WO2018079399A1 - マーカ - Google Patents

マーカ Download PDF

Info

Publication number
WO2018079399A1
WO2018079399A1 PCT/JP2017/037825 JP2017037825W WO2018079399A1 WO 2018079399 A1 WO2018079399 A1 WO 2018079399A1 JP 2017037825 W JP2017037825 W JP 2017037825W WO 2018079399 A1 WO2018079399 A1 WO 2018079399A1
Authority
WO
WIPO (PCT)
Prior art keywords
marker
lens
detected
image
lens body
Prior art date
Application number
PCT/JP2017/037825
Other languages
English (en)
French (fr)
Inventor
共啓 斉藤
Original Assignee
株式会社エンプラス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エンプラス filed Critical 株式会社エンプラス
Priority to US16/340,983 priority Critical patent/US20190293841A1/en
Publication of WO2018079399A1 publication Critical patent/WO2018079399A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/005Arrays characterized by the distribution or form of lenses arranged along a single direction only, e.g. lenticular sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/08Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/06Simple or compound lenses with non-spherical faces with cylindrical or toric faces
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/06009Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with optically detectable marking
    • G06K19/06037Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with optically detectable marking multi-dimensional coding

Definitions

  • the present invention relates to a marker.
  • augmented reality hereinafter also referred to as “AR”
  • visual markers are used to recognize the position and orientation of an object.
  • the marker for example, a marker in which a lenticular lens is arranged on a black stripe pattern has been reported (Patent Document 1).
  • the lenticular lens is generally a lens body in which cylindrical lenses are continuously arranged.
  • the cylindrical lens has a structure in which a cylinder is divided in the axial direction, has a convex portion extending in the axial direction, and is arranged so that the axial direction is parallel to the lenticular lens.
  • the lenticular lens has the stripe pattern such that the axial direction of the cylindrical lens and the black line direction of the stripe pattern are parallel, and the pitch of the cylindrical lens and the pitch of the stripe pattern are different. It is placed on the pattern.
  • the image of the pattern projected onto the lenticular lens is detected by moving or deforming depending on the visual direction. .
  • the viewing direction is known from the detected image, and the position and orientation of the object can be recognized as described above.
  • the following method can be considered. That is, the lenticular lens is arranged on the substrate showing the pattern, and a circle is written on a region of the substrate where the lenticular lens is not arranged, and a pin (pole) is formed at the center of the circle.
  • a marker that is also called.
  • the marker in addition to the detection of the image projected on the lenticular lens, it is detected which part of the circle is hidden by the pin.
  • the detected image is an image detected from the visual direction inclined to the negative angle, or the positive angle. It is possible to determine whether the image is detected from the visual direction inclined in the direction.
  • the pin since the pin is provided, the marker becomes thick overall, and the manufacturing cost increases.
  • an object of the present invention is to provide a marker that can determine a visual direction from a detected image without using a pin as described above, for example.
  • the marker of the present invention includes a lens body having a plurality of lens units,
  • the plurality of lens units are: Arranged continuously in the plane direction, Each of the lens units is respectively On one surface side of the lens body, the lens unit has a condensing part and a non-condensing part, in the direction in which the lens unit continues.
  • the lens body is On the other surface side of the lens body, a plurality of detected parts that can be detected from the one surface side, The pitch of the plurality of lens units is different from the pitch of the plurality of detected portions.
  • the lens unit has the condensing part and the non-condensing part, for example, whether the visual direction is inclined at a positive angle with respect to the normal line. It can be discriminated whether or not it is inclined at a negative angle with respect to the normal.
  • FIG. 1A is a top view illustrating an example of the marker of Embodiment 1
  • FIG. 1B is a cross-sectional view of the marker as viewed from the II direction in FIG. 2A is a schematic diagram for explaining an image that changes with the inclination of the light beam to a positive angle with respect to the marker shown in FIG. 1, and FIG. 2B shows a negative value for the marker shown in FIG. It is the schematic explaining the image which changes with the inclination of the light ray to an angle.
  • FIG. 3 is a cross-sectional view illustrating a modified example of the marker of the first embodiment.
  • FIG. 4 is a cross-sectional view illustrating a modified example of the marker of the first embodiment.
  • FIG. 5A to 5D are top views showing examples of the marker set according to the second embodiment.
  • FIG. 6 is a cross-sectional view illustrating an example of a bidirectional visibility marker used in the marker set of the second embodiment.
  • FIG. 7 is a cross-sectional view showing a comparative marker, and
  • FIG. 7A is a schematic diagram illustrating an image that changes with the inclination of a light beam to a positive angle with respect to the marker.
  • FIG. 8 is a cross-sectional view showing a modification of the marker of the first embodiment.
  • the surface of the condensing part is convex, and the upper surface of the non-condensing part is planar or concave.
  • the lens unit is a deleted cylindrical lens in which a part of the convex portion of the cylindrical lens is deleted, and the deletion region in the convex portion is the non-condensing portion, The other area
  • the deletion region is planar or concave.
  • the lens unit includes a length (C) of the light collecting portion in the arrangement direction and a length (NC) of the non-light collection portion in the arrangement direction in a cross section in the thickness direction.
  • C: NC is 1: 1 to 3: 1.
  • the ratio (C: NC) of the length (C) of the light collecting portion and the length (NC) of the non-light collecting portion is 1: 1 to 2: 1. .
  • the lens body has a plurality of recesses on the other surface side of the lens body, and each of the recesses has the detected part inside.
  • Each said recessed part may have a colored film in the inside as the said to-be-detected part, for example.
  • each lens unit has the same surface shape and size on one surface side of the lens body.
  • a pattern is formed by the plurality of detected parts.
  • the detected part is a line extending in a direction perpendicular to the arrangement direction, and the pattern is a striped pattern formed by the lines.
  • the other surface side of the lens body is a flat surface, and the detected parts are fixed on the flat surface.
  • the lens body is a translucent member.
  • the lens body is an integrally molded product of the plurality of lens units.
  • the lens body is an injection molded product.
  • Embodiment 1 is an example of a marker of the present invention.
  • FIG. 1 shows an example of the marker of this embodiment.
  • 1A is a plan view of the marker 100
  • FIG. 1B is a cross-sectional view of the marker 100 as seen from the II direction in FIG. 1A.
  • hatching representing a cross section is omitted in consideration of easy viewing. The same applies to other sectional views.
  • the marker 100 includes a lens body 110 having a plurality of lens units 111, and the plurality of lens units 111 are continuously arranged in the planar direction.
  • a direction in which the plurality of lens units 111 are arranged is referred to as an arrangement direction or a width direction, and is indicated by an arrow X in FIG.
  • the left direction is referred to as upstream
  • the right direction is referred to as downstream.
  • a direction perpendicular to the arrangement direction X in the plane direction is referred to as a length direction, and is indicated by an arrow Y in FIG. 1A
  • a direction perpendicular to the arrangement direction (width direction) X and the length direction Y is indicated.
  • the thickness direction is indicated by an arrow Z in FIG.
  • Each of the lens units 111 has a condensing part 121 and a non-condensing part on one surface side of the lens body 110, that is, on the upper surface (upper surface) side in FIG. 122.
  • each of the lens units 111 has the condensing unit 121 in the same direction and the non-condensing unit 122 in the same direction from the upstream side to the downstream side in the arrangement direction X.
  • the condensing part 121 is an area indicated by an arrow C
  • the non-condensing part 122 is an area indicated by an arrow NC.
  • the lens body 110 includes a plurality of detected portions 141 on the other surface side of the lens body 110, that is, on the lower surface 140 (lower surface or back surface) side in FIG.
  • each of the lens units is arranged on one surface side of the lens body toward the arrangement direction in which the lens units are continuous.
  • the light collecting part means a surface having a function of collecting light.
  • the non-condensing part may be a surface that is relatively inferior in the function of collecting light when it is compared with the light collecting part with respect to light collection, and preferably collects light. The surface has no function.
  • the surface of the condensing unit 121 is convex, and the surface of the non-condensing unit 122 is planar.
  • the shape of the surface of the condensing part 121 and the surface of the non-condensing part 122 is a surface shape in the cross section of the thickness direction Z, for example, Specifically, the shape of the thickness direction Z along the arrangement direction (width direction) X is shown. It is the surface shape in a cross section.
  • the condensing part 121 only needs to be able to condense light, and for example, the curvature of the convex surface is not particularly limited.
  • the curvature radius (R) of the convex surface in the cross section in the thickness direction increases, for example, from the apex of the condensing part 121 toward the adjacent upstream lens unit 111.
  • the radius of curvature (R) may increase continuously or may increase intermittently.
  • the radius of curvature of the apex of the light collecting unit 121 is, for example, 0.25 to 1 mm.
  • the non-condensing part 122 has a planar surface, for example, from the downstream end of the condensing part 121 of the same lens unit 111 toward the upstream end of the condensing part 121 of the adjacent lens unit 111. It is a slope.
  • the shape of the non-condensing part 122 is not limited to this example.
  • the surface is non-convex, and as a specific example, in addition to planar, it is concave. There may be.
  • the non-condensing part 122 has a concave shape.
  • the non-condensing part 122 has a concave surface whose surface faces, for example, from the downstream end of the condensing part 121 of the same lens unit 111 toward the upstream end of the condensing part 121 of the adjacent lens unit 111. It is.
  • the curvature radius (R) of the concave surface is not particularly limited, and is, for example, a curved surface that does not collect light.
  • the lens unit 111 is, for example, a deleted cylindrical lens in which a part of the convex portion is deleted.
  • the deletion region in the convex portion becomes the non-condensing portion 122, and the other region in the convex portion becomes the condensing portion 121.
  • region in the said convex part is a deletion area
  • the lens body 110 is also referred to as a lenticular lens, for example.
  • the ratio of the size of the condensing part 121 and the non-condensing part 122 in the lens unit 111 is not particularly limited.
  • the ratio (C: NC) of the width (C) of the light collecting portion 121 and the width (NC) of the non-light collecting portion 122 is, for example, 1: 1 to 3: 1, 1: 1 to 2. : 1.
  • the length of the lens unit 111 in the width direction X, that is, the width (W1) in FIG. 1B is, for example, 1000 ⁇ m, 500 ⁇ m, and 370 ⁇ m.
  • the ratio (C: NC) of the width (C) of the condensing part 121 and the width (NC) of the non-condensing part 122 in the lens unit 111 is, for example, 1: 1.
  • the present invention is not limited to this example, and FIG. 4 shows examples of markers with different ratios.
  • the ratio (C: NC) of the width (C) of the condensing unit 121 and the width (NC) of the non-condensing unit 122 is, for example, 7: 3.
