WO2018131679A1 - マーカ搭載用ユニットおよびその製造方法 - Google Patents

マーカ搭載用ユニットおよびその製造方法 Download PDF

Info

Publication number
WO2018131679A1
WO2018131679A1 PCT/JP2018/000640 JP2018000640W WO2018131679A1 WO 2018131679 A1 WO2018131679 A1 WO 2018131679A1 JP 2018000640 W JP2018000640 W JP 2018000640W WO 2018131679 A1 WO2018131679 A1 WO 2018131679A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
hole
convex portion
marker
mounting unit
Prior art date
Application number
PCT/JP2018/000640
Other languages
English (en)
French (fr)
Inventor
康幸 福田
共啓 斉藤
Original Assignee
株式会社エンプラス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エンプラス filed Critical 株式会社エンプラス
Priority to CN201880006233.9A priority Critical patent/CN110168308A/zh
Priority to EP18739185.9A priority patent/EP3540368A4/en
Priority to US16/473,977 priority patent/US20190344526A1/en
Publication of WO2018131679A1 publication Critical patent/WO2018131679A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/263Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer having non-uniform thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/16Making multilayered or multicoloured articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0074Production of other optical elements not provided for in B29D11/00009- B29D11/0073
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/325Layered products comprising a layer of synthetic resin comprising polyolefins comprising polycycloolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/266Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0073Optical laminates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • B29K2995/002Coloured
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • B29K2995/0026Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/402Coloured
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2551/00Optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/005Arrays characterized by the distribution or form of lenses arranged along a single direction only, e.g. lenticular sheets

