
CN115537964B (zh) 一种改性电气石聚乳酸熔喷料及其制备方法和应用
WO2020101106A1 (ko) 발포용 생분해성 수지의 유변물성 증대를 위한 선택적 이온결합성 사슬 연장제
WO2021066438A1 (ko) 아라미드 나노섬유를 포함하는 고분자 복합소재 및 이의 제조방법
WO2021085877A1 (ko) 전기방사 매트를 이용한 금속 증착 기반 연신성 전극 및 그의 제조방법
WO2020091524A1 (ko) 탄소섬유용 아크릴로니트릴계 공중합체
KR101683727B1 (ko) Pzt-pvdf 나노섬유 복합 필름 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18738491

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18738491

Country of ref document: EP

Kind code of ref document: A1