  • the marker 100 in FIG. 4 is the same as the marker in FIG. 1B except that the ratio (C: NC) is different.
  • the lens units 111 constituting the lens body 110 have the same surface shape and size on one surface side (upper surface side) of the lens body 110, for example.
  • each lens unit 111 preferably has, for example, a condensing unit 121 having the same shape and a non-condensing unit 122 having the same shape in the same direction.
  • “same” includes, for example, substantially the same meaning as long as it has the same function in addition to completely the same.
  • the lens body 110 may be formed, for example, by connecting a plurality of separately prepared lens units 111, or may be an integrally molded product of the plurality of lens units 111.
  • the lens body 110 is, for example, an injection-molded product.
  • the lens body 110 is preferably an injection-molded product.
  • the plurality of lens units 111 are preferably connected to the adjacent lens units 111 without any gaps.
  • the lens body 110 is, for example, a translucent member.
  • the translucent member is not particularly limited, and examples thereof include resin and glass.
  • the resin include polycarbonate, acrylic resin such as polymethyl methacrylate (PMMA), cycloolefin polymer (COP), cycloolefin copolymer (COC), and the like.
  • the size of the lens body 110 is not particularly limited, and can be appropriately determined according to the number of lens units 111, the use of the marker 100, and the like.
  • the lens body 110 has a length (width) in the width direction X of, for example, 110 mm and 20 mm, a length in the length direction Y of, for example, 25 mm and 5 mm, and a length in the thickness direction Z ( (Thickness) is, for example, 1 mm, 0.6 mm, and 1.7 mm.
  • the number of lens units 111 of the lens body 110 is nine, but this is an example, and the present invention is not limited to this.
  • the number of lens units 111 in the lens main body 110 is not particularly limited, and is, for example, 221, 101, 51.
  • the size of the lens unit 111 is not particularly limited, and can be appropriately determined according to, for example, the number of lens units 111 in the marker 100, the use of the marker 100, and the like.
  • the lens unit 111 has a length in the width direction X, that is, a width W1 in FIG. 1B, for example, 1000 ⁇ m, 500 ⁇ m, and 370 ⁇ m.
  • the lens unit 111 has a length in the longitudinal direction Y of, for example, 25 mm and 5 mm.
  • the entire length (thickness) of the lens unit 111 in the thickness direction Z is, for example, 1 mm and 0.6 mm.
  • a pitch of a plurality of lens units means a pitch P between adjacent lens units.
  • the pitches of adjacent lens units may be the same or different, and preferably the same.
  • the “pitch of the plurality of lens units” in the arrangement direction is different from the “pitch of the plurality of detected parts” in the arrangement direction.
  • the “pitch P between adjacent lens units” is, for example, the distance between the vertices of the light collecting portions 121 of the adjacent lens units 111 (distance between ridge lines).
  • the apex of the light collecting unit 121 is the highest part in the thickness direction, for example, and the ridge line of the light collecting part 121 is the highest part in the cross section in the thickness direction, for example, and the length direction Y A straight line extending to
  • the pitch P between adjacent lens units 111 is the same as the width W1 of the lens unit 111, for example.
  • the lens body 110 has a plurality of detected portions 141 on the other surface side of the lens body 110, that is, on the lower surface (lower surface) side in FIG.
  • the detected portion 141 is a line extending along the length direction Y of the lens body 110, and a striped pattern is formed by a plurality of lines.
  • the plurality of detected portions 141 are, for example, projected onto the upper surface side of the lens body 110 as optically detectable images and can be detected optically.
  • the width W3 of the detected portion 141 in the width direction X is not particularly limited, and is, for example, 50 ⁇ m, 45 ⁇ m, or 30 ⁇ m.
  • the width of the detected part 141 can be appropriately determined according to, for example, the pitch P between adjacent lens units 111.
  • the ratio between the width W3 of the detected portion 141 and the pitch width P between the lens units 111 is, for example, 1: 200 to 1: 5.
  • the “pitch of a plurality of detected parts” means a pitch W2 between adjacent detected parts.
  • the pitches of adjacent detected parts may be the same or different, and preferably the same.
  • the “pitch of the plurality of detected portions” is different from the “pitch of the plurality of lens units”.
  • the “pitch between adjacent detected portions” is, for example, the distance W2 between the centers of adjacent detected portions 141 in the width direction X.
  • the center of the detected part 141 is, for example, the midpoint of the width direction X and the midpoint of the length direction Y.
  • the distance W2 between the adjacent detected portions 141 is different from the width W1 of the lens unit 111 as described above.
  • the distance W ⁇ b> 2 between the adjacent detected portions 141 may be shorter than the width W ⁇ b> 1 of the lens unit 111 or may be longer than the width W ⁇ b> 1 of the lens unit 111.
  • the detected portion 141 only needs to be optically detected, and examples thereof include a colored film.
  • the color of the colored film is not particularly limited and is, for example, black.
  • the colored film is, for example, a coating film and can be formed of a paint.
  • the paint is not particularly limited, and may be a liquid paint or a powder paint, for example.
  • the coating film can be formed by applying and / or solidifying the paint, for example. Examples of the coating method include spray coating and screen printing. Examples of the solidification method include drying of the liquid paint, curing of a curing component (for example, a radically polymerizable compound) in the paint, and baking of the powder paint.
  • the detected portion 141 may be disposed so as to be located on the inner side of the lens body 110 with reference to the exposed surface of the other surface (lower surface) 140 of the lens body 110, or from the lens body 110 to the outside. You may arrange
  • the other surface 140 of the lens body 110 has a recess, and the colored film is disposed in the recess.
  • the other surface 140 of the lens body 100 is flat, and the colored film is disposed (laminated) on the flat surface.
  • the other surface 140 of the lens body 100 has a convex portion, and the colored film is disposed (laminated) on the protruding tip portion of the convex portion.
  • the other surface (lower surface) 140 of the lens body 100 has a concave portion, and a colored film or the like is disposed in the concave portion.
  • 141 is an example of a form in which 141 is formed.
  • the other surface of the lens body 100 has a convex portion, and the colored film or the like is arranged at the protruding tip portion of the convex portion to form the detected portion. Indicates.
  • the detected unit 141 may be optically distinguishable, for example. “Optically distinguishable” means, for example, that the detected portion 141 can be detected with an optically significant difference compared to other regions.
  • An optically significant difference means that there is a significant difference in optical characteristics, for example. Examples of the optical characteristics include lightness, saturation, hue such as hue, light intensity such as luminance, and the like.
  • the optically significant difference may be, for example, a difference that can be visually confirmed or a difference that can be confirmed by an optical detection device such as a camera. For example, when the detected part 141 emits fluorescence, a difference that can be confirmed by an operation such as irradiation of a UV lamp may be used.
  • the pattern formed by the detected part 141 is not limited at all.
  • the pattern is, for example, the striped pattern
  • the darkness of the color forming the striped pattern may be, for example, the same or light and shade.
  • the marker 100 when the marker 100 is placed on a white object, among the light incident from the upper surface of the lens body 110 of the marker 100, the light that has reached the detected portion 141 is detected by the detected portion 141 (for example, black The other light is absorbed by the colored film) and passes through the lens body 110 and is reflected by the surface of the object. For this reason, an image (for example, a black line) of the detected portion 141 is projected onto the upper surface of the lens body 110 on a white background.
  • the detected portion 141 for example, black
  • the detected portion 141 for example, black
  • an image for example, a black line
  • the lens unit may include the condensing unit and the non-condensing unit in a state where the pitch of the lens unit is different from the pitch of the detected unit.
  • the size of each part is not particularly limited. In the marker of the present invention, the size of each part can be appropriately set by setting the size of the lens unit, for example. Although the magnitude
  • FIG. 2 the marker is the marker 100 of FIG.
  • FIG. 7A and 7B are cross-sectional views of a conventional marker 300.
  • FIG. The marker 300 includes a lens body 310 having a plurality of lens units 311, and the plurality of lens units 311 are continuously arranged in the planar direction (width direction).
  • the surface of the lens unit 311 does not have a non-condensing part, but has a convex part that becomes the condensing part 321.
  • the marker 300 is the same as the marker 100 of FIG.
  • the surface of the lens unit 311 does not have a non-condensing part and has a condensing part 321. That is, for example, the conditions of the detected portion 141 and the overall conditions of the lens unit are the same as those of the marker 100.
  • the solid line perpendicular to the lens body 310 is a normal line (0 °).
  • the inclination toward the upstream side in the width direction X will be described as an inclination toward a positive angle
  • the inclination toward the downstream side in the width direction X will be described as an inclination toward a negative angle.
  • the light When light is incident from the upper surface of the lens body 310 of the marker 300, the light converges from the light collecting unit 321, and when the detected unit 141 exists at the focal point, the image of the detected unit 141 becomes the upper surface of the lens main body 310. Will be projected.
  • FIG. 7A is a cross-sectional view showing a change in an image projected on the lens body 310 when the light beam with respect to the marker 300 is tilted from the normal line (0 °) to a positive angle.
  • the first figure is a cross-sectional view in which the light beam is the same as the normal, that is, the inclination angle is 0 °
  • the second figure is a positive inclination angle from the normal line. It is a cross-sectional view of the state inclined at (+ ⁇ 1 °).
  • the third figure shows a state where the light beam is further inclined from the normal by a positive inclination angle (+ ⁇ 2 °, + ⁇ 2 °> + ⁇ 1 °).
  • the first stage when the tilt angle is 0 °, it is the seventh, eighth and ninth lens units from the upstream side that satisfy the above-mentioned condition for projecting the image. Three images are projected on the lens unit in a continuous state.
  • the second stage (+ ⁇ 1 °) when the light beam is inclined at a positive inclination angle in the direction of the arrow, the above-mentioned condition for projecting the image is satisfied from an inclination angle of 0 °.
  • the fifth, sixth, and seventh lens units on the upstream side, and three images are projected on these lens units in a continuous state.
  • the condition for projecting the aforementioned image is upstream of the tilt angle + ⁇ 1 °.
  • the second, third, and fourth lens units on the side, and three images are projected in succession on these lens units. From these figures, it can be seen that by tilting the tilt angle in the plus direction, the projected image moves to the upstream side with the same width.
  • FIG. 7B is a cross-sectional view showing a change in the image projected on the lens body 310 when the light beam with respect to the marker 300 is tilted from the normal line (0 °) to a minus angle.
  • the first stage diagram is the same as FIG. 7A
  • the ray is in the same state as the normal, that is, a cross-sectional view with an inclination angle of 0 °