Definitions

  • the present invention relates to a marker mounting unit and a manufacturing method thereof.
  • an AR marker is generally used as the marker.
  • a marker in which a lenticular lens is arranged on a black stripe pattern has been reported (Patent Document 1).
  • the marker is generally called a RAS (Rotation Angle Scale) marker.
  • the visual marker is usually arranged on a substrate, and the substrate is provided with a plurality of detection reference portions that serve as marks of areas to be detected by the camera, and is used as a marker unit.
  • An example of the marker unit is shown in FIG. 8A and 8B are schematic views of a marker unit on which a RAS marker is mounted.
  • FIG. 8A is a top view and
  • FIG. 8B is a cross-sectional view in the VV direction.
  • the marker unit 6 includes a lower substrate 41 having a black upper surface, an intervening substrate 42 having a white upper surface, a transparent upper substrate 40, and a RAS marker 43.
  • the interposer substrate 42 is disposed on the lower substrate 41.
  • the upper substrate 40 and the RAS marker 43 are disposed on the intervening substrate 42.
  • the intervening substrate 42 and the upper substrate 40 have circular through holes at corresponding locations, and the black surface of the lower substrate 41 is exposed to form a circular detection reference portion 412. Yes.
  • the upper substrate 40 has a rectangular through hole 401 between adjacent detection reference portions 412, and the RAS marker 43 is on the intervening substrate 42 and the rectangular through hole 401 of the upper substrate 40. Located in the inner area.
  • an object of the present invention is to provide a marker mounting unit that is a unit for mounting a marker such as a RAS marker, for example, and can detect the detection reference portion with high accuracy.
  • the marker mounting unit of the present invention comprises: Including a first substrate and a second substrate; A laminated body in which the second substrate is laminated on the first substrate;
  • the first substrate has a convex portion serving as a detection reference portion,
  • the second substrate has a through hole at a location corresponding to the convex portion of the first substrate,
  • the convex portion of the first substrate is inserted into the through hole of the second substrate,
  • On the upper surface side of the laminated body there is no detectable gap between the outer periphery of the convex portion of the first substrate and the inner periphery of the through hole of the second substrate.
  • the marker unit of the present invention is Including a marker mounting unit and a marker,
  • the marker mounting unit is the marker mounting unit of the present invention,
  • the marker is arranged on the marker mounting unit.
  • the first manufacturing method of the marker mounting unit of the present invention is the manufacturing method of the marker mounting unit of the present invention, and the following (A1) step and (A2) step, or (B1) step and (B2). Including a process.
  • A1) Forming a molding material for the first substrate to form a first substrate having a convex portion serving as a detection reference portion
  • A2) Molding the second substrate around the convex portion of the first substrate
  • the second manufacturing method of the marker mounting unit of the present invention is a manufacturing method of the marker mounting unit of the present invention, A preparation step of separately preparing a first substrate having a convex portion serving as a detection reference portion and a second substrate having a through hole at a location corresponding to the convex portion of the first substrate; A laminating step of forming a laminate in which the second substrate is laminated on the first substrate by inserting the convex portion of the first substrate into the through hole of the second substrate; The size of the convex portion of the first substrate and the size of the through hole of the second substrate is set to a size satisfying the condition (1).
  • the marker mounting unit of the present invention includes the outer periphery of the convex portion and the outer periphery of the convex portion, in which the convex portion serving as the detection reference portion of the first substrate is inserted into the through hole of the second substrate. There is no detectable gap between the inner periphery of the through hole. Thereby, the marker mounting unit of the present invention can detect the detection reference portion with high accuracy.
  • FIG. 1A is a top view showing an example of the marker mounting unit according to the first embodiment
  • FIG. 1B is a cross-sectional view of the marker mounting unit as viewed from the II direction in FIG.
  • FIG. 2 is a top view showing a modification of the marker mounting unit according to the first embodiment
  • FIG. 3 is a cross-sectional view illustrating an example of a marker mounting unit according to the second embodiment
  • FIG. 4 is a cross-sectional view illustrating an example of a marker mounting unit according to the third embodiment.
  • FIG. 5 (A) is a top view showing an example of the marker unit of Embodiment 4
  • FIG. 5 (B) is a cross-sectional view of the marker unit viewed from the II-II direction of FIG. 5 (A).
  • FIG. 5 (A) is a top view showing an example of the marker unit of Embodiment 4
  • FIG. 5 (B) is a cross-sectional view of the marker unit viewed from the II-II direction of FIG. 5 (
  • FIG. 5C is a top view showing a modification of the marker unit of the fourth embodiment
  • FIG. 5D is a cross-sectional view of the marker unit viewed from the III-III direction of FIG. 5C.
  • 6A is a plan view showing an example of the marker mounting unit of the fifth embodiment
  • FIG. 6B is a cross-sectional view of the marker unit viewed from the IV-IV direction of FIG. 6A. is there.
  • FIG. 7 is a cross-sectional view illustrating an example of a marker mounting unit according to the sixth embodiment.
  • FIG. 8A is a top view showing an example of a conventional marker unit
  • FIG. 8B is a cross-sectional view of the marker unit viewed from the direction VV in FIG. 8A.
  • the inventors of the present invention have intensively studied that the detection accuracy of the detection reference unit 412 is not sufficient for the conventional marker unit 6 shown in FIG.
  • the surface of the upper substrate 40 when used as a reference, the surface of the lower substrate 41 having the detection reference portion 412 exists at a position extremely lower than the reference, thereby affecting the detection accuracy.
  • the inventors have found a form in which a convex portion is provided on the lower substrate, the upper surface of the convex portion is used as the detection reference, and the convex portion of the lower substrate is inserted into the through hole of the upper substrate. It was.
  • the upper surface of the upper substrate becomes the upper surface of the mounted marker.
  • the upper surface of the mounted marker (upper surface of the upper substrate) and the upper surface of the detection reference portion (upper surface of the convex portion) in the marker mounting unit are closer to each other.
  • the distance of the mounted marker and the distance of the detection reference unit are closer from the detection device such as a camera, and thereby the detection condition of the marker and the detection condition of the detection reference unit by the detection device. And become closer.
  • the axial deviation of the rotating shaft is improved, and the detection accuracy of the detection reference section can be improved.
  • the marker mounting unit even if a convex portion is provided on the lower substrate, further improvement in detection accuracy is desired. Therefore, the present inventors conducted further research. As a result, when the detection reference portion is detected by the detection device, if there is a gap that can be detected by the detection device between the convex portion of the lower substrate and the through hole of the upper substrate around it, It has been found that this gap affects the detection accuracy. Therefore, the marker mounting unit according to the present invention includes a laminate in which a convex portion serving as a detection reference portion of the first substrate is inserted into the through hole of the second substrate, and an outer periphery of the convex portion and the through hole. There is no detectable gap between the inner circumference. Thereby, the marker mounting unit of the present invention can detect the detection reference portion with high accuracy.
  • the distance between the outer periphery of the convex portion of the first substrate and the inner periphery of the through hole of the second substrate is 0.22 mm or less.
  • the gap between the outer periphery of the convex portion of the first substrate and the inner periphery of the through hole of the second substrate cannot be detected.
  • Gap (A), and the length of the gap (A) in the same plane direction and the length of the convex portion (C) satisfy A ⁇ 0.05 ⁇ C.
  • the upper surface of the convex portion of the first substrate is different from the upper surface around the through hole of the second substrate in at least one of hue, brightness, and saturation.
  • the upper surface of the convex portion of the first substrate is formed of a colored member.
  • the second substrate is a substrate having a cylindrical portion protruding upward around the through hole, and the convex portion of the first substrate is the second substrate. Is inserted into the through hole in the cylindrical portion.
  • the stacked body further includes a third substrate, the third substrate is stacked on the second substrate, and the cylindrical portion of the second substrate. And a cylindrical portion of the second substrate is inserted into the through hole of the third substrate.
  • the first substrate is a substrate whose upper surface of the convex portion is black
  • the second substrate is a transparent substrate or a substrate whose upper surface is white.
  • the first substrate is a substrate whose upper surface of the convex portion is black
  • the second substrate is a substrate whose upper surface is white
  • the third substrate is A transparent substrate.
  • the marker mounting unit of the present invention for example, on the upper surface side of the laminate,
  • the gap between the outer periphery of the convex portion of the first substrate and the inner periphery of the through hole of the second substrate is a non-detectable gap (A)
  • A non-detectable gap
  • B the length of the gap (A) in the same plane direction, and the gap (B ) Satisfies A ⁇ B.
  • the marker mounting unit of the present invention further includes a marker, for example.
  • the molding material of the first substrate is a black molding material
  • the molding material of the second substrate is a transparent molding material or a white molding material.
  • the molding material is a resin material.
  • the second substrate is a substrate having a cylindrical portion protruding upward around the through hole
  • the preparation step further, separately preparing a third substrate having a through hole at a location corresponding to the cylindrical portion of the second substrate
  • a through-hole of the third substrate is inserted into a cylindrical portion of the second substrate, thereby forming a stacked body in which the first substrate, the second substrate, and the third substrate are stacked.
  • the sizes of the convex portion of the first substrate, the cylindrical portion and the through hole of the second substrate, and the through hole of the third substrate are set to satisfy the condition (2).
  • Embodiment 1 is an example of the marker mounting unit of the present invention.
  • FIG. 1 shows an example of a two-layer substrate as an example of the marker mounting unit of the present embodiment.
  • 1A is a plan view of the marker mounting unit 1
  • FIG. 1B is a cross-sectional view of the marker mounting unit 1 as viewed from the II direction in FIG. 1A.
  • the marker mounting unit 1 includes a lower substrate 11 serving as the first substrate and an upper substrate 10 serving as the second substrate. This is a laminate in which the upper substrate 10 is laminated.
  • the lower substrate 11 has circular convex portions 112 at four corners, and the upper surface 112a of the convex portion 112 serves as a detection reference portion.
  • the upper substrate 10 has a circular through hole 102 at a location corresponding to the convex portion 112 of the lower substrate 11.
  • the upper substrate 10 has a marker arrangement region 101 between, for example, circular through holes 102.
  • the marker arrangement area 101 surrounded by a dotted line is an area that becomes a marker such as RAS, for example, and the upper surface of the marker arrangement area 101 on the upper substrate 10 also serves as the upper surface of the marker, for example.
  • the convex portion 112 of the lower substrate 11 is inserted into the circular through hole 102 of the upper substrate 10, and on the upper surface side of the laminated body, the outer periphery of the convex portion 112 of the lower substrate 11 and the upper substrate There is no detectable gap between the inner circumferences of the ten through holes 102.
  • the marker mounting unit 1 there should be a detectable gap between the outer periphery of the convex portion 112 of the lower substrate 11 and the inner periphery of the through hole 102 of the upper substrate 10 on at least the upper surface side of the laminate.
  • the marker mounting method is not particularly limited.
  • the marker when the marker is a RAS marker or the like, it corresponds to the marker placement region 101 on the lower surface of the upper substrate 10.
  • the marker arrangement region 101 on the upper substrate 10 can be used as a marker such as a RAS marker.
  • the “arrangement of the marker” may be a form in which a physically independent marker is placed on the marker mounting unit, or in a predetermined region of a member constituting the marker mounting unit, By adding a marker function such as a RAS marker, the meaning of a mode in which the region is used as a marker is included.
  • the convex portion is inserted into the through-hole means a positional relationship between the through-hole and the convex portion.
  • the upper substrate having the through-hole and the convex It is not limited to a state in which the lower substrate having a portion is separately prepared and the latter convex portion is inserted into the former through-hole, and the molding material of the other substrate is not limited to one substrate. It may be in a state of being in close contact.
  • the marker mounting unit 1 there is no detectable gap between the outer periphery of the convex portion 112 of the lower substrate 11 and the inner periphery of the through hole 102 of the upper substrate 10 on the upper surface side of the laminate.
  • “No detectable gap” means, for example, that there is no physical gap between the outer periphery of the convex portion 112 of the lower substrate 11 and the inner periphery of the through hole 102 of the upper substrate 10. This means that even if a gap exists, the gap cannot be detected by the detection device.
  • the detection device is a CCD camera
  • the distance (observation distance) between the marker mounting unit 1 and the detection device is 1 m
  • the angle of view is 25 °
  • the size of the marker mounting unit 1 is 40 mm. Since the resolution is 0.22 mm / pixel, for example, if the resolution is 0.22 mm or less, the gap cannot be detected in the pixels of the detection device. For this reason, when a clearance gap exists, it is a clearance gap of 0.22 mm or less, 0.18 mm or less, and 0.12 mm or less, for example.
  • the convex portion 112 of the lower substrate 11 and the through hole 102 of the upper substrate 10 have substantially the same shape as the former shape and the latter shape, and the former plane (for example, in the plane direction).
  • the area of the upper surface 112a) and the hole area of the latter through hole 102 are substantially the same. “The area is substantially the same” means, for example, a range where the plane area of the protrusion 112 is 0.8 to 1 times the hole area of the through hole 102.
  • the shape of the plane of the protrusion 112 of the lower substrate 11 is not particularly limited, and examples thereof include a circle and a square.
  • the circular shape is, for example, a perfect circle or an ellipse, and a perfect circle is preferable.
  • the square is, for example, a polygon such as a triangle or a quadrangle, and the quadrangle is, for example, a square or a rectangle.
  • the shape of the convex 112 is, for example, the same columnar shape as the upper surface 112a, and is, for example, a cylindrical shape, a prismatic shape, or the like.
  • the positional relationship between the upper surface 112a of the convex portion 112 of the lower substrate 11 and the upper surface of the upper substrate 10 is not particularly limited.
  • the upper surface 112a of the convex portion 112 of the lower substrate 11 may be, for example, a flat position with respect to the upper surface of the upper substrate 10, or may be a position lower or higher than the upper surface of the upper substrate 10. In the former case, it can be said that there is no step between the upper surface 112a of the convex portion 112 of the lower substrate 11 and the upper surface of the upper substrate 10, and in the latter case, the upper surface of the convex portion 112 of the lower substrate 11 It can also be said that there is a step between 112 a and the upper surface of the upper substrate 10.
  • the difference in height between the upper surface 112a of the convex portion 112 of the lower substrate 11 and the upper surface of the upper substrate 10 is not particularly limited.
  • the height from the reference to the upper surface of the convex portion of the lower substrate 11 is set to 1.
  • the relative value of the height is, for example, 0.8 to 1.2.
  • the number and position of the detection reference portions 112 a are not particularly limited, and when the marker (not shown) is mounted on the marker mounting unit 1, for example, the detection reference portion 112 a The number and position of the region to be detected by the camera may be used.
  • the marker mounting unit 1 of FIG. 1 there are four detection reference portions 112 a, and the positions of the detection reference portions 112 a are, for example, near both end portions in the longitudinal direction of the marker arrangement region 101.
  • the number and positions of the detection reference portions 112a are not limited to this example.
  • Another example of the detection reference portion 112a in the marker mounting unit of the present invention is shown in the top view of FIG.
  • the marker mounting unit 1 may have, for example, four detection reference parts 112 a for one marker arrangement region 101.
  • the upper substrate 10 has a through hole 102 at a location corresponding to the convex portion 112 of the lower substrate 11.
  • the shape of the through hole 102 is not particularly limited, and is, for example, the same shape as that of the convex portion 112. Specific examples include a circle and a square.
  • the number and position of the through holes 102 into which the convex portions 112 are inserted are not particularly limited, and correspond to the convex portions 112 in the lower substrate 11, so that the description of the convex portions 112 described above can be used.
  • the shape, number, and position of the marker placement region 101 on which the marker is mounted are not particularly limited, and can be appropriately determined according to the shape, number, and position of the marker mounted on the marker mounting unit 1. .
  • the upper substrate 10 may be, for example, a transparent substrate or a reflective substrate.
  • the color combination of the lower substrate 11 and the upper substrate 10 is not particularly limited, and when the marker is mounted on the marker mounting unit 1 and detected, the upper surface 112a of the convex portion 112 and the mounted marker are used as the detection reference portion. It only needs to be detectable.
  • the following combinations can be given for the colors of the respective substrates.
  • the upper surface 112 a of the convex portion 112 may be black, and the entire upper surface including the convex portion 112 of the lower substrate 11 or the entire lower substrate 11 may be black.
  • the color of the upper substrate 10 is not particularly limited, and is, for example, a transparent substrate or a substrate having a white upper surface.
  • the lower substrate 11 and the upper substrate 10 are, for example, resin substrates.
  • the manufacturing method of the marker mounting unit 1 is not particularly limited, and as described above, on the upper surface side of the laminate, the outer periphery of the convex portion 112 of the lower substrate 11 and the inner periphery of the through hole 102 of the upper substrate 10 There should be no detectable gap between the two.
  • the manufacturing method of the marker mounting unit 1 is not particularly limited, and examples thereof include the manufacturing method of the present invention as described above.
  • a double molding method or an insert molding method in which different materials are combined and molded integrally can be used as the manufacturing method.
  • the double mold method is also referred to as, for example, a different material molding method, and is also referred to as a two-color molding method when different materials are different materials.
  • Examples of the method for manufacturing the marker mounting unit 1 include a first manufacturing method including the following steps (A1) and (A2). (A1) Forming a molding material for the first substrate to form a first substrate having a convex portion serving as a detection reference portion (A2) Molding the second substrate around the convex portion of the first substrate Forming the second substrate on the first substrate by molding the molding material of the second substrate in a state in which the materials are in close contact with each other;
  • the first manufacturing method will be described with an example. First, a molding material for the lower substrate 11 that is the first substrate and a molding material for the upper substrate 10 that is the second substrate are prepared.
  • Examples of the molding material for the lower substrate 11 include black resin.
  • An example of the molding material for the upper substrate 10 is a transparent resin.
  • a white resin is an example of a molding material for the reflective substrate.
  • molding resins for these various substrates include polycarbonate (PC), acrylic resin (for example, polymethyl methacrylate (PMMA)), cycloolefin polymer (COP), and cycloolefin copolymer (COC).
  • PC polycarbonate
  • acrylic resin for example, polymethyl methacrylate (PMMA)
  • the desired colored resin which added the coloring agent for example, masterbatch, dry color, etc.
  • a core having a cavity corresponding to the lower substrate 11 and a cavity corresponding to the upper substrate 10 is prepared, and the molding material of the lower substrate 11 is put into the cavity corresponding to the shape of the lower substrate 11. Molding is performed (primary molding). Then, the lower substrate 11 molded in the core is transferred to a cavity corresponding to the shape of the upper substrate 10, and a molding material for the upper substrate 10 is put therein to mold the upper substrate 10 (secondary molding).
  • the lower substrate 11 having the convex portion 112 is formed, and then the upper substrate 10 is in close contact with the upper surface of the lower substrate 11 and the periphery of the convex portion 112 of the lower substrate 11. Molded. Thereby, the marker mounting unit 1 can be obtained.
  • the 2nd manufacturing method containing the following (B1) process and (B2) process is mention
  • B1 Forming a molding material for the second substrate to form a second substrate having a through hole
  • B2) The first surface is formed on the lower surface of the second substrate and the through hole of the second substrate.
  • Forming the first substrate under the second substrate by molding the molding material of the first substrate in a state in which the molding material of the substrate is in close contact with the substrate;
  • the second manufacturing method is the same as the first manufacturing method, for example, except that the upper substrate 10 is primarily formed and the lower substrate 11 is secondarily formed.
  • the manufacturing method of the marker mounting unit 1 is not limited to such a method.
  • the lower substrate 11 and the upper substrate 10 are separately formed, and the upper substrate 10 is formed on the convex portion 112 of the lower substrate 11.
  • the upper substrate 10 may be laminated on the lower substrate 11 by fitting the through holes 102.
  • Embodiment 2 is another example of the marker mounting unit of the present invention.
  • FIG. 3 shows an example of a three-layer substrate as an example of the marker mounting unit of the present embodiment.
  • FIG. 3 is a cross-sectional view of the marker mounting unit 2.
  • the description of Embodiment 1 can be used unless otherwise indicated.
  • the marker mounting unit 2 includes a lower substrate 11 serving as the first substrate, an upper substrate 10 serving as the second substrate, and an intervening substrate 20.
  • the upper substrate 10 is laminated with the intervening substrate 20 interposed therebetween.
  • the intervening substrate 20 has a circular through hole 201 at a location corresponding to the convex portion 112 of the lower substrate 11.
  • the convex portion 112 of the lower substrate 11 is inserted into the circular through hole 201 of the intervening substrate 20 and the circular through hole 102 of the upper substrate 10, and on the upper surface side of the stacked body, the lower substrate 11. There is no detectable gap between the outer periphery of the convex portion 112 and the inner periphery of the through hole 102 of the upper substrate 10.
  • the marker mounting unit 2 includes an outer periphery of the convex portion of the first substrate (the convex portion 112 of the lower substrate 11) and an inner periphery of the through hole of the second substrate (the upper substrate 10) on at least the upper surface side of the laminate.
  • the inner circumference of the through-hole 102 is not required to have a detectable gap. For example, it is preferable that there is no gap in the entire area facing the outer circumference of the former and the inner circumference of the latter. In addition, it is preferable that no gap exists in the entire facing region between the outer periphery of the former and the inner periphery of the through hole of the interposition substrate.
  • the marker mounting unit 1 it is preferable that there is no detectable gap between the outer periphery of the convex portion 112 of the lower substrate 11 and the inner periphery of the through hole 201 of the interposer substrate 20 as described above. If the gap exists, the size is not particularly limited, and the description in the first embodiment can be used.
  • the convex portion 112 of the lower substrate 11 and the through hole 201 of the interposer substrate 20 have substantially the same shape as the former shape and the latter shape, and the former plane (for example, in the plane direction).
  • the area of the upper surface 112a) and the hole area of the latter through hole 201 are substantially the same. “The area is substantially the same” means, for example, that the area of the plane of the convex portion 112 is 0.8 to 1 times the hole area of the through hole 201.
  • the intervening substrate 20 has a through hole 201 at a location corresponding to the convex portion 112 of the lower substrate 11.
  • the shape of the through hole 201 is not particularly limited, and is, for example, the same shape as the shape of the convex portion 112. Specific examples include a circle and a square.
  • the number and position of the through holes 201 are not particularly limited and correspond to the convex portions 112 in the lower substrate 11, so that the description of the convex portions 112 in the first embodiment can be used.
  • the upper substrate 10 is, for example, a transparent substrate
  • the intervening substrate 20 is, for example, a reflective substrate.
  • the combination of the colors of the lower substrate 11, the intervening substrate 20 and the upper substrate 10 is not particularly limited, and when the marker mounting unit 2 detects a marker by mounting it, the upper surface 112 a of the convex 112 as the detection reference portion and It is only necessary that the mounted marker can be detected.
  • the color of the intervening substrate 20 can be set according to, for example, the upper substrate 10, the lower substrate 11, and the marker to be mounted.
  • the color of the upper surface of the intervening substrate 20 is, for example, a color different from the color of the upper surface 112a of the convex portion 112 of the lower substrate 11 that is the detection reference portion.
  • the color of the upper surface of the intervening substrate 20 and the color of the upper surface 112a of the convex portion 112 of the lower substrate 11 are, for example, a combination that easily causes a contrast difference.
  • the following combinations can be given for the colors of the respective substrates.
  • the upper surface 112 a of the convex portion 112 may be black, and the entire upper surface including the convex portion 112 of the lower substrate 11 or the entire lower substrate 11 may be black.
  • the intervening substrate 20 can also be referred to as a reflective substrate for the marker to be mounted, for example.
  • the upper surface of the intervening substrate 20 may be white, and the entire intervening substrate 20 may be white.
  • the upper substrate 10 is, for example, a transparent substrate.
  • the lower substrate 11, the intermediate substrate 20, and the upper substrate 10 are, for example, resin substrates.
  • the intervening substrate 20 (for example, white) having a color combination that easily causes a contrast difference is formed around the convex portion 112 (for example, black) of the lower substrate 11 that is the detection reference portion. Be placed. For this reason, the detection accuracy of the detection reference part 112a can be further improved.
  • the manufacturing method of the marker mounting unit of the present embodiment is not particularly limited, and is the same as, for example, the first embodiment.
  • the marker mounting unit 2 can be manufactured as follows, for example. First, after forming the lower substrate 11 having the convex portions 112 using the molding material of the lower substrate 11, the intermediate substrate 20 is molded on the lower substrate 11 using the molding material of the intermediate substrate 20. Further, the upper substrate 10 may be formed on the intervening substrate 20 by using the molding material of the upper substrate 10 with respect to the laminate of the lower substrate 11 and the intervening substrate 20.
  • the interposition substrate 20 and the upper substrate 10 are laminated on the lower substrate 11 in this order, and the interposition substrate 20 and the upper substrate 10 are not spaced on the outer periphery of the convex portion 112 of the lower substrate 11. Can be formed in close contact with each other.
  • the manufacturing method of the marker mounting unit 2 is not limited to such a method.
  • the lower substrate 11, the intermediate substrate 20, and the upper substrate 10 are separately formed, and the convex portion 112 of the lower substrate 11 is formed.
  • the interposer substrate 20 and the upper substrate 10 may be laminated on the lower substrate 11 by fitting the through hole 201 of the interposer substrate 20 and the through hole 102 of the upper substrate 10 to each other.
  • Embodiment 3 is another example of the marker mounting unit of the present invention, and is an embodiment in which an interposer substrate serving as a second substrate has a cylindrical portion.
  • FIG. 4 shows an example of the marker mounting unit of the present embodiment.
  • FIG. 4 is a cross-sectional view of the marker mounting unit 2. In this embodiment, the description of Embodiments 1 and 2 can be used unless otherwise indicated.
  • the marker mounting unit 2 includes a lower substrate 11 serving as the first substrate and an interposer substrate 20 serving as the second substrate, and the upper substrate 10 is further disposed on the interposer substrate 20. It is the laminated body laminated
  • the intervening substrate 20 has a circular through hole 201 at a position corresponding to the convex portion 112 of the lower substrate 11, and has a cylindrical portion 202 protruding upward around the through hole 201.
  • the upper substrate 10 has a circular through hole at a location corresponding to the cylindrical portion 202 of the intervening substrate 20.
  • the convex portion 112 of the lower substrate 11 is inserted into the through hole 201 in the cylindrical portion 202 of the interposer substrate 20, and the outer periphery of the convex portion 112 of the lower substrate 11 is formed on the upper surface side of the laminated body. There is no detectable gap between the inner periphery of the cylindrical portion 202 of the intervening substrate 20 (that is, the inner periphery of the through hole 201).
  • the cylindrical portion 202 of the interposer substrate 20 is inserted into the through hole of the upper substrate 10.
  • the marker mounting unit 2 is located at least on the upper surface side of the laminate between the outer periphery of the convex portion 112 of the lower substrate 11 and the inner periphery of the cylindrical portion 202 of the interposer substrate 20 (that is, the inner periphery of the through hole 201).
  • a gap may or may not exist between the outer periphery of the cylindrical portion 202 of the interposer substrate 20 and the inner periphery of the through hole of the upper substrate 10.
  • the positional relationship between the upper surface 112a of the convex portion 112 of the lower substrate 11 and the upper surface of the upper substrate 10 is not particularly limited.
  • the upper surface 112a of the convex portion 112 of the lower substrate 11 may be, for example, a flat position with respect to the upper surface of the upper substrate 10, or may be a position lower or higher than the upper surface of the upper substrate 10. In the former case, it can be said that there is no step between the upper surface 112a of the convex portion 112 of the lower substrate 11 and the upper surface of the upper substrate 10, and in the latter case, the upper surface of the convex portion 112 of the lower substrate 11 It can also be said that there is a step between 112 a and the upper surface of the upper substrate 10.
  • the difference in height between the upper surface 112a of the convex portion 112 of the lower substrate 11 and the upper surface of the upper substrate 10 is not particularly limited.
  • the entire marker mounting unit 2 when the height from the lower surface of the interposer substrate 20 to the upper surface of the upper substrate 10 is 1, the reference to the upper surface 112a of the convex portion 112 of the lower substrate 11
  • the relative value of the height is, for example, 0.8 to 1.2.
  • the positional relationship between the upper surface 112a of the convex portion 112 of the lower substrate 11 and the upper surface 200a of the cylindrical portion 202 of the interposer substrate 20 is not particularly limited.
  • the upper surface 112a of the convex portion 112 of the lower substrate 11 may be, for example, a flat position with respect to the upper surface 200a of the cylindrical portion 202 of the interposer substrate 20, or lower than the upper surface 200a of the cylindrical portion 202 of the interposer substrate 20. It may be a position or a high position. In the former case, it can be said that there is no step between the upper surface 112a of the convex portion 112 of the lower substrate 11 and the upper surface 200a of the cylindrical portion 202 of the interposer substrate 20.
  • the convex portion of the lower substrate 11 is convex. It can also be said that there is a step between the upper surface 112a of the portion 112 and the upper surface 200a of the cylindrical portion 202 of the interposer substrate 20.
  • the difference in height between the upper surface 112a of the convex portion 112 of the lower substrate 11 and the upper surface 200a of the cylindrical portion 202 of the intervening substrate 20 is not particularly limited. In the entire marker mounting unit 2, when the height from the lower surface of the intermediate substrate 20 to the upper surface 200 a of the cylindrical portion 202 of the intermediate substrate 20 is 1, the convex portion 112 of the lower substrate 11 from the reference.