  • the second stage diagram is FIG. 3 is a cross-sectional view of a state in which the light beam is inclined at a negative inclination angle ( ⁇ 1 °) from the normal, and the third diagram shows a further negative inclination angle ( ⁇ 2 °
  • FIG. 6 is a cross-sectional view in a state inclined at
  • the first stage (0 °) when the tilt angle is 0 °, three images are projected in succession on the seventh, eighth, and ninth lens units from the upstream side as described above.
  • the first, second, and ninth lens units from different upstream sides, and images are projected onto these lens units.
  • the tilt angle increases from the first stage (0 °) to the second stage (- ⁇ 1 °)
  • the image moves downstream, and when reaching the downstream end, a new image appears again from the upstream side. .
  • the second stage ( ⁇ 1 °) one image is projected on the ninth lens unit, and two images are projected on the first and second lens units in a continuous state.
  • the third stage ( ⁇ 2 °) when tilted at a larger tilt angle than the second stage, the third, fourth, and fifth from the upstream side, which is different from the tilt angle ⁇ 1 °.
  • These lens units project three images in succession on these lens units. From these figures, it can be seen that by tilting the tilt angle in the minus direction, the projected image moves to the downstream side with the same width and appears further from the upstream side.
  • the solid line perpendicular to the lens body 110 is a normal line (0 °).
  • the inclination toward the upstream side in the width direction X will be described as an inclination toward a positive angle
  • the inclination toward the downstream side in the width direction X will be described as an inclination toward a negative angle.
  • the light When light is incident from the upper surface of the lens body 110 of the marker 100, the light converges from the condensing unit 121, and when the detected unit 141 exists at the focal point, the image of the detected unit 141 becomes the upper surface of the lens body 110. Will be projected.
  • FIG. 2A is a cross-sectional view showing a change in an image projected on the lens body 110 when the light beam with respect to the marker 100 is tilted from the normal line (0 °) to a positive angle.
  • the first figure is a cross-sectional view in which the light beam is in the same state as the normal, that is, the inclination angle is 0 °
  • the second figure is a positive inclination angle from the normal line. It is a cross-sectional view of the state inclined at (+ ⁇ 1 °).
  • the third figure shows a state where the light beam is further inclined from the normal by a positive inclination angle (+ ⁇ 2 °, + ⁇ 2 °> + ⁇ 1 °).
  • the first stage when the tilt angle is 0 °, it is the seventh, eighth and ninth lens units from the upstream side that satisfy the above-mentioned condition for projecting the image. Three images are projected discontinuously on the lens unit.
  • the second stage (+ ⁇ 1 °) when the light beam is inclined at a positive inclination angle in the direction of the arrow, the above-mentioned condition for projecting the image is satisfied from an inclination angle of 0 °.
  • the fifth, sixth, and seventh lens units on the upstream side, and three images are projected discontinuously on these lens units.
  • the condition for projecting the aforementioned image is upstream of the tilt angle + ⁇ 1 °.
  • the second, third, and fourth lens units on the side, and three images are projected discontinuously on these lens units. From these figures, it can be seen that the projected image moves as the tilt angle is tilted in the plus direction.
  • FIG. 2B is a cross-sectional view showing a change in the image projected on the lens body 110 when the light beam with respect to the marker 100 is tilted from the normal line (0 °) to a minus angle.
  • the first stage diagram is the same as FIG. 2A, and the ray is the same as the normal, that is, a cross-sectional view with an inclination angle of 0 °
  • the second stage diagram is FIG. 3 is a cross-sectional view of a state in which the light beam is inclined at a negative inclination angle ( ⁇ 1 °) from the normal, and the third diagram shows a further negative inclination angle ( ⁇ 2 °
  • FIG. 6 is a cross-sectional view in a state inclined at
  • the first stage (0 °) when the tilt angle is 0 °, as described above, three images are discontinuously projected on the seventh, eighth, and ninth lens units from the upstream side.
  • the second stage ( ⁇ 1 °) when the light beam is inclined at a negative inclination angle in the direction of the arrow, the condition for projecting the above-mentioned image satisfies the condition that the inclination angle is 0 °.
  • the first, second, and ninth lens units from different upstream sides and images are projected discontinuously on these lens units.
  • the tilt angle increases from the first stage (0 °) to the second stage (- ⁇ 1 °)
  • the image moves downstream, and when reaching the downstream end, a new image appears again from the upstream side. .
  • the second stage ( ⁇ 1 °) one image is projected onto the ninth lens unit, and two images are projected discontinuously onto the first and second lens units.
  • the third stage ( ⁇ 2 °) when tilted at a larger tilt angle than the second stage, the third, fourth, and fifth from the upstream side, which is different from the tilt angle ⁇ 1 °.
  • These lens units project images discontinuously onto these lens units. From these drawings, it can be seen that by projecting the tilt angle in the minus direction, the projected discontinuous image moves downstream and appears further from the upstream side.
  • the image when tilted at a positive angle in FIG. 2A is compared with the image when tilted at a negative angle in FIG. 2B.
  • the second stage (+ ⁇ 1 °) in FIG. 2A and the second stage ( ⁇ 1 °) in FIG. 2B have the same absolute value of the inclination angle (
  • the absolute value of the inclination angle is also the same for the third stage (+ ⁇ 2 °) of 2 (A) and the third stage ( ⁇ 2 °) of FIG. 2 (B) (
  • the width of the image with the negative tilt angle ( ⁇ 1 °) is narrower than the width of the image with the positive tilt angle (+ ⁇ 1 °).
  • the width of the image of the negative inclination angle (- [theta] 2 °) is adapted remarkably narrow, negative inclination angle (- [theta] 2 ° ) Image width is only about 1/3 of the positive tilt angle (+ ⁇ 2 °).
  • the marker 100 of the present embodiment when the image is projected when tilted at a positive angle or tilted at a negative angle, the image is projected upstream or downstream. Move.
  • the marker 100 of the present embodiment has a completely different image width when tilted at a positive angle and image width when tilted at a negative angle. Specifically, for example, the width of the image of the marker 100 becomes smaller as the minus angle becomes larger than the inclination angle 0 °, and the inclination angle becomes 0 ° as the plus angle becomes larger. In comparison, it grows larger. For example, as the width of the image is relatively large, the optical characteristics as described above become significant and the contrast becomes stronger in detection.
  • the width of the image is completely different. It is possible to determine whether the image is a projected image or an image projected at a negative angle. That is, with the marker 100 of the present embodiment, it can be said that the tilt direction of the light beam and, optionally, the tilt angle can be determined from the position of the projected image and the optical characteristics.
  • the marker of the present invention can discriminate the light ray direction (visual direction) from each image, for example, when tilted at a positive angle and when tilted at a negative angle. This is because, for example, detection of an image from one direction has an optically significant difference compared to detection of an image from the opposite direction. For this reason, for example, the marker of the present invention is not bi-directionally visible so that an image can be detected similarly in one direction and the opposite direction, but can detect an image in one direction more significantly than the opposite direction. It can also be said that the marker is one-way visibility. As described above, the unidirectional visibility does not mean that visual recognition in the reverse direction is not possible.
  • Embodiment 2 is an example of the marker set of the present invention having the marker of the present invention and a two-dimensional pattern code.
  • the marker set further includes a substrate, for example, and the two-dimensional pattern code and the marker are arranged on the substrate.
  • the marker set includes, for example, at least two markers, at least one marker is the one-directional visibility marker, and at least one other marker is a bidirectional visibility marker.
  • the two-dimensional pattern code is an AR marker.
  • FIGS. 5A to 5D show examples of the marker set of the present embodiment.
  • FIG. 5A is a plan view of a marker set having the marker 100 of FIG. 1 of the first embodiment and a two-dimensional pattern code. 5A, the arrow X indicates the same width direction X as in FIG. 1, and the arrow tip indicates the direction from the upstream side toward the downstream side.
  • the two-dimensional pattern code is not particularly limited, and examples thereof include an AR marker and a QR marker.
  • examples of the AR marker include ARToolKit, ARTag, CyberCode, ARToolKitPlus, and the like.
  • the inclination direction and angle of the light beam can be determined by detecting the marker 100 together with the detection of the AR marker.
  • FIG. 5B is a plan view of a marker set in which the form of FIG. 5A further includes a bidirectional visibility marker 300 with respect to the unidirectional visibility marker 100.
  • the one-way visibility marker 100 and the bidirectional visibility marker 300 are arranged in a state where the width direction X from the upstream side toward the downstream side is parallel.
  • the marker 300 has the same direction as the marker 100 except that the surface of the lens unit 311 does not have a non-condensing part and has a convex part that becomes the condensing part 321. It is the same. That is, for example, the conditions of the detected portion 141 and the overall conditions of the lens unit 311 are the same as those of the marker 100. Further, the marker 300 is, for example, similar to the one-way visibility marker 100 shown in FIG. 8, for example, the lower surface has a convex portion, and the colored film or the like is arranged at the protruding tip portion of the convex portion. Alternatively, the detected portion 141 may be formed.
  • the unidirectional visibility marker 100 and the bidirectional visibility marker 300 are arranged in parallel so as to be in the same direction.
  • the unidirectional visibility marker 100 has the non-condensing part 122 as described above, so that the light beam is inclined at a positive angle or a negative angle from the obtained image. Can be determined. Therefore, by detecting the unidirectional visibility marker 100 and the bidirectional visibility marker 300 for the marker set, for example, if the same image is detected from both, the inclination to a positive angle is detected. If different images are detected from both, it can be determined that the inclination is a negative angle.
  • the marker 100 and the marker 300 are arranged with the two-dimensional pattern code 200 interposed therebetween, but the present invention is not limited to this. May be arranged in parallel.
  • FIG. 5C is a plan view of a marker set in which the configuration of FIG. 5B further includes another pair of unidirectional visibility markers 100 and a bidirectional visibility marker 300 corresponding thereto. is there.
  • FIG. 5D is a plan view of a marker set in which the form of FIG. 5C further has marks 400 for specifying the detection positions at the four corners.
  • the region to be detected can be easily specified by the mark 400.
  • the detection method is an optical apparatus such as a camera, for example, by detecting the mark 400, the area surrounded by the marks 400 at the four corners can be specified as the area to be detected.
  • the marker of the present invention whether the lens unit has the condensing part and the non-condensing part, for example, whether the visual direction is inclined at a positive angle with respect to the normal line. It can be discriminated whether or not it is inclined at a negative angle with respect to the normal.
  • the use of the marker of the present invention is not particularly limited, and for example, in the field of AR and robotics, it can be widely used for recognizing the position and posture of an object.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Lenses (AREA)