  • the relative value of the height to the upper surface 112a is, for example, 0.8 to 1.2.
  • the convex portion 112 of the lower substrate 11 and the inside of the cylindrical portion 202 of the interposer substrate 20 have, for example, the former shape and the latter shape substantially the same shape, and the former plane (for example, convex The cross section in the plane direction of the part 112, specifically, the area of the upper surface 112a) and the area of the plane of the latter internal space (for example, the internal space of the cylinder part 202 and the cross section in the plane direction) are substantially Are preferably the same.
  • the phrase “substantially the same area” means, for example, that the planar area of the convex portion 112 is 0.8 to 1 times the planar area of the internal space of the cylindrical portion 202.
  • the cylindrical portion 202 of the interposer substrate 20 and the inside of the through hole of the upper substrate 10 have, for example, the former shape and the latter shape substantially the same shape, and the former (the cylindrical portion of the interposer substrate 20). 202) is substantially the same as the area of the plane surrounded by the outer periphery of the latter and the area of the plane of the latter internal space (for example, the internal space of the through hole of the upper substrate 10 and the cross section in the plane direction). It is preferable. “The area is substantially the same” means, for example, that the plane area of the cylindrical portion 202 of the interposer substrate 20 is 0.8 to 1 times the plane area of the internal space of the through hole of the upper substrate 10. is there.
  • the shape of the cylindrical portion 202 of the intervening substrate 20 is not particularly limited, and for example, the inside thereof is the same shape as the shape of the convex portion 112.
  • Examples of the shape of the cylindrical portion 202 include a hollow cylindrical shape and a hollow rectangular tube shape.
  • the inner wall of the cylindrical portion 202 may be perpendicular to the surface direction or may be tapered. In the latter case, the taper has a shape that spreads from top to bottom.
  • the upper substrate 10 is, for example, a transparent substrate
  • the intervening substrate 20 is, for example, a reflective substrate.
  • the combination of the colors of the lower substrate 11, the intervening substrate 20 and the upper substrate 10 is not particularly limited, and when the marker mounting unit 2 detects a marker by mounting it, the upper surface 112 a of the convex 112 as the detection reference portion and It is only necessary that the mounted marker can be detected.
  • the color of the intervening substrate 20 can be set according to, for example, the upper substrate 10, the lower substrate 11, and the marker to be mounted.
  • the color of the upper surface of the intervening substrate 20 is, for example, a color different from the color of the upper surface 112a of the convex portion 112 of the lower substrate 11 that is the detection reference portion.
  • the color of the upper surface of the intervening substrate 20 and the color of the upper surface 112a of the convex portion 112 of the lower substrate 11 are, for example, a combination that easily causes a contrast difference.
  • the following combinations can be given for the colors of the respective substrates.
  • the upper surface 112 a of the convex portion 112 may be black, and the entire upper surface including the convex portion 112 of the lower substrate 11 or the entire lower substrate 11 may be black.
  • the intervening substrate 20 can also be referred to as a reflective substrate for the marker to be mounted, for example.
  • the upper surface of the intervening substrate 20 may be white, and the entire intervening substrate 20 may be white.
  • the upper substrate 10 is, for example, a transparent substrate.
  • the lower substrate 11, the intermediate substrate 20, and the upper substrate 10 are, for example, resin substrates.
  • the intervening substrate 20 (for example, white) having a color combination that easily causes a contrast difference is formed around the convex portion 112 (for example, black) of the lower substrate 11 that is the detection reference portion. Be placed. For this reason, the detection accuracy of the detection reference part 112a can be further improved.
  • the manufacturing method of the marker mounting unit of the present embodiment is not particularly limited, and is the same as, for example, the first and second embodiments.
  • the marker mounting unit 2 can be manufactured as follows, for example. First, after forming the lower substrate 11 having the convex portions 112 using the molding material of the lower substrate 11, the intermediate substrate 20 is molded on the lower substrate 11 using the molding material of the intermediate substrate 20. Thereby, the interposition board
  • the upper substrate 10 may be formed on the intervening substrate 20 by using the molding material of the upper substrate 10 with respect to the laminate of the lower substrate 11 and the intervening substrate 20, or separately formed.
  • the upper substrate 10 may be laminated on the intervening substrate 20.
  • the through hole of the upper substrate 10 may be fitted into the cylindrical portion 202 of the interposer substrate 20.
  • the manufacturing method of the marker mounting unit 2 is not limited to such a method.
  • the lower substrate 11, the intermediate substrate 20, and the upper substrate 10 are separately formed, and the convex portion 112 of the lower substrate 11 is formed.
  • the through hole 201 of the interposer substrate 20 is fitted into the tube substrate 202, and the through hole of the upper substrate 10 is fitted into the cylindrical portion 202 of the interposer substrate 20, so that the interposer substrate 20 and the upper substrate 10 are stacked on the lower substrate 11. May be.
  • the fourth embodiment is an example of a marker mounting unit that further includes a marker. Since this embodiment includes the marker, it is also referred to as an example of a marker unit.
  • FIG. 5 shows an example of the marker unit of the present embodiment.
  • 5 (A) and 5 (B) are schematic views of the marker unit 3 in which the marker 33 is mounted on the marker mounting unit 2 in FIG. 3, and
  • FIG. 5 (A) is a top view of the marker unit 3.
  • FIG. 5B is a cross-sectional view of the marker unit 3 viewed from the II-II direction in FIG.
  • the descriptions of Embodiments 1 to 3 can be incorporated unless otherwise specified.
  • the marker unit 3 is on the interposer substrate 20 in the marker mounting unit 2 of FIG. 3, and the marker 33 is placed in the marker arrangement region 101 of the upper substrate 10. Is arranged.
  • the marker mounting unit of the present invention and the marker unit of the present invention are characterized by the configuration of the detection reference section, and the types of markers to be mounted are not limited at all.
  • a so-called RAS marker using a lenticular lens is exemplified, but the present invention is not limited to this, and other two-dimensional pattern codes may be used.
  • the two-dimensional pattern code is not particularly limited, and examples thereof include an AR marker and a QR marker. Examples of the AR marker include ARToolKit, ARTag, CyberCode, ARToolKitPlus, and the like.
  • the marker mounting unit of the present invention and the marker unit of the present invention are characterized by the configuration of the detection reference section, and the position of the mounted marker is not limited at all.
  • the position of the mounted marker is not limited at all.
  • the upper substrate 10 when the marker is mounted at the center, for example, the upper substrate 10 has the marker placement area at a corresponding location, and the marker is placed in the marker placement area. That's fine.
  • the upper surface of the marker arrangement region of the upper substrate also serves as the upper surface of the marker.
  • the marker is, for example, a RAS marker or the like
  • the detected portion of the marker (for example, a detectable stripe pattern, dot pattern, or the like) is formed on the lower surface of the upper substrate and corresponding to the marker arrangement region. )
  • the upper substrate, the lower substrate and optionally the intervening substrate are arranged as described above. As a result, the portion of the upper substrate that faces the marker placement region becomes the marker in the marker unit of the present invention.
  • the present invention is not limited to this, for example, in the upper substrate, the marker placement region is a through hole, and in the marker mounting unit, on the lower substrate or optionally on the intervening substrate, You may arrange
  • the upper surface of the marker is, for example, a height position equivalent to the upper surface of the convex portion that is the detection reference portion.
  • the marker 33 shown in FIG. 5 An example of the marker 33 shown in FIG. 5 will be described below. In the present invention, the marker is not limited to the following description.
  • the marker 33 includes a lens body having a plurality of lens units, and the plurality of lens units are continuously arranged in the planar direction.
  • a direction in which the plurality of lens units are arranged is referred to as an arrangement direction or a width direction, and a direction perpendicular to the arrangement direction in a planar direction is referred to as a length direction.
  • the lens unit in the lens body examples include a cylindrical lens.
  • the lens body is, for example, a translucent member.
  • the translucent member is not particularly limited, and examples thereof include resin and glass.
  • the resin include polycarbonate, acrylic resins such as polymethyl methacrylate (PMMA), cycloolefin polymer (COP), cycloolefin copolymer (COC), and the like.
  • the lens body has a light collecting portion having a function of collecting light on one surface side, and a plurality of detected portions on the other surface side.
  • the detected portion is, for example, a line extending along the length direction of the lens body, and a stripe pattern is formed by a plurality of lines on the other surface side of the lens body.
  • the plurality of detected parts are projected onto the upper surface side of the lens body as optically detectable images, for example, and can be detected optically.
  • the detected portion only needs to be optically detectable, and examples thereof include a colored film.
  • the color of the colored film is not particularly limited and is, for example, black.
  • the colored film is, for example, a coating film and can be formed of a paint.
  • the paint is not particularly limited, and may be a liquid paint or a powder paint, for example.
  • the coating film can be formed by applying and / or solidifying the paint, for example. Examples of the coating method include spray coating and screen printing. Examples of the solidification method include drying of the liquid paint, curing of a curing component (for example, a radically polymerizable compound) in the paint, and baking of the powder paint.
  • the pattern formed by the detected part is not limited at all.
  • the pattern is, for example, the striped pattern
  • the darkness of the color forming the striped pattern may be, for example, the same or light and shade.
  • the interposition substrate 20 on which the marker 33 is arranged plays a role of a reflecting plate.
  • substrate 20 located is that the upper surface is white.
  • 5A and 5B show an example of the marker unit 3 in which the marker 33 is mounted on the marker mounting unit 2 in FIG. 3, but the present invention is not limited to this.
  • 5C and 5D are schematic views of the marker unit 3 in which the marker 33 is mounted on the marker mounting unit 2 in FIG.
  • the marker unit 3 is on the interposer substrate 20 in the marker mounting unit 2 of FIG. 4, and the marker 33 is placed in the marker placement region 101 of the upper substrate 10. It may be arranged.
  • the marker 33 may be arranged on the lower substrate 11 and in the marker arrangement region 101 of the upper substrate 10.
  • the fifth embodiment shows a modified example composed of a three-layer substrate, as in the third embodiment, as another example of the marker mounting unit of the present invention.
  • 6A and 6B are schematic views of the marker mounting unit 4 of the present embodiment, FIG. 6A is a plan view, and FIG. 6B is a cross-sectional view as viewed from the IV-IV direction of FIG.
  • the marker mounting unit 2 has the entire circumference of the upper surface 112 a of the convex portion 112 of the lower substrate 11 on the upper surface side of the upper surface of the cylindrical portion 202 of the interposer substrate 20. It is surrounded by 200a, and the entire periphery thereof is surrounded by the upper substrate 10.
  • the entire circumference of the upper surface 112a of the convex portion 112 of the lower substrate 11 is surrounded by the upper surface 200a of the cylindrical portion 202 of the interposer substrate 20 on the upper surface side.
  • the entire circumference is not surrounded by the upper substrate 10.
  • the detection reference portion 112a on the upper surface of the convex portion 112 in the marker mounting unit 4 is generally detected by detecting the edges of the convex portion 112 and the substrate (the intervening substrate 20 in FIG. 6) surrounding the entire circumference. For this reason, in the case of a three-layer substrate, for example, a substrate (intervening substrate 20) surrounding the entire circumference of the convex portion 112 is surrounded by another substrate (upper substrate 10). Not required.
  • the marker mounting unit has a gap between the outer periphery of the convex portion of the first substrate and the inner periphery of the through hole of the second substrate, but the gap cannot be detected. Raise the form.
  • FIG. 7 is a schematic view of the marker mounting unit 5 of the present embodiment, (A) is a cross-sectional view seen from the same direction as FIG. 4, and (B) is the dotted line of (A). It is the fragmentary sectional view which extracted the enclosed area
  • the description of Embodiment 3 can be incorporated unless otherwise indicated.
  • the marker mounting unit 5 includes a lower substrate 11 serving as the first substrate and an intervening substrate 20 serving as the second substrate, similarly to the marker mounting unit 2 illustrated in FIG.
  • This is a laminate in which the upper substrate 10 is further laminated on the intervening substrate 20.
  • a gap 50A is formed between the outer periphery of the convex portion 112 of the lower substrate 11 and the inner periphery of the cylindrical portion 202 of the interposer substrate 20 (that is, the inner periphery of the through hole 201).
  • the gap 50A may be a gap that cannot be detected.
  • a gap 50B may exist between the outer periphery of the cylindrical portion 202 of the interposer substrate 20 and the inner periphery of the through hole of the upper substrate 10, for example, as shown in FIG.
  • the marker mounting unit of the present invention has no detectable gap between the outer periphery of the convex portion of the first substrate and the inner periphery of the through hole of the second substrate on the upper surface side of the laminate. It is characterized by that.
  • the outer periphery of the convex portion of the first substrate and the through holes of the second substrate are formed. It is possible to effectively prevent a gap from being generated between the inner periphery and the inner periphery.
  • the method for manufacturing the marker mounting unit of the present invention is not limited to this. For example, by forming each substrate separately and inserting the respective convex portions, through holes, etc., the above-mentioned conditions are satisfied. Can be satisfied.
  • the marker mounting unit 5 of the present embodiment is manufactured by, for example, preparing each substrate separately and inserting the convex portion into the through hole, the size of the convex portion 112 of the lower substrate 11,
  • the size of the through-hole 201 of the intervening substrate 20 By adjusting the size of the through-hole 201 of the intervening substrate 20, the size of the cylindrical portion 202 of the intervening substrate 20, and the size of the through-hole of the upper substrate 10, the influence on detection due to the occurrence of a gap is prevented. Is possible.
  • the gap (A) 50A between the convex portion 112 of the lower substrate 11 and the through-hole 201 of the interposer substrate 20 is a non-detectable gap, for example, the size of the convex portion (circular Is preferably 5% or less of the diameter C of the convex portion 112 (A ⁇ 0.05 ⁇ C).
  • the gap A is preferably 0.04 ⁇ C or less and 0.03 ⁇ C or less.
  • the gap (B) 50B between the cylindrical portion 202 of the interposer substrate 20 and the through hole 102 of the upper substrate 10 preferably satisfies A ⁇ B in relation to the gap 50A, for example.
  • the respective substrates are separately formed and prepared, and the protrusion 112 to the through hole 201 in the cylindrical portion 202 is prepared.
  • the marker mounting unit 5 is formed by inserting the cylindrical portion 202 into the through hole 102 of the upper substrate 10, there is a gap between the convex portion 112 of the lower substrate 11 and the through hole 201 of the interposer substrate 20. The occurrence of a detectable gap is suppressed. For this reason, the detection accuracy of the convex part 112 can also be improved.
  • the marker mounting unit according to the present invention includes, as described above, in the stacked body in which the convex portion serving as the detection reference portion of the first substrate is inserted into the through hole of the second substrate. There is no detectable gap between the outer periphery of the part and the inner periphery of the through hole. Thereby, the marker mounting unit of the present invention can detect the detection reference portion with high accuracy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Wire Bonding (AREA)
  • Details Of Rigid Or Semi-Rigid Containers (AREA)