Abstract

検出された像から、視覚方向を判断可能なマーカを提供する。 本発明のマーカ(100)は、複数のレンズユニット(111)を有するレンズ本体(110)を含み、複数のレンズユニット(111)は、平面方向において連続的に配置され、前記各レンズユニット(111)は、それぞれ、レンズ本体の一方の表面側に、レンズユニット(111)が連続する配置方向に向かって、集光部(121)と非集光部(122)とを有し、レンズ本体(110)の他方の表面(140)側に、一方の表面側から検出可能な被検出部(141)を有し、複数のレンズユニット(111)のピッチと、複数の被検出部(141)のピッチとが異なることを特徴とする。

Description

マーカ
 本発明は、マーカに関する。
 拡張現実感(Augmented Reality、以下、「AR」ともいう)およびロボティクス等の分野において、物体の位置および姿勢等を認識するために、いわゆる視認マーカが使用されている。前記マーカとしては、例えば、黒の縞模様の上に、レンチキュラレンズが配置されたマーカが報告されている(特許文献1)。
 前記レンチキュラレンズは、一般に、シリンドリカルレンズが、連続して配置されたレンズ体である。前記シリンドリカルレンズは、円柱を軸方向に分割した構造であり、前記軸方向に延びる凸部を有し、前記レンチキュラレンズにおいて、前記軸方向が平行となるように配置されている。そして、前記マーカにおいて、前記レンチキュラレンズは、前記シリンドリカルレンズの軸方向と前記縞模様の黒線方向とが平行となり、かつ、前記シリンドリカルレンズのピッチと縞模様のピッチとが異なるように、前記縞模様の上に配置されている。このような構造により、前記マーカを、前記レンチキュラレンズの凸部側から、カメラ等により視認すると、その視覚方向によって、前記レンチキュラレンズに投影される前記模様の像が移動または変形して検出される。このため、検出される像により、視認方向がわかり、前述のように、物体の位置および姿勢等を認識可能となる。
特開2012-145559号公報
 しかしながら、例えば、前記マーカの平面に対する法線を基準とした場合、視認方向が、前記法線に対してプラスの角度に傾斜する場合および前記法線に対してマイナスの角度に傾斜する場合の両方において、同じ位置に同じ像が検出される場合がある。この場合、像を検出しても、前記プラスの角度に傾斜した視覚方向から検出された像であるのか、前記マイナスの角度に傾斜した視覚方向から検出された像であるのか、判断できない場合がある。
 この問題を解決する方法として、例えば、以下のような方法が考えられる。すなわち、前記模様を示した基板上に、前記レンチキュラレンズを配置し、さらに、前記基板上であって、前記レンチキュラレンズが配置されていない領域に、円を記し、前記円の中心にピン(ポールともいう)を立てたマーカを使用する方法である。前記マーカについては、前記レンチキュラレンズに投影される像の検出とあわせて、前記ピンによって、前記円のいずれの部分が隠れるかを検出する。このように、前記ピンによって前記円のいずれの部分が隠れるかを検出すれば、検出された像が、前記マイナスの角度に傾斜された視覚方向から検出された像であるか、前記プラスの角度に傾斜された視覚方向から検出された像であるかを判断可能になる。しかしながら、このような方法では、前記ピンを設けるために、前記マーカが全体的に厚くなり、また、製造コストもかさんでしまう。
 そこで、本発明は、例えば、前述のようなピンを使用することなく、検出された像から、視覚方向を判断可能なマーカを提供することを目的とする。
 前記目的を達成するために、本発明のマーカは、複数のレンズユニットを有するレンズ本体を含み、
前記複数のレンズユニットは、
 平面方向において連続的に配置され、
前記各レンズユニットは、それぞれ、
 前記レンズ本体の一方の表面側に、前記レンズユニットが連続する配置方向に向かって、集光部と非集光部とを有し、
前記レンズ本体は、
 前記レンズ本体の他方の表面側に、前記一方の表面側から検出可能な複数の被検出部を有し、
 前記複数のレンズユニットのピッチと、前記複数の被検出部のピッチとが異なることを特徴とする。
 本発明のマーカは、前述のように、前記レンズユニットが、集光部と非集光部とを有することによって、例えば、視覚方向が、法線を基準としてプラスの角度に傾斜しているのか、法線を基準としてマイナスの角度に傾斜しているのかを判別できる。
図1(A)は、実施形態1のマーカの一例を示す上面図であり、図1(B)は、図1(A)のI-I方向から見たマーカの断面図である。 図2(A)は、図1に示すマーカについて、プラスの角度への光線の傾斜によって変化する像について説明する概略図であり、図2(B)は、図1に示すマーカについて、マイナスの角度への光線の傾斜によって変化する像について説明する概略図である。 図3は、実施形態1のマーカの変形例を示す断面図である。 図4は、実施形態1のマーカの変形例を示す断面図である。 図5(A)~(D)は、実施形態2のマーカセットの例を示す上面図である。 図6は、実施形態2のマーカセットに用いられる双方向視認性マーカの一例を示す断面図である。 図7は、比較形態のマーカを示す断面図であり、図7(A)は、前記マーカについて、プラスの角度への光線の傾斜によって変化する像について説明する概略図であり、図7(B)は、前記マーカについて、マイナスの角度への光線の傾斜によって変化する像について説明する概略図である。 図8は、実施形態1のマーカの変形例を示す断面図である。
 本発明のマーカでは、例えば、前記レンズユニットにおいて、前記集光部の表面は、凸面状であり、前記非集光部の上面は、平面状または凹面状である。
 本発明のマーカにおいて、例えば、前記レンズユニットは、シリンドリカルレンズの凸部の一部が欠失した欠失シリンドリカルレンズであり、前記凸部における前記欠失領域が、前記非集光部であり、前記凸部におけるその他の領域が、前記集光部である。
 本発明のマーカでは、例えば、前記欠失シリンドリカルレンズにおいて、前記欠失領域が、平面状または凹面状である。
 本発明のマーカにおいて、例えば、前記レンズユニットは、厚み方向の断面において、前記配置方向における前記集光部の長さ(C)と、前記配置方向における前記非集光部の長さ(NC)との比(C:NC)が、1:1~3:1である。
 本発明のマーカにおいて、例えば、前記集光部の長さ(C)と、前記非集光部の長さ(NC)との比(C:NC)が、1:1~2:1である。
 本発明のマーカにおいて、例えば、前記レンズ本体は、前記レンズ本体の他方の表面側に、複数の凹部を有し、前記各凹部は、その内部に、前記被検出部を有する。前記各凹部は、例えば、その内部に、前記被検出部として着色膜を有してもよい。
 本発明のマーカにおいて、例えば、前記各レンズユニットは、それぞれ、前記レンズ本体の一方の表面側において、表面の形状および大きさが、同一である。
 本発明のマーカでは、例えば、前記レンズ本体において、前記複数の被検出部により、模様が形成されている。
 本発明のマーカでは、例えば、前記レンズ本体において、前記被検出部が、前記配置方向に対する垂直方向に伸びる線であり、前記模様が、前記各線により形成される縞模様である。
 本発明のマーカにおいて、例えば、前記レンズ本体は、前記レンズ本体の他方の表面側が平面であり、前記平面上に、前記各被検出部が固定化されている。
 本発明のマーカにおいて、例えば、前記レンズ本体は、透光性部材である。
 本発明のマーカにおいて、例えば、前記レンズ本体は、前記複数のレンズユニットの一体成形品である。
 本発明のマーカにおいて、例えば、前記レンズ本体は、射出成形品である。
 つぎに、本発明の実施形態について、図を用いて説明する。本発明は、下記の実施形態によって何ら限定および制限されない。各図において、同一箇所には同一符号を付している。なお、図においては、説明の便宜上、各部の構造は、適宜、簡略化して示す場合があり、各部の寸法比等は、図の条件には制限されない。
[実施形態1]
 実施形態1は、本発明のマーカの例である。図1に、本実施形態のマーカの一例を示す。図1(A)は、マーカ100の平面図であり、図1(B)は、図1(A)のI-I方向から見たマーカ100の断面図である。図1(B)においては、見やすさを考慮して、断面を表すハッチを省略している。以下、他の断面図においても同様である。
 図1(A)および(B)に示すとおり、マーカ100は、複数のレンズユニット111を有するレンズ本体110を含み、複数のレンズユニット111は、平面方向において連続的に配置されている。複数のレンズユニット111が配置されている方向を、配置方向または幅方向といい、図1において、矢印Xで示す。説明の便宜上、図1において、配置方向Xは、左方向を上流といい、右方向を下流という。マーカ100について、平面方向における配置方向Xに対する垂直方向を、長さ方向といい、図1(A)において、矢印Yで示し、配置方向(幅方向)Xと長さ方向Yとに対する垂直方向を、厚み方向といい、図1(B)において、矢印Zで示す。
 レンズユニット111は、それぞれ、レンズ本体110の一方の表面側、すなわち、図1(B)における上方向の表面(上面)側に、配置方向Xに向かって、集光部121と非集光部122とを有する。具体的には、レンズユニット111は、それぞれ、配列方向Xの上流側から下流側に向かって、集光部121を同方向に有し、非集光部122を同方向に有する。図1(B)に示すように、配置方向Xの断面図において、集光部121は、矢印Cで示す領域であり、非集光部122は、矢印NCで示す領域である。レンズ本体110は、レンズ本体110の他方の表面側、すなわち、図1(B)における下方向の表面140(下面または裏面)側に、複数の被検出部141を有する。