Abstract

例えば、RASマーカ等のマーカを搭載するためのユニットであって、検出基準部を精度よく検出できるマーカ搭載用ユニットを提供する。 本発明のマーカ搭載用ユニット(1)は、第1基板と第2基板とを含み、前記第1基板の上に、前記第2基板が積層された積層体であり、前記第1基板は、検出基準部となる凸部を有し、前記第2基板は、前記第1基板の凸部と対応する箇所に貫通孔を有し、前記第1基板の凸部は、前記第2基板の貫通孔に挿入されており、前記積層体の上面側において、前記第1基板の凸部の外周と、前記第2基板の貫通孔の内周との間に、検出可能な隙間が存在しないことを特徴とする。

Description

マーカ搭載用ユニットおよびその製造方法
 本発明は、マーカ搭載用ユニットおよびその製造方法に関する。
 拡張現実感(Augmented Reality、以下、「AR」ともいう)およびロボティクス等の分野において、物体の位置および姿勢等を認識するために、いわゆる視認マーカが使用されている。前記マーカとしては、例えば、ARマーカが一般的である。また、前記マーカの他の例としては、例えば、黒の縞模様の上に、レンチキュラレンズが配置されたマーカが報告されている(特許文献1)。前記マーカは、一般的に、RAS(Rotation Angle Scale;回転角度)マーカと呼ばれる。カメラ等の検出機器によって、前記マーカに現れる像を検出すると、前記マーカに対する前記カメラの視認角度に依存して、前記像は、濃淡パターンが変化する。このため、前記マーカの濃淡パターンを検出することによって、前記マーカの回転角度を判断することができる。
 前記視認マーカは、通常、基板上に配置されており、前記基板には、前記カメラが検出すべき領域の目印となる複数の検出基準部が設けられ、マーカユニットとして使用されている。前記マーカユニットの一例を、図8に示す。図8は、RASマーカが搭載されたマーカユニットの概略図であり、図8(A)は、上面図、図8(B)は、V-V方向の断面図である。
 マーカユニット6は、上表面が黒色の下基板41と、上表面が白色の介在基板42と、透明の上基板40と、RASマーカ43とを含み、下基板41の上に、介在基板42が配置され、介在基板42の上に、上基板40とRASマーカ43とが配置されている。介在基板42と上基板40とは、それぞれ対応する箇所に、円状の貫通孔を有しており、下基板41の黒色の表面が露出することで、円形の検出基準部412が形成されている。また、上基板40は、隣り合う検出基準部412の間に、角形の貫通孔401を有し、RASマーカ43は、介在基板42上であり、且つ、上基板40の角形の貫通孔401の内部領域に配置されている。
特開2012-145559号公報
 マーカユニット6について、RASマーカ43の像431を検出する前提として、検出基準部412を精度良く検出することが重要となるが、検出精度が十分ではないという問題がある。
 そこで、本発明は、例えば、RASマーカ等のマーカを搭載するためのユニットであって、前記検出基準部を精度よく検出できるマーカ搭載用ユニットを提供することを目的とする。
 前記目的を達成するために、本発明のマーカ搭載用ユニットは、
第1基板と第2基板とを含み、
前記第1基板の上に、前記第2基板が積層された積層体であり、
前記第1基板は、検出基準部となる凸部を有し、
前記第2基板は、前記第1基板の凸部と対応する箇所に貫通孔を有し、
前記第1基板の凸部は、前記第2基板の貫通孔に挿入されており、
前記積層体の上面側において、前記第1基板の凸部の外周と、前記第2基板の貫通孔の内周との間に、検出可能な隙間が存在しないことを特徴とする。
 本発明のマーカユニットは、
マーカ搭載用ユニットとマーカとを含み、
前記マーカ搭載用ユニットが、前記本発明のマーカ搭載用ユニットであり、
前記マーカ搭載用ユニットに、前記マーカが配置されていることを特徴とする。
 本発明のマーカ搭載用ユニットの第1の製造方法は、前記本発明のマーカ搭載用ユニットの製造方法であり、下記(A1)工程および(A2)工程、または、(B1)工程および(B2)工程を含むことを特徴とする。
(A1)第1基板の成形材料を成形して、検出基準部となる凸部を有する第1基板を形成する工程
(A2)前記第1基板の凸部の周囲に、前記第2基板の成形材料を密着させた状態で、前記第2基板の成形材料を成形して、前記第1基板の上に前記第2基板を形成する工程
(B1)第2基板の成形材料を成形して、貫通孔を有する第2基板を形成する工程
(B2)前記第2基板の下表面および前記第2基板の貫通孔の内部に、前記第1基板の成形材料を密着させた状態で、前記第1基板の成形材料を成形して、前記第2基板の下に前記第1基板を形成する工程
 本発明のマーカ搭載用ユニットの第2の製造方法は、前記本発明のマーカ搭載用ユニットの製造方法であり、
検出基準部となる凸部を有する第1基板と、前記第1基板の凸部と対応する箇所に貫通孔を有する第2基板とを、それぞれ別個に準備する準備工程と、
前記第1基板の凸部を、前記第2基板の貫通孔に挿入することによって、前記第1基板の上に、前記第2基板が積層された積層体を形成する積層工程とを含み、
前記第1基板の凸部と前記第2基板の貫通孔の大きさを、条件(1)を満たす大きさに設定することを特徴とする。
条件(1): 前記積層体の上面側において、
 同一の平面方向における、前記第1基板の凸部の外周と前記第2基板の貫通孔の内周との間の隙間(A)の長さ、および、前記凸部(C)の長さが、A≦0.05×Cを満たす
 本発明のマーカ搭載用ユニットは、前述のように、前記第1基板の検出基準部となる凸部が前記第2基板の貫通孔に挿入された前記積層体において、前記凸部の外周と前記貫通孔の内周との間に、検出可能な隙間が存在しない。これによって、本発明のマーカ搭載用ユニットは、前記検出基準部を精度よく検出できる。
図1(A)は、実施形態1のマーカ搭載用ユニットの一例を示す上面図であり、図1(B)は、図1(A)のI-I方向から見たマーカ搭載用ユニットの断面図である。 図2は、実施形態1のマーカ搭載用ユニットの変形例を示す上面図である。 図3は、実施形態2のマーカ搭載用ユニットの一例を示す断面図である。 図4は、実施形態3のマーカ搭載用ユニットの一例を示す断面図である。 図5(A)は、実施形態4のマーカユニットの一例を示す上面図であり、図5(B)は、図5(A)のII-II方向から見たマーカユニットの断面図であり、図5(C)は、実施形態4のマーカユニットの変形例を示す上面図であり、図5(D)は、図5(C)のIII-III方向から見たマーカユニットの断面図である。 図6(A)は、実施形態5のマーカ搭載用ユニットの一例を示す平面図であり、図6(B)は、図6(A)のIV-IV方向から見たマーカユニットの断面図である。 図7は、実施形態6のマーカ搭載用ユニットの一例を示す断面図である。 図8(A)は、従来のマーカユニットの一例を示す上面図であり、図8(B)は、図8(A)のV-V方向から見たマーカユニットの断面図である。
 本発明者らは、図8に示す従来のマーカユニット6について、検出基準部412の検出精度が十分ではないことについて、鋭意研究を行った。その結果、マーカユニット6において、上基板40の表面を基準とした場合に、検出基準部412を有する下基板41の表面が、前記基準よりも極めて低い位置に存在することで、検出精度に影響を与えているとの着想を得た。そこで、発明者らは、前記下基板に凸部を設け、前記凸部の上表面を前記検出基準とし、前記下基板の凸部を前記上基板の貫通孔に挿入した形態を見出すに到った。この形態のマーカ搭載用ユニットによれば、例えば、マーカを搭載すると、前記上基板の上表面が、前記搭載したマーカの上表面となる。このため、前記搭載したマーカの上表面(上基板の上表面)と、前記マーカ搭載用ユニットにおける前記検出基準部の上表面(前記凸部の上表面)とが、より近い位置になる。このため、カメラ等の検出機器から、前記搭載されたマーカの距離と前記検出基準部の距離とがより近くなり、これによって、検出機器による、前記マーカの検出条件と前記検出基準部の検出条件とがより近くなる。このため、結果として、回転軸の軸ずれが改善され、前記検出基準部の検出精度を向上できる。
 しかしながら、前記マーカ搭載用ユニットにおいて、前記下基板に凸部を設けても、さらなる検出精度の向上が望まれる。そこで、本発明者らは、さらに研究を行った。その結果、前記検出機器により前記検出基準部を検出する際、前記下基板の凸部と、その周囲の前記上基板の貫通孔との間に、前記検出機器によって検出可能な隙間が存在すると、この隙間が検出精度に影響を与えていることを見出した。そこで、本発明のマーカ搭載用ユニットは、前記第1基板の検出基準部となる凸部が前記第2基板の貫通孔に挿入された前記積層体において、前記凸部の外周と前記貫通孔の内周との間に、検出可能な隙間が存在しない。これによって、本発明のマーカ搭載用ユニットは、前記検出基準部を精度よく検出できる。
 本発明のマーカ搭載用ユニットは、例えば、前記第1基板の凸部の外周と、前記第2基板の貫通孔の内周との間の距離が、0.22mm以下である。
 本発明のマーカ搭載用ユニットは、例えば、前記積層体の上面側において、前記第1基板の凸部の外周と、前記第2基板の貫通孔の内周との間の隙間が、検出不可能な隙間(A)であり、同一の平面方向における前記隙間(A)の長さ、および、前記凸部(C)の長さが、A≦0.05×Cを満たす。
 本発明のマーカ搭載用ユニットにおいて、例えば、前記第1基板の凸部の上表面は、前記第2基板の貫通孔の周囲における上表面と、色相、明度および彩度の少なくとも一つが異なる。
 本発明のマーカ搭載用ユニットにおいて、例えば、前記第1基板の凸部の上表面は、着色部材で形成されている。
 本発明のマーカ搭載用ユニットは、例えば、前記第2基板が、前記貫通孔の周囲に、上方向に突出する筒部を有する基板であり、前記第1基板の凸部は、前記第2基板の筒部内の前記貫通孔に挿入されている。
 本発明のマーカ搭載用ユニットにおいて、例えば、前記積層体は、さらに、第3基板を有し、前記第3基板は、前記第2基板の上に積層され、且つ、前記第2基板の筒部に対応する箇所に貫通孔を有し、前記第2基板の筒部は、前記第3基板の貫通孔に挿入されている。
 本発明のマーカ搭載用ユニットにおいて、例えば、前記第1基板は、前記凸部の上表面が黒色の基板であり、前記第2基板は、透明基板または上表面が白色の基板である。
 本発明のマーカ搭載用ユニットにおいて、例えば、前記第1基板は、前記凸部の上表面が黒色の基板であり、前記第2基板は、上表面が白色の基板であり、前記第3基板は、透明基板である。
 本発明のマーカ搭載用ユニットは、例えば、前記積層体の上面側において、
 前記第1基板の凸部の外周と、前記第2基板の貫通孔の内周との間の隙間が、検出不可能な隙間(A)であり、
 前記第2基板の筒部の外周と、前記第3基板の貫通孔との間に隙間(B)を有する場合、同一の平面方向における前記隙間(A)の長さ、および、前記隙間(B)の長さが、A<Bを満たす。
 本発明のマーカ搭載用ユニットは、例えば、さらに、マーカを有する。
 本発明の第1の製造方法は、例えば、前記第1基板の成形材料が、黒色の成形材料であり、前記第2基板の成形材料が、透明の成形材料または白色の成形材料である。
 本発明の第1の製造方法は、例えば、前記成形材料が、樹脂材料である。
 本発明の第2の製造方法は、例えば、前記第2基板が、前記貫通孔の周囲に、上方向に突出する筒部を有する基板であり、
前記準備工程において、さらに、前記第2基板の筒部に対応する箇所に貫通孔を有する第3基板を別個に準備し、
前記積層工程において、前記第3基板の貫通孔を、前記第2基板の筒部に挿入することによって、前記第1基板と前記第2基板と前記第3基板とが積層された積層体を形成し、
前記第1基板の凸部と、前記第2基板の筒部および貫通孔と、前記第3基板の貫通孔との大きさを、条件(2)を満たす大きさに設定する。
条件(2): 前記積層体の上面側において、
 同一の平面方向における、前記隙間(A)の長さ、および、前記第2基板の筒部の外周と前記第3基板の貫通孔との間の隙間(B)の長さが、A<Bを満たす
 つぎに、本発明の実施形態について、図を用いて説明する。本発明は、下記の実施形態によって何ら限定および制限されない。各図において、同一箇所には同一符号を付している。なお、図においては、説明の便宜上、各部の構造は、適宜、簡略化して示す場合があり、各部の寸法比等は、図の条件には制限されない。各実施形態は、特に示さない限り、それぞれを援用できる。
[実施形態1]
 実施形態1は、本発明のマーカ搭載用ユニットの例である。図1に、本実施形態のマーカ搭載用ユニットの一例として、二層の基板で構成される例を示す。図1(A)は、マーカ搭載用ユニット1の平面図であり、図1(B)は、図1(A)のI-I方向から見たマーカ搭載用ユニット1の断面図である。
 図1(A)および(B)に示すとおり、マーカ搭載用ユニット1は、前記第1基板となる下基板11と前記第2基板となる上基板10とを含み、下基板11の上に、上基板10が積層された積層体である。下基板11は、四隅に円状の凸部112を有し、凸部112の上表面112aが検出基準部となる。上基板10は、下基板11の凸部112と対応する箇所に、円状の貫通孔102を有する。上基板10は、例えば、円状の貫通孔102の間に、マーカ配置領域101を有する。点線で囲んだマーカ配置領域101は、例えば、RAS等のマーカになる領域であり、上基板10におけるマーカ配置領域101の上表面は、例えば、前記マーカの上表面を兼ねる。前記積層体において、下基板11の凸部112は、上基板10の円形の貫通孔102に挿入されており、前記積層体の上面側において、下基板11の凸部112の外周と、上基板10の貫通孔102の内周との間に、検出可能な隙間は存在しない。
 マーカ搭載用ユニット1は、前記積層体の少なくとも上面側において、下基板11の凸部112の外周と、上基板10の貫通孔102の内周との間に、検出可能な隙間が存在しなければよいが、例えば、前者の外周と後者の内周との対向領域全体において隙間が存在しないことが好ましい。
 なお、マーカ搭載用ユニット1において、前記マーカの搭載方法は、特に制限されず、例えば、前記マーカがRASマーカ等である場合、上基板10の下表面であって、マーカ配置領域101に対応する領域に、黒縞模様等の被検出部を形成することによって、上基板10におけるマーカ配置領域101を、RASマーカ等のマーカにすることができる。本発明において、「マーカの配置」とは、前記マーカ搭載用ユニットに対して、物理的に独立したマーカを置くという形態でもよいし、前記マーカ搭載用ユニットを構成する部材の所定の領域に、RASマーカ等のマーカ機能を付与することで、前記領域をマーカとする形態の意味も含む。
 本発明において、「凸部が貫通孔に挿入されている」とは、前記貫通孔と前記凸部との位置関係を意味するものであり、例えば、前記貫通孔を有する上基板と、前記凸部を有する下基板とを別個に準備し、前者の貫通孔に後者の凸部を挿入する動作により形成された状態には限定されず、一方の基板に対して、他方の基板の成形材料を密着させて成形した状態でもよい。
 マーカ搭載用ユニット1は、前記積層体の上面側において、下基板11の凸部112の外周と、上基板10の貫通孔102の内周との間は、検出可能な隙間が存在しない。「検出可能な隙間が存在しない」とは、例えば、下基板11の凸部112の外周と、上基板10の貫通孔102の内周との間において、物理的に隙間が存在しないことの他、仮に隙間が存在しても、前記検出機器により検知できない隙間であること等を意味する。具体的には、例えば、検出機器がCCDカメラ、マーカ搭載用ユニット1と前記検出機器との距離(観測距離)が1m、画角が25°、マーカ搭載用ユニット1の大きさが40mmの条件においては、分解能が0.22mm/ピクセルであるため、例えば、0.22mm以下の分解能であれば、隙間は、前記検出機器の画素内で検知できない。このため、仮に隙間が存在する場合、例えば、0.22mm以下、0.18mm以下、0.12mm以下の隙間である。
 下基板11の凸部112と、上基板10の貫通孔102とは、例えば、前者の形状と後者の形状とが、実質的に同じ形状であり、且つ、前者の平面(例えば、平面方向における断面、具体例は、上表面112a)の面積と、後者の貫通孔102の孔面積とが、実質的に同じである。「面積が実質的に同じ」とは、例えば、凸部112の平面の面積が、貫通孔102の孔面積に対して、0.8~1倍の範囲である。
 下基板11の凸部112の平面(例えば、平面方向における断面、具体例は、上表面112a)の形状は、特に制限されず、例えば、円形、角形等があげられる。前記円形は、例えば、真円、楕円等であり、真円が好ましい。前記角形は、例えば、三角形、四角形等の多角形であり、前記四角形は、例えば、正方形、長方形等である。凸部112の形状は、例えば、前記上表面112aと同じ柱状であり、例えば、円柱状、角柱状等である。
 マーカ搭載用ユニット1において、下基板11の凸部112の上表面112aと、上基板10の上表面との位置関係は、特に制限されない。下基板11の凸部112の上表面112aは、例えば、上基板10の上表面に対してフラットな位置でもよいし、上基板10の上表面よりも低い位置または高い位置でもよい。前者の場合、下基板11の凸部112の上表面112aと、上基板10の上表面との間に、段差がないということができ、後者の場合、下基板11の凸部112の上表面112aと、上基板10の上表面との間に、段差があるということもできる。下基板11の凸部112の上表面112aと上基板10の上表面との高さの差は、特に制限されない。マーカ搭載用ユニット1の全体において、上基板10の下表面を基準として、上基板10の上表面までの高さを1とした場合、前記基準から下基板11の凸部の上表面までの高さの相対値は、例えば、0.8~1.2である。
 下基板11において、検出基準部112a(凸部112)の数および位置は、特に制限されず、マーカ搭載用ユニット1にマーカ(図示せず)を搭載した際に、例えば、検出基準部112aが、前記カメラが検出すべき領域の目印となる個数および位置で形成されていればよい。図1のマーカ搭載用ユニット1において、検出基準部112aは、4つであり、検出基準部112aの位置は、例えば、マーカ配置領域101の長手方向の両端部付近である。
 本発明において、検出基準部112aの個数および位置は、この例には制限されない。本発明のマーカ搭載用ユニットにおける、検出基準部112aの他の例を、図2の上面図に示す。図2に示すように、マーカ搭載用ユニット1は、例えば、1つのマーカ配置領域101に対して、4つの検出基準部112aを有してもよい。
 上基板10は、下基板11の凸部112と対応する箇所に、貫通孔102を有する。貫通孔102の形状は、特に制限されず、例えば、凸部112の形状と同じ形状であり、具体例として、円形、角形等があげられる。
 上基板10において、凸部112が挿入される貫通孔102の数および位置は、特に制限されず、下基板11における凸部112に対応することから、前述した凸部112の記載を援用できる。
 上基板10において、前記マーカが搭載されるマーカ配置領域101の形、数および位置は、特に制限されず、マーカ搭載用ユニット1に搭載するマーカの形、数および位置に応じて、適宜決定できる。
 マーカ搭載用ユニット1において、上基板10は、例えば、透明基板でもよいし、反射基板でもよい。
 下基板11と上基板10の色の組合せは、特に制限されず、マーカ搭載用ユニット1にマーカを搭載して検出する際、前記検出基準部として凸部112の上表面112aおよび搭載したマーカを検出可能であればよい。
 それぞれの基板の色は、例えば、以下のような組合せがあげられる。下基板11は、例えば、凸部112の上表面112aが、黒色であり、また、下基板11の凸部112を含む上表面全体または下基板11全体が、黒色でもよい。上基板10の色は、特に制限されず、例えば、透明基板または上表面が白色の基板である。下基板11および上基板10は、例えば、樹脂基板である。
 マーカ搭載用ユニット1の製造方法は、特に制限されず、前述のように、前記積層体の上面側において、下基板11の凸部112の外周と、上基板10の貫通孔102の内周との間に、検出可能な隙間が存在しなければよい。
 マーカ搭載用ユニット1の製造方法としては、特に制限されず、例えば、前述のような本発明の製造方法があげられる。前記製造方法は、例えば、異なる材料を組合せて一体に成形するダブルモールド法、インサート成形法等が利用できる。前記ダブルモールド法は、例えば、異材質成形法ともいい、異なる材料が色の異なる材料の場合、二色成形法ともいう。
 マーカ搭載用ユニット1の製造方法としては、例えば、下記(A1)工程および(A2)工程を含む第1の製造方法があげられる。
(A1)第1基板の成形材料を成形して、検出基準部となる凸部を有する第1基板を形成する工程
(A2)前記第1基板の凸部の周囲に、前記第2基板の成形材料を密着させた状態で、前記第2基板の成形材料を成形して、前記第1基板の上に前記第2基板を形成する工程
 前記第1の製造方法について、例をあげて説明する。まず、第1基板である下基板11の成形材料と、第2基板である上基板10の成形材料とを準備する。
 下基板11の成形材料としては、例えば、黒色樹脂があげられる。上基板10の成形材料としては、例えば、透明樹脂があげられる。また、上基板10を反射基板とする場合、前記反射基板の成形材料としては、例えば、白色樹脂があげられる。これらの各種基板の成形樹脂としては、例えば、ポリカーボネート(PC)、アクリル系樹脂(例えば、ポリメタクリル酸メチル(PMMA))、シクロオレフィンポリマー(COP)、シクロオレフィンコポリマー(COC)等があげられる。また、前記各基板を着色する場合、前記樹脂に目的とする色の着色剤(例えば、マスターバッチ、ドライカラー等)を添加した所望の着色樹脂を、成形材料とすることができる。
 つぎに、下基板11に対応したキャビティと上基板10に対応したキャビティとを有するコアを用意し、下基板11の成形材料を、下基板11の形状に対応したキャビティに入れ、下基板11の成形を行う(一次成形)。そして、前記コア内で成型した下基板11を、上基板10の形状に対応したキャビティに移し、ここに上基板10の成形材料を入れ、上基板10の成形を行う(二次成形)。
 この方法によれば、まず、凸部112を有する下基板11が成形され、つぎに、下基板11の上面と、下基板11の凸部112の周囲とに密着した状態で、上基板10が成形される。これによって、マーカ搭載用ユニット1を得ることができる。
 また、マーカ搭載用ユニット1の製造方法としては、例えば、下記(B1)工程および(B2)工程を含む第2の製造方法があげられる。
(B1)第2基板の成形材料を成形して、貫通孔を有する第2基板を形成する工程
(B2)前記第2基板の下表面および前記第2基板の貫通孔の内部に、前記第1基板の成形材料を密着させた状態で、前記第1基板の成形材料を成形して、前記第2基板の下に前記第1基板を形成する工程
 前記第2の製造方法は、上基板10を一次成形し、下基板11を二次成形する以外は、例えば、前記第1の製造方法と同様である。
 なお、マーカ搭載用ユニット1の製造方法は、このような方法には限定されず、例えば、それぞれ別個に下基板11と上基板10とを成形し、下基板11の凸部112に上基板10の貫通孔102を嵌合させて、下基板11上に上基板10を積層してもよい。
[実施形態2]
 実施形態2は、本発明のマーカ搭載用ユニットの他の例である。図3に、本実施形態のマーカ搭載用ユニットの一例として、三層の基板で構成される例を示す。図3は、マーカ搭載用ユニット2の断面図である。本実施形態において、特に示さない限り、実施形態1の記載を援用できる。
 図3に示すとおり、マーカ搭載用ユニット2は、前記第1基板となる下基板11と、前記第2基板となる上基板10と、さらに、介在基板20とを含み、下基板11の上に、介在基板20を介して、上基板10が積層された積層体である。介在基板20は、上基板10と同様に、下基板11の凸部112に対応する箇所に、円状の貫通孔201を有する。前記積層体において、下基板11の凸部112は、介在基板20の円形の貫通孔201および上基板10の円形の貫通孔102に挿入されており、前記積層体の上面側において、下基板11の凸部112の外周と、上基板10の貫通孔102の内周との間に、検出可能な隙間は存在しない。
 マーカ搭載用ユニット2は、前記積層体の少なくとも上面側において、前記第1基板の凸部(下基板11の凸部112)の外周と、前記第2基板の貫通孔の内周(上基板10の貫通孔102の内周)との間に、検出可能な隙間が存在しなければよいが、例えば、前者の外周と後者の内周との対向領域全体においても、隙間が存在しないことが好ましく、また、前者の外周と前記介在基板の貫通孔の内周との対向領域全体においても、隙間が存在しないことが好ましい。
 マーカ搭載用ユニット1において、下基板11の凸部112の外周と、介在基板20の貫通孔201の内周との間は、前述のように、検出可能な隙間が存在しないことが好ましい。仮に、前記隙間が存在する場合、その大きさは、特に制限されず、前記実施形態1における記載を援用できる。
 下基板11の凸部112と、介在基板20の貫通孔201とは、例えば、前者の形状と後者の形状とが、実質的に同じ形状であり、且つ、前者の平面(例えば、平面方向における断面、具体例は、上表面112a)の面積と、後者の貫通孔201の孔面積とが、実質的に同じであることが好ましい。「面積が実質的に同じ」とは、例えば、凸部112の平面の面積が、貫通孔201の孔面積に対して、0.8~1倍の範囲である。
 介在基板20は、下基板11の凸部112と対応する箇所に、貫通孔201を有する。貫通孔201の形状は、特に制限されず、例えば、凸部112の形状と同じ形状であり、具体例として、円形、角形等があげられる。
 介在基板20において、貫通孔201の数および位置は、特に制限されず、下基板11における凸部112に対応することから、前記実施形態1における凸部112の記載を援用できる。
 マーカ搭載用ユニット2において、上基板10は、例えば、透明基板であり、介在基板20は、例えば、反射基板である。
 下基板11と介在基板20と上基板10の色の組合せは、特に制限されず、マーカ搭載用ユニット2にマーカを搭載して検出する際、前記検出基準部として凸部112の上表面112aおよび搭載したマーカを検出可能であればよい。
 介在基板20の色は、例えば、上基板10、下基板11および搭載するマーカに応じて設定できる。介在基板20の上表面の色は、例えば、前記検出基準部である下基板11の凸部112の上表面112aの色とは異なる色である。また、介在基板20の上表面の色と、下基板11の凸部112の上表面112aの色とは、例えば、コントラスト差が生じやすい組合せであることが好ましい。
 それぞれの基板の色は、例えば、以下のような組合せがあげられる。下基板11は、例えば、凸部112の上表面112aが、黒色であり、また、下基板11の凸部112を含む上表面全体または下基板11全体が、黒色でもよい。介在基板20は、例えば、前記搭載するマーカに対する反射基板ということもできる。介在基板20は、例えば、その上表面が、白色であり、また、介在基板20の全体が、白色でもよい。上基板10は、例えば、透明基板である。下基板11、介在基板20および上基板10は、例えば、樹脂基板である。
 本実施形態によれば、前記検出基準部である下基板11の凸部112(例えば、黒色)の周囲に、例えば、コントラスト差が生じやすい色の組合せとなる介在基板20(例えば、白色)が配置される。このため、検出基準部112aの検出精度を、より向上できる。
 本実施形態のマーカ搭載用ユニットの製造方法は、特に制限されず、例えば、前記実施形態1と同様である。マーカ搭載用ユニット2は、例えば、以下のようにして製造することができる。まず、下基板11の成形材料を用いて、凸部112を有する下基板11を成形した後、介在基板20の成形材料を用いて、下基板11上に、介在基板20を成形する。そして、さらに、下基板11と介在基板20との積層体に対して、上基板10の成形材料を用いて、介在基板20上に、上基板10を成形してもよい。これにより、下基板11の上に、介在基板20と上基板10とが、この順序で積層され、且つ、下基板11の凸部112の外周に、隙間なく、介在基板20と上基板10とを密着して形成することができる。
 なお、マーカ搭載用ユニット2の製造方法は、このような方法には限定されず、例えば、それぞれ別個に下基板11と介在基板20と上基板10とを成形し、下基板11の凸部112に介在基板20の貫通孔201と上基板10の貫通孔102を嵌合させて、下基板11上に介在基板20と上基板10とを積層してもよい。
[実施形態3]
 実施形態3は、本発明のマーカ搭載用ユニットの他の例であり、第2基板となる介在基板が筒部を有する形態である。図4に、本実施形態のマーカ搭載用ユニットの一例を示す。図4は、マーカ搭載用ユニット2の断面図である。本実施形態において、特に示さない限り、実施形態1および2の記載を援用できる。
 図4に示すとおり、マーカ搭載用ユニット2は、前記第1基板となる下基板11と、前記第2基板となる介在基板20とを含み、介在基板20の上に、さらに、上基板10が積層された積層体である。介在基板20は、下基板11の凸部112と対応する箇所に、円状の貫通孔201を有し、貫通孔201の周囲に、上方向に突出する筒部202を有する。上基板10は、介在基板20の筒部202に対応する箇所に、円状の貫通孔を有する。前記積層体において、下基板11の凸部112は、介在基板20の筒部202内の貫通孔201に挿入されており、前記積層体の上面側において、下基板11の凸部112の外周と、介在基板20の筒部202の内周(つまり、貫通孔201の内周)との間に、検出可能な隙間は存在しない。また、前記積層体において、介在基板20の筒部202は、上基板10の貫通孔に挿入されている。
 マーカ搭載用ユニット2は、前記積層体の少なくとも上面側において、下基板11の凸部112の外周と、介在基板20の筒部202の内周(つまり、貫通孔201の内周)との間に、検出可能な隙間が存在しなければよいが、例えば、前者の外周と後者の内周との対向領域全体において隙間が存在しないことが好ましい。
 マーカ搭載用ユニット2において、介在基板20の筒部202の外周と、上基板10の貫通孔の内周との間は、例えば、隙間が存在しても、存在しなくてもよい。
 マーカ搭載用ユニット2において、下基板11の凸部112の上表面112aと、上基板10の上表面との位置関係は、特に制限されない。下基板11の凸部112の上表面112aは、例えば、上基板10の上表面に対してフラットな位置でもよいし、上基板10の上表面よりも低い位置または高い位置でもよい。前者の場合、下基板11の凸部112の上表面112aと、上基板10の上表面との間に、段差がないということができ、後者の場合、下基板11の凸部112の上表面112aと、上基板10の上表面との間に、段差があるということもできる。下基板11の凸部112の上表面112aと上基板10の上表面との高さの差は、特に制限されない。マーカ搭載用ユニット2の全体において、介在基板20の下表面を基準として、上基板10の上表面までの高さを1とした場合、前記基準から下基板11の凸部112の上表面112aまでの高さの相対値は、例えば、0.8~1.2である。
 マーカ搭載用ユニット2において、下基板11の凸部112の上表面112aと、介在基板20の筒部202の上表面200aとの位置関係は、特に制限されない。下基板11の凸部112の上表面112aは、例えば、介在基板20の筒部202の上表面200aに対してフラットな位置でもよいし、介在基板20の筒部202の上表面200aよりも低い位置または高い位置でもよい。前者の場合、下基板11の凸部112の上表面112aと、介在基板20の筒部202の上表面200aとの間に、段差がないということができ、後者の場合、下基板11の凸部112の上表面112aと、介在基板20の筒部202の上表面200aとの間に、段差があるということもできる。下基板11の凸部112の上表面112aと介在基板20の筒部202の上表面200aとの高さの差は、特に制限されない。マーカ搭載用ユニット2の全体において、介在基板20の下表面を基準として、介在基板20の筒部202の上表面200aまでの高さを1とした場合、前記基準から下基板11の凸部112の上表面112aまでの高さの相対値は、例えば、0.8~1.2である。