 本発明のマーカは、前述のように、前記各レンズユニットが、前記レンズ本体の一方の表面側に、前記レンズユニットが連続する配列方向に向かって、前記集光部と前記非集光部とを有していればよく、その他の構成は、特に制限されない。本発明において、前記集光部とは、光を集める機能を有する表面であることを意味する。本発明において、前記非集光部とは、光の集光に関して、前記集光部と比較した場合に、相対的に、光を集める機能が劣る表面であればよく、好ましくは、光を集める機能を有さない表面である。
 レンズユニット111において、集光部121は、その表面が、凸面状であり、非集光部122は、その表面が、平面状である。集光部121の表面および非集光部122の表面の形状は、例えば、厚み方向Zの断面における表面形状であり、具体的には、配置方向(幅方向)Xに沿った厚み方向Zの断面における表面形状である。
 集光部121は、光を集光できればよく、例えば、前記凸面の曲率は、特に制限されない。集光部121において、厚み方向の断面における前記凸面は、その曲率半径(R)が、例えば、集光部121の頂点から、隣り合う上流側のレンズユニット111に向かうにつれて、曲率半径が大きくなる。前記曲率半径(R)は、例えば、連続的に大きくなってもよいし、断続的に大きくなってもよい。集光部121の頂点の曲率半径は、例えば、0.25~1mmである。
 非集光部122は、その表面が、例えば、同じレンズユニット111の集光部121の下流側端部から、隣り合うレンズユニット111の集光部121の上流側端部に向かった、平面状の斜面である。非集光部122の形状は、この例には、制限されず、例えば、厚み方向の断面図において、その表面が、非凸面状であり、具体例として、平面状の他に、凹面状であってもよい。
 図3の断面図に、非集光部122の形状が凹面状であるマーカ100の一例を示す。非集光部122は、その表面が、例えば、同じレンズユニット111の集光部121の下流側端部から、隣り合うレンズユニット111の集光部121の上流側端部に向かった、凹面状である。凹面の曲率半径(R)は、特に制限されず、例えば、光を集光しない曲面である。
 レンズユニット111は、例えば、凸部の一部が欠失した欠失シリンドリカルレンズである。この場合、前記欠失シリンドリカルレンズにおいて、前記凸部における欠失領域が、非集光部122となり、前記凸部におけるその他の領域が、集光部121となる。前記凸部における前記欠失領域は、例えば、厚み方向の断面において、長さ方向Yに伸びる欠失領域である。レンズ本体110は、例えば、レンチキュラレンズともいう。
 レンズユニット111における、集光部121と非集光部122との大きさの比率は、特に制限されない。幅方向Xにおいて、集光部121の幅(C)と非集光部122の幅(NC)との比(C:NC)は、例えば、1:1~3:1、1:1~2:1である。レンズユニット111の幅方向Xの長さ、つまり、図1(B)における幅(W1)は、例えば、1000μm、500μm、370μmである。
 図1(B)において、レンズユニット111における集光部121の幅(C)と非集光部122の幅(NC)との比(C:NC)は、例えば、1:1である。本発明は、この例には制限されず、図4に、異なる比のマーカの例を示す。図4のマーカ100は、集光部121の幅(C)と非集光部122の幅(NC)との比(C:NC)が、例えば、7:3である。図4のマーカ100は、前記比(C:NC)が異なる以外は、図1(B)のマーカと同じである。
 レンズ本体110を構成するレンズユニット111は、例えば、それぞれ、前記レンズ本体110の一方の表面側(上面側)において、表面の形状および大きさが、同一である。具体的に、各レンズユニット111は、例えば、同形状の集光部121および同形状の非集光部122を、それぞれ同方向に有していることが好ましい。本発明において、「同一」とは、例えば、完全同一の他に、同様の機能を奏する範囲で、略同一の意味も含む。
 レンズ本体110は、例えば、別個に調製された複数のレンズユニット111を連結することで形成してもよいし、複数のレンズユニット111の一体成形品でもよい。レンズ本体110は、例えば、射出成形品であり、特に、前記一体成形品の場合、射出成形品であることが好ましい。レンズ本体110において、複数のレンズユニット111は、隣り合うレンズユニット111と隙間なく連結していることが好ましい。
 レンズ本体110は、例えば、透光性部材である。前記透光性部材は、特に制限されず、例えば、樹脂およびガラス等があげられる。前記樹脂は、例えば、ポリカーボネート、ポリメタクリル酸メチル(PMMA)等のアクリル樹脂、シクロオレフィンポリマー(COP)、シクロオレフィンコポリマー(COC)等があげられる。
 レンズ本体110の大きさは、特に制限されず、例えば、レンズユニット111の数、マーカ100の用途等に応じて、適宜決定できる。レンズ本体110は、例えば、幅方向Xの長さ(幅)が、例えば、110mm、20mmであり、長さ方向Yの長さが、例えば、25mm、5mmであり、厚み方向Zの長さ(厚み)が、例えば、1mm、0.6mm、1.7mmである。
 図1(A)および(B)において、レンズ本体110のレンズユニット111の数は、9個であるが、これは例示であって、本発明は、これには限定されない。レンズ本体110におけるレンズユニット111の数は、特に制限されず、例えば、221個、101個、51個である。
 レンズユニット111の大きさは、特に制限されず、例えば、マーカ100におけるレンズユニット111の数、マーカ100の用途等に応じて、適宜決定できる。レンズユニット111は、幅方向Xの長さ、すなわち、図1(B)における幅W1が、前述の通り、例えば、1000μm、500μm、370μmである。レンズユニット111は、例えば、長さ方向Yの長さが、例えば、25mm、5mmである。レンズユニット111は、厚み方向Zにおける全体の長さ(厚み)が、例えば、1mm、0.6mmである。
 本発明において、「複数のレンズユニットのピッチ」とは、隣り合うレンズユニット間のピッチPを意味する。前記複数のレンズユニットにおいて、隣り合うレンズユニットの各ピッチは、同じでもよいし異なってもよく、好ましくは同じである。本発明において、前記配列方向における「複数のレンズユニットのピッチ」は、前記配列方向における「複数の被検出部のピッチ」と異なる。
 本発明において、「隣り合うレンズユニット間のピッチP」とは、例えば、隣り合うレンズユニット111の集光部121の頂点間の距離(稜線間の距離)である。集光部121の頂点とは、例えば、厚み方向において、最も高い部位であり、集光部121の稜線とは、例えば、厚み方向の断面において、最も高い部位であり、且つ、長さ方向Yに伸びる直線である。隣り合うレンズユニット111間のピッチPは、例えば、レンズユニット111の幅W1と同様である。
 レンズ本体110は、前述のように、レンズ本体110の他方の表面側、すなわち、図1(B)における下方向の表面(下面)側に、複数の被検出部141を有する。図1(B)において、被検出部141は、レンズ本体110の長さ方向Yに沿って伸びる線であり、複数の線により、縞模様が形成されている。複数の被検出部141は、例えば、光学的に検出可能な像として、レンズ本体110の上面側に投影され、光学的に検出できる。
 被検出部141の幅方向Xの幅W3は、特に制限されず、例えば、50μm、45μm、30μmである。被検出部141の幅は、例えば、隣り合うレンズユニット111間のピッチPに応じて、適宜決定できる。被検出部141の幅W3と、レンズユニット111間のピッチの幅Pとの比は、例えば、1:200~1:5である。被検出部141の幅W3は、レンズユニット111間のピッチPに対して、相対的に大きく設定することによって、例えば、検出される像のコントラストを相対的に大きくでき、相対的に小さく設定することによって、例えば、被検出部の感度を、より向上させることができる。
 本発明において、「複数の被検出部のピッチ」とは、隣り合う被検出部間のピッチW2を意味する。前記複数の被検出部において、隣り合う被検出部の各ピッチは、同じでもよいし異なってもよく、好ましくは同じである。本発明において、「複数の被検出部のピッチ」は、「複数のレンズユニットのピッチ」と異なる。
 本発明において、「隣り合う被検出部間のピッチ」は、例えば、幅方向Xにおいて、隣り合う被検出部141の中心間の距離W2である。被検出部141の中心とは、例えば、幅方向Xの中点であり、且つ、長さ方向Yとの中点である。
 隣り合う被検出部141の距離W2は、前述のように、レンズユニット111の幅W1と異なる。隣り合う被検出部141の距離W2は、例えば、図1(B)に示すように、レンズユニット111の幅W1より短くてもよいし、レンズユニット111の幅W1より長くてもよい。
 被検出部141は、光学的に検出できればよく、例えば、着色膜があげられる。前記着色膜の色は、特に制限されず、例えば、黒である。前記着色膜は、例えば、塗膜であり、塗料により形成できる。前記塗料は、特に制限されず、例えば、液体塗料でもよいし、粉体塗料でもよい。前記塗料は、例えば、塗布および/または固化することによって、前記塗膜を形成できる。前記塗布方法は、例えば、スプレー塗布、スクリーン印刷等があげられる。前記固化方法は、例えば、前記液体塗料の乾燥、前記塗料中の硬化成分(例えば、ラジカル重合性化合物等)の硬化、前記粉末塗料の焼き付け等があげられる。