 下基板11の凸部112と、介在基板20の筒部202の内部とは、例えば、前者の形状と後者の形状とが、実質的に同じ形状であり、且つ、前者の平面(例えば、凸部112の平面方向における断面、具体例は、上表面112a)の面積と、後者の内部空間の平面(例えば、筒部202の内部空間であって、平面方向における断面)の面積とが、実質的に同じであることが好ましい。「面積が実質的に同じ」とは、例えば、凸部112の平面の面積が、筒部202の内部空間の平面の面積に対して、0.8~1倍である。
 介在基板20の筒部202と、上基板10の貫通孔の内部とは、例えば、前者の形状と後者の形状とが、実質的に同じ形状であり、且つ、前者(介在基板20の筒部202)の外周で囲まれる平面の面積と、後者の内部空間の平面(例えば、上基板10の貫通孔の内部空間であって、平面方向における断面)の面積とが、実質的に同じであることが好ましい。「面積が実質的に同じ」とは、例えば、介在基板20の筒部202の平面の面積が、上基板10の貫通孔の内部空間の平面の面積に対して、0.8~1倍である。
 介在基板20の筒部202の形状は、特に制限されず、例えば、その内部が凸部112の形状と同じ形状である。筒部202の形状は、例えば、中空の円筒状、中空の角筒状等があげられる。筒部202の内壁は、例えば、面方向に対して垂直でもよいし、テーパでもよい。後者の場合、前記テーパは、上から下に向かって広がる形状があげられる。
 マーカ搭載用ユニット2において、上基板10は、例えば、透明基板であり、介在基板20は、例えば、反射基板である。
 下基板11と介在基板20と上基板10の色の組合せは、特に制限されず、マーカ搭載用ユニット2にマーカを搭載して検出する際、前記検出基準部として凸部112の上表面112aおよび搭載したマーカを検出可能であればよい。
 介在基板20の色は、例えば、上基板10、下基板11および搭載するマーカに応じて設定できる。介在基板20の上表面の色は、例えば、前記検出基準部である下基板11の凸部112の上表面112aの色とは異なる色である。また、介在基板20の上表面の色と、下基板11の凸部112の上表面112aの色とは、例えば、コントラスト差が生じやすい組合せであることが好ましい。
 それぞれの基板の色は、例えば、以下のような組合せがあげられる。下基板11は、例えば、凸部112の上表面112aが、黒色であり、また、下基板11の凸部112を含む上表面全体または下基板11全体が、黒色でもよい。介在基板20は、例えば、前記搭載するマーカに対する反射基板ということもできる。介在基板20は、例えば、その上表面が、白色であり、また、介在基板20の全体が、白色でもよい。上基板10は、例えば、透明基板である。下基板11、介在基板20および上基板10は、例えば、樹脂基板である。
 本実施形態によれば、前記検出基準部である下基板11の凸部112(例えば、黒色)の周囲に、例えば、コントラスト差が生じやすい色の組合せとなる介在基板20(例えば、白色)が配置される。このため、検出基準部112aの検出精度を、より向上できる。
 本実施形態のマーカ搭載用ユニットの製造方法は、特に制限されず、例えば、前記実施形態1および2と同様である。マーカ搭載用ユニット2は、例えば、以下のようにして製造することができる。まず、下基板11の成形材料を用いて、凸部112を有する下基板11を成形した後、介在基板20の成形材料を用いて、下基板11上に、介在基板20を成形する。これにより、下基板11の上に、介在基板20が積層され、且つ、下基板11の凸部112の外周に、隙間なく、介在基板20を密着して形成することができる。
 そして、さらに、下基板11と介在基板20との積層体に対して、上基板10の成形材料を用いて、介在基板20上に、上基板10を成形してもよいし、別個に成形した上基板10を、介在基板20の上に積層してもよい。この際、例えば、介在基板20の筒部202に、上基板10の貫通孔を嵌合させればよい。
 なお、マーカ搭載用ユニット2の製造方法は、このような方法には限定されず、例えば、それぞれ別個に下基板11と介在基板20と上基板10とを成形し、下基板11の凸部112に介在基板20の貫通孔201を嵌合させ、さらに、介在基板20の筒部202に上基板10の貫通孔を嵌合させて、下基板11上に介在基板20と上基板10とを積層してもよい。
[実施形態4]
 実施形態4は、さらにマーカを有するマーカ搭載用ユニットの例である。本実施形態は、前記マーカを備えることから、マーカユニットの例ともいう。図5に、本実施形態のマーカユニットの一例を示す。図5(A)および(B)は、図3のマーカ搭載用ユニット2にマーカ33を搭載したマーカユニット3の概略図であり、図5(A)は、マーカユニット3の上面図であり、図5(B)は、図5(A)のII-II方向から見たマーカユニット3の断面図である。本実施形態において、特に示さない限り、実施形態1~3の記載を援用できる。
 図5(A)および(B)に示すとおり、マーカユニット3は、図3のマーカ搭載用ユニット2において、介在基板20上であり、且つ、上基板10のマーカ配置領域101に、マーカ33が配置されている。本発明のマーカ搭載用ユニットおよび本発明のマーカユニットは、前記検出基準部の構成が特徴であり、搭載されるマーカの種類は、何ら制限されない。本実施形態では、レンチキュラレンズを用いたいわゆるRASマーカを例示したが、これには制限されず、その他の二次元パターンコード等でもよい。前記二次元パターンコードは、特に制限されず、例えば、ARマーカ、QRマーカ等があげられる。前記ARマーカは、例えば、ARToolKit、ARTag、CyberCode、ARToolKitPlus等があげられる。
 また、本発明のマーカ搭載用ユニットおよび本発明のマーカユニットは、前述のように、前記検出基準部の構成が特徴であり、搭載されるマーカの位置も、何ら制限されない。例えば、図5(A)において、中心部に、前記マーカを搭載する場合は、例えば、上基板10が、対応する箇所に前記マーカ配置領域を有し、前記マーカ配置領域に前記マーカを搭載すればよい。
 本発明のマーカ搭載用ユニットおよび本発明のマーカユニットは、例えば、前記上基板の前記マーカ配置領域の上表面が、前記マーカの上表面を兼ねる。前記マーカが、例えば、RASマーカ等の場合、前記上基板の下表面であって、前記マーカ配置領域に対応する領域に、前記マーカの被検出部(例えば、検出可能な縞模様、ドット模様等)を形成した状態で、前記上基板と前記下基板と任意で前記介在基板を、前述のように配置する。これによって、前記上基板の前記マーカ配置領域に相対する箇所が、本発明のマーカユニットにおける前記マーカとなる。なお、これには限定されず、例えば、前記上基板において、前記マーカ配置領域が貫通孔であり、前記マーカ搭載用ユニットにおいて、前記下基板の上または任意で介在基板の上であって、前記マーカ配置領域に対応する箇所に、別途調製したマーカを配置してもよい。この場合、前記マーカの上表面は、例えば、前記検出基準部である前記凸部の上表面と同等の高さ位置であることが好ましい。
 図5に示すマーカ33の一例について、以下に説明する。なお、本発明において、マーカは、以下の説明には何ら制限されない。
 マーカ33は、複数のレンズユニットを有するレンズ本体を含み、前記複数のレンズユニットは、平面方向において連続的に配置されている。前記複数のレンズユニットが配置されている方向を、配置方向または幅方向といい、平面方向において前記配置方向に対する垂直方向を、長さ方向という。
 前記レンズ本体における前記レンズユニットは、例えば、シリンドリカルレンズがあげられる。前記レンズ本体は、例えば、透光性部材である。前記透光性部材は、特に制限されず、例えば、樹脂およびガラス等があげられる。前記樹脂は、例えば、ポリカーボネート、ポリメタクリル酸メチル(PMMA)等のアクリル系樹脂、シクロオレフィンポリマー(COP)、シクロオレフィンコポリマー(COC)等があげられる。
 前記レンズ本体は、一方の表面側が、光を集める機能を有する集光部を有し、他方の表面側に、複数の被検出部を有する。前記被検出部は、例えば、前記レンズ本体の前記長さ方向に沿って伸びる線であり、前記レンズ本体の他方の表面側において、複数の線により、縞模様が形成されている。前記複数の被検出部は、例えば、光学的に検出可能な像として、前記レンズ本体の上面側に投影され、光学的に検出できる。
 前記被検出部は、光学的に検出できればよく、例えば、着色膜があげられる。前記着色膜の色は、特に制限されず、例えば、黒である。前記着色膜は、例えば、塗膜であり、塗料により形成できる。前記塗料は、特に制限されず、例えば、液体塗料でもよいし、粉体塗料でもよい。前記塗料は、例えば、塗布および/または固化することによって、前記塗膜を形成できる。前記塗布方法は、例えば、スプレー塗布、スクリーン印刷等があげられる。前記固化方法は、例えば、前記液体塗料の乾燥、前記塗料中の硬化成分(例えば、ラジカル重合性化合物等)の硬化、前記粉体塗料の焼き付け等があげられる。
 前記被検出部により形成される模様は、何ら制限されない。前記模様が、例えば、前記縞模様の場合、縞模様を形成する色の濃さは、例えば、同じでもよいし、濃淡であってもよい。
 マーカ33を、例えば、白色の物体の上に置いた場合、マーカ33の前記レンズ本体の上面から入射した光のうち、前記被検出部に到達した光は、前記被検出部(例えば、黒色の着色膜)に吸収され、それ以外の光は、前記レンズ本体を透過して、前記物体の表面で反射する。このため、前記レンズ本体の上面には、白色の背景上に、前記被検出部の像(例えば、黒色の線)が投影される。このため、マーカユニット3において、マーカ33が配置される介在基板20は、反射板の役割を果たすことから、例えば、マーカ33の被検出部が黒色で形成されている場合、マーカ33の下に位置する介在基板20は、その上面が白色であることが好ましい。
 図5(A)および(B)においては、図3のマーカ搭載用ユニット2にマーカ33が搭載されたマーカユニット3の例を示したが、これには限定されない。図5(C)および(D)には、図4のマーカ搭載用ユニット2にマーカ33を搭載したマーカユニット3の概略図を示す。図5(C)および(D)に示すとおり、マーカユニット3は、図4のマーカ搭載用ユニット2において、介在基板20上であり、且つ、上基板10のマーカ配置領域101に、マーカ33が配置されてもよい。また、図示していないが、例えば、図1のマーカ搭載用ユニット1において、下基板11上であり、且つ、上基板10のマーカ配置領域101に、マーカ33が配置されてもよい。
[実施形態5]
 実施形態5は、本発明のマーカ搭載用ユニットの他の例として、前記実施形態3と同様に、三層の基板で構成される変形例を示す。図6は、本実施形態のマーカ搭載用ユニット4の概略図であり、(A)は、平面図であり、(B)は、(A)のIV-IV方向から見た断面図である。
 前記実施形態3におけるマーカ搭載用ユニット2は、図4に示すように、その上面側において、下基板11の凸部112の上表面112aの全周が、介在基板20の筒部202の上表面200aに囲まれ、さらに、その全周が、上基板10に囲まれた形態である。これに対して、本実施形態におけるマーカ搭載用ユニット4は、その上面側において、下基板11の凸部112の上表面112aの全周が、介在基板20の筒部202の上表面200aに囲まれているが、その全周は、上基板10に囲まれていない形態である。
 マーカ搭載用ユニット4における凸部112上面の検出基準部112aの検出は、一般に、凸部112と、その全周を囲む基板(図6において介在基板20)とのエッジの検出により行われる。このため、三層の基板で構成される場合、例えば、凸部112の全周を囲む基板(介在基板20)は、その全周が、さらに他の基板(上基板10)で囲まれることは必須ではない。
[実施形態6]
 実施形態6は、マーカ搭載用ユニットが、前記第1基板の凸部の外周と、前記第2基板の貫通孔の内周との間に、隙間を有するが、前記隙間が検出不可な場合の形態をあげる。
 図7は、本実施形態のマーカ搭載用ユニット5の概略図であり、(A)は、図4と同様の方向から見た断面図であり、(B)は、前記(A)の点線で囲んだ領域を抜き出した部分断面図である。本実施形態において、特に示さない限り、実施形態3の記載を援用できる。
 図7に示すとおり、マーカ搭載用ユニット5は、図4に示すマーカ搭載用ユニット2と同様に、前記第1基板となる下基板11と、前記第2基板となる介在基板20とを含み、介在基板20の上に、さらに、上基板10が積層された積層体である。そして、前記積層体の上面側において、下基板11の凸部112の外周と、介在基板20の筒部202の内周(つまり、貫通孔201の内周)との間には、隙間50Aを有するが、隙間50Aは、検出不可能な隙間であればよい。
 マーカ搭載用ユニット5において、介在基板20の筒部202の外周と、上基板10の貫通孔の内周との間は、例えば、図7に示すように、隙間50Bが存在してもよい。
 本発明のマーカ搭載用ユニットは、前記積層体の上面側において、前記第1基板の凸部の外周と、前記第2基板の貫通孔の内周との間に、検出可能な隙間が存在しないことを特徴とする。この場合、例えば、実施形態1に例示するように、ダブルモールドにより、前記第1基板と前記第2基板とを成形すると、前記第1基板の凸部の外周と前記第2基板の貫通孔の内周との間に、実質的に隙間が発生することを、効果的に防止できる。しかし、本発明のマーカ搭載用ユニットの製造方法は、これには制限されず、例えば、各基板をそれぞれ別個に成形し、それぞれの凸部、貫通孔等を挿入することによって、前述の条件を満たすことができる。
 本実施形態のマーカ搭載用ユニット5を、例えば、各基板をそれぞれ別個に準備して、前記凸部の貫通孔への挿入等により製造する場合は、下基板11の凸部112の大きさ、介在基板20の貫通孔201の大きさ、介在基板20の筒部202の大きさ、上基板10の貫通孔の大きさを、調整することによって、隙間の発生による検出への影響を防止することが可能である。
 マーカ搭載用ユニット5において、下基板11の凸部112と介在基板20の貫通孔201との間の隙間(A)50Aは、検出不可能な隙間であり、例えば、凸部の大きさ(円形の凸部112の直径C)の5%以下であることが好ましい(A≦0.05×C)。隙間Aは、例えば、0.04×C以下、0.03×C以下であることが好ましい。他方、介在基板20の筒部202と、上基板10の貫通孔102との隙間(B)50Bは、例えば、隙間50Aとの関係において、A<Bを満たすことが好ましい。
 このように下基板11と介在基板20と上基板10との条件を設定すれば、例えば、それぞれの基板をそれぞれ別個に成形して準備し、筒部202内の貫通孔201への凸部112の挿入、上基板10の貫通孔102への筒部202の挿入によって、マーカ搭載用ユニット5を形成しても、下基板11の凸部112と介在基板20の貫通孔201との間には、検出可能な隙間の発生は抑制される。このため、凸部112の検出精度も向上できる。
 以上、実施形態を参照して本願発明を説明したが、本願発明は、上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 以上のように、本発明のマーカ搭載用ユニットは、前述のように、前記第1基板の検出基準部となる凸部が前記第2基板の貫通孔に挿入された前記積層体において、前記凸部の外周と前記貫通孔の内周との間に、検出可能な隙間が存在しない。これによって、本発明のマーカ搭載用ユニットは、前記検出基準部を精度よく検出できる。
 この出願は、2017年1月13日に出願された日本出願特願2017―004654、および2017年3月3日に出願された日本出願特願2017―040565を基礎とする優先権を主張し、その開示のすべてをここに取り込む。
1、2、4、5   マーカ搭載用ユニット
3、6   マーカユニット
10、40   上基板
11、41   下基板
20、42   介在基板
101、401   マーカ配置領域
112   凸部
202   筒部
33、43   マーカ
331、431   像
50A、50B   隙間

Claims (15)

  1. 第1基板と第2基板とを含み、
    前記第1基板の上に、前記第2基板が積層された積層体であり、
    前記第1基板は、検出基準部となる凸部を有し、
    前記第2基板は、前記第1基板の凸部と対応する箇所に貫通孔を有し、
    前記第1基板の凸部は、前記第2基板の貫通孔に挿入されており、
    前記積層体の上面側において、前記第1基板の凸部の外周と、前記第2基板の貫通孔の内周との間に、検出可能な隙間が存在しないことを特徴とするマーカ搭載用ユニット。
  2. 前記第1基板の凸部の外周と、前記第2基板の貫通孔の内周との間の距離が、0.22mm以下である、請求項1記載のマーカ搭載用ユニット。
  3. 前記積層体の上面側において、
     前記第1基板の凸部の外周と、前記第2基板の貫通孔の内周との間の隙間が、検出不可能な隙間(A)であり、
     同一の平面方向における前記隙間(A)の長さ、および、前記凸部(C)の長さが、A≦0.05×Cを満たす、請求項1または2記載のマーカ搭載用ユニット。
  4. 前記第1基板の凸部の上表面は、前記第2基板の貫通孔の周囲における上表面と、色相、明度および彩度の少なくとも一つが異なる、請求項1から3のいずれか一項に記載のマーカ搭載用ユニット。
  5. 前記第1基板の凸部の上表面は、着色部材で形成されている、請求項1から4のいずれか一項に記載のマーカ搭載用ユニット。
  6. 前記第2基板が、前記貫通孔の周囲に、上方向に突出する筒部を有する基板であり、
    前記第1基板の凸部は、前記第2基板の筒部内の前記貫通孔に挿入されている、請求項1から5のいずれか一項に記載のマーカ搭載用ユニット。
  7. 前記積層体は、さらに、第3基板を有し、
    前記第3基板は、前記第2基板の上に積層され、且つ、前記第2基板の筒部に対応する箇所に貫通孔を有し、
    前記第2基板の筒部は、前記第3基板の貫通孔に挿入されている、請求項6記載のマーカ搭載用ユニット。
  8. 前記第1基板は、前記凸部の上表面が黒色の基板であり、
    前記第2基板は、透明基板または上表面が白色の基板である、請求項1から7のいずれか一項に記載のマーカ搭載用ユニット。
  9. 前記第1基板は、前記凸部の上表面が黒色の基板であり、
    前記第2基板は、上表面が白色の基板であり、
    前記第3基板は、透明基板である、請求項7または8記載のマーカ搭載用ユニット。
  10. 前記積層体の上面側において、
     前記第1基板の凸部の外周と、前記第2基板の貫通孔の内周との間の隙間が、検出不可能な隙間(A)であり、
     前記第2基板の筒部の外周と、前記第3基板の貫通孔との間に隙間(B)を有する場合、同一の平面方向における前記隙間(A)の長さ、および、前記隙間(B)の長さが、A<Bを満たす、請求項7から9のいずれか一項に記載のマーカ搭載用ユニット。
  11. 下記(A1)工程および(A2)工程、または、(B1)工程および(B2)工程を含むことを特徴とする請求項1から10のいずれか一項に記載のマーカ搭載用ユニットを製造する製造方法。
    (A1)第1基板の成形材料を成形して、検出基準部となる凸部を有する第1基板を形成する工程
    (A2)前記第1基板の凸部の周囲に、前記第2基板の成形材料を密着させた状態で、前記第2基板の成形材料を成形して、前記第1基板の上に前記第2基板を形成する工程
    (B1)第2基板の成形材料を成形して、貫通孔を有する第2基板を形成する工程
    (B2)前記第2基板の下表面および前記第2基板の貫通孔の内部に、前記第1基板の成形材料を密着させた状態で、前記第1基板の成形材料を成形して、前記第2基板の下に前記第1基板を形成する工程
  12. 前記第1基板の成形材料が、黒色の成形材料であり、
    前記第2基板の成形材料が、透明の成形材料または白色の成形材料である、請求項11記載の製造方法。
  13. 前記成形材料が、樹脂材料である、請求項11または12記載の製造方法。
  14. 検出基準部となる凸部を有する第1基板と、前記第1基板の凸部と対応する箇所に貫通孔を有する第2基板とを、それぞれ別個に準備する準備工程と、
    前記第1基板の凸部を、前記第2基板の貫通孔に挿入することによって、前記第1基板の上に、前記第2基板が積層された積層体を形成する積層工程とを含み、
    前記第1基板の凸部と前記第2基板の貫通孔の大きさを、条件(1)を満たす大きさに設定することを特徴とする、請求項1から10のいずれか一項に記載のマーカ搭載用ユニットを製造する製造方法。
    条件(1): 前記積層体の上面側において、
     同一の平面方向における、前記第1基板の凸部の外周と前記第2基板の貫通孔の内周との間の隙間(A)の長さ、および、前記凸部(C)の長さが、A≦0.05×Cを満たす
  15. 前記第2基板が、前記貫通孔の周囲に、上方向に突出する筒部を有する基板であり、
    前記準備工程において、さらに、前記第2基板の筒部に対応する箇所に貫通孔を有する第3基板を別個に準備し、
    前記積層工程において、前記第3基板の貫通孔を、前記第2基板の筒部に挿入することによって、前記第1基板と前記第2基板と前記第3基板とが積層された積層体を形成し、
    前記第1基板の凸部と、前記第2基板の筒部および貫通孔と、前記第3基板の貫通孔と大きさを、条件(2)を満たす大きさに設定する、請求項14記載のマーカ搭載用ユニットを製造する製造方法。
    条件(2): 前記積層体の上面側において、
     同一の平面方向における、前記隙間(A)の長さ、および、前記第2基板の筒部の外周と前記第3基板の貫通孔との間の隙間(B)の長さが、A<Bを満たす

     
PCT/JP2018/000640 2017-01-13 2018-01-12 マーカ搭載用ユニットおよびその製造方法 WO2018131679A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880006233.9A CN110168308A (zh) 2017-01-13 2018-01-12 标记搭载用单元及其制造方法
EP18739185.9A EP3540368A4 (en) 2017-01-13 2018-01-12 MARKER MOUNTING UNIT AND METHOD FOR MANUFACTURING THE SAME
US16/473,977 US20190344526A1 (en) 2017-01-13 2018-01-12 Marker mounting unit and method of manufacturing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017004654 2017-01-13
JP2017-004654 2017-01-13
JP2017040565A JP2018116037A (ja) 2017-01-13 2017-03-03 マーカ搭載用ユニットおよびその製造方法
JP2017-040565 2017-03-03

Publications (1)

Publication Number Publication Date
WO2018131679A1 true WO2018131679A1 (ja) 2018-07-19

Family

ID=62840020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000640 WO2018131679A1 (ja) 2017-01-13 2018-01-12 マーカ搭載用ユニットおよびその製造方法

Country Status (5)

Country Link
US (1) US20190344526A1 (ja)
EP (1) EP3540368A4 (ja)
JP (1) JP2018116037A (ja)
CN (1) CN110168308A (ja)
WO (1) WO2018131679A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05312521A (ja) * 1992-05-13 1993-11-22 Nec Corp ターゲットマーク
JP2000112151A (ja) * 1998-08-06 2000-04-21 Sanee Giken Kk 位置決め用マ―ク、位置決め方法および位置合わせ方法
JP2010172648A (ja) * 2009-02-02 2010-08-12 M & F:Kk マットおよびその製造方法、視覚障害者誘導用ブロック並びにマット構造体
JP2012145559A (ja) * 2010-12-24 2012-08-02 National Institute Of Advanced Industrial & Technology マーカ
US20140160115A1 (en) * 2011-04-04 2014-06-12 Peter Keitler System And Method For Visually Displaying Information On Real Objects
WO2016024555A1 (ja) * 2014-08-12 2016-02-18 国立研究開発法人産業技術総合研究所 マーカとマーカを用いた姿勢推定方法
JP2017004654A (ja) 2015-06-05 2017-01-05 シャープ株式会社 バッテリーパック
JP2017040565A (ja) 2015-08-20 2017-02-23 並木精密宝石株式会社 光イメージング用プローブ及び該光イメージング用プローブを用いた形状測定装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10323860A (ja) * 1997-05-27 1998-12-08 Hitachi Maxell Ltd 二色成形品と二色成形用金型
JPH11214450A (ja) * 1997-11-18 1999-08-06 Matsushita Electric Ind Co Ltd 電子部品実装体とそれを用いた電子機器と電子部品実装体の製造方法
TW390956B (en) * 1998-08-06 2000-05-21 Sanei Giken Co Ltd Positioning mark and alignment method using the same
JP2001137277A (ja) * 1999-11-15 2001-05-22 Yamazaki Corp ガイドマット構造体
JP4463710B2 (ja) * 2005-03-11 2010-05-19 株式会社エンプラス 光学素子および光学素子用ホルダ
KR20090022555A (ko) * 2007-08-31 2009-03-04 엘지전자 주식회사 전자제품용 인쇄회로기판 장착장치
US20130093866A1 (en) * 2010-03-18 2013-04-18 Rigshospitalet Optical motion tracking of an object
JP2015075429A (ja) * 2013-10-10 2015-04-20 国立大学法人 筑波大学 マーカ、マーカの評価方法、情報処理装置、情報処理方法、及びプログラム
KR20160038440A (ko) * 2014-09-30 2016-04-07 삼성전기주식회사 전력 모듈 패키지와 이의 제작방법
CN104302111A (zh) * 2014-10-31 2015-01-21 华进半导体封装先导技术研发中心有限公司 基板对位靶标的制作方法
JP6467260B2 (ja) * 2015-03-24 2019-02-06 株式会社Screenホールディングス 基板処理方法および基板処理装置
JP6571585B2 (ja) * 2015-06-08 2019-09-04 信越化学工業株式会社 半導体装置、積層型半導体装置、封止後積層型半導体装置、及びこれらの製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05312521A (ja) * 1992-05-13 1993-11-22 Nec Corp ターゲットマーク
JP2000112151A (ja) * 1998-08-06 2000-04-21 Sanee Giken Kk 位置決め用マ―ク、位置決め方法および位置合わせ方法
JP2010172648A (ja) * 2009-02-02 2010-08-12 M & F:Kk マットおよびその製造方法、視覚障害者誘導用ブロック並びにマット構造体
JP2012145559A (ja) * 2010-12-24 2012-08-02 National Institute Of Advanced Industrial & Technology マーカ
US20140160115A1 (en) * 2011-04-04 2014-06-12 Peter Keitler System And Method For Visually Displaying Information On Real Objects
WO2016024555A1 (ja) * 2014-08-12 2016-02-18 国立研究開発法人産業技術総合研究所 マーカとマーカを用いた姿勢推定方法
JP2017004654A (ja) 2015-06-05 2017-01-05 シャープ株式会社 バッテリーパック
JP2017040565A (ja) 2015-08-20 2017-02-23 並木精密宝石株式会社 光イメージング用プローブ及び該光イメージング用プローブを用いた形状測定装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
See also references of EP3540368A4
TANAKA, HIDEYUKI ET AL.: "Experiencing excellent image processing-from ViEW2011", VISUAL INFORMATION INDUSTRIAL, vol. 44, no. 6, 1 June 2012 (2012-06-01), pages 66 - 76, XP009516907, ISSN: 1346-1362 *
TANAKA, HIDEYUKI ET AL.: "Improving the Accuracy of Visual Markers by Four Dots and Image Interpolation", 2016 IEEE INTERNATIONAL SYMPOSIUM ON ROBOTICS AND INTELLIGENT SENSORS (IRIS2016), 17 December 2016 (2016-12-17), pages 178 - 183, XP033163536 *

Also Published As

Publication number Publication date
CN110168308A (zh) 2019-08-23
JP2018116037A (ja) 2018-07-26
EP3540368A4 (en) 2020-07-22
EP3540368A1 (en) 2019-09-18
US20190344526A1 (en) 2019-11-14

Similar Documents

Publication Publication Date Title
US20130120835A1 (en) Screen and method for manufacturing screen
US20160363778A1 (en) Grating, Manufacturing Method Thereof and Display Device
WO2018193806A1 (ja) マーカユニット
US20200158500A1 (en) Marker unit
WO2018159312A1 (ja) マーカ搭載用ユニット
WO2018131678A1 (ja) マーカ搭載用ユニット
WO2018131679A1 (ja) マーカ搭載用ユニットおよびその製造方法
WO2018131680A1 (ja) マーカ搭載用ユニット
WO2017150130A1 (ja) マーカ
WO2018212052A1 (ja) マーカユニット
WO2018079399A1 (ja) マーカ
JP2008304224A (ja) ターゲット及びその製造方法
JP2021071448A (ja) マーカ搭載ユニット
EP3971985A1 (en) Display device and method of manufacturing the same
US11584227B2 (en) Light control film and display device comprising the same
US20190369301A1 (en) Marker
WO2018096848A1 (ja) マーカおよびマーカセット
WO2019074036A1 (ja) マーカ
WO2024009999A1 (ja) イメージセンサ及びその製造方法
WO2020009035A1 (ja) マーカ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18739185

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018739185

Country of ref document: EP

Effective date: 20190613

NENP Non-entry into the national phase

Ref country code: DE