 被検出部141は、例えば、レンズ本体110の他方の表面(下面)140の露出面を基準として、レンズ本体110の内部側に位置するように配置されてもよいし、レンズ本体110から外部に突出するように配置されてもよい。前者の場合、例えば、レンズ本体110の他方の表面140は、凹部を有し、前記凹部内に前記着色膜が配置された形態があげられる。後者の場合、例えば、レンズ本体100の他方の表面140が、フラットであり、前記フラットな表面上に、前記着色膜が配置(積層)された形態があげられる。また、後者の場合、例えば、レンズ本体100の他方の表面140が、凸部を有し、前記凸部の突出した先端部に、前記着色膜が配置(積層)された形態があげられる。
 前述した図1(B)、図3および図4の断面図は、レンズ本体100の他方の表面(下面)140が凹部を有し、前記凹部内に着色膜等が配置されて、被検出部141を形成している形態の一例である。図8の断面図に、レンズ本体100の他方の表面が、凸部を有し、前記凸部の突出した先端部に前記着色膜等が配置されて、前記被検出部を形成している形態を示す。図8(A)、(B)および(C)は、レンズ本体110の他方の表面140が凸部142を有し、凸部142に被検出部141が設けられている以外は、前記図1(B)、図3および図4のマーカと同様である。
 被検出部141は、例えば、光学的に区別可能であればよい。光学的に区別可能とは、例えば、被検出部141が、それ以外の領域と比較して、光学的に有意な差をもって検出できることを意味する。光学的に有意な差とは、例えば、光学的な特性について有意な差を有していることを意味する。前記光学的な特性とは、例えば、明度、彩度、色相等の色合い、輝度等の光の強さ等があげられる。前記光学的な有意な差は、例えば、目視で確認可能な差でもよいし、カメラ等の光学的な検出装置で確認可能な差でもよい。また、被検出部141が、例えば、蛍光を発する場合、UVランプの照射等の操作によって、確認可能な差でもよい。
 被検出部141により形成される模様は、何ら制限されない。前記模様が、例えば、前記縞模様の場合、縞模様を形成する色の濃さは、例えば、同じでもよいし、濃淡であってもよい。
 マーカ100を、例えば、白色の物体の上に置いた場合、マーカ100のレンズ本体110の上面から入射した光のうち、被検出部141に到達した光は、被検出部141(例えば、黒色の着色膜)に吸収され、それ以外の光は、レンズ本体110を透過して、前記物体の表面で反射する。このため、レンズ本体110の上面には、白色の背景上に、被検出部141の像(例えば、黒色の線)が投影される。
 本発明のマーカは、前述のように、前記レンズユニットのピッチと、前記被検出部のピッチとが異なる状態において、前記レンズユニットが前記集光部と前記非集光部とを有していればよく、各部位の大きさは特に制限されない。本発明のマーカにおいて、各部位の大きさは、例えば、前記レンズユニットの大きさを設定することによって、適宜設定できる。以下に、本発明のマーカの大きさを例示するが、例示であって、本発明は、これらには制限されない。
 つぎに、図1の本発明のマーカを使用した場合における、光線(視覚方向)のプラスの角度への傾斜によって変化する像と、光線のマイナスの角度への傾斜によって変化する像とについて、図2を用いて説明する。図2において、マーカは、図1のマーカ100である。
 まず、本発明の対比として、前記非集光部を有さず、凸状の集光部を有するレンズユニットが連続して配置されている従来のマーカについて、図7を用いて説明する。図7(A)および(B)は、従来のマーカ300の断面図である。マーカ300は、複数のレンズユニット311を有するレンズ本体310を含み、複数のレンズユニット311は、平面方向(幅方向)において連続的に配置されている。レンズユニット311の表面は、非集光部を有しておらず、集光部321となる凸部を有している。マーカ300は、レンズユニット311の表面が、非集光部を有しておらず、集光部321を有する以外は、図1のマーカ100と同様である。つまり、例えば、被検出部141の条件、レンズユニットの全体の条件等は、マーカ100と同様である。
 図7の各図において、レンズ本体310に対して垂直に交差する実線は、法線(0°)である。図7においては、便宜上、幅方向Xにおける上流側への傾斜を、プラスの角度への傾斜とし、幅方向Xにおける下流側への傾斜を、マイナスの角度への傾斜として、説明する。
 マーカ300のレンズ本体310の上面から光が入射すると、集光部321から光が収束し、その焦点に被検出部141が存在する場合、その被検出部141の像が、レンズ本体310の上面に投影されることになる。
 図7(A)は、マーカ300に対する光線を、法線(0°)からプラスの角度に傾斜させた場合における、レンズ本体310に投影される像の変化を示す断面図である。図7(A)において、一段目の図は、光線が法線と同じ状態、つまり傾斜角度が0°の断面図であり、二段目の図は、光線が、法線からプラスの傾斜角度(+θ°)で傾斜した状態の断面図であり、三段目の図は、光線が、法線からさらにプラスの傾斜角度(+θ°、+θ°>+θ°)で傾斜した状態の断面図である。
 一段目(0°)に示すように、傾斜角度が0°の場合、前述の像が投影される条件を満たすのは、上流側から7番目、8番目および9番目のレンズユニットであり、これらのレンズユニットに、3つの像が連続した状態で投影される。そして、二段目(+θ°)に示すように、光線を、矢印方向にプラスの傾斜角度で傾斜させた場合、前述の像が投影される条件を満たすのは、傾斜角度0°よりも上流側の5番目、6番目、7番目のレンズユニットであり、これらのレンズユニットに3つの像が連続した状態で投影される。さらに、三段目(+θ°)に示すように、二段目よりも大きな傾斜角度に傾斜させた場合、前述の像が投影される条件を満たすのは、傾斜角度+θ°よりも上流側の2番目、3番目、4番目のレンズユニットであり、これらのレンズユニットに3つの像が連続した状態で投影される。これらの図から、傾斜角度をプラス方向に傾斜させていくことによって、投影される像が、同じ幅で、上流側に移動していくことがわかる。
 他方、図7(B)は、マーカ300に対する光線を、法線(0°)からマイナスの角度に傾斜させた場合における、レンズ本体310に投影される像の変化を示す断面図である。図7(B)において、一段目の図は、図7(A)と同じであり、光線が法線と同じ状態、つまり傾斜角度が0°の断面図であり、二段目の図は、光線が、法線からマイナスの傾斜角度(-θ°)で傾斜した状態の断面図であり、三段目の図は、光線が、法線からさらにマイナスの傾斜角度(-θ°、|-θ°|>|-θ°|)で傾斜した状態の断面図である。
 一段目(0°)に示すように、傾斜角度が0°の場合、前述のように、上流側から7番目、8番目および9番目のレンズユニットに、3つの像が連続した状態で投影される。そして、二段目(-θ°)に示すように、光線を、矢印方向にマイナスの傾斜角度で傾斜させた場合、前述の像が投影される条件を満たすのは、傾斜角度0°とは異なる上流側から1番目、2番目、9番目のレンズユニットであり、これらのレンズユニットに像が投影される。一段目(0°)から二段目(-θ°)への傾斜角度の増加にしたがって、像は、下流側に移動し、下流側末端まで到達すると、再度上流側から新たな像が現れる。このため、二段目(-θ°)では、9番目のレンズユニットに一つの像が投影され、1番目と2番目のレンズユニットに、2つの像が連続した状態で投影される。さらに、三段目(-θ°)に示すように、二段目よりも大きな傾斜角度に傾斜させた場合、傾斜角度-θ°とは異なる上流側から3番目、4番目、5番目のレンズユニットであり、これらのレンズユニットに、3つの像が連続した状態で投影される。これらの図から、傾斜角度をマイナス方向に傾斜させていくことによって、投影される像が、同じ幅で、下流側に移動して、さらに上流側から現れることがわかる。
 そして、図7(A)のプラスの角度に傾斜した場合の像と、図7(B)のマイナスの角度に傾斜した場合の像とを比較する。すると、前者の場合も後者の場合も、レンズ本体310の表面に、同じ幅の像が現れ、前記幅は変化することなく、下流側から上流側、または下流側から上流側に移動する。このため、プラスの角度に傾斜した場合とマイナスの角度に傾斜した場合に、同じ位置に像が現れ、且つ、その像は同じ幅である。したがって、ある位置における像が、プラスの角度に傾斜した結果の像であるのか、マイナスの角度に傾斜した結果の像であるのかを判断することは困難である。
 つづいて、本発明のマーカについて、図2を用いて説明する。図2の各図において、レンズ本体110に対して垂直に交差する実線は、法線(0°)である。図2においては、便宜上、幅方向Xにおける上流側への傾斜を、プラスの角度への傾斜とし、幅方向Xにおける下流側への傾斜を、マイナスの角度への傾斜として、説明する。
 マーカ100のレンズ本体110の上面から光が入射すると、集光部121から光が収束し、その焦点に被検出部141が存在する場合、その被検出部141の像が、レンズ本体110の上面に投影されることになる。
 図2(A)は、マーカ100に対する光線を、法線(0°)からプラスの角度に傾斜させた場合における、レンズ本体110に投影される像の変化を示す断面図である。図2(A)において、一段目の図は、光線が法線と同じ状態、つまり傾斜角度が0°の断面図であり、二段目の図は、光線が、法線からプラスの傾斜角度(+θ°)で傾斜した状態の断面図であり、三段目の図は、光線が、法線からさらにプラスの傾斜角度(+θ°、+θ°>+θ°)で傾斜した状態の断面図である。
 一段目(0°)に示すように、傾斜角度が0°の場合、前述の像が投影される条件を満たすのは、上流側から7番目、8番目および9番目のレンズユニットであり、これらのレンズユニットに3つの像が不連続に投影される。そして、二段目(+θ°)に示すように、光線を、矢印方向にプラスの傾斜角度で傾斜させた場合、前述の像が投影される条件を満たすのは、傾斜角度0°よりも上流側の5番目、6番目、7番目のレンズユニットであり、これらのレンズユニットに3つの像が不連続に投影される。さらに、三段目(+θ°)に示すように、二段目よりも大きな傾斜角度に傾斜させた場合、前述の像が投影される条件を満たすのは、傾斜角度+θ°よりも上流側の2番目、3番目、4番目のレンズユニットであり、これらのレンズユニットに3つの像が不連続に投影される。これらの図から、傾斜角度をプラス方向に傾斜させていくことによって、投影される像が、移動していくことがわかる。
 他方、図2(B)は、マーカ100に対する光線を、法線(0°)からマイナスの角度に傾斜させた場合における、レンズ本体110に投影される像の変化を示す断面図である。図2(B)において、一段目の図は、図2(A)と同じであり、光線が法線と同じ状態、つまり傾斜角度が0°の断面図であり、二段目の図は、光線が、法線からマイナスの傾斜角度(-θ°)で傾斜した状態の断面図であり、三段目の図は、光線が、法線からさらにマイナスの傾斜角度(-θ°、|-θ°|>|-θ°|)で傾斜した状態の断面図である。
 一段目(0°)に示すように、傾斜角度が0°の場合、前述のように、上流側から7番目、8番目および9番目のレンズユニットに3つの像が不連続に投影される。そして、二段目(-θ°)に示すように、光線を、矢印方向にマイナスの傾斜角度で傾斜させた場合、前述の像が投影される条件を満たすのは、傾斜角度0°とは異なる上流側から1番目、2番目、9番目のレンズユニットであり、これらのレンズユニットに像が不連続に投影される。一段目(0°)から二段目(-θ°)への傾斜角度の増加にしたがって、像は、下流側に移動し、下流側末端まで到達すると、再度上流側から新たな像が現れる。このため、二段目(-θ°)では、9番目のレンズユニットに一つの像が投影され、1番目と2番目のレンズユニットに、2つの像が不連続に投影される。さらに、三段目(-θ°)に示すように、二段目よりも大きな傾斜角度に傾斜させた場合、傾斜角度-θ°とは異なる上流側から3番目、4番目、5番目のレンズユニットであり、これらのレンズユニットに像が不連続に投影される。これらの図から、傾斜角度をマイナス方向に傾斜させていくことによって、投影される不連続の像が、下流側に移動して、さらに上流側から現れることがわかる。
 そして、図2(A)のプラスの角度に傾斜した場合の像と、図2(B)のマイナスの角度に傾斜した場合の像とを比較する。図2(A)の二段目(+θ°)と図2(B)の二段目(-θ°)は、傾斜角度の絶対値が同じであり(|θ|°)、図2(A)の三段目(+θ°)と図2(B)の三段目(-θ°)も、傾斜角度の絶対値が同じである(|θ|°)。しかし、プラスの傾斜角度(+θ°)の像の幅と比較して、マイナスの傾斜角度(-θ°)の像の幅は狭くなっている。さらに、プラスの傾斜角度(+θ°)の像と比較して、マイナスの傾斜角度(-θ°)の像の幅は、顕著に狭くなっており、マイナスの傾斜角度(-θ°)の像の幅は、プラスの傾斜角度(+θ°)の約1/3程度にすぎない。
 本実施形態のマーカ100においても、従来のマーカ300と同様に、プラスの角度に傾斜した場合およびマイナスの角度に傾斜した場合、像が投影されると、その像は、上流側または下流側に移動していく。しかしながら、本実施形態のマーカ100は、従来のマーカ300とは異なり、プラスの角度に傾斜した場合における像の幅と、マイナスの角度に傾斜した場合における像の幅が、全く異なっている。具体的には、マーカ100の像の幅は、例えば、マイナスの角度が大きくなる程、傾斜角度0°と比較して、小さくなっていき、プラスの角度が大きくなる程、傾斜角度0°と比較して、大きくなっていく。像の幅は、例えば、相対的に大きい程、検出において、前述のような光学的な特性が有意となり、コントラストがより強くなる。このため、マーカ100においては、プラスの角度に傾斜した場合と、マイナスの角度に傾斜した場合とで、同じ位置に像が投影されても、像の幅が全く異なるため、プラスの角度で投影された像であるか、マイナスの角度で投影された像であるかを判別することが可能である。つまり、本実施形態のマーカ100であれば、投影される像の位置および光学的特性等から、光線の傾斜方向、さらに任意で傾斜角度を判断することも可能といえる。
 本発明のマーカは、前述のように、例えば、プラスの角度に傾斜した場合とマイナスの角度に傾斜した場合とにおいて、それぞれの像から光線方向(視覚方向)を判別できる。これは、例えば、一方の方向からの像の検出が、その逆方向からの像の検出と比較して、光学的に有意な差を有していることによる。このため、本発明のマーカは、例えば、一方向とその逆方向の両方において、同様に像を検出できる双方向視認性ではなく、一方向において、その逆方向よりも有意に像を検出できることから、一方向視認性のマーカということもできる。なお、前述のように、一方向視認性とは、逆方向における視認ができないことを意味するものではない。
[実施形態2]
 実施形態2は、本発明のマーカと二次元パターンコードとを有する本発明のマーカセットの例である。
 前記マーカセットは、例えば、さらに、基板を含み、前記基板に、前記二次元パターンコードと、前記マーカとが配置されている。また、前記マーカセットは、例えば、少なくとも2つのマーカを含み、少なくとも1つのマーカが、一方向視認性の前記マーカであり、少なくとも1つの他のマーカが、双方向視認性マーカである。前記マーカセットにおいて、例えば、前記二次元パターンコードは、ARマーカである。
 具体例として、図5(A)~(D)に、本実施形態のマーカセットの例を示す。
 図5(A)は、前記実施形態1の図1のマーカ100と、二次元パターンコードとを有するマーカセットの平面図である。図5(A)において、矢印Xは、図1と同様の幅方向Xを示し、矢先は、上流側から下流側に向かう方向であることを示す。
 二次元パターンコードは、特に制限されず、例えば、ARマーカ、QRマーカ等があげられる。ARマーカは、例えば、ARToolKit、ARTag、CyberCode、ARToolKitPlus等があげられる。
 図5(A)のマーカセットによれば、ARマーカの検出とともに、マーカ100を検出することによって、光線(視覚方向)の傾斜方向や角度を判断できる。
 図5(B)は、前記図5(A)の形態が、さらに、一方向視認性のマーカ100に対する双方向視認性のマーカ300を有するマーカセットの平面図である。一方向視認性マーカ100と双方向視認性マーカ300とは、上流側から下流側に向かう幅方向Xが平行になった状態で、配置されている。
 双方向視認性のマーカ300の一例を、図6の断面図に示す。図6において、マーカ300は、レンズユニット311の表面が、非集光部を有しておらず、集光部321となる凸部を有している以外は、一方向視認性のマーカ100と同様である。つまり、例えば、被検出部141の条件、レンズユニット311の全体の条件等は、マーカ100と同様である。また、マーカ300は、例えば、前記図8に示す一方向視認性マーカ100と同様に、例えば、下面が凸部を有し、前記凸部の突出した先端部に前記着色膜等が配置されて、被検出部141を形成する形態でもよい。
 図5(B)のマーカセットによれば、一方向視認性のマーカ100と双方向性視認性のマーカ300とが、同方向となるように、平行に配置されている。そして、一方向視認性のマーカ100は、前述のように、非集光部122を有することによって、得られる像から、光線がプラスの角度に傾斜しているか、マイナスの角度に傾斜しているかを判別できる。したがって、前記マーカセットについて、一方向視認性のマーカ100と双方向視認性のマーカ300とを検出することによって、例えば、両者から同じ像が検出された場合には、プラスの角度への傾斜と判断し、両者から異なる像が検出された場合には、マイナスの角度への傾斜と判断できる。
 図5(B)において、マーカ100とマーカ300は、二次元パターンコード200を挟んで配置されているが、これには制限されず、例えば、二次元パターンコード200のいずれかの脇に、両者が平行に配置されてもよい。
 図5(C)は、前記図5(B)の形態が、さらに、もう一対の、一方向視認性のマーカ100と、それに対する双方向視認性のマーカ300とを有するマーカセットの平面図である。
 図5(C)のマーカセットによれば、例えば、紙面において、上下方向の傾斜だけでなく、左右方向の傾斜についても、判断できる。
 図5(D)は、前記図5(C)の形態が、さらに、四隅に、検出位置を特定するための目印(マーク)400を有するマーカセットの平面図である。
 図5(D)のマーカセットによれば、例えば、検出すべき領域を目印400によって容易に特定できる。検出方法が、カメラ等の光学装置の場合、例えば、目印400を検出することによって、四隅の目印400で囲まれた領域を、検出すべき領域として特定できる。
 この出願は、2016年10月27日に出願された日本出願特願2016-210979を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 以上のように、本発明のマーカは、前記レンズユニットが、集光部と非集光部とを有することによって、例えば、視覚方向が、法線を基準としてプラスの角度に傾斜しているのか、法線を基準としてマイナスの角度に傾斜しているのかを判別できる。本発明のマーカの用途は、特に限定されず、例えば、ARやロボティクスの分野において、物体の位置や姿勢等を認識するために、幅広く利用できる。
100  マーカ
110、310  レンズ本体
111、311  レンズユニット
121、321  集光部
122  非集光部
141  被検出部
141’ 像
142  凸部
200  二次元パターンコード
300  双方向視認性マーカ
 

Claims (7)

  1. 複数のレンズユニットを有するレンズ本体を含み、
    前記複数のレンズユニットは、
     平面方向において連続的に配置され、
    前記各レンズユニットは、それぞれ、
     前記レンズ本体の一方の表面側に、前記レンズユニットが連続する配置方向に向かって、集光部と非集光部とを有し、
    前記レンズ本体は、
     前記レンズ本体の他方の表面側に、前記一方の表面側から検出可能な複数の被検出部を有し、
     前記複数のレンズユニットのピッチと、前記複数の被検出部のピッチとが異なる
    ことを特徴とするマーカ。
  2. 前記レンズユニットにおいて、前記集光部の表面は、凸面状であり、前記非集光部の表面は、平面状または凹面状である、請求項1記載のマーカ。
  3. 前記レンズユニットは、シリンドリカルレンズの凸部の一部が欠失した欠失シリンドリカルレンズであり、
    前記凸部における前記欠失領域が、前記非集光部であり、前記凸部におけるその他の領域が、前記集光部である、請求項1または2記載のマーカ。
  4. 前記レンズユニットは、厚み方向の断面において、前記配置方向における前記集光部の長さ(C)と、前記配置方向における前記非集光部の長さ(NC)との比(C:NC)が、1:1~3:1である、請求項1から3のいずれか一項に記載のマーカ。
  5. 前記レンズ本体は、前記レンズ本体の他方の表面側に、複数の凹部を有し、
    前記各凹部は、その内部に、前記被検出部を有する、請求項1から4のいずれか一項に記載のマーカ。
  6. 前記レンズ本体は、前記複数のレンズユニットの一体成形品である、請求項1から5のいずれか一項に記載のマーカ。
  7. 前記レンズ本体は、射出成形品である、請求項1から6のいずれか一項に記載のマーカ。
PCT/JP2017/037825 2016-10-27 2017-10-19 マーカ WO2018079399A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/340,983 US20190293841A1 (en) 2016-10-27 2017-10-19 Marker

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016210979A JP2018072112A (ja) 2016-10-27 2016-10-27 マーカ
JP2016-210979 2016-10-27

Publications (1)

Publication Number Publication Date
WO2018079399A1 true WO2018079399A1 (ja) 2018-05-03

Family

ID=62024892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037825 WO2018079399A1 (ja) 2016-10-27 2017-10-19 マーカ

Country Status (3)

Country Link
US (1) US20190293841A1 (ja)
JP (1) JP2018072112A (ja)
WO (1) WO2018079399A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3553462B1 (en) * 2016-12-12 2021-05-26 National Institute of Advanced Industrial Science and Technology Marker and marker manufacturing method
CN111572236B (zh) * 2020-04-29 2021-09-10 中山大学 一种光学加密与数字加密相结合的防伪元件及其制作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6369949B1 (en) * 2000-04-12 2002-04-09 Kenneth E. Conley Optically anisotropic micro lens window
US6751024B1 (en) * 1999-07-22 2004-06-15 Bruce A. Rosenthal Lenticular optical system
JP2009223313A (ja) * 2009-03-05 2009-10-01 Oki Data Corp レンチキュラーレンズ媒体
JP2015064552A (ja) * 2013-08-30 2015-04-09 大日本印刷株式会社 蓄光部材
JP2015069116A (ja) * 2013-09-30 2015-04-13 大日本印刷株式会社 太陽電池複合型表示体
DE102014004700A1 (de) * 2014-03-31 2015-10-01 Giesecke & Devrient Gmbh Sicherheitselement mit einem Linsenrasterbild

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6751024B1 (en) * 1999-07-22 2004-06-15 Bruce A. Rosenthal Lenticular optical system
US6369949B1 (en) * 2000-04-12 2002-04-09 Kenneth E. Conley Optically anisotropic micro lens window
JP2009223313A (ja) * 2009-03-05 2009-10-01 Oki Data Corp レンチキュラーレンズ媒体
JP2015064552A (ja) * 2013-08-30 2015-04-09 大日本印刷株式会社 蓄光部材
JP2015069116A (ja) * 2013-09-30 2015-04-13 大日本印刷株式会社 太陽電池複合型表示体
DE102014004700A1 (de) * 2014-03-31 2015-10-01 Giesecke & Devrient Gmbh Sicherheitselement mit einem Linsenrasterbild

Also Published As

Publication number Publication date
JP2018072112A (ja) 2018-05-10
US20190293841A1 (en) 2019-09-26

Similar Documents

Publication Publication Date Title
WO2018079399A1 (ja) マーカ
US20200158500A1 (en) Marker unit
US20190072693A1 (en) Marker
WO2018096848A1 (ja) マーカおよびマーカセット
WO2018116954A1 (ja) マーカ
WO2019074036A1 (ja) マーカ
WO2018212052A1 (ja) マーカユニット
US20200088913A1 (en) Marker
WO2018131678A1 (ja) マーカ搭載用ユニット
WO2017163778A1 (ja) マーカ
WO2020009035A1 (ja) マーカ
WO2017212853A1 (ja) マーカ
WO2017146097A1 (ja) マーカ
WO2020111120A1 (ja) マーカ
WO2018131680A1 (ja) マーカ搭載用ユニット
WO2020111119A1 (ja) マーカ
WO2018030063A1 (ja) マーカ
US20190344526A1 (en) Marker mounting unit and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17865364

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17865364

Country of ref document: EP

Kind code of ref document: